Add gdbarch callback to provide formats for debug info float types
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48
49 static void target_info (char *, int);
50
51 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
52
53 static void default_terminal_info (struct target_ops *, const char *, int);
54
55 static int default_watchpoint_addr_within_range (struct target_ops *,
56 CORE_ADDR, CORE_ADDR, int);
57
58 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
59 CORE_ADDR, int);
60
61 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
62
63 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
64 long lwp, long tid);
65
66 static int default_follow_fork (struct target_ops *self, int follow_child,
67 int detach_fork);
68
69 static void default_mourn_inferior (struct target_ops *self);
70
71 static int default_search_memory (struct target_ops *ops,
72 CORE_ADDR start_addr,
73 ULONGEST search_space_len,
74 const gdb_byte *pattern,
75 ULONGEST pattern_len,
76 CORE_ADDR *found_addrp);
77
78 static int default_verify_memory (struct target_ops *self,
79 const gdb_byte *data,
80 CORE_ADDR memaddr, ULONGEST size);
81
82 static struct address_space *default_thread_address_space
83 (struct target_ops *self, ptid_t ptid);
84
85 static void tcomplain (void) ATTRIBUTE_NORETURN;
86
87 static int return_zero (struct target_ops *);
88
89 static int return_zero_has_execution (struct target_ops *, ptid_t);
90
91 static void target_command (char *, int);
92
93 static struct target_ops *find_default_run_target (char *);
94
95 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
96 ptid_t ptid);
97
98 static int dummy_find_memory_regions (struct target_ops *self,
99 find_memory_region_ftype ignore1,
100 void *ignore2);
101
102 static char *dummy_make_corefile_notes (struct target_ops *self,
103 bfd *ignore1, int *ignore2);
104
105 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
106
107 static enum exec_direction_kind default_execution_direction
108 (struct target_ops *self);
109
110 static struct target_ops debug_target;
111
112 #include "target-delegates.c"
113
114 static void init_dummy_target (void);
115
116 static void update_current_target (void);
117
118 /* Vector of existing target structures. */
119 typedef struct target_ops *target_ops_p;
120 DEF_VEC_P (target_ops_p);
121 static VEC (target_ops_p) *target_structs;
122
123 /* The initial current target, so that there is always a semi-valid
124 current target. */
125
126 static struct target_ops dummy_target;
127
128 /* Top of target stack. */
129
130 static struct target_ops *target_stack;
131
132 /* The target structure we are currently using to talk to a process
133 or file or whatever "inferior" we have. */
134
135 struct target_ops current_target;
136
137 /* Command list for target. */
138
139 static struct cmd_list_element *targetlist = NULL;
140
141 /* Nonzero if we should trust readonly sections from the
142 executable when reading memory. */
143
144 static int trust_readonly = 0;
145
146 /* Nonzero if we should show true memory content including
147 memory breakpoint inserted by gdb. */
148
149 static int show_memory_breakpoints = 0;
150
151 /* These globals control whether GDB attempts to perform these
152 operations; they are useful for targets that need to prevent
153 inadvertant disruption, such as in non-stop mode. */
154
155 int may_write_registers = 1;
156
157 int may_write_memory = 1;
158
159 int may_insert_breakpoints = 1;
160
161 int may_insert_tracepoints = 1;
162
163 int may_insert_fast_tracepoints = 1;
164
165 int may_stop = 1;
166
167 /* Non-zero if we want to see trace of target level stuff. */
168
169 static unsigned int targetdebug = 0;
170
171 static void
172 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
173 {
174 update_current_target ();
175 }
176
177 static void
178 show_targetdebug (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
182 }
183
184 static void setup_target_debug (void);
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 /* Default target_has_* methods for process_stratum targets. */
196
197 int
198 default_child_has_all_memory (struct target_ops *ops)
199 {
200 /* If no inferior selected, then we can't read memory here. */
201 if (ptid_equal (inferior_ptid, null_ptid))
202 return 0;
203
204 return 1;
205 }
206
207 int
208 default_child_has_memory (struct target_ops *ops)
209 {
210 /* If no inferior selected, then we can't read memory here. */
211 if (ptid_equal (inferior_ptid, null_ptid))
212 return 0;
213
214 return 1;
215 }
216
217 int
218 default_child_has_stack (struct target_ops *ops)
219 {
220 /* If no inferior selected, there's no stack. */
221 if (ptid_equal (inferior_ptid, null_ptid))
222 return 0;
223
224 return 1;
225 }
226
227 int
228 default_child_has_registers (struct target_ops *ops)
229 {
230 /* Can't read registers from no inferior. */
231 if (ptid_equal (inferior_ptid, null_ptid))
232 return 0;
233
234 return 1;
235 }
236
237 int
238 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
239 {
240 /* If there's no thread selected, then we can't make it run through
241 hoops. */
242 if (ptid_equal (the_ptid, null_ptid))
243 return 0;
244
245 return 1;
246 }
247
248
249 int
250 target_has_all_memory_1 (void)
251 {
252 struct target_ops *t;
253
254 for (t = current_target.beneath; t != NULL; t = t->beneath)
255 if (t->to_has_all_memory (t))
256 return 1;
257
258 return 0;
259 }
260
261 int
262 target_has_memory_1 (void)
263 {
264 struct target_ops *t;
265
266 for (t = current_target.beneath; t != NULL; t = t->beneath)
267 if (t->to_has_memory (t))
268 return 1;
269
270 return 0;
271 }
272
273 int
274 target_has_stack_1 (void)
275 {
276 struct target_ops *t;
277
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_stack (t))
280 return 1;
281
282 return 0;
283 }
284
285 int
286 target_has_registers_1 (void)
287 {
288 struct target_ops *t;
289
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_registers (t))
292 return 1;
293
294 return 0;
295 }
296
297 int
298 target_has_execution_1 (ptid_t the_ptid)
299 {
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_execution (t, the_ptid))
304 return 1;
305
306 return 0;
307 }
308
309 int
310 target_has_execution_current (void)
311 {
312 return target_has_execution_1 (inferior_ptid);
313 }
314
315 /* Complete initialization of T. This ensures that various fields in
316 T are set, if needed by the target implementation. */
317
318 void
319 complete_target_initialization (struct target_ops *t)
320 {
321 /* Provide default values for all "must have" methods. */
322
323 if (t->to_has_all_memory == NULL)
324 t->to_has_all_memory = return_zero;
325
326 if (t->to_has_memory == NULL)
327 t->to_has_memory = return_zero;
328
329 if (t->to_has_stack == NULL)
330 t->to_has_stack = return_zero;
331
332 if (t->to_has_registers == NULL)
333 t->to_has_registers = return_zero;
334
335 if (t->to_has_execution == NULL)
336 t->to_has_execution = return_zero_has_execution;
337
338 /* These methods can be called on an unpushed target and so require
339 a default implementation if the target might plausibly be the
340 default run target. */
341 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
342 && t->to_supports_non_stop != NULL));
343
344 install_delegators (t);
345 }
346
347 /* This is used to implement the various target commands. */
348
349 static void
350 open_target (char *args, int from_tty, struct cmd_list_element *command)
351 {
352 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
353
354 if (targetdebug)
355 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
356 ops->to_shortname);
357
358 ops->to_open (args, from_tty);
359
360 if (targetdebug)
361 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
362 ops->to_shortname, args, from_tty);
363 }
364
365 /* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
368
369 void
370 add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
372 {
373 struct cmd_list_element *c;
374
375 complete_target_initialization (t);
376
377 VEC_safe_push (target_ops_p, target_structs, t);
378
379 if (targetlist == NULL)
380 add_prefix_cmd ("target", class_run, target_command, _("\
381 Connect to a target machine or process.\n\
382 The first argument is the type or protocol of the target machine.\n\
383 Remaining arguments are interpreted by the target protocol. For more\n\
384 information on the arguments for a particular protocol, type\n\
385 `help target ' followed by the protocol name."),
386 &targetlist, "target ", 0, &cmdlist);
387 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
388 set_cmd_sfunc (c, open_target);
389 set_cmd_context (c, t);
390 if (completer != NULL)
391 set_cmd_completer (c, completer);
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 add_target_with_completer (t, NULL);
400 }
401
402 /* See target.h. */
403
404 void
405 add_deprecated_target_alias (struct target_ops *t, char *alias)
406 {
407 struct cmd_list_element *c;
408 char *alt;
409
410 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
411 see PR cli/15104. */
412 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
413 set_cmd_sfunc (c, open_target);
414 set_cmd_context (c, t);
415 alt = xstrprintf ("target %s", t->to_shortname);
416 deprecate_cmd (c, alt);
417 }
418
419 /* Stub functions */
420
421 void
422 target_kill (void)
423 {
424 current_target.to_kill (&current_target);
425 }
426
427 void
428 target_load (const char *arg, int from_tty)
429 {
430 target_dcache_invalidate ();
431 (*current_target.to_load) (&current_target, arg, from_tty);
432 }
433
434 /* Possible terminal states. */
435
436 enum terminal_state
437 {
438 /* The inferior's terminal settings are in effect. */
439 terminal_is_inferior = 0,
440
441 /* Some of our terminal settings are in effect, enough to get
442 proper output. */
443 terminal_is_ours_for_output = 1,
444
445 /* Our terminal settings are in effect, for output and input. */
446 terminal_is_ours = 2
447 };
448
449 static enum terminal_state terminal_state = terminal_is_ours;
450
451 /* See target.h. */
452
453 void
454 target_terminal_init (void)
455 {
456 (*current_target.to_terminal_init) (&current_target);
457
458 terminal_state = terminal_is_ours;
459 }
460
461 /* See target.h. */
462
463 int
464 target_terminal_is_inferior (void)
465 {
466 return (terminal_state == terminal_is_inferior);
467 }
468
469 /* See target.h. */
470
471 int
472 target_terminal_is_ours (void)
473 {
474 return (terminal_state == terminal_is_ours);
475 }
476
477 /* See target.h. */
478
479 void
480 target_terminal_inferior (void)
481 {
482 struct ui *ui = current_ui;
483
484 /* A background resume (``run&'') should leave GDB in control of the
485 terminal. */
486 if (ui->prompt_state != PROMPT_BLOCKED)
487 return;
488
489 /* Since we always run the inferior in the main console (unless "set
490 inferior-tty" is in effect), when some UI other than the main one
491 calls target_terminal_inferior/target_terminal_inferior, then we
492 leave the main UI's terminal settings as is. */
493 if (ui != main_ui)
494 return;
495
496 if (terminal_state == terminal_is_inferior)
497 return;
498
499 /* If GDB is resuming the inferior in the foreground, install
500 inferior's terminal modes. */
501 (*current_target.to_terminal_inferior) (&current_target);
502 terminal_state = terminal_is_inferior;
503
504 /* If the user hit C-c before, pretend that it was hit right
505 here. */
506 if (check_quit_flag ())
507 target_pass_ctrlc ();
508 }
509
510 /* See target.h. */
511
512 void
513 target_terminal_ours (void)
514 {
515 struct ui *ui = current_ui;
516
517 /* See target_terminal_inferior. */
518 if (ui != main_ui)
519 return;
520
521 if (terminal_state == terminal_is_ours)
522 return;
523
524 (*current_target.to_terminal_ours) (&current_target);
525 terminal_state = terminal_is_ours;
526 }
527
528 /* See target.h. */
529
530 void
531 target_terminal_ours_for_output (void)
532 {
533 struct ui *ui = current_ui;
534
535 /* See target_terminal_inferior. */
536 if (ui != main_ui)
537 return;
538
539 if (terminal_state != terminal_is_inferior)
540 return;
541 (*current_target.to_terminal_ours_for_output) (&current_target);
542 terminal_state = terminal_is_ours_for_output;
543 }
544
545 /* See target.h. */
546
547 int
548 target_supports_terminal_ours (void)
549 {
550 struct target_ops *t;
551
552 for (t = current_target.beneath; t != NULL; t = t->beneath)
553 {
554 if (t->to_terminal_ours != delegate_terminal_ours
555 && t->to_terminal_ours != tdefault_terminal_ours)
556 return 1;
557 }
558
559 return 0;
560 }
561
562 /* Restore the terminal to its previous state (helper for
563 make_cleanup_restore_target_terminal). */
564
565 static void
566 cleanup_restore_target_terminal (void *arg)
567 {
568 enum terminal_state *previous_state = (enum terminal_state *) arg;
569
570 switch (*previous_state)
571 {
572 case terminal_is_ours:
573 target_terminal_ours ();
574 break;
575 case terminal_is_ours_for_output:
576 target_terminal_ours_for_output ();
577 break;
578 case terminal_is_inferior:
579 target_terminal_inferior ();
580 break;
581 }
582 }
583
584 /* See target.h. */
585
586 struct cleanup *
587 make_cleanup_restore_target_terminal (void)
588 {
589 enum terminal_state *ts = XNEW (enum terminal_state);
590
591 *ts = terminal_state;
592
593 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
594 }
595
596 static void
597 tcomplain (void)
598 {
599 error (_("You can't do that when your target is `%s'"),
600 current_target.to_shortname);
601 }
602
603 void
604 noprocess (void)
605 {
606 error (_("You can't do that without a process to debug."));
607 }
608
609 static void
610 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
611 {
612 printf_unfiltered (_("No saved terminal information.\n"));
613 }
614
615 /* A default implementation for the to_get_ada_task_ptid target method.
616
617 This function builds the PTID by using both LWP and TID as part of
618 the PTID lwp and tid elements. The pid used is the pid of the
619 inferior_ptid. */
620
621 static ptid_t
622 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
623 {
624 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
625 }
626
627 static enum exec_direction_kind
628 default_execution_direction (struct target_ops *self)
629 {
630 if (!target_can_execute_reverse)
631 return EXEC_FORWARD;
632 else if (!target_can_async_p ())
633 return EXEC_FORWARD;
634 else
635 gdb_assert_not_reached ("\
636 to_execution_direction must be implemented for reverse async");
637 }
638
639 /* Go through the target stack from top to bottom, copying over zero
640 entries in current_target, then filling in still empty entries. In
641 effect, we are doing class inheritance through the pushed target
642 vectors.
643
644 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
645 is currently implemented, is that it discards any knowledge of
646 which target an inherited method originally belonged to.
647 Consequently, new new target methods should instead explicitly and
648 locally search the target stack for the target that can handle the
649 request. */
650
651 static void
652 update_current_target (void)
653 {
654 struct target_ops *t;
655
656 /* First, reset current's contents. */
657 memset (&current_target, 0, sizeof (current_target));
658
659 /* Install the delegators. */
660 install_delegators (&current_target);
661
662 current_target.to_stratum = target_stack->to_stratum;
663
664 #define INHERIT(FIELD, TARGET) \
665 if (!current_target.FIELD) \
666 current_target.FIELD = (TARGET)->FIELD
667
668 /* Do not add any new INHERITs here. Instead, use the delegation
669 mechanism provided by make-target-delegates. */
670 for (t = target_stack; t; t = t->beneath)
671 {
672 INHERIT (to_shortname, t);
673 INHERIT (to_longname, t);
674 INHERIT (to_attach_no_wait, t);
675 INHERIT (to_have_steppable_watchpoint, t);
676 INHERIT (to_have_continuable_watchpoint, t);
677 INHERIT (to_has_thread_control, t);
678 }
679 #undef INHERIT
680
681 /* Finally, position the target-stack beneath the squashed
682 "current_target". That way code looking for a non-inherited
683 target method can quickly and simply find it. */
684 current_target.beneath = target_stack;
685
686 if (targetdebug)
687 setup_target_debug ();
688 }
689
690 /* Push a new target type into the stack of the existing target accessors,
691 possibly superseding some of the existing accessors.
692
693 Rather than allow an empty stack, we always have the dummy target at
694 the bottom stratum, so we can call the function vectors without
695 checking them. */
696
697 void
698 push_target (struct target_ops *t)
699 {
700 struct target_ops **cur;
701
702 /* Check magic number. If wrong, it probably means someone changed
703 the struct definition, but not all the places that initialize one. */
704 if (t->to_magic != OPS_MAGIC)
705 {
706 fprintf_unfiltered (gdb_stderr,
707 "Magic number of %s target struct wrong\n",
708 t->to_shortname);
709 internal_error (__FILE__, __LINE__,
710 _("failed internal consistency check"));
711 }
712
713 /* Find the proper stratum to install this target in. */
714 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
715 {
716 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
717 break;
718 }
719
720 /* If there's already targets at this stratum, remove them. */
721 /* FIXME: cagney/2003-10-15: I think this should be popping all
722 targets to CUR, and not just those at this stratum level. */
723 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
724 {
725 /* There's already something at this stratum level. Close it,
726 and un-hook it from the stack. */
727 struct target_ops *tmp = (*cur);
728
729 (*cur) = (*cur)->beneath;
730 tmp->beneath = NULL;
731 target_close (tmp);
732 }
733
734 /* We have removed all targets in our stratum, now add the new one. */
735 t->beneath = (*cur);
736 (*cur) = t;
737
738 update_current_target ();
739 }
740
741 /* Remove a target_ops vector from the stack, wherever it may be.
742 Return how many times it was removed (0 or 1). */
743
744 int
745 unpush_target (struct target_ops *t)
746 {
747 struct target_ops **cur;
748 struct target_ops *tmp;
749
750 if (t->to_stratum == dummy_stratum)
751 internal_error (__FILE__, __LINE__,
752 _("Attempt to unpush the dummy target"));
753
754 /* Look for the specified target. Note that we assume that a target
755 can only occur once in the target stack. */
756
757 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
758 {
759 if ((*cur) == t)
760 break;
761 }
762
763 /* If we don't find target_ops, quit. Only open targets should be
764 closed. */
765 if ((*cur) == NULL)
766 return 0;
767
768 /* Unchain the target. */
769 tmp = (*cur);
770 (*cur) = (*cur)->beneath;
771 tmp->beneath = NULL;
772
773 update_current_target ();
774
775 /* Finally close the target. Note we do this after unchaining, so
776 any target method calls from within the target_close
777 implementation don't end up in T anymore. */
778 target_close (t);
779
780 return 1;
781 }
782
783 /* Unpush TARGET and assert that it worked. */
784
785 static void
786 unpush_target_and_assert (struct target_ops *target)
787 {
788 if (!unpush_target (target))
789 {
790 fprintf_unfiltered (gdb_stderr,
791 "pop_all_targets couldn't find target %s\n",
792 target->to_shortname);
793 internal_error (__FILE__, __LINE__,
794 _("failed internal consistency check"));
795 }
796 }
797
798 void
799 pop_all_targets_above (enum strata above_stratum)
800 {
801 while ((int) (current_target.to_stratum) > (int) above_stratum)
802 unpush_target_and_assert (target_stack);
803 }
804
805 /* See target.h. */
806
807 void
808 pop_all_targets_at_and_above (enum strata stratum)
809 {
810 while ((int) (current_target.to_stratum) >= (int) stratum)
811 unpush_target_and_assert (target_stack);
812 }
813
814 void
815 pop_all_targets (void)
816 {
817 pop_all_targets_above (dummy_stratum);
818 }
819
820 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
821
822 int
823 target_is_pushed (struct target_ops *t)
824 {
825 struct target_ops *cur;
826
827 /* Check magic number. If wrong, it probably means someone changed
828 the struct definition, but not all the places that initialize one. */
829 if (t->to_magic != OPS_MAGIC)
830 {
831 fprintf_unfiltered (gdb_stderr,
832 "Magic number of %s target struct wrong\n",
833 t->to_shortname);
834 internal_error (__FILE__, __LINE__,
835 _("failed internal consistency check"));
836 }
837
838 for (cur = target_stack; cur != NULL; cur = cur->beneath)
839 if (cur == t)
840 return 1;
841
842 return 0;
843 }
844
845 /* Default implementation of to_get_thread_local_address. */
846
847 static void
848 generic_tls_error (void)
849 {
850 throw_error (TLS_GENERIC_ERROR,
851 _("Cannot find thread-local variables on this target"));
852 }
853
854 /* Using the objfile specified in OBJFILE, find the address for the
855 current thread's thread-local storage with offset OFFSET. */
856 CORE_ADDR
857 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
858 {
859 volatile CORE_ADDR addr = 0;
860 struct target_ops *target = &current_target;
861
862 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
863 {
864 ptid_t ptid = inferior_ptid;
865
866 TRY
867 {
868 CORE_ADDR lm_addr;
869
870 /* Fetch the load module address for this objfile. */
871 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
872 objfile);
873
874 addr = target->to_get_thread_local_address (target, ptid,
875 lm_addr, offset);
876 }
877 /* If an error occurred, print TLS related messages here. Otherwise,
878 throw the error to some higher catcher. */
879 CATCH (ex, RETURN_MASK_ALL)
880 {
881 int objfile_is_library = (objfile->flags & OBJF_SHARED);
882
883 switch (ex.error)
884 {
885 case TLS_NO_LIBRARY_SUPPORT_ERROR:
886 error (_("Cannot find thread-local variables "
887 "in this thread library."));
888 break;
889 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
890 if (objfile_is_library)
891 error (_("Cannot find shared library `%s' in dynamic"
892 " linker's load module list"), objfile_name (objfile));
893 else
894 error (_("Cannot find executable file `%s' in dynamic"
895 " linker's load module list"), objfile_name (objfile));
896 break;
897 case TLS_NOT_ALLOCATED_YET_ERROR:
898 if (objfile_is_library)
899 error (_("The inferior has not yet allocated storage for"
900 " thread-local variables in\n"
901 "the shared library `%s'\n"
902 "for %s"),
903 objfile_name (objfile), target_pid_to_str (ptid));
904 else
905 error (_("The inferior has not yet allocated storage for"
906 " thread-local variables in\n"
907 "the executable `%s'\n"
908 "for %s"),
909 objfile_name (objfile), target_pid_to_str (ptid));
910 break;
911 case TLS_GENERIC_ERROR:
912 if (objfile_is_library)
913 error (_("Cannot find thread-local storage for %s, "
914 "shared library %s:\n%s"),
915 target_pid_to_str (ptid),
916 objfile_name (objfile), ex.message);
917 else
918 error (_("Cannot find thread-local storage for %s, "
919 "executable file %s:\n%s"),
920 target_pid_to_str (ptid),
921 objfile_name (objfile), ex.message);
922 break;
923 default:
924 throw_exception (ex);
925 break;
926 }
927 }
928 END_CATCH
929 }
930 /* It wouldn't be wrong here to try a gdbarch method, too; finding
931 TLS is an ABI-specific thing. But we don't do that yet. */
932 else
933 error (_("Cannot find thread-local variables on this target"));
934
935 return addr;
936 }
937
938 const char *
939 target_xfer_status_to_string (enum target_xfer_status status)
940 {
941 #define CASE(X) case X: return #X
942 switch (status)
943 {
944 CASE(TARGET_XFER_E_IO);
945 CASE(TARGET_XFER_UNAVAILABLE);
946 default:
947 return "<unknown>";
948 }
949 #undef CASE
950 };
951
952
953 #undef MIN
954 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
955
956 /* target_read_string -- read a null terminated string, up to LEN bytes,
957 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
958 Set *STRING to a pointer to malloc'd memory containing the data; the caller
959 is responsible for freeing it. Return the number of bytes successfully
960 read. */
961
962 int
963 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
964 {
965 int tlen, offset, i;
966 gdb_byte buf[4];
967 int errcode = 0;
968 char *buffer;
969 int buffer_allocated;
970 char *bufptr;
971 unsigned int nbytes_read = 0;
972
973 gdb_assert (string);
974
975 /* Small for testing. */
976 buffer_allocated = 4;
977 buffer = (char *) xmalloc (buffer_allocated);
978 bufptr = buffer;
979
980 while (len > 0)
981 {
982 tlen = MIN (len, 4 - (memaddr & 3));
983 offset = memaddr & 3;
984
985 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
986 if (errcode != 0)
987 {
988 /* The transfer request might have crossed the boundary to an
989 unallocated region of memory. Retry the transfer, requesting
990 a single byte. */
991 tlen = 1;
992 offset = 0;
993 errcode = target_read_memory (memaddr, buf, 1);
994 if (errcode != 0)
995 goto done;
996 }
997
998 if (bufptr - buffer + tlen > buffer_allocated)
999 {
1000 unsigned int bytes;
1001
1002 bytes = bufptr - buffer;
1003 buffer_allocated *= 2;
1004 buffer = (char *) xrealloc (buffer, buffer_allocated);
1005 bufptr = buffer + bytes;
1006 }
1007
1008 for (i = 0; i < tlen; i++)
1009 {
1010 *bufptr++ = buf[i + offset];
1011 if (buf[i + offset] == '\000')
1012 {
1013 nbytes_read += i + 1;
1014 goto done;
1015 }
1016 }
1017
1018 memaddr += tlen;
1019 len -= tlen;
1020 nbytes_read += tlen;
1021 }
1022 done:
1023 *string = buffer;
1024 if (errnop != NULL)
1025 *errnop = errcode;
1026 return nbytes_read;
1027 }
1028
1029 struct target_section_table *
1030 target_get_section_table (struct target_ops *target)
1031 {
1032 return (*target->to_get_section_table) (target);
1033 }
1034
1035 /* Find a section containing ADDR. */
1036
1037 struct target_section *
1038 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1039 {
1040 struct target_section_table *table = target_get_section_table (target);
1041 struct target_section *secp;
1042
1043 if (table == NULL)
1044 return NULL;
1045
1046 for (secp = table->sections; secp < table->sections_end; secp++)
1047 {
1048 if (addr >= secp->addr && addr < secp->endaddr)
1049 return secp;
1050 }
1051 return NULL;
1052 }
1053
1054
1055 /* Helper for the memory xfer routines. Checks the attributes of the
1056 memory region of MEMADDR against the read or write being attempted.
1057 If the access is permitted returns true, otherwise returns false.
1058 REGION_P is an optional output parameter. If not-NULL, it is
1059 filled with a pointer to the memory region of MEMADDR. REG_LEN
1060 returns LEN trimmed to the end of the region. This is how much the
1061 caller can continue requesting, if the access is permitted. A
1062 single xfer request must not straddle memory region boundaries. */
1063
1064 static int
1065 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1066 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1067 struct mem_region **region_p)
1068 {
1069 struct mem_region *region;
1070
1071 region = lookup_mem_region (memaddr);
1072
1073 if (region_p != NULL)
1074 *region_p = region;
1075
1076 switch (region->attrib.mode)
1077 {
1078 case MEM_RO:
1079 if (writebuf != NULL)
1080 return 0;
1081 break;
1082
1083 case MEM_WO:
1084 if (readbuf != NULL)
1085 return 0;
1086 break;
1087
1088 case MEM_FLASH:
1089 /* We only support writing to flash during "load" for now. */
1090 if (writebuf != NULL)
1091 error (_("Writing to flash memory forbidden in this context"));
1092 break;
1093
1094 case MEM_NONE:
1095 return 0;
1096 }
1097
1098 /* region->hi == 0 means there's no upper bound. */
1099 if (memaddr + len < region->hi || region->hi == 0)
1100 *reg_len = len;
1101 else
1102 *reg_len = region->hi - memaddr;
1103
1104 return 1;
1105 }
1106
1107 /* Read memory from more than one valid target. A core file, for
1108 instance, could have some of memory but delegate other bits to
1109 the target below it. So, we must manually try all targets. */
1110
1111 enum target_xfer_status
1112 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1113 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1114 ULONGEST *xfered_len)
1115 {
1116 enum target_xfer_status res;
1117
1118 do
1119 {
1120 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1121 readbuf, writebuf, memaddr, len,
1122 xfered_len);
1123 if (res == TARGET_XFER_OK)
1124 break;
1125
1126 /* Stop if the target reports that the memory is not available. */
1127 if (res == TARGET_XFER_UNAVAILABLE)
1128 break;
1129
1130 /* We want to continue past core files to executables, but not
1131 past a running target's memory. */
1132 if (ops->to_has_all_memory (ops))
1133 break;
1134
1135 ops = ops->beneath;
1136 }
1137 while (ops != NULL);
1138
1139 /* The cache works at the raw memory level. Make sure the cache
1140 gets updated with raw contents no matter what kind of memory
1141 object was originally being written. Note we do write-through
1142 first, so that if it fails, we don't write to the cache contents
1143 that never made it to the target. */
1144 if (writebuf != NULL
1145 && !ptid_equal (inferior_ptid, null_ptid)
1146 && target_dcache_init_p ()
1147 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1148 {
1149 DCACHE *dcache = target_dcache_get ();
1150
1151 /* Note that writing to an area of memory which wasn't present
1152 in the cache doesn't cause it to be loaded in. */
1153 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1154 }
1155
1156 return res;
1157 }
1158
1159 /* Perform a partial memory transfer.
1160 For docs see target.h, to_xfer_partial. */
1161
1162 static enum target_xfer_status
1163 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1164 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1165 ULONGEST len, ULONGEST *xfered_len)
1166 {
1167 enum target_xfer_status res;
1168 ULONGEST reg_len;
1169 struct mem_region *region;
1170 struct inferior *inf;
1171
1172 /* For accesses to unmapped overlay sections, read directly from
1173 files. Must do this first, as MEMADDR may need adjustment. */
1174 if (readbuf != NULL && overlay_debugging)
1175 {
1176 struct obj_section *section = find_pc_overlay (memaddr);
1177
1178 if (pc_in_unmapped_range (memaddr, section))
1179 {
1180 struct target_section_table *table
1181 = target_get_section_table (ops);
1182 const char *section_name = section->the_bfd_section->name;
1183
1184 memaddr = overlay_mapped_address (memaddr, section);
1185 return section_table_xfer_memory_partial (readbuf, writebuf,
1186 memaddr, len, xfered_len,
1187 table->sections,
1188 table->sections_end,
1189 section_name);
1190 }
1191 }
1192
1193 /* Try the executable files, if "trust-readonly-sections" is set. */
1194 if (readbuf != NULL && trust_readonly)
1195 {
1196 struct target_section *secp;
1197 struct target_section_table *table;
1198
1199 secp = target_section_by_addr (ops, memaddr);
1200 if (secp != NULL
1201 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1202 secp->the_bfd_section)
1203 & SEC_READONLY))
1204 {
1205 table = target_get_section_table (ops);
1206 return section_table_xfer_memory_partial (readbuf, writebuf,
1207 memaddr, len, xfered_len,
1208 table->sections,
1209 table->sections_end,
1210 NULL);
1211 }
1212 }
1213
1214 /* Try GDB's internal data cache. */
1215
1216 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1217 &region))
1218 return TARGET_XFER_E_IO;
1219
1220 if (!ptid_equal (inferior_ptid, null_ptid))
1221 inf = find_inferior_ptid (inferior_ptid);
1222 else
1223 inf = NULL;
1224
1225 if (inf != NULL
1226 && readbuf != NULL
1227 /* The dcache reads whole cache lines; that doesn't play well
1228 with reading from a trace buffer, because reading outside of
1229 the collected memory range fails. */
1230 && get_traceframe_number () == -1
1231 && (region->attrib.cache
1232 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1233 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1234 {
1235 DCACHE *dcache = target_dcache_get_or_init ();
1236
1237 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1238 reg_len, xfered_len);
1239 }
1240
1241 /* If none of those methods found the memory we wanted, fall back
1242 to a target partial transfer. Normally a single call to
1243 to_xfer_partial is enough; if it doesn't recognize an object
1244 it will call the to_xfer_partial of the next target down.
1245 But for memory this won't do. Memory is the only target
1246 object which can be read from more than one valid target.
1247 A core file, for instance, could have some of memory but
1248 delegate other bits to the target below it. So, we must
1249 manually try all targets. */
1250
1251 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1252 xfered_len);
1253
1254 /* If we still haven't got anything, return the last error. We
1255 give up. */
1256 return res;
1257 }
1258
1259 /* Perform a partial memory transfer. For docs see target.h,
1260 to_xfer_partial. */
1261
1262 static enum target_xfer_status
1263 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1264 gdb_byte *readbuf, const gdb_byte *writebuf,
1265 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1266 {
1267 enum target_xfer_status res;
1268
1269 /* Zero length requests are ok and require no work. */
1270 if (len == 0)
1271 return TARGET_XFER_EOF;
1272
1273 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1274 breakpoint insns, thus hiding out from higher layers whether
1275 there are software breakpoints inserted in the code stream. */
1276 if (readbuf != NULL)
1277 {
1278 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1279 xfered_len);
1280
1281 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1282 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1283 }
1284 else
1285 {
1286 gdb_byte *buf;
1287 struct cleanup *old_chain;
1288
1289 /* A large write request is likely to be partially satisfied
1290 by memory_xfer_partial_1. We will continually malloc
1291 and free a copy of the entire write request for breakpoint
1292 shadow handling even though we only end up writing a small
1293 subset of it. Cap writes to a limit specified by the target
1294 to mitigate this. */
1295 len = min (ops->to_get_memory_xfer_limit (ops), len);
1296
1297 buf = (gdb_byte *) xmalloc (len);
1298 old_chain = make_cleanup (xfree, buf);
1299 memcpy (buf, writebuf, len);
1300
1301 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1302 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1303 xfered_len);
1304
1305 do_cleanups (old_chain);
1306 }
1307
1308 return res;
1309 }
1310
1311 static void
1312 restore_show_memory_breakpoints (void *arg)
1313 {
1314 show_memory_breakpoints = (uintptr_t) arg;
1315 }
1316
1317 struct cleanup *
1318 make_show_memory_breakpoints_cleanup (int show)
1319 {
1320 int current = show_memory_breakpoints;
1321
1322 show_memory_breakpoints = show;
1323 return make_cleanup (restore_show_memory_breakpoints,
1324 (void *) (uintptr_t) current);
1325 }
1326
1327 /* For docs see target.h, to_xfer_partial. */
1328
1329 enum target_xfer_status
1330 target_xfer_partial (struct target_ops *ops,
1331 enum target_object object, const char *annex,
1332 gdb_byte *readbuf, const gdb_byte *writebuf,
1333 ULONGEST offset, ULONGEST len,
1334 ULONGEST *xfered_len)
1335 {
1336 enum target_xfer_status retval;
1337
1338 gdb_assert (ops->to_xfer_partial != NULL);
1339
1340 /* Transfer is done when LEN is zero. */
1341 if (len == 0)
1342 return TARGET_XFER_EOF;
1343
1344 if (writebuf && !may_write_memory)
1345 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1346 core_addr_to_string_nz (offset), plongest (len));
1347
1348 *xfered_len = 0;
1349
1350 /* If this is a memory transfer, let the memory-specific code
1351 have a look at it instead. Memory transfers are more
1352 complicated. */
1353 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1354 || object == TARGET_OBJECT_CODE_MEMORY)
1355 retval = memory_xfer_partial (ops, object, readbuf,
1356 writebuf, offset, len, xfered_len);
1357 else if (object == TARGET_OBJECT_RAW_MEMORY)
1358 {
1359 /* Skip/avoid accessing the target if the memory region
1360 attributes block the access. Check this here instead of in
1361 raw_memory_xfer_partial as otherwise we'd end up checking
1362 this twice in the case of the memory_xfer_partial path is
1363 taken; once before checking the dcache, and another in the
1364 tail call to raw_memory_xfer_partial. */
1365 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1366 NULL))
1367 return TARGET_XFER_E_IO;
1368
1369 /* Request the normal memory object from other layers. */
1370 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1371 xfered_len);
1372 }
1373 else
1374 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1375 writebuf, offset, len, xfered_len);
1376
1377 if (targetdebug)
1378 {
1379 const unsigned char *myaddr = NULL;
1380
1381 fprintf_unfiltered (gdb_stdlog,
1382 "%s:target_xfer_partial "
1383 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1384 ops->to_shortname,
1385 (int) object,
1386 (annex ? annex : "(null)"),
1387 host_address_to_string (readbuf),
1388 host_address_to_string (writebuf),
1389 core_addr_to_string_nz (offset),
1390 pulongest (len), retval,
1391 pulongest (*xfered_len));
1392
1393 if (readbuf)
1394 myaddr = readbuf;
1395 if (writebuf)
1396 myaddr = writebuf;
1397 if (retval == TARGET_XFER_OK && myaddr != NULL)
1398 {
1399 int i;
1400
1401 fputs_unfiltered (", bytes =", gdb_stdlog);
1402 for (i = 0; i < *xfered_len; i++)
1403 {
1404 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1405 {
1406 if (targetdebug < 2 && i > 0)
1407 {
1408 fprintf_unfiltered (gdb_stdlog, " ...");
1409 break;
1410 }
1411 fprintf_unfiltered (gdb_stdlog, "\n");
1412 }
1413
1414 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1415 }
1416 }
1417
1418 fputc_unfiltered ('\n', gdb_stdlog);
1419 }
1420
1421 /* Check implementations of to_xfer_partial update *XFERED_LEN
1422 properly. Do assertion after printing debug messages, so that we
1423 can find more clues on assertion failure from debugging messages. */
1424 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1425 gdb_assert (*xfered_len > 0);
1426
1427 return retval;
1428 }
1429
1430 /* Read LEN bytes of target memory at address MEMADDR, placing the
1431 results in GDB's memory at MYADDR. Returns either 0 for success or
1432 -1 if any error occurs.
1433
1434 If an error occurs, no guarantee is made about the contents of the data at
1435 MYADDR. In particular, the caller should not depend upon partial reads
1436 filling the buffer with good data. There is no way for the caller to know
1437 how much good data might have been transfered anyway. Callers that can
1438 deal with partial reads should call target_read (which will retry until
1439 it makes no progress, and then return how much was transferred). */
1440
1441 int
1442 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1443 {
1444 /* Dispatch to the topmost target, not the flattened current_target.
1445 Memory accesses check target->to_has_(all_)memory, and the
1446 flattened target doesn't inherit those. */
1447 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1448 myaddr, memaddr, len) == len)
1449 return 0;
1450 else
1451 return -1;
1452 }
1453
1454 /* See target/target.h. */
1455
1456 int
1457 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1458 {
1459 gdb_byte buf[4];
1460 int r;
1461
1462 r = target_read_memory (memaddr, buf, sizeof buf);
1463 if (r != 0)
1464 return r;
1465 *result = extract_unsigned_integer (buf, sizeof buf,
1466 gdbarch_byte_order (target_gdbarch ()));
1467 return 0;
1468 }
1469
1470 /* Like target_read_memory, but specify explicitly that this is a read
1471 from the target's raw memory. That is, this read bypasses the
1472 dcache, breakpoint shadowing, etc. */
1473
1474 int
1475 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1476 {
1477 /* See comment in target_read_memory about why the request starts at
1478 current_target.beneath. */
1479 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1480 myaddr, memaddr, len) == len)
1481 return 0;
1482 else
1483 return -1;
1484 }
1485
1486 /* Like target_read_memory, but specify explicitly that this is a read from
1487 the target's stack. This may trigger different cache behavior. */
1488
1489 int
1490 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1491 {
1492 /* See comment in target_read_memory about why the request starts at
1493 current_target.beneath. */
1494 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1495 myaddr, memaddr, len) == len)
1496 return 0;
1497 else
1498 return -1;
1499 }
1500
1501 /* Like target_read_memory, but specify explicitly that this is a read from
1502 the target's code. This may trigger different cache behavior. */
1503
1504 int
1505 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1506 {
1507 /* See comment in target_read_memory about why the request starts at
1508 current_target.beneath. */
1509 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1510 myaddr, memaddr, len) == len)
1511 return 0;
1512 else
1513 return -1;
1514 }
1515
1516 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1517 Returns either 0 for success or -1 if any error occurs. If an
1518 error occurs, no guarantee is made about how much data got written.
1519 Callers that can deal with partial writes should call
1520 target_write. */
1521
1522 int
1523 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1524 {
1525 /* See comment in target_read_memory about why the request starts at
1526 current_target.beneath. */
1527 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1528 myaddr, memaddr, len) == len)
1529 return 0;
1530 else
1531 return -1;
1532 }
1533
1534 /* Write LEN bytes from MYADDR to target raw memory at address
1535 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1536 If an error occurs, no guarantee is made about how much data got
1537 written. Callers that can deal with partial writes should call
1538 target_write. */
1539
1540 int
1541 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1542 {
1543 /* See comment in target_read_memory about why the request starts at
1544 current_target.beneath. */
1545 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1546 myaddr, memaddr, len) == len)
1547 return 0;
1548 else
1549 return -1;
1550 }
1551
1552 /* Fetch the target's memory map. */
1553
1554 VEC(mem_region_s) *
1555 target_memory_map (void)
1556 {
1557 VEC(mem_region_s) *result;
1558 struct mem_region *last_one, *this_one;
1559 int ix;
1560 result = current_target.to_memory_map (&current_target);
1561 if (result == NULL)
1562 return NULL;
1563
1564 qsort (VEC_address (mem_region_s, result),
1565 VEC_length (mem_region_s, result),
1566 sizeof (struct mem_region), mem_region_cmp);
1567
1568 /* Check that regions do not overlap. Simultaneously assign
1569 a numbering for the "mem" commands to use to refer to
1570 each region. */
1571 last_one = NULL;
1572 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1573 {
1574 this_one->number = ix;
1575
1576 if (last_one && last_one->hi > this_one->lo)
1577 {
1578 warning (_("Overlapping regions in memory map: ignoring"));
1579 VEC_free (mem_region_s, result);
1580 return NULL;
1581 }
1582 last_one = this_one;
1583 }
1584
1585 return result;
1586 }
1587
1588 void
1589 target_flash_erase (ULONGEST address, LONGEST length)
1590 {
1591 current_target.to_flash_erase (&current_target, address, length);
1592 }
1593
1594 void
1595 target_flash_done (void)
1596 {
1597 current_target.to_flash_done (&current_target);
1598 }
1599
1600 static void
1601 show_trust_readonly (struct ui_file *file, int from_tty,
1602 struct cmd_list_element *c, const char *value)
1603 {
1604 fprintf_filtered (file,
1605 _("Mode for reading from readonly sections is %s.\n"),
1606 value);
1607 }
1608
1609 /* Target vector read/write partial wrapper functions. */
1610
1611 static enum target_xfer_status
1612 target_read_partial (struct target_ops *ops,
1613 enum target_object object,
1614 const char *annex, gdb_byte *buf,
1615 ULONGEST offset, ULONGEST len,
1616 ULONGEST *xfered_len)
1617 {
1618 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1619 xfered_len);
1620 }
1621
1622 static enum target_xfer_status
1623 target_write_partial (struct target_ops *ops,
1624 enum target_object object,
1625 const char *annex, const gdb_byte *buf,
1626 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1627 {
1628 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1629 xfered_len);
1630 }
1631
1632 /* Wrappers to perform the full transfer. */
1633
1634 /* For docs on target_read see target.h. */
1635
1636 LONGEST
1637 target_read (struct target_ops *ops,
1638 enum target_object object,
1639 const char *annex, gdb_byte *buf,
1640 ULONGEST offset, LONGEST len)
1641 {
1642 LONGEST xfered_total = 0;
1643 int unit_size = 1;
1644
1645 /* If we are reading from a memory object, find the length of an addressable
1646 unit for that architecture. */
1647 if (object == TARGET_OBJECT_MEMORY
1648 || object == TARGET_OBJECT_STACK_MEMORY
1649 || object == TARGET_OBJECT_CODE_MEMORY
1650 || object == TARGET_OBJECT_RAW_MEMORY)
1651 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1652
1653 while (xfered_total < len)
1654 {
1655 ULONGEST xfered_partial;
1656 enum target_xfer_status status;
1657
1658 status = target_read_partial (ops, object, annex,
1659 buf + xfered_total * unit_size,
1660 offset + xfered_total, len - xfered_total,
1661 &xfered_partial);
1662
1663 /* Call an observer, notifying them of the xfer progress? */
1664 if (status == TARGET_XFER_EOF)
1665 return xfered_total;
1666 else if (status == TARGET_XFER_OK)
1667 {
1668 xfered_total += xfered_partial;
1669 QUIT;
1670 }
1671 else
1672 return TARGET_XFER_E_IO;
1673
1674 }
1675 return len;
1676 }
1677
1678 /* Assuming that the entire [begin, end) range of memory cannot be
1679 read, try to read whatever subrange is possible to read.
1680
1681 The function returns, in RESULT, either zero or one memory block.
1682 If there's a readable subrange at the beginning, it is completely
1683 read and returned. Any further readable subrange will not be read.
1684 Otherwise, if there's a readable subrange at the end, it will be
1685 completely read and returned. Any readable subranges before it
1686 (obviously, not starting at the beginning), will be ignored. In
1687 other cases -- either no readable subrange, or readable subrange(s)
1688 that is neither at the beginning, or end, nothing is returned.
1689
1690 The purpose of this function is to handle a read across a boundary
1691 of accessible memory in a case when memory map is not available.
1692 The above restrictions are fine for this case, but will give
1693 incorrect results if the memory is 'patchy'. However, supporting
1694 'patchy' memory would require trying to read every single byte,
1695 and it seems unacceptable solution. Explicit memory map is
1696 recommended for this case -- and target_read_memory_robust will
1697 take care of reading multiple ranges then. */
1698
1699 static void
1700 read_whatever_is_readable (struct target_ops *ops,
1701 const ULONGEST begin, const ULONGEST end,
1702 int unit_size,
1703 VEC(memory_read_result_s) **result)
1704 {
1705 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1706 ULONGEST current_begin = begin;
1707 ULONGEST current_end = end;
1708 int forward;
1709 memory_read_result_s r;
1710 ULONGEST xfered_len;
1711
1712 /* If we previously failed to read 1 byte, nothing can be done here. */
1713 if (end - begin <= 1)
1714 {
1715 xfree (buf);
1716 return;
1717 }
1718
1719 /* Check that either first or the last byte is readable, and give up
1720 if not. This heuristic is meant to permit reading accessible memory
1721 at the boundary of accessible region. */
1722 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1723 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1724 {
1725 forward = 1;
1726 ++current_begin;
1727 }
1728 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1729 buf + (end - begin) - 1, end - 1, 1,
1730 &xfered_len) == TARGET_XFER_OK)
1731 {
1732 forward = 0;
1733 --current_end;
1734 }
1735 else
1736 {
1737 xfree (buf);
1738 return;
1739 }
1740
1741 /* Loop invariant is that the [current_begin, current_end) was previously
1742 found to be not readable as a whole.
1743
1744 Note loop condition -- if the range has 1 byte, we can't divide the range
1745 so there's no point trying further. */
1746 while (current_end - current_begin > 1)
1747 {
1748 ULONGEST first_half_begin, first_half_end;
1749 ULONGEST second_half_begin, second_half_end;
1750 LONGEST xfer;
1751 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1752
1753 if (forward)
1754 {
1755 first_half_begin = current_begin;
1756 first_half_end = middle;
1757 second_half_begin = middle;
1758 second_half_end = current_end;
1759 }
1760 else
1761 {
1762 first_half_begin = middle;
1763 first_half_end = current_end;
1764 second_half_begin = current_begin;
1765 second_half_end = middle;
1766 }
1767
1768 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1769 buf + (first_half_begin - begin) * unit_size,
1770 first_half_begin,
1771 first_half_end - first_half_begin);
1772
1773 if (xfer == first_half_end - first_half_begin)
1774 {
1775 /* This half reads up fine. So, the error must be in the
1776 other half. */
1777 current_begin = second_half_begin;
1778 current_end = second_half_end;
1779 }
1780 else
1781 {
1782 /* This half is not readable. Because we've tried one byte, we
1783 know some part of this half if actually readable. Go to the next
1784 iteration to divide again and try to read.
1785
1786 We don't handle the other half, because this function only tries
1787 to read a single readable subrange. */
1788 current_begin = first_half_begin;
1789 current_end = first_half_end;
1790 }
1791 }
1792
1793 if (forward)
1794 {
1795 /* The [begin, current_begin) range has been read. */
1796 r.begin = begin;
1797 r.end = current_begin;
1798 r.data = buf;
1799 }
1800 else
1801 {
1802 /* The [current_end, end) range has been read. */
1803 LONGEST region_len = end - current_end;
1804
1805 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1806 memcpy (r.data, buf + (current_end - begin) * unit_size,
1807 region_len * unit_size);
1808 r.begin = current_end;
1809 r.end = end;
1810 xfree (buf);
1811 }
1812 VEC_safe_push(memory_read_result_s, (*result), &r);
1813 }
1814
1815 void
1816 free_memory_read_result_vector (void *x)
1817 {
1818 VEC(memory_read_result_s) **v = (VEC(memory_read_result_s) **) x;
1819 memory_read_result_s *current;
1820 int ix;
1821
1822 for (ix = 0; VEC_iterate (memory_read_result_s, *v, ix, current); ++ix)
1823 {
1824 xfree (current->data);
1825 }
1826 VEC_free (memory_read_result_s, *v);
1827 }
1828
1829 VEC(memory_read_result_s) *
1830 read_memory_robust (struct target_ops *ops,
1831 const ULONGEST offset, const LONGEST len)
1832 {
1833 VEC(memory_read_result_s) *result = 0;
1834 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1835 struct cleanup *cleanup = make_cleanup (free_memory_read_result_vector,
1836 &result);
1837
1838 LONGEST xfered_total = 0;
1839 while (xfered_total < len)
1840 {
1841 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1842 LONGEST region_len;
1843
1844 /* If there is no explicit region, a fake one should be created. */
1845 gdb_assert (region);
1846
1847 if (region->hi == 0)
1848 region_len = len - xfered_total;
1849 else
1850 region_len = region->hi - offset;
1851
1852 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1853 {
1854 /* Cannot read this region. Note that we can end up here only
1855 if the region is explicitly marked inaccessible, or
1856 'inaccessible-by-default' is in effect. */
1857 xfered_total += region_len;
1858 }
1859 else
1860 {
1861 LONGEST to_read = min (len - xfered_total, region_len);
1862 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1863 struct cleanup *inner_cleanup = make_cleanup (xfree, buffer);
1864
1865 LONGEST xfered_partial =
1866 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1867 (gdb_byte *) buffer,
1868 offset + xfered_total, to_read);
1869 /* Call an observer, notifying them of the xfer progress? */
1870 if (xfered_partial <= 0)
1871 {
1872 /* Got an error reading full chunk. See if maybe we can read
1873 some subrange. */
1874 do_cleanups (inner_cleanup);
1875 read_whatever_is_readable (ops, offset + xfered_total,
1876 offset + xfered_total + to_read,
1877 unit_size, &result);
1878 xfered_total += to_read;
1879 }
1880 else
1881 {
1882 struct memory_read_result r;
1883
1884 discard_cleanups (inner_cleanup);
1885 r.data = buffer;
1886 r.begin = offset + xfered_total;
1887 r.end = r.begin + xfered_partial;
1888 VEC_safe_push (memory_read_result_s, result, &r);
1889 xfered_total += xfered_partial;
1890 }
1891 QUIT;
1892 }
1893 }
1894
1895 discard_cleanups (cleanup);
1896 return result;
1897 }
1898
1899
1900 /* An alternative to target_write with progress callbacks. */
1901
1902 LONGEST
1903 target_write_with_progress (struct target_ops *ops,
1904 enum target_object object,
1905 const char *annex, const gdb_byte *buf,
1906 ULONGEST offset, LONGEST len,
1907 void (*progress) (ULONGEST, void *), void *baton)
1908 {
1909 LONGEST xfered_total = 0;
1910 int unit_size = 1;
1911
1912 /* If we are writing to a memory object, find the length of an addressable
1913 unit for that architecture. */
1914 if (object == TARGET_OBJECT_MEMORY
1915 || object == TARGET_OBJECT_STACK_MEMORY
1916 || object == TARGET_OBJECT_CODE_MEMORY
1917 || object == TARGET_OBJECT_RAW_MEMORY)
1918 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1919
1920 /* Give the progress callback a chance to set up. */
1921 if (progress)
1922 (*progress) (0, baton);
1923
1924 while (xfered_total < len)
1925 {
1926 ULONGEST xfered_partial;
1927 enum target_xfer_status status;
1928
1929 status = target_write_partial (ops, object, annex,
1930 buf + xfered_total * unit_size,
1931 offset + xfered_total, len - xfered_total,
1932 &xfered_partial);
1933
1934 if (status != TARGET_XFER_OK)
1935 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1936
1937 if (progress)
1938 (*progress) (xfered_partial, baton);
1939
1940 xfered_total += xfered_partial;
1941 QUIT;
1942 }
1943 return len;
1944 }
1945
1946 /* For docs on target_write see target.h. */
1947
1948 LONGEST
1949 target_write (struct target_ops *ops,
1950 enum target_object object,
1951 const char *annex, const gdb_byte *buf,
1952 ULONGEST offset, LONGEST len)
1953 {
1954 return target_write_with_progress (ops, object, annex, buf, offset, len,
1955 NULL, NULL);
1956 }
1957
1958 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1959 the size of the transferred data. PADDING additional bytes are
1960 available in *BUF_P. This is a helper function for
1961 target_read_alloc; see the declaration of that function for more
1962 information. */
1963
1964 static LONGEST
1965 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1966 const char *annex, gdb_byte **buf_p, int padding)
1967 {
1968 size_t buf_alloc, buf_pos;
1969 gdb_byte *buf;
1970
1971 /* This function does not have a length parameter; it reads the
1972 entire OBJECT). Also, it doesn't support objects fetched partly
1973 from one target and partly from another (in a different stratum,
1974 e.g. a core file and an executable). Both reasons make it
1975 unsuitable for reading memory. */
1976 gdb_assert (object != TARGET_OBJECT_MEMORY);
1977
1978 /* Start by reading up to 4K at a time. The target will throttle
1979 this number down if necessary. */
1980 buf_alloc = 4096;
1981 buf = (gdb_byte *) xmalloc (buf_alloc);
1982 buf_pos = 0;
1983 while (1)
1984 {
1985 ULONGEST xfered_len;
1986 enum target_xfer_status status;
1987
1988 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1989 buf_pos, buf_alloc - buf_pos - padding,
1990 &xfered_len);
1991
1992 if (status == TARGET_XFER_EOF)
1993 {
1994 /* Read all there was. */
1995 if (buf_pos == 0)
1996 xfree (buf);
1997 else
1998 *buf_p = buf;
1999 return buf_pos;
2000 }
2001 else if (status != TARGET_XFER_OK)
2002 {
2003 /* An error occurred. */
2004 xfree (buf);
2005 return TARGET_XFER_E_IO;
2006 }
2007
2008 buf_pos += xfered_len;
2009
2010 /* If the buffer is filling up, expand it. */
2011 if (buf_alloc < buf_pos * 2)
2012 {
2013 buf_alloc *= 2;
2014 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2015 }
2016
2017 QUIT;
2018 }
2019 }
2020
2021 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2022 the size of the transferred data. See the declaration in "target.h"
2023 function for more information about the return value. */
2024
2025 LONGEST
2026 target_read_alloc (struct target_ops *ops, enum target_object object,
2027 const char *annex, gdb_byte **buf_p)
2028 {
2029 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2030 }
2031
2032 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2033 returned as a string, allocated using xmalloc. If an error occurs
2034 or the transfer is unsupported, NULL is returned. Empty objects
2035 are returned as allocated but empty strings. A warning is issued
2036 if the result contains any embedded NUL bytes. */
2037
2038 char *
2039 target_read_stralloc (struct target_ops *ops, enum target_object object,
2040 const char *annex)
2041 {
2042 gdb_byte *buffer;
2043 char *bufstr;
2044 LONGEST i, transferred;
2045
2046 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2047 bufstr = (char *) buffer;
2048
2049 if (transferred < 0)
2050 return NULL;
2051
2052 if (transferred == 0)
2053 return xstrdup ("");
2054
2055 bufstr[transferred] = 0;
2056
2057 /* Check for embedded NUL bytes; but allow trailing NULs. */
2058 for (i = strlen (bufstr); i < transferred; i++)
2059 if (bufstr[i] != 0)
2060 {
2061 warning (_("target object %d, annex %s, "
2062 "contained unexpected null characters"),
2063 (int) object, annex ? annex : "(none)");
2064 break;
2065 }
2066
2067 return bufstr;
2068 }
2069
2070 /* Memory transfer methods. */
2071
2072 void
2073 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2074 LONGEST len)
2075 {
2076 /* This method is used to read from an alternate, non-current
2077 target. This read must bypass the overlay support (as symbols
2078 don't match this target), and GDB's internal cache (wrong cache
2079 for this target). */
2080 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2081 != len)
2082 memory_error (TARGET_XFER_E_IO, addr);
2083 }
2084
2085 ULONGEST
2086 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2087 int len, enum bfd_endian byte_order)
2088 {
2089 gdb_byte buf[sizeof (ULONGEST)];
2090
2091 gdb_assert (len <= sizeof (buf));
2092 get_target_memory (ops, addr, buf, len);
2093 return extract_unsigned_integer (buf, len, byte_order);
2094 }
2095
2096 /* See target.h. */
2097
2098 int
2099 target_insert_breakpoint (struct gdbarch *gdbarch,
2100 struct bp_target_info *bp_tgt)
2101 {
2102 if (!may_insert_breakpoints)
2103 {
2104 warning (_("May not insert breakpoints"));
2105 return 1;
2106 }
2107
2108 return current_target.to_insert_breakpoint (&current_target,
2109 gdbarch, bp_tgt);
2110 }
2111
2112 /* See target.h. */
2113
2114 int
2115 target_remove_breakpoint (struct gdbarch *gdbarch,
2116 struct bp_target_info *bp_tgt,
2117 enum remove_bp_reason reason)
2118 {
2119 /* This is kind of a weird case to handle, but the permission might
2120 have been changed after breakpoints were inserted - in which case
2121 we should just take the user literally and assume that any
2122 breakpoints should be left in place. */
2123 if (!may_insert_breakpoints)
2124 {
2125 warning (_("May not remove breakpoints"));
2126 return 1;
2127 }
2128
2129 return current_target.to_remove_breakpoint (&current_target,
2130 gdbarch, bp_tgt, reason);
2131 }
2132
2133 static void
2134 target_info (char *args, int from_tty)
2135 {
2136 struct target_ops *t;
2137 int has_all_mem = 0;
2138
2139 if (symfile_objfile != NULL)
2140 printf_unfiltered (_("Symbols from \"%s\".\n"),
2141 objfile_name (symfile_objfile));
2142
2143 for (t = target_stack; t != NULL; t = t->beneath)
2144 {
2145 if (!(*t->to_has_memory) (t))
2146 continue;
2147
2148 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2149 continue;
2150 if (has_all_mem)
2151 printf_unfiltered (_("\tWhile running this, "
2152 "GDB does not access memory from...\n"));
2153 printf_unfiltered ("%s:\n", t->to_longname);
2154 (t->to_files_info) (t);
2155 has_all_mem = (*t->to_has_all_memory) (t);
2156 }
2157 }
2158
2159 /* This function is called before any new inferior is created, e.g.
2160 by running a program, attaching, or connecting to a target.
2161 It cleans up any state from previous invocations which might
2162 change between runs. This is a subset of what target_preopen
2163 resets (things which might change between targets). */
2164
2165 void
2166 target_pre_inferior (int from_tty)
2167 {
2168 /* Clear out solib state. Otherwise the solib state of the previous
2169 inferior might have survived and is entirely wrong for the new
2170 target. This has been observed on GNU/Linux using glibc 2.3. How
2171 to reproduce:
2172
2173 bash$ ./foo&
2174 [1] 4711
2175 bash$ ./foo&
2176 [1] 4712
2177 bash$ gdb ./foo
2178 [...]
2179 (gdb) attach 4711
2180 (gdb) detach
2181 (gdb) attach 4712
2182 Cannot access memory at address 0xdeadbeef
2183 */
2184
2185 /* In some OSs, the shared library list is the same/global/shared
2186 across inferiors. If code is shared between processes, so are
2187 memory regions and features. */
2188 if (!gdbarch_has_global_solist (target_gdbarch ()))
2189 {
2190 no_shared_libraries (NULL, from_tty);
2191
2192 invalidate_target_mem_regions ();
2193
2194 target_clear_description ();
2195 }
2196
2197 /* attach_flag may be set if the previous process associated with
2198 the inferior was attached to. */
2199 current_inferior ()->attach_flag = 0;
2200
2201 current_inferior ()->highest_thread_num = 0;
2202
2203 agent_capability_invalidate ();
2204 }
2205
2206 /* Callback for iterate_over_inferiors. Gets rid of the given
2207 inferior. */
2208
2209 static int
2210 dispose_inferior (struct inferior *inf, void *args)
2211 {
2212 struct thread_info *thread;
2213
2214 thread = any_thread_of_process (inf->pid);
2215 if (thread)
2216 {
2217 switch_to_thread (thread->ptid);
2218
2219 /* Core inferiors actually should be detached, not killed. */
2220 if (target_has_execution)
2221 target_kill ();
2222 else
2223 target_detach (NULL, 0);
2224 }
2225
2226 return 0;
2227 }
2228
2229 /* This is to be called by the open routine before it does
2230 anything. */
2231
2232 void
2233 target_preopen (int from_tty)
2234 {
2235 dont_repeat ();
2236
2237 if (have_inferiors ())
2238 {
2239 if (!from_tty
2240 || !have_live_inferiors ()
2241 || query (_("A program is being debugged already. Kill it? ")))
2242 iterate_over_inferiors (dispose_inferior, NULL);
2243 else
2244 error (_("Program not killed."));
2245 }
2246
2247 /* Calling target_kill may remove the target from the stack. But if
2248 it doesn't (which seems like a win for UDI), remove it now. */
2249 /* Leave the exec target, though. The user may be switching from a
2250 live process to a core of the same program. */
2251 pop_all_targets_above (file_stratum);
2252
2253 target_pre_inferior (from_tty);
2254 }
2255
2256 /* Detach a target after doing deferred register stores. */
2257
2258 void
2259 target_detach (const char *args, int from_tty)
2260 {
2261 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2262 /* Don't remove global breakpoints here. They're removed on
2263 disconnection from the target. */
2264 ;
2265 else
2266 /* If we're in breakpoints-always-inserted mode, have to remove
2267 them before detaching. */
2268 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2269
2270 prepare_for_detach ();
2271
2272 current_target.to_detach (&current_target, args, from_tty);
2273 }
2274
2275 void
2276 target_disconnect (const char *args, int from_tty)
2277 {
2278 /* If we're in breakpoints-always-inserted mode or if breakpoints
2279 are global across processes, we have to remove them before
2280 disconnecting. */
2281 remove_breakpoints ();
2282
2283 current_target.to_disconnect (&current_target, args, from_tty);
2284 }
2285
2286 /* See target/target.h. */
2287
2288 ptid_t
2289 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2290 {
2291 return (current_target.to_wait) (&current_target, ptid, status, options);
2292 }
2293
2294 /* See target.h. */
2295
2296 ptid_t
2297 default_target_wait (struct target_ops *ops,
2298 ptid_t ptid, struct target_waitstatus *status,
2299 int options)
2300 {
2301 status->kind = TARGET_WAITKIND_IGNORE;
2302 return minus_one_ptid;
2303 }
2304
2305 char *
2306 target_pid_to_str (ptid_t ptid)
2307 {
2308 return (*current_target.to_pid_to_str) (&current_target, ptid);
2309 }
2310
2311 const char *
2312 target_thread_name (struct thread_info *info)
2313 {
2314 return current_target.to_thread_name (&current_target, info);
2315 }
2316
2317 void
2318 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2319 {
2320 target_dcache_invalidate ();
2321
2322 current_target.to_resume (&current_target, ptid, step, signal);
2323
2324 registers_changed_ptid (ptid);
2325 /* We only set the internal executing state here. The user/frontend
2326 running state is set at a higher level. */
2327 set_executing (ptid, 1);
2328 clear_inline_frame_state (ptid);
2329 }
2330
2331 void
2332 target_pass_signals (int numsigs, unsigned char *pass_signals)
2333 {
2334 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2335 }
2336
2337 void
2338 target_program_signals (int numsigs, unsigned char *program_signals)
2339 {
2340 (*current_target.to_program_signals) (&current_target,
2341 numsigs, program_signals);
2342 }
2343
2344 static int
2345 default_follow_fork (struct target_ops *self, int follow_child,
2346 int detach_fork)
2347 {
2348 /* Some target returned a fork event, but did not know how to follow it. */
2349 internal_error (__FILE__, __LINE__,
2350 _("could not find a target to follow fork"));
2351 }
2352
2353 /* Look through the list of possible targets for a target that can
2354 follow forks. */
2355
2356 int
2357 target_follow_fork (int follow_child, int detach_fork)
2358 {
2359 return current_target.to_follow_fork (&current_target,
2360 follow_child, detach_fork);
2361 }
2362
2363 /* Target wrapper for follow exec hook. */
2364
2365 void
2366 target_follow_exec (struct inferior *inf, char *execd_pathname)
2367 {
2368 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2369 }
2370
2371 static void
2372 default_mourn_inferior (struct target_ops *self)
2373 {
2374 internal_error (__FILE__, __LINE__,
2375 _("could not find a target to follow mourn inferior"));
2376 }
2377
2378 void
2379 target_mourn_inferior (void)
2380 {
2381 current_target.to_mourn_inferior (&current_target);
2382
2383 /* We no longer need to keep handles on any of the object files.
2384 Make sure to release them to avoid unnecessarily locking any
2385 of them while we're not actually debugging. */
2386 bfd_cache_close_all ();
2387 }
2388
2389 /* Look for a target which can describe architectural features, starting
2390 from TARGET. If we find one, return its description. */
2391
2392 const struct target_desc *
2393 target_read_description (struct target_ops *target)
2394 {
2395 return target->to_read_description (target);
2396 }
2397
2398 /* This implements a basic search of memory, reading target memory and
2399 performing the search here (as opposed to performing the search in on the
2400 target side with, for example, gdbserver). */
2401
2402 int
2403 simple_search_memory (struct target_ops *ops,
2404 CORE_ADDR start_addr, ULONGEST search_space_len,
2405 const gdb_byte *pattern, ULONGEST pattern_len,
2406 CORE_ADDR *found_addrp)
2407 {
2408 /* NOTE: also defined in find.c testcase. */
2409 #define SEARCH_CHUNK_SIZE 16000
2410 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2411 /* Buffer to hold memory contents for searching. */
2412 gdb_byte *search_buf;
2413 unsigned search_buf_size;
2414 struct cleanup *old_cleanups;
2415
2416 search_buf_size = chunk_size + pattern_len - 1;
2417
2418 /* No point in trying to allocate a buffer larger than the search space. */
2419 if (search_space_len < search_buf_size)
2420 search_buf_size = search_space_len;
2421
2422 search_buf = (gdb_byte *) malloc (search_buf_size);
2423 if (search_buf == NULL)
2424 error (_("Unable to allocate memory to perform the search."));
2425 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2426
2427 /* Prime the search buffer. */
2428
2429 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2430 search_buf, start_addr, search_buf_size) != search_buf_size)
2431 {
2432 warning (_("Unable to access %s bytes of target "
2433 "memory at %s, halting search."),
2434 pulongest (search_buf_size), hex_string (start_addr));
2435 do_cleanups (old_cleanups);
2436 return -1;
2437 }
2438
2439 /* Perform the search.
2440
2441 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2442 When we've scanned N bytes we copy the trailing bytes to the start and
2443 read in another N bytes. */
2444
2445 while (search_space_len >= pattern_len)
2446 {
2447 gdb_byte *found_ptr;
2448 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2449
2450 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2451 pattern, pattern_len);
2452
2453 if (found_ptr != NULL)
2454 {
2455 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2456
2457 *found_addrp = found_addr;
2458 do_cleanups (old_cleanups);
2459 return 1;
2460 }
2461
2462 /* Not found in this chunk, skip to next chunk. */
2463
2464 /* Don't let search_space_len wrap here, it's unsigned. */
2465 if (search_space_len >= chunk_size)
2466 search_space_len -= chunk_size;
2467 else
2468 search_space_len = 0;
2469
2470 if (search_space_len >= pattern_len)
2471 {
2472 unsigned keep_len = search_buf_size - chunk_size;
2473 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2474 int nr_to_read;
2475
2476 /* Copy the trailing part of the previous iteration to the front
2477 of the buffer for the next iteration. */
2478 gdb_assert (keep_len == pattern_len - 1);
2479 memcpy (search_buf, search_buf + chunk_size, keep_len);
2480
2481 nr_to_read = min (search_space_len - keep_len, chunk_size);
2482
2483 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2484 search_buf + keep_len, read_addr,
2485 nr_to_read) != nr_to_read)
2486 {
2487 warning (_("Unable to access %s bytes of target "
2488 "memory at %s, halting search."),
2489 plongest (nr_to_read),
2490 hex_string (read_addr));
2491 do_cleanups (old_cleanups);
2492 return -1;
2493 }
2494
2495 start_addr += chunk_size;
2496 }
2497 }
2498
2499 /* Not found. */
2500
2501 do_cleanups (old_cleanups);
2502 return 0;
2503 }
2504
2505 /* Default implementation of memory-searching. */
2506
2507 static int
2508 default_search_memory (struct target_ops *self,
2509 CORE_ADDR start_addr, ULONGEST search_space_len,
2510 const gdb_byte *pattern, ULONGEST pattern_len,
2511 CORE_ADDR *found_addrp)
2512 {
2513 /* Start over from the top of the target stack. */
2514 return simple_search_memory (current_target.beneath,
2515 start_addr, search_space_len,
2516 pattern, pattern_len, found_addrp);
2517 }
2518
2519 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2520 sequence of bytes in PATTERN with length PATTERN_LEN.
2521
2522 The result is 1 if found, 0 if not found, and -1 if there was an error
2523 requiring halting of the search (e.g. memory read error).
2524 If the pattern is found the address is recorded in FOUND_ADDRP. */
2525
2526 int
2527 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2528 const gdb_byte *pattern, ULONGEST pattern_len,
2529 CORE_ADDR *found_addrp)
2530 {
2531 return current_target.to_search_memory (&current_target, start_addr,
2532 search_space_len,
2533 pattern, pattern_len, found_addrp);
2534 }
2535
2536 /* Look through the currently pushed targets. If none of them will
2537 be able to restart the currently running process, issue an error
2538 message. */
2539
2540 void
2541 target_require_runnable (void)
2542 {
2543 struct target_ops *t;
2544
2545 for (t = target_stack; t != NULL; t = t->beneath)
2546 {
2547 /* If this target knows how to create a new program, then
2548 assume we will still be able to after killing the current
2549 one. Either killing and mourning will not pop T, or else
2550 find_default_run_target will find it again. */
2551 if (t->to_create_inferior != NULL)
2552 return;
2553
2554 /* Do not worry about targets at certain strata that can not
2555 create inferiors. Assume they will be pushed again if
2556 necessary, and continue to the process_stratum. */
2557 if (t->to_stratum == thread_stratum
2558 || t->to_stratum == record_stratum
2559 || t->to_stratum == arch_stratum)
2560 continue;
2561
2562 error (_("The \"%s\" target does not support \"run\". "
2563 "Try \"help target\" or \"continue\"."),
2564 t->to_shortname);
2565 }
2566
2567 /* This function is only called if the target is running. In that
2568 case there should have been a process_stratum target and it
2569 should either know how to create inferiors, or not... */
2570 internal_error (__FILE__, __LINE__, _("No targets found"));
2571 }
2572
2573 /* Whether GDB is allowed to fall back to the default run target for
2574 "run", "attach", etc. when no target is connected yet. */
2575 static int auto_connect_native_target = 1;
2576
2577 static void
2578 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2579 struct cmd_list_element *c, const char *value)
2580 {
2581 fprintf_filtered (file,
2582 _("Whether GDB may automatically connect to the "
2583 "native target is %s.\n"),
2584 value);
2585 }
2586
2587 /* Look through the list of possible targets for a target that can
2588 execute a run or attach command without any other data. This is
2589 used to locate the default process stratum.
2590
2591 If DO_MESG is not NULL, the result is always valid (error() is
2592 called for errors); else, return NULL on error. */
2593
2594 static struct target_ops *
2595 find_default_run_target (char *do_mesg)
2596 {
2597 struct target_ops *runable = NULL;
2598
2599 if (auto_connect_native_target)
2600 {
2601 struct target_ops *t;
2602 int count = 0;
2603 int i;
2604
2605 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2606 {
2607 if (t->to_can_run != delegate_can_run && target_can_run (t))
2608 {
2609 runable = t;
2610 ++count;
2611 }
2612 }
2613
2614 if (count != 1)
2615 runable = NULL;
2616 }
2617
2618 if (runable == NULL)
2619 {
2620 if (do_mesg)
2621 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2622 else
2623 return NULL;
2624 }
2625
2626 return runable;
2627 }
2628
2629 /* See target.h. */
2630
2631 struct target_ops *
2632 find_attach_target (void)
2633 {
2634 struct target_ops *t;
2635
2636 /* If a target on the current stack can attach, use it. */
2637 for (t = current_target.beneath; t != NULL; t = t->beneath)
2638 {
2639 if (t->to_attach != NULL)
2640 break;
2641 }
2642
2643 /* Otherwise, use the default run target for attaching. */
2644 if (t == NULL)
2645 t = find_default_run_target ("attach");
2646
2647 return t;
2648 }
2649
2650 /* See target.h. */
2651
2652 struct target_ops *
2653 find_run_target (void)
2654 {
2655 struct target_ops *t;
2656
2657 /* If a target on the current stack can attach, use it. */
2658 for (t = current_target.beneath; t != NULL; t = t->beneath)
2659 {
2660 if (t->to_create_inferior != NULL)
2661 break;
2662 }
2663
2664 /* Otherwise, use the default run target. */
2665 if (t == NULL)
2666 t = find_default_run_target ("run");
2667
2668 return t;
2669 }
2670
2671 /* Implement the "info proc" command. */
2672
2673 int
2674 target_info_proc (const char *args, enum info_proc_what what)
2675 {
2676 struct target_ops *t;
2677
2678 /* If we're already connected to something that can get us OS
2679 related data, use it. Otherwise, try using the native
2680 target. */
2681 if (current_target.to_stratum >= process_stratum)
2682 t = current_target.beneath;
2683 else
2684 t = find_default_run_target (NULL);
2685
2686 for (; t != NULL; t = t->beneath)
2687 {
2688 if (t->to_info_proc != NULL)
2689 {
2690 t->to_info_proc (t, args, what);
2691
2692 if (targetdebug)
2693 fprintf_unfiltered (gdb_stdlog,
2694 "target_info_proc (\"%s\", %d)\n", args, what);
2695
2696 return 1;
2697 }
2698 }
2699
2700 return 0;
2701 }
2702
2703 static int
2704 find_default_supports_disable_randomization (struct target_ops *self)
2705 {
2706 struct target_ops *t;
2707
2708 t = find_default_run_target (NULL);
2709 if (t && t->to_supports_disable_randomization)
2710 return (t->to_supports_disable_randomization) (t);
2711 return 0;
2712 }
2713
2714 int
2715 target_supports_disable_randomization (void)
2716 {
2717 struct target_ops *t;
2718
2719 for (t = &current_target; t != NULL; t = t->beneath)
2720 if (t->to_supports_disable_randomization)
2721 return t->to_supports_disable_randomization (t);
2722
2723 return 0;
2724 }
2725
2726 char *
2727 target_get_osdata (const char *type)
2728 {
2729 struct target_ops *t;
2730
2731 /* If we're already connected to something that can get us OS
2732 related data, use it. Otherwise, try using the native
2733 target. */
2734 if (current_target.to_stratum >= process_stratum)
2735 t = current_target.beneath;
2736 else
2737 t = find_default_run_target ("get OS data");
2738
2739 if (!t)
2740 return NULL;
2741
2742 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2743 }
2744
2745 static struct address_space *
2746 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2747 {
2748 struct inferior *inf;
2749
2750 /* Fall-back to the "main" address space of the inferior. */
2751 inf = find_inferior_ptid (ptid);
2752
2753 if (inf == NULL || inf->aspace == NULL)
2754 internal_error (__FILE__, __LINE__,
2755 _("Can't determine the current "
2756 "address space of thread %s\n"),
2757 target_pid_to_str (ptid));
2758
2759 return inf->aspace;
2760 }
2761
2762 /* Determine the current address space of thread PTID. */
2763
2764 struct address_space *
2765 target_thread_address_space (ptid_t ptid)
2766 {
2767 struct address_space *aspace;
2768
2769 aspace = current_target.to_thread_address_space (&current_target, ptid);
2770 gdb_assert (aspace != NULL);
2771
2772 return aspace;
2773 }
2774
2775
2776 /* Target file operations. */
2777
2778 static struct target_ops *
2779 default_fileio_target (void)
2780 {
2781 /* If we're already connected to something that can perform
2782 file I/O, use it. Otherwise, try using the native target. */
2783 if (current_target.to_stratum >= process_stratum)
2784 return current_target.beneath;
2785 else
2786 return find_default_run_target ("file I/O");
2787 }
2788
2789 /* File handle for target file operations. */
2790
2791 typedef struct
2792 {
2793 /* The target on which this file is open. */
2794 struct target_ops *t;
2795
2796 /* The file descriptor on the target. */
2797 int fd;
2798 } fileio_fh_t;
2799
2800 DEF_VEC_O (fileio_fh_t);
2801
2802 /* Vector of currently open file handles. The value returned by
2803 target_fileio_open and passed as the FD argument to other
2804 target_fileio_* functions is an index into this vector. This
2805 vector's entries are never freed; instead, files are marked as
2806 closed, and the handle becomes available for reuse. */
2807 static VEC (fileio_fh_t) *fileio_fhandles;
2808
2809 /* Macro to check whether a fileio_fh_t represents a closed file. */
2810 #define is_closed_fileio_fh(fd) ((fd) < 0)
2811
2812 /* Index into fileio_fhandles of the lowest handle that might be
2813 closed. This permits handle reuse without searching the whole
2814 list each time a new file is opened. */
2815 static int lowest_closed_fd;
2816
2817 /* Acquire a target fileio file descriptor. */
2818
2819 static int
2820 acquire_fileio_fd (struct target_ops *t, int fd)
2821 {
2822 fileio_fh_t *fh;
2823
2824 gdb_assert (!is_closed_fileio_fh (fd));
2825
2826 /* Search for closed handles to reuse. */
2827 for (;
2828 VEC_iterate (fileio_fh_t, fileio_fhandles,
2829 lowest_closed_fd, fh);
2830 lowest_closed_fd++)
2831 if (is_closed_fileio_fh (fh->fd))
2832 break;
2833
2834 /* Push a new handle if no closed handles were found. */
2835 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2836 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2837
2838 /* Fill in the handle. */
2839 fh->t = t;
2840 fh->fd = fd;
2841
2842 /* Return its index, and start the next lookup at
2843 the next index. */
2844 return lowest_closed_fd++;
2845 }
2846
2847 /* Release a target fileio file descriptor. */
2848
2849 static void
2850 release_fileio_fd (int fd, fileio_fh_t *fh)
2851 {
2852 fh->fd = -1;
2853 lowest_closed_fd = min (lowest_closed_fd, fd);
2854 }
2855
2856 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2857
2858 #define fileio_fd_to_fh(fd) \
2859 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2860
2861 /* Helper for target_fileio_open and
2862 target_fileio_open_warn_if_slow. */
2863
2864 static int
2865 target_fileio_open_1 (struct inferior *inf, const char *filename,
2866 int flags, int mode, int warn_if_slow,
2867 int *target_errno)
2868 {
2869 struct target_ops *t;
2870
2871 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2872 {
2873 if (t->to_fileio_open != NULL)
2874 {
2875 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2876 warn_if_slow, target_errno);
2877
2878 if (fd < 0)
2879 fd = -1;
2880 else
2881 fd = acquire_fileio_fd (t, fd);
2882
2883 if (targetdebug)
2884 fprintf_unfiltered (gdb_stdlog,
2885 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2886 " = %d (%d)\n",
2887 inf == NULL ? 0 : inf->num,
2888 filename, flags, mode,
2889 warn_if_slow, fd,
2890 fd != -1 ? 0 : *target_errno);
2891 return fd;
2892 }
2893 }
2894
2895 *target_errno = FILEIO_ENOSYS;
2896 return -1;
2897 }
2898
2899 /* See target.h. */
2900
2901 int
2902 target_fileio_open (struct inferior *inf, const char *filename,
2903 int flags, int mode, int *target_errno)
2904 {
2905 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2906 target_errno);
2907 }
2908
2909 /* See target.h. */
2910
2911 int
2912 target_fileio_open_warn_if_slow (struct inferior *inf,
2913 const char *filename,
2914 int flags, int mode, int *target_errno)
2915 {
2916 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2917 target_errno);
2918 }
2919
2920 /* See target.h. */
2921
2922 int
2923 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2924 ULONGEST offset, int *target_errno)
2925 {
2926 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2927 int ret = -1;
2928
2929 if (is_closed_fileio_fh (fh->fd))
2930 *target_errno = EBADF;
2931 else
2932 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2933 len, offset, target_errno);
2934
2935 if (targetdebug)
2936 fprintf_unfiltered (gdb_stdlog,
2937 "target_fileio_pwrite (%d,...,%d,%s) "
2938 "= %d (%d)\n",
2939 fd, len, pulongest (offset),
2940 ret, ret != -1 ? 0 : *target_errno);
2941 return ret;
2942 }
2943
2944 /* See target.h. */
2945
2946 int
2947 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2948 ULONGEST offset, int *target_errno)
2949 {
2950 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2951 int ret = -1;
2952
2953 if (is_closed_fileio_fh (fh->fd))
2954 *target_errno = EBADF;
2955 else
2956 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2957 len, offset, target_errno);
2958
2959 if (targetdebug)
2960 fprintf_unfiltered (gdb_stdlog,
2961 "target_fileio_pread (%d,...,%d,%s) "
2962 "= %d (%d)\n",
2963 fd, len, pulongest (offset),
2964 ret, ret != -1 ? 0 : *target_errno);
2965 return ret;
2966 }
2967
2968 /* See target.h. */
2969
2970 int
2971 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2972 {
2973 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2974 int ret = -1;
2975
2976 if (is_closed_fileio_fh (fh->fd))
2977 *target_errno = EBADF;
2978 else
2979 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2980
2981 if (targetdebug)
2982 fprintf_unfiltered (gdb_stdlog,
2983 "target_fileio_fstat (%d) = %d (%d)\n",
2984 fd, ret, ret != -1 ? 0 : *target_errno);
2985 return ret;
2986 }
2987
2988 /* See target.h. */
2989
2990 int
2991 target_fileio_close (int fd, int *target_errno)
2992 {
2993 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2994 int ret = -1;
2995
2996 if (is_closed_fileio_fh (fh->fd))
2997 *target_errno = EBADF;
2998 else
2999 {
3000 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
3001 release_fileio_fd (fd, fh);
3002 }
3003
3004 if (targetdebug)
3005 fprintf_unfiltered (gdb_stdlog,
3006 "target_fileio_close (%d) = %d (%d)\n",
3007 fd, ret, ret != -1 ? 0 : *target_errno);
3008 return ret;
3009 }
3010
3011 /* See target.h. */
3012
3013 int
3014 target_fileio_unlink (struct inferior *inf, const char *filename,
3015 int *target_errno)
3016 {
3017 struct target_ops *t;
3018
3019 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3020 {
3021 if (t->to_fileio_unlink != NULL)
3022 {
3023 int ret = t->to_fileio_unlink (t, inf, filename,
3024 target_errno);
3025
3026 if (targetdebug)
3027 fprintf_unfiltered (gdb_stdlog,
3028 "target_fileio_unlink (%d,%s)"
3029 " = %d (%d)\n",
3030 inf == NULL ? 0 : inf->num, filename,
3031 ret, ret != -1 ? 0 : *target_errno);
3032 return ret;
3033 }
3034 }
3035
3036 *target_errno = FILEIO_ENOSYS;
3037 return -1;
3038 }
3039
3040 /* See target.h. */
3041
3042 char *
3043 target_fileio_readlink (struct inferior *inf, const char *filename,
3044 int *target_errno)
3045 {
3046 struct target_ops *t;
3047
3048 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3049 {
3050 if (t->to_fileio_readlink != NULL)
3051 {
3052 char *ret = t->to_fileio_readlink (t, inf, filename,
3053 target_errno);
3054
3055 if (targetdebug)
3056 fprintf_unfiltered (gdb_stdlog,
3057 "target_fileio_readlink (%d,%s)"
3058 " = %s (%d)\n",
3059 inf == NULL ? 0 : inf->num,
3060 filename, ret? ret : "(nil)",
3061 ret? 0 : *target_errno);
3062 return ret;
3063 }
3064 }
3065
3066 *target_errno = FILEIO_ENOSYS;
3067 return NULL;
3068 }
3069
3070 static void
3071 target_fileio_close_cleanup (void *opaque)
3072 {
3073 int fd = *(int *) opaque;
3074 int target_errno;
3075
3076 target_fileio_close (fd, &target_errno);
3077 }
3078
3079 /* Read target file FILENAME, in the filesystem as seen by INF. If
3080 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3081 remote targets, the remote stub). Store the result in *BUF_P and
3082 return the size of the transferred data. PADDING additional bytes
3083 are available in *BUF_P. This is a helper function for
3084 target_fileio_read_alloc; see the declaration of that function for
3085 more information. */
3086
3087 static LONGEST
3088 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3089 gdb_byte **buf_p, int padding)
3090 {
3091 struct cleanup *close_cleanup;
3092 size_t buf_alloc, buf_pos;
3093 gdb_byte *buf;
3094 LONGEST n;
3095 int fd;
3096 int target_errno;
3097
3098 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3099 &target_errno);
3100 if (fd == -1)
3101 return -1;
3102
3103 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3104
3105 /* Start by reading up to 4K at a time. The target will throttle
3106 this number down if necessary. */
3107 buf_alloc = 4096;
3108 buf = (gdb_byte *) xmalloc (buf_alloc);
3109 buf_pos = 0;
3110 while (1)
3111 {
3112 n = target_fileio_pread (fd, &buf[buf_pos],
3113 buf_alloc - buf_pos - padding, buf_pos,
3114 &target_errno);
3115 if (n < 0)
3116 {
3117 /* An error occurred. */
3118 do_cleanups (close_cleanup);
3119 xfree (buf);
3120 return -1;
3121 }
3122 else if (n == 0)
3123 {
3124 /* Read all there was. */
3125 do_cleanups (close_cleanup);
3126 if (buf_pos == 0)
3127 xfree (buf);
3128 else
3129 *buf_p = buf;
3130 return buf_pos;
3131 }
3132
3133 buf_pos += n;
3134
3135 /* If the buffer is filling up, expand it. */
3136 if (buf_alloc < buf_pos * 2)
3137 {
3138 buf_alloc *= 2;
3139 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3140 }
3141
3142 QUIT;
3143 }
3144 }
3145
3146 /* See target.h. */
3147
3148 LONGEST
3149 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3150 gdb_byte **buf_p)
3151 {
3152 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3153 }
3154
3155 /* See target.h. */
3156
3157 char *
3158 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3159 {
3160 gdb_byte *buffer;
3161 char *bufstr;
3162 LONGEST i, transferred;
3163
3164 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3165 bufstr = (char *) buffer;
3166
3167 if (transferred < 0)
3168 return NULL;
3169
3170 if (transferred == 0)
3171 return xstrdup ("");
3172
3173 bufstr[transferred] = 0;
3174
3175 /* Check for embedded NUL bytes; but allow trailing NULs. */
3176 for (i = strlen (bufstr); i < transferred; i++)
3177 if (bufstr[i] != 0)
3178 {
3179 warning (_("target file %s "
3180 "contained unexpected null characters"),
3181 filename);
3182 break;
3183 }
3184
3185 return bufstr;
3186 }
3187
3188
3189 static int
3190 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3191 CORE_ADDR addr, int len)
3192 {
3193 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3194 }
3195
3196 static int
3197 default_watchpoint_addr_within_range (struct target_ops *target,
3198 CORE_ADDR addr,
3199 CORE_ADDR start, int length)
3200 {
3201 return addr >= start && addr < start + length;
3202 }
3203
3204 static struct gdbarch *
3205 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3206 {
3207 return target_gdbarch ();
3208 }
3209
3210 static int
3211 return_zero (struct target_ops *ignore)
3212 {
3213 return 0;
3214 }
3215
3216 static int
3217 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3218 {
3219 return 0;
3220 }
3221
3222 /*
3223 * Find the next target down the stack from the specified target.
3224 */
3225
3226 struct target_ops *
3227 find_target_beneath (struct target_ops *t)
3228 {
3229 return t->beneath;
3230 }
3231
3232 /* See target.h. */
3233
3234 struct target_ops *
3235 find_target_at (enum strata stratum)
3236 {
3237 struct target_ops *t;
3238
3239 for (t = current_target.beneath; t != NULL; t = t->beneath)
3240 if (t->to_stratum == stratum)
3241 return t;
3242
3243 return NULL;
3244 }
3245
3246 \f
3247
3248 /* See target.h */
3249
3250 void
3251 target_announce_detach (int from_tty)
3252 {
3253 pid_t pid;
3254 char *exec_file;
3255
3256 if (!from_tty)
3257 return;
3258
3259 exec_file = get_exec_file (0);
3260 if (exec_file == NULL)
3261 exec_file = "";
3262
3263 pid = ptid_get_pid (inferior_ptid);
3264 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3265 target_pid_to_str (pid_to_ptid (pid)));
3266 gdb_flush (gdb_stdout);
3267 }
3268
3269 /* The inferior process has died. Long live the inferior! */
3270
3271 void
3272 generic_mourn_inferior (void)
3273 {
3274 ptid_t ptid;
3275
3276 ptid = inferior_ptid;
3277 inferior_ptid = null_ptid;
3278
3279 /* Mark breakpoints uninserted in case something tries to delete a
3280 breakpoint while we delete the inferior's threads (which would
3281 fail, since the inferior is long gone). */
3282 mark_breakpoints_out ();
3283
3284 if (!ptid_equal (ptid, null_ptid))
3285 {
3286 int pid = ptid_get_pid (ptid);
3287 exit_inferior (pid);
3288 }
3289
3290 /* Note this wipes step-resume breakpoints, so needs to be done
3291 after exit_inferior, which ends up referencing the step-resume
3292 breakpoints through clear_thread_inferior_resources. */
3293 breakpoint_init_inferior (inf_exited);
3294
3295 registers_changed ();
3296
3297 reopen_exec_file ();
3298 reinit_frame_cache ();
3299
3300 if (deprecated_detach_hook)
3301 deprecated_detach_hook ();
3302 }
3303 \f
3304 /* Convert a normal process ID to a string. Returns the string in a
3305 static buffer. */
3306
3307 char *
3308 normal_pid_to_str (ptid_t ptid)
3309 {
3310 static char buf[32];
3311
3312 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3313 return buf;
3314 }
3315
3316 static char *
3317 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3318 {
3319 return normal_pid_to_str (ptid);
3320 }
3321
3322 /* Error-catcher for target_find_memory_regions. */
3323 static int
3324 dummy_find_memory_regions (struct target_ops *self,
3325 find_memory_region_ftype ignore1, void *ignore2)
3326 {
3327 error (_("Command not implemented for this target."));
3328 return 0;
3329 }
3330
3331 /* Error-catcher for target_make_corefile_notes. */
3332 static char *
3333 dummy_make_corefile_notes (struct target_ops *self,
3334 bfd *ignore1, int *ignore2)
3335 {
3336 error (_("Command not implemented for this target."));
3337 return NULL;
3338 }
3339
3340 /* Set up the handful of non-empty slots needed by the dummy target
3341 vector. */
3342
3343 static void
3344 init_dummy_target (void)
3345 {
3346 dummy_target.to_shortname = "None";
3347 dummy_target.to_longname = "None";
3348 dummy_target.to_doc = "";
3349 dummy_target.to_supports_disable_randomization
3350 = find_default_supports_disable_randomization;
3351 dummy_target.to_stratum = dummy_stratum;
3352 dummy_target.to_has_all_memory = return_zero;
3353 dummy_target.to_has_memory = return_zero;
3354 dummy_target.to_has_stack = return_zero;
3355 dummy_target.to_has_registers = return_zero;
3356 dummy_target.to_has_execution = return_zero_has_execution;
3357 dummy_target.to_magic = OPS_MAGIC;
3358
3359 install_dummy_methods (&dummy_target);
3360 }
3361 \f
3362
3363 void
3364 target_close (struct target_ops *targ)
3365 {
3366 gdb_assert (!target_is_pushed (targ));
3367
3368 if (targ->to_xclose != NULL)
3369 targ->to_xclose (targ);
3370 else if (targ->to_close != NULL)
3371 targ->to_close (targ);
3372
3373 if (targetdebug)
3374 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3375 }
3376
3377 int
3378 target_thread_alive (ptid_t ptid)
3379 {
3380 return current_target.to_thread_alive (&current_target, ptid);
3381 }
3382
3383 void
3384 target_update_thread_list (void)
3385 {
3386 current_target.to_update_thread_list (&current_target);
3387 }
3388
3389 void
3390 target_stop (ptid_t ptid)
3391 {
3392 if (!may_stop)
3393 {
3394 warning (_("May not interrupt or stop the target, ignoring attempt"));
3395 return;
3396 }
3397
3398 (*current_target.to_stop) (&current_target, ptid);
3399 }
3400
3401 void
3402 target_interrupt (ptid_t ptid)
3403 {
3404 if (!may_stop)
3405 {
3406 warning (_("May not interrupt or stop the target, ignoring attempt"));
3407 return;
3408 }
3409
3410 (*current_target.to_interrupt) (&current_target, ptid);
3411 }
3412
3413 /* See target.h. */
3414
3415 void
3416 target_pass_ctrlc (void)
3417 {
3418 (*current_target.to_pass_ctrlc) (&current_target);
3419 }
3420
3421 /* See target.h. */
3422
3423 void
3424 default_target_pass_ctrlc (struct target_ops *ops)
3425 {
3426 target_interrupt (inferior_ptid);
3427 }
3428
3429 /* See target/target.h. */
3430
3431 void
3432 target_stop_and_wait (ptid_t ptid)
3433 {
3434 struct target_waitstatus status;
3435 int was_non_stop = non_stop;
3436
3437 non_stop = 1;
3438 target_stop (ptid);
3439
3440 memset (&status, 0, sizeof (status));
3441 target_wait (ptid, &status, 0);
3442
3443 non_stop = was_non_stop;
3444 }
3445
3446 /* See target/target.h. */
3447
3448 void
3449 target_continue_no_signal (ptid_t ptid)
3450 {
3451 target_resume (ptid, 0, GDB_SIGNAL_0);
3452 }
3453
3454 /* See target/target.h. */
3455
3456 void
3457 target_continue (ptid_t ptid, enum gdb_signal signal)
3458 {
3459 target_resume (ptid, 0, signal);
3460 }
3461
3462 /* Concatenate ELEM to LIST, a comma separate list, and return the
3463 result. The LIST incoming argument is released. */
3464
3465 static char *
3466 str_comma_list_concat_elem (char *list, const char *elem)
3467 {
3468 if (list == NULL)
3469 return xstrdup (elem);
3470 else
3471 return reconcat (list, list, ", ", elem, (char *) NULL);
3472 }
3473
3474 /* Helper for target_options_to_string. If OPT is present in
3475 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3476 Returns the new resulting string. OPT is removed from
3477 TARGET_OPTIONS. */
3478
3479 static char *
3480 do_option (int *target_options, char *ret,
3481 int opt, char *opt_str)
3482 {
3483 if ((*target_options & opt) != 0)
3484 {
3485 ret = str_comma_list_concat_elem (ret, opt_str);
3486 *target_options &= ~opt;
3487 }
3488
3489 return ret;
3490 }
3491
3492 char *
3493 target_options_to_string (int target_options)
3494 {
3495 char *ret = NULL;
3496
3497 #define DO_TARG_OPTION(OPT) \
3498 ret = do_option (&target_options, ret, OPT, #OPT)
3499
3500 DO_TARG_OPTION (TARGET_WNOHANG);
3501
3502 if (target_options != 0)
3503 ret = str_comma_list_concat_elem (ret, "unknown???");
3504
3505 if (ret == NULL)
3506 ret = xstrdup ("");
3507 return ret;
3508 }
3509
3510 static void
3511 debug_print_register (const char * func,
3512 struct regcache *regcache, int regno)
3513 {
3514 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3515
3516 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3517 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3518 && gdbarch_register_name (gdbarch, regno) != NULL
3519 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3520 fprintf_unfiltered (gdb_stdlog, "(%s)",
3521 gdbarch_register_name (gdbarch, regno));
3522 else
3523 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3524 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3525 {
3526 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3527 int i, size = register_size (gdbarch, regno);
3528 gdb_byte buf[MAX_REGISTER_SIZE];
3529
3530 regcache_raw_collect (regcache, regno, buf);
3531 fprintf_unfiltered (gdb_stdlog, " = ");
3532 for (i = 0; i < size; i++)
3533 {
3534 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3535 }
3536 if (size <= sizeof (LONGEST))
3537 {
3538 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3539
3540 fprintf_unfiltered (gdb_stdlog, " %s %s",
3541 core_addr_to_string_nz (val), plongest (val));
3542 }
3543 }
3544 fprintf_unfiltered (gdb_stdlog, "\n");
3545 }
3546
3547 void
3548 target_fetch_registers (struct regcache *regcache, int regno)
3549 {
3550 current_target.to_fetch_registers (&current_target, regcache, regno);
3551 if (targetdebug)
3552 debug_print_register ("target_fetch_registers", regcache, regno);
3553 }
3554
3555 void
3556 target_store_registers (struct regcache *regcache, int regno)
3557 {
3558 if (!may_write_registers)
3559 error (_("Writing to registers is not allowed (regno %d)"), regno);
3560
3561 current_target.to_store_registers (&current_target, regcache, regno);
3562 if (targetdebug)
3563 {
3564 debug_print_register ("target_store_registers", regcache, regno);
3565 }
3566 }
3567
3568 int
3569 target_core_of_thread (ptid_t ptid)
3570 {
3571 return current_target.to_core_of_thread (&current_target, ptid);
3572 }
3573
3574 int
3575 simple_verify_memory (struct target_ops *ops,
3576 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3577 {
3578 LONGEST total_xfered = 0;
3579
3580 while (total_xfered < size)
3581 {
3582 ULONGEST xfered_len;
3583 enum target_xfer_status status;
3584 gdb_byte buf[1024];
3585 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3586
3587 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3588 buf, NULL, lma + total_xfered, howmuch,
3589 &xfered_len);
3590 if (status == TARGET_XFER_OK
3591 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3592 {
3593 total_xfered += xfered_len;
3594 QUIT;
3595 }
3596 else
3597 return 0;
3598 }
3599 return 1;
3600 }
3601
3602 /* Default implementation of memory verification. */
3603
3604 static int
3605 default_verify_memory (struct target_ops *self,
3606 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3607 {
3608 /* Start over from the top of the target stack. */
3609 return simple_verify_memory (current_target.beneath,
3610 data, memaddr, size);
3611 }
3612
3613 int
3614 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3615 {
3616 return current_target.to_verify_memory (&current_target,
3617 data, memaddr, size);
3618 }
3619
3620 /* The documentation for this function is in its prototype declaration in
3621 target.h. */
3622
3623 int
3624 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3625 enum target_hw_bp_type rw)
3626 {
3627 return current_target.to_insert_mask_watchpoint (&current_target,
3628 addr, mask, rw);
3629 }
3630
3631 /* The documentation for this function is in its prototype declaration in
3632 target.h. */
3633
3634 int
3635 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3636 enum target_hw_bp_type rw)
3637 {
3638 return current_target.to_remove_mask_watchpoint (&current_target,
3639 addr, mask, rw);
3640 }
3641
3642 /* The documentation for this function is in its prototype declaration
3643 in target.h. */
3644
3645 int
3646 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3647 {
3648 return current_target.to_masked_watch_num_registers (&current_target,
3649 addr, mask);
3650 }
3651
3652 /* The documentation for this function is in its prototype declaration
3653 in target.h. */
3654
3655 int
3656 target_ranged_break_num_registers (void)
3657 {
3658 return current_target.to_ranged_break_num_registers (&current_target);
3659 }
3660
3661 /* See target.h. */
3662
3663 int
3664 target_supports_btrace (enum btrace_format format)
3665 {
3666 return current_target.to_supports_btrace (&current_target, format);
3667 }
3668
3669 /* See target.h. */
3670
3671 struct btrace_target_info *
3672 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3673 {
3674 return current_target.to_enable_btrace (&current_target, ptid, conf);
3675 }
3676
3677 /* See target.h. */
3678
3679 void
3680 target_disable_btrace (struct btrace_target_info *btinfo)
3681 {
3682 current_target.to_disable_btrace (&current_target, btinfo);
3683 }
3684
3685 /* See target.h. */
3686
3687 void
3688 target_teardown_btrace (struct btrace_target_info *btinfo)
3689 {
3690 current_target.to_teardown_btrace (&current_target, btinfo);
3691 }
3692
3693 /* See target.h. */
3694
3695 enum btrace_error
3696 target_read_btrace (struct btrace_data *btrace,
3697 struct btrace_target_info *btinfo,
3698 enum btrace_read_type type)
3699 {
3700 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3701 }
3702
3703 /* See target.h. */
3704
3705 const struct btrace_config *
3706 target_btrace_conf (const struct btrace_target_info *btinfo)
3707 {
3708 return current_target.to_btrace_conf (&current_target, btinfo);
3709 }
3710
3711 /* See target.h. */
3712
3713 void
3714 target_stop_recording (void)
3715 {
3716 current_target.to_stop_recording (&current_target);
3717 }
3718
3719 /* See target.h. */
3720
3721 void
3722 target_save_record (const char *filename)
3723 {
3724 current_target.to_save_record (&current_target, filename);
3725 }
3726
3727 /* See target.h. */
3728
3729 int
3730 target_supports_delete_record (void)
3731 {
3732 struct target_ops *t;
3733
3734 for (t = current_target.beneath; t != NULL; t = t->beneath)
3735 if (t->to_delete_record != delegate_delete_record
3736 && t->to_delete_record != tdefault_delete_record)
3737 return 1;
3738
3739 return 0;
3740 }
3741
3742 /* See target.h. */
3743
3744 void
3745 target_delete_record (void)
3746 {
3747 current_target.to_delete_record (&current_target);
3748 }
3749
3750 /* See target.h. */
3751
3752 int
3753 target_record_is_replaying (ptid_t ptid)
3754 {
3755 return current_target.to_record_is_replaying (&current_target, ptid);
3756 }
3757
3758 /* See target.h. */
3759
3760 int
3761 target_record_will_replay (ptid_t ptid, int dir)
3762 {
3763 return current_target.to_record_will_replay (&current_target, ptid, dir);
3764 }
3765
3766 /* See target.h. */
3767
3768 void
3769 target_record_stop_replaying (void)
3770 {
3771 current_target.to_record_stop_replaying (&current_target);
3772 }
3773
3774 /* See target.h. */
3775
3776 void
3777 target_goto_record_begin (void)
3778 {
3779 current_target.to_goto_record_begin (&current_target);
3780 }
3781
3782 /* See target.h. */
3783
3784 void
3785 target_goto_record_end (void)
3786 {
3787 current_target.to_goto_record_end (&current_target);
3788 }
3789
3790 /* See target.h. */
3791
3792 void
3793 target_goto_record (ULONGEST insn)
3794 {
3795 current_target.to_goto_record (&current_target, insn);
3796 }
3797
3798 /* See target.h. */
3799
3800 void
3801 target_insn_history (int size, int flags)
3802 {
3803 current_target.to_insn_history (&current_target, size, flags);
3804 }
3805
3806 /* See target.h. */
3807
3808 void
3809 target_insn_history_from (ULONGEST from, int size, int flags)
3810 {
3811 current_target.to_insn_history_from (&current_target, from, size, flags);
3812 }
3813
3814 /* See target.h. */
3815
3816 void
3817 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3818 {
3819 current_target.to_insn_history_range (&current_target, begin, end, flags);
3820 }
3821
3822 /* See target.h. */
3823
3824 void
3825 target_call_history (int size, int flags)
3826 {
3827 current_target.to_call_history (&current_target, size, flags);
3828 }
3829
3830 /* See target.h. */
3831
3832 void
3833 target_call_history_from (ULONGEST begin, int size, int flags)
3834 {
3835 current_target.to_call_history_from (&current_target, begin, size, flags);
3836 }
3837
3838 /* See target.h. */
3839
3840 void
3841 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3842 {
3843 current_target.to_call_history_range (&current_target, begin, end, flags);
3844 }
3845
3846 /* See target.h. */
3847
3848 const struct frame_unwind *
3849 target_get_unwinder (void)
3850 {
3851 return current_target.to_get_unwinder (&current_target);
3852 }
3853
3854 /* See target.h. */
3855
3856 const struct frame_unwind *
3857 target_get_tailcall_unwinder (void)
3858 {
3859 return current_target.to_get_tailcall_unwinder (&current_target);
3860 }
3861
3862 /* See target.h. */
3863
3864 void
3865 target_prepare_to_generate_core (void)
3866 {
3867 current_target.to_prepare_to_generate_core (&current_target);
3868 }
3869
3870 /* See target.h. */
3871
3872 void
3873 target_done_generating_core (void)
3874 {
3875 current_target.to_done_generating_core (&current_target);
3876 }
3877
3878 static void
3879 setup_target_debug (void)
3880 {
3881 memcpy (&debug_target, &current_target, sizeof debug_target);
3882
3883 init_debug_target (&current_target);
3884 }
3885 \f
3886
3887 static char targ_desc[] =
3888 "Names of targets and files being debugged.\nShows the entire \
3889 stack of targets currently in use (including the exec-file,\n\
3890 core-file, and process, if any), as well as the symbol file name.";
3891
3892 static void
3893 default_rcmd (struct target_ops *self, const char *command,
3894 struct ui_file *output)
3895 {
3896 error (_("\"monitor\" command not supported by this target."));
3897 }
3898
3899 static void
3900 do_monitor_command (char *cmd,
3901 int from_tty)
3902 {
3903 target_rcmd (cmd, gdb_stdtarg);
3904 }
3905
3906 /* Print the name of each layers of our target stack. */
3907
3908 static void
3909 maintenance_print_target_stack (char *cmd, int from_tty)
3910 {
3911 struct target_ops *t;
3912
3913 printf_filtered (_("The current target stack is:\n"));
3914
3915 for (t = target_stack; t != NULL; t = t->beneath)
3916 {
3917 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3918 }
3919 }
3920
3921 /* See target.h. */
3922
3923 void
3924 target_async (int enable)
3925 {
3926 infrun_async (enable);
3927 current_target.to_async (&current_target, enable);
3928 }
3929
3930 /* See target.h. */
3931
3932 void
3933 target_thread_events (int enable)
3934 {
3935 current_target.to_thread_events (&current_target, enable);
3936 }
3937
3938 /* Controls if targets can report that they can/are async. This is
3939 just for maintainers to use when debugging gdb. */
3940 int target_async_permitted = 1;
3941
3942 /* The set command writes to this variable. If the inferior is
3943 executing, target_async_permitted is *not* updated. */
3944 static int target_async_permitted_1 = 1;
3945
3946 static void
3947 maint_set_target_async_command (char *args, int from_tty,
3948 struct cmd_list_element *c)
3949 {
3950 if (have_live_inferiors ())
3951 {
3952 target_async_permitted_1 = target_async_permitted;
3953 error (_("Cannot change this setting while the inferior is running."));
3954 }
3955
3956 target_async_permitted = target_async_permitted_1;
3957 }
3958
3959 static void
3960 maint_show_target_async_command (struct ui_file *file, int from_tty,
3961 struct cmd_list_element *c,
3962 const char *value)
3963 {
3964 fprintf_filtered (file,
3965 _("Controlling the inferior in "
3966 "asynchronous mode is %s.\n"), value);
3967 }
3968
3969 /* Return true if the target operates in non-stop mode even with "set
3970 non-stop off". */
3971
3972 static int
3973 target_always_non_stop_p (void)
3974 {
3975 return current_target.to_always_non_stop_p (&current_target);
3976 }
3977
3978 /* See target.h. */
3979
3980 int
3981 target_is_non_stop_p (void)
3982 {
3983 return (non_stop
3984 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3985 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3986 && target_always_non_stop_p ()));
3987 }
3988
3989 /* Controls if targets can report that they always run in non-stop
3990 mode. This is just for maintainers to use when debugging gdb. */
3991 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3992
3993 /* The set command writes to this variable. If the inferior is
3994 executing, target_non_stop_enabled is *not* updated. */
3995 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3996
3997 /* Implementation of "maint set target-non-stop". */
3998
3999 static void
4000 maint_set_target_non_stop_command (char *args, int from_tty,
4001 struct cmd_list_element *c)
4002 {
4003 if (have_live_inferiors ())
4004 {
4005 target_non_stop_enabled_1 = target_non_stop_enabled;
4006 error (_("Cannot change this setting while the inferior is running."));
4007 }
4008
4009 target_non_stop_enabled = target_non_stop_enabled_1;
4010 }
4011
4012 /* Implementation of "maint show target-non-stop". */
4013
4014 static void
4015 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4016 struct cmd_list_element *c,
4017 const char *value)
4018 {
4019 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4020 fprintf_filtered (file,
4021 _("Whether the target is always in non-stop mode "
4022 "is %s (currently %s).\n"), value,
4023 target_always_non_stop_p () ? "on" : "off");
4024 else
4025 fprintf_filtered (file,
4026 _("Whether the target is always in non-stop mode "
4027 "is %s.\n"), value);
4028 }
4029
4030 /* Temporary copies of permission settings. */
4031
4032 static int may_write_registers_1 = 1;
4033 static int may_write_memory_1 = 1;
4034 static int may_insert_breakpoints_1 = 1;
4035 static int may_insert_tracepoints_1 = 1;
4036 static int may_insert_fast_tracepoints_1 = 1;
4037 static int may_stop_1 = 1;
4038
4039 /* Make the user-set values match the real values again. */
4040
4041 void
4042 update_target_permissions (void)
4043 {
4044 may_write_registers_1 = may_write_registers;
4045 may_write_memory_1 = may_write_memory;
4046 may_insert_breakpoints_1 = may_insert_breakpoints;
4047 may_insert_tracepoints_1 = may_insert_tracepoints;
4048 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4049 may_stop_1 = may_stop;
4050 }
4051
4052 /* The one function handles (most of) the permission flags in the same
4053 way. */
4054
4055 static void
4056 set_target_permissions (char *args, int from_tty,
4057 struct cmd_list_element *c)
4058 {
4059 if (target_has_execution)
4060 {
4061 update_target_permissions ();
4062 error (_("Cannot change this setting while the inferior is running."));
4063 }
4064
4065 /* Make the real values match the user-changed values. */
4066 may_write_registers = may_write_registers_1;
4067 may_insert_breakpoints = may_insert_breakpoints_1;
4068 may_insert_tracepoints = may_insert_tracepoints_1;
4069 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4070 may_stop = may_stop_1;
4071 update_observer_mode ();
4072 }
4073
4074 /* Set memory write permission independently of observer mode. */
4075
4076 static void
4077 set_write_memory_permission (char *args, int from_tty,
4078 struct cmd_list_element *c)
4079 {
4080 /* Make the real values match the user-changed values. */
4081 may_write_memory = may_write_memory_1;
4082 update_observer_mode ();
4083 }
4084
4085
4086 void
4087 initialize_targets (void)
4088 {
4089 init_dummy_target ();
4090 push_target (&dummy_target);
4091
4092 add_info ("target", target_info, targ_desc);
4093 add_info ("files", target_info, targ_desc);
4094
4095 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4096 Set target debugging."), _("\
4097 Show target debugging."), _("\
4098 When non-zero, target debugging is enabled. Higher numbers are more\n\
4099 verbose."),
4100 set_targetdebug,
4101 show_targetdebug,
4102 &setdebuglist, &showdebuglist);
4103
4104 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4105 &trust_readonly, _("\
4106 Set mode for reading from readonly sections."), _("\
4107 Show mode for reading from readonly sections."), _("\
4108 When this mode is on, memory reads from readonly sections (such as .text)\n\
4109 will be read from the object file instead of from the target. This will\n\
4110 result in significant performance improvement for remote targets."),
4111 NULL,
4112 show_trust_readonly,
4113 &setlist, &showlist);
4114
4115 add_com ("monitor", class_obscure, do_monitor_command,
4116 _("Send a command to the remote monitor (remote targets only)."));
4117
4118 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4119 _("Print the name of each layer of the internal target stack."),
4120 &maintenanceprintlist);
4121
4122 add_setshow_boolean_cmd ("target-async", no_class,
4123 &target_async_permitted_1, _("\
4124 Set whether gdb controls the inferior in asynchronous mode."), _("\
4125 Show whether gdb controls the inferior in asynchronous mode."), _("\
4126 Tells gdb whether to control the inferior in asynchronous mode."),
4127 maint_set_target_async_command,
4128 maint_show_target_async_command,
4129 &maintenance_set_cmdlist,
4130 &maintenance_show_cmdlist);
4131
4132 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4133 &target_non_stop_enabled_1, _("\
4134 Set whether gdb always controls the inferior in non-stop mode."), _("\
4135 Show whether gdb always controls the inferior in non-stop mode."), _("\
4136 Tells gdb whether to control the inferior in non-stop mode."),
4137 maint_set_target_non_stop_command,
4138 maint_show_target_non_stop_command,
4139 &maintenance_set_cmdlist,
4140 &maintenance_show_cmdlist);
4141
4142 add_setshow_boolean_cmd ("may-write-registers", class_support,
4143 &may_write_registers_1, _("\
4144 Set permission to write into registers."), _("\
4145 Show permission to write into registers."), _("\
4146 When this permission is on, GDB may write into the target's registers.\n\
4147 Otherwise, any sort of write attempt will result in an error."),
4148 set_target_permissions, NULL,
4149 &setlist, &showlist);
4150
4151 add_setshow_boolean_cmd ("may-write-memory", class_support,
4152 &may_write_memory_1, _("\
4153 Set permission to write into target memory."), _("\
4154 Show permission to write into target memory."), _("\
4155 When this permission is on, GDB may write into the target's memory.\n\
4156 Otherwise, any sort of write attempt will result in an error."),
4157 set_write_memory_permission, NULL,
4158 &setlist, &showlist);
4159
4160 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4161 &may_insert_breakpoints_1, _("\
4162 Set permission to insert breakpoints in the target."), _("\
4163 Show permission to insert breakpoints in the target."), _("\
4164 When this permission is on, GDB may insert breakpoints in the program.\n\
4165 Otherwise, any sort of insertion attempt will result in an error."),
4166 set_target_permissions, NULL,
4167 &setlist, &showlist);
4168
4169 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4170 &may_insert_tracepoints_1, _("\
4171 Set permission to insert tracepoints in the target."), _("\
4172 Show permission to insert tracepoints in the target."), _("\
4173 When this permission is on, GDB may insert tracepoints in the program.\n\
4174 Otherwise, any sort of insertion attempt will result in an error."),
4175 set_target_permissions, NULL,
4176 &setlist, &showlist);
4177
4178 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4179 &may_insert_fast_tracepoints_1, _("\
4180 Set permission to insert fast tracepoints in the target."), _("\
4181 Show permission to insert fast tracepoints in the target."), _("\
4182 When this permission is on, GDB may insert fast tracepoints.\n\
4183 Otherwise, any sort of insertion attempt will result in an error."),
4184 set_target_permissions, NULL,
4185 &setlist, &showlist);
4186
4187 add_setshow_boolean_cmd ("may-interrupt", class_support,
4188 &may_stop_1, _("\
4189 Set permission to interrupt or signal the target."), _("\
4190 Show permission to interrupt or signal the target."), _("\
4191 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4192 Otherwise, any attempt to interrupt or stop will be ignored."),
4193 set_target_permissions, NULL,
4194 &setlist, &showlist);
4195
4196 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4197 &auto_connect_native_target, _("\
4198 Set whether GDB may automatically connect to the native target."), _("\
4199 Show whether GDB may automatically connect to the native target."), _("\
4200 When on, and GDB is not connected to a target yet, GDB\n\
4201 attempts \"run\" and other commands with the native target."),
4202 NULL, show_auto_connect_native_target,
4203 &setlist, &showlist);
4204 }
This page took 0.28565 seconds and 4 git commands to generate.