gdb/
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static int nosymbol (char *, CORE_ADDR *);
58
59 static void tcomplain (void) ATTRIBUTE_NORETURN;
60
61 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
62
63 static int return_zero (void);
64
65 static int return_one (void);
66
67 static int return_minus_one (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static void init_dummy_target (void);
97
98 static struct target_ops debug_target;
99
100 static void debug_to_open (char *, int);
101
102 static void debug_to_prepare_to_store (struct regcache *);
103
104 static void debug_to_files_info (struct target_ops *);
105
106 static int debug_to_insert_breakpoint (struct gdbarch *,
107 struct bp_target_info *);
108
109 static int debug_to_remove_breakpoint (struct gdbarch *,
110 struct bp_target_info *);
111
112 static int debug_to_can_use_hw_breakpoint (int, int, int);
113
114 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
121 struct expression *);
122
123 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
124 struct expression *);
125
126 static int debug_to_stopped_by_watchpoint (void);
127
128 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
129
130 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
131 CORE_ADDR, CORE_ADDR, int);
132
133 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
134
135 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
136 struct expression *);
137
138 static void debug_to_terminal_init (void);
139
140 static void debug_to_terminal_inferior (void);
141
142 static void debug_to_terminal_ours_for_output (void);
143
144 static void debug_to_terminal_save_ours (void);
145
146 static void debug_to_terminal_ours (void);
147
148 static void debug_to_terminal_info (char *, int);
149
150 static void debug_to_load (char *, int);
151
152 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
153
154 static int debug_to_can_run (void);
155
156 static void debug_to_notice_signals (ptid_t);
157
158 static void debug_to_stop (ptid_t);
159
160 /* Pointer to array of target architecture structures; the size of the
161 array; the current index into the array; the allocated size of the
162 array. */
163 struct target_ops **target_structs;
164 unsigned target_struct_size;
165 unsigned target_struct_index;
166 unsigned target_struct_allocsize;
167 #define DEFAULT_ALLOCSIZE 10
168
169 /* The initial current target, so that there is always a semi-valid
170 current target. */
171
172 static struct target_ops dummy_target;
173
174 /* Top of target stack. */
175
176 static struct target_ops *target_stack;
177
178 /* The target structure we are currently using to talk to a process
179 or file or whatever "inferior" we have. */
180
181 struct target_ops current_target;
182
183 /* Command list for target. */
184
185 static struct cmd_list_element *targetlist = NULL;
186
187 /* Nonzero if we should trust readonly sections from the
188 executable when reading memory. */
189
190 static int trust_readonly = 0;
191
192 /* Nonzero if we should show true memory content including
193 memory breakpoint inserted by gdb. */
194
195 static int show_memory_breakpoints = 0;
196
197 /* These globals control whether GDB attempts to perform these
198 operations; they are useful for targets that need to prevent
199 inadvertant disruption, such as in non-stop mode. */
200
201 int may_write_registers = 1;
202
203 int may_write_memory = 1;
204
205 int may_insert_breakpoints = 1;
206
207 int may_insert_tracepoints = 1;
208
209 int may_insert_fast_tracepoints = 1;
210
211 int may_stop = 1;
212
213 /* Non-zero if we want to see trace of target level stuff. */
214
215 static int targetdebug = 0;
216 static void
217 show_targetdebug (struct ui_file *file, int from_tty,
218 struct cmd_list_element *c, const char *value)
219 {
220 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
221 }
222
223 static void setup_target_debug (void);
224
225 /* The option sets this. */
226 static int stack_cache_enabled_p_1 = 1;
227 /* And set_stack_cache_enabled_p updates this.
228 The reason for the separation is so that we don't flush the cache for
229 on->on transitions. */
230 static int stack_cache_enabled_p = 1;
231
232 /* This is called *after* the stack-cache has been set.
233 Flush the cache for off->on and on->off transitions.
234 There's no real need to flush the cache for on->off transitions,
235 except cleanliness. */
236
237 static void
238 set_stack_cache_enabled_p (char *args, int from_tty,
239 struct cmd_list_element *c)
240 {
241 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
242 target_dcache_invalidate ();
243
244 stack_cache_enabled_p = stack_cache_enabled_p_1;
245 }
246
247 static void
248 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
252 }
253
254 /* Cache of memory operations, to speed up remote access. */
255 static DCACHE *target_dcache;
256
257 /* Invalidate the target dcache. */
258
259 void
260 target_dcache_invalidate (void)
261 {
262 dcache_invalidate (target_dcache);
263 }
264
265 /* The user just typed 'target' without the name of a target. */
266
267 static void
268 target_command (char *arg, int from_tty)
269 {
270 fputs_filtered ("Argument required (target name). Try `help target'\n",
271 gdb_stdout);
272 }
273
274 /* Default target_has_* methods for process_stratum targets. */
275
276 int
277 default_child_has_all_memory (struct target_ops *ops)
278 {
279 /* If no inferior selected, then we can't read memory here. */
280 if (ptid_equal (inferior_ptid, null_ptid))
281 return 0;
282
283 return 1;
284 }
285
286 int
287 default_child_has_memory (struct target_ops *ops)
288 {
289 /* If no inferior selected, then we can't read memory here. */
290 if (ptid_equal (inferior_ptid, null_ptid))
291 return 0;
292
293 return 1;
294 }
295
296 int
297 default_child_has_stack (struct target_ops *ops)
298 {
299 /* If no inferior selected, there's no stack. */
300 if (ptid_equal (inferior_ptid, null_ptid))
301 return 0;
302
303 return 1;
304 }
305
306 int
307 default_child_has_registers (struct target_ops *ops)
308 {
309 /* Can't read registers from no inferior. */
310 if (ptid_equal (inferior_ptid, null_ptid))
311 return 0;
312
313 return 1;
314 }
315
316 int
317 default_child_has_execution (struct target_ops *ops)
318 {
319 /* If there's no thread selected, then we can't make it run through
320 hoops. */
321 if (ptid_equal (inferior_ptid, null_ptid))
322 return 0;
323
324 return 1;
325 }
326
327
328 int
329 target_has_all_memory_1 (void)
330 {
331 struct target_ops *t;
332
333 for (t = current_target.beneath; t != NULL; t = t->beneath)
334 if (t->to_has_all_memory (t))
335 return 1;
336
337 return 0;
338 }
339
340 int
341 target_has_memory_1 (void)
342 {
343 struct target_ops *t;
344
345 for (t = current_target.beneath; t != NULL; t = t->beneath)
346 if (t->to_has_memory (t))
347 return 1;
348
349 return 0;
350 }
351
352 int
353 target_has_stack_1 (void)
354 {
355 struct target_ops *t;
356
357 for (t = current_target.beneath; t != NULL; t = t->beneath)
358 if (t->to_has_stack (t))
359 return 1;
360
361 return 0;
362 }
363
364 int
365 target_has_registers_1 (void)
366 {
367 struct target_ops *t;
368
369 for (t = current_target.beneath; t != NULL; t = t->beneath)
370 if (t->to_has_registers (t))
371 return 1;
372
373 return 0;
374 }
375
376 int
377 target_has_execution_1 (void)
378 {
379 struct target_ops *t;
380
381 for (t = current_target.beneath; t != NULL; t = t->beneath)
382 if (t->to_has_execution (t))
383 return 1;
384
385 return 0;
386 }
387
388 /* Add a possible target architecture to the list. */
389
390 void
391 add_target (struct target_ops *t)
392 {
393 /* Provide default values for all "must have" methods. */
394 if (t->to_xfer_partial == NULL)
395 t->to_xfer_partial = default_xfer_partial;
396
397 if (t->to_has_all_memory == NULL)
398 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
399
400 if (t->to_has_memory == NULL)
401 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
402
403 if (t->to_has_stack == NULL)
404 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
405
406 if (t->to_has_registers == NULL)
407 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
408
409 if (t->to_has_execution == NULL)
410 t->to_has_execution = (int (*) (struct target_ops *)) return_zero;
411
412 if (!target_structs)
413 {
414 target_struct_allocsize = DEFAULT_ALLOCSIZE;
415 target_structs = (struct target_ops **) xmalloc
416 (target_struct_allocsize * sizeof (*target_structs));
417 }
418 if (target_struct_size >= target_struct_allocsize)
419 {
420 target_struct_allocsize *= 2;
421 target_structs = (struct target_ops **)
422 xrealloc ((char *) target_structs,
423 target_struct_allocsize * sizeof (*target_structs));
424 }
425 target_structs[target_struct_size++] = t;
426
427 if (targetlist == NULL)
428 add_prefix_cmd ("target", class_run, target_command, _("\
429 Connect to a target machine or process.\n\
430 The first argument is the type or protocol of the target machine.\n\
431 Remaining arguments are interpreted by the target protocol. For more\n\
432 information on the arguments for a particular protocol, type\n\
433 `help target ' followed by the protocol name."),
434 &targetlist, "target ", 0, &cmdlist);
435 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
436 }
437
438 /* Stub functions */
439
440 void
441 target_ignore (void)
442 {
443 }
444
445 void
446 target_kill (void)
447 {
448 struct target_ops *t;
449
450 for (t = current_target.beneath; t != NULL; t = t->beneath)
451 if (t->to_kill != NULL)
452 {
453 if (targetdebug)
454 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
455
456 t->to_kill (t);
457 return;
458 }
459
460 noprocess ();
461 }
462
463 void
464 target_load (char *arg, int from_tty)
465 {
466 target_dcache_invalidate ();
467 (*current_target.to_load) (arg, from_tty);
468 }
469
470 void
471 target_create_inferior (char *exec_file, char *args,
472 char **env, int from_tty)
473 {
474 struct target_ops *t;
475
476 for (t = current_target.beneath; t != NULL; t = t->beneath)
477 {
478 if (t->to_create_inferior != NULL)
479 {
480 t->to_create_inferior (t, exec_file, args, env, from_tty);
481 if (targetdebug)
482 fprintf_unfiltered (gdb_stdlog,
483 "target_create_inferior (%s, %s, xxx, %d)\n",
484 exec_file, args, from_tty);
485 return;
486 }
487 }
488
489 internal_error (__FILE__, __LINE__,
490 _("could not find a target to create inferior"));
491 }
492
493 void
494 target_terminal_inferior (void)
495 {
496 /* A background resume (``run&'') should leave GDB in control of the
497 terminal. Use target_can_async_p, not target_is_async_p, since at
498 this point the target is not async yet. However, if sync_execution
499 is not set, we know it will become async prior to resume. */
500 if (target_can_async_p () && !sync_execution)
501 return;
502
503 /* If GDB is resuming the inferior in the foreground, install
504 inferior's terminal modes. */
505 (*current_target.to_terminal_inferior) ();
506 }
507
508 static int
509 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
510 struct target_ops *t)
511 {
512 errno = EIO; /* Can't read/write this location. */
513 return 0; /* No bytes handled. */
514 }
515
516 static void
517 tcomplain (void)
518 {
519 error (_("You can't do that when your target is `%s'"),
520 current_target.to_shortname);
521 }
522
523 void
524 noprocess (void)
525 {
526 error (_("You can't do that without a process to debug."));
527 }
528
529 static int
530 nosymbol (char *name, CORE_ADDR *addrp)
531 {
532 return 1; /* Symbol does not exist in target env. */
533 }
534
535 static void
536 default_terminal_info (char *args, int from_tty)
537 {
538 printf_unfiltered (_("No saved terminal information.\n"));
539 }
540
541 /* A default implementation for the to_get_ada_task_ptid target method.
542
543 This function builds the PTID by using both LWP and TID as part of
544 the PTID lwp and tid elements. The pid used is the pid of the
545 inferior_ptid. */
546
547 static ptid_t
548 default_get_ada_task_ptid (long lwp, long tid)
549 {
550 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
551 }
552
553 /* Go through the target stack from top to bottom, copying over zero
554 entries in current_target, then filling in still empty entries. In
555 effect, we are doing class inheritance through the pushed target
556 vectors.
557
558 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
559 is currently implemented, is that it discards any knowledge of
560 which target an inherited method originally belonged to.
561 Consequently, new new target methods should instead explicitly and
562 locally search the target stack for the target that can handle the
563 request. */
564
565 static void
566 update_current_target (void)
567 {
568 struct target_ops *t;
569
570 /* First, reset current's contents. */
571 memset (&current_target, 0, sizeof (current_target));
572
573 #define INHERIT(FIELD, TARGET) \
574 if (!current_target.FIELD) \
575 current_target.FIELD = (TARGET)->FIELD
576
577 for (t = target_stack; t; t = t->beneath)
578 {
579 INHERIT (to_shortname, t);
580 INHERIT (to_longname, t);
581 INHERIT (to_doc, t);
582 /* Do not inherit to_open. */
583 /* Do not inherit to_close. */
584 /* Do not inherit to_attach. */
585 INHERIT (to_post_attach, t);
586 INHERIT (to_attach_no_wait, t);
587 /* Do not inherit to_detach. */
588 /* Do not inherit to_disconnect. */
589 /* Do not inherit to_resume. */
590 /* Do not inherit to_wait. */
591 /* Do not inherit to_fetch_registers. */
592 /* Do not inherit to_store_registers. */
593 INHERIT (to_prepare_to_store, t);
594 INHERIT (deprecated_xfer_memory, t);
595 INHERIT (to_files_info, t);
596 INHERIT (to_insert_breakpoint, t);
597 INHERIT (to_remove_breakpoint, t);
598 INHERIT (to_can_use_hw_breakpoint, t);
599 INHERIT (to_insert_hw_breakpoint, t);
600 INHERIT (to_remove_hw_breakpoint, t);
601 INHERIT (to_insert_watchpoint, t);
602 INHERIT (to_remove_watchpoint, t);
603 INHERIT (to_stopped_data_address, t);
604 INHERIT (to_have_steppable_watchpoint, t);
605 INHERIT (to_have_continuable_watchpoint, t);
606 INHERIT (to_stopped_by_watchpoint, t);
607 INHERIT (to_watchpoint_addr_within_range, t);
608 INHERIT (to_region_ok_for_hw_watchpoint, t);
609 INHERIT (to_can_accel_watchpoint_condition, t);
610 INHERIT (to_terminal_init, t);
611 INHERIT (to_terminal_inferior, t);
612 INHERIT (to_terminal_ours_for_output, t);
613 INHERIT (to_terminal_ours, t);
614 INHERIT (to_terminal_save_ours, t);
615 INHERIT (to_terminal_info, t);
616 /* Do not inherit to_kill. */
617 INHERIT (to_load, t);
618 INHERIT (to_lookup_symbol, t);
619 /* Do no inherit to_create_inferior. */
620 INHERIT (to_post_startup_inferior, t);
621 INHERIT (to_insert_fork_catchpoint, t);
622 INHERIT (to_remove_fork_catchpoint, t);
623 INHERIT (to_insert_vfork_catchpoint, t);
624 INHERIT (to_remove_vfork_catchpoint, t);
625 /* Do not inherit to_follow_fork. */
626 INHERIT (to_insert_exec_catchpoint, t);
627 INHERIT (to_remove_exec_catchpoint, t);
628 INHERIT (to_set_syscall_catchpoint, t);
629 INHERIT (to_has_exited, t);
630 /* Do not inherit to_mourn_inferior. */
631 INHERIT (to_can_run, t);
632 INHERIT (to_notice_signals, t);
633 /* Do not inherit to_thread_alive. */
634 /* Do not inherit to_find_new_threads. */
635 /* Do not inherit to_pid_to_str. */
636 INHERIT (to_extra_thread_info, t);
637 INHERIT (to_thread_name, t);
638 INHERIT (to_stop, t);
639 /* Do not inherit to_xfer_partial. */
640 INHERIT (to_rcmd, t);
641 INHERIT (to_pid_to_exec_file, t);
642 INHERIT (to_log_command, t);
643 INHERIT (to_stratum, t);
644 /* Do not inherit to_has_all_memory. */
645 /* Do not inherit to_has_memory. */
646 /* Do not inherit to_has_stack. */
647 /* Do not inherit to_has_registers. */
648 /* Do not inherit to_has_execution. */
649 INHERIT (to_has_thread_control, t);
650 INHERIT (to_can_async_p, t);
651 INHERIT (to_is_async_p, t);
652 INHERIT (to_async, t);
653 INHERIT (to_async_mask, t);
654 INHERIT (to_find_memory_regions, t);
655 INHERIT (to_make_corefile_notes, t);
656 INHERIT (to_get_bookmark, t);
657 INHERIT (to_goto_bookmark, t);
658 /* Do not inherit to_get_thread_local_address. */
659 INHERIT (to_can_execute_reverse, t);
660 INHERIT (to_thread_architecture, t);
661 /* Do not inherit to_read_description. */
662 INHERIT (to_get_ada_task_ptid, t);
663 /* Do not inherit to_search_memory. */
664 INHERIT (to_supports_multi_process, t);
665 INHERIT (to_trace_init, t);
666 INHERIT (to_download_tracepoint, t);
667 INHERIT (to_download_trace_state_variable, t);
668 INHERIT (to_trace_set_readonly_regions, t);
669 INHERIT (to_trace_start, t);
670 INHERIT (to_get_trace_status, t);
671 INHERIT (to_trace_stop, t);
672 INHERIT (to_trace_find, t);
673 INHERIT (to_get_trace_state_variable_value, t);
674 INHERIT (to_save_trace_data, t);
675 INHERIT (to_upload_tracepoints, t);
676 INHERIT (to_upload_trace_state_variables, t);
677 INHERIT (to_get_raw_trace_data, t);
678 INHERIT (to_set_disconnected_tracing, t);
679 INHERIT (to_set_circular_trace_buffer, t);
680 INHERIT (to_get_tib_address, t);
681 INHERIT (to_set_permissions, t);
682 INHERIT (to_static_tracepoint_marker_at, t);
683 INHERIT (to_static_tracepoint_markers_by_strid, t);
684 INHERIT (to_magic, t);
685 /* Do not inherit to_memory_map. */
686 /* Do not inherit to_flash_erase. */
687 /* Do not inherit to_flash_done. */
688 }
689 #undef INHERIT
690
691 /* Clean up a target struct so it no longer has any zero pointers in
692 it. Some entries are defaulted to a method that print an error,
693 others are hard-wired to a standard recursive default. */
694
695 #define de_fault(field, value) \
696 if (!current_target.field) \
697 current_target.field = value
698
699 de_fault (to_open,
700 (void (*) (char *, int))
701 tcomplain);
702 de_fault (to_close,
703 (void (*) (int))
704 target_ignore);
705 de_fault (to_post_attach,
706 (void (*) (int))
707 target_ignore);
708 de_fault (to_prepare_to_store,
709 (void (*) (struct regcache *))
710 noprocess);
711 de_fault (deprecated_xfer_memory,
712 (int (*) (CORE_ADDR, gdb_byte *, int, int,
713 struct mem_attrib *, struct target_ops *))
714 nomemory);
715 de_fault (to_files_info,
716 (void (*) (struct target_ops *))
717 target_ignore);
718 de_fault (to_insert_breakpoint,
719 memory_insert_breakpoint);
720 de_fault (to_remove_breakpoint,
721 memory_remove_breakpoint);
722 de_fault (to_can_use_hw_breakpoint,
723 (int (*) (int, int, int))
724 return_zero);
725 de_fault (to_insert_hw_breakpoint,
726 (int (*) (struct gdbarch *, struct bp_target_info *))
727 return_minus_one);
728 de_fault (to_remove_hw_breakpoint,
729 (int (*) (struct gdbarch *, struct bp_target_info *))
730 return_minus_one);
731 de_fault (to_insert_watchpoint,
732 (int (*) (CORE_ADDR, int, int, struct expression *))
733 return_minus_one);
734 de_fault (to_remove_watchpoint,
735 (int (*) (CORE_ADDR, int, int, struct expression *))
736 return_minus_one);
737 de_fault (to_stopped_by_watchpoint,
738 (int (*) (void))
739 return_zero);
740 de_fault (to_stopped_data_address,
741 (int (*) (struct target_ops *, CORE_ADDR *))
742 return_zero);
743 de_fault (to_watchpoint_addr_within_range,
744 default_watchpoint_addr_within_range);
745 de_fault (to_region_ok_for_hw_watchpoint,
746 default_region_ok_for_hw_watchpoint);
747 de_fault (to_can_accel_watchpoint_condition,
748 (int (*) (CORE_ADDR, int, int, struct expression *))
749 return_zero);
750 de_fault (to_terminal_init,
751 (void (*) (void))
752 target_ignore);
753 de_fault (to_terminal_inferior,
754 (void (*) (void))
755 target_ignore);
756 de_fault (to_terminal_ours_for_output,
757 (void (*) (void))
758 target_ignore);
759 de_fault (to_terminal_ours,
760 (void (*) (void))
761 target_ignore);
762 de_fault (to_terminal_save_ours,
763 (void (*) (void))
764 target_ignore);
765 de_fault (to_terminal_info,
766 default_terminal_info);
767 de_fault (to_load,
768 (void (*) (char *, int))
769 tcomplain);
770 de_fault (to_lookup_symbol,
771 (int (*) (char *, CORE_ADDR *))
772 nosymbol);
773 de_fault (to_post_startup_inferior,
774 (void (*) (ptid_t))
775 target_ignore);
776 de_fault (to_insert_fork_catchpoint,
777 (int (*) (int))
778 return_one);
779 de_fault (to_remove_fork_catchpoint,
780 (int (*) (int))
781 return_one);
782 de_fault (to_insert_vfork_catchpoint,
783 (int (*) (int))
784 return_one);
785 de_fault (to_remove_vfork_catchpoint,
786 (int (*) (int))
787 return_one);
788 de_fault (to_insert_exec_catchpoint,
789 (int (*) (int))
790 return_one);
791 de_fault (to_remove_exec_catchpoint,
792 (int (*) (int))
793 return_one);
794 de_fault (to_set_syscall_catchpoint,
795 (int (*) (int, int, int, int, int *))
796 return_one);
797 de_fault (to_has_exited,
798 (int (*) (int, int, int *))
799 return_zero);
800 de_fault (to_can_run,
801 return_zero);
802 de_fault (to_notice_signals,
803 (void (*) (ptid_t))
804 target_ignore);
805 de_fault (to_extra_thread_info,
806 (char *(*) (struct thread_info *))
807 return_zero);
808 de_fault (to_thread_name,
809 (char *(*) (struct thread_info *))
810 return_zero);
811 de_fault (to_stop,
812 (void (*) (ptid_t))
813 target_ignore);
814 current_target.to_xfer_partial = current_xfer_partial;
815 de_fault (to_rcmd,
816 (void (*) (char *, struct ui_file *))
817 tcomplain);
818 de_fault (to_pid_to_exec_file,
819 (char *(*) (int))
820 return_zero);
821 de_fault (to_async,
822 (void (*) (void (*) (enum inferior_event_type, void*), void*))
823 tcomplain);
824 de_fault (to_async_mask,
825 (int (*) (int))
826 return_one);
827 de_fault (to_thread_architecture,
828 default_thread_architecture);
829 current_target.to_read_description = NULL;
830 de_fault (to_get_ada_task_ptid,
831 (ptid_t (*) (long, long))
832 default_get_ada_task_ptid);
833 de_fault (to_supports_multi_process,
834 (int (*) (void))
835 return_zero);
836 de_fault (to_trace_init,
837 (void (*) (void))
838 tcomplain);
839 de_fault (to_download_tracepoint,
840 (void (*) (struct breakpoint *))
841 tcomplain);
842 de_fault (to_download_trace_state_variable,
843 (void (*) (struct trace_state_variable *))
844 tcomplain);
845 de_fault (to_trace_set_readonly_regions,
846 (void (*) (void))
847 tcomplain);
848 de_fault (to_trace_start,
849 (void (*) (void))
850 tcomplain);
851 de_fault (to_get_trace_status,
852 (int (*) (struct trace_status *))
853 return_minus_one);
854 de_fault (to_trace_stop,
855 (void (*) (void))
856 tcomplain);
857 de_fault (to_trace_find,
858 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
859 return_minus_one);
860 de_fault (to_get_trace_state_variable_value,
861 (int (*) (int, LONGEST *))
862 return_zero);
863 de_fault (to_save_trace_data,
864 (int (*) (const char *))
865 tcomplain);
866 de_fault (to_upload_tracepoints,
867 (int (*) (struct uploaded_tp **))
868 return_zero);
869 de_fault (to_upload_trace_state_variables,
870 (int (*) (struct uploaded_tsv **))
871 return_zero);
872 de_fault (to_get_raw_trace_data,
873 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
874 tcomplain);
875 de_fault (to_set_disconnected_tracing,
876 (void (*) (int))
877 target_ignore);
878 de_fault (to_set_circular_trace_buffer,
879 (void (*) (int))
880 target_ignore);
881 de_fault (to_get_tib_address,
882 (int (*) (ptid_t, CORE_ADDR *))
883 tcomplain);
884 de_fault (to_set_permissions,
885 (void (*) (void))
886 target_ignore);
887 de_fault (to_static_tracepoint_marker_at,
888 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
889 return_zero);
890 de_fault (to_static_tracepoint_markers_by_strid,
891 (VEC(static_tracepoint_marker_p) * (*) (const char *))
892 tcomplain);
893 #undef de_fault
894
895 /* Finally, position the target-stack beneath the squashed
896 "current_target". That way code looking for a non-inherited
897 target method can quickly and simply find it. */
898 current_target.beneath = target_stack;
899
900 if (targetdebug)
901 setup_target_debug ();
902 }
903
904 /* Push a new target type into the stack of the existing target accessors,
905 possibly superseding some of the existing accessors.
906
907 Rather than allow an empty stack, we always have the dummy target at
908 the bottom stratum, so we can call the function vectors without
909 checking them. */
910
911 void
912 push_target (struct target_ops *t)
913 {
914 struct target_ops **cur;
915
916 /* Check magic number. If wrong, it probably means someone changed
917 the struct definition, but not all the places that initialize one. */
918 if (t->to_magic != OPS_MAGIC)
919 {
920 fprintf_unfiltered (gdb_stderr,
921 "Magic number of %s target struct wrong\n",
922 t->to_shortname);
923 internal_error (__FILE__, __LINE__,
924 _("failed internal consistency check"));
925 }
926
927 /* Find the proper stratum to install this target in. */
928 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
929 {
930 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
931 break;
932 }
933
934 /* If there's already targets at this stratum, remove them. */
935 /* FIXME: cagney/2003-10-15: I think this should be popping all
936 targets to CUR, and not just those at this stratum level. */
937 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
938 {
939 /* There's already something at this stratum level. Close it,
940 and un-hook it from the stack. */
941 struct target_ops *tmp = (*cur);
942
943 (*cur) = (*cur)->beneath;
944 tmp->beneath = NULL;
945 target_close (tmp, 0);
946 }
947
948 /* We have removed all targets in our stratum, now add the new one. */
949 t->beneath = (*cur);
950 (*cur) = t;
951
952 update_current_target ();
953 }
954
955 /* Remove a target_ops vector from the stack, wherever it may be.
956 Return how many times it was removed (0 or 1). */
957
958 int
959 unpush_target (struct target_ops *t)
960 {
961 struct target_ops **cur;
962 struct target_ops *tmp;
963
964 if (t->to_stratum == dummy_stratum)
965 internal_error (__FILE__, __LINE__,
966 _("Attempt to unpush the dummy target"));
967
968 /* Look for the specified target. Note that we assume that a target
969 can only occur once in the target stack. */
970
971 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
972 {
973 if ((*cur) == t)
974 break;
975 }
976
977 if ((*cur) == NULL)
978 return 0; /* Didn't find target_ops, quit now. */
979
980 /* NOTE: cagney/2003-12-06: In '94 the close call was made
981 unconditional by moving it to before the above check that the
982 target was in the target stack (something about "Change the way
983 pushing and popping of targets work to support target overlays
984 and inheritance"). This doesn't make much sense - only open
985 targets should be closed. */
986 target_close (t, 0);
987
988 /* Unchain the target. */
989 tmp = (*cur);
990 (*cur) = (*cur)->beneath;
991 tmp->beneath = NULL;
992
993 update_current_target ();
994
995 return 1;
996 }
997
998 void
999 pop_target (void)
1000 {
1001 target_close (target_stack, 0); /* Let it clean up. */
1002 if (unpush_target (target_stack) == 1)
1003 return;
1004
1005 fprintf_unfiltered (gdb_stderr,
1006 "pop_target couldn't find target %s\n",
1007 current_target.to_shortname);
1008 internal_error (__FILE__, __LINE__,
1009 _("failed internal consistency check"));
1010 }
1011
1012 void
1013 pop_all_targets_above (enum strata above_stratum, int quitting)
1014 {
1015 while ((int) (current_target.to_stratum) > (int) above_stratum)
1016 {
1017 target_close (target_stack, quitting);
1018 if (!unpush_target (target_stack))
1019 {
1020 fprintf_unfiltered (gdb_stderr,
1021 "pop_all_targets couldn't find target %s\n",
1022 target_stack->to_shortname);
1023 internal_error (__FILE__, __LINE__,
1024 _("failed internal consistency check"));
1025 break;
1026 }
1027 }
1028 }
1029
1030 void
1031 pop_all_targets (int quitting)
1032 {
1033 pop_all_targets_above (dummy_stratum, quitting);
1034 }
1035
1036 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1037
1038 int
1039 target_is_pushed (struct target_ops *t)
1040 {
1041 struct target_ops **cur;
1042
1043 /* Check magic number. If wrong, it probably means someone changed
1044 the struct definition, but not all the places that initialize one. */
1045 if (t->to_magic != OPS_MAGIC)
1046 {
1047 fprintf_unfiltered (gdb_stderr,
1048 "Magic number of %s target struct wrong\n",
1049 t->to_shortname);
1050 internal_error (__FILE__, __LINE__,
1051 _("failed internal consistency check"));
1052 }
1053
1054 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1055 if (*cur == t)
1056 return 1;
1057
1058 return 0;
1059 }
1060
1061 /* Using the objfile specified in OBJFILE, find the address for the
1062 current thread's thread-local storage with offset OFFSET. */
1063 CORE_ADDR
1064 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1065 {
1066 volatile CORE_ADDR addr = 0;
1067 struct target_ops *target;
1068
1069 for (target = current_target.beneath;
1070 target != NULL;
1071 target = target->beneath)
1072 {
1073 if (target->to_get_thread_local_address != NULL)
1074 break;
1075 }
1076
1077 if (target != NULL
1078 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1079 {
1080 ptid_t ptid = inferior_ptid;
1081 volatile struct gdb_exception ex;
1082
1083 TRY_CATCH (ex, RETURN_MASK_ALL)
1084 {
1085 CORE_ADDR lm_addr;
1086
1087 /* Fetch the load module address for this objfile. */
1088 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1089 objfile);
1090 /* If it's 0, throw the appropriate exception. */
1091 if (lm_addr == 0)
1092 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1093 _("TLS load module not found"));
1094
1095 addr = target->to_get_thread_local_address (target, ptid,
1096 lm_addr, offset);
1097 }
1098 /* If an error occurred, print TLS related messages here. Otherwise,
1099 throw the error to some higher catcher. */
1100 if (ex.reason < 0)
1101 {
1102 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1103
1104 switch (ex.error)
1105 {
1106 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1107 error (_("Cannot find thread-local variables "
1108 "in this thread library."));
1109 break;
1110 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1111 if (objfile_is_library)
1112 error (_("Cannot find shared library `%s' in dynamic"
1113 " linker's load module list"), objfile->name);
1114 else
1115 error (_("Cannot find executable file `%s' in dynamic"
1116 " linker's load module list"), objfile->name);
1117 break;
1118 case TLS_NOT_ALLOCATED_YET_ERROR:
1119 if (objfile_is_library)
1120 error (_("The inferior has not yet allocated storage for"
1121 " thread-local variables in\n"
1122 "the shared library `%s'\n"
1123 "for %s"),
1124 objfile->name, target_pid_to_str (ptid));
1125 else
1126 error (_("The inferior has not yet allocated storage for"
1127 " thread-local variables in\n"
1128 "the executable `%s'\n"
1129 "for %s"),
1130 objfile->name, target_pid_to_str (ptid));
1131 break;
1132 case TLS_GENERIC_ERROR:
1133 if (objfile_is_library)
1134 error (_("Cannot find thread-local storage for %s, "
1135 "shared library %s:\n%s"),
1136 target_pid_to_str (ptid),
1137 objfile->name, ex.message);
1138 else
1139 error (_("Cannot find thread-local storage for %s, "
1140 "executable file %s:\n%s"),
1141 target_pid_to_str (ptid),
1142 objfile->name, ex.message);
1143 break;
1144 default:
1145 throw_exception (ex);
1146 break;
1147 }
1148 }
1149 }
1150 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1151 TLS is an ABI-specific thing. But we don't do that yet. */
1152 else
1153 error (_("Cannot find thread-local variables on this target"));
1154
1155 return addr;
1156 }
1157
1158 #undef MIN
1159 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1160
1161 /* target_read_string -- read a null terminated string, up to LEN bytes,
1162 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1163 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1164 is responsible for freeing it. Return the number of bytes successfully
1165 read. */
1166
1167 int
1168 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1169 {
1170 int tlen, origlen, offset, i;
1171 gdb_byte buf[4];
1172 int errcode = 0;
1173 char *buffer;
1174 int buffer_allocated;
1175 char *bufptr;
1176 unsigned int nbytes_read = 0;
1177
1178 gdb_assert (string);
1179
1180 /* Small for testing. */
1181 buffer_allocated = 4;
1182 buffer = xmalloc (buffer_allocated);
1183 bufptr = buffer;
1184
1185 origlen = len;
1186
1187 while (len > 0)
1188 {
1189 tlen = MIN (len, 4 - (memaddr & 3));
1190 offset = memaddr & 3;
1191
1192 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1193 if (errcode != 0)
1194 {
1195 /* The transfer request might have crossed the boundary to an
1196 unallocated region of memory. Retry the transfer, requesting
1197 a single byte. */
1198 tlen = 1;
1199 offset = 0;
1200 errcode = target_read_memory (memaddr, buf, 1);
1201 if (errcode != 0)
1202 goto done;
1203 }
1204
1205 if (bufptr - buffer + tlen > buffer_allocated)
1206 {
1207 unsigned int bytes;
1208
1209 bytes = bufptr - buffer;
1210 buffer_allocated *= 2;
1211 buffer = xrealloc (buffer, buffer_allocated);
1212 bufptr = buffer + bytes;
1213 }
1214
1215 for (i = 0; i < tlen; i++)
1216 {
1217 *bufptr++ = buf[i + offset];
1218 if (buf[i + offset] == '\000')
1219 {
1220 nbytes_read += i + 1;
1221 goto done;
1222 }
1223 }
1224
1225 memaddr += tlen;
1226 len -= tlen;
1227 nbytes_read += tlen;
1228 }
1229 done:
1230 *string = buffer;
1231 if (errnop != NULL)
1232 *errnop = errcode;
1233 return nbytes_read;
1234 }
1235
1236 struct target_section_table *
1237 target_get_section_table (struct target_ops *target)
1238 {
1239 struct target_ops *t;
1240
1241 if (targetdebug)
1242 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1243
1244 for (t = target; t != NULL; t = t->beneath)
1245 if (t->to_get_section_table != NULL)
1246 return (*t->to_get_section_table) (t);
1247
1248 return NULL;
1249 }
1250
1251 /* Find a section containing ADDR. */
1252
1253 struct target_section *
1254 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1255 {
1256 struct target_section_table *table = target_get_section_table (target);
1257 struct target_section *secp;
1258
1259 if (table == NULL)
1260 return NULL;
1261
1262 for (secp = table->sections; secp < table->sections_end; secp++)
1263 {
1264 if (addr >= secp->addr && addr < secp->endaddr)
1265 return secp;
1266 }
1267 return NULL;
1268 }
1269
1270 /* Perform a partial memory transfer.
1271 For docs see target.h, to_xfer_partial. */
1272
1273 static LONGEST
1274 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1275 void *readbuf, const void *writebuf, ULONGEST memaddr,
1276 LONGEST len)
1277 {
1278 LONGEST res;
1279 int reg_len;
1280 struct mem_region *region;
1281 struct inferior *inf;
1282
1283 /* Zero length requests are ok and require no work. */
1284 if (len == 0)
1285 return 0;
1286
1287 /* For accesses to unmapped overlay sections, read directly from
1288 files. Must do this first, as MEMADDR may need adjustment. */
1289 if (readbuf != NULL && overlay_debugging)
1290 {
1291 struct obj_section *section = find_pc_overlay (memaddr);
1292
1293 if (pc_in_unmapped_range (memaddr, section))
1294 {
1295 struct target_section_table *table
1296 = target_get_section_table (ops);
1297 const char *section_name = section->the_bfd_section->name;
1298
1299 memaddr = overlay_mapped_address (memaddr, section);
1300 return section_table_xfer_memory_partial (readbuf, writebuf,
1301 memaddr, len,
1302 table->sections,
1303 table->sections_end,
1304 section_name);
1305 }
1306 }
1307
1308 /* Try the executable files, if "trust-readonly-sections" is set. */
1309 if (readbuf != NULL && trust_readonly)
1310 {
1311 struct target_section *secp;
1312 struct target_section_table *table;
1313
1314 secp = target_section_by_addr (ops, memaddr);
1315 if (secp != NULL
1316 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1317 & SEC_READONLY))
1318 {
1319 table = target_get_section_table (ops);
1320 return section_table_xfer_memory_partial (readbuf, writebuf,
1321 memaddr, len,
1322 table->sections,
1323 table->sections_end,
1324 NULL);
1325 }
1326 }
1327
1328 /* Try GDB's internal data cache. */
1329 region = lookup_mem_region (memaddr);
1330 /* region->hi == 0 means there's no upper bound. */
1331 if (memaddr + len < region->hi || region->hi == 0)
1332 reg_len = len;
1333 else
1334 reg_len = region->hi - memaddr;
1335
1336 switch (region->attrib.mode)
1337 {
1338 case MEM_RO:
1339 if (writebuf != NULL)
1340 return -1;
1341 break;
1342
1343 case MEM_WO:
1344 if (readbuf != NULL)
1345 return -1;
1346 break;
1347
1348 case MEM_FLASH:
1349 /* We only support writing to flash during "load" for now. */
1350 if (writebuf != NULL)
1351 error (_("Writing to flash memory forbidden in this context"));
1352 break;
1353
1354 case MEM_NONE:
1355 return -1;
1356 }
1357
1358 if (!ptid_equal (inferior_ptid, null_ptid))
1359 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1360 else
1361 inf = NULL;
1362
1363 if (inf != NULL
1364 /* The dcache reads whole cache lines; that doesn't play well
1365 with reading from a trace buffer, because reading outside of
1366 the collected memory range fails. */
1367 && get_traceframe_number () == -1
1368 && (region->attrib.cache
1369 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1370 {
1371 if (readbuf != NULL)
1372 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1373 reg_len, 0);
1374 else
1375 /* FIXME drow/2006-08-09: If we're going to preserve const
1376 correctness dcache_xfer_memory should take readbuf and
1377 writebuf. */
1378 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1379 (void *) writebuf,
1380 reg_len, 1);
1381 if (res <= 0)
1382 return -1;
1383 else
1384 {
1385 if (readbuf && !show_memory_breakpoints)
1386 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1387 return res;
1388 }
1389 }
1390
1391 /* If none of those methods found the memory we wanted, fall back
1392 to a target partial transfer. Normally a single call to
1393 to_xfer_partial is enough; if it doesn't recognize an object
1394 it will call the to_xfer_partial of the next target down.
1395 But for memory this won't do. Memory is the only target
1396 object which can be read from more than one valid target.
1397 A core file, for instance, could have some of memory but
1398 delegate other bits to the target below it. So, we must
1399 manually try all targets. */
1400
1401 do
1402 {
1403 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1404 readbuf, writebuf, memaddr, reg_len);
1405 if (res > 0)
1406 break;
1407
1408 /* We want to continue past core files to executables, but not
1409 past a running target's memory. */
1410 if (ops->to_has_all_memory (ops))
1411 break;
1412
1413 ops = ops->beneath;
1414 }
1415 while (ops != NULL);
1416
1417 if (res > 0 && readbuf != NULL && !show_memory_breakpoints)
1418 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1419
1420 /* Make sure the cache gets updated no matter what - if we are writing
1421 to the stack. Even if this write is not tagged as such, we still need
1422 to update the cache. */
1423
1424 if (res > 0
1425 && inf != NULL
1426 && writebuf != NULL
1427 && !region->attrib.cache
1428 && stack_cache_enabled_p
1429 && object != TARGET_OBJECT_STACK_MEMORY)
1430 {
1431 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1432 }
1433
1434 /* If we still haven't got anything, return the last error. We
1435 give up. */
1436 return res;
1437 }
1438
1439 static void
1440 restore_show_memory_breakpoints (void *arg)
1441 {
1442 show_memory_breakpoints = (uintptr_t) arg;
1443 }
1444
1445 struct cleanup *
1446 make_show_memory_breakpoints_cleanup (int show)
1447 {
1448 int current = show_memory_breakpoints;
1449
1450 show_memory_breakpoints = show;
1451 return make_cleanup (restore_show_memory_breakpoints,
1452 (void *) (uintptr_t) current);
1453 }
1454
1455 /* For docs see target.h, to_xfer_partial. */
1456
1457 static LONGEST
1458 target_xfer_partial (struct target_ops *ops,
1459 enum target_object object, const char *annex,
1460 void *readbuf, const void *writebuf,
1461 ULONGEST offset, LONGEST len)
1462 {
1463 LONGEST retval;
1464
1465 gdb_assert (ops->to_xfer_partial != NULL);
1466
1467 if (writebuf && !may_write_memory)
1468 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1469 core_addr_to_string_nz (offset), plongest (len));
1470
1471 /* If this is a memory transfer, let the memory-specific code
1472 have a look at it instead. Memory transfers are more
1473 complicated. */
1474 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1475 retval = memory_xfer_partial (ops, object, readbuf,
1476 writebuf, offset, len);
1477 else
1478 {
1479 enum target_object raw_object = object;
1480
1481 /* If this is a raw memory transfer, request the normal
1482 memory object from other layers. */
1483 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1484 raw_object = TARGET_OBJECT_MEMORY;
1485
1486 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1487 writebuf, offset, len);
1488 }
1489
1490 if (targetdebug)
1491 {
1492 const unsigned char *myaddr = NULL;
1493
1494 fprintf_unfiltered (gdb_stdlog,
1495 "%s:target_xfer_partial "
1496 "(%d, %s, %s, %s, %s, %s) = %s",
1497 ops->to_shortname,
1498 (int) object,
1499 (annex ? annex : "(null)"),
1500 host_address_to_string (readbuf),
1501 host_address_to_string (writebuf),
1502 core_addr_to_string_nz (offset),
1503 plongest (len), plongest (retval));
1504
1505 if (readbuf)
1506 myaddr = readbuf;
1507 if (writebuf)
1508 myaddr = writebuf;
1509 if (retval > 0 && myaddr != NULL)
1510 {
1511 int i;
1512
1513 fputs_unfiltered (", bytes =", gdb_stdlog);
1514 for (i = 0; i < retval; i++)
1515 {
1516 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1517 {
1518 if (targetdebug < 2 && i > 0)
1519 {
1520 fprintf_unfiltered (gdb_stdlog, " ...");
1521 break;
1522 }
1523 fprintf_unfiltered (gdb_stdlog, "\n");
1524 }
1525
1526 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1527 }
1528 }
1529
1530 fputc_unfiltered ('\n', gdb_stdlog);
1531 }
1532 return retval;
1533 }
1534
1535 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1536 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1537 if any error occurs.
1538
1539 If an error occurs, no guarantee is made about the contents of the data at
1540 MYADDR. In particular, the caller should not depend upon partial reads
1541 filling the buffer with good data. There is no way for the caller to know
1542 how much good data might have been transfered anyway. Callers that can
1543 deal with partial reads should call target_read (which will retry until
1544 it makes no progress, and then return how much was transferred). */
1545
1546 int
1547 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1548 {
1549 /* Dispatch to the topmost target, not the flattened current_target.
1550 Memory accesses check target->to_has_(all_)memory, and the
1551 flattened target doesn't inherit those. */
1552 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1553 myaddr, memaddr, len) == len)
1554 return 0;
1555 else
1556 return EIO;
1557 }
1558
1559 /* Like target_read_memory, but specify explicitly that this is a read from
1560 the target's stack. This may trigger different cache behavior. */
1561
1562 int
1563 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1564 {
1565 /* Dispatch to the topmost target, not the flattened current_target.
1566 Memory accesses check target->to_has_(all_)memory, and the
1567 flattened target doesn't inherit those. */
1568
1569 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1570 myaddr, memaddr, len) == len)
1571 return 0;
1572 else
1573 return EIO;
1574 }
1575
1576 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1577 Returns either 0 for success or an errno value if any error occurs.
1578 If an error occurs, no guarantee is made about how much data got written.
1579 Callers that can deal with partial writes should call target_write. */
1580
1581 int
1582 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1583 {
1584 /* Dispatch to the topmost target, not the flattened current_target.
1585 Memory accesses check target->to_has_(all_)memory, and the
1586 flattened target doesn't inherit those. */
1587 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1588 myaddr, memaddr, len) == len)
1589 return 0;
1590 else
1591 return EIO;
1592 }
1593
1594 /* Fetch the target's memory map. */
1595
1596 VEC(mem_region_s) *
1597 target_memory_map (void)
1598 {
1599 VEC(mem_region_s) *result;
1600 struct mem_region *last_one, *this_one;
1601 int ix;
1602 struct target_ops *t;
1603
1604 if (targetdebug)
1605 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1606
1607 for (t = current_target.beneath; t != NULL; t = t->beneath)
1608 if (t->to_memory_map != NULL)
1609 break;
1610
1611 if (t == NULL)
1612 return NULL;
1613
1614 result = t->to_memory_map (t);
1615 if (result == NULL)
1616 return NULL;
1617
1618 qsort (VEC_address (mem_region_s, result),
1619 VEC_length (mem_region_s, result),
1620 sizeof (struct mem_region), mem_region_cmp);
1621
1622 /* Check that regions do not overlap. Simultaneously assign
1623 a numbering for the "mem" commands to use to refer to
1624 each region. */
1625 last_one = NULL;
1626 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1627 {
1628 this_one->number = ix;
1629
1630 if (last_one && last_one->hi > this_one->lo)
1631 {
1632 warning (_("Overlapping regions in memory map: ignoring"));
1633 VEC_free (mem_region_s, result);
1634 return NULL;
1635 }
1636 last_one = this_one;
1637 }
1638
1639 return result;
1640 }
1641
1642 void
1643 target_flash_erase (ULONGEST address, LONGEST length)
1644 {
1645 struct target_ops *t;
1646
1647 for (t = current_target.beneath; t != NULL; t = t->beneath)
1648 if (t->to_flash_erase != NULL)
1649 {
1650 if (targetdebug)
1651 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1652 hex_string (address), phex (length, 0));
1653 t->to_flash_erase (t, address, length);
1654 return;
1655 }
1656
1657 tcomplain ();
1658 }
1659
1660 void
1661 target_flash_done (void)
1662 {
1663 struct target_ops *t;
1664
1665 for (t = current_target.beneath; t != NULL; t = t->beneath)
1666 if (t->to_flash_done != NULL)
1667 {
1668 if (targetdebug)
1669 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1670 t->to_flash_done (t);
1671 return;
1672 }
1673
1674 tcomplain ();
1675 }
1676
1677 static void
1678 show_trust_readonly (struct ui_file *file, int from_tty,
1679 struct cmd_list_element *c, const char *value)
1680 {
1681 fprintf_filtered (file,
1682 _("Mode for reading from readonly sections is %s.\n"),
1683 value);
1684 }
1685
1686 /* More generic transfers. */
1687
1688 static LONGEST
1689 default_xfer_partial (struct target_ops *ops, enum target_object object,
1690 const char *annex, gdb_byte *readbuf,
1691 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1692 {
1693 if (object == TARGET_OBJECT_MEMORY
1694 && ops->deprecated_xfer_memory != NULL)
1695 /* If available, fall back to the target's
1696 "deprecated_xfer_memory" method. */
1697 {
1698 int xfered = -1;
1699
1700 errno = 0;
1701 if (writebuf != NULL)
1702 {
1703 void *buffer = xmalloc (len);
1704 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1705
1706 memcpy (buffer, writebuf, len);
1707 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1708 1/*write*/, NULL, ops);
1709 do_cleanups (cleanup);
1710 }
1711 if (readbuf != NULL)
1712 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1713 0/*read*/, NULL, ops);
1714 if (xfered > 0)
1715 return xfered;
1716 else if (xfered == 0 && errno == 0)
1717 /* "deprecated_xfer_memory" uses 0, cross checked against
1718 ERRNO as one indication of an error. */
1719 return 0;
1720 else
1721 return -1;
1722 }
1723 else if (ops->beneath != NULL)
1724 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1725 readbuf, writebuf, offset, len);
1726 else
1727 return -1;
1728 }
1729
1730 /* The xfer_partial handler for the topmost target. Unlike the default,
1731 it does not need to handle memory specially; it just passes all
1732 requests down the stack. */
1733
1734 static LONGEST
1735 current_xfer_partial (struct target_ops *ops, enum target_object object,
1736 const char *annex, gdb_byte *readbuf,
1737 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1738 {
1739 if (ops->beneath != NULL)
1740 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1741 readbuf, writebuf, offset, len);
1742 else
1743 return -1;
1744 }
1745
1746 /* Target vector read/write partial wrapper functions. */
1747
1748 static LONGEST
1749 target_read_partial (struct target_ops *ops,
1750 enum target_object object,
1751 const char *annex, gdb_byte *buf,
1752 ULONGEST offset, LONGEST len)
1753 {
1754 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1755 }
1756
1757 static LONGEST
1758 target_write_partial (struct target_ops *ops,
1759 enum target_object object,
1760 const char *annex, const gdb_byte *buf,
1761 ULONGEST offset, LONGEST len)
1762 {
1763 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1764 }
1765
1766 /* Wrappers to perform the full transfer. */
1767
1768 /* For docs on target_read see target.h. */
1769
1770 LONGEST
1771 target_read (struct target_ops *ops,
1772 enum target_object object,
1773 const char *annex, gdb_byte *buf,
1774 ULONGEST offset, LONGEST len)
1775 {
1776 LONGEST xfered = 0;
1777
1778 while (xfered < len)
1779 {
1780 LONGEST xfer = target_read_partial (ops, object, annex,
1781 (gdb_byte *) buf + xfered,
1782 offset + xfered, len - xfered);
1783
1784 /* Call an observer, notifying them of the xfer progress? */
1785 if (xfer == 0)
1786 return xfered;
1787 if (xfer < 0)
1788 return -1;
1789 xfered += xfer;
1790 QUIT;
1791 }
1792 return len;
1793 }
1794
1795 /** Assuming that the entire [begin, end) range of memory cannot be read,
1796 try to read whatever subrange is possible to read.
1797
1798 The function results, in RESULT, either zero or one memory block.
1799 If there's a readable subrange at the beginning, it is completely
1800 read and returned. Any further readable subrange will not be read.
1801 Otherwise, if there's a readable subrange at the end, it will be
1802 completely read and returned. Any readable subranges before it (obviously,
1803 not starting at the beginning), will be ignored. In other cases --
1804 either no readable subrange, or readable subrange (s) that is neither
1805 at the beginning, or end, nothing is returned.
1806
1807 The purpose of this function is to handle a read across a boundary of
1808 accessible memory in a case when memory map is not available. The above
1809 restrictions are fine for this case, but will give incorrect results if
1810 the memory is 'patchy'. However, supporting 'patchy' memory would require
1811 trying to read every single byte, and it seems unacceptable solution.
1812 Explicit memory map is recommended for this case -- and
1813 target_read_memory_robust will take care of reading multiple ranges
1814 then. */
1815
1816 static void
1817 read_whatever_is_readable (struct target_ops *ops,
1818 ULONGEST begin, ULONGEST end,
1819 VEC(memory_read_result_s) **result)
1820 {
1821 gdb_byte *buf = xmalloc (end-begin);
1822 ULONGEST current_begin = begin;
1823 ULONGEST current_end = end;
1824 int forward;
1825 memory_read_result_s r;
1826
1827 /* If we previously failed to read 1 byte, nothing can be done here. */
1828 if (end - begin <= 1)
1829 return;
1830
1831 /* Check that either first or the last byte is readable, and give up
1832 if not. This heuristic is meant to permit reading accessible memory
1833 at the boundary of accessible region. */
1834 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1835 buf, begin, 1) == 1)
1836 {
1837 forward = 1;
1838 ++current_begin;
1839 }
1840 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1841 buf + (end-begin) - 1, end - 1, 1) == 1)
1842 {
1843 forward = 0;
1844 --current_end;
1845 }
1846 else
1847 {
1848 return;
1849 }
1850
1851 /* Loop invariant is that the [current_begin, current_end) was previously
1852 found to be not readable as a whole.
1853
1854 Note loop condition -- if the range has 1 byte, we can't divide the range
1855 so there's no point trying further. */
1856 while (current_end - current_begin > 1)
1857 {
1858 ULONGEST first_half_begin, first_half_end;
1859 ULONGEST second_half_begin, second_half_end;
1860 LONGEST xfer;
1861
1862 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1863 if (forward)
1864 {
1865 first_half_begin = current_begin;
1866 first_half_end = middle;
1867 second_half_begin = middle;
1868 second_half_end = current_end;
1869 }
1870 else
1871 {
1872 first_half_begin = middle;
1873 first_half_end = current_end;
1874 second_half_begin = current_begin;
1875 second_half_end = middle;
1876 }
1877
1878 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1879 buf + (first_half_begin - begin),
1880 first_half_begin,
1881 first_half_end - first_half_begin);
1882
1883 if (xfer == first_half_end - first_half_begin)
1884 {
1885 /* This half reads up fine. So, the error must be in the
1886 other half. */
1887 current_begin = second_half_begin;
1888 current_end = second_half_end;
1889 }
1890 else
1891 {
1892 /* This half is not readable. Because we've tried one byte, we
1893 know some part of this half if actually redable. Go to the next
1894 iteration to divide again and try to read.
1895
1896 We don't handle the other half, because this function only tries
1897 to read a single readable subrange. */
1898 current_begin = first_half_begin;
1899 current_end = first_half_end;
1900 }
1901 }
1902
1903 if (forward)
1904 {
1905 /* The [begin, current_begin) range has been read. */
1906 r.begin = begin;
1907 r.end = current_begin;
1908 r.data = buf;
1909 }
1910 else
1911 {
1912 /* The [current_end, end) range has been read. */
1913 LONGEST rlen = end - current_end;
1914 r.data = xmalloc (rlen);
1915 memcpy (r.data, buf + current_end - begin, rlen);
1916 r.begin = current_end;
1917 r.end = end;
1918 xfree (buf);
1919 }
1920 VEC_safe_push(memory_read_result_s, (*result), &r);
1921 }
1922
1923 void
1924 free_memory_read_result_vector (void *x)
1925 {
1926 VEC(memory_read_result_s) *v = x;
1927 memory_read_result_s *current;
1928 int ix;
1929
1930 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1931 {
1932 xfree (current->data);
1933 }
1934 VEC_free (memory_read_result_s, v);
1935 }
1936
1937 VEC(memory_read_result_s) *
1938 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1939 {
1940 VEC(memory_read_result_s) *result = 0;
1941
1942 LONGEST xfered = 0;
1943 while (xfered < len)
1944 {
1945 struct mem_region *region = lookup_mem_region (offset + xfered);
1946 LONGEST rlen;
1947
1948 /* If there is no explicit region, a fake one should be created. */
1949 gdb_assert (region);
1950
1951 if (region->hi == 0)
1952 rlen = len - xfered;
1953 else
1954 rlen = region->hi - offset;
1955
1956 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1957 {
1958 /* Cannot read this region. Note that we can end up here only
1959 if the region is explicitly marked inaccessible, or
1960 'inaccessible-by-default' is in effect. */
1961 xfered += rlen;
1962 }
1963 else
1964 {
1965 LONGEST to_read = min (len - xfered, rlen);
1966 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1967
1968 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1969 (gdb_byte *) buffer,
1970 offset + xfered, to_read);
1971 /* Call an observer, notifying them of the xfer progress? */
1972 if (xfer <= 0)
1973 {
1974 /* Got an error reading full chunk. See if maybe we can read
1975 some subrange. */
1976 xfree (buffer);
1977 read_whatever_is_readable (ops, offset + xfered,
1978 offset + xfered + to_read, &result);
1979 xfered += to_read;
1980 }
1981 else
1982 {
1983 struct memory_read_result r;
1984 r.data = buffer;
1985 r.begin = offset + xfered;
1986 r.end = r.begin + xfer;
1987 VEC_safe_push (memory_read_result_s, result, &r);
1988 xfered += xfer;
1989 }
1990 QUIT;
1991 }
1992 }
1993 return result;
1994 }
1995
1996
1997 /* An alternative to target_write with progress callbacks. */
1998
1999 LONGEST
2000 target_write_with_progress (struct target_ops *ops,
2001 enum target_object object,
2002 const char *annex, const gdb_byte *buf,
2003 ULONGEST offset, LONGEST len,
2004 void (*progress) (ULONGEST, void *), void *baton)
2005 {
2006 LONGEST xfered = 0;
2007
2008 /* Give the progress callback a chance to set up. */
2009 if (progress)
2010 (*progress) (0, baton);
2011
2012 while (xfered < len)
2013 {
2014 LONGEST xfer = target_write_partial (ops, object, annex,
2015 (gdb_byte *) buf + xfered,
2016 offset + xfered, len - xfered);
2017
2018 if (xfer == 0)
2019 return xfered;
2020 if (xfer < 0)
2021 return -1;
2022
2023 if (progress)
2024 (*progress) (xfer, baton);
2025
2026 xfered += xfer;
2027 QUIT;
2028 }
2029 return len;
2030 }
2031
2032 /* For docs on target_write see target.h. */
2033
2034 LONGEST
2035 target_write (struct target_ops *ops,
2036 enum target_object object,
2037 const char *annex, const gdb_byte *buf,
2038 ULONGEST offset, LONGEST len)
2039 {
2040 return target_write_with_progress (ops, object, annex, buf, offset, len,
2041 NULL, NULL);
2042 }
2043
2044 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2045 the size of the transferred data. PADDING additional bytes are
2046 available in *BUF_P. This is a helper function for
2047 target_read_alloc; see the declaration of that function for more
2048 information. */
2049
2050 static LONGEST
2051 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2052 const char *annex, gdb_byte **buf_p, int padding)
2053 {
2054 size_t buf_alloc, buf_pos;
2055 gdb_byte *buf;
2056 LONGEST n;
2057
2058 /* This function does not have a length parameter; it reads the
2059 entire OBJECT). Also, it doesn't support objects fetched partly
2060 from one target and partly from another (in a different stratum,
2061 e.g. a core file and an executable). Both reasons make it
2062 unsuitable for reading memory. */
2063 gdb_assert (object != TARGET_OBJECT_MEMORY);
2064
2065 /* Start by reading up to 4K at a time. The target will throttle
2066 this number down if necessary. */
2067 buf_alloc = 4096;
2068 buf = xmalloc (buf_alloc);
2069 buf_pos = 0;
2070 while (1)
2071 {
2072 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2073 buf_pos, buf_alloc - buf_pos - padding);
2074 if (n < 0)
2075 {
2076 /* An error occurred. */
2077 xfree (buf);
2078 return -1;
2079 }
2080 else if (n == 0)
2081 {
2082 /* Read all there was. */
2083 if (buf_pos == 0)
2084 xfree (buf);
2085 else
2086 *buf_p = buf;
2087 return buf_pos;
2088 }
2089
2090 buf_pos += n;
2091
2092 /* If the buffer is filling up, expand it. */
2093 if (buf_alloc < buf_pos * 2)
2094 {
2095 buf_alloc *= 2;
2096 buf = xrealloc (buf, buf_alloc);
2097 }
2098
2099 QUIT;
2100 }
2101 }
2102
2103 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2104 the size of the transferred data. See the declaration in "target.h"
2105 function for more information about the return value. */
2106
2107 LONGEST
2108 target_read_alloc (struct target_ops *ops, enum target_object object,
2109 const char *annex, gdb_byte **buf_p)
2110 {
2111 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2112 }
2113
2114 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2115 returned as a string, allocated using xmalloc. If an error occurs
2116 or the transfer is unsupported, NULL is returned. Empty objects
2117 are returned as allocated but empty strings. A warning is issued
2118 if the result contains any embedded NUL bytes. */
2119
2120 char *
2121 target_read_stralloc (struct target_ops *ops, enum target_object object,
2122 const char *annex)
2123 {
2124 gdb_byte *buffer;
2125 LONGEST transferred;
2126
2127 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2128
2129 if (transferred < 0)
2130 return NULL;
2131
2132 if (transferred == 0)
2133 return xstrdup ("");
2134
2135 buffer[transferred] = 0;
2136 if (strlen (buffer) < transferred)
2137 warning (_("target object %d, annex %s, "
2138 "contained unexpected null characters"),
2139 (int) object, annex ? annex : "(none)");
2140
2141 return (char *) buffer;
2142 }
2143
2144 /* Memory transfer methods. */
2145
2146 void
2147 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2148 LONGEST len)
2149 {
2150 /* This method is used to read from an alternate, non-current
2151 target. This read must bypass the overlay support (as symbols
2152 don't match this target), and GDB's internal cache (wrong cache
2153 for this target). */
2154 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2155 != len)
2156 memory_error (EIO, addr);
2157 }
2158
2159 ULONGEST
2160 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2161 int len, enum bfd_endian byte_order)
2162 {
2163 gdb_byte buf[sizeof (ULONGEST)];
2164
2165 gdb_assert (len <= sizeof (buf));
2166 get_target_memory (ops, addr, buf, len);
2167 return extract_unsigned_integer (buf, len, byte_order);
2168 }
2169
2170 int
2171 target_insert_breakpoint (struct gdbarch *gdbarch,
2172 struct bp_target_info *bp_tgt)
2173 {
2174 if (!may_insert_breakpoints)
2175 {
2176 warning (_("May not insert breakpoints"));
2177 return 1;
2178 }
2179
2180 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2181 }
2182
2183 int
2184 target_remove_breakpoint (struct gdbarch *gdbarch,
2185 struct bp_target_info *bp_tgt)
2186 {
2187 /* This is kind of a weird case to handle, but the permission might
2188 have been changed after breakpoints were inserted - in which case
2189 we should just take the user literally and assume that any
2190 breakpoints should be left in place. */
2191 if (!may_insert_breakpoints)
2192 {
2193 warning (_("May not remove breakpoints"));
2194 return 1;
2195 }
2196
2197 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2198 }
2199
2200 static void
2201 target_info (char *args, int from_tty)
2202 {
2203 struct target_ops *t;
2204 int has_all_mem = 0;
2205
2206 if (symfile_objfile != NULL)
2207 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2208
2209 for (t = target_stack; t != NULL; t = t->beneath)
2210 {
2211 if (!(*t->to_has_memory) (t))
2212 continue;
2213
2214 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2215 continue;
2216 if (has_all_mem)
2217 printf_unfiltered (_("\tWhile running this, "
2218 "GDB does not access memory from...\n"));
2219 printf_unfiltered ("%s:\n", t->to_longname);
2220 (t->to_files_info) (t);
2221 has_all_mem = (*t->to_has_all_memory) (t);
2222 }
2223 }
2224
2225 /* This function is called before any new inferior is created, e.g.
2226 by running a program, attaching, or connecting to a target.
2227 It cleans up any state from previous invocations which might
2228 change between runs. This is a subset of what target_preopen
2229 resets (things which might change between targets). */
2230
2231 void
2232 target_pre_inferior (int from_tty)
2233 {
2234 /* Clear out solib state. Otherwise the solib state of the previous
2235 inferior might have survived and is entirely wrong for the new
2236 target. This has been observed on GNU/Linux using glibc 2.3. How
2237 to reproduce:
2238
2239 bash$ ./foo&
2240 [1] 4711
2241 bash$ ./foo&
2242 [1] 4712
2243 bash$ gdb ./foo
2244 [...]
2245 (gdb) attach 4711
2246 (gdb) detach
2247 (gdb) attach 4712
2248 Cannot access memory at address 0xdeadbeef
2249 */
2250
2251 /* In some OSs, the shared library list is the same/global/shared
2252 across inferiors. If code is shared between processes, so are
2253 memory regions and features. */
2254 if (!gdbarch_has_global_solist (target_gdbarch))
2255 {
2256 no_shared_libraries (NULL, from_tty);
2257
2258 invalidate_target_mem_regions ();
2259
2260 target_clear_description ();
2261 }
2262 }
2263
2264 /* Callback for iterate_over_inferiors. Gets rid of the given
2265 inferior. */
2266
2267 static int
2268 dispose_inferior (struct inferior *inf, void *args)
2269 {
2270 struct thread_info *thread;
2271
2272 thread = any_thread_of_process (inf->pid);
2273 if (thread)
2274 {
2275 switch_to_thread (thread->ptid);
2276
2277 /* Core inferiors actually should be detached, not killed. */
2278 if (target_has_execution)
2279 target_kill ();
2280 else
2281 target_detach (NULL, 0);
2282 }
2283
2284 return 0;
2285 }
2286
2287 /* This is to be called by the open routine before it does
2288 anything. */
2289
2290 void
2291 target_preopen (int from_tty)
2292 {
2293 dont_repeat ();
2294
2295 if (have_inferiors ())
2296 {
2297 if (!from_tty
2298 || !have_live_inferiors ()
2299 || query (_("A program is being debugged already. Kill it? ")))
2300 iterate_over_inferiors (dispose_inferior, NULL);
2301 else
2302 error (_("Program not killed."));
2303 }
2304
2305 /* Calling target_kill may remove the target from the stack. But if
2306 it doesn't (which seems like a win for UDI), remove it now. */
2307 /* Leave the exec target, though. The user may be switching from a
2308 live process to a core of the same program. */
2309 pop_all_targets_above (file_stratum, 0);
2310
2311 target_pre_inferior (from_tty);
2312 }
2313
2314 /* Detach a target after doing deferred register stores. */
2315
2316 void
2317 target_detach (char *args, int from_tty)
2318 {
2319 struct target_ops* t;
2320
2321 if (gdbarch_has_global_breakpoints (target_gdbarch))
2322 /* Don't remove global breakpoints here. They're removed on
2323 disconnection from the target. */
2324 ;
2325 else
2326 /* If we're in breakpoints-always-inserted mode, have to remove
2327 them before detaching. */
2328 remove_breakpoints_pid (PIDGET (inferior_ptid));
2329
2330 prepare_for_detach ();
2331
2332 for (t = current_target.beneath; t != NULL; t = t->beneath)
2333 {
2334 if (t->to_detach != NULL)
2335 {
2336 t->to_detach (t, args, from_tty);
2337 if (targetdebug)
2338 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2339 args, from_tty);
2340 return;
2341 }
2342 }
2343
2344 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2345 }
2346
2347 void
2348 target_disconnect (char *args, int from_tty)
2349 {
2350 struct target_ops *t;
2351
2352 /* If we're in breakpoints-always-inserted mode or if breakpoints
2353 are global across processes, we have to remove them before
2354 disconnecting. */
2355 remove_breakpoints ();
2356
2357 for (t = current_target.beneath; t != NULL; t = t->beneath)
2358 if (t->to_disconnect != NULL)
2359 {
2360 if (targetdebug)
2361 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2362 args, from_tty);
2363 t->to_disconnect (t, args, from_tty);
2364 return;
2365 }
2366
2367 tcomplain ();
2368 }
2369
2370 ptid_t
2371 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2372 {
2373 struct target_ops *t;
2374
2375 for (t = current_target.beneath; t != NULL; t = t->beneath)
2376 {
2377 if (t->to_wait != NULL)
2378 {
2379 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2380
2381 if (targetdebug)
2382 {
2383 char *status_string;
2384
2385 status_string = target_waitstatus_to_string (status);
2386 fprintf_unfiltered (gdb_stdlog,
2387 "target_wait (%d, status) = %d, %s\n",
2388 PIDGET (ptid), PIDGET (retval),
2389 status_string);
2390 xfree (status_string);
2391 }
2392
2393 return retval;
2394 }
2395 }
2396
2397 noprocess ();
2398 }
2399
2400 char *
2401 target_pid_to_str (ptid_t ptid)
2402 {
2403 struct target_ops *t;
2404
2405 for (t = current_target.beneath; t != NULL; t = t->beneath)
2406 {
2407 if (t->to_pid_to_str != NULL)
2408 return (*t->to_pid_to_str) (t, ptid);
2409 }
2410
2411 return normal_pid_to_str (ptid);
2412 }
2413
2414 char *
2415 target_thread_name (struct thread_info *info)
2416 {
2417 struct target_ops *t;
2418
2419 for (t = current_target.beneath; t != NULL; t = t->beneath)
2420 {
2421 if (t->to_thread_name != NULL)
2422 return (*t->to_thread_name) (info);
2423 }
2424
2425 return NULL;
2426 }
2427
2428 void
2429 target_resume (ptid_t ptid, int step, enum target_signal signal)
2430 {
2431 struct target_ops *t;
2432
2433 target_dcache_invalidate ();
2434
2435 for (t = current_target.beneath; t != NULL; t = t->beneath)
2436 {
2437 if (t->to_resume != NULL)
2438 {
2439 t->to_resume (t, ptid, step, signal);
2440 if (targetdebug)
2441 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2442 PIDGET (ptid),
2443 step ? "step" : "continue",
2444 target_signal_to_name (signal));
2445
2446 registers_changed_ptid (ptid);
2447 set_executing (ptid, 1);
2448 set_running (ptid, 1);
2449 clear_inline_frame_state (ptid);
2450 return;
2451 }
2452 }
2453
2454 noprocess ();
2455 }
2456 /* Look through the list of possible targets for a target that can
2457 follow forks. */
2458
2459 int
2460 target_follow_fork (int follow_child)
2461 {
2462 struct target_ops *t;
2463
2464 for (t = current_target.beneath; t != NULL; t = t->beneath)
2465 {
2466 if (t->to_follow_fork != NULL)
2467 {
2468 int retval = t->to_follow_fork (t, follow_child);
2469
2470 if (targetdebug)
2471 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2472 follow_child, retval);
2473 return retval;
2474 }
2475 }
2476
2477 /* Some target returned a fork event, but did not know how to follow it. */
2478 internal_error (__FILE__, __LINE__,
2479 _("could not find a target to follow fork"));
2480 }
2481
2482 void
2483 target_mourn_inferior (void)
2484 {
2485 struct target_ops *t;
2486
2487 for (t = current_target.beneath; t != NULL; t = t->beneath)
2488 {
2489 if (t->to_mourn_inferior != NULL)
2490 {
2491 t->to_mourn_inferior (t);
2492 if (targetdebug)
2493 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2494
2495 /* We no longer need to keep handles on any of the object files.
2496 Make sure to release them to avoid unnecessarily locking any
2497 of them while we're not actually debugging. */
2498 bfd_cache_close_all ();
2499
2500 return;
2501 }
2502 }
2503
2504 internal_error (__FILE__, __LINE__,
2505 _("could not find a target to follow mourn inferior"));
2506 }
2507
2508 /* Look for a target which can describe architectural features, starting
2509 from TARGET. If we find one, return its description. */
2510
2511 const struct target_desc *
2512 target_read_description (struct target_ops *target)
2513 {
2514 struct target_ops *t;
2515
2516 for (t = target; t != NULL; t = t->beneath)
2517 if (t->to_read_description != NULL)
2518 {
2519 const struct target_desc *tdesc;
2520
2521 tdesc = t->to_read_description (t);
2522 if (tdesc)
2523 return tdesc;
2524 }
2525
2526 return NULL;
2527 }
2528
2529 /* The default implementation of to_search_memory.
2530 This implements a basic search of memory, reading target memory and
2531 performing the search here (as opposed to performing the search in on the
2532 target side with, for example, gdbserver). */
2533
2534 int
2535 simple_search_memory (struct target_ops *ops,
2536 CORE_ADDR start_addr, ULONGEST search_space_len,
2537 const gdb_byte *pattern, ULONGEST pattern_len,
2538 CORE_ADDR *found_addrp)
2539 {
2540 /* NOTE: also defined in find.c testcase. */
2541 #define SEARCH_CHUNK_SIZE 16000
2542 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2543 /* Buffer to hold memory contents for searching. */
2544 gdb_byte *search_buf;
2545 unsigned search_buf_size;
2546 struct cleanup *old_cleanups;
2547
2548 search_buf_size = chunk_size + pattern_len - 1;
2549
2550 /* No point in trying to allocate a buffer larger than the search space. */
2551 if (search_space_len < search_buf_size)
2552 search_buf_size = search_space_len;
2553
2554 search_buf = malloc (search_buf_size);
2555 if (search_buf == NULL)
2556 error (_("Unable to allocate memory to perform the search."));
2557 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2558
2559 /* Prime the search buffer. */
2560
2561 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2562 search_buf, start_addr, search_buf_size) != search_buf_size)
2563 {
2564 warning (_("Unable to access target memory at %s, halting search."),
2565 hex_string (start_addr));
2566 do_cleanups (old_cleanups);
2567 return -1;
2568 }
2569
2570 /* Perform the search.
2571
2572 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2573 When we've scanned N bytes we copy the trailing bytes to the start and
2574 read in another N bytes. */
2575
2576 while (search_space_len >= pattern_len)
2577 {
2578 gdb_byte *found_ptr;
2579 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2580
2581 found_ptr = memmem (search_buf, nr_search_bytes,
2582 pattern, pattern_len);
2583
2584 if (found_ptr != NULL)
2585 {
2586 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2587
2588 *found_addrp = found_addr;
2589 do_cleanups (old_cleanups);
2590 return 1;
2591 }
2592
2593 /* Not found in this chunk, skip to next chunk. */
2594
2595 /* Don't let search_space_len wrap here, it's unsigned. */
2596 if (search_space_len >= chunk_size)
2597 search_space_len -= chunk_size;
2598 else
2599 search_space_len = 0;
2600
2601 if (search_space_len >= pattern_len)
2602 {
2603 unsigned keep_len = search_buf_size - chunk_size;
2604 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2605 int nr_to_read;
2606
2607 /* Copy the trailing part of the previous iteration to the front
2608 of the buffer for the next iteration. */
2609 gdb_assert (keep_len == pattern_len - 1);
2610 memcpy (search_buf, search_buf + chunk_size, keep_len);
2611
2612 nr_to_read = min (search_space_len - keep_len, chunk_size);
2613
2614 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2615 search_buf + keep_len, read_addr,
2616 nr_to_read) != nr_to_read)
2617 {
2618 warning (_("Unable to access target "
2619 "memory at %s, halting search."),
2620 hex_string (read_addr));
2621 do_cleanups (old_cleanups);
2622 return -1;
2623 }
2624
2625 start_addr += chunk_size;
2626 }
2627 }
2628
2629 /* Not found. */
2630
2631 do_cleanups (old_cleanups);
2632 return 0;
2633 }
2634
2635 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2636 sequence of bytes in PATTERN with length PATTERN_LEN.
2637
2638 The result is 1 if found, 0 if not found, and -1 if there was an error
2639 requiring halting of the search (e.g. memory read error).
2640 If the pattern is found the address is recorded in FOUND_ADDRP. */
2641
2642 int
2643 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2644 const gdb_byte *pattern, ULONGEST pattern_len,
2645 CORE_ADDR *found_addrp)
2646 {
2647 struct target_ops *t;
2648 int found;
2649
2650 /* We don't use INHERIT to set current_target.to_search_memory,
2651 so we have to scan the target stack and handle targetdebug
2652 ourselves. */
2653
2654 if (targetdebug)
2655 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2656 hex_string (start_addr));
2657
2658 for (t = current_target.beneath; t != NULL; t = t->beneath)
2659 if (t->to_search_memory != NULL)
2660 break;
2661
2662 if (t != NULL)
2663 {
2664 found = t->to_search_memory (t, start_addr, search_space_len,
2665 pattern, pattern_len, found_addrp);
2666 }
2667 else
2668 {
2669 /* If a special version of to_search_memory isn't available, use the
2670 simple version. */
2671 found = simple_search_memory (current_target.beneath,
2672 start_addr, search_space_len,
2673 pattern, pattern_len, found_addrp);
2674 }
2675
2676 if (targetdebug)
2677 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2678
2679 return found;
2680 }
2681
2682 /* Look through the currently pushed targets. If none of them will
2683 be able to restart the currently running process, issue an error
2684 message. */
2685
2686 void
2687 target_require_runnable (void)
2688 {
2689 struct target_ops *t;
2690
2691 for (t = target_stack; t != NULL; t = t->beneath)
2692 {
2693 /* If this target knows how to create a new program, then
2694 assume we will still be able to after killing the current
2695 one. Either killing and mourning will not pop T, or else
2696 find_default_run_target will find it again. */
2697 if (t->to_create_inferior != NULL)
2698 return;
2699
2700 /* Do not worry about thread_stratum targets that can not
2701 create inferiors. Assume they will be pushed again if
2702 necessary, and continue to the process_stratum. */
2703 if (t->to_stratum == thread_stratum
2704 || t->to_stratum == arch_stratum)
2705 continue;
2706
2707 error (_("The \"%s\" target does not support \"run\". "
2708 "Try \"help target\" or \"continue\"."),
2709 t->to_shortname);
2710 }
2711
2712 /* This function is only called if the target is running. In that
2713 case there should have been a process_stratum target and it
2714 should either know how to create inferiors, or not... */
2715 internal_error (__FILE__, __LINE__, _("No targets found"));
2716 }
2717
2718 /* Look through the list of possible targets for a target that can
2719 execute a run or attach command without any other data. This is
2720 used to locate the default process stratum.
2721
2722 If DO_MESG is not NULL, the result is always valid (error() is
2723 called for errors); else, return NULL on error. */
2724
2725 static struct target_ops *
2726 find_default_run_target (char *do_mesg)
2727 {
2728 struct target_ops **t;
2729 struct target_ops *runable = NULL;
2730 int count;
2731
2732 count = 0;
2733
2734 for (t = target_structs; t < target_structs + target_struct_size;
2735 ++t)
2736 {
2737 if ((*t)->to_can_run && target_can_run (*t))
2738 {
2739 runable = *t;
2740 ++count;
2741 }
2742 }
2743
2744 if (count != 1)
2745 {
2746 if (do_mesg)
2747 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2748 else
2749 return NULL;
2750 }
2751
2752 return runable;
2753 }
2754
2755 void
2756 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2757 {
2758 struct target_ops *t;
2759
2760 t = find_default_run_target ("attach");
2761 (t->to_attach) (t, args, from_tty);
2762 return;
2763 }
2764
2765 void
2766 find_default_create_inferior (struct target_ops *ops,
2767 char *exec_file, char *allargs, char **env,
2768 int from_tty)
2769 {
2770 struct target_ops *t;
2771
2772 t = find_default_run_target ("run");
2773 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2774 return;
2775 }
2776
2777 static int
2778 find_default_can_async_p (void)
2779 {
2780 struct target_ops *t;
2781
2782 /* This may be called before the target is pushed on the stack;
2783 look for the default process stratum. If there's none, gdb isn't
2784 configured with a native debugger, and target remote isn't
2785 connected yet. */
2786 t = find_default_run_target (NULL);
2787 if (t && t->to_can_async_p)
2788 return (t->to_can_async_p) ();
2789 return 0;
2790 }
2791
2792 static int
2793 find_default_is_async_p (void)
2794 {
2795 struct target_ops *t;
2796
2797 /* This may be called before the target is pushed on the stack;
2798 look for the default process stratum. If there's none, gdb isn't
2799 configured with a native debugger, and target remote isn't
2800 connected yet. */
2801 t = find_default_run_target (NULL);
2802 if (t && t->to_is_async_p)
2803 return (t->to_is_async_p) ();
2804 return 0;
2805 }
2806
2807 static int
2808 find_default_supports_non_stop (void)
2809 {
2810 struct target_ops *t;
2811
2812 t = find_default_run_target (NULL);
2813 if (t && t->to_supports_non_stop)
2814 return (t->to_supports_non_stop) ();
2815 return 0;
2816 }
2817
2818 int
2819 target_supports_non_stop (void)
2820 {
2821 struct target_ops *t;
2822
2823 for (t = &current_target; t != NULL; t = t->beneath)
2824 if (t->to_supports_non_stop)
2825 return t->to_supports_non_stop ();
2826
2827 return 0;
2828 }
2829
2830
2831 char *
2832 target_get_osdata (const char *type)
2833 {
2834 struct target_ops *t;
2835
2836 /* If we're already connected to something that can get us OS
2837 related data, use it. Otherwise, try using the native
2838 target. */
2839 if (current_target.to_stratum >= process_stratum)
2840 t = current_target.beneath;
2841 else
2842 t = find_default_run_target ("get OS data");
2843
2844 if (!t)
2845 return NULL;
2846
2847 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2848 }
2849
2850 /* Determine the current address space of thread PTID. */
2851
2852 struct address_space *
2853 target_thread_address_space (ptid_t ptid)
2854 {
2855 struct address_space *aspace;
2856 struct inferior *inf;
2857 struct target_ops *t;
2858
2859 for (t = current_target.beneath; t != NULL; t = t->beneath)
2860 {
2861 if (t->to_thread_address_space != NULL)
2862 {
2863 aspace = t->to_thread_address_space (t, ptid);
2864 gdb_assert (aspace);
2865
2866 if (targetdebug)
2867 fprintf_unfiltered (gdb_stdlog,
2868 "target_thread_address_space (%s) = %d\n",
2869 target_pid_to_str (ptid),
2870 address_space_num (aspace));
2871 return aspace;
2872 }
2873 }
2874
2875 /* Fall-back to the "main" address space of the inferior. */
2876 inf = find_inferior_pid (ptid_get_pid (ptid));
2877
2878 if (inf == NULL || inf->aspace == NULL)
2879 internal_error (__FILE__, __LINE__,
2880 _("Can't determine the current "
2881 "address space of thread %s\n"),
2882 target_pid_to_str (ptid));
2883
2884 return inf->aspace;
2885 }
2886
2887 static int
2888 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2889 {
2890 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2891 }
2892
2893 static int
2894 default_watchpoint_addr_within_range (struct target_ops *target,
2895 CORE_ADDR addr,
2896 CORE_ADDR start, int length)
2897 {
2898 return addr >= start && addr < start + length;
2899 }
2900
2901 static struct gdbarch *
2902 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2903 {
2904 return target_gdbarch;
2905 }
2906
2907 static int
2908 return_zero (void)
2909 {
2910 return 0;
2911 }
2912
2913 static int
2914 return_one (void)
2915 {
2916 return 1;
2917 }
2918
2919 static int
2920 return_minus_one (void)
2921 {
2922 return -1;
2923 }
2924
2925 /* Find a single runnable target in the stack and return it. If for
2926 some reason there is more than one, return NULL. */
2927
2928 struct target_ops *
2929 find_run_target (void)
2930 {
2931 struct target_ops **t;
2932 struct target_ops *runable = NULL;
2933 int count;
2934
2935 count = 0;
2936
2937 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2938 {
2939 if ((*t)->to_can_run && target_can_run (*t))
2940 {
2941 runable = *t;
2942 ++count;
2943 }
2944 }
2945
2946 return (count == 1 ? runable : NULL);
2947 }
2948
2949 /*
2950 * Find the next target down the stack from the specified target.
2951 */
2952
2953 struct target_ops *
2954 find_target_beneath (struct target_ops *t)
2955 {
2956 return t->beneath;
2957 }
2958
2959 \f
2960 /* The inferior process has died. Long live the inferior! */
2961
2962 void
2963 generic_mourn_inferior (void)
2964 {
2965 ptid_t ptid;
2966
2967 ptid = inferior_ptid;
2968 inferior_ptid = null_ptid;
2969
2970 if (!ptid_equal (ptid, null_ptid))
2971 {
2972 int pid = ptid_get_pid (ptid);
2973 exit_inferior (pid);
2974 }
2975
2976 breakpoint_init_inferior (inf_exited);
2977 registers_changed ();
2978
2979 reopen_exec_file ();
2980 reinit_frame_cache ();
2981
2982 if (deprecated_detach_hook)
2983 deprecated_detach_hook ();
2984 }
2985 \f
2986 /* Helper function for child_wait and the derivatives of child_wait.
2987 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2988 translation of that in OURSTATUS. */
2989 void
2990 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2991 {
2992 if (WIFEXITED (hoststatus))
2993 {
2994 ourstatus->kind = TARGET_WAITKIND_EXITED;
2995 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2996 }
2997 else if (!WIFSTOPPED (hoststatus))
2998 {
2999 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3000 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
3001 }
3002 else
3003 {
3004 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3005 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
3006 }
3007 }
3008 \f
3009 /* Convert a normal process ID to a string. Returns the string in a
3010 static buffer. */
3011
3012 char *
3013 normal_pid_to_str (ptid_t ptid)
3014 {
3015 static char buf[32];
3016
3017 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3018 return buf;
3019 }
3020
3021 static char *
3022 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3023 {
3024 return normal_pid_to_str (ptid);
3025 }
3026
3027 /* Error-catcher for target_find_memory_regions. */
3028 static int
3029 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3030 {
3031 error (_("Command not implemented for this target."));
3032 return 0;
3033 }
3034
3035 /* Error-catcher for target_make_corefile_notes. */
3036 static char *
3037 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3038 {
3039 error (_("Command not implemented for this target."));
3040 return NULL;
3041 }
3042
3043 /* Error-catcher for target_get_bookmark. */
3044 static gdb_byte *
3045 dummy_get_bookmark (char *ignore1, int ignore2)
3046 {
3047 tcomplain ();
3048 return NULL;
3049 }
3050
3051 /* Error-catcher for target_goto_bookmark. */
3052 static void
3053 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3054 {
3055 tcomplain ();
3056 }
3057
3058 /* Set up the handful of non-empty slots needed by the dummy target
3059 vector. */
3060
3061 static void
3062 init_dummy_target (void)
3063 {
3064 dummy_target.to_shortname = "None";
3065 dummy_target.to_longname = "None";
3066 dummy_target.to_doc = "";
3067 dummy_target.to_attach = find_default_attach;
3068 dummy_target.to_detach =
3069 (void (*)(struct target_ops *, char *, int))target_ignore;
3070 dummy_target.to_create_inferior = find_default_create_inferior;
3071 dummy_target.to_can_async_p = find_default_can_async_p;
3072 dummy_target.to_is_async_p = find_default_is_async_p;
3073 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3074 dummy_target.to_pid_to_str = dummy_pid_to_str;
3075 dummy_target.to_stratum = dummy_stratum;
3076 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3077 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3078 dummy_target.to_get_bookmark = dummy_get_bookmark;
3079 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3080 dummy_target.to_xfer_partial = default_xfer_partial;
3081 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3082 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3083 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3084 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3085 dummy_target.to_has_execution = (int (*) (struct target_ops *)) return_zero;
3086 dummy_target.to_stopped_by_watchpoint = return_zero;
3087 dummy_target.to_stopped_data_address =
3088 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3089 dummy_target.to_magic = OPS_MAGIC;
3090 }
3091 \f
3092 static void
3093 debug_to_open (char *args, int from_tty)
3094 {
3095 debug_target.to_open (args, from_tty);
3096
3097 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3098 }
3099
3100 void
3101 target_close (struct target_ops *targ, int quitting)
3102 {
3103 if (targ->to_xclose != NULL)
3104 targ->to_xclose (targ, quitting);
3105 else if (targ->to_close != NULL)
3106 targ->to_close (quitting);
3107
3108 if (targetdebug)
3109 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
3110 }
3111
3112 void
3113 target_attach (char *args, int from_tty)
3114 {
3115 struct target_ops *t;
3116
3117 for (t = current_target.beneath; t != NULL; t = t->beneath)
3118 {
3119 if (t->to_attach != NULL)
3120 {
3121 t->to_attach (t, args, from_tty);
3122 if (targetdebug)
3123 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3124 args, from_tty);
3125 return;
3126 }
3127 }
3128
3129 internal_error (__FILE__, __LINE__,
3130 _("could not find a target to attach"));
3131 }
3132
3133 int
3134 target_thread_alive (ptid_t ptid)
3135 {
3136 struct target_ops *t;
3137
3138 for (t = current_target.beneath; t != NULL; t = t->beneath)
3139 {
3140 if (t->to_thread_alive != NULL)
3141 {
3142 int retval;
3143
3144 retval = t->to_thread_alive (t, ptid);
3145 if (targetdebug)
3146 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3147 PIDGET (ptid), retval);
3148
3149 return retval;
3150 }
3151 }
3152
3153 return 0;
3154 }
3155
3156 void
3157 target_find_new_threads (void)
3158 {
3159 struct target_ops *t;
3160
3161 for (t = current_target.beneath; t != NULL; t = t->beneath)
3162 {
3163 if (t->to_find_new_threads != NULL)
3164 {
3165 t->to_find_new_threads (t);
3166 if (targetdebug)
3167 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3168
3169 return;
3170 }
3171 }
3172 }
3173
3174 void
3175 target_stop (ptid_t ptid)
3176 {
3177 if (!may_stop)
3178 {
3179 warning (_("May not interrupt or stop the target, ignoring attempt"));
3180 return;
3181 }
3182
3183 (*current_target.to_stop) (ptid);
3184 }
3185
3186 static void
3187 debug_to_post_attach (int pid)
3188 {
3189 debug_target.to_post_attach (pid);
3190
3191 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3192 }
3193
3194 /* Return a pretty printed form of target_waitstatus.
3195 Space for the result is malloc'd, caller must free. */
3196
3197 char *
3198 target_waitstatus_to_string (const struct target_waitstatus *ws)
3199 {
3200 const char *kind_str = "status->kind = ";
3201
3202 switch (ws->kind)
3203 {
3204 case TARGET_WAITKIND_EXITED:
3205 return xstrprintf ("%sexited, status = %d",
3206 kind_str, ws->value.integer);
3207 case TARGET_WAITKIND_STOPPED:
3208 return xstrprintf ("%sstopped, signal = %s",
3209 kind_str, target_signal_to_name (ws->value.sig));
3210 case TARGET_WAITKIND_SIGNALLED:
3211 return xstrprintf ("%ssignalled, signal = %s",
3212 kind_str, target_signal_to_name (ws->value.sig));
3213 case TARGET_WAITKIND_LOADED:
3214 return xstrprintf ("%sloaded", kind_str);
3215 case TARGET_WAITKIND_FORKED:
3216 return xstrprintf ("%sforked", kind_str);
3217 case TARGET_WAITKIND_VFORKED:
3218 return xstrprintf ("%svforked", kind_str);
3219 case TARGET_WAITKIND_EXECD:
3220 return xstrprintf ("%sexecd", kind_str);
3221 case TARGET_WAITKIND_SYSCALL_ENTRY:
3222 return xstrprintf ("%sentered syscall", kind_str);
3223 case TARGET_WAITKIND_SYSCALL_RETURN:
3224 return xstrprintf ("%sexited syscall", kind_str);
3225 case TARGET_WAITKIND_SPURIOUS:
3226 return xstrprintf ("%sspurious", kind_str);
3227 case TARGET_WAITKIND_IGNORE:
3228 return xstrprintf ("%signore", kind_str);
3229 case TARGET_WAITKIND_NO_HISTORY:
3230 return xstrprintf ("%sno-history", kind_str);
3231 default:
3232 return xstrprintf ("%sunknown???", kind_str);
3233 }
3234 }
3235
3236 static void
3237 debug_print_register (const char * func,
3238 struct regcache *regcache, int regno)
3239 {
3240 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3241
3242 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3243 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3244 && gdbarch_register_name (gdbarch, regno) != NULL
3245 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3246 fprintf_unfiltered (gdb_stdlog, "(%s)",
3247 gdbarch_register_name (gdbarch, regno));
3248 else
3249 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3250 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3251 {
3252 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3253 int i, size = register_size (gdbarch, regno);
3254 unsigned char buf[MAX_REGISTER_SIZE];
3255
3256 regcache_raw_collect (regcache, regno, buf);
3257 fprintf_unfiltered (gdb_stdlog, " = ");
3258 for (i = 0; i < size; i++)
3259 {
3260 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3261 }
3262 if (size <= sizeof (LONGEST))
3263 {
3264 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3265
3266 fprintf_unfiltered (gdb_stdlog, " %s %s",
3267 core_addr_to_string_nz (val), plongest (val));
3268 }
3269 }
3270 fprintf_unfiltered (gdb_stdlog, "\n");
3271 }
3272
3273 void
3274 target_fetch_registers (struct regcache *regcache, int regno)
3275 {
3276 struct target_ops *t;
3277
3278 for (t = current_target.beneath; t != NULL; t = t->beneath)
3279 {
3280 if (t->to_fetch_registers != NULL)
3281 {
3282 t->to_fetch_registers (t, regcache, regno);
3283 if (targetdebug)
3284 debug_print_register ("target_fetch_registers", regcache, regno);
3285 return;
3286 }
3287 }
3288 }
3289
3290 void
3291 target_store_registers (struct regcache *regcache, int regno)
3292 {
3293 struct target_ops *t;
3294
3295 if (!may_write_registers)
3296 error (_("Writing to registers is not allowed (regno %d)"), regno);
3297
3298 for (t = current_target.beneath; t != NULL; t = t->beneath)
3299 {
3300 if (t->to_store_registers != NULL)
3301 {
3302 t->to_store_registers (t, regcache, regno);
3303 if (targetdebug)
3304 {
3305 debug_print_register ("target_store_registers", regcache, regno);
3306 }
3307 return;
3308 }
3309 }
3310
3311 noprocess ();
3312 }
3313
3314 int
3315 target_core_of_thread (ptid_t ptid)
3316 {
3317 struct target_ops *t;
3318
3319 for (t = current_target.beneath; t != NULL; t = t->beneath)
3320 {
3321 if (t->to_core_of_thread != NULL)
3322 {
3323 int retval = t->to_core_of_thread (t, ptid);
3324
3325 if (targetdebug)
3326 fprintf_unfiltered (gdb_stdlog,
3327 "target_core_of_thread (%d) = %d\n",
3328 PIDGET (ptid), retval);
3329 return retval;
3330 }
3331 }
3332
3333 return -1;
3334 }
3335
3336 int
3337 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3338 {
3339 struct target_ops *t;
3340
3341 for (t = current_target.beneath; t != NULL; t = t->beneath)
3342 {
3343 if (t->to_verify_memory != NULL)
3344 {
3345 int retval = t->to_verify_memory (t, data, memaddr, size);
3346
3347 if (targetdebug)
3348 fprintf_unfiltered (gdb_stdlog,
3349 "target_verify_memory (%s, %s) = %d\n",
3350 paddress (target_gdbarch, memaddr),
3351 pulongest (size),
3352 retval);
3353 return retval;
3354 }
3355 }
3356
3357 tcomplain ();
3358 }
3359
3360 static void
3361 debug_to_prepare_to_store (struct regcache *regcache)
3362 {
3363 debug_target.to_prepare_to_store (regcache);
3364
3365 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3366 }
3367
3368 static int
3369 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3370 int write, struct mem_attrib *attrib,
3371 struct target_ops *target)
3372 {
3373 int retval;
3374
3375 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3376 attrib, target);
3377
3378 fprintf_unfiltered (gdb_stdlog,
3379 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3380 paddress (target_gdbarch, memaddr), len,
3381 write ? "write" : "read", retval);
3382
3383 if (retval > 0)
3384 {
3385 int i;
3386
3387 fputs_unfiltered (", bytes =", gdb_stdlog);
3388 for (i = 0; i < retval; i++)
3389 {
3390 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3391 {
3392 if (targetdebug < 2 && i > 0)
3393 {
3394 fprintf_unfiltered (gdb_stdlog, " ...");
3395 break;
3396 }
3397 fprintf_unfiltered (gdb_stdlog, "\n");
3398 }
3399
3400 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3401 }
3402 }
3403
3404 fputc_unfiltered ('\n', gdb_stdlog);
3405
3406 return retval;
3407 }
3408
3409 static void
3410 debug_to_files_info (struct target_ops *target)
3411 {
3412 debug_target.to_files_info (target);
3413
3414 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3415 }
3416
3417 static int
3418 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3419 struct bp_target_info *bp_tgt)
3420 {
3421 int retval;
3422
3423 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3424
3425 fprintf_unfiltered (gdb_stdlog,
3426 "target_insert_breakpoint (%s, xxx) = %ld\n",
3427 core_addr_to_string (bp_tgt->placed_address),
3428 (unsigned long) retval);
3429 return retval;
3430 }
3431
3432 static int
3433 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3434 struct bp_target_info *bp_tgt)
3435 {
3436 int retval;
3437
3438 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3439
3440 fprintf_unfiltered (gdb_stdlog,
3441 "target_remove_breakpoint (%s, xxx) = %ld\n",
3442 core_addr_to_string (bp_tgt->placed_address),
3443 (unsigned long) retval);
3444 return retval;
3445 }
3446
3447 static int
3448 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3449 {
3450 int retval;
3451
3452 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3453
3454 fprintf_unfiltered (gdb_stdlog,
3455 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3456 (unsigned long) type,
3457 (unsigned long) cnt,
3458 (unsigned long) from_tty,
3459 (unsigned long) retval);
3460 return retval;
3461 }
3462
3463 static int
3464 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3465 {
3466 CORE_ADDR retval;
3467
3468 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3469
3470 fprintf_unfiltered (gdb_stdlog,
3471 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3472 core_addr_to_string (addr), (unsigned long) len,
3473 core_addr_to_string (retval));
3474 return retval;
3475 }
3476
3477 static int
3478 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
3479 struct expression *cond)
3480 {
3481 int retval;
3482
3483 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
3484 rw, cond);
3485
3486 fprintf_unfiltered (gdb_stdlog,
3487 "target_can_accel_watchpoint_condition "
3488 "(%s, %d, %d, %s) = %ld\n",
3489 core_addr_to_string (addr), len, rw,
3490 host_address_to_string (cond), (unsigned long) retval);
3491 return retval;
3492 }
3493
3494 static int
3495 debug_to_stopped_by_watchpoint (void)
3496 {
3497 int retval;
3498
3499 retval = debug_target.to_stopped_by_watchpoint ();
3500
3501 fprintf_unfiltered (gdb_stdlog,
3502 "target_stopped_by_watchpoint () = %ld\n",
3503 (unsigned long) retval);
3504 return retval;
3505 }
3506
3507 static int
3508 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3509 {
3510 int retval;
3511
3512 retval = debug_target.to_stopped_data_address (target, addr);
3513
3514 fprintf_unfiltered (gdb_stdlog,
3515 "target_stopped_data_address ([%s]) = %ld\n",
3516 core_addr_to_string (*addr),
3517 (unsigned long)retval);
3518 return retval;
3519 }
3520
3521 static int
3522 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3523 CORE_ADDR addr,
3524 CORE_ADDR start, int length)
3525 {
3526 int retval;
3527
3528 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3529 start, length);
3530
3531 fprintf_filtered (gdb_stdlog,
3532 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3533 core_addr_to_string (addr), core_addr_to_string (start),
3534 length, retval);
3535 return retval;
3536 }
3537
3538 static int
3539 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3540 struct bp_target_info *bp_tgt)
3541 {
3542 int retval;
3543
3544 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3545
3546 fprintf_unfiltered (gdb_stdlog,
3547 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3548 core_addr_to_string (bp_tgt->placed_address),
3549 (unsigned long) retval);
3550 return retval;
3551 }
3552
3553 static int
3554 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3555 struct bp_target_info *bp_tgt)
3556 {
3557 int retval;
3558
3559 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3560
3561 fprintf_unfiltered (gdb_stdlog,
3562 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3563 core_addr_to_string (bp_tgt->placed_address),
3564 (unsigned long) retval);
3565 return retval;
3566 }
3567
3568 static int
3569 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
3570 struct expression *cond)
3571 {
3572 int retval;
3573
3574 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
3575
3576 fprintf_unfiltered (gdb_stdlog,
3577 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3578 core_addr_to_string (addr), len, type,
3579 host_address_to_string (cond), (unsigned long) retval);
3580 return retval;
3581 }
3582
3583 static int
3584 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
3585 struct expression *cond)
3586 {
3587 int retval;
3588
3589 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
3590
3591 fprintf_unfiltered (gdb_stdlog,
3592 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3593 core_addr_to_string (addr), len, type,
3594 host_address_to_string (cond), (unsigned long) retval);
3595 return retval;
3596 }
3597
3598 static void
3599 debug_to_terminal_init (void)
3600 {
3601 debug_target.to_terminal_init ();
3602
3603 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3604 }
3605
3606 static void
3607 debug_to_terminal_inferior (void)
3608 {
3609 debug_target.to_terminal_inferior ();
3610
3611 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3612 }
3613
3614 static void
3615 debug_to_terminal_ours_for_output (void)
3616 {
3617 debug_target.to_terminal_ours_for_output ();
3618
3619 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3620 }
3621
3622 static void
3623 debug_to_terminal_ours (void)
3624 {
3625 debug_target.to_terminal_ours ();
3626
3627 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3628 }
3629
3630 static void
3631 debug_to_terminal_save_ours (void)
3632 {
3633 debug_target.to_terminal_save_ours ();
3634
3635 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3636 }
3637
3638 static void
3639 debug_to_terminal_info (char *arg, int from_tty)
3640 {
3641 debug_target.to_terminal_info (arg, from_tty);
3642
3643 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3644 from_tty);
3645 }
3646
3647 static void
3648 debug_to_load (char *args, int from_tty)
3649 {
3650 debug_target.to_load (args, from_tty);
3651
3652 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3653 }
3654
3655 static int
3656 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3657 {
3658 int retval;
3659
3660 retval = debug_target.to_lookup_symbol (name, addrp);
3661
3662 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3663
3664 return retval;
3665 }
3666
3667 static void
3668 debug_to_post_startup_inferior (ptid_t ptid)
3669 {
3670 debug_target.to_post_startup_inferior (ptid);
3671
3672 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3673 PIDGET (ptid));
3674 }
3675
3676 static int
3677 debug_to_insert_fork_catchpoint (int pid)
3678 {
3679 int retval;
3680
3681 retval = debug_target.to_insert_fork_catchpoint (pid);
3682
3683 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
3684 pid, retval);
3685
3686 return retval;
3687 }
3688
3689 static int
3690 debug_to_remove_fork_catchpoint (int pid)
3691 {
3692 int retval;
3693
3694 retval = debug_target.to_remove_fork_catchpoint (pid);
3695
3696 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3697 pid, retval);
3698
3699 return retval;
3700 }
3701
3702 static int
3703 debug_to_insert_vfork_catchpoint (int pid)
3704 {
3705 int retval;
3706
3707 retval = debug_target.to_insert_vfork_catchpoint (pid);
3708
3709 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
3710 pid, retval);
3711
3712 return retval;
3713 }
3714
3715 static int
3716 debug_to_remove_vfork_catchpoint (int pid)
3717 {
3718 int retval;
3719
3720 retval = debug_target.to_remove_vfork_catchpoint (pid);
3721
3722 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3723 pid, retval);
3724
3725 return retval;
3726 }
3727
3728 static int
3729 debug_to_insert_exec_catchpoint (int pid)
3730 {
3731 int retval;
3732
3733 retval = debug_target.to_insert_exec_catchpoint (pid);
3734
3735 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
3736 pid, retval);
3737
3738 return retval;
3739 }
3740
3741 static int
3742 debug_to_remove_exec_catchpoint (int pid)
3743 {
3744 int retval;
3745
3746 retval = debug_target.to_remove_exec_catchpoint (pid);
3747
3748 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3749 pid, retval);
3750
3751 return retval;
3752 }
3753
3754 static int
3755 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3756 {
3757 int has_exited;
3758
3759 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3760
3761 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3762 pid, wait_status, *exit_status, has_exited);
3763
3764 return has_exited;
3765 }
3766
3767 static int
3768 debug_to_can_run (void)
3769 {
3770 int retval;
3771
3772 retval = debug_target.to_can_run ();
3773
3774 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3775
3776 return retval;
3777 }
3778
3779 static void
3780 debug_to_notice_signals (ptid_t ptid)
3781 {
3782 debug_target.to_notice_signals (ptid);
3783
3784 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3785 PIDGET (ptid));
3786 }
3787
3788 static struct gdbarch *
3789 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3790 {
3791 struct gdbarch *retval;
3792
3793 retval = debug_target.to_thread_architecture (ops, ptid);
3794
3795 fprintf_unfiltered (gdb_stdlog,
3796 "target_thread_architecture (%s) = %s [%s]\n",
3797 target_pid_to_str (ptid),
3798 host_address_to_string (retval),
3799 gdbarch_bfd_arch_info (retval)->printable_name);
3800 return retval;
3801 }
3802
3803 static void
3804 debug_to_stop (ptid_t ptid)
3805 {
3806 debug_target.to_stop (ptid);
3807
3808 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3809 target_pid_to_str (ptid));
3810 }
3811
3812 static void
3813 debug_to_rcmd (char *command,
3814 struct ui_file *outbuf)
3815 {
3816 debug_target.to_rcmd (command, outbuf);
3817 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3818 }
3819
3820 static char *
3821 debug_to_pid_to_exec_file (int pid)
3822 {
3823 char *exec_file;
3824
3825 exec_file = debug_target.to_pid_to_exec_file (pid);
3826
3827 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3828 pid, exec_file);
3829
3830 return exec_file;
3831 }
3832
3833 static void
3834 setup_target_debug (void)
3835 {
3836 memcpy (&debug_target, &current_target, sizeof debug_target);
3837
3838 current_target.to_open = debug_to_open;
3839 current_target.to_post_attach = debug_to_post_attach;
3840 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3841 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3842 current_target.to_files_info = debug_to_files_info;
3843 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3844 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3845 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3846 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3847 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3848 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3849 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3850 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3851 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3852 current_target.to_watchpoint_addr_within_range
3853 = debug_to_watchpoint_addr_within_range;
3854 current_target.to_region_ok_for_hw_watchpoint
3855 = debug_to_region_ok_for_hw_watchpoint;
3856 current_target.to_can_accel_watchpoint_condition
3857 = debug_to_can_accel_watchpoint_condition;
3858 current_target.to_terminal_init = debug_to_terminal_init;
3859 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3860 current_target.to_terminal_ours_for_output
3861 = debug_to_terminal_ours_for_output;
3862 current_target.to_terminal_ours = debug_to_terminal_ours;
3863 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3864 current_target.to_terminal_info = debug_to_terminal_info;
3865 current_target.to_load = debug_to_load;
3866 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3867 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3868 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3869 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3870 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3871 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3872 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3873 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3874 current_target.to_has_exited = debug_to_has_exited;
3875 current_target.to_can_run = debug_to_can_run;
3876 current_target.to_notice_signals = debug_to_notice_signals;
3877 current_target.to_stop = debug_to_stop;
3878 current_target.to_rcmd = debug_to_rcmd;
3879 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3880 current_target.to_thread_architecture = debug_to_thread_architecture;
3881 }
3882 \f
3883
3884 static char targ_desc[] =
3885 "Names of targets and files being debugged.\nShows the entire \
3886 stack of targets currently in use (including the exec-file,\n\
3887 core-file, and process, if any), as well as the symbol file name.";
3888
3889 static void
3890 do_monitor_command (char *cmd,
3891 int from_tty)
3892 {
3893 if ((current_target.to_rcmd
3894 == (void (*) (char *, struct ui_file *)) tcomplain)
3895 || (current_target.to_rcmd == debug_to_rcmd
3896 && (debug_target.to_rcmd
3897 == (void (*) (char *, struct ui_file *)) tcomplain)))
3898 error (_("\"monitor\" command not supported by this target."));
3899 target_rcmd (cmd, gdb_stdtarg);
3900 }
3901
3902 /* Print the name of each layers of our target stack. */
3903
3904 static void
3905 maintenance_print_target_stack (char *cmd, int from_tty)
3906 {
3907 struct target_ops *t;
3908
3909 printf_filtered (_("The current target stack is:\n"));
3910
3911 for (t = target_stack; t != NULL; t = t->beneath)
3912 {
3913 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3914 }
3915 }
3916
3917 /* Controls if async mode is permitted. */
3918 int target_async_permitted = 0;
3919
3920 /* The set command writes to this variable. If the inferior is
3921 executing, linux_nat_async_permitted is *not* updated. */
3922 static int target_async_permitted_1 = 0;
3923
3924 static void
3925 set_maintenance_target_async_permitted (char *args, int from_tty,
3926 struct cmd_list_element *c)
3927 {
3928 if (have_live_inferiors ())
3929 {
3930 target_async_permitted_1 = target_async_permitted;
3931 error (_("Cannot change this setting while the inferior is running."));
3932 }
3933
3934 target_async_permitted = target_async_permitted_1;
3935 }
3936
3937 static void
3938 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3939 struct cmd_list_element *c,
3940 const char *value)
3941 {
3942 fprintf_filtered (file,
3943 _("Controlling the inferior in "
3944 "asynchronous mode is %s.\n"), value);
3945 }
3946
3947 /* Temporary copies of permission settings. */
3948
3949 static int may_write_registers_1 = 1;
3950 static int may_write_memory_1 = 1;
3951 static int may_insert_breakpoints_1 = 1;
3952 static int may_insert_tracepoints_1 = 1;
3953 static int may_insert_fast_tracepoints_1 = 1;
3954 static int may_stop_1 = 1;
3955
3956 /* Make the user-set values match the real values again. */
3957
3958 void
3959 update_target_permissions (void)
3960 {
3961 may_write_registers_1 = may_write_registers;
3962 may_write_memory_1 = may_write_memory;
3963 may_insert_breakpoints_1 = may_insert_breakpoints;
3964 may_insert_tracepoints_1 = may_insert_tracepoints;
3965 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3966 may_stop_1 = may_stop;
3967 }
3968
3969 /* The one function handles (most of) the permission flags in the same
3970 way. */
3971
3972 static void
3973 set_target_permissions (char *args, int from_tty,
3974 struct cmd_list_element *c)
3975 {
3976 if (target_has_execution)
3977 {
3978 update_target_permissions ();
3979 error (_("Cannot change this setting while the inferior is running."));
3980 }
3981
3982 /* Make the real values match the user-changed values. */
3983 may_write_registers = may_write_registers_1;
3984 may_insert_breakpoints = may_insert_breakpoints_1;
3985 may_insert_tracepoints = may_insert_tracepoints_1;
3986 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3987 may_stop = may_stop_1;
3988 update_observer_mode ();
3989 }
3990
3991 /* Set memory write permission independently of observer mode. */
3992
3993 static void
3994 set_write_memory_permission (char *args, int from_tty,
3995 struct cmd_list_element *c)
3996 {
3997 /* Make the real values match the user-changed values. */
3998 may_write_memory = may_write_memory_1;
3999 update_observer_mode ();
4000 }
4001
4002
4003 void
4004 initialize_targets (void)
4005 {
4006 init_dummy_target ();
4007 push_target (&dummy_target);
4008
4009 add_info ("target", target_info, targ_desc);
4010 add_info ("files", target_info, targ_desc);
4011
4012 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4013 Set target debugging."), _("\
4014 Show target debugging."), _("\
4015 When non-zero, target debugging is enabled. Higher numbers are more\n\
4016 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4017 command."),
4018 NULL,
4019 show_targetdebug,
4020 &setdebuglist, &showdebuglist);
4021
4022 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4023 &trust_readonly, _("\
4024 Set mode for reading from readonly sections."), _("\
4025 Show mode for reading from readonly sections."), _("\
4026 When this mode is on, memory reads from readonly sections (such as .text)\n\
4027 will be read from the object file instead of from the target. This will\n\
4028 result in significant performance improvement for remote targets."),
4029 NULL,
4030 show_trust_readonly,
4031 &setlist, &showlist);
4032
4033 add_com ("monitor", class_obscure, do_monitor_command,
4034 _("Send a command to the remote monitor (remote targets only)."));
4035
4036 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4037 _("Print the name of each layer of the internal target stack."),
4038 &maintenanceprintlist);
4039
4040 add_setshow_boolean_cmd ("target-async", no_class,
4041 &target_async_permitted_1, _("\
4042 Set whether gdb controls the inferior in asynchronous mode."), _("\
4043 Show whether gdb controls the inferior in asynchronous mode."), _("\
4044 Tells gdb whether to control the inferior in asynchronous mode."),
4045 set_maintenance_target_async_permitted,
4046 show_maintenance_target_async_permitted,
4047 &setlist,
4048 &showlist);
4049
4050 add_setshow_boolean_cmd ("stack-cache", class_support,
4051 &stack_cache_enabled_p_1, _("\
4052 Set cache use for stack access."), _("\
4053 Show cache use for stack access."), _("\
4054 When on, use the data cache for all stack access, regardless of any\n\
4055 configured memory regions. This improves remote performance significantly.\n\
4056 By default, caching for stack access is on."),
4057 set_stack_cache_enabled_p,
4058 show_stack_cache_enabled_p,
4059 &setlist, &showlist);
4060
4061 add_setshow_boolean_cmd ("may-write-registers", class_support,
4062 &may_write_registers_1, _("\
4063 Set permission to write into registers."), _("\
4064 Show permission to write into registers."), _("\
4065 When this permission is on, GDB may write into the target's registers.\n\
4066 Otherwise, any sort of write attempt will result in an error."),
4067 set_target_permissions, NULL,
4068 &setlist, &showlist);
4069
4070 add_setshow_boolean_cmd ("may-write-memory", class_support,
4071 &may_write_memory_1, _("\
4072 Set permission to write into target memory."), _("\
4073 Show permission to write into target memory."), _("\
4074 When this permission is on, GDB may write into the target's memory.\n\
4075 Otherwise, any sort of write attempt will result in an error."),
4076 set_write_memory_permission, NULL,
4077 &setlist, &showlist);
4078
4079 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4080 &may_insert_breakpoints_1, _("\
4081 Set permission to insert breakpoints in the target."), _("\
4082 Show permission to insert breakpoints in the target."), _("\
4083 When this permission is on, GDB may insert breakpoints in the program.\n\
4084 Otherwise, any sort of insertion attempt will result in an error."),
4085 set_target_permissions, NULL,
4086 &setlist, &showlist);
4087
4088 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4089 &may_insert_tracepoints_1, _("\
4090 Set permission to insert tracepoints in the target."), _("\
4091 Show permission to insert tracepoints in the target."), _("\
4092 When this permission is on, GDB may insert tracepoints in the program.\n\
4093 Otherwise, any sort of insertion attempt will result in an error."),
4094 set_target_permissions, NULL,
4095 &setlist, &showlist);
4096
4097 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4098 &may_insert_fast_tracepoints_1, _("\
4099 Set permission to insert fast tracepoints in the target."), _("\
4100 Show permission to insert fast tracepoints in the target."), _("\
4101 When this permission is on, GDB may insert fast tracepoints.\n\
4102 Otherwise, any sort of insertion attempt will result in an error."),
4103 set_target_permissions, NULL,
4104 &setlist, &showlist);
4105
4106 add_setshow_boolean_cmd ("may-interrupt", class_support,
4107 &may_stop_1, _("\
4108 Set permission to interrupt or signal the target."), _("\
4109 Show permission to interrupt or signal the target."), _("\
4110 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4111 Otherwise, any attempt to interrupt or stop will be ignored."),
4112 set_target_permissions, NULL,
4113 &setlist, &showlist);
4114
4115
4116 target_dcache = dcache_init ();
4117 }
This page took 0.112526 seconds and 4 git commands to generate.