convert to_pass_signals
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (struct target_ops *, const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
56 CORE_ADDR, int);
57
58 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
59
60 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
61 long lwp, long tid);
62
63 static int default_follow_fork (struct target_ops *self, int follow_child,
64 int detach_fork);
65
66 static void default_mourn_inferior (struct target_ops *self);
67
68 static void tcomplain (void) ATTRIBUTE_NORETURN;
69
70 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
71
72 static int return_zero (void);
73
74 void target_ignore (void);
75
76 static void target_command (char *, int);
77
78 static struct target_ops *find_default_run_target (char *);
79
80 static target_xfer_partial_ftype default_xfer_partial;
81
82 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
83 ptid_t ptid);
84
85 static int dummy_find_memory_regions (struct target_ops *self,
86 find_memory_region_ftype ignore1,
87 void *ignore2);
88
89 static char *dummy_make_corefile_notes (struct target_ops *self,
90 bfd *ignore1, int *ignore2);
91
92 static int find_default_can_async_p (struct target_ops *ignore);
93
94 static int find_default_is_async_p (struct target_ops *ignore);
95
96 static enum exec_direction_kind default_execution_direction
97 (struct target_ops *self);
98
99 #include "target-delegates.c"
100
101 static void init_dummy_target (void);
102
103 static struct target_ops debug_target;
104
105 static void debug_to_open (char *, int);
106
107 static void debug_to_prepare_to_store (struct target_ops *self,
108 struct regcache *);
109
110 static void debug_to_files_info (struct target_ops *);
111
112 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
113 struct bp_target_info *);
114
115 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
116 struct bp_target_info *);
117
118 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
119 int, int, int);
120
121 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
122 struct gdbarch *,
123 struct bp_target_info *);
124
125 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
126 struct gdbarch *,
127 struct bp_target_info *);
128
129 static int debug_to_insert_watchpoint (struct target_ops *self,
130 CORE_ADDR, int, int,
131 struct expression *);
132
133 static int debug_to_remove_watchpoint (struct target_ops *self,
134 CORE_ADDR, int, int,
135 struct expression *);
136
137 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
138
139 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
140 CORE_ADDR, CORE_ADDR, int);
141
142 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
143 CORE_ADDR, int);
144
145 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
146 CORE_ADDR, int, int,
147 struct expression *);
148
149 static void debug_to_terminal_init (struct target_ops *self);
150
151 static void debug_to_terminal_inferior (struct target_ops *self);
152
153 static void debug_to_terminal_ours_for_output (struct target_ops *self);
154
155 static void debug_to_terminal_save_ours (struct target_ops *self);
156
157 static void debug_to_terminal_ours (struct target_ops *self);
158
159 static void debug_to_load (struct target_ops *self, char *, int);
160
161 static int debug_to_can_run (struct target_ops *self);
162
163 static void debug_to_stop (struct target_ops *self, ptid_t);
164
165 /* Pointer to array of target architecture structures; the size of the
166 array; the current index into the array; the allocated size of the
167 array. */
168 struct target_ops **target_structs;
169 unsigned target_struct_size;
170 unsigned target_struct_allocsize;
171 #define DEFAULT_ALLOCSIZE 10
172
173 /* The initial current target, so that there is always a semi-valid
174 current target. */
175
176 static struct target_ops dummy_target;
177
178 /* Top of target stack. */
179
180 static struct target_ops *target_stack;
181
182 /* The target structure we are currently using to talk to a process
183 or file or whatever "inferior" we have. */
184
185 struct target_ops current_target;
186
187 /* Command list for target. */
188
189 static struct cmd_list_element *targetlist = NULL;
190
191 /* Nonzero if we should trust readonly sections from the
192 executable when reading memory. */
193
194 static int trust_readonly = 0;
195
196 /* Nonzero if we should show true memory content including
197 memory breakpoint inserted by gdb. */
198
199 static int show_memory_breakpoints = 0;
200
201 /* These globals control whether GDB attempts to perform these
202 operations; they are useful for targets that need to prevent
203 inadvertant disruption, such as in non-stop mode. */
204
205 int may_write_registers = 1;
206
207 int may_write_memory = 1;
208
209 int may_insert_breakpoints = 1;
210
211 int may_insert_tracepoints = 1;
212
213 int may_insert_fast_tracepoints = 1;
214
215 int may_stop = 1;
216
217 /* Non-zero if we want to see trace of target level stuff. */
218
219 static unsigned int targetdebug = 0;
220 static void
221 show_targetdebug (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223 {
224 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
225 }
226
227 static void setup_target_debug (void);
228
229 /* The user just typed 'target' without the name of a target. */
230
231 static void
232 target_command (char *arg, int from_tty)
233 {
234 fputs_filtered ("Argument required (target name). Try `help target'\n",
235 gdb_stdout);
236 }
237
238 /* Default target_has_* methods for process_stratum targets. */
239
240 int
241 default_child_has_all_memory (struct target_ops *ops)
242 {
243 /* If no inferior selected, then we can't read memory here. */
244 if (ptid_equal (inferior_ptid, null_ptid))
245 return 0;
246
247 return 1;
248 }
249
250 int
251 default_child_has_memory (struct target_ops *ops)
252 {
253 /* If no inferior selected, then we can't read memory here. */
254 if (ptid_equal (inferior_ptid, null_ptid))
255 return 0;
256
257 return 1;
258 }
259
260 int
261 default_child_has_stack (struct target_ops *ops)
262 {
263 /* If no inferior selected, there's no stack. */
264 if (ptid_equal (inferior_ptid, null_ptid))
265 return 0;
266
267 return 1;
268 }
269
270 int
271 default_child_has_registers (struct target_ops *ops)
272 {
273 /* Can't read registers from no inferior. */
274 if (ptid_equal (inferior_ptid, null_ptid))
275 return 0;
276
277 return 1;
278 }
279
280 int
281 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
282 {
283 /* If there's no thread selected, then we can't make it run through
284 hoops. */
285 if (ptid_equal (the_ptid, null_ptid))
286 return 0;
287
288 return 1;
289 }
290
291
292 int
293 target_has_all_memory_1 (void)
294 {
295 struct target_ops *t;
296
297 for (t = current_target.beneath; t != NULL; t = t->beneath)
298 if (t->to_has_all_memory (t))
299 return 1;
300
301 return 0;
302 }
303
304 int
305 target_has_memory_1 (void)
306 {
307 struct target_ops *t;
308
309 for (t = current_target.beneath; t != NULL; t = t->beneath)
310 if (t->to_has_memory (t))
311 return 1;
312
313 return 0;
314 }
315
316 int
317 target_has_stack_1 (void)
318 {
319 struct target_ops *t;
320
321 for (t = current_target.beneath; t != NULL; t = t->beneath)
322 if (t->to_has_stack (t))
323 return 1;
324
325 return 0;
326 }
327
328 int
329 target_has_registers_1 (void)
330 {
331 struct target_ops *t;
332
333 for (t = current_target.beneath; t != NULL; t = t->beneath)
334 if (t->to_has_registers (t))
335 return 1;
336
337 return 0;
338 }
339
340 int
341 target_has_execution_1 (ptid_t the_ptid)
342 {
343 struct target_ops *t;
344
345 for (t = current_target.beneath; t != NULL; t = t->beneath)
346 if (t->to_has_execution (t, the_ptid))
347 return 1;
348
349 return 0;
350 }
351
352 int
353 target_has_execution_current (void)
354 {
355 return target_has_execution_1 (inferior_ptid);
356 }
357
358 /* Complete initialization of T. This ensures that various fields in
359 T are set, if needed by the target implementation. */
360
361 void
362 complete_target_initialization (struct target_ops *t)
363 {
364 /* Provide default values for all "must have" methods. */
365 if (t->to_xfer_partial == NULL)
366 t->to_xfer_partial = default_xfer_partial;
367
368 if (t->to_has_all_memory == NULL)
369 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
370
371 if (t->to_has_memory == NULL)
372 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
373
374 if (t->to_has_stack == NULL)
375 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
376
377 if (t->to_has_registers == NULL)
378 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
379
380 if (t->to_has_execution == NULL)
381 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
382
383 install_delegators (t);
384 }
385
386 /* Add possible target architecture T to the list and add a new
387 command 'target T->to_shortname'. Set COMPLETER as the command's
388 completer if not NULL. */
389
390 void
391 add_target_with_completer (struct target_ops *t,
392 completer_ftype *completer)
393 {
394 struct cmd_list_element *c;
395
396 complete_target_initialization (t);
397
398 if (!target_structs)
399 {
400 target_struct_allocsize = DEFAULT_ALLOCSIZE;
401 target_structs = (struct target_ops **) xmalloc
402 (target_struct_allocsize * sizeof (*target_structs));
403 }
404 if (target_struct_size >= target_struct_allocsize)
405 {
406 target_struct_allocsize *= 2;
407 target_structs = (struct target_ops **)
408 xrealloc ((char *) target_structs,
409 target_struct_allocsize * sizeof (*target_structs));
410 }
411 target_structs[target_struct_size++] = t;
412
413 if (targetlist == NULL)
414 add_prefix_cmd ("target", class_run, target_command, _("\
415 Connect to a target machine or process.\n\
416 The first argument is the type or protocol of the target machine.\n\
417 Remaining arguments are interpreted by the target protocol. For more\n\
418 information on the arguments for a particular protocol, type\n\
419 `help target ' followed by the protocol name."),
420 &targetlist, "target ", 0, &cmdlist);
421 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
422 &targetlist);
423 if (completer != NULL)
424 set_cmd_completer (c, completer);
425 }
426
427 /* Add a possible target architecture to the list. */
428
429 void
430 add_target (struct target_ops *t)
431 {
432 add_target_with_completer (t, NULL);
433 }
434
435 /* See target.h. */
436
437 void
438 add_deprecated_target_alias (struct target_ops *t, char *alias)
439 {
440 struct cmd_list_element *c;
441 char *alt;
442
443 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
444 see PR cli/15104. */
445 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
446 alt = xstrprintf ("target %s", t->to_shortname);
447 deprecate_cmd (c, alt);
448 }
449
450 /* Stub functions */
451
452 void
453 target_ignore (void)
454 {
455 }
456
457 void
458 target_kill (void)
459 {
460 if (targetdebug)
461 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
462
463 current_target.to_kill (&current_target);
464 }
465
466 void
467 target_load (char *arg, int from_tty)
468 {
469 target_dcache_invalidate ();
470 (*current_target.to_load) (&current_target, arg, from_tty);
471 }
472
473 void
474 target_create_inferior (char *exec_file, char *args,
475 char **env, int from_tty)
476 {
477 struct target_ops *t;
478
479 for (t = current_target.beneath; t != NULL; t = t->beneath)
480 {
481 if (t->to_create_inferior != NULL)
482 {
483 t->to_create_inferior (t, exec_file, args, env, from_tty);
484 if (targetdebug)
485 fprintf_unfiltered (gdb_stdlog,
486 "target_create_inferior (%s, %s, xxx, %d)\n",
487 exec_file, args, from_tty);
488 return;
489 }
490 }
491
492 internal_error (__FILE__, __LINE__,
493 _("could not find a target to create inferior"));
494 }
495
496 void
497 target_terminal_inferior (void)
498 {
499 /* A background resume (``run&'') should leave GDB in control of the
500 terminal. Use target_can_async_p, not target_is_async_p, since at
501 this point the target is not async yet. However, if sync_execution
502 is not set, we know it will become async prior to resume. */
503 if (target_can_async_p () && !sync_execution)
504 return;
505
506 /* If GDB is resuming the inferior in the foreground, install
507 inferior's terminal modes. */
508 (*current_target.to_terminal_inferior) (&current_target);
509 }
510
511 static int
512 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
513 struct target_ops *t)
514 {
515 errno = EIO; /* Can't read/write this location. */
516 return 0; /* No bytes handled. */
517 }
518
519 static void
520 tcomplain (void)
521 {
522 error (_("You can't do that when your target is `%s'"),
523 current_target.to_shortname);
524 }
525
526 void
527 noprocess (void)
528 {
529 error (_("You can't do that without a process to debug."));
530 }
531
532 static void
533 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
534 {
535 printf_unfiltered (_("No saved terminal information.\n"));
536 }
537
538 /* A default implementation for the to_get_ada_task_ptid target method.
539
540 This function builds the PTID by using both LWP and TID as part of
541 the PTID lwp and tid elements. The pid used is the pid of the
542 inferior_ptid. */
543
544 static ptid_t
545 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
546 {
547 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
548 }
549
550 static enum exec_direction_kind
551 default_execution_direction (struct target_ops *self)
552 {
553 if (!target_can_execute_reverse)
554 return EXEC_FORWARD;
555 else if (!target_can_async_p ())
556 return EXEC_FORWARD;
557 else
558 gdb_assert_not_reached ("\
559 to_execution_direction must be implemented for reverse async");
560 }
561
562 /* Go through the target stack from top to bottom, copying over zero
563 entries in current_target, then filling in still empty entries. In
564 effect, we are doing class inheritance through the pushed target
565 vectors.
566
567 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
568 is currently implemented, is that it discards any knowledge of
569 which target an inherited method originally belonged to.
570 Consequently, new new target methods should instead explicitly and
571 locally search the target stack for the target that can handle the
572 request. */
573
574 static void
575 update_current_target (void)
576 {
577 struct target_ops *t;
578
579 /* First, reset current's contents. */
580 memset (&current_target, 0, sizeof (current_target));
581
582 /* Install the delegators. */
583 install_delegators (&current_target);
584
585 #define INHERIT(FIELD, TARGET) \
586 if (!current_target.FIELD) \
587 current_target.FIELD = (TARGET)->FIELD
588
589 for (t = target_stack; t; t = t->beneath)
590 {
591 INHERIT (to_shortname, t);
592 INHERIT (to_longname, t);
593 INHERIT (to_doc, t);
594 /* Do not inherit to_open. */
595 /* Do not inherit to_close. */
596 /* Do not inherit to_attach. */
597 /* Do not inherit to_post_attach. */
598 INHERIT (to_attach_no_wait, t);
599 /* Do not inherit to_detach. */
600 /* Do not inherit to_disconnect. */
601 /* Do not inherit to_resume. */
602 /* Do not inherit to_wait. */
603 /* Do not inherit to_fetch_registers. */
604 /* Do not inherit to_store_registers. */
605 /* Do not inherit to_prepare_to_store. */
606 INHERIT (deprecated_xfer_memory, t);
607 /* Do not inherit to_files_info. */
608 /* Do not inherit to_insert_breakpoint. */
609 /* Do not inherit to_remove_breakpoint. */
610 /* Do not inherit to_can_use_hw_breakpoint. */
611 /* Do not inherit to_insert_hw_breakpoint. */
612 /* Do not inherit to_remove_hw_breakpoint. */
613 /* Do not inherit to_ranged_break_num_registers. */
614 /* Do not inherit to_insert_watchpoint. */
615 /* Do not inherit to_remove_watchpoint. */
616 /* Do not inherit to_insert_mask_watchpoint. */
617 /* Do not inherit to_remove_mask_watchpoint. */
618 /* Do not inherit to_stopped_data_address. */
619 INHERIT (to_have_steppable_watchpoint, t);
620 INHERIT (to_have_continuable_watchpoint, t);
621 /* Do not inherit to_stopped_by_watchpoint. */
622 /* Do not inherit to_watchpoint_addr_within_range. */
623 /* Do not inherit to_region_ok_for_hw_watchpoint. */
624 /* Do not inherit to_can_accel_watchpoint_condition. */
625 /* Do not inherit to_masked_watch_num_registers. */
626 /* Do not inherit to_terminal_init. */
627 /* Do not inherit to_terminal_inferior. */
628 /* Do not inherit to_terminal_ours_for_output. */
629 /* Do not inherit to_terminal_ours. */
630 /* Do not inherit to_terminal_save_ours. */
631 /* Do not inherit to_terminal_info. */
632 /* Do not inherit to_kill. */
633 /* Do not inherit to_load. */
634 /* Do no inherit to_create_inferior. */
635 /* Do not inherit to_post_startup_inferior. */
636 /* Do not inherit to_insert_fork_catchpoint. */
637 /* Do not inherit to_remove_fork_catchpoint. */
638 /* Do not inherit to_insert_vfork_catchpoint. */
639 /* Do not inherit to_remove_vfork_catchpoint. */
640 /* Do not inherit to_follow_fork. */
641 /* Do not inherit to_insert_exec_catchpoint. */
642 /* Do not inherit to_remove_exec_catchpoint. */
643 /* Do not inherit to_set_syscall_catchpoint. */
644 /* Do not inherit to_has_exited. */
645 /* Do not inherit to_mourn_inferior. */
646 INHERIT (to_can_run, t);
647 /* Do not inherit to_pass_signals. */
648 /* Do not inherit to_program_signals. */
649 /* Do not inherit to_thread_alive. */
650 /* Do not inherit to_find_new_threads. */
651 /* Do not inherit to_pid_to_str. */
652 /* Do not inherit to_extra_thread_info. */
653 /* Do not inherit to_thread_name. */
654 /* Do not inherit to_stop. */
655 /* Do not inherit to_xfer_partial. */
656 /* Do not inherit to_rcmd. */
657 /* Do not inherit to_pid_to_exec_file. */
658 /* Do not inherit to_log_command. */
659 INHERIT (to_stratum, t);
660 /* Do not inherit to_has_all_memory. */
661 /* Do not inherit to_has_memory. */
662 /* Do not inherit to_has_stack. */
663 /* Do not inherit to_has_registers. */
664 /* Do not inherit to_has_execution. */
665 INHERIT (to_has_thread_control, t);
666 /* Do not inherit to_can_async_p. */
667 /* Do not inherit to_is_async_p. */
668 /* Do not inherit to_async. */
669 /* Do not inherit to_find_memory_regions. */
670 /* Do not inherit to_make_corefile_notes. */
671 /* Do not inherit to_get_bookmark. */
672 /* Do not inherit to_goto_bookmark. */
673 /* Do not inherit to_get_thread_local_address. */
674 /* Do not inherit to_can_execute_reverse. */
675 /* Do not inherit to_execution_direction. */
676 /* Do not inherit to_thread_architecture. */
677 /* Do not inherit to_read_description. */
678 /* Do not inherit to_get_ada_task_ptid. */
679 /* Do not inherit to_search_memory. */
680 /* Do not inherit to_supports_multi_process. */
681 /* Do not inherit to_supports_enable_disable_tracepoint. */
682 /* Do not inherit to_supports_string_tracing. */
683 /* Do not inherit to_trace_init. */
684 /* Do not inherit to_download_tracepoint. */
685 /* Do not inherit to_can_download_tracepoint. */
686 /* Do not inherit to_download_trace_state_variable. */
687 /* Do not inherit to_enable_tracepoint. */
688 /* Do not inherit to_disable_tracepoint. */
689 /* Do not inherit to_trace_set_readonly_regions. */
690 /* Do not inherit to_trace_start. */
691 /* Do not inherit to_get_trace_status. */
692 /* Do not inherit to_get_tracepoint_status. */
693 /* Do not inherit to_trace_stop. */
694 /* Do not inherit to_trace_find. */
695 /* Do not inherit to_get_trace_state_variable_value. */
696 /* Do not inherit to_save_trace_data. */
697 /* Do not inherit to_upload_tracepoints. */
698 /* Do not inherit to_upload_trace_state_variables. */
699 /* Do not inherit to_get_raw_trace_data. */
700 /* Do not inherit to_get_min_fast_tracepoint_insn_len. */
701 /* Do not inherit to_set_disconnected_tracing. */
702 /* Do not inherit to_set_circular_trace_buffer. */
703 /* Do not inherit to_set_trace_buffer_size. */
704 /* Do not inherit to_set_trace_notes. */
705 /* Do not inherit to_get_tib_address. */
706 /* Do not inherit to_set_permissions. */
707 /* Do not inherit to_static_tracepoint_marker_at. */
708 /* Do not inherit to_static_tracepoint_markers_by_strid. */
709 /* Do not inherit to_traceframe_info. */
710 /* Do not inherit to_use_agent. */
711 /* Do not inherit to_can_use_agent. */
712 /* Do not inherit to_augmented_libraries_svr4_read. */
713 INHERIT (to_magic, t);
714 /* Do not inherit
715 to_supports_evaluation_of_breakpoint_conditions. */
716 /* Do not inherit to_can_run_breakpoint_commands. */
717 /* Do not inherit to_memory_map. */
718 /* Do not inherit to_flash_erase. */
719 /* Do not inherit to_flash_done. */
720 }
721 #undef INHERIT
722
723 /* Clean up a target struct so it no longer has any zero pointers in
724 it. Some entries are defaulted to a method that print an error,
725 others are hard-wired to a standard recursive default. */
726
727 #define de_fault(field, value) \
728 if (!current_target.field) \
729 current_target.field = value
730
731 de_fault (to_open,
732 (void (*) (char *, int))
733 tcomplain);
734 de_fault (to_close,
735 (void (*) (struct target_ops *))
736 target_ignore);
737 de_fault (deprecated_xfer_memory,
738 (int (*) (CORE_ADDR, gdb_byte *, int, int,
739 struct mem_attrib *, struct target_ops *))
740 nomemory);
741 de_fault (to_can_run,
742 (int (*) (struct target_ops *))
743 return_zero);
744 current_target.to_read_description = NULL;
745
746 #undef de_fault
747
748 /* Finally, position the target-stack beneath the squashed
749 "current_target". That way code looking for a non-inherited
750 target method can quickly and simply find it. */
751 current_target.beneath = target_stack;
752
753 if (targetdebug)
754 setup_target_debug ();
755 }
756
757 /* Push a new target type into the stack of the existing target accessors,
758 possibly superseding some of the existing accessors.
759
760 Rather than allow an empty stack, we always have the dummy target at
761 the bottom stratum, so we can call the function vectors without
762 checking them. */
763
764 void
765 push_target (struct target_ops *t)
766 {
767 struct target_ops **cur;
768
769 /* Check magic number. If wrong, it probably means someone changed
770 the struct definition, but not all the places that initialize one. */
771 if (t->to_magic != OPS_MAGIC)
772 {
773 fprintf_unfiltered (gdb_stderr,
774 "Magic number of %s target struct wrong\n",
775 t->to_shortname);
776 internal_error (__FILE__, __LINE__,
777 _("failed internal consistency check"));
778 }
779
780 /* Find the proper stratum to install this target in. */
781 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
782 {
783 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
784 break;
785 }
786
787 /* If there's already targets at this stratum, remove them. */
788 /* FIXME: cagney/2003-10-15: I think this should be popping all
789 targets to CUR, and not just those at this stratum level. */
790 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
791 {
792 /* There's already something at this stratum level. Close it,
793 and un-hook it from the stack. */
794 struct target_ops *tmp = (*cur);
795
796 (*cur) = (*cur)->beneath;
797 tmp->beneath = NULL;
798 target_close (tmp);
799 }
800
801 /* We have removed all targets in our stratum, now add the new one. */
802 t->beneath = (*cur);
803 (*cur) = t;
804
805 update_current_target ();
806 }
807
808 /* Remove a target_ops vector from the stack, wherever it may be.
809 Return how many times it was removed (0 or 1). */
810
811 int
812 unpush_target (struct target_ops *t)
813 {
814 struct target_ops **cur;
815 struct target_ops *tmp;
816
817 if (t->to_stratum == dummy_stratum)
818 internal_error (__FILE__, __LINE__,
819 _("Attempt to unpush the dummy target"));
820
821 /* Look for the specified target. Note that we assume that a target
822 can only occur once in the target stack. */
823
824 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
825 {
826 if ((*cur) == t)
827 break;
828 }
829
830 /* If we don't find target_ops, quit. Only open targets should be
831 closed. */
832 if ((*cur) == NULL)
833 return 0;
834
835 /* Unchain the target. */
836 tmp = (*cur);
837 (*cur) = (*cur)->beneath;
838 tmp->beneath = NULL;
839
840 update_current_target ();
841
842 /* Finally close the target. Note we do this after unchaining, so
843 any target method calls from within the target_close
844 implementation don't end up in T anymore. */
845 target_close (t);
846
847 return 1;
848 }
849
850 void
851 pop_all_targets_above (enum strata above_stratum)
852 {
853 while ((int) (current_target.to_stratum) > (int) above_stratum)
854 {
855 if (!unpush_target (target_stack))
856 {
857 fprintf_unfiltered (gdb_stderr,
858 "pop_all_targets couldn't find target %s\n",
859 target_stack->to_shortname);
860 internal_error (__FILE__, __LINE__,
861 _("failed internal consistency check"));
862 break;
863 }
864 }
865 }
866
867 void
868 pop_all_targets (void)
869 {
870 pop_all_targets_above (dummy_stratum);
871 }
872
873 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
874
875 int
876 target_is_pushed (struct target_ops *t)
877 {
878 struct target_ops **cur;
879
880 /* Check magic number. If wrong, it probably means someone changed
881 the struct definition, but not all the places that initialize one. */
882 if (t->to_magic != OPS_MAGIC)
883 {
884 fprintf_unfiltered (gdb_stderr,
885 "Magic number of %s target struct wrong\n",
886 t->to_shortname);
887 internal_error (__FILE__, __LINE__,
888 _("failed internal consistency check"));
889 }
890
891 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
892 if (*cur == t)
893 return 1;
894
895 return 0;
896 }
897
898 /* Using the objfile specified in OBJFILE, find the address for the
899 current thread's thread-local storage with offset OFFSET. */
900 CORE_ADDR
901 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
902 {
903 volatile CORE_ADDR addr = 0;
904 struct target_ops *target;
905
906 for (target = current_target.beneath;
907 target != NULL;
908 target = target->beneath)
909 {
910 if (target->to_get_thread_local_address != NULL)
911 break;
912 }
913
914 if (target != NULL
915 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
916 {
917 ptid_t ptid = inferior_ptid;
918 volatile struct gdb_exception ex;
919
920 TRY_CATCH (ex, RETURN_MASK_ALL)
921 {
922 CORE_ADDR lm_addr;
923
924 /* Fetch the load module address for this objfile. */
925 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
926 objfile);
927 /* If it's 0, throw the appropriate exception. */
928 if (lm_addr == 0)
929 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
930 _("TLS load module not found"));
931
932 addr = target->to_get_thread_local_address (target, ptid,
933 lm_addr, offset);
934 }
935 /* If an error occurred, print TLS related messages here. Otherwise,
936 throw the error to some higher catcher. */
937 if (ex.reason < 0)
938 {
939 int objfile_is_library = (objfile->flags & OBJF_SHARED);
940
941 switch (ex.error)
942 {
943 case TLS_NO_LIBRARY_SUPPORT_ERROR:
944 error (_("Cannot find thread-local variables "
945 "in this thread library."));
946 break;
947 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
948 if (objfile_is_library)
949 error (_("Cannot find shared library `%s' in dynamic"
950 " linker's load module list"), objfile_name (objfile));
951 else
952 error (_("Cannot find executable file `%s' in dynamic"
953 " linker's load module list"), objfile_name (objfile));
954 break;
955 case TLS_NOT_ALLOCATED_YET_ERROR:
956 if (objfile_is_library)
957 error (_("The inferior has not yet allocated storage for"
958 " thread-local variables in\n"
959 "the shared library `%s'\n"
960 "for %s"),
961 objfile_name (objfile), target_pid_to_str (ptid));
962 else
963 error (_("The inferior has not yet allocated storage for"
964 " thread-local variables in\n"
965 "the executable `%s'\n"
966 "for %s"),
967 objfile_name (objfile), target_pid_to_str (ptid));
968 break;
969 case TLS_GENERIC_ERROR:
970 if (objfile_is_library)
971 error (_("Cannot find thread-local storage for %s, "
972 "shared library %s:\n%s"),
973 target_pid_to_str (ptid),
974 objfile_name (objfile), ex.message);
975 else
976 error (_("Cannot find thread-local storage for %s, "
977 "executable file %s:\n%s"),
978 target_pid_to_str (ptid),
979 objfile_name (objfile), ex.message);
980 break;
981 default:
982 throw_exception (ex);
983 break;
984 }
985 }
986 }
987 /* It wouldn't be wrong here to try a gdbarch method, too; finding
988 TLS is an ABI-specific thing. But we don't do that yet. */
989 else
990 error (_("Cannot find thread-local variables on this target"));
991
992 return addr;
993 }
994
995 const char *
996 target_xfer_status_to_string (enum target_xfer_status err)
997 {
998 #define CASE(X) case X: return #X
999 switch (err)
1000 {
1001 CASE(TARGET_XFER_E_IO);
1002 CASE(TARGET_XFER_E_UNAVAILABLE);
1003 default:
1004 return "<unknown>";
1005 }
1006 #undef CASE
1007 };
1008
1009
1010 #undef MIN
1011 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1012
1013 /* target_read_string -- read a null terminated string, up to LEN bytes,
1014 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1015 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1016 is responsible for freeing it. Return the number of bytes successfully
1017 read. */
1018
1019 int
1020 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1021 {
1022 int tlen, offset, i;
1023 gdb_byte buf[4];
1024 int errcode = 0;
1025 char *buffer;
1026 int buffer_allocated;
1027 char *bufptr;
1028 unsigned int nbytes_read = 0;
1029
1030 gdb_assert (string);
1031
1032 /* Small for testing. */
1033 buffer_allocated = 4;
1034 buffer = xmalloc (buffer_allocated);
1035 bufptr = buffer;
1036
1037 while (len > 0)
1038 {
1039 tlen = MIN (len, 4 - (memaddr & 3));
1040 offset = memaddr & 3;
1041
1042 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1043 if (errcode != 0)
1044 {
1045 /* The transfer request might have crossed the boundary to an
1046 unallocated region of memory. Retry the transfer, requesting
1047 a single byte. */
1048 tlen = 1;
1049 offset = 0;
1050 errcode = target_read_memory (memaddr, buf, 1);
1051 if (errcode != 0)
1052 goto done;
1053 }
1054
1055 if (bufptr - buffer + tlen > buffer_allocated)
1056 {
1057 unsigned int bytes;
1058
1059 bytes = bufptr - buffer;
1060 buffer_allocated *= 2;
1061 buffer = xrealloc (buffer, buffer_allocated);
1062 bufptr = buffer + bytes;
1063 }
1064
1065 for (i = 0; i < tlen; i++)
1066 {
1067 *bufptr++ = buf[i + offset];
1068 if (buf[i + offset] == '\000')
1069 {
1070 nbytes_read += i + 1;
1071 goto done;
1072 }
1073 }
1074
1075 memaddr += tlen;
1076 len -= tlen;
1077 nbytes_read += tlen;
1078 }
1079 done:
1080 *string = buffer;
1081 if (errnop != NULL)
1082 *errnop = errcode;
1083 return nbytes_read;
1084 }
1085
1086 struct target_section_table *
1087 target_get_section_table (struct target_ops *target)
1088 {
1089 struct target_ops *t;
1090
1091 if (targetdebug)
1092 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1093
1094 for (t = target; t != NULL; t = t->beneath)
1095 if (t->to_get_section_table != NULL)
1096 return (*t->to_get_section_table) (t);
1097
1098 return NULL;
1099 }
1100
1101 /* Find a section containing ADDR. */
1102
1103 struct target_section *
1104 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1105 {
1106 struct target_section_table *table = target_get_section_table (target);
1107 struct target_section *secp;
1108
1109 if (table == NULL)
1110 return NULL;
1111
1112 for (secp = table->sections; secp < table->sections_end; secp++)
1113 {
1114 if (addr >= secp->addr && addr < secp->endaddr)
1115 return secp;
1116 }
1117 return NULL;
1118 }
1119
1120 /* Read memory from the live target, even if currently inspecting a
1121 traceframe. The return is the same as that of target_read. */
1122
1123 static enum target_xfer_status
1124 target_read_live_memory (enum target_object object,
1125 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1126 ULONGEST *xfered_len)
1127 {
1128 enum target_xfer_status ret;
1129 struct cleanup *cleanup;
1130
1131 /* Switch momentarily out of tfind mode so to access live memory.
1132 Note that this must not clear global state, such as the frame
1133 cache, which must still remain valid for the previous traceframe.
1134 We may be _building_ the frame cache at this point. */
1135 cleanup = make_cleanup_restore_traceframe_number ();
1136 set_traceframe_number (-1);
1137
1138 ret = target_xfer_partial (current_target.beneath, object, NULL,
1139 myaddr, NULL, memaddr, len, xfered_len);
1140
1141 do_cleanups (cleanup);
1142 return ret;
1143 }
1144
1145 /* Using the set of read-only target sections of OPS, read live
1146 read-only memory. Note that the actual reads start from the
1147 top-most target again.
1148
1149 For interface/parameters/return description see target.h,
1150 to_xfer_partial. */
1151
1152 static enum target_xfer_status
1153 memory_xfer_live_readonly_partial (struct target_ops *ops,
1154 enum target_object object,
1155 gdb_byte *readbuf, ULONGEST memaddr,
1156 ULONGEST len, ULONGEST *xfered_len)
1157 {
1158 struct target_section *secp;
1159 struct target_section_table *table;
1160
1161 secp = target_section_by_addr (ops, memaddr);
1162 if (secp != NULL
1163 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1164 secp->the_bfd_section)
1165 & SEC_READONLY))
1166 {
1167 struct target_section *p;
1168 ULONGEST memend = memaddr + len;
1169
1170 table = target_get_section_table (ops);
1171
1172 for (p = table->sections; p < table->sections_end; p++)
1173 {
1174 if (memaddr >= p->addr)
1175 {
1176 if (memend <= p->endaddr)
1177 {
1178 /* Entire transfer is within this section. */
1179 return target_read_live_memory (object, memaddr,
1180 readbuf, len, xfered_len);
1181 }
1182 else if (memaddr >= p->endaddr)
1183 {
1184 /* This section ends before the transfer starts. */
1185 continue;
1186 }
1187 else
1188 {
1189 /* This section overlaps the transfer. Just do half. */
1190 len = p->endaddr - memaddr;
1191 return target_read_live_memory (object, memaddr,
1192 readbuf, len, xfered_len);
1193 }
1194 }
1195 }
1196 }
1197
1198 return TARGET_XFER_EOF;
1199 }
1200
1201 /* Read memory from more than one valid target. A core file, for
1202 instance, could have some of memory but delegate other bits to
1203 the target below it. So, we must manually try all targets. */
1204
1205 static enum target_xfer_status
1206 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1207 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1208 ULONGEST *xfered_len)
1209 {
1210 enum target_xfer_status res;
1211
1212 do
1213 {
1214 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1215 readbuf, writebuf, memaddr, len,
1216 xfered_len);
1217 if (res == TARGET_XFER_OK)
1218 break;
1219
1220 /* Stop if the target reports that the memory is not available. */
1221 if (res == TARGET_XFER_E_UNAVAILABLE)
1222 break;
1223
1224 /* We want to continue past core files to executables, but not
1225 past a running target's memory. */
1226 if (ops->to_has_all_memory (ops))
1227 break;
1228
1229 ops = ops->beneath;
1230 }
1231 while (ops != NULL);
1232
1233 return res;
1234 }
1235
1236 /* Perform a partial memory transfer.
1237 For docs see target.h, to_xfer_partial. */
1238
1239 static enum target_xfer_status
1240 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1241 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1242 ULONGEST len, ULONGEST *xfered_len)
1243 {
1244 enum target_xfer_status res;
1245 int reg_len;
1246 struct mem_region *region;
1247 struct inferior *inf;
1248
1249 /* For accesses to unmapped overlay sections, read directly from
1250 files. Must do this first, as MEMADDR may need adjustment. */
1251 if (readbuf != NULL && overlay_debugging)
1252 {
1253 struct obj_section *section = find_pc_overlay (memaddr);
1254
1255 if (pc_in_unmapped_range (memaddr, section))
1256 {
1257 struct target_section_table *table
1258 = target_get_section_table (ops);
1259 const char *section_name = section->the_bfd_section->name;
1260
1261 memaddr = overlay_mapped_address (memaddr, section);
1262 return section_table_xfer_memory_partial (readbuf, writebuf,
1263 memaddr, len, xfered_len,
1264 table->sections,
1265 table->sections_end,
1266 section_name);
1267 }
1268 }
1269
1270 /* Try the executable files, if "trust-readonly-sections" is set. */
1271 if (readbuf != NULL && trust_readonly)
1272 {
1273 struct target_section *secp;
1274 struct target_section_table *table;
1275
1276 secp = target_section_by_addr (ops, memaddr);
1277 if (secp != NULL
1278 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1279 secp->the_bfd_section)
1280 & SEC_READONLY))
1281 {
1282 table = target_get_section_table (ops);
1283 return section_table_xfer_memory_partial (readbuf, writebuf,
1284 memaddr, len, xfered_len,
1285 table->sections,
1286 table->sections_end,
1287 NULL);
1288 }
1289 }
1290
1291 /* If reading unavailable memory in the context of traceframes, and
1292 this address falls within a read-only section, fallback to
1293 reading from live memory. */
1294 if (readbuf != NULL && get_traceframe_number () != -1)
1295 {
1296 VEC(mem_range_s) *available;
1297
1298 /* If we fail to get the set of available memory, then the
1299 target does not support querying traceframe info, and so we
1300 attempt reading from the traceframe anyway (assuming the
1301 target implements the old QTro packet then). */
1302 if (traceframe_available_memory (&available, memaddr, len))
1303 {
1304 struct cleanup *old_chain;
1305
1306 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1307
1308 if (VEC_empty (mem_range_s, available)
1309 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1310 {
1311 /* Don't read into the traceframe's available
1312 memory. */
1313 if (!VEC_empty (mem_range_s, available))
1314 {
1315 LONGEST oldlen = len;
1316
1317 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1318 gdb_assert (len <= oldlen);
1319 }
1320
1321 do_cleanups (old_chain);
1322
1323 /* This goes through the topmost target again. */
1324 res = memory_xfer_live_readonly_partial (ops, object,
1325 readbuf, memaddr,
1326 len, xfered_len);
1327 if (res == TARGET_XFER_OK)
1328 return TARGET_XFER_OK;
1329 else
1330 {
1331 /* No use trying further, we know some memory starting
1332 at MEMADDR isn't available. */
1333 *xfered_len = len;
1334 return TARGET_XFER_E_UNAVAILABLE;
1335 }
1336 }
1337
1338 /* Don't try to read more than how much is available, in
1339 case the target implements the deprecated QTro packet to
1340 cater for older GDBs (the target's knowledge of read-only
1341 sections may be outdated by now). */
1342 len = VEC_index (mem_range_s, available, 0)->length;
1343
1344 do_cleanups (old_chain);
1345 }
1346 }
1347
1348 /* Try GDB's internal data cache. */
1349 region = lookup_mem_region (memaddr);
1350 /* region->hi == 0 means there's no upper bound. */
1351 if (memaddr + len < region->hi || region->hi == 0)
1352 reg_len = len;
1353 else
1354 reg_len = region->hi - memaddr;
1355
1356 switch (region->attrib.mode)
1357 {
1358 case MEM_RO:
1359 if (writebuf != NULL)
1360 return TARGET_XFER_E_IO;
1361 break;
1362
1363 case MEM_WO:
1364 if (readbuf != NULL)
1365 return TARGET_XFER_E_IO;
1366 break;
1367
1368 case MEM_FLASH:
1369 /* We only support writing to flash during "load" for now. */
1370 if (writebuf != NULL)
1371 error (_("Writing to flash memory forbidden in this context"));
1372 break;
1373
1374 case MEM_NONE:
1375 return TARGET_XFER_E_IO;
1376 }
1377
1378 if (!ptid_equal (inferior_ptid, null_ptid))
1379 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1380 else
1381 inf = NULL;
1382
1383 if (inf != NULL
1384 /* The dcache reads whole cache lines; that doesn't play well
1385 with reading from a trace buffer, because reading outside of
1386 the collected memory range fails. */
1387 && get_traceframe_number () == -1
1388 && (region->attrib.cache
1389 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1390 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1391 {
1392 DCACHE *dcache = target_dcache_get_or_init ();
1393 int l;
1394
1395 if (readbuf != NULL)
1396 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1397 else
1398 /* FIXME drow/2006-08-09: If we're going to preserve const
1399 correctness dcache_xfer_memory should take readbuf and
1400 writebuf. */
1401 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1402 reg_len, 1);
1403 if (l <= 0)
1404 return TARGET_XFER_E_IO;
1405 else
1406 {
1407 *xfered_len = (ULONGEST) l;
1408 return TARGET_XFER_OK;
1409 }
1410 }
1411
1412 /* If none of those methods found the memory we wanted, fall back
1413 to a target partial transfer. Normally a single call to
1414 to_xfer_partial is enough; if it doesn't recognize an object
1415 it will call the to_xfer_partial of the next target down.
1416 But for memory this won't do. Memory is the only target
1417 object which can be read from more than one valid target.
1418 A core file, for instance, could have some of memory but
1419 delegate other bits to the target below it. So, we must
1420 manually try all targets. */
1421
1422 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1423 xfered_len);
1424
1425 /* Make sure the cache gets updated no matter what - if we are writing
1426 to the stack. Even if this write is not tagged as such, we still need
1427 to update the cache. */
1428
1429 if (res == TARGET_XFER_OK
1430 && inf != NULL
1431 && writebuf != NULL
1432 && target_dcache_init_p ()
1433 && !region->attrib.cache
1434 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1435 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1436 {
1437 DCACHE *dcache = target_dcache_get ();
1438
1439 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1440 }
1441
1442 /* If we still haven't got anything, return the last error. We
1443 give up. */
1444 return res;
1445 }
1446
1447 /* Perform a partial memory transfer. For docs see target.h,
1448 to_xfer_partial. */
1449
1450 static enum target_xfer_status
1451 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1452 gdb_byte *readbuf, const gdb_byte *writebuf,
1453 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1454 {
1455 enum target_xfer_status res;
1456
1457 /* Zero length requests are ok and require no work. */
1458 if (len == 0)
1459 return TARGET_XFER_EOF;
1460
1461 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1462 breakpoint insns, thus hiding out from higher layers whether
1463 there are software breakpoints inserted in the code stream. */
1464 if (readbuf != NULL)
1465 {
1466 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1467 xfered_len);
1468
1469 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1470 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1471 }
1472 else
1473 {
1474 void *buf;
1475 struct cleanup *old_chain;
1476
1477 /* A large write request is likely to be partially satisfied
1478 by memory_xfer_partial_1. We will continually malloc
1479 and free a copy of the entire write request for breakpoint
1480 shadow handling even though we only end up writing a small
1481 subset of it. Cap writes to 4KB to mitigate this. */
1482 len = min (4096, len);
1483
1484 buf = xmalloc (len);
1485 old_chain = make_cleanup (xfree, buf);
1486 memcpy (buf, writebuf, len);
1487
1488 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1489 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1490 xfered_len);
1491
1492 do_cleanups (old_chain);
1493 }
1494
1495 return res;
1496 }
1497
1498 static void
1499 restore_show_memory_breakpoints (void *arg)
1500 {
1501 show_memory_breakpoints = (uintptr_t) arg;
1502 }
1503
1504 struct cleanup *
1505 make_show_memory_breakpoints_cleanup (int show)
1506 {
1507 int current = show_memory_breakpoints;
1508
1509 show_memory_breakpoints = show;
1510 return make_cleanup (restore_show_memory_breakpoints,
1511 (void *) (uintptr_t) current);
1512 }
1513
1514 /* For docs see target.h, to_xfer_partial. */
1515
1516 enum target_xfer_status
1517 target_xfer_partial (struct target_ops *ops,
1518 enum target_object object, const char *annex,
1519 gdb_byte *readbuf, const gdb_byte *writebuf,
1520 ULONGEST offset, ULONGEST len,
1521 ULONGEST *xfered_len)
1522 {
1523 enum target_xfer_status retval;
1524
1525 gdb_assert (ops->to_xfer_partial != NULL);
1526
1527 /* Transfer is done when LEN is zero. */
1528 if (len == 0)
1529 return TARGET_XFER_EOF;
1530
1531 if (writebuf && !may_write_memory)
1532 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1533 core_addr_to_string_nz (offset), plongest (len));
1534
1535 *xfered_len = 0;
1536
1537 /* If this is a memory transfer, let the memory-specific code
1538 have a look at it instead. Memory transfers are more
1539 complicated. */
1540 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1541 || object == TARGET_OBJECT_CODE_MEMORY)
1542 retval = memory_xfer_partial (ops, object, readbuf,
1543 writebuf, offset, len, xfered_len);
1544 else if (object == TARGET_OBJECT_RAW_MEMORY)
1545 {
1546 /* Request the normal memory object from other layers. */
1547 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1548 xfered_len);
1549 }
1550 else
1551 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1552 writebuf, offset, len, xfered_len);
1553
1554 if (targetdebug)
1555 {
1556 const unsigned char *myaddr = NULL;
1557
1558 fprintf_unfiltered (gdb_stdlog,
1559 "%s:target_xfer_partial "
1560 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1561 ops->to_shortname,
1562 (int) object,
1563 (annex ? annex : "(null)"),
1564 host_address_to_string (readbuf),
1565 host_address_to_string (writebuf),
1566 core_addr_to_string_nz (offset),
1567 pulongest (len), retval,
1568 pulongest (*xfered_len));
1569
1570 if (readbuf)
1571 myaddr = readbuf;
1572 if (writebuf)
1573 myaddr = writebuf;
1574 if (retval == TARGET_XFER_OK && myaddr != NULL)
1575 {
1576 int i;
1577
1578 fputs_unfiltered (", bytes =", gdb_stdlog);
1579 for (i = 0; i < *xfered_len; i++)
1580 {
1581 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1582 {
1583 if (targetdebug < 2 && i > 0)
1584 {
1585 fprintf_unfiltered (gdb_stdlog, " ...");
1586 break;
1587 }
1588 fprintf_unfiltered (gdb_stdlog, "\n");
1589 }
1590
1591 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1592 }
1593 }
1594
1595 fputc_unfiltered ('\n', gdb_stdlog);
1596 }
1597
1598 /* Check implementations of to_xfer_partial update *XFERED_LEN
1599 properly. Do assertion after printing debug messages, so that we
1600 can find more clues on assertion failure from debugging messages. */
1601 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1602 gdb_assert (*xfered_len > 0);
1603
1604 return retval;
1605 }
1606
1607 /* Read LEN bytes of target memory at address MEMADDR, placing the
1608 results in GDB's memory at MYADDR. Returns either 0 for success or
1609 TARGET_XFER_E_IO if any error occurs.
1610
1611 If an error occurs, no guarantee is made about the contents of the data at
1612 MYADDR. In particular, the caller should not depend upon partial reads
1613 filling the buffer with good data. There is no way for the caller to know
1614 how much good data might have been transfered anyway. Callers that can
1615 deal with partial reads should call target_read (which will retry until
1616 it makes no progress, and then return how much was transferred). */
1617
1618 int
1619 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1620 {
1621 /* Dispatch to the topmost target, not the flattened current_target.
1622 Memory accesses check target->to_has_(all_)memory, and the
1623 flattened target doesn't inherit those. */
1624 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1625 myaddr, memaddr, len) == len)
1626 return 0;
1627 else
1628 return TARGET_XFER_E_IO;
1629 }
1630
1631 /* Like target_read_memory, but specify explicitly that this is a read
1632 from the target's raw memory. That is, this read bypasses the
1633 dcache, breakpoint shadowing, etc. */
1634
1635 int
1636 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1637 {
1638 /* See comment in target_read_memory about why the request starts at
1639 current_target.beneath. */
1640 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1641 myaddr, memaddr, len) == len)
1642 return 0;
1643 else
1644 return TARGET_XFER_E_IO;
1645 }
1646
1647 /* Like target_read_memory, but specify explicitly that this is a read from
1648 the target's stack. This may trigger different cache behavior. */
1649
1650 int
1651 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1652 {
1653 /* See comment in target_read_memory about why the request starts at
1654 current_target.beneath. */
1655 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1656 myaddr, memaddr, len) == len)
1657 return 0;
1658 else
1659 return TARGET_XFER_E_IO;
1660 }
1661
1662 /* Like target_read_memory, but specify explicitly that this is a read from
1663 the target's code. This may trigger different cache behavior. */
1664
1665 int
1666 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1667 {
1668 /* See comment in target_read_memory about why the request starts at
1669 current_target.beneath. */
1670 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1671 myaddr, memaddr, len) == len)
1672 return 0;
1673 else
1674 return TARGET_XFER_E_IO;
1675 }
1676
1677 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1678 Returns either 0 for success or TARGET_XFER_E_IO if any
1679 error occurs. If an error occurs, no guarantee is made about how
1680 much data got written. Callers that can deal with partial writes
1681 should call target_write. */
1682
1683 int
1684 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1685 {
1686 /* See comment in target_read_memory about why the request starts at
1687 current_target.beneath. */
1688 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1689 myaddr, memaddr, len) == len)
1690 return 0;
1691 else
1692 return TARGET_XFER_E_IO;
1693 }
1694
1695 /* Write LEN bytes from MYADDR to target raw memory at address
1696 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1697 if any error occurs. If an error occurs, no guarantee is made
1698 about how much data got written. Callers that can deal with
1699 partial writes should call target_write. */
1700
1701 int
1702 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1703 {
1704 /* See comment in target_read_memory about why the request starts at
1705 current_target.beneath. */
1706 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1707 myaddr, memaddr, len) == len)
1708 return 0;
1709 else
1710 return TARGET_XFER_E_IO;
1711 }
1712
1713 /* Fetch the target's memory map. */
1714
1715 VEC(mem_region_s) *
1716 target_memory_map (void)
1717 {
1718 VEC(mem_region_s) *result;
1719 struct mem_region *last_one, *this_one;
1720 int ix;
1721 struct target_ops *t;
1722
1723 if (targetdebug)
1724 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1725
1726 for (t = current_target.beneath; t != NULL; t = t->beneath)
1727 if (t->to_memory_map != NULL)
1728 break;
1729
1730 if (t == NULL)
1731 return NULL;
1732
1733 result = t->to_memory_map (t);
1734 if (result == NULL)
1735 return NULL;
1736
1737 qsort (VEC_address (mem_region_s, result),
1738 VEC_length (mem_region_s, result),
1739 sizeof (struct mem_region), mem_region_cmp);
1740
1741 /* Check that regions do not overlap. Simultaneously assign
1742 a numbering for the "mem" commands to use to refer to
1743 each region. */
1744 last_one = NULL;
1745 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1746 {
1747 this_one->number = ix;
1748
1749 if (last_one && last_one->hi > this_one->lo)
1750 {
1751 warning (_("Overlapping regions in memory map: ignoring"));
1752 VEC_free (mem_region_s, result);
1753 return NULL;
1754 }
1755 last_one = this_one;
1756 }
1757
1758 return result;
1759 }
1760
1761 void
1762 target_flash_erase (ULONGEST address, LONGEST length)
1763 {
1764 struct target_ops *t;
1765
1766 for (t = current_target.beneath; t != NULL; t = t->beneath)
1767 if (t->to_flash_erase != NULL)
1768 {
1769 if (targetdebug)
1770 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1771 hex_string (address), phex (length, 0));
1772 t->to_flash_erase (t, address, length);
1773 return;
1774 }
1775
1776 tcomplain ();
1777 }
1778
1779 void
1780 target_flash_done (void)
1781 {
1782 struct target_ops *t;
1783
1784 for (t = current_target.beneath; t != NULL; t = t->beneath)
1785 if (t->to_flash_done != NULL)
1786 {
1787 if (targetdebug)
1788 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1789 t->to_flash_done (t);
1790 return;
1791 }
1792
1793 tcomplain ();
1794 }
1795
1796 static void
1797 show_trust_readonly (struct ui_file *file, int from_tty,
1798 struct cmd_list_element *c, const char *value)
1799 {
1800 fprintf_filtered (file,
1801 _("Mode for reading from readonly sections is %s.\n"),
1802 value);
1803 }
1804
1805 /* More generic transfers. */
1806
1807 static enum target_xfer_status
1808 default_xfer_partial (struct target_ops *ops, enum target_object object,
1809 const char *annex, gdb_byte *readbuf,
1810 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1811 ULONGEST *xfered_len)
1812 {
1813 if (object == TARGET_OBJECT_MEMORY
1814 && ops->deprecated_xfer_memory != NULL)
1815 /* If available, fall back to the target's
1816 "deprecated_xfer_memory" method. */
1817 {
1818 int xfered = -1;
1819
1820 errno = 0;
1821 if (writebuf != NULL)
1822 {
1823 void *buffer = xmalloc (len);
1824 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1825
1826 memcpy (buffer, writebuf, len);
1827 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1828 1/*write*/, NULL, ops);
1829 do_cleanups (cleanup);
1830 }
1831 if (readbuf != NULL)
1832 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1833 0/*read*/, NULL, ops);
1834 if (xfered > 0)
1835 {
1836 *xfered_len = (ULONGEST) xfered;
1837 return TARGET_XFER_E_IO;
1838 }
1839 else if (xfered == 0 && errno == 0)
1840 /* "deprecated_xfer_memory" uses 0, cross checked against
1841 ERRNO as one indication of an error. */
1842 return TARGET_XFER_EOF;
1843 else
1844 return TARGET_XFER_E_IO;
1845 }
1846 else
1847 {
1848 gdb_assert (ops->beneath != NULL);
1849 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1850 readbuf, writebuf, offset, len,
1851 xfered_len);
1852 }
1853 }
1854
1855 /* Target vector read/write partial wrapper functions. */
1856
1857 static enum target_xfer_status
1858 target_read_partial (struct target_ops *ops,
1859 enum target_object object,
1860 const char *annex, gdb_byte *buf,
1861 ULONGEST offset, ULONGEST len,
1862 ULONGEST *xfered_len)
1863 {
1864 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1865 xfered_len);
1866 }
1867
1868 static enum target_xfer_status
1869 target_write_partial (struct target_ops *ops,
1870 enum target_object object,
1871 const char *annex, const gdb_byte *buf,
1872 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1873 {
1874 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1875 xfered_len);
1876 }
1877
1878 /* Wrappers to perform the full transfer. */
1879
1880 /* For docs on target_read see target.h. */
1881
1882 LONGEST
1883 target_read (struct target_ops *ops,
1884 enum target_object object,
1885 const char *annex, gdb_byte *buf,
1886 ULONGEST offset, LONGEST len)
1887 {
1888 LONGEST xfered = 0;
1889
1890 while (xfered < len)
1891 {
1892 ULONGEST xfered_len;
1893 enum target_xfer_status status;
1894
1895 status = target_read_partial (ops, object, annex,
1896 (gdb_byte *) buf + xfered,
1897 offset + xfered, len - xfered,
1898 &xfered_len);
1899
1900 /* Call an observer, notifying them of the xfer progress? */
1901 if (status == TARGET_XFER_EOF)
1902 return xfered;
1903 else if (status == TARGET_XFER_OK)
1904 {
1905 xfered += xfered_len;
1906 QUIT;
1907 }
1908 else
1909 return -1;
1910
1911 }
1912 return len;
1913 }
1914
1915 /* Assuming that the entire [begin, end) range of memory cannot be
1916 read, try to read whatever subrange is possible to read.
1917
1918 The function returns, in RESULT, either zero or one memory block.
1919 If there's a readable subrange at the beginning, it is completely
1920 read and returned. Any further readable subrange will not be read.
1921 Otherwise, if there's a readable subrange at the end, it will be
1922 completely read and returned. Any readable subranges before it
1923 (obviously, not starting at the beginning), will be ignored. In
1924 other cases -- either no readable subrange, or readable subrange(s)
1925 that is neither at the beginning, or end, nothing is returned.
1926
1927 The purpose of this function is to handle a read across a boundary
1928 of accessible memory in a case when memory map is not available.
1929 The above restrictions are fine for this case, but will give
1930 incorrect results if the memory is 'patchy'. However, supporting
1931 'patchy' memory would require trying to read every single byte,
1932 and it seems unacceptable solution. Explicit memory map is
1933 recommended for this case -- and target_read_memory_robust will
1934 take care of reading multiple ranges then. */
1935
1936 static void
1937 read_whatever_is_readable (struct target_ops *ops,
1938 ULONGEST begin, ULONGEST end,
1939 VEC(memory_read_result_s) **result)
1940 {
1941 gdb_byte *buf = xmalloc (end - begin);
1942 ULONGEST current_begin = begin;
1943 ULONGEST current_end = end;
1944 int forward;
1945 memory_read_result_s r;
1946 ULONGEST xfered_len;
1947
1948 /* If we previously failed to read 1 byte, nothing can be done here. */
1949 if (end - begin <= 1)
1950 {
1951 xfree (buf);
1952 return;
1953 }
1954
1955 /* Check that either first or the last byte is readable, and give up
1956 if not. This heuristic is meant to permit reading accessible memory
1957 at the boundary of accessible region. */
1958 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1959 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1960 {
1961 forward = 1;
1962 ++current_begin;
1963 }
1964 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1965 buf + (end-begin) - 1, end - 1, 1,
1966 &xfered_len) == TARGET_XFER_OK)
1967 {
1968 forward = 0;
1969 --current_end;
1970 }
1971 else
1972 {
1973 xfree (buf);
1974 return;
1975 }
1976
1977 /* Loop invariant is that the [current_begin, current_end) was previously
1978 found to be not readable as a whole.
1979
1980 Note loop condition -- if the range has 1 byte, we can't divide the range
1981 so there's no point trying further. */
1982 while (current_end - current_begin > 1)
1983 {
1984 ULONGEST first_half_begin, first_half_end;
1985 ULONGEST second_half_begin, second_half_end;
1986 LONGEST xfer;
1987 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1988
1989 if (forward)
1990 {
1991 first_half_begin = current_begin;
1992 first_half_end = middle;
1993 second_half_begin = middle;
1994 second_half_end = current_end;
1995 }
1996 else
1997 {
1998 first_half_begin = middle;
1999 first_half_end = current_end;
2000 second_half_begin = current_begin;
2001 second_half_end = middle;
2002 }
2003
2004 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2005 buf + (first_half_begin - begin),
2006 first_half_begin,
2007 first_half_end - first_half_begin);
2008
2009 if (xfer == first_half_end - first_half_begin)
2010 {
2011 /* This half reads up fine. So, the error must be in the
2012 other half. */
2013 current_begin = second_half_begin;
2014 current_end = second_half_end;
2015 }
2016 else
2017 {
2018 /* This half is not readable. Because we've tried one byte, we
2019 know some part of this half if actually redable. Go to the next
2020 iteration to divide again and try to read.
2021
2022 We don't handle the other half, because this function only tries
2023 to read a single readable subrange. */
2024 current_begin = first_half_begin;
2025 current_end = first_half_end;
2026 }
2027 }
2028
2029 if (forward)
2030 {
2031 /* The [begin, current_begin) range has been read. */
2032 r.begin = begin;
2033 r.end = current_begin;
2034 r.data = buf;
2035 }
2036 else
2037 {
2038 /* The [current_end, end) range has been read. */
2039 LONGEST rlen = end - current_end;
2040
2041 r.data = xmalloc (rlen);
2042 memcpy (r.data, buf + current_end - begin, rlen);
2043 r.begin = current_end;
2044 r.end = end;
2045 xfree (buf);
2046 }
2047 VEC_safe_push(memory_read_result_s, (*result), &r);
2048 }
2049
2050 void
2051 free_memory_read_result_vector (void *x)
2052 {
2053 VEC(memory_read_result_s) *v = x;
2054 memory_read_result_s *current;
2055 int ix;
2056
2057 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2058 {
2059 xfree (current->data);
2060 }
2061 VEC_free (memory_read_result_s, v);
2062 }
2063
2064 VEC(memory_read_result_s) *
2065 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2066 {
2067 VEC(memory_read_result_s) *result = 0;
2068
2069 LONGEST xfered = 0;
2070 while (xfered < len)
2071 {
2072 struct mem_region *region = lookup_mem_region (offset + xfered);
2073 LONGEST rlen;
2074
2075 /* If there is no explicit region, a fake one should be created. */
2076 gdb_assert (region);
2077
2078 if (region->hi == 0)
2079 rlen = len - xfered;
2080 else
2081 rlen = region->hi - offset;
2082
2083 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2084 {
2085 /* Cannot read this region. Note that we can end up here only
2086 if the region is explicitly marked inaccessible, or
2087 'inaccessible-by-default' is in effect. */
2088 xfered += rlen;
2089 }
2090 else
2091 {
2092 LONGEST to_read = min (len - xfered, rlen);
2093 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2094
2095 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2096 (gdb_byte *) buffer,
2097 offset + xfered, to_read);
2098 /* Call an observer, notifying them of the xfer progress? */
2099 if (xfer <= 0)
2100 {
2101 /* Got an error reading full chunk. See if maybe we can read
2102 some subrange. */
2103 xfree (buffer);
2104 read_whatever_is_readable (ops, offset + xfered,
2105 offset + xfered + to_read, &result);
2106 xfered += to_read;
2107 }
2108 else
2109 {
2110 struct memory_read_result r;
2111 r.data = buffer;
2112 r.begin = offset + xfered;
2113 r.end = r.begin + xfer;
2114 VEC_safe_push (memory_read_result_s, result, &r);
2115 xfered += xfer;
2116 }
2117 QUIT;
2118 }
2119 }
2120 return result;
2121 }
2122
2123
2124 /* An alternative to target_write with progress callbacks. */
2125
2126 LONGEST
2127 target_write_with_progress (struct target_ops *ops,
2128 enum target_object object,
2129 const char *annex, const gdb_byte *buf,
2130 ULONGEST offset, LONGEST len,
2131 void (*progress) (ULONGEST, void *), void *baton)
2132 {
2133 LONGEST xfered = 0;
2134
2135 /* Give the progress callback a chance to set up. */
2136 if (progress)
2137 (*progress) (0, baton);
2138
2139 while (xfered < len)
2140 {
2141 ULONGEST xfered_len;
2142 enum target_xfer_status status;
2143
2144 status = target_write_partial (ops, object, annex,
2145 (gdb_byte *) buf + xfered,
2146 offset + xfered, len - xfered,
2147 &xfered_len);
2148
2149 if (status == TARGET_XFER_EOF)
2150 return xfered;
2151 if (TARGET_XFER_STATUS_ERROR_P (status))
2152 return -1;
2153
2154 gdb_assert (status == TARGET_XFER_OK);
2155 if (progress)
2156 (*progress) (xfered_len, baton);
2157
2158 xfered += xfered_len;
2159 QUIT;
2160 }
2161 return len;
2162 }
2163
2164 /* For docs on target_write see target.h. */
2165
2166 LONGEST
2167 target_write (struct target_ops *ops,
2168 enum target_object object,
2169 const char *annex, const gdb_byte *buf,
2170 ULONGEST offset, LONGEST len)
2171 {
2172 return target_write_with_progress (ops, object, annex, buf, offset, len,
2173 NULL, NULL);
2174 }
2175
2176 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2177 the size of the transferred data. PADDING additional bytes are
2178 available in *BUF_P. This is a helper function for
2179 target_read_alloc; see the declaration of that function for more
2180 information. */
2181
2182 static LONGEST
2183 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2184 const char *annex, gdb_byte **buf_p, int padding)
2185 {
2186 size_t buf_alloc, buf_pos;
2187 gdb_byte *buf;
2188
2189 /* This function does not have a length parameter; it reads the
2190 entire OBJECT). Also, it doesn't support objects fetched partly
2191 from one target and partly from another (in a different stratum,
2192 e.g. a core file and an executable). Both reasons make it
2193 unsuitable for reading memory. */
2194 gdb_assert (object != TARGET_OBJECT_MEMORY);
2195
2196 /* Start by reading up to 4K at a time. The target will throttle
2197 this number down if necessary. */
2198 buf_alloc = 4096;
2199 buf = xmalloc (buf_alloc);
2200 buf_pos = 0;
2201 while (1)
2202 {
2203 ULONGEST xfered_len;
2204 enum target_xfer_status status;
2205
2206 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2207 buf_pos, buf_alloc - buf_pos - padding,
2208 &xfered_len);
2209
2210 if (status == TARGET_XFER_EOF)
2211 {
2212 /* Read all there was. */
2213 if (buf_pos == 0)
2214 xfree (buf);
2215 else
2216 *buf_p = buf;
2217 return buf_pos;
2218 }
2219 else if (status != TARGET_XFER_OK)
2220 {
2221 /* An error occurred. */
2222 xfree (buf);
2223 return TARGET_XFER_E_IO;
2224 }
2225
2226 buf_pos += xfered_len;
2227
2228 /* If the buffer is filling up, expand it. */
2229 if (buf_alloc < buf_pos * 2)
2230 {
2231 buf_alloc *= 2;
2232 buf = xrealloc (buf, buf_alloc);
2233 }
2234
2235 QUIT;
2236 }
2237 }
2238
2239 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2240 the size of the transferred data. See the declaration in "target.h"
2241 function for more information about the return value. */
2242
2243 LONGEST
2244 target_read_alloc (struct target_ops *ops, enum target_object object,
2245 const char *annex, gdb_byte **buf_p)
2246 {
2247 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2248 }
2249
2250 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2251 returned as a string, allocated using xmalloc. If an error occurs
2252 or the transfer is unsupported, NULL is returned. Empty objects
2253 are returned as allocated but empty strings. A warning is issued
2254 if the result contains any embedded NUL bytes. */
2255
2256 char *
2257 target_read_stralloc (struct target_ops *ops, enum target_object object,
2258 const char *annex)
2259 {
2260 gdb_byte *buffer;
2261 char *bufstr;
2262 LONGEST i, transferred;
2263
2264 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2265 bufstr = (char *) buffer;
2266
2267 if (transferred < 0)
2268 return NULL;
2269
2270 if (transferred == 0)
2271 return xstrdup ("");
2272
2273 bufstr[transferred] = 0;
2274
2275 /* Check for embedded NUL bytes; but allow trailing NULs. */
2276 for (i = strlen (bufstr); i < transferred; i++)
2277 if (bufstr[i] != 0)
2278 {
2279 warning (_("target object %d, annex %s, "
2280 "contained unexpected null characters"),
2281 (int) object, annex ? annex : "(none)");
2282 break;
2283 }
2284
2285 return bufstr;
2286 }
2287
2288 /* Memory transfer methods. */
2289
2290 void
2291 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2292 LONGEST len)
2293 {
2294 /* This method is used to read from an alternate, non-current
2295 target. This read must bypass the overlay support (as symbols
2296 don't match this target), and GDB's internal cache (wrong cache
2297 for this target). */
2298 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2299 != len)
2300 memory_error (TARGET_XFER_E_IO, addr);
2301 }
2302
2303 ULONGEST
2304 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2305 int len, enum bfd_endian byte_order)
2306 {
2307 gdb_byte buf[sizeof (ULONGEST)];
2308
2309 gdb_assert (len <= sizeof (buf));
2310 get_target_memory (ops, addr, buf, len);
2311 return extract_unsigned_integer (buf, len, byte_order);
2312 }
2313
2314 /* See target.h. */
2315
2316 int
2317 target_insert_breakpoint (struct gdbarch *gdbarch,
2318 struct bp_target_info *bp_tgt)
2319 {
2320 if (!may_insert_breakpoints)
2321 {
2322 warning (_("May not insert breakpoints"));
2323 return 1;
2324 }
2325
2326 return current_target.to_insert_breakpoint (&current_target,
2327 gdbarch, bp_tgt);
2328 }
2329
2330 /* See target.h. */
2331
2332 int
2333 target_remove_breakpoint (struct gdbarch *gdbarch,
2334 struct bp_target_info *bp_tgt)
2335 {
2336 /* This is kind of a weird case to handle, but the permission might
2337 have been changed after breakpoints were inserted - in which case
2338 we should just take the user literally and assume that any
2339 breakpoints should be left in place. */
2340 if (!may_insert_breakpoints)
2341 {
2342 warning (_("May not remove breakpoints"));
2343 return 1;
2344 }
2345
2346 return current_target.to_remove_breakpoint (&current_target,
2347 gdbarch, bp_tgt);
2348 }
2349
2350 static void
2351 target_info (char *args, int from_tty)
2352 {
2353 struct target_ops *t;
2354 int has_all_mem = 0;
2355
2356 if (symfile_objfile != NULL)
2357 printf_unfiltered (_("Symbols from \"%s\".\n"),
2358 objfile_name (symfile_objfile));
2359
2360 for (t = target_stack; t != NULL; t = t->beneath)
2361 {
2362 if (!(*t->to_has_memory) (t))
2363 continue;
2364
2365 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2366 continue;
2367 if (has_all_mem)
2368 printf_unfiltered (_("\tWhile running this, "
2369 "GDB does not access memory from...\n"));
2370 printf_unfiltered ("%s:\n", t->to_longname);
2371 (t->to_files_info) (t);
2372 has_all_mem = (*t->to_has_all_memory) (t);
2373 }
2374 }
2375
2376 /* This function is called before any new inferior is created, e.g.
2377 by running a program, attaching, or connecting to a target.
2378 It cleans up any state from previous invocations which might
2379 change between runs. This is a subset of what target_preopen
2380 resets (things which might change between targets). */
2381
2382 void
2383 target_pre_inferior (int from_tty)
2384 {
2385 /* Clear out solib state. Otherwise the solib state of the previous
2386 inferior might have survived and is entirely wrong for the new
2387 target. This has been observed on GNU/Linux using glibc 2.3. How
2388 to reproduce:
2389
2390 bash$ ./foo&
2391 [1] 4711
2392 bash$ ./foo&
2393 [1] 4712
2394 bash$ gdb ./foo
2395 [...]
2396 (gdb) attach 4711
2397 (gdb) detach
2398 (gdb) attach 4712
2399 Cannot access memory at address 0xdeadbeef
2400 */
2401
2402 /* In some OSs, the shared library list is the same/global/shared
2403 across inferiors. If code is shared between processes, so are
2404 memory regions and features. */
2405 if (!gdbarch_has_global_solist (target_gdbarch ()))
2406 {
2407 no_shared_libraries (NULL, from_tty);
2408
2409 invalidate_target_mem_regions ();
2410
2411 target_clear_description ();
2412 }
2413
2414 agent_capability_invalidate ();
2415 }
2416
2417 /* Callback for iterate_over_inferiors. Gets rid of the given
2418 inferior. */
2419
2420 static int
2421 dispose_inferior (struct inferior *inf, void *args)
2422 {
2423 struct thread_info *thread;
2424
2425 thread = any_thread_of_process (inf->pid);
2426 if (thread)
2427 {
2428 switch_to_thread (thread->ptid);
2429
2430 /* Core inferiors actually should be detached, not killed. */
2431 if (target_has_execution)
2432 target_kill ();
2433 else
2434 target_detach (NULL, 0);
2435 }
2436
2437 return 0;
2438 }
2439
2440 /* This is to be called by the open routine before it does
2441 anything. */
2442
2443 void
2444 target_preopen (int from_tty)
2445 {
2446 dont_repeat ();
2447
2448 if (have_inferiors ())
2449 {
2450 if (!from_tty
2451 || !have_live_inferiors ()
2452 || query (_("A program is being debugged already. Kill it? ")))
2453 iterate_over_inferiors (dispose_inferior, NULL);
2454 else
2455 error (_("Program not killed."));
2456 }
2457
2458 /* Calling target_kill may remove the target from the stack. But if
2459 it doesn't (which seems like a win for UDI), remove it now. */
2460 /* Leave the exec target, though. The user may be switching from a
2461 live process to a core of the same program. */
2462 pop_all_targets_above (file_stratum);
2463
2464 target_pre_inferior (from_tty);
2465 }
2466
2467 /* Detach a target after doing deferred register stores. */
2468
2469 void
2470 target_detach (const char *args, int from_tty)
2471 {
2472 struct target_ops* t;
2473
2474 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2475 /* Don't remove global breakpoints here. They're removed on
2476 disconnection from the target. */
2477 ;
2478 else
2479 /* If we're in breakpoints-always-inserted mode, have to remove
2480 them before detaching. */
2481 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2482
2483 prepare_for_detach ();
2484
2485 current_target.to_detach (&current_target, args, from_tty);
2486 if (targetdebug)
2487 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2488 args, from_tty);
2489 }
2490
2491 void
2492 target_disconnect (char *args, int from_tty)
2493 {
2494 struct target_ops *t;
2495
2496 /* If we're in breakpoints-always-inserted mode or if breakpoints
2497 are global across processes, we have to remove them before
2498 disconnecting. */
2499 remove_breakpoints ();
2500
2501 for (t = current_target.beneath; t != NULL; t = t->beneath)
2502 if (t->to_disconnect != NULL)
2503 {
2504 if (targetdebug)
2505 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2506 args, from_tty);
2507 t->to_disconnect (t, args, from_tty);
2508 return;
2509 }
2510
2511 tcomplain ();
2512 }
2513
2514 ptid_t
2515 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2516 {
2517 struct target_ops *t;
2518 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2519 status, options);
2520
2521 if (targetdebug)
2522 {
2523 char *status_string;
2524 char *options_string;
2525
2526 status_string = target_waitstatus_to_string (status);
2527 options_string = target_options_to_string (options);
2528 fprintf_unfiltered (gdb_stdlog,
2529 "target_wait (%d, status, options={%s})"
2530 " = %d, %s\n",
2531 ptid_get_pid (ptid), options_string,
2532 ptid_get_pid (retval), status_string);
2533 xfree (status_string);
2534 xfree (options_string);
2535 }
2536
2537 return retval;
2538 }
2539
2540 char *
2541 target_pid_to_str (ptid_t ptid)
2542 {
2543 struct target_ops *t;
2544
2545 for (t = current_target.beneath; t != NULL; t = t->beneath)
2546 {
2547 if (t->to_pid_to_str != NULL)
2548 return (*t->to_pid_to_str) (t, ptid);
2549 }
2550
2551 return normal_pid_to_str (ptid);
2552 }
2553
2554 char *
2555 target_thread_name (struct thread_info *info)
2556 {
2557 return current_target.to_thread_name (&current_target, info);
2558 }
2559
2560 void
2561 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2562 {
2563 struct target_ops *t;
2564
2565 target_dcache_invalidate ();
2566
2567 current_target.to_resume (&current_target, ptid, step, signal);
2568 if (targetdebug)
2569 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2570 ptid_get_pid (ptid),
2571 step ? "step" : "continue",
2572 gdb_signal_to_name (signal));
2573
2574 registers_changed_ptid (ptid);
2575 set_executing (ptid, 1);
2576 set_running (ptid, 1);
2577 clear_inline_frame_state (ptid);
2578 }
2579
2580 void
2581 target_pass_signals (int numsigs, unsigned char *pass_signals)
2582 {
2583 if (targetdebug)
2584 {
2585 int i;
2586
2587 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2588 numsigs);
2589
2590 for (i = 0; i < numsigs; i++)
2591 if (pass_signals[i])
2592 fprintf_unfiltered (gdb_stdlog, " %s",
2593 gdb_signal_to_name (i));
2594
2595 fprintf_unfiltered (gdb_stdlog, " })\n");
2596 }
2597
2598 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2599 }
2600
2601 void
2602 target_program_signals (int numsigs, unsigned char *program_signals)
2603 {
2604 struct target_ops *t;
2605
2606 for (t = current_target.beneath; t != NULL; t = t->beneath)
2607 {
2608 if (t->to_program_signals != NULL)
2609 {
2610 if (targetdebug)
2611 {
2612 int i;
2613
2614 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2615 numsigs);
2616
2617 for (i = 0; i < numsigs; i++)
2618 if (program_signals[i])
2619 fprintf_unfiltered (gdb_stdlog, " %s",
2620 gdb_signal_to_name (i));
2621
2622 fprintf_unfiltered (gdb_stdlog, " })\n");
2623 }
2624
2625 (*t->to_program_signals) (t, numsigs, program_signals);
2626 return;
2627 }
2628 }
2629 }
2630
2631 static int
2632 default_follow_fork (struct target_ops *self, int follow_child,
2633 int detach_fork)
2634 {
2635 /* Some target returned a fork event, but did not know how to follow it. */
2636 internal_error (__FILE__, __LINE__,
2637 _("could not find a target to follow fork"));
2638 }
2639
2640 /* Look through the list of possible targets for a target that can
2641 follow forks. */
2642
2643 int
2644 target_follow_fork (int follow_child, int detach_fork)
2645 {
2646 int retval = current_target.to_follow_fork (&current_target,
2647 follow_child, detach_fork);
2648
2649 if (targetdebug)
2650 fprintf_unfiltered (gdb_stdlog,
2651 "target_follow_fork (%d, %d) = %d\n",
2652 follow_child, detach_fork, retval);
2653 return retval;
2654 }
2655
2656 static void
2657 default_mourn_inferior (struct target_ops *self)
2658 {
2659 internal_error (__FILE__, __LINE__,
2660 _("could not find a target to follow mourn inferior"));
2661 }
2662
2663 void
2664 target_mourn_inferior (void)
2665 {
2666 current_target.to_mourn_inferior (&current_target);
2667 if (targetdebug)
2668 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2669
2670 /* We no longer need to keep handles on any of the object files.
2671 Make sure to release them to avoid unnecessarily locking any
2672 of them while we're not actually debugging. */
2673 bfd_cache_close_all ();
2674 }
2675
2676 /* Look for a target which can describe architectural features, starting
2677 from TARGET. If we find one, return its description. */
2678
2679 const struct target_desc *
2680 target_read_description (struct target_ops *target)
2681 {
2682 struct target_ops *t;
2683
2684 for (t = target; t != NULL; t = t->beneath)
2685 if (t->to_read_description != NULL)
2686 {
2687 const struct target_desc *tdesc;
2688
2689 tdesc = t->to_read_description (t);
2690 if (tdesc)
2691 return tdesc;
2692 }
2693
2694 return NULL;
2695 }
2696
2697 /* The default implementation of to_search_memory.
2698 This implements a basic search of memory, reading target memory and
2699 performing the search here (as opposed to performing the search in on the
2700 target side with, for example, gdbserver). */
2701
2702 int
2703 simple_search_memory (struct target_ops *ops,
2704 CORE_ADDR start_addr, ULONGEST search_space_len,
2705 const gdb_byte *pattern, ULONGEST pattern_len,
2706 CORE_ADDR *found_addrp)
2707 {
2708 /* NOTE: also defined in find.c testcase. */
2709 #define SEARCH_CHUNK_SIZE 16000
2710 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2711 /* Buffer to hold memory contents for searching. */
2712 gdb_byte *search_buf;
2713 unsigned search_buf_size;
2714 struct cleanup *old_cleanups;
2715
2716 search_buf_size = chunk_size + pattern_len - 1;
2717
2718 /* No point in trying to allocate a buffer larger than the search space. */
2719 if (search_space_len < search_buf_size)
2720 search_buf_size = search_space_len;
2721
2722 search_buf = malloc (search_buf_size);
2723 if (search_buf == NULL)
2724 error (_("Unable to allocate memory to perform the search."));
2725 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2726
2727 /* Prime the search buffer. */
2728
2729 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2730 search_buf, start_addr, search_buf_size) != search_buf_size)
2731 {
2732 warning (_("Unable to access %s bytes of target "
2733 "memory at %s, halting search."),
2734 pulongest (search_buf_size), hex_string (start_addr));
2735 do_cleanups (old_cleanups);
2736 return -1;
2737 }
2738
2739 /* Perform the search.
2740
2741 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2742 When we've scanned N bytes we copy the trailing bytes to the start and
2743 read in another N bytes. */
2744
2745 while (search_space_len >= pattern_len)
2746 {
2747 gdb_byte *found_ptr;
2748 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2749
2750 found_ptr = memmem (search_buf, nr_search_bytes,
2751 pattern, pattern_len);
2752
2753 if (found_ptr != NULL)
2754 {
2755 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2756
2757 *found_addrp = found_addr;
2758 do_cleanups (old_cleanups);
2759 return 1;
2760 }
2761
2762 /* Not found in this chunk, skip to next chunk. */
2763
2764 /* Don't let search_space_len wrap here, it's unsigned. */
2765 if (search_space_len >= chunk_size)
2766 search_space_len -= chunk_size;
2767 else
2768 search_space_len = 0;
2769
2770 if (search_space_len >= pattern_len)
2771 {
2772 unsigned keep_len = search_buf_size - chunk_size;
2773 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2774 int nr_to_read;
2775
2776 /* Copy the trailing part of the previous iteration to the front
2777 of the buffer for the next iteration. */
2778 gdb_assert (keep_len == pattern_len - 1);
2779 memcpy (search_buf, search_buf + chunk_size, keep_len);
2780
2781 nr_to_read = min (search_space_len - keep_len, chunk_size);
2782
2783 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2784 search_buf + keep_len, read_addr,
2785 nr_to_read) != nr_to_read)
2786 {
2787 warning (_("Unable to access %s bytes of target "
2788 "memory at %s, halting search."),
2789 plongest (nr_to_read),
2790 hex_string (read_addr));
2791 do_cleanups (old_cleanups);
2792 return -1;
2793 }
2794
2795 start_addr += chunk_size;
2796 }
2797 }
2798
2799 /* Not found. */
2800
2801 do_cleanups (old_cleanups);
2802 return 0;
2803 }
2804
2805 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2806 sequence of bytes in PATTERN with length PATTERN_LEN.
2807
2808 The result is 1 if found, 0 if not found, and -1 if there was an error
2809 requiring halting of the search (e.g. memory read error).
2810 If the pattern is found the address is recorded in FOUND_ADDRP. */
2811
2812 int
2813 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2814 const gdb_byte *pattern, ULONGEST pattern_len,
2815 CORE_ADDR *found_addrp)
2816 {
2817 struct target_ops *t;
2818 int found;
2819
2820 /* We don't use INHERIT to set current_target.to_search_memory,
2821 so we have to scan the target stack and handle targetdebug
2822 ourselves. */
2823
2824 if (targetdebug)
2825 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2826 hex_string (start_addr));
2827
2828 for (t = current_target.beneath; t != NULL; t = t->beneath)
2829 if (t->to_search_memory != NULL)
2830 break;
2831
2832 if (t != NULL)
2833 {
2834 found = t->to_search_memory (t, start_addr, search_space_len,
2835 pattern, pattern_len, found_addrp);
2836 }
2837 else
2838 {
2839 /* If a special version of to_search_memory isn't available, use the
2840 simple version. */
2841 found = simple_search_memory (current_target.beneath,
2842 start_addr, search_space_len,
2843 pattern, pattern_len, found_addrp);
2844 }
2845
2846 if (targetdebug)
2847 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2848
2849 return found;
2850 }
2851
2852 /* Look through the currently pushed targets. If none of them will
2853 be able to restart the currently running process, issue an error
2854 message. */
2855
2856 void
2857 target_require_runnable (void)
2858 {
2859 struct target_ops *t;
2860
2861 for (t = target_stack; t != NULL; t = t->beneath)
2862 {
2863 /* If this target knows how to create a new program, then
2864 assume we will still be able to after killing the current
2865 one. Either killing and mourning will not pop T, or else
2866 find_default_run_target will find it again. */
2867 if (t->to_create_inferior != NULL)
2868 return;
2869
2870 /* Do not worry about thread_stratum targets that can not
2871 create inferiors. Assume they will be pushed again if
2872 necessary, and continue to the process_stratum. */
2873 if (t->to_stratum == thread_stratum
2874 || t->to_stratum == arch_stratum)
2875 continue;
2876
2877 error (_("The \"%s\" target does not support \"run\". "
2878 "Try \"help target\" or \"continue\"."),
2879 t->to_shortname);
2880 }
2881
2882 /* This function is only called if the target is running. In that
2883 case there should have been a process_stratum target and it
2884 should either know how to create inferiors, or not... */
2885 internal_error (__FILE__, __LINE__, _("No targets found"));
2886 }
2887
2888 /* Look through the list of possible targets for a target that can
2889 execute a run or attach command without any other data. This is
2890 used to locate the default process stratum.
2891
2892 If DO_MESG is not NULL, the result is always valid (error() is
2893 called for errors); else, return NULL on error. */
2894
2895 static struct target_ops *
2896 find_default_run_target (char *do_mesg)
2897 {
2898 struct target_ops **t;
2899 struct target_ops *runable = NULL;
2900 int count;
2901
2902 count = 0;
2903
2904 for (t = target_structs; t < target_structs + target_struct_size;
2905 ++t)
2906 {
2907 if ((*t)->to_can_run && target_can_run (*t))
2908 {
2909 runable = *t;
2910 ++count;
2911 }
2912 }
2913
2914 if (count != 1)
2915 {
2916 if (do_mesg)
2917 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2918 else
2919 return NULL;
2920 }
2921
2922 return runable;
2923 }
2924
2925 void
2926 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2927 {
2928 struct target_ops *t;
2929
2930 t = find_default_run_target ("attach");
2931 (t->to_attach) (t, args, from_tty);
2932 return;
2933 }
2934
2935 void
2936 find_default_create_inferior (struct target_ops *ops,
2937 char *exec_file, char *allargs, char **env,
2938 int from_tty)
2939 {
2940 struct target_ops *t;
2941
2942 t = find_default_run_target ("run");
2943 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2944 return;
2945 }
2946
2947 static int
2948 find_default_can_async_p (struct target_ops *ignore)
2949 {
2950 struct target_ops *t;
2951
2952 /* This may be called before the target is pushed on the stack;
2953 look for the default process stratum. If there's none, gdb isn't
2954 configured with a native debugger, and target remote isn't
2955 connected yet. */
2956 t = find_default_run_target (NULL);
2957 if (t && t->to_can_async_p != delegate_can_async_p)
2958 return (t->to_can_async_p) (t);
2959 return 0;
2960 }
2961
2962 static int
2963 find_default_is_async_p (struct target_ops *ignore)
2964 {
2965 struct target_ops *t;
2966
2967 /* This may be called before the target is pushed on the stack;
2968 look for the default process stratum. If there's none, gdb isn't
2969 configured with a native debugger, and target remote isn't
2970 connected yet. */
2971 t = find_default_run_target (NULL);
2972 if (t && t->to_is_async_p != delegate_is_async_p)
2973 return (t->to_is_async_p) (t);
2974 return 0;
2975 }
2976
2977 static int
2978 find_default_supports_non_stop (struct target_ops *self)
2979 {
2980 struct target_ops *t;
2981
2982 t = find_default_run_target (NULL);
2983 if (t && t->to_supports_non_stop)
2984 return (t->to_supports_non_stop) (t);
2985 return 0;
2986 }
2987
2988 int
2989 target_supports_non_stop (void)
2990 {
2991 struct target_ops *t;
2992
2993 for (t = &current_target; t != NULL; t = t->beneath)
2994 if (t->to_supports_non_stop)
2995 return t->to_supports_non_stop (t);
2996
2997 return 0;
2998 }
2999
3000 /* Implement the "info proc" command. */
3001
3002 int
3003 target_info_proc (char *args, enum info_proc_what what)
3004 {
3005 struct target_ops *t;
3006
3007 /* If we're already connected to something that can get us OS
3008 related data, use it. Otherwise, try using the native
3009 target. */
3010 if (current_target.to_stratum >= process_stratum)
3011 t = current_target.beneath;
3012 else
3013 t = find_default_run_target (NULL);
3014
3015 for (; t != NULL; t = t->beneath)
3016 {
3017 if (t->to_info_proc != NULL)
3018 {
3019 t->to_info_proc (t, args, what);
3020
3021 if (targetdebug)
3022 fprintf_unfiltered (gdb_stdlog,
3023 "target_info_proc (\"%s\", %d)\n", args, what);
3024
3025 return 1;
3026 }
3027 }
3028
3029 return 0;
3030 }
3031
3032 static int
3033 find_default_supports_disable_randomization (struct target_ops *self)
3034 {
3035 struct target_ops *t;
3036
3037 t = find_default_run_target (NULL);
3038 if (t && t->to_supports_disable_randomization)
3039 return (t->to_supports_disable_randomization) (t);
3040 return 0;
3041 }
3042
3043 int
3044 target_supports_disable_randomization (void)
3045 {
3046 struct target_ops *t;
3047
3048 for (t = &current_target; t != NULL; t = t->beneath)
3049 if (t->to_supports_disable_randomization)
3050 return t->to_supports_disable_randomization (t);
3051
3052 return 0;
3053 }
3054
3055 char *
3056 target_get_osdata (const char *type)
3057 {
3058 struct target_ops *t;
3059
3060 /* If we're already connected to something that can get us OS
3061 related data, use it. Otherwise, try using the native
3062 target. */
3063 if (current_target.to_stratum >= process_stratum)
3064 t = current_target.beneath;
3065 else
3066 t = find_default_run_target ("get OS data");
3067
3068 if (!t)
3069 return NULL;
3070
3071 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3072 }
3073
3074 /* Determine the current address space of thread PTID. */
3075
3076 struct address_space *
3077 target_thread_address_space (ptid_t ptid)
3078 {
3079 struct address_space *aspace;
3080 struct inferior *inf;
3081 struct target_ops *t;
3082
3083 for (t = current_target.beneath; t != NULL; t = t->beneath)
3084 {
3085 if (t->to_thread_address_space != NULL)
3086 {
3087 aspace = t->to_thread_address_space (t, ptid);
3088 gdb_assert (aspace);
3089
3090 if (targetdebug)
3091 fprintf_unfiltered (gdb_stdlog,
3092 "target_thread_address_space (%s) = %d\n",
3093 target_pid_to_str (ptid),
3094 address_space_num (aspace));
3095 return aspace;
3096 }
3097 }
3098
3099 /* Fall-back to the "main" address space of the inferior. */
3100 inf = find_inferior_pid (ptid_get_pid (ptid));
3101
3102 if (inf == NULL || inf->aspace == NULL)
3103 internal_error (__FILE__, __LINE__,
3104 _("Can't determine the current "
3105 "address space of thread %s\n"),
3106 target_pid_to_str (ptid));
3107
3108 return inf->aspace;
3109 }
3110
3111
3112 /* Target file operations. */
3113
3114 static struct target_ops *
3115 default_fileio_target (void)
3116 {
3117 /* If we're already connected to something that can perform
3118 file I/O, use it. Otherwise, try using the native target. */
3119 if (current_target.to_stratum >= process_stratum)
3120 return current_target.beneath;
3121 else
3122 return find_default_run_target ("file I/O");
3123 }
3124
3125 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3126 target file descriptor, or -1 if an error occurs (and set
3127 *TARGET_ERRNO). */
3128 int
3129 target_fileio_open (const char *filename, int flags, int mode,
3130 int *target_errno)
3131 {
3132 struct target_ops *t;
3133
3134 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3135 {
3136 if (t->to_fileio_open != NULL)
3137 {
3138 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
3139
3140 if (targetdebug)
3141 fprintf_unfiltered (gdb_stdlog,
3142 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3143 filename, flags, mode,
3144 fd, fd != -1 ? 0 : *target_errno);
3145 return fd;
3146 }
3147 }
3148
3149 *target_errno = FILEIO_ENOSYS;
3150 return -1;
3151 }
3152
3153 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3154 Return the number of bytes written, or -1 if an error occurs
3155 (and set *TARGET_ERRNO). */
3156 int
3157 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3158 ULONGEST offset, int *target_errno)
3159 {
3160 struct target_ops *t;
3161
3162 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3163 {
3164 if (t->to_fileio_pwrite != NULL)
3165 {
3166 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
3167 target_errno);
3168
3169 if (targetdebug)
3170 fprintf_unfiltered (gdb_stdlog,
3171 "target_fileio_pwrite (%d,...,%d,%s) "
3172 "= %d (%d)\n",
3173 fd, len, pulongest (offset),
3174 ret, ret != -1 ? 0 : *target_errno);
3175 return ret;
3176 }
3177 }
3178
3179 *target_errno = FILEIO_ENOSYS;
3180 return -1;
3181 }
3182
3183 /* Read up to LEN bytes FD on the target into READ_BUF.
3184 Return the number of bytes read, or -1 if an error occurs
3185 (and set *TARGET_ERRNO). */
3186 int
3187 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3188 ULONGEST offset, int *target_errno)
3189 {
3190 struct target_ops *t;
3191
3192 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3193 {
3194 if (t->to_fileio_pread != NULL)
3195 {
3196 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
3197 target_errno);
3198
3199 if (targetdebug)
3200 fprintf_unfiltered (gdb_stdlog,
3201 "target_fileio_pread (%d,...,%d,%s) "
3202 "= %d (%d)\n",
3203 fd, len, pulongest (offset),
3204 ret, ret != -1 ? 0 : *target_errno);
3205 return ret;
3206 }
3207 }
3208
3209 *target_errno = FILEIO_ENOSYS;
3210 return -1;
3211 }
3212
3213 /* Close FD on the target. Return 0, or -1 if an error occurs
3214 (and set *TARGET_ERRNO). */
3215 int
3216 target_fileio_close (int fd, int *target_errno)
3217 {
3218 struct target_ops *t;
3219
3220 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3221 {
3222 if (t->to_fileio_close != NULL)
3223 {
3224 int ret = t->to_fileio_close (t, fd, target_errno);
3225
3226 if (targetdebug)
3227 fprintf_unfiltered (gdb_stdlog,
3228 "target_fileio_close (%d) = %d (%d)\n",
3229 fd, ret, ret != -1 ? 0 : *target_errno);
3230 return ret;
3231 }
3232 }
3233
3234 *target_errno = FILEIO_ENOSYS;
3235 return -1;
3236 }
3237
3238 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3239 occurs (and set *TARGET_ERRNO). */
3240 int
3241 target_fileio_unlink (const char *filename, int *target_errno)
3242 {
3243 struct target_ops *t;
3244
3245 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3246 {
3247 if (t->to_fileio_unlink != NULL)
3248 {
3249 int ret = t->to_fileio_unlink (t, filename, target_errno);
3250
3251 if (targetdebug)
3252 fprintf_unfiltered (gdb_stdlog,
3253 "target_fileio_unlink (%s) = %d (%d)\n",
3254 filename, ret, ret != -1 ? 0 : *target_errno);
3255 return ret;
3256 }
3257 }
3258
3259 *target_errno = FILEIO_ENOSYS;
3260 return -1;
3261 }
3262
3263 /* Read value of symbolic link FILENAME on the target. Return a
3264 null-terminated string allocated via xmalloc, or NULL if an error
3265 occurs (and set *TARGET_ERRNO). */
3266 char *
3267 target_fileio_readlink (const char *filename, int *target_errno)
3268 {
3269 struct target_ops *t;
3270
3271 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3272 {
3273 if (t->to_fileio_readlink != NULL)
3274 {
3275 char *ret = t->to_fileio_readlink (t, filename, target_errno);
3276
3277 if (targetdebug)
3278 fprintf_unfiltered (gdb_stdlog,
3279 "target_fileio_readlink (%s) = %s (%d)\n",
3280 filename, ret? ret : "(nil)",
3281 ret? 0 : *target_errno);
3282 return ret;
3283 }
3284 }
3285
3286 *target_errno = FILEIO_ENOSYS;
3287 return NULL;
3288 }
3289
3290 static void
3291 target_fileio_close_cleanup (void *opaque)
3292 {
3293 int fd = *(int *) opaque;
3294 int target_errno;
3295
3296 target_fileio_close (fd, &target_errno);
3297 }
3298
3299 /* Read target file FILENAME. Store the result in *BUF_P and
3300 return the size of the transferred data. PADDING additional bytes are
3301 available in *BUF_P. This is a helper function for
3302 target_fileio_read_alloc; see the declaration of that function for more
3303 information. */
3304
3305 static LONGEST
3306 target_fileio_read_alloc_1 (const char *filename,
3307 gdb_byte **buf_p, int padding)
3308 {
3309 struct cleanup *close_cleanup;
3310 size_t buf_alloc, buf_pos;
3311 gdb_byte *buf;
3312 LONGEST n;
3313 int fd;
3314 int target_errno;
3315
3316 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3317 if (fd == -1)
3318 return -1;
3319
3320 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3321
3322 /* Start by reading up to 4K at a time. The target will throttle
3323 this number down if necessary. */
3324 buf_alloc = 4096;
3325 buf = xmalloc (buf_alloc);
3326 buf_pos = 0;
3327 while (1)
3328 {
3329 n = target_fileio_pread (fd, &buf[buf_pos],
3330 buf_alloc - buf_pos - padding, buf_pos,
3331 &target_errno);
3332 if (n < 0)
3333 {
3334 /* An error occurred. */
3335 do_cleanups (close_cleanup);
3336 xfree (buf);
3337 return -1;
3338 }
3339 else if (n == 0)
3340 {
3341 /* Read all there was. */
3342 do_cleanups (close_cleanup);
3343 if (buf_pos == 0)
3344 xfree (buf);
3345 else
3346 *buf_p = buf;
3347 return buf_pos;
3348 }
3349
3350 buf_pos += n;
3351
3352 /* If the buffer is filling up, expand it. */
3353 if (buf_alloc < buf_pos * 2)
3354 {
3355 buf_alloc *= 2;
3356 buf = xrealloc (buf, buf_alloc);
3357 }
3358
3359 QUIT;
3360 }
3361 }
3362
3363 /* Read target file FILENAME. Store the result in *BUF_P and return
3364 the size of the transferred data. See the declaration in "target.h"
3365 function for more information about the return value. */
3366
3367 LONGEST
3368 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3369 {
3370 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3371 }
3372
3373 /* Read target file FILENAME. The result is NUL-terminated and
3374 returned as a string, allocated using xmalloc. If an error occurs
3375 or the transfer is unsupported, NULL is returned. Empty objects
3376 are returned as allocated but empty strings. A warning is issued
3377 if the result contains any embedded NUL bytes. */
3378
3379 char *
3380 target_fileio_read_stralloc (const char *filename)
3381 {
3382 gdb_byte *buffer;
3383 char *bufstr;
3384 LONGEST i, transferred;
3385
3386 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3387 bufstr = (char *) buffer;
3388
3389 if (transferred < 0)
3390 return NULL;
3391
3392 if (transferred == 0)
3393 return xstrdup ("");
3394
3395 bufstr[transferred] = 0;
3396
3397 /* Check for embedded NUL bytes; but allow trailing NULs. */
3398 for (i = strlen (bufstr); i < transferred; i++)
3399 if (bufstr[i] != 0)
3400 {
3401 warning (_("target file %s "
3402 "contained unexpected null characters"),
3403 filename);
3404 break;
3405 }
3406
3407 return bufstr;
3408 }
3409
3410
3411 static int
3412 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3413 CORE_ADDR addr, int len)
3414 {
3415 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3416 }
3417
3418 static int
3419 default_watchpoint_addr_within_range (struct target_ops *target,
3420 CORE_ADDR addr,
3421 CORE_ADDR start, int length)
3422 {
3423 return addr >= start && addr < start + length;
3424 }
3425
3426 static struct gdbarch *
3427 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3428 {
3429 return target_gdbarch ();
3430 }
3431
3432 static int
3433 return_zero (void)
3434 {
3435 return 0;
3436 }
3437
3438 /*
3439 * Find the next target down the stack from the specified target.
3440 */
3441
3442 struct target_ops *
3443 find_target_beneath (struct target_ops *t)
3444 {
3445 return t->beneath;
3446 }
3447
3448 /* See target.h. */
3449
3450 struct target_ops *
3451 find_target_at (enum strata stratum)
3452 {
3453 struct target_ops *t;
3454
3455 for (t = current_target.beneath; t != NULL; t = t->beneath)
3456 if (t->to_stratum == stratum)
3457 return t;
3458
3459 return NULL;
3460 }
3461
3462 \f
3463 /* The inferior process has died. Long live the inferior! */
3464
3465 void
3466 generic_mourn_inferior (void)
3467 {
3468 ptid_t ptid;
3469
3470 ptid = inferior_ptid;
3471 inferior_ptid = null_ptid;
3472
3473 /* Mark breakpoints uninserted in case something tries to delete a
3474 breakpoint while we delete the inferior's threads (which would
3475 fail, since the inferior is long gone). */
3476 mark_breakpoints_out ();
3477
3478 if (!ptid_equal (ptid, null_ptid))
3479 {
3480 int pid = ptid_get_pid (ptid);
3481 exit_inferior (pid);
3482 }
3483
3484 /* Note this wipes step-resume breakpoints, so needs to be done
3485 after exit_inferior, which ends up referencing the step-resume
3486 breakpoints through clear_thread_inferior_resources. */
3487 breakpoint_init_inferior (inf_exited);
3488
3489 registers_changed ();
3490
3491 reopen_exec_file ();
3492 reinit_frame_cache ();
3493
3494 if (deprecated_detach_hook)
3495 deprecated_detach_hook ();
3496 }
3497 \f
3498 /* Convert a normal process ID to a string. Returns the string in a
3499 static buffer. */
3500
3501 char *
3502 normal_pid_to_str (ptid_t ptid)
3503 {
3504 static char buf[32];
3505
3506 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3507 return buf;
3508 }
3509
3510 static char *
3511 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3512 {
3513 return normal_pid_to_str (ptid);
3514 }
3515
3516 /* Error-catcher for target_find_memory_regions. */
3517 static int
3518 dummy_find_memory_regions (struct target_ops *self,
3519 find_memory_region_ftype ignore1, void *ignore2)
3520 {
3521 error (_("Command not implemented for this target."));
3522 return 0;
3523 }
3524
3525 /* Error-catcher for target_make_corefile_notes. */
3526 static char *
3527 dummy_make_corefile_notes (struct target_ops *self,
3528 bfd *ignore1, int *ignore2)
3529 {
3530 error (_("Command not implemented for this target."));
3531 return NULL;
3532 }
3533
3534 /* Set up the handful of non-empty slots needed by the dummy target
3535 vector. */
3536
3537 static void
3538 init_dummy_target (void)
3539 {
3540 dummy_target.to_shortname = "None";
3541 dummy_target.to_longname = "None";
3542 dummy_target.to_doc = "";
3543 dummy_target.to_create_inferior = find_default_create_inferior;
3544 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3545 dummy_target.to_supports_disable_randomization
3546 = find_default_supports_disable_randomization;
3547 dummy_target.to_pid_to_str = dummy_pid_to_str;
3548 dummy_target.to_stratum = dummy_stratum;
3549 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3550 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3551 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3552 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3553 dummy_target.to_has_execution
3554 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3555 dummy_target.to_magic = OPS_MAGIC;
3556
3557 install_dummy_methods (&dummy_target);
3558 }
3559 \f
3560 static void
3561 debug_to_open (char *args, int from_tty)
3562 {
3563 debug_target.to_open (args, from_tty);
3564
3565 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3566 }
3567
3568 void
3569 target_close (struct target_ops *targ)
3570 {
3571 gdb_assert (!target_is_pushed (targ));
3572
3573 if (targ->to_xclose != NULL)
3574 targ->to_xclose (targ);
3575 else if (targ->to_close != NULL)
3576 targ->to_close (targ);
3577
3578 if (targetdebug)
3579 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3580 }
3581
3582 void
3583 target_attach (char *args, int from_tty)
3584 {
3585 current_target.to_attach (&current_target, args, from_tty);
3586 if (targetdebug)
3587 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3588 args, from_tty);
3589 }
3590
3591 int
3592 target_thread_alive (ptid_t ptid)
3593 {
3594 struct target_ops *t;
3595
3596 for (t = current_target.beneath; t != NULL; t = t->beneath)
3597 {
3598 if (t->to_thread_alive != NULL)
3599 {
3600 int retval;
3601
3602 retval = t->to_thread_alive (t, ptid);
3603 if (targetdebug)
3604 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3605 ptid_get_pid (ptid), retval);
3606
3607 return retval;
3608 }
3609 }
3610
3611 return 0;
3612 }
3613
3614 void
3615 target_find_new_threads (void)
3616 {
3617 struct target_ops *t;
3618
3619 for (t = current_target.beneath; t != NULL; t = t->beneath)
3620 {
3621 if (t->to_find_new_threads != NULL)
3622 {
3623 t->to_find_new_threads (t);
3624 if (targetdebug)
3625 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3626
3627 return;
3628 }
3629 }
3630 }
3631
3632 void
3633 target_stop (ptid_t ptid)
3634 {
3635 if (!may_stop)
3636 {
3637 warning (_("May not interrupt or stop the target, ignoring attempt"));
3638 return;
3639 }
3640
3641 (*current_target.to_stop) (&current_target, ptid);
3642 }
3643
3644 static void
3645 debug_to_post_attach (struct target_ops *self, int pid)
3646 {
3647 debug_target.to_post_attach (&debug_target, pid);
3648
3649 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3650 }
3651
3652 /* Concatenate ELEM to LIST, a comma separate list, and return the
3653 result. The LIST incoming argument is released. */
3654
3655 static char *
3656 str_comma_list_concat_elem (char *list, const char *elem)
3657 {
3658 if (list == NULL)
3659 return xstrdup (elem);
3660 else
3661 return reconcat (list, list, ", ", elem, (char *) NULL);
3662 }
3663
3664 /* Helper for target_options_to_string. If OPT is present in
3665 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3666 Returns the new resulting string. OPT is removed from
3667 TARGET_OPTIONS. */
3668
3669 static char *
3670 do_option (int *target_options, char *ret,
3671 int opt, char *opt_str)
3672 {
3673 if ((*target_options & opt) != 0)
3674 {
3675 ret = str_comma_list_concat_elem (ret, opt_str);
3676 *target_options &= ~opt;
3677 }
3678
3679 return ret;
3680 }
3681
3682 char *
3683 target_options_to_string (int target_options)
3684 {
3685 char *ret = NULL;
3686
3687 #define DO_TARG_OPTION(OPT) \
3688 ret = do_option (&target_options, ret, OPT, #OPT)
3689
3690 DO_TARG_OPTION (TARGET_WNOHANG);
3691
3692 if (target_options != 0)
3693 ret = str_comma_list_concat_elem (ret, "unknown???");
3694
3695 if (ret == NULL)
3696 ret = xstrdup ("");
3697 return ret;
3698 }
3699
3700 static void
3701 debug_print_register (const char * func,
3702 struct regcache *regcache, int regno)
3703 {
3704 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3705
3706 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3707 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3708 && gdbarch_register_name (gdbarch, regno) != NULL
3709 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3710 fprintf_unfiltered (gdb_stdlog, "(%s)",
3711 gdbarch_register_name (gdbarch, regno));
3712 else
3713 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3714 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3715 {
3716 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3717 int i, size = register_size (gdbarch, regno);
3718 gdb_byte buf[MAX_REGISTER_SIZE];
3719
3720 regcache_raw_collect (regcache, regno, buf);
3721 fprintf_unfiltered (gdb_stdlog, " = ");
3722 for (i = 0; i < size; i++)
3723 {
3724 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3725 }
3726 if (size <= sizeof (LONGEST))
3727 {
3728 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3729
3730 fprintf_unfiltered (gdb_stdlog, " %s %s",
3731 core_addr_to_string_nz (val), plongest (val));
3732 }
3733 }
3734 fprintf_unfiltered (gdb_stdlog, "\n");
3735 }
3736
3737 void
3738 target_fetch_registers (struct regcache *regcache, int regno)
3739 {
3740 current_target.to_fetch_registers (&current_target, regcache, regno);
3741 if (targetdebug)
3742 debug_print_register ("target_fetch_registers", regcache, regno);
3743 }
3744
3745 void
3746 target_store_registers (struct regcache *regcache, int regno)
3747 {
3748 struct target_ops *t;
3749
3750 if (!may_write_registers)
3751 error (_("Writing to registers is not allowed (regno %d)"), regno);
3752
3753 current_target.to_store_registers (&current_target, regcache, regno);
3754 if (targetdebug)
3755 {
3756 debug_print_register ("target_store_registers", regcache, regno);
3757 }
3758 }
3759
3760 int
3761 target_core_of_thread (ptid_t ptid)
3762 {
3763 struct target_ops *t;
3764
3765 for (t = current_target.beneath; t != NULL; t = t->beneath)
3766 {
3767 if (t->to_core_of_thread != NULL)
3768 {
3769 int retval = t->to_core_of_thread (t, ptid);
3770
3771 if (targetdebug)
3772 fprintf_unfiltered (gdb_stdlog,
3773 "target_core_of_thread (%d) = %d\n",
3774 ptid_get_pid (ptid), retval);
3775 return retval;
3776 }
3777 }
3778
3779 return -1;
3780 }
3781
3782 int
3783 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3784 {
3785 struct target_ops *t;
3786
3787 for (t = current_target.beneath; t != NULL; t = t->beneath)
3788 {
3789 if (t->to_verify_memory != NULL)
3790 {
3791 int retval = t->to_verify_memory (t, data, memaddr, size);
3792
3793 if (targetdebug)
3794 fprintf_unfiltered (gdb_stdlog,
3795 "target_verify_memory (%s, %s) = %d\n",
3796 paddress (target_gdbarch (), memaddr),
3797 pulongest (size),
3798 retval);
3799 return retval;
3800 }
3801 }
3802
3803 tcomplain ();
3804 }
3805
3806 /* The documentation for this function is in its prototype declaration in
3807 target.h. */
3808
3809 int
3810 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3811 {
3812 int ret;
3813
3814 ret = current_target.to_insert_mask_watchpoint (&current_target,
3815 addr, mask, rw);
3816
3817 if (targetdebug)
3818 fprintf_unfiltered (gdb_stdlog, "\
3819 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3820 core_addr_to_string (addr),
3821 core_addr_to_string (mask), rw, ret);
3822
3823 return ret;
3824 }
3825
3826 /* The documentation for this function is in its prototype declaration in
3827 target.h. */
3828
3829 int
3830 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3831 {
3832 int ret;
3833
3834 ret = current_target.to_remove_mask_watchpoint (&current_target,
3835 addr, mask, rw);
3836
3837 if (targetdebug)
3838 fprintf_unfiltered (gdb_stdlog, "\
3839 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3840 core_addr_to_string (addr),
3841 core_addr_to_string (mask), rw, ret);
3842
3843 return ret;
3844 }
3845
3846 /* The documentation for this function is in its prototype declaration
3847 in target.h. */
3848
3849 int
3850 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3851 {
3852 return current_target.to_masked_watch_num_registers (&current_target,
3853 addr, mask);
3854 }
3855
3856 /* The documentation for this function is in its prototype declaration
3857 in target.h. */
3858
3859 int
3860 target_ranged_break_num_registers (void)
3861 {
3862 return current_target.to_ranged_break_num_registers (&current_target);
3863 }
3864
3865 /* See target.h. */
3866
3867 struct btrace_target_info *
3868 target_enable_btrace (ptid_t ptid)
3869 {
3870 struct target_ops *t;
3871
3872 for (t = current_target.beneath; t != NULL; t = t->beneath)
3873 if (t->to_enable_btrace != NULL)
3874 return t->to_enable_btrace (t, ptid);
3875
3876 tcomplain ();
3877 return NULL;
3878 }
3879
3880 /* See target.h. */
3881
3882 void
3883 target_disable_btrace (struct btrace_target_info *btinfo)
3884 {
3885 struct target_ops *t;
3886
3887 for (t = current_target.beneath; t != NULL; t = t->beneath)
3888 if (t->to_disable_btrace != NULL)
3889 {
3890 t->to_disable_btrace (t, btinfo);
3891 return;
3892 }
3893
3894 tcomplain ();
3895 }
3896
3897 /* See target.h. */
3898
3899 void
3900 target_teardown_btrace (struct btrace_target_info *btinfo)
3901 {
3902 struct target_ops *t;
3903
3904 for (t = current_target.beneath; t != NULL; t = t->beneath)
3905 if (t->to_teardown_btrace != NULL)
3906 {
3907 t->to_teardown_btrace (t, btinfo);
3908 return;
3909 }
3910
3911 tcomplain ();
3912 }
3913
3914 /* See target.h. */
3915
3916 enum btrace_error
3917 target_read_btrace (VEC (btrace_block_s) **btrace,
3918 struct btrace_target_info *btinfo,
3919 enum btrace_read_type type)
3920 {
3921 struct target_ops *t;
3922
3923 for (t = current_target.beneath; t != NULL; t = t->beneath)
3924 if (t->to_read_btrace != NULL)
3925 return t->to_read_btrace (t, btrace, btinfo, type);
3926
3927 tcomplain ();
3928 return BTRACE_ERR_NOT_SUPPORTED;
3929 }
3930
3931 /* See target.h. */
3932
3933 void
3934 target_stop_recording (void)
3935 {
3936 struct target_ops *t;
3937
3938 for (t = current_target.beneath; t != NULL; t = t->beneath)
3939 if (t->to_stop_recording != NULL)
3940 {
3941 t->to_stop_recording (t);
3942 return;
3943 }
3944
3945 /* This is optional. */
3946 }
3947
3948 /* See target.h. */
3949
3950 void
3951 target_info_record (void)
3952 {
3953 struct target_ops *t;
3954
3955 for (t = current_target.beneath; t != NULL; t = t->beneath)
3956 if (t->to_info_record != NULL)
3957 {
3958 t->to_info_record (t);
3959 return;
3960 }
3961
3962 tcomplain ();
3963 }
3964
3965 /* See target.h. */
3966
3967 void
3968 target_save_record (const char *filename)
3969 {
3970 struct target_ops *t;
3971
3972 for (t = current_target.beneath; t != NULL; t = t->beneath)
3973 if (t->to_save_record != NULL)
3974 {
3975 t->to_save_record (t, filename);
3976 return;
3977 }
3978
3979 tcomplain ();
3980 }
3981
3982 /* See target.h. */
3983
3984 int
3985 target_supports_delete_record (void)
3986 {
3987 struct target_ops *t;
3988
3989 for (t = current_target.beneath; t != NULL; t = t->beneath)
3990 if (t->to_delete_record != NULL)
3991 return 1;
3992
3993 return 0;
3994 }
3995
3996 /* See target.h. */
3997
3998 void
3999 target_delete_record (void)
4000 {
4001 struct target_ops *t;
4002
4003 for (t = current_target.beneath; t != NULL; t = t->beneath)
4004 if (t->to_delete_record != NULL)
4005 {
4006 t->to_delete_record (t);
4007 return;
4008 }
4009
4010 tcomplain ();
4011 }
4012
4013 /* See target.h. */
4014
4015 int
4016 target_record_is_replaying (void)
4017 {
4018 struct target_ops *t;
4019
4020 for (t = current_target.beneath; t != NULL; t = t->beneath)
4021 if (t->to_record_is_replaying != NULL)
4022 return t->to_record_is_replaying (t);
4023
4024 return 0;
4025 }
4026
4027 /* See target.h. */
4028
4029 void
4030 target_goto_record_begin (void)
4031 {
4032 struct target_ops *t;
4033
4034 for (t = current_target.beneath; t != NULL; t = t->beneath)
4035 if (t->to_goto_record_begin != NULL)
4036 {
4037 t->to_goto_record_begin (t);
4038 return;
4039 }
4040
4041 tcomplain ();
4042 }
4043
4044 /* See target.h. */
4045
4046 void
4047 target_goto_record_end (void)
4048 {
4049 struct target_ops *t;
4050
4051 for (t = current_target.beneath; t != NULL; t = t->beneath)
4052 if (t->to_goto_record_end != NULL)
4053 {
4054 t->to_goto_record_end (t);
4055 return;
4056 }
4057
4058 tcomplain ();
4059 }
4060
4061 /* See target.h. */
4062
4063 void
4064 target_goto_record (ULONGEST insn)
4065 {
4066 struct target_ops *t;
4067
4068 for (t = current_target.beneath; t != NULL; t = t->beneath)
4069 if (t->to_goto_record != NULL)
4070 {
4071 t->to_goto_record (t, insn);
4072 return;
4073 }
4074
4075 tcomplain ();
4076 }
4077
4078 /* See target.h. */
4079
4080 void
4081 target_insn_history (int size, int flags)
4082 {
4083 struct target_ops *t;
4084
4085 for (t = current_target.beneath; t != NULL; t = t->beneath)
4086 if (t->to_insn_history != NULL)
4087 {
4088 t->to_insn_history (t, size, flags);
4089 return;
4090 }
4091
4092 tcomplain ();
4093 }
4094
4095 /* See target.h. */
4096
4097 void
4098 target_insn_history_from (ULONGEST from, int size, int flags)
4099 {
4100 struct target_ops *t;
4101
4102 for (t = current_target.beneath; t != NULL; t = t->beneath)
4103 if (t->to_insn_history_from != NULL)
4104 {
4105 t->to_insn_history_from (t, from, size, flags);
4106 return;
4107 }
4108
4109 tcomplain ();
4110 }
4111
4112 /* See target.h. */
4113
4114 void
4115 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4116 {
4117 struct target_ops *t;
4118
4119 for (t = current_target.beneath; t != NULL; t = t->beneath)
4120 if (t->to_insn_history_range != NULL)
4121 {
4122 t->to_insn_history_range (t, begin, end, flags);
4123 return;
4124 }
4125
4126 tcomplain ();
4127 }
4128
4129 /* See target.h. */
4130
4131 void
4132 target_call_history (int size, int flags)
4133 {
4134 struct target_ops *t;
4135
4136 for (t = current_target.beneath; t != NULL; t = t->beneath)
4137 if (t->to_call_history != NULL)
4138 {
4139 t->to_call_history (t, size, flags);
4140 return;
4141 }
4142
4143 tcomplain ();
4144 }
4145
4146 /* See target.h. */
4147
4148 void
4149 target_call_history_from (ULONGEST begin, int size, int flags)
4150 {
4151 struct target_ops *t;
4152
4153 for (t = current_target.beneath; t != NULL; t = t->beneath)
4154 if (t->to_call_history_from != NULL)
4155 {
4156 t->to_call_history_from (t, begin, size, flags);
4157 return;
4158 }
4159
4160 tcomplain ();
4161 }
4162
4163 /* See target.h. */
4164
4165 void
4166 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4167 {
4168 struct target_ops *t;
4169
4170 for (t = current_target.beneath; t != NULL; t = t->beneath)
4171 if (t->to_call_history_range != NULL)
4172 {
4173 t->to_call_history_range (t, begin, end, flags);
4174 return;
4175 }
4176
4177 tcomplain ();
4178 }
4179
4180 static void
4181 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
4182 {
4183 debug_target.to_prepare_to_store (&debug_target, regcache);
4184
4185 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4186 }
4187
4188 /* See target.h. */
4189
4190 const struct frame_unwind *
4191 target_get_unwinder (void)
4192 {
4193 struct target_ops *t;
4194
4195 for (t = current_target.beneath; t != NULL; t = t->beneath)
4196 if (t->to_get_unwinder != NULL)
4197 return t->to_get_unwinder;
4198
4199 return NULL;
4200 }
4201
4202 /* See target.h. */
4203
4204 const struct frame_unwind *
4205 target_get_tailcall_unwinder (void)
4206 {
4207 struct target_ops *t;
4208
4209 for (t = current_target.beneath; t != NULL; t = t->beneath)
4210 if (t->to_get_tailcall_unwinder != NULL)
4211 return t->to_get_tailcall_unwinder;
4212
4213 return NULL;
4214 }
4215
4216 /* See target.h. */
4217
4218 CORE_ADDR
4219 forward_target_decr_pc_after_break (struct target_ops *ops,
4220 struct gdbarch *gdbarch)
4221 {
4222 for (; ops != NULL; ops = ops->beneath)
4223 if (ops->to_decr_pc_after_break != NULL)
4224 return ops->to_decr_pc_after_break (ops, gdbarch);
4225
4226 return gdbarch_decr_pc_after_break (gdbarch);
4227 }
4228
4229 /* See target.h. */
4230
4231 CORE_ADDR
4232 target_decr_pc_after_break (struct gdbarch *gdbarch)
4233 {
4234 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
4235 }
4236
4237 static int
4238 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4239 int write, struct mem_attrib *attrib,
4240 struct target_ops *target)
4241 {
4242 int retval;
4243
4244 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4245 attrib, target);
4246
4247 fprintf_unfiltered (gdb_stdlog,
4248 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4249 paddress (target_gdbarch (), memaddr), len,
4250 write ? "write" : "read", retval);
4251
4252 if (retval > 0)
4253 {
4254 int i;
4255
4256 fputs_unfiltered (", bytes =", gdb_stdlog);
4257 for (i = 0; i < retval; i++)
4258 {
4259 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4260 {
4261 if (targetdebug < 2 && i > 0)
4262 {
4263 fprintf_unfiltered (gdb_stdlog, " ...");
4264 break;
4265 }
4266 fprintf_unfiltered (gdb_stdlog, "\n");
4267 }
4268
4269 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4270 }
4271 }
4272
4273 fputc_unfiltered ('\n', gdb_stdlog);
4274
4275 return retval;
4276 }
4277
4278 static void
4279 debug_to_files_info (struct target_ops *target)
4280 {
4281 debug_target.to_files_info (target);
4282
4283 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4284 }
4285
4286 static int
4287 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4288 struct bp_target_info *bp_tgt)
4289 {
4290 int retval;
4291
4292 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4293
4294 fprintf_unfiltered (gdb_stdlog,
4295 "target_insert_breakpoint (%s, xxx) = %ld\n",
4296 core_addr_to_string (bp_tgt->placed_address),
4297 (unsigned long) retval);
4298 return retval;
4299 }
4300
4301 static int
4302 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4303 struct bp_target_info *bp_tgt)
4304 {
4305 int retval;
4306
4307 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4308
4309 fprintf_unfiltered (gdb_stdlog,
4310 "target_remove_breakpoint (%s, xxx) = %ld\n",
4311 core_addr_to_string (bp_tgt->placed_address),
4312 (unsigned long) retval);
4313 return retval;
4314 }
4315
4316 static int
4317 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4318 int type, int cnt, int from_tty)
4319 {
4320 int retval;
4321
4322 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4323 type, cnt, from_tty);
4324
4325 fprintf_unfiltered (gdb_stdlog,
4326 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4327 (unsigned long) type,
4328 (unsigned long) cnt,
4329 (unsigned long) from_tty,
4330 (unsigned long) retval);
4331 return retval;
4332 }
4333
4334 static int
4335 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4336 CORE_ADDR addr, int len)
4337 {
4338 CORE_ADDR retval;
4339
4340 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4341 addr, len);
4342
4343 fprintf_unfiltered (gdb_stdlog,
4344 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4345 core_addr_to_string (addr), (unsigned long) len,
4346 core_addr_to_string (retval));
4347 return retval;
4348 }
4349
4350 static int
4351 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4352 CORE_ADDR addr, int len, int rw,
4353 struct expression *cond)
4354 {
4355 int retval;
4356
4357 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4358 addr, len,
4359 rw, cond);
4360
4361 fprintf_unfiltered (gdb_stdlog,
4362 "target_can_accel_watchpoint_condition "
4363 "(%s, %d, %d, %s) = %ld\n",
4364 core_addr_to_string (addr), len, rw,
4365 host_address_to_string (cond), (unsigned long) retval);
4366 return retval;
4367 }
4368
4369 static int
4370 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4371 {
4372 int retval;
4373
4374 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4375
4376 fprintf_unfiltered (gdb_stdlog,
4377 "target_stopped_by_watchpoint () = %ld\n",
4378 (unsigned long) retval);
4379 return retval;
4380 }
4381
4382 static int
4383 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4384 {
4385 int retval;
4386
4387 retval = debug_target.to_stopped_data_address (target, addr);
4388
4389 fprintf_unfiltered (gdb_stdlog,
4390 "target_stopped_data_address ([%s]) = %ld\n",
4391 core_addr_to_string (*addr),
4392 (unsigned long)retval);
4393 return retval;
4394 }
4395
4396 static int
4397 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4398 CORE_ADDR addr,
4399 CORE_ADDR start, int length)
4400 {
4401 int retval;
4402
4403 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4404 start, length);
4405
4406 fprintf_filtered (gdb_stdlog,
4407 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4408 core_addr_to_string (addr), core_addr_to_string (start),
4409 length, retval);
4410 return retval;
4411 }
4412
4413 static int
4414 debug_to_insert_hw_breakpoint (struct target_ops *self,
4415 struct gdbarch *gdbarch,
4416 struct bp_target_info *bp_tgt)
4417 {
4418 int retval;
4419
4420 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4421 gdbarch, bp_tgt);
4422
4423 fprintf_unfiltered (gdb_stdlog,
4424 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4425 core_addr_to_string (bp_tgt->placed_address),
4426 (unsigned long) retval);
4427 return retval;
4428 }
4429
4430 static int
4431 debug_to_remove_hw_breakpoint (struct target_ops *self,
4432 struct gdbarch *gdbarch,
4433 struct bp_target_info *bp_tgt)
4434 {
4435 int retval;
4436
4437 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4438 gdbarch, bp_tgt);
4439
4440 fprintf_unfiltered (gdb_stdlog,
4441 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4442 core_addr_to_string (bp_tgt->placed_address),
4443 (unsigned long) retval);
4444 return retval;
4445 }
4446
4447 static int
4448 debug_to_insert_watchpoint (struct target_ops *self,
4449 CORE_ADDR addr, int len, int type,
4450 struct expression *cond)
4451 {
4452 int retval;
4453
4454 retval = debug_target.to_insert_watchpoint (&debug_target,
4455 addr, len, type, cond);
4456
4457 fprintf_unfiltered (gdb_stdlog,
4458 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4459 core_addr_to_string (addr), len, type,
4460 host_address_to_string (cond), (unsigned long) retval);
4461 return retval;
4462 }
4463
4464 static int
4465 debug_to_remove_watchpoint (struct target_ops *self,
4466 CORE_ADDR addr, int len, int type,
4467 struct expression *cond)
4468 {
4469 int retval;
4470
4471 retval = debug_target.to_remove_watchpoint (&debug_target,
4472 addr, len, type, cond);
4473
4474 fprintf_unfiltered (gdb_stdlog,
4475 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4476 core_addr_to_string (addr), len, type,
4477 host_address_to_string (cond), (unsigned long) retval);
4478 return retval;
4479 }
4480
4481 static void
4482 debug_to_terminal_init (struct target_ops *self)
4483 {
4484 debug_target.to_terminal_init (&debug_target);
4485
4486 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4487 }
4488
4489 static void
4490 debug_to_terminal_inferior (struct target_ops *self)
4491 {
4492 debug_target.to_terminal_inferior (&debug_target);
4493
4494 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4495 }
4496
4497 static void
4498 debug_to_terminal_ours_for_output (struct target_ops *self)
4499 {
4500 debug_target.to_terminal_ours_for_output (&debug_target);
4501
4502 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4503 }
4504
4505 static void
4506 debug_to_terminal_ours (struct target_ops *self)
4507 {
4508 debug_target.to_terminal_ours (&debug_target);
4509
4510 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4511 }
4512
4513 static void
4514 debug_to_terminal_save_ours (struct target_ops *self)
4515 {
4516 debug_target.to_terminal_save_ours (&debug_target);
4517
4518 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4519 }
4520
4521 static void
4522 debug_to_terminal_info (struct target_ops *self,
4523 const char *arg, int from_tty)
4524 {
4525 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4526
4527 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4528 from_tty);
4529 }
4530
4531 static void
4532 debug_to_load (struct target_ops *self, char *args, int from_tty)
4533 {
4534 debug_target.to_load (&debug_target, args, from_tty);
4535
4536 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4537 }
4538
4539 static void
4540 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4541 {
4542 debug_target.to_post_startup_inferior (&debug_target, ptid);
4543
4544 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4545 ptid_get_pid (ptid));
4546 }
4547
4548 static int
4549 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4550 {
4551 int retval;
4552
4553 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4554
4555 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4556 pid, retval);
4557
4558 return retval;
4559 }
4560
4561 static int
4562 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4563 {
4564 int retval;
4565
4566 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4567
4568 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4569 pid, retval);
4570
4571 return retval;
4572 }
4573
4574 static int
4575 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4576 {
4577 int retval;
4578
4579 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4580
4581 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4582 pid, retval);
4583
4584 return retval;
4585 }
4586
4587 static int
4588 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4589 {
4590 int retval;
4591
4592 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4593
4594 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4595 pid, retval);
4596
4597 return retval;
4598 }
4599
4600 static int
4601 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4602 {
4603 int retval;
4604
4605 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4606
4607 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4608 pid, retval);
4609
4610 return retval;
4611 }
4612
4613 static int
4614 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4615 {
4616 int retval;
4617
4618 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4619
4620 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4621 pid, retval);
4622
4623 return retval;
4624 }
4625
4626 static int
4627 debug_to_has_exited (struct target_ops *self,
4628 int pid, int wait_status, int *exit_status)
4629 {
4630 int has_exited;
4631
4632 has_exited = debug_target.to_has_exited (&debug_target,
4633 pid, wait_status, exit_status);
4634
4635 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4636 pid, wait_status, *exit_status, has_exited);
4637
4638 return has_exited;
4639 }
4640
4641 static int
4642 debug_to_can_run (struct target_ops *self)
4643 {
4644 int retval;
4645
4646 retval = debug_target.to_can_run (&debug_target);
4647
4648 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4649
4650 return retval;
4651 }
4652
4653 static struct gdbarch *
4654 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4655 {
4656 struct gdbarch *retval;
4657
4658 retval = debug_target.to_thread_architecture (ops, ptid);
4659
4660 fprintf_unfiltered (gdb_stdlog,
4661 "target_thread_architecture (%s) = %s [%s]\n",
4662 target_pid_to_str (ptid),
4663 host_address_to_string (retval),
4664 gdbarch_bfd_arch_info (retval)->printable_name);
4665 return retval;
4666 }
4667
4668 static void
4669 debug_to_stop (struct target_ops *self, ptid_t ptid)
4670 {
4671 debug_target.to_stop (&debug_target, ptid);
4672
4673 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4674 target_pid_to_str (ptid));
4675 }
4676
4677 static void
4678 debug_to_rcmd (struct target_ops *self, char *command,
4679 struct ui_file *outbuf)
4680 {
4681 debug_target.to_rcmd (&debug_target, command, outbuf);
4682 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4683 }
4684
4685 static char *
4686 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4687 {
4688 char *exec_file;
4689
4690 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4691
4692 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4693 pid, exec_file);
4694
4695 return exec_file;
4696 }
4697
4698 static void
4699 setup_target_debug (void)
4700 {
4701 memcpy (&debug_target, &current_target, sizeof debug_target);
4702
4703 current_target.to_open = debug_to_open;
4704 current_target.to_post_attach = debug_to_post_attach;
4705 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4706 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4707 current_target.to_files_info = debug_to_files_info;
4708 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4709 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4710 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4711 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4712 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4713 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4714 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4715 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4716 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4717 current_target.to_watchpoint_addr_within_range
4718 = debug_to_watchpoint_addr_within_range;
4719 current_target.to_region_ok_for_hw_watchpoint
4720 = debug_to_region_ok_for_hw_watchpoint;
4721 current_target.to_can_accel_watchpoint_condition
4722 = debug_to_can_accel_watchpoint_condition;
4723 current_target.to_terminal_init = debug_to_terminal_init;
4724 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4725 current_target.to_terminal_ours_for_output
4726 = debug_to_terminal_ours_for_output;
4727 current_target.to_terminal_ours = debug_to_terminal_ours;
4728 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4729 current_target.to_terminal_info = debug_to_terminal_info;
4730 current_target.to_load = debug_to_load;
4731 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4732 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4733 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4734 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4735 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4736 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4737 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4738 current_target.to_has_exited = debug_to_has_exited;
4739 current_target.to_can_run = debug_to_can_run;
4740 current_target.to_stop = debug_to_stop;
4741 current_target.to_rcmd = debug_to_rcmd;
4742 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4743 current_target.to_thread_architecture = debug_to_thread_architecture;
4744 }
4745 \f
4746
4747 static char targ_desc[] =
4748 "Names of targets and files being debugged.\nShows the entire \
4749 stack of targets currently in use (including the exec-file,\n\
4750 core-file, and process, if any), as well as the symbol file name.";
4751
4752 static void
4753 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4754 {
4755 error (_("\"monitor\" command not supported by this target."));
4756 }
4757
4758 static void
4759 do_monitor_command (char *cmd,
4760 int from_tty)
4761 {
4762 target_rcmd (cmd, gdb_stdtarg);
4763 }
4764
4765 /* Print the name of each layers of our target stack. */
4766
4767 static void
4768 maintenance_print_target_stack (char *cmd, int from_tty)
4769 {
4770 struct target_ops *t;
4771
4772 printf_filtered (_("The current target stack is:\n"));
4773
4774 for (t = target_stack; t != NULL; t = t->beneath)
4775 {
4776 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4777 }
4778 }
4779
4780 /* Controls if async mode is permitted. */
4781 int target_async_permitted = 0;
4782
4783 /* The set command writes to this variable. If the inferior is
4784 executing, target_async_permitted is *not* updated. */
4785 static int target_async_permitted_1 = 0;
4786
4787 static void
4788 set_target_async_command (char *args, int from_tty,
4789 struct cmd_list_element *c)
4790 {
4791 if (have_live_inferiors ())
4792 {
4793 target_async_permitted_1 = target_async_permitted;
4794 error (_("Cannot change this setting while the inferior is running."));
4795 }
4796
4797 target_async_permitted = target_async_permitted_1;
4798 }
4799
4800 static void
4801 show_target_async_command (struct ui_file *file, int from_tty,
4802 struct cmd_list_element *c,
4803 const char *value)
4804 {
4805 fprintf_filtered (file,
4806 _("Controlling the inferior in "
4807 "asynchronous mode is %s.\n"), value);
4808 }
4809
4810 /* Temporary copies of permission settings. */
4811
4812 static int may_write_registers_1 = 1;
4813 static int may_write_memory_1 = 1;
4814 static int may_insert_breakpoints_1 = 1;
4815 static int may_insert_tracepoints_1 = 1;
4816 static int may_insert_fast_tracepoints_1 = 1;
4817 static int may_stop_1 = 1;
4818
4819 /* Make the user-set values match the real values again. */
4820
4821 void
4822 update_target_permissions (void)
4823 {
4824 may_write_registers_1 = may_write_registers;
4825 may_write_memory_1 = may_write_memory;
4826 may_insert_breakpoints_1 = may_insert_breakpoints;
4827 may_insert_tracepoints_1 = may_insert_tracepoints;
4828 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4829 may_stop_1 = may_stop;
4830 }
4831
4832 /* The one function handles (most of) the permission flags in the same
4833 way. */
4834
4835 static void
4836 set_target_permissions (char *args, int from_tty,
4837 struct cmd_list_element *c)
4838 {
4839 if (target_has_execution)
4840 {
4841 update_target_permissions ();
4842 error (_("Cannot change this setting while the inferior is running."));
4843 }
4844
4845 /* Make the real values match the user-changed values. */
4846 may_write_registers = may_write_registers_1;
4847 may_insert_breakpoints = may_insert_breakpoints_1;
4848 may_insert_tracepoints = may_insert_tracepoints_1;
4849 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4850 may_stop = may_stop_1;
4851 update_observer_mode ();
4852 }
4853
4854 /* Set memory write permission independently of observer mode. */
4855
4856 static void
4857 set_write_memory_permission (char *args, int from_tty,
4858 struct cmd_list_element *c)
4859 {
4860 /* Make the real values match the user-changed values. */
4861 may_write_memory = may_write_memory_1;
4862 update_observer_mode ();
4863 }
4864
4865
4866 void
4867 initialize_targets (void)
4868 {
4869 init_dummy_target ();
4870 push_target (&dummy_target);
4871
4872 add_info ("target", target_info, targ_desc);
4873 add_info ("files", target_info, targ_desc);
4874
4875 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4876 Set target debugging."), _("\
4877 Show target debugging."), _("\
4878 When non-zero, target debugging is enabled. Higher numbers are more\n\
4879 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4880 command."),
4881 NULL,
4882 show_targetdebug,
4883 &setdebuglist, &showdebuglist);
4884
4885 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4886 &trust_readonly, _("\
4887 Set mode for reading from readonly sections."), _("\
4888 Show mode for reading from readonly sections."), _("\
4889 When this mode is on, memory reads from readonly sections (such as .text)\n\
4890 will be read from the object file instead of from the target. This will\n\
4891 result in significant performance improvement for remote targets."),
4892 NULL,
4893 show_trust_readonly,
4894 &setlist, &showlist);
4895
4896 add_com ("monitor", class_obscure, do_monitor_command,
4897 _("Send a command to the remote monitor (remote targets only)."));
4898
4899 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4900 _("Print the name of each layer of the internal target stack."),
4901 &maintenanceprintlist);
4902
4903 add_setshow_boolean_cmd ("target-async", no_class,
4904 &target_async_permitted_1, _("\
4905 Set whether gdb controls the inferior in asynchronous mode."), _("\
4906 Show whether gdb controls the inferior in asynchronous mode."), _("\
4907 Tells gdb whether to control the inferior in asynchronous mode."),
4908 set_target_async_command,
4909 show_target_async_command,
4910 &setlist,
4911 &showlist);
4912
4913 add_setshow_boolean_cmd ("may-write-registers", class_support,
4914 &may_write_registers_1, _("\
4915 Set permission to write into registers."), _("\
4916 Show permission to write into registers."), _("\
4917 When this permission is on, GDB may write into the target's registers.\n\
4918 Otherwise, any sort of write attempt will result in an error."),
4919 set_target_permissions, NULL,
4920 &setlist, &showlist);
4921
4922 add_setshow_boolean_cmd ("may-write-memory", class_support,
4923 &may_write_memory_1, _("\
4924 Set permission to write into target memory."), _("\
4925 Show permission to write into target memory."), _("\
4926 When this permission is on, GDB may write into the target's memory.\n\
4927 Otherwise, any sort of write attempt will result in an error."),
4928 set_write_memory_permission, NULL,
4929 &setlist, &showlist);
4930
4931 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4932 &may_insert_breakpoints_1, _("\
4933 Set permission to insert breakpoints in the target."), _("\
4934 Show permission to insert breakpoints in the target."), _("\
4935 When this permission is on, GDB may insert breakpoints in the program.\n\
4936 Otherwise, any sort of insertion attempt will result in an error."),
4937 set_target_permissions, NULL,
4938 &setlist, &showlist);
4939
4940 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4941 &may_insert_tracepoints_1, _("\
4942 Set permission to insert tracepoints in the target."), _("\
4943 Show permission to insert tracepoints in the target."), _("\
4944 When this permission is on, GDB may insert tracepoints in the program.\n\
4945 Otherwise, any sort of insertion attempt will result in an error."),
4946 set_target_permissions, NULL,
4947 &setlist, &showlist);
4948
4949 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4950 &may_insert_fast_tracepoints_1, _("\
4951 Set permission to insert fast tracepoints in the target."), _("\
4952 Show permission to insert fast tracepoints in the target."), _("\
4953 When this permission is on, GDB may insert fast tracepoints.\n\
4954 Otherwise, any sort of insertion attempt will result in an error."),
4955 set_target_permissions, NULL,
4956 &setlist, &showlist);
4957
4958 add_setshow_boolean_cmd ("may-interrupt", class_support,
4959 &may_stop_1, _("\
4960 Set permission to interrupt or signal the target."), _("\
4961 Show permission to interrupt or signal the target."), _("\
4962 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4963 Otherwise, any attempt to interrupt or stop will be ignored."),
4964 set_target_permissions, NULL,
4965 &setlist, &showlist);
4966 }
This page took 0.177573 seconds and 4 git commands to generate.