c1ab07f76086ef71b6f55d403fd5d3eee5fe5eab
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "common/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "common/byte-vector.h"
50 #include "terminal.h"
51 #include <unordered_map>
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static void tcomplain (void) ATTRIBUTE_NORETURN;
85
86 static struct target_ops *find_default_run_target (const char *);
87
88 static int dummy_find_memory_regions (struct target_ops *self,
89 find_memory_region_ftype ignore1,
90 void *ignore2);
91
92 static char *dummy_make_corefile_notes (struct target_ops *self,
93 bfd *ignore1, int *ignore2);
94
95 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
96
97 static enum exec_direction_kind default_execution_direction
98 (struct target_ops *self);
99
100 /* Mapping between target_info objects (which have address identity)
101 and corresponding open/factory function/callback. Each add_target
102 call adds one entry to this map, and registers a "target
103 TARGET_NAME" command that when invoked calls the factory registered
104 here. The target_info object is associated with the command via
105 the command's context. */
106 static std::unordered_map<const target_info *, target_open_ftype *>
107 target_factories;
108
109 /* The initial current target, so that there is always a semi-valid
110 current target. */
111
112 static struct target_ops *the_dummy_target;
113 static struct target_ops *the_debug_target;
114
115 /* The target stack. */
116
117 static target_stack g_target_stack;
118
119 /* Top of target stack. */
120 /* The target structure we are currently using to talk to a process
121 or file or whatever "inferior" we have. */
122
123 target_ops *
124 current_top_target ()
125 {
126 return g_target_stack.top ();
127 }
128
129 /* Command list for target. */
130
131 static struct cmd_list_element *targetlist = NULL;
132
133 /* Nonzero if we should trust readonly sections from the
134 executable when reading memory. */
135
136 static int trust_readonly = 0;
137
138 /* Nonzero if we should show true memory content including
139 memory breakpoint inserted by gdb. */
140
141 static int show_memory_breakpoints = 0;
142
143 /* These globals control whether GDB attempts to perform these
144 operations; they are useful for targets that need to prevent
145 inadvertant disruption, such as in non-stop mode. */
146
147 int may_write_registers = 1;
148
149 int may_write_memory = 1;
150
151 int may_insert_breakpoints = 1;
152
153 int may_insert_tracepoints = 1;
154
155 int may_insert_fast_tracepoints = 1;
156
157 int may_stop = 1;
158
159 /* Non-zero if we want to see trace of target level stuff. */
160
161 static unsigned int targetdebug = 0;
162
163 static void
164 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
165 {
166 if (targetdebug)
167 push_target (the_debug_target);
168 else
169 unpush_target (the_debug_target);
170 }
171
172 static void
173 show_targetdebug (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
177 }
178
179 /* The user just typed 'target' without the name of a target. */
180
181 static void
182 target_command (const char *arg, int from_tty)
183 {
184 fputs_filtered ("Argument required (target name). Try `help target'\n",
185 gdb_stdout);
186 }
187
188 int
189 target_has_all_memory_1 (void)
190 {
191 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
192 if (t->has_all_memory ())
193 return 1;
194
195 return 0;
196 }
197
198 int
199 target_has_memory_1 (void)
200 {
201 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
202 if (t->has_memory ())
203 return 1;
204
205 return 0;
206 }
207
208 int
209 target_has_stack_1 (void)
210 {
211 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
212 if (t->has_stack ())
213 return 1;
214
215 return 0;
216 }
217
218 int
219 target_has_registers_1 (void)
220 {
221 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
222 if (t->has_registers ())
223 return 1;
224
225 return 0;
226 }
227
228 int
229 target_has_execution_1 (ptid_t the_ptid)
230 {
231 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
232 if (t->has_execution (the_ptid))
233 return 1;
234
235 return 0;
236 }
237
238 int
239 target_has_execution_current (void)
240 {
241 return target_has_execution_1 (inferior_ptid);
242 }
243
244 /* This is used to implement the various target commands. */
245
246 static void
247 open_target (const char *args, int from_tty, struct cmd_list_element *command)
248 {
249 auto *ti = static_cast<target_info *> (get_cmd_context (command));
250 target_open_ftype *func = target_factories[ti];
251
252 if (targetdebug)
253 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
254 ti->shortname);
255
256 func (args, from_tty);
257
258 if (targetdebug)
259 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
260 ti->shortname, args, from_tty);
261 }
262
263 /* See target.h. */
264
265 void
266 add_target (const target_info &t, target_open_ftype *func,
267 completer_ftype *completer)
268 {
269 struct cmd_list_element *c;
270
271 auto &func_slot = target_factories[&t];
272 if (func_slot != nullptr)
273 internal_error (__FILE__, __LINE__,
274 _("target already added (\"%s\")."), t.shortname);
275 func_slot = func;
276
277 if (targetlist == NULL)
278 add_prefix_cmd ("target", class_run, target_command, _("\
279 Connect to a target machine or process.\n\
280 The first argument is the type or protocol of the target machine.\n\
281 Remaining arguments are interpreted by the target protocol. For more\n\
282 information on the arguments for a particular protocol, type\n\
283 `help target ' followed by the protocol name."),
284 &targetlist, "target ", 0, &cmdlist);
285 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
286 set_cmd_context (c, (void *) &t);
287 set_cmd_sfunc (c, open_target);
288 if (completer != NULL)
289 set_cmd_completer (c, completer);
290 }
291
292 /* See target.h. */
293
294 void
295 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
296 {
297 struct cmd_list_element *c;
298 char *alt;
299
300 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
301 see PR cli/15104. */
302 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
303 set_cmd_sfunc (c, open_target);
304 set_cmd_context (c, (void *) &tinfo);
305 alt = xstrprintf ("target %s", tinfo.shortname);
306 deprecate_cmd (c, alt);
307 }
308
309 /* Stub functions */
310
311 void
312 target_kill (void)
313 {
314 current_top_target ()->kill ();
315 }
316
317 void
318 target_load (const char *arg, int from_tty)
319 {
320 target_dcache_invalidate ();
321 current_top_target ()->load (arg, from_tty);
322 }
323
324 /* Define it. */
325
326 target_terminal_state target_terminal::m_terminal_state
327 = target_terminal_state::is_ours;
328
329 /* See target/target.h. */
330
331 void
332 target_terminal::init (void)
333 {
334 current_top_target ()->terminal_init ();
335
336 m_terminal_state = target_terminal_state::is_ours;
337 }
338
339 /* See target/target.h. */
340
341 void
342 target_terminal::inferior (void)
343 {
344 struct ui *ui = current_ui;
345
346 /* A background resume (``run&'') should leave GDB in control of the
347 terminal. */
348 if (ui->prompt_state != PROMPT_BLOCKED)
349 return;
350
351 /* Since we always run the inferior in the main console (unless "set
352 inferior-tty" is in effect), when some UI other than the main one
353 calls target_terminal::inferior, then we leave the main UI's
354 terminal settings as is. */
355 if (ui != main_ui)
356 return;
357
358 /* If GDB is resuming the inferior in the foreground, install
359 inferior's terminal modes. */
360
361 struct inferior *inf = current_inferior ();
362
363 if (inf->terminal_state != target_terminal_state::is_inferior)
364 {
365 current_top_target ()->terminal_inferior ();
366 inf->terminal_state = target_terminal_state::is_inferior;
367 }
368
369 m_terminal_state = target_terminal_state::is_inferior;
370
371 /* If the user hit C-c before, pretend that it was hit right
372 here. */
373 if (check_quit_flag ())
374 target_pass_ctrlc ();
375 }
376
377 /* See target/target.h. */
378
379 void
380 target_terminal::restore_inferior (void)
381 {
382 struct ui *ui = current_ui;
383
384 /* See target_terminal::inferior(). */
385 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
386 return;
387
388 /* Restore the terminal settings of inferiors that were in the
389 foreground but are now ours_for_output due to a temporary
390 target_target::ours_for_output() call. */
391
392 {
393 scoped_restore_current_inferior restore_inferior;
394
395 for (::inferior *inf : all_inferiors ())
396 {
397 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
398 {
399 set_current_inferior (inf);
400 current_top_target ()->terminal_inferior ();
401 inf->terminal_state = target_terminal_state::is_inferior;
402 }
403 }
404 }
405
406 m_terminal_state = target_terminal_state::is_inferior;
407
408 /* If the user hit C-c before, pretend that it was hit right
409 here. */
410 if (check_quit_flag ())
411 target_pass_ctrlc ();
412 }
413
414 /* Switch terminal state to DESIRED_STATE, either is_ours, or
415 is_ours_for_output. */
416
417 static void
418 target_terminal_is_ours_kind (target_terminal_state desired_state)
419 {
420 scoped_restore_current_inferior restore_inferior;
421
422 /* Must do this in two passes. First, have all inferiors save the
423 current terminal settings. Then, after all inferiors have add a
424 chance to safely save the terminal settings, restore GDB's
425 terminal settings. */
426
427 for (inferior *inf : all_inferiors ())
428 {
429 if (inf->terminal_state == target_terminal_state::is_inferior)
430 {
431 set_current_inferior (inf);
432 current_top_target ()->terminal_save_inferior ();
433 }
434 }
435
436 for (inferior *inf : all_inferiors ())
437 {
438 /* Note we don't check is_inferior here like above because we
439 need to handle 'is_ours_for_output -> is_ours' too. Careful
440 to never transition from 'is_ours' to 'is_ours_for_output',
441 though. */
442 if (inf->terminal_state != target_terminal_state::is_ours
443 && inf->terminal_state != desired_state)
444 {
445 set_current_inferior (inf);
446 if (desired_state == target_terminal_state::is_ours)
447 current_top_target ()->terminal_ours ();
448 else if (desired_state == target_terminal_state::is_ours_for_output)
449 current_top_target ()->terminal_ours_for_output ();
450 else
451 gdb_assert_not_reached ("unhandled desired state");
452 inf->terminal_state = desired_state;
453 }
454 }
455 }
456
457 /* See target/target.h. */
458
459 void
460 target_terminal::ours ()
461 {
462 struct ui *ui = current_ui;
463
464 /* See target_terminal::inferior. */
465 if (ui != main_ui)
466 return;
467
468 if (m_terminal_state == target_terminal_state::is_ours)
469 return;
470
471 target_terminal_is_ours_kind (target_terminal_state::is_ours);
472 m_terminal_state = target_terminal_state::is_ours;
473 }
474
475 /* See target/target.h. */
476
477 void
478 target_terminal::ours_for_output ()
479 {
480 struct ui *ui = current_ui;
481
482 /* See target_terminal::inferior. */
483 if (ui != main_ui)
484 return;
485
486 if (!target_terminal::is_inferior ())
487 return;
488
489 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
490 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
491 }
492
493 /* See target/target.h. */
494
495 void
496 target_terminal::info (const char *arg, int from_tty)
497 {
498 current_top_target ()->terminal_info (arg, from_tty);
499 }
500
501 /* See target.h. */
502
503 bool
504 target_supports_terminal_ours (void)
505 {
506 /* This can be called before there is any target, so we must check
507 for nullptr here. */
508 target_ops *top = current_top_target ();
509
510 if (top == nullptr)
511 return false;
512 return top->supports_terminal_ours ();
513 }
514
515 static void
516 tcomplain (void)
517 {
518 error (_("You can't do that when your target is `%s'"),
519 current_top_target ()->shortname ());
520 }
521
522 void
523 noprocess (void)
524 {
525 error (_("You can't do that without a process to debug."));
526 }
527
528 static void
529 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
530 {
531 printf_unfiltered (_("No saved terminal information.\n"));
532 }
533
534 /* A default implementation for the to_get_ada_task_ptid target method.
535
536 This function builds the PTID by using both LWP and TID as part of
537 the PTID lwp and tid elements. The pid used is the pid of the
538 inferior_ptid. */
539
540 static ptid_t
541 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
542 {
543 return ptid_t (inferior_ptid.pid (), lwp, tid);
544 }
545
546 static enum exec_direction_kind
547 default_execution_direction (struct target_ops *self)
548 {
549 if (!target_can_execute_reverse)
550 return EXEC_FORWARD;
551 else if (!target_can_async_p ())
552 return EXEC_FORWARD;
553 else
554 gdb_assert_not_reached ("\
555 to_execution_direction must be implemented for reverse async");
556 }
557
558 /* See target.h. */
559
560 void
561 target_stack::push (target_ops *t)
562 {
563 /* If there's already a target at this stratum, remove it. */
564 strata stratum = t->stratum ();
565
566 if (m_stack[stratum] != NULL)
567 {
568 target_ops *prev = m_stack[stratum];
569 m_stack[stratum] = NULL;
570 target_close (prev);
571 }
572
573 /* Now add the new one. */
574 m_stack[stratum] = t;
575
576 if (m_top < stratum)
577 m_top = stratum;
578 }
579
580 /* See target.h. */
581
582 void
583 push_target (struct target_ops *t)
584 {
585 g_target_stack.push (t);
586 }
587
588 /* See target.h. */
589
590 int
591 unpush_target (struct target_ops *t)
592 {
593 return g_target_stack.unpush (t);
594 }
595
596 /* See target.h. */
597
598 bool
599 target_stack::unpush (target_ops *t)
600 {
601 gdb_assert (t != NULL);
602
603 strata stratum = t->stratum ();
604
605 if (stratum == dummy_stratum)
606 internal_error (__FILE__, __LINE__,
607 _("Attempt to unpush the dummy target"));
608
609 /* Look for the specified target. Note that a target can only occur
610 once in the target stack. */
611
612 if (m_stack[stratum] != t)
613 {
614 /* If T wasn't pushed, quit. Only open targets should be
615 closed. */
616 return false;
617 }
618
619 /* Unchain the target. */
620 m_stack[stratum] = NULL;
621
622 if (m_top == stratum)
623 m_top = t->beneath ()->stratum ();
624
625 /* Finally close the target. Note we do this after unchaining, so
626 any target method calls from within the target_close
627 implementation don't end up in T anymore. */
628 target_close (t);
629
630 return true;
631 }
632
633 /* Unpush TARGET and assert that it worked. */
634
635 static void
636 unpush_target_and_assert (struct target_ops *target)
637 {
638 if (!unpush_target (target))
639 {
640 fprintf_unfiltered (gdb_stderr,
641 "pop_all_targets couldn't find target %s\n",
642 target->shortname ());
643 internal_error (__FILE__, __LINE__,
644 _("failed internal consistency check"));
645 }
646 }
647
648 void
649 pop_all_targets_above (enum strata above_stratum)
650 {
651 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
652 unpush_target_and_assert (current_top_target ());
653 }
654
655 /* See target.h. */
656
657 void
658 pop_all_targets_at_and_above (enum strata stratum)
659 {
660 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
661 unpush_target_and_assert (current_top_target ());
662 }
663
664 void
665 pop_all_targets (void)
666 {
667 pop_all_targets_above (dummy_stratum);
668 }
669
670 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
671
672 int
673 target_is_pushed (struct target_ops *t)
674 {
675 return g_target_stack.is_pushed (t);
676 }
677
678 /* Default implementation of to_get_thread_local_address. */
679
680 static void
681 generic_tls_error (void)
682 {
683 throw_error (TLS_GENERIC_ERROR,
684 _("Cannot find thread-local variables on this target"));
685 }
686
687 /* Using the objfile specified in OBJFILE, find the address for the
688 current thread's thread-local storage with offset OFFSET. */
689 CORE_ADDR
690 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
691 {
692 volatile CORE_ADDR addr = 0;
693 struct target_ops *target = current_top_target ();
694
695 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
696 {
697 ptid_t ptid = inferior_ptid;
698
699 TRY
700 {
701 CORE_ADDR lm_addr;
702
703 /* Fetch the load module address for this objfile. */
704 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
705 objfile);
706
707 addr = target->get_thread_local_address (ptid, lm_addr, offset);
708 }
709 /* If an error occurred, print TLS related messages here. Otherwise,
710 throw the error to some higher catcher. */
711 CATCH (ex, RETURN_MASK_ALL)
712 {
713 int objfile_is_library = (objfile->flags & OBJF_SHARED);
714
715 switch (ex.error)
716 {
717 case TLS_NO_LIBRARY_SUPPORT_ERROR:
718 error (_("Cannot find thread-local variables "
719 "in this thread library."));
720 break;
721 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
722 if (objfile_is_library)
723 error (_("Cannot find shared library `%s' in dynamic"
724 " linker's load module list"), objfile_name (objfile));
725 else
726 error (_("Cannot find executable file `%s' in dynamic"
727 " linker's load module list"), objfile_name (objfile));
728 break;
729 case TLS_NOT_ALLOCATED_YET_ERROR:
730 if (objfile_is_library)
731 error (_("The inferior has not yet allocated storage for"
732 " thread-local variables in\n"
733 "the shared library `%s'\n"
734 "for %s"),
735 objfile_name (objfile), target_pid_to_str (ptid));
736 else
737 error (_("The inferior has not yet allocated storage for"
738 " thread-local variables in\n"
739 "the executable `%s'\n"
740 "for %s"),
741 objfile_name (objfile), target_pid_to_str (ptid));
742 break;
743 case TLS_GENERIC_ERROR:
744 if (objfile_is_library)
745 error (_("Cannot find thread-local storage for %s, "
746 "shared library %s:\n%s"),
747 target_pid_to_str (ptid),
748 objfile_name (objfile), ex.message);
749 else
750 error (_("Cannot find thread-local storage for %s, "
751 "executable file %s:\n%s"),
752 target_pid_to_str (ptid),
753 objfile_name (objfile), ex.message);
754 break;
755 default:
756 throw_exception (ex);
757 break;
758 }
759 }
760 END_CATCH
761 }
762 /* It wouldn't be wrong here to try a gdbarch method, too; finding
763 TLS is an ABI-specific thing. But we don't do that yet. */
764 else
765 error (_("Cannot find thread-local variables on this target"));
766
767 return addr;
768 }
769
770 const char *
771 target_xfer_status_to_string (enum target_xfer_status status)
772 {
773 #define CASE(X) case X: return #X
774 switch (status)
775 {
776 CASE(TARGET_XFER_E_IO);
777 CASE(TARGET_XFER_UNAVAILABLE);
778 default:
779 return "<unknown>";
780 }
781 #undef CASE
782 };
783
784
785 #undef MIN
786 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
787
788 /* target_read_string -- read a null terminated string, up to LEN bytes,
789 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
790 Set *STRING to a pointer to malloc'd memory containing the data; the caller
791 is responsible for freeing it. Return the number of bytes successfully
792 read. */
793
794 int
795 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
796 int len, int *errnop)
797 {
798 int tlen, offset, i;
799 gdb_byte buf[4];
800 int errcode = 0;
801 char *buffer;
802 int buffer_allocated;
803 char *bufptr;
804 unsigned int nbytes_read = 0;
805
806 gdb_assert (string);
807
808 /* Small for testing. */
809 buffer_allocated = 4;
810 buffer = (char *) xmalloc (buffer_allocated);
811 bufptr = buffer;
812
813 while (len > 0)
814 {
815 tlen = MIN (len, 4 - (memaddr & 3));
816 offset = memaddr & 3;
817
818 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
819 if (errcode != 0)
820 {
821 /* The transfer request might have crossed the boundary to an
822 unallocated region of memory. Retry the transfer, requesting
823 a single byte. */
824 tlen = 1;
825 offset = 0;
826 errcode = target_read_memory (memaddr, buf, 1);
827 if (errcode != 0)
828 goto done;
829 }
830
831 if (bufptr - buffer + tlen > buffer_allocated)
832 {
833 unsigned int bytes;
834
835 bytes = bufptr - buffer;
836 buffer_allocated *= 2;
837 buffer = (char *) xrealloc (buffer, buffer_allocated);
838 bufptr = buffer + bytes;
839 }
840
841 for (i = 0; i < tlen; i++)
842 {
843 *bufptr++ = buf[i + offset];
844 if (buf[i + offset] == '\000')
845 {
846 nbytes_read += i + 1;
847 goto done;
848 }
849 }
850
851 memaddr += tlen;
852 len -= tlen;
853 nbytes_read += tlen;
854 }
855 done:
856 string->reset (buffer);
857 if (errnop != NULL)
858 *errnop = errcode;
859 return nbytes_read;
860 }
861
862 struct target_section_table *
863 target_get_section_table (struct target_ops *target)
864 {
865 return target->get_section_table ();
866 }
867
868 /* Find a section containing ADDR. */
869
870 struct target_section *
871 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
872 {
873 struct target_section_table *table = target_get_section_table (target);
874 struct target_section *secp;
875
876 if (table == NULL)
877 return NULL;
878
879 for (secp = table->sections; secp < table->sections_end; secp++)
880 {
881 if (addr >= secp->addr && addr < secp->endaddr)
882 return secp;
883 }
884 return NULL;
885 }
886
887
888 /* Helper for the memory xfer routines. Checks the attributes of the
889 memory region of MEMADDR against the read or write being attempted.
890 If the access is permitted returns true, otherwise returns false.
891 REGION_P is an optional output parameter. If not-NULL, it is
892 filled with a pointer to the memory region of MEMADDR. REG_LEN
893 returns LEN trimmed to the end of the region. This is how much the
894 caller can continue requesting, if the access is permitted. A
895 single xfer request must not straddle memory region boundaries. */
896
897 static int
898 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
899 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
900 struct mem_region **region_p)
901 {
902 struct mem_region *region;
903
904 region = lookup_mem_region (memaddr);
905
906 if (region_p != NULL)
907 *region_p = region;
908
909 switch (region->attrib.mode)
910 {
911 case MEM_RO:
912 if (writebuf != NULL)
913 return 0;
914 break;
915
916 case MEM_WO:
917 if (readbuf != NULL)
918 return 0;
919 break;
920
921 case MEM_FLASH:
922 /* We only support writing to flash during "load" for now. */
923 if (writebuf != NULL)
924 error (_("Writing to flash memory forbidden in this context"));
925 break;
926
927 case MEM_NONE:
928 return 0;
929 }
930
931 /* region->hi == 0 means there's no upper bound. */
932 if (memaddr + len < region->hi || region->hi == 0)
933 *reg_len = len;
934 else
935 *reg_len = region->hi - memaddr;
936
937 return 1;
938 }
939
940 /* Read memory from more than one valid target. A core file, for
941 instance, could have some of memory but delegate other bits to
942 the target below it. So, we must manually try all targets. */
943
944 enum target_xfer_status
945 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
946 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
947 ULONGEST *xfered_len)
948 {
949 enum target_xfer_status res;
950
951 do
952 {
953 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
954 readbuf, writebuf, memaddr, len,
955 xfered_len);
956 if (res == TARGET_XFER_OK)
957 break;
958
959 /* Stop if the target reports that the memory is not available. */
960 if (res == TARGET_XFER_UNAVAILABLE)
961 break;
962
963 /* We want to continue past core files to executables, but not
964 past a running target's memory. */
965 if (ops->has_all_memory ())
966 break;
967
968 ops = ops->beneath ();
969 }
970 while (ops != NULL);
971
972 /* The cache works at the raw memory level. Make sure the cache
973 gets updated with raw contents no matter what kind of memory
974 object was originally being written. Note we do write-through
975 first, so that if it fails, we don't write to the cache contents
976 that never made it to the target. */
977 if (writebuf != NULL
978 && inferior_ptid != null_ptid
979 && target_dcache_init_p ()
980 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
981 {
982 DCACHE *dcache = target_dcache_get ();
983
984 /* Note that writing to an area of memory which wasn't present
985 in the cache doesn't cause it to be loaded in. */
986 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
987 }
988
989 return res;
990 }
991
992 /* Perform a partial memory transfer.
993 For docs see target.h, to_xfer_partial. */
994
995 static enum target_xfer_status
996 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
997 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
998 ULONGEST len, ULONGEST *xfered_len)
999 {
1000 enum target_xfer_status res;
1001 ULONGEST reg_len;
1002 struct mem_region *region;
1003 struct inferior *inf;
1004
1005 /* For accesses to unmapped overlay sections, read directly from
1006 files. Must do this first, as MEMADDR may need adjustment. */
1007 if (readbuf != NULL && overlay_debugging)
1008 {
1009 struct obj_section *section = find_pc_overlay (memaddr);
1010
1011 if (pc_in_unmapped_range (memaddr, section))
1012 {
1013 struct target_section_table *table
1014 = target_get_section_table (ops);
1015 const char *section_name = section->the_bfd_section->name;
1016
1017 memaddr = overlay_mapped_address (memaddr, section);
1018 return section_table_xfer_memory_partial (readbuf, writebuf,
1019 memaddr, len, xfered_len,
1020 table->sections,
1021 table->sections_end,
1022 section_name);
1023 }
1024 }
1025
1026 /* Try the executable files, if "trust-readonly-sections" is set. */
1027 if (readbuf != NULL && trust_readonly)
1028 {
1029 struct target_section *secp;
1030 struct target_section_table *table;
1031
1032 secp = target_section_by_addr (ops, memaddr);
1033 if (secp != NULL
1034 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1035 secp->the_bfd_section)
1036 & SEC_READONLY))
1037 {
1038 table = target_get_section_table (ops);
1039 return section_table_xfer_memory_partial (readbuf, writebuf,
1040 memaddr, len, xfered_len,
1041 table->sections,
1042 table->sections_end,
1043 NULL);
1044 }
1045 }
1046
1047 /* Try GDB's internal data cache. */
1048
1049 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1050 &region))
1051 return TARGET_XFER_E_IO;
1052
1053 if (inferior_ptid != null_ptid)
1054 inf = current_inferior ();
1055 else
1056 inf = NULL;
1057
1058 if (inf != NULL
1059 && readbuf != NULL
1060 /* The dcache reads whole cache lines; that doesn't play well
1061 with reading from a trace buffer, because reading outside of
1062 the collected memory range fails. */
1063 && get_traceframe_number () == -1
1064 && (region->attrib.cache
1065 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1066 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1067 {
1068 DCACHE *dcache = target_dcache_get_or_init ();
1069
1070 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1071 reg_len, xfered_len);
1072 }
1073
1074 /* If none of those methods found the memory we wanted, fall back
1075 to a target partial transfer. Normally a single call to
1076 to_xfer_partial is enough; if it doesn't recognize an object
1077 it will call the to_xfer_partial of the next target down.
1078 But for memory this won't do. Memory is the only target
1079 object which can be read from more than one valid target.
1080 A core file, for instance, could have some of memory but
1081 delegate other bits to the target below it. So, we must
1082 manually try all targets. */
1083
1084 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1085 xfered_len);
1086
1087 /* If we still haven't got anything, return the last error. We
1088 give up. */
1089 return res;
1090 }
1091
1092 /* Perform a partial memory transfer. For docs see target.h,
1093 to_xfer_partial. */
1094
1095 static enum target_xfer_status
1096 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1097 gdb_byte *readbuf, const gdb_byte *writebuf,
1098 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1099 {
1100 enum target_xfer_status res;
1101
1102 /* Zero length requests are ok and require no work. */
1103 if (len == 0)
1104 return TARGET_XFER_EOF;
1105
1106 memaddr = address_significant (target_gdbarch (), memaddr);
1107
1108 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1109 breakpoint insns, thus hiding out from higher layers whether
1110 there are software breakpoints inserted in the code stream. */
1111 if (readbuf != NULL)
1112 {
1113 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1114 xfered_len);
1115
1116 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1117 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1118 }
1119 else
1120 {
1121 /* A large write request is likely to be partially satisfied
1122 by memory_xfer_partial_1. We will continually malloc
1123 and free a copy of the entire write request for breakpoint
1124 shadow handling even though we only end up writing a small
1125 subset of it. Cap writes to a limit specified by the target
1126 to mitigate this. */
1127 len = std::min (ops->get_memory_xfer_limit (), len);
1128
1129 gdb::byte_vector buf (writebuf, writebuf + len);
1130 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1131 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1132 xfered_len);
1133 }
1134
1135 return res;
1136 }
1137
1138 scoped_restore_tmpl<int>
1139 make_scoped_restore_show_memory_breakpoints (int show)
1140 {
1141 return make_scoped_restore (&show_memory_breakpoints, show);
1142 }
1143
1144 /* For docs see target.h, to_xfer_partial. */
1145
1146 enum target_xfer_status
1147 target_xfer_partial (struct target_ops *ops,
1148 enum target_object object, const char *annex,
1149 gdb_byte *readbuf, const gdb_byte *writebuf,
1150 ULONGEST offset, ULONGEST len,
1151 ULONGEST *xfered_len)
1152 {
1153 enum target_xfer_status retval;
1154
1155 /* Transfer is done when LEN is zero. */
1156 if (len == 0)
1157 return TARGET_XFER_EOF;
1158
1159 if (writebuf && !may_write_memory)
1160 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1161 core_addr_to_string_nz (offset), plongest (len));
1162
1163 *xfered_len = 0;
1164
1165 /* If this is a memory transfer, let the memory-specific code
1166 have a look at it instead. Memory transfers are more
1167 complicated. */
1168 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1169 || object == TARGET_OBJECT_CODE_MEMORY)
1170 retval = memory_xfer_partial (ops, object, readbuf,
1171 writebuf, offset, len, xfered_len);
1172 else if (object == TARGET_OBJECT_RAW_MEMORY)
1173 {
1174 /* Skip/avoid accessing the target if the memory region
1175 attributes block the access. Check this here instead of in
1176 raw_memory_xfer_partial as otherwise we'd end up checking
1177 this twice in the case of the memory_xfer_partial path is
1178 taken; once before checking the dcache, and another in the
1179 tail call to raw_memory_xfer_partial. */
1180 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1181 NULL))
1182 return TARGET_XFER_E_IO;
1183
1184 /* Request the normal memory object from other layers. */
1185 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1186 xfered_len);
1187 }
1188 else
1189 retval = ops->xfer_partial (object, annex, readbuf,
1190 writebuf, offset, len, xfered_len);
1191
1192 if (targetdebug)
1193 {
1194 const unsigned char *myaddr = NULL;
1195
1196 fprintf_unfiltered (gdb_stdlog,
1197 "%s:target_xfer_partial "
1198 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1199 ops->shortname (),
1200 (int) object,
1201 (annex ? annex : "(null)"),
1202 host_address_to_string (readbuf),
1203 host_address_to_string (writebuf),
1204 core_addr_to_string_nz (offset),
1205 pulongest (len), retval,
1206 pulongest (*xfered_len));
1207
1208 if (readbuf)
1209 myaddr = readbuf;
1210 if (writebuf)
1211 myaddr = writebuf;
1212 if (retval == TARGET_XFER_OK && myaddr != NULL)
1213 {
1214 int i;
1215
1216 fputs_unfiltered (", bytes =", gdb_stdlog);
1217 for (i = 0; i < *xfered_len; i++)
1218 {
1219 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1220 {
1221 if (targetdebug < 2 && i > 0)
1222 {
1223 fprintf_unfiltered (gdb_stdlog, " ...");
1224 break;
1225 }
1226 fprintf_unfiltered (gdb_stdlog, "\n");
1227 }
1228
1229 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1230 }
1231 }
1232
1233 fputc_unfiltered ('\n', gdb_stdlog);
1234 }
1235
1236 /* Check implementations of to_xfer_partial update *XFERED_LEN
1237 properly. Do assertion after printing debug messages, so that we
1238 can find more clues on assertion failure from debugging messages. */
1239 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1240 gdb_assert (*xfered_len > 0);
1241
1242 return retval;
1243 }
1244
1245 /* Read LEN bytes of target memory at address MEMADDR, placing the
1246 results in GDB's memory at MYADDR. Returns either 0 for success or
1247 -1 if any error occurs.
1248
1249 If an error occurs, no guarantee is made about the contents of the data at
1250 MYADDR. In particular, the caller should not depend upon partial reads
1251 filling the buffer with good data. There is no way for the caller to know
1252 how much good data might have been transfered anyway. Callers that can
1253 deal with partial reads should call target_read (which will retry until
1254 it makes no progress, and then return how much was transferred). */
1255
1256 int
1257 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1258 {
1259 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1260 myaddr, memaddr, len) == len)
1261 return 0;
1262 else
1263 return -1;
1264 }
1265
1266 /* See target/target.h. */
1267
1268 int
1269 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1270 {
1271 gdb_byte buf[4];
1272 int r;
1273
1274 r = target_read_memory (memaddr, buf, sizeof buf);
1275 if (r != 0)
1276 return r;
1277 *result = extract_unsigned_integer (buf, sizeof buf,
1278 gdbarch_byte_order (target_gdbarch ()));
1279 return 0;
1280 }
1281
1282 /* Like target_read_memory, but specify explicitly that this is a read
1283 from the target's raw memory. That is, this read bypasses the
1284 dcache, breakpoint shadowing, etc. */
1285
1286 int
1287 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1288 {
1289 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1290 myaddr, memaddr, len) == len)
1291 return 0;
1292 else
1293 return -1;
1294 }
1295
1296 /* Like target_read_memory, but specify explicitly that this is a read from
1297 the target's stack. This may trigger different cache behavior. */
1298
1299 int
1300 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1301 {
1302 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1303 myaddr, memaddr, len) == len)
1304 return 0;
1305 else
1306 return -1;
1307 }
1308
1309 /* Like target_read_memory, but specify explicitly that this is a read from
1310 the target's code. This may trigger different cache behavior. */
1311
1312 int
1313 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1314 {
1315 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1316 myaddr, memaddr, len) == len)
1317 return 0;
1318 else
1319 return -1;
1320 }
1321
1322 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1323 Returns either 0 for success or -1 if any error occurs. If an
1324 error occurs, no guarantee is made about how much data got written.
1325 Callers that can deal with partial writes should call
1326 target_write. */
1327
1328 int
1329 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1330 {
1331 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1332 myaddr, memaddr, len) == len)
1333 return 0;
1334 else
1335 return -1;
1336 }
1337
1338 /* Write LEN bytes from MYADDR to target raw memory at address
1339 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1340 If an error occurs, no guarantee is made about how much data got
1341 written. Callers that can deal with partial writes should call
1342 target_write. */
1343
1344 int
1345 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1346 {
1347 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1348 myaddr, memaddr, len) == len)
1349 return 0;
1350 else
1351 return -1;
1352 }
1353
1354 /* Fetch the target's memory map. */
1355
1356 std::vector<mem_region>
1357 target_memory_map (void)
1358 {
1359 std::vector<mem_region> result = current_top_target ()->memory_map ();
1360 if (result.empty ())
1361 return result;
1362
1363 std::sort (result.begin (), result.end ());
1364
1365 /* Check that regions do not overlap. Simultaneously assign
1366 a numbering for the "mem" commands to use to refer to
1367 each region. */
1368 mem_region *last_one = NULL;
1369 for (size_t ix = 0; ix < result.size (); ix++)
1370 {
1371 mem_region *this_one = &result[ix];
1372 this_one->number = ix;
1373
1374 if (last_one != NULL && last_one->hi > this_one->lo)
1375 {
1376 warning (_("Overlapping regions in memory map: ignoring"));
1377 return std::vector<mem_region> ();
1378 }
1379
1380 last_one = this_one;
1381 }
1382
1383 return result;
1384 }
1385
1386 void
1387 target_flash_erase (ULONGEST address, LONGEST length)
1388 {
1389 current_top_target ()->flash_erase (address, length);
1390 }
1391
1392 void
1393 target_flash_done (void)
1394 {
1395 current_top_target ()->flash_done ();
1396 }
1397
1398 static void
1399 show_trust_readonly (struct ui_file *file, int from_tty,
1400 struct cmd_list_element *c, const char *value)
1401 {
1402 fprintf_filtered (file,
1403 _("Mode for reading from readonly sections is %s.\n"),
1404 value);
1405 }
1406
1407 /* Target vector read/write partial wrapper functions. */
1408
1409 static enum target_xfer_status
1410 target_read_partial (struct target_ops *ops,
1411 enum target_object object,
1412 const char *annex, gdb_byte *buf,
1413 ULONGEST offset, ULONGEST len,
1414 ULONGEST *xfered_len)
1415 {
1416 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1417 xfered_len);
1418 }
1419
1420 static enum target_xfer_status
1421 target_write_partial (struct target_ops *ops,
1422 enum target_object object,
1423 const char *annex, const gdb_byte *buf,
1424 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1425 {
1426 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1427 xfered_len);
1428 }
1429
1430 /* Wrappers to perform the full transfer. */
1431
1432 /* For docs on target_read see target.h. */
1433
1434 LONGEST
1435 target_read (struct target_ops *ops,
1436 enum target_object object,
1437 const char *annex, gdb_byte *buf,
1438 ULONGEST offset, LONGEST len)
1439 {
1440 LONGEST xfered_total = 0;
1441 int unit_size = 1;
1442
1443 /* If we are reading from a memory object, find the length of an addressable
1444 unit for that architecture. */
1445 if (object == TARGET_OBJECT_MEMORY
1446 || object == TARGET_OBJECT_STACK_MEMORY
1447 || object == TARGET_OBJECT_CODE_MEMORY
1448 || object == TARGET_OBJECT_RAW_MEMORY)
1449 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1450
1451 while (xfered_total < len)
1452 {
1453 ULONGEST xfered_partial;
1454 enum target_xfer_status status;
1455
1456 status = target_read_partial (ops, object, annex,
1457 buf + xfered_total * unit_size,
1458 offset + xfered_total, len - xfered_total,
1459 &xfered_partial);
1460
1461 /* Call an observer, notifying them of the xfer progress? */
1462 if (status == TARGET_XFER_EOF)
1463 return xfered_total;
1464 else if (status == TARGET_XFER_OK)
1465 {
1466 xfered_total += xfered_partial;
1467 QUIT;
1468 }
1469 else
1470 return TARGET_XFER_E_IO;
1471
1472 }
1473 return len;
1474 }
1475
1476 /* Assuming that the entire [begin, end) range of memory cannot be
1477 read, try to read whatever subrange is possible to read.
1478
1479 The function returns, in RESULT, either zero or one memory block.
1480 If there's a readable subrange at the beginning, it is completely
1481 read and returned. Any further readable subrange will not be read.
1482 Otherwise, if there's a readable subrange at the end, it will be
1483 completely read and returned. Any readable subranges before it
1484 (obviously, not starting at the beginning), will be ignored. In
1485 other cases -- either no readable subrange, or readable subrange(s)
1486 that is neither at the beginning, or end, nothing is returned.
1487
1488 The purpose of this function is to handle a read across a boundary
1489 of accessible memory in a case when memory map is not available.
1490 The above restrictions are fine for this case, but will give
1491 incorrect results if the memory is 'patchy'. However, supporting
1492 'patchy' memory would require trying to read every single byte,
1493 and it seems unacceptable solution. Explicit memory map is
1494 recommended for this case -- and target_read_memory_robust will
1495 take care of reading multiple ranges then. */
1496
1497 static void
1498 read_whatever_is_readable (struct target_ops *ops,
1499 const ULONGEST begin, const ULONGEST end,
1500 int unit_size,
1501 std::vector<memory_read_result> *result)
1502 {
1503 ULONGEST current_begin = begin;
1504 ULONGEST current_end = end;
1505 int forward;
1506 ULONGEST xfered_len;
1507
1508 /* If we previously failed to read 1 byte, nothing can be done here. */
1509 if (end - begin <= 1)
1510 return;
1511
1512 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1513
1514 /* Check that either first or the last byte is readable, and give up
1515 if not. This heuristic is meant to permit reading accessible memory
1516 at the boundary of accessible region. */
1517 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1518 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1519 {
1520 forward = 1;
1521 ++current_begin;
1522 }
1523 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1524 buf.get () + (end - begin) - 1, end - 1, 1,
1525 &xfered_len) == TARGET_XFER_OK)
1526 {
1527 forward = 0;
1528 --current_end;
1529 }
1530 else
1531 return;
1532
1533 /* Loop invariant is that the [current_begin, current_end) was previously
1534 found to be not readable as a whole.
1535
1536 Note loop condition -- if the range has 1 byte, we can't divide the range
1537 so there's no point trying further. */
1538 while (current_end - current_begin > 1)
1539 {
1540 ULONGEST first_half_begin, first_half_end;
1541 ULONGEST second_half_begin, second_half_end;
1542 LONGEST xfer;
1543 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1544
1545 if (forward)
1546 {
1547 first_half_begin = current_begin;
1548 first_half_end = middle;
1549 second_half_begin = middle;
1550 second_half_end = current_end;
1551 }
1552 else
1553 {
1554 first_half_begin = middle;
1555 first_half_end = current_end;
1556 second_half_begin = current_begin;
1557 second_half_end = middle;
1558 }
1559
1560 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1561 buf.get () + (first_half_begin - begin) * unit_size,
1562 first_half_begin,
1563 first_half_end - first_half_begin);
1564
1565 if (xfer == first_half_end - first_half_begin)
1566 {
1567 /* This half reads up fine. So, the error must be in the
1568 other half. */
1569 current_begin = second_half_begin;
1570 current_end = second_half_end;
1571 }
1572 else
1573 {
1574 /* This half is not readable. Because we've tried one byte, we
1575 know some part of this half if actually readable. Go to the next
1576 iteration to divide again and try to read.
1577
1578 We don't handle the other half, because this function only tries
1579 to read a single readable subrange. */
1580 current_begin = first_half_begin;
1581 current_end = first_half_end;
1582 }
1583 }
1584
1585 if (forward)
1586 {
1587 /* The [begin, current_begin) range has been read. */
1588 result->emplace_back (begin, current_end, std::move (buf));
1589 }
1590 else
1591 {
1592 /* The [current_end, end) range has been read. */
1593 LONGEST region_len = end - current_end;
1594
1595 gdb::unique_xmalloc_ptr<gdb_byte> data
1596 ((gdb_byte *) xmalloc (region_len * unit_size));
1597 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1598 region_len * unit_size);
1599 result->emplace_back (current_end, end, std::move (data));
1600 }
1601 }
1602
1603 std::vector<memory_read_result>
1604 read_memory_robust (struct target_ops *ops,
1605 const ULONGEST offset, const LONGEST len)
1606 {
1607 std::vector<memory_read_result> result;
1608 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1609
1610 LONGEST xfered_total = 0;
1611 while (xfered_total < len)
1612 {
1613 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1614 LONGEST region_len;
1615
1616 /* If there is no explicit region, a fake one should be created. */
1617 gdb_assert (region);
1618
1619 if (region->hi == 0)
1620 region_len = len - xfered_total;
1621 else
1622 region_len = region->hi - offset;
1623
1624 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1625 {
1626 /* Cannot read this region. Note that we can end up here only
1627 if the region is explicitly marked inaccessible, or
1628 'inaccessible-by-default' is in effect. */
1629 xfered_total += region_len;
1630 }
1631 else
1632 {
1633 LONGEST to_read = std::min (len - xfered_total, region_len);
1634 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1635 ((gdb_byte *) xmalloc (to_read * unit_size));
1636
1637 LONGEST xfered_partial =
1638 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1639 offset + xfered_total, to_read);
1640 /* Call an observer, notifying them of the xfer progress? */
1641 if (xfered_partial <= 0)
1642 {
1643 /* Got an error reading full chunk. See if maybe we can read
1644 some subrange. */
1645 read_whatever_is_readable (ops, offset + xfered_total,
1646 offset + xfered_total + to_read,
1647 unit_size, &result);
1648 xfered_total += to_read;
1649 }
1650 else
1651 {
1652 result.emplace_back (offset + xfered_total,
1653 offset + xfered_total + xfered_partial,
1654 std::move (buffer));
1655 xfered_total += xfered_partial;
1656 }
1657 QUIT;
1658 }
1659 }
1660
1661 return result;
1662 }
1663
1664
1665 /* An alternative to target_write with progress callbacks. */
1666
1667 LONGEST
1668 target_write_with_progress (struct target_ops *ops,
1669 enum target_object object,
1670 const char *annex, const gdb_byte *buf,
1671 ULONGEST offset, LONGEST len,
1672 void (*progress) (ULONGEST, void *), void *baton)
1673 {
1674 LONGEST xfered_total = 0;
1675 int unit_size = 1;
1676
1677 /* If we are writing to a memory object, find the length of an addressable
1678 unit for that architecture. */
1679 if (object == TARGET_OBJECT_MEMORY
1680 || object == TARGET_OBJECT_STACK_MEMORY
1681 || object == TARGET_OBJECT_CODE_MEMORY
1682 || object == TARGET_OBJECT_RAW_MEMORY)
1683 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1684
1685 /* Give the progress callback a chance to set up. */
1686 if (progress)
1687 (*progress) (0, baton);
1688
1689 while (xfered_total < len)
1690 {
1691 ULONGEST xfered_partial;
1692 enum target_xfer_status status;
1693
1694 status = target_write_partial (ops, object, annex,
1695 buf + xfered_total * unit_size,
1696 offset + xfered_total, len - xfered_total,
1697 &xfered_partial);
1698
1699 if (status != TARGET_XFER_OK)
1700 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1701
1702 if (progress)
1703 (*progress) (xfered_partial, baton);
1704
1705 xfered_total += xfered_partial;
1706 QUIT;
1707 }
1708 return len;
1709 }
1710
1711 /* For docs on target_write see target.h. */
1712
1713 LONGEST
1714 target_write (struct target_ops *ops,
1715 enum target_object object,
1716 const char *annex, const gdb_byte *buf,
1717 ULONGEST offset, LONGEST len)
1718 {
1719 return target_write_with_progress (ops, object, annex, buf, offset, len,
1720 NULL, NULL);
1721 }
1722
1723 /* Help for target_read_alloc and target_read_stralloc. See their comments
1724 for details. */
1725
1726 template <typename T>
1727 gdb::optional<gdb::def_vector<T>>
1728 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1729 const char *annex)
1730 {
1731 gdb::def_vector<T> buf;
1732 size_t buf_pos = 0;
1733 const int chunk = 4096;
1734
1735 /* This function does not have a length parameter; it reads the
1736 entire OBJECT). Also, it doesn't support objects fetched partly
1737 from one target and partly from another (in a different stratum,
1738 e.g. a core file and an executable). Both reasons make it
1739 unsuitable for reading memory. */
1740 gdb_assert (object != TARGET_OBJECT_MEMORY);
1741
1742 /* Start by reading up to 4K at a time. The target will throttle
1743 this number down if necessary. */
1744 while (1)
1745 {
1746 ULONGEST xfered_len;
1747 enum target_xfer_status status;
1748
1749 buf.resize (buf_pos + chunk);
1750
1751 status = target_read_partial (ops, object, annex,
1752 (gdb_byte *) &buf[buf_pos],
1753 buf_pos, chunk,
1754 &xfered_len);
1755
1756 if (status == TARGET_XFER_EOF)
1757 {
1758 /* Read all there was. */
1759 buf.resize (buf_pos);
1760 return buf;
1761 }
1762 else if (status != TARGET_XFER_OK)
1763 {
1764 /* An error occurred. */
1765 return {};
1766 }
1767
1768 buf_pos += xfered_len;
1769
1770 QUIT;
1771 }
1772 }
1773
1774 /* See target.h */
1775
1776 gdb::optional<gdb::byte_vector>
1777 target_read_alloc (struct target_ops *ops, enum target_object object,
1778 const char *annex)
1779 {
1780 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1781 }
1782
1783 /* See target.h. */
1784
1785 gdb::optional<gdb::char_vector>
1786 target_read_stralloc (struct target_ops *ops, enum target_object object,
1787 const char *annex)
1788 {
1789 gdb::optional<gdb::char_vector> buf
1790 = target_read_alloc_1<char> (ops, object, annex);
1791
1792 if (!buf)
1793 return {};
1794
1795 if (buf->empty () || buf->back () != '\0')
1796 buf->push_back ('\0');
1797
1798 /* Check for embedded NUL bytes; but allow trailing NULs. */
1799 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1800 it != buf->end (); it++)
1801 if (*it != '\0')
1802 {
1803 warning (_("target object %d, annex %s, "
1804 "contained unexpected null characters"),
1805 (int) object, annex ? annex : "(none)");
1806 break;
1807 }
1808
1809 return buf;
1810 }
1811
1812 /* Memory transfer methods. */
1813
1814 void
1815 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1816 LONGEST len)
1817 {
1818 /* This method is used to read from an alternate, non-current
1819 target. This read must bypass the overlay support (as symbols
1820 don't match this target), and GDB's internal cache (wrong cache
1821 for this target). */
1822 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1823 != len)
1824 memory_error (TARGET_XFER_E_IO, addr);
1825 }
1826
1827 ULONGEST
1828 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1829 int len, enum bfd_endian byte_order)
1830 {
1831 gdb_byte buf[sizeof (ULONGEST)];
1832
1833 gdb_assert (len <= sizeof (buf));
1834 get_target_memory (ops, addr, buf, len);
1835 return extract_unsigned_integer (buf, len, byte_order);
1836 }
1837
1838 /* See target.h. */
1839
1840 int
1841 target_insert_breakpoint (struct gdbarch *gdbarch,
1842 struct bp_target_info *bp_tgt)
1843 {
1844 if (!may_insert_breakpoints)
1845 {
1846 warning (_("May not insert breakpoints"));
1847 return 1;
1848 }
1849
1850 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1851 }
1852
1853 /* See target.h. */
1854
1855 int
1856 target_remove_breakpoint (struct gdbarch *gdbarch,
1857 struct bp_target_info *bp_tgt,
1858 enum remove_bp_reason reason)
1859 {
1860 /* This is kind of a weird case to handle, but the permission might
1861 have been changed after breakpoints were inserted - in which case
1862 we should just take the user literally and assume that any
1863 breakpoints should be left in place. */
1864 if (!may_insert_breakpoints)
1865 {
1866 warning (_("May not remove breakpoints"));
1867 return 1;
1868 }
1869
1870 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1871 }
1872
1873 static void
1874 info_target_command (const char *args, int from_tty)
1875 {
1876 int has_all_mem = 0;
1877
1878 if (symfile_objfile != NULL)
1879 printf_unfiltered (_("Symbols from \"%s\".\n"),
1880 objfile_name (symfile_objfile));
1881
1882 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1883 {
1884 if (!t->has_memory ())
1885 continue;
1886
1887 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1888 continue;
1889 if (has_all_mem)
1890 printf_unfiltered (_("\tWhile running this, "
1891 "GDB does not access memory from...\n"));
1892 printf_unfiltered ("%s:\n", t->longname ());
1893 t->files_info ();
1894 has_all_mem = t->has_all_memory ();
1895 }
1896 }
1897
1898 /* This function is called before any new inferior is created, e.g.
1899 by running a program, attaching, or connecting to a target.
1900 It cleans up any state from previous invocations which might
1901 change between runs. This is a subset of what target_preopen
1902 resets (things which might change between targets). */
1903
1904 void
1905 target_pre_inferior (int from_tty)
1906 {
1907 /* Clear out solib state. Otherwise the solib state of the previous
1908 inferior might have survived and is entirely wrong for the new
1909 target. This has been observed on GNU/Linux using glibc 2.3. How
1910 to reproduce:
1911
1912 bash$ ./foo&
1913 [1] 4711
1914 bash$ ./foo&
1915 [1] 4712
1916 bash$ gdb ./foo
1917 [...]
1918 (gdb) attach 4711
1919 (gdb) detach
1920 (gdb) attach 4712
1921 Cannot access memory at address 0xdeadbeef
1922 */
1923
1924 /* In some OSs, the shared library list is the same/global/shared
1925 across inferiors. If code is shared between processes, so are
1926 memory regions and features. */
1927 if (!gdbarch_has_global_solist (target_gdbarch ()))
1928 {
1929 no_shared_libraries (NULL, from_tty);
1930
1931 invalidate_target_mem_regions ();
1932
1933 target_clear_description ();
1934 }
1935
1936 /* attach_flag may be set if the previous process associated with
1937 the inferior was attached to. */
1938 current_inferior ()->attach_flag = 0;
1939
1940 current_inferior ()->highest_thread_num = 0;
1941
1942 agent_capability_invalidate ();
1943 }
1944
1945 /* Callback for iterate_over_inferiors. Gets rid of the given
1946 inferior. */
1947
1948 static int
1949 dispose_inferior (struct inferior *inf, void *args)
1950 {
1951 /* Not all killed inferiors can, or will ever be, removed from the
1952 inferior list. Killed inferiors clearly don't need to be killed
1953 again, so, we're done. */
1954 if (inf->pid == 0)
1955 return 0;
1956
1957 thread_info *thread = any_thread_of_inferior (inf);
1958 if (thread != NULL)
1959 {
1960 switch_to_thread (thread);
1961
1962 /* Core inferiors actually should be detached, not killed. */
1963 if (target_has_execution)
1964 target_kill ();
1965 else
1966 target_detach (inf, 0);
1967 }
1968
1969 return 0;
1970 }
1971
1972 /* This is to be called by the open routine before it does
1973 anything. */
1974
1975 void
1976 target_preopen (int from_tty)
1977 {
1978 dont_repeat ();
1979
1980 if (have_inferiors ())
1981 {
1982 if (!from_tty
1983 || !have_live_inferiors ()
1984 || query (_("A program is being debugged already. Kill it? ")))
1985 iterate_over_inferiors (dispose_inferior, NULL);
1986 else
1987 error (_("Program not killed."));
1988 }
1989
1990 /* Calling target_kill may remove the target from the stack. But if
1991 it doesn't (which seems like a win for UDI), remove it now. */
1992 /* Leave the exec target, though. The user may be switching from a
1993 live process to a core of the same program. */
1994 pop_all_targets_above (file_stratum);
1995
1996 target_pre_inferior (from_tty);
1997 }
1998
1999 /* See target.h. */
2000
2001 void
2002 target_detach (inferior *inf, int from_tty)
2003 {
2004 /* As long as some to_detach implementations rely on the current_inferior
2005 (either directly, or indirectly, like through target_gdbarch or by
2006 reading memory), INF needs to be the current inferior. When that
2007 requirement will become no longer true, then we can remove this
2008 assertion. */
2009 gdb_assert (inf == current_inferior ());
2010
2011 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2012 /* Don't remove global breakpoints here. They're removed on
2013 disconnection from the target. */
2014 ;
2015 else
2016 /* If we're in breakpoints-always-inserted mode, have to remove
2017 breakpoints before detaching. */
2018 remove_breakpoints_inf (current_inferior ());
2019
2020 prepare_for_detach ();
2021
2022 current_top_target ()->detach (inf, from_tty);
2023 }
2024
2025 void
2026 target_disconnect (const char *args, int from_tty)
2027 {
2028 /* If we're in breakpoints-always-inserted mode or if breakpoints
2029 are global across processes, we have to remove them before
2030 disconnecting. */
2031 remove_breakpoints ();
2032
2033 current_top_target ()->disconnect (args, from_tty);
2034 }
2035
2036 /* See target/target.h. */
2037
2038 ptid_t
2039 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2040 {
2041 return current_top_target ()->wait (ptid, status, options);
2042 }
2043
2044 /* See target.h. */
2045
2046 ptid_t
2047 default_target_wait (struct target_ops *ops,
2048 ptid_t ptid, struct target_waitstatus *status,
2049 int options)
2050 {
2051 status->kind = TARGET_WAITKIND_IGNORE;
2052 return minus_one_ptid;
2053 }
2054
2055 const char *
2056 target_pid_to_str (ptid_t ptid)
2057 {
2058 return current_top_target ()->pid_to_str (ptid);
2059 }
2060
2061 const char *
2062 target_thread_name (struct thread_info *info)
2063 {
2064 return current_top_target ()->thread_name (info);
2065 }
2066
2067 struct thread_info *
2068 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2069 int handle_len,
2070 struct inferior *inf)
2071 {
2072 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2073 handle_len, inf);
2074 }
2075
2076 void
2077 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2078 {
2079 target_dcache_invalidate ();
2080
2081 current_top_target ()->resume (ptid, step, signal);
2082
2083 registers_changed_ptid (ptid);
2084 /* We only set the internal executing state here. The user/frontend
2085 running state is set at a higher level. This also clears the
2086 thread's stop_pc as side effect. */
2087 set_executing (ptid, 1);
2088 clear_inline_frame_state (ptid);
2089 }
2090
2091 /* If true, target_commit_resume is a nop. */
2092 static int defer_target_commit_resume;
2093
2094 /* See target.h. */
2095
2096 void
2097 target_commit_resume (void)
2098 {
2099 if (defer_target_commit_resume)
2100 return;
2101
2102 current_top_target ()->commit_resume ();
2103 }
2104
2105 /* See target.h. */
2106
2107 scoped_restore_tmpl<int>
2108 make_scoped_defer_target_commit_resume ()
2109 {
2110 return make_scoped_restore (&defer_target_commit_resume, 1);
2111 }
2112
2113 void
2114 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2115 {
2116 current_top_target ()->pass_signals (pass_signals);
2117 }
2118
2119 void
2120 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2121 {
2122 current_top_target ()->program_signals (program_signals);
2123 }
2124
2125 static int
2126 default_follow_fork (struct target_ops *self, int follow_child,
2127 int detach_fork)
2128 {
2129 /* Some target returned a fork event, but did not know how to follow it. */
2130 internal_error (__FILE__, __LINE__,
2131 _("could not find a target to follow fork"));
2132 }
2133
2134 /* Look through the list of possible targets for a target that can
2135 follow forks. */
2136
2137 int
2138 target_follow_fork (int follow_child, int detach_fork)
2139 {
2140 return current_top_target ()->follow_fork (follow_child, detach_fork);
2141 }
2142
2143 /* Target wrapper for follow exec hook. */
2144
2145 void
2146 target_follow_exec (struct inferior *inf, char *execd_pathname)
2147 {
2148 current_top_target ()->follow_exec (inf, execd_pathname);
2149 }
2150
2151 static void
2152 default_mourn_inferior (struct target_ops *self)
2153 {
2154 internal_error (__FILE__, __LINE__,
2155 _("could not find a target to follow mourn inferior"));
2156 }
2157
2158 void
2159 target_mourn_inferior (ptid_t ptid)
2160 {
2161 gdb_assert (ptid == inferior_ptid);
2162 current_top_target ()->mourn_inferior ();
2163
2164 /* We no longer need to keep handles on any of the object files.
2165 Make sure to release them to avoid unnecessarily locking any
2166 of them while we're not actually debugging. */
2167 bfd_cache_close_all ();
2168 }
2169
2170 /* Look for a target which can describe architectural features, starting
2171 from TARGET. If we find one, return its description. */
2172
2173 const struct target_desc *
2174 target_read_description (struct target_ops *target)
2175 {
2176 return target->read_description ();
2177 }
2178
2179 /* This implements a basic search of memory, reading target memory and
2180 performing the search here (as opposed to performing the search in on the
2181 target side with, for example, gdbserver). */
2182
2183 int
2184 simple_search_memory (struct target_ops *ops,
2185 CORE_ADDR start_addr, ULONGEST search_space_len,
2186 const gdb_byte *pattern, ULONGEST pattern_len,
2187 CORE_ADDR *found_addrp)
2188 {
2189 /* NOTE: also defined in find.c testcase. */
2190 #define SEARCH_CHUNK_SIZE 16000
2191 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2192 /* Buffer to hold memory contents for searching. */
2193 unsigned search_buf_size;
2194
2195 search_buf_size = chunk_size + pattern_len - 1;
2196
2197 /* No point in trying to allocate a buffer larger than the search space. */
2198 if (search_space_len < search_buf_size)
2199 search_buf_size = search_space_len;
2200
2201 gdb::byte_vector search_buf (search_buf_size);
2202
2203 /* Prime the search buffer. */
2204
2205 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2206 search_buf.data (), start_addr, search_buf_size)
2207 != search_buf_size)
2208 {
2209 warning (_("Unable to access %s bytes of target "
2210 "memory at %s, halting search."),
2211 pulongest (search_buf_size), hex_string (start_addr));
2212 return -1;
2213 }
2214
2215 /* Perform the search.
2216
2217 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2218 When we've scanned N bytes we copy the trailing bytes to the start and
2219 read in another N bytes. */
2220
2221 while (search_space_len >= pattern_len)
2222 {
2223 gdb_byte *found_ptr;
2224 unsigned nr_search_bytes
2225 = std::min (search_space_len, (ULONGEST) search_buf_size);
2226
2227 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2228 pattern, pattern_len);
2229
2230 if (found_ptr != NULL)
2231 {
2232 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2233
2234 *found_addrp = found_addr;
2235 return 1;
2236 }
2237
2238 /* Not found in this chunk, skip to next chunk. */
2239
2240 /* Don't let search_space_len wrap here, it's unsigned. */
2241 if (search_space_len >= chunk_size)
2242 search_space_len -= chunk_size;
2243 else
2244 search_space_len = 0;
2245
2246 if (search_space_len >= pattern_len)
2247 {
2248 unsigned keep_len = search_buf_size - chunk_size;
2249 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2250 int nr_to_read;
2251
2252 /* Copy the trailing part of the previous iteration to the front
2253 of the buffer for the next iteration. */
2254 gdb_assert (keep_len == pattern_len - 1);
2255 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2256
2257 nr_to_read = std::min (search_space_len - keep_len,
2258 (ULONGEST) chunk_size);
2259
2260 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2261 &search_buf[keep_len], read_addr,
2262 nr_to_read) != nr_to_read)
2263 {
2264 warning (_("Unable to access %s bytes of target "
2265 "memory at %s, halting search."),
2266 plongest (nr_to_read),
2267 hex_string (read_addr));
2268 return -1;
2269 }
2270
2271 start_addr += chunk_size;
2272 }
2273 }
2274
2275 /* Not found. */
2276
2277 return 0;
2278 }
2279
2280 /* Default implementation of memory-searching. */
2281
2282 static int
2283 default_search_memory (struct target_ops *self,
2284 CORE_ADDR start_addr, ULONGEST search_space_len,
2285 const gdb_byte *pattern, ULONGEST pattern_len,
2286 CORE_ADDR *found_addrp)
2287 {
2288 /* Start over from the top of the target stack. */
2289 return simple_search_memory (current_top_target (),
2290 start_addr, search_space_len,
2291 pattern, pattern_len, found_addrp);
2292 }
2293
2294 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2295 sequence of bytes in PATTERN with length PATTERN_LEN.
2296
2297 The result is 1 if found, 0 if not found, and -1 if there was an error
2298 requiring halting of the search (e.g. memory read error).
2299 If the pattern is found the address is recorded in FOUND_ADDRP. */
2300
2301 int
2302 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2303 const gdb_byte *pattern, ULONGEST pattern_len,
2304 CORE_ADDR *found_addrp)
2305 {
2306 return current_top_target ()->search_memory (start_addr, search_space_len,
2307 pattern, pattern_len, found_addrp);
2308 }
2309
2310 /* Look through the currently pushed targets. If none of them will
2311 be able to restart the currently running process, issue an error
2312 message. */
2313
2314 void
2315 target_require_runnable (void)
2316 {
2317 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2318 {
2319 /* If this target knows how to create a new program, then
2320 assume we will still be able to after killing the current
2321 one. Either killing and mourning will not pop T, or else
2322 find_default_run_target will find it again. */
2323 if (t->can_create_inferior ())
2324 return;
2325
2326 /* Do not worry about targets at certain strata that can not
2327 create inferiors. Assume they will be pushed again if
2328 necessary, and continue to the process_stratum. */
2329 if (t->stratum () > process_stratum)
2330 continue;
2331
2332 error (_("The \"%s\" target does not support \"run\". "
2333 "Try \"help target\" or \"continue\"."),
2334 t->shortname ());
2335 }
2336
2337 /* This function is only called if the target is running. In that
2338 case there should have been a process_stratum target and it
2339 should either know how to create inferiors, or not... */
2340 internal_error (__FILE__, __LINE__, _("No targets found"));
2341 }
2342
2343 /* Whether GDB is allowed to fall back to the default run target for
2344 "run", "attach", etc. when no target is connected yet. */
2345 static int auto_connect_native_target = 1;
2346
2347 static void
2348 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2349 struct cmd_list_element *c, const char *value)
2350 {
2351 fprintf_filtered (file,
2352 _("Whether GDB may automatically connect to the "
2353 "native target is %s.\n"),
2354 value);
2355 }
2356
2357 /* A pointer to the target that can respond to "run" or "attach".
2358 Native targets are always singletons and instantiated early at GDB
2359 startup. */
2360 static target_ops *the_native_target;
2361
2362 /* See target.h. */
2363
2364 void
2365 set_native_target (target_ops *target)
2366 {
2367 if (the_native_target != NULL)
2368 internal_error (__FILE__, __LINE__,
2369 _("native target already set (\"%s\")."),
2370 the_native_target->longname ());
2371
2372 the_native_target = target;
2373 }
2374
2375 /* See target.h. */
2376
2377 target_ops *
2378 get_native_target ()
2379 {
2380 return the_native_target;
2381 }
2382
2383 /* Look through the list of possible targets for a target that can
2384 execute a run or attach command without any other data. This is
2385 used to locate the default process stratum.
2386
2387 If DO_MESG is not NULL, the result is always valid (error() is
2388 called for errors); else, return NULL on error. */
2389
2390 static struct target_ops *
2391 find_default_run_target (const char *do_mesg)
2392 {
2393 if (auto_connect_native_target && the_native_target != NULL)
2394 return the_native_target;
2395
2396 if (do_mesg != NULL)
2397 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2398 return NULL;
2399 }
2400
2401 /* See target.h. */
2402
2403 struct target_ops *
2404 find_attach_target (void)
2405 {
2406 /* If a target on the current stack can attach, use it. */
2407 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2408 {
2409 if (t->can_attach ())
2410 return t;
2411 }
2412
2413 /* Otherwise, use the default run target for attaching. */
2414 return find_default_run_target ("attach");
2415 }
2416
2417 /* See target.h. */
2418
2419 struct target_ops *
2420 find_run_target (void)
2421 {
2422 /* If a target on the current stack can run, use it. */
2423 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2424 {
2425 if (t->can_create_inferior ())
2426 return t;
2427 }
2428
2429 /* Otherwise, use the default run target. */
2430 return find_default_run_target ("run");
2431 }
2432
2433 bool
2434 target_ops::info_proc (const char *args, enum info_proc_what what)
2435 {
2436 return false;
2437 }
2438
2439 /* Implement the "info proc" command. */
2440
2441 int
2442 target_info_proc (const char *args, enum info_proc_what what)
2443 {
2444 struct target_ops *t;
2445
2446 /* If we're already connected to something that can get us OS
2447 related data, use it. Otherwise, try using the native
2448 target. */
2449 t = find_target_at (process_stratum);
2450 if (t == NULL)
2451 t = find_default_run_target (NULL);
2452
2453 for (; t != NULL; t = t->beneath ())
2454 {
2455 if (t->info_proc (args, what))
2456 {
2457 if (targetdebug)
2458 fprintf_unfiltered (gdb_stdlog,
2459 "target_info_proc (\"%s\", %d)\n", args, what);
2460
2461 return 1;
2462 }
2463 }
2464
2465 return 0;
2466 }
2467
2468 static int
2469 find_default_supports_disable_randomization (struct target_ops *self)
2470 {
2471 struct target_ops *t;
2472
2473 t = find_default_run_target (NULL);
2474 if (t != NULL)
2475 return t->supports_disable_randomization ();
2476 return 0;
2477 }
2478
2479 int
2480 target_supports_disable_randomization (void)
2481 {
2482 return current_top_target ()->supports_disable_randomization ();
2483 }
2484
2485 /* See target/target.h. */
2486
2487 int
2488 target_supports_multi_process (void)
2489 {
2490 return current_top_target ()->supports_multi_process ();
2491 }
2492
2493 /* See target.h. */
2494
2495 gdb::optional<gdb::char_vector>
2496 target_get_osdata (const char *type)
2497 {
2498 struct target_ops *t;
2499
2500 /* If we're already connected to something that can get us OS
2501 related data, use it. Otherwise, try using the native
2502 target. */
2503 t = find_target_at (process_stratum);
2504 if (t == NULL)
2505 t = find_default_run_target ("get OS data");
2506
2507 if (!t)
2508 return {};
2509
2510 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2511 }
2512
2513
2514 /* Determine the current address space of thread PTID. */
2515
2516 struct address_space *
2517 target_thread_address_space (ptid_t ptid)
2518 {
2519 struct address_space *aspace;
2520
2521 aspace = current_top_target ()->thread_address_space (ptid);
2522 gdb_assert (aspace != NULL);
2523
2524 return aspace;
2525 }
2526
2527 /* See target.h. */
2528
2529 target_ops *
2530 target_ops::beneath () const
2531 {
2532 return g_target_stack.find_beneath (this);
2533 }
2534
2535 void
2536 target_ops::close ()
2537 {
2538 }
2539
2540 bool
2541 target_ops::can_attach ()
2542 {
2543 return 0;
2544 }
2545
2546 void
2547 target_ops::attach (const char *, int)
2548 {
2549 gdb_assert_not_reached ("target_ops::attach called");
2550 }
2551
2552 bool
2553 target_ops::can_create_inferior ()
2554 {
2555 return 0;
2556 }
2557
2558 void
2559 target_ops::create_inferior (const char *, const std::string &,
2560 char **, int)
2561 {
2562 gdb_assert_not_reached ("target_ops::create_inferior called");
2563 }
2564
2565 bool
2566 target_ops::can_run ()
2567 {
2568 return false;
2569 }
2570
2571 int
2572 target_can_run ()
2573 {
2574 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2575 {
2576 if (t->can_run ())
2577 return 1;
2578 }
2579
2580 return 0;
2581 }
2582
2583 /* Target file operations. */
2584
2585 static struct target_ops *
2586 default_fileio_target (void)
2587 {
2588 struct target_ops *t;
2589
2590 /* If we're already connected to something that can perform
2591 file I/O, use it. Otherwise, try using the native target. */
2592 t = find_target_at (process_stratum);
2593 if (t != NULL)
2594 return t;
2595 return find_default_run_target ("file I/O");
2596 }
2597
2598 /* File handle for target file operations. */
2599
2600 struct fileio_fh_t
2601 {
2602 /* The target on which this file is open. NULL if the target is
2603 meanwhile closed while the handle is open. */
2604 target_ops *target;
2605
2606 /* The file descriptor on the target. */
2607 int target_fd;
2608
2609 /* Check whether this fileio_fh_t represents a closed file. */
2610 bool is_closed ()
2611 {
2612 return target_fd < 0;
2613 }
2614 };
2615
2616 /* Vector of currently open file handles. The value returned by
2617 target_fileio_open and passed as the FD argument to other
2618 target_fileio_* functions is an index into this vector. This
2619 vector's entries are never freed; instead, files are marked as
2620 closed, and the handle becomes available for reuse. */
2621 static std::vector<fileio_fh_t> fileio_fhandles;
2622
2623 /* Index into fileio_fhandles of the lowest handle that might be
2624 closed. This permits handle reuse without searching the whole
2625 list each time a new file is opened. */
2626 static int lowest_closed_fd;
2627
2628 /* Invalidate the target associated with open handles that were open
2629 on target TARG, since we're about to close (and maybe destroy) the
2630 target. The handles remain open from the client's perspective, but
2631 trying to do anything with them other than closing them will fail
2632 with EIO. */
2633
2634 static void
2635 fileio_handles_invalidate_target (target_ops *targ)
2636 {
2637 for (fileio_fh_t &fh : fileio_fhandles)
2638 if (fh.target == targ)
2639 fh.target = NULL;
2640 }
2641
2642 /* Acquire a target fileio file descriptor. */
2643
2644 static int
2645 acquire_fileio_fd (target_ops *target, int target_fd)
2646 {
2647 /* Search for closed handles to reuse. */
2648 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2649 {
2650 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2651
2652 if (fh.is_closed ())
2653 break;
2654 }
2655
2656 /* Push a new handle if no closed handles were found. */
2657 if (lowest_closed_fd == fileio_fhandles.size ())
2658 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2659 else
2660 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2661
2662 /* Should no longer be marked closed. */
2663 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2664
2665 /* Return its index, and start the next lookup at
2666 the next index. */
2667 return lowest_closed_fd++;
2668 }
2669
2670 /* Release a target fileio file descriptor. */
2671
2672 static void
2673 release_fileio_fd (int fd, fileio_fh_t *fh)
2674 {
2675 fh->target_fd = -1;
2676 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2677 }
2678
2679 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2680
2681 static fileio_fh_t *
2682 fileio_fd_to_fh (int fd)
2683 {
2684 return &fileio_fhandles[fd];
2685 }
2686
2687
2688 /* Default implementations of file i/o methods. We don't want these
2689 to delegate automatically, because we need to know which target
2690 supported the method, in order to call it directly from within
2691 pread/pwrite, etc. */
2692
2693 int
2694 target_ops::fileio_open (struct inferior *inf, const char *filename,
2695 int flags, int mode, int warn_if_slow,
2696 int *target_errno)
2697 {
2698 *target_errno = FILEIO_ENOSYS;
2699 return -1;
2700 }
2701
2702 int
2703 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2704 ULONGEST offset, int *target_errno)
2705 {
2706 *target_errno = FILEIO_ENOSYS;
2707 return -1;
2708 }
2709
2710 int
2711 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2712 ULONGEST offset, int *target_errno)
2713 {
2714 *target_errno = FILEIO_ENOSYS;
2715 return -1;
2716 }
2717
2718 int
2719 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2720 {
2721 *target_errno = FILEIO_ENOSYS;
2722 return -1;
2723 }
2724
2725 int
2726 target_ops::fileio_close (int fd, int *target_errno)
2727 {
2728 *target_errno = FILEIO_ENOSYS;
2729 return -1;
2730 }
2731
2732 int
2733 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2734 int *target_errno)
2735 {
2736 *target_errno = FILEIO_ENOSYS;
2737 return -1;
2738 }
2739
2740 gdb::optional<std::string>
2741 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2742 int *target_errno)
2743 {
2744 *target_errno = FILEIO_ENOSYS;
2745 return {};
2746 }
2747
2748 /* Helper for target_fileio_open and
2749 target_fileio_open_warn_if_slow. */
2750
2751 static int
2752 target_fileio_open_1 (struct inferior *inf, const char *filename,
2753 int flags, int mode, int warn_if_slow,
2754 int *target_errno)
2755 {
2756 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2757 {
2758 int fd = t->fileio_open (inf, filename, flags, mode,
2759 warn_if_slow, target_errno);
2760
2761 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2762 continue;
2763
2764 if (fd < 0)
2765 fd = -1;
2766 else
2767 fd = acquire_fileio_fd (t, fd);
2768
2769 if (targetdebug)
2770 fprintf_unfiltered (gdb_stdlog,
2771 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2772 " = %d (%d)\n",
2773 inf == NULL ? 0 : inf->num,
2774 filename, flags, mode,
2775 warn_if_slow, fd,
2776 fd != -1 ? 0 : *target_errno);
2777 return fd;
2778 }
2779
2780 *target_errno = FILEIO_ENOSYS;
2781 return -1;
2782 }
2783
2784 /* See target.h. */
2785
2786 int
2787 target_fileio_open (struct inferior *inf, const char *filename,
2788 int flags, int mode, int *target_errno)
2789 {
2790 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2791 target_errno);
2792 }
2793
2794 /* See target.h. */
2795
2796 int
2797 target_fileio_open_warn_if_slow (struct inferior *inf,
2798 const char *filename,
2799 int flags, int mode, int *target_errno)
2800 {
2801 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2802 target_errno);
2803 }
2804
2805 /* See target.h. */
2806
2807 int
2808 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2809 ULONGEST offset, int *target_errno)
2810 {
2811 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2812 int ret = -1;
2813
2814 if (fh->is_closed ())
2815 *target_errno = EBADF;
2816 else if (fh->target == NULL)
2817 *target_errno = EIO;
2818 else
2819 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2820 len, offset, target_errno);
2821
2822 if (targetdebug)
2823 fprintf_unfiltered (gdb_stdlog,
2824 "target_fileio_pwrite (%d,...,%d,%s) "
2825 "= %d (%d)\n",
2826 fd, len, pulongest (offset),
2827 ret, ret != -1 ? 0 : *target_errno);
2828 return ret;
2829 }
2830
2831 /* See target.h. */
2832
2833 int
2834 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2835 ULONGEST offset, int *target_errno)
2836 {
2837 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2838 int ret = -1;
2839
2840 if (fh->is_closed ())
2841 *target_errno = EBADF;
2842 else if (fh->target == NULL)
2843 *target_errno = EIO;
2844 else
2845 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2846 len, offset, target_errno);
2847
2848 if (targetdebug)
2849 fprintf_unfiltered (gdb_stdlog,
2850 "target_fileio_pread (%d,...,%d,%s) "
2851 "= %d (%d)\n",
2852 fd, len, pulongest (offset),
2853 ret, ret != -1 ? 0 : *target_errno);
2854 return ret;
2855 }
2856
2857 /* See target.h. */
2858
2859 int
2860 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2861 {
2862 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2863 int ret = -1;
2864
2865 if (fh->is_closed ())
2866 *target_errno = EBADF;
2867 else if (fh->target == NULL)
2868 *target_errno = EIO;
2869 else
2870 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2871
2872 if (targetdebug)
2873 fprintf_unfiltered (gdb_stdlog,
2874 "target_fileio_fstat (%d) = %d (%d)\n",
2875 fd, ret, ret != -1 ? 0 : *target_errno);
2876 return ret;
2877 }
2878
2879 /* See target.h. */
2880
2881 int
2882 target_fileio_close (int fd, int *target_errno)
2883 {
2884 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2885 int ret = -1;
2886
2887 if (fh->is_closed ())
2888 *target_errno = EBADF;
2889 else
2890 {
2891 if (fh->target != NULL)
2892 ret = fh->target->fileio_close (fh->target_fd,
2893 target_errno);
2894 else
2895 ret = 0;
2896 release_fileio_fd (fd, fh);
2897 }
2898
2899 if (targetdebug)
2900 fprintf_unfiltered (gdb_stdlog,
2901 "target_fileio_close (%d) = %d (%d)\n",
2902 fd, ret, ret != -1 ? 0 : *target_errno);
2903 return ret;
2904 }
2905
2906 /* See target.h. */
2907
2908 int
2909 target_fileio_unlink (struct inferior *inf, const char *filename,
2910 int *target_errno)
2911 {
2912 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2913 {
2914 int ret = t->fileio_unlink (inf, filename, target_errno);
2915
2916 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2917 continue;
2918
2919 if (targetdebug)
2920 fprintf_unfiltered (gdb_stdlog,
2921 "target_fileio_unlink (%d,%s)"
2922 " = %d (%d)\n",
2923 inf == NULL ? 0 : inf->num, filename,
2924 ret, ret != -1 ? 0 : *target_errno);
2925 return ret;
2926 }
2927
2928 *target_errno = FILEIO_ENOSYS;
2929 return -1;
2930 }
2931
2932 /* See target.h. */
2933
2934 gdb::optional<std::string>
2935 target_fileio_readlink (struct inferior *inf, const char *filename,
2936 int *target_errno)
2937 {
2938 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2939 {
2940 gdb::optional<std::string> ret
2941 = t->fileio_readlink (inf, filename, target_errno);
2942
2943 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2944 continue;
2945
2946 if (targetdebug)
2947 fprintf_unfiltered (gdb_stdlog,
2948 "target_fileio_readlink (%d,%s)"
2949 " = %s (%d)\n",
2950 inf == NULL ? 0 : inf->num,
2951 filename, ret ? ret->c_str () : "(nil)",
2952 ret ? 0 : *target_errno);
2953 return ret;
2954 }
2955
2956 *target_errno = FILEIO_ENOSYS;
2957 return {};
2958 }
2959
2960 /* Like scoped_fd, but specific to target fileio. */
2961
2962 class scoped_target_fd
2963 {
2964 public:
2965 explicit scoped_target_fd (int fd) noexcept
2966 : m_fd (fd)
2967 {
2968 }
2969
2970 ~scoped_target_fd ()
2971 {
2972 if (m_fd >= 0)
2973 {
2974 int target_errno;
2975
2976 target_fileio_close (m_fd, &target_errno);
2977 }
2978 }
2979
2980 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
2981
2982 int get () const noexcept
2983 {
2984 return m_fd;
2985 }
2986
2987 private:
2988 int m_fd;
2989 };
2990
2991 /* Read target file FILENAME, in the filesystem as seen by INF. If
2992 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2993 remote targets, the remote stub). Store the result in *BUF_P and
2994 return the size of the transferred data. PADDING additional bytes
2995 are available in *BUF_P. This is a helper function for
2996 target_fileio_read_alloc; see the declaration of that function for
2997 more information. */
2998
2999 static LONGEST
3000 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3001 gdb_byte **buf_p, int padding)
3002 {
3003 size_t buf_alloc, buf_pos;
3004 gdb_byte *buf;
3005 LONGEST n;
3006 int target_errno;
3007
3008 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3009 0700, &target_errno));
3010 if (fd.get () == -1)
3011 return -1;
3012
3013 /* Start by reading up to 4K at a time. The target will throttle
3014 this number down if necessary. */
3015 buf_alloc = 4096;
3016 buf = (gdb_byte *) xmalloc (buf_alloc);
3017 buf_pos = 0;
3018 while (1)
3019 {
3020 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3021 buf_alloc - buf_pos - padding, buf_pos,
3022 &target_errno);
3023 if (n < 0)
3024 {
3025 /* An error occurred. */
3026 xfree (buf);
3027 return -1;
3028 }
3029 else if (n == 0)
3030 {
3031 /* Read all there was. */
3032 if (buf_pos == 0)
3033 xfree (buf);
3034 else
3035 *buf_p = buf;
3036 return buf_pos;
3037 }
3038
3039 buf_pos += n;
3040
3041 /* If the buffer is filling up, expand it. */
3042 if (buf_alloc < buf_pos * 2)
3043 {
3044 buf_alloc *= 2;
3045 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3046 }
3047
3048 QUIT;
3049 }
3050 }
3051
3052 /* See target.h. */
3053
3054 LONGEST
3055 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3056 gdb_byte **buf_p)
3057 {
3058 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3059 }
3060
3061 /* See target.h. */
3062
3063 gdb::unique_xmalloc_ptr<char>
3064 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3065 {
3066 gdb_byte *buffer;
3067 char *bufstr;
3068 LONGEST i, transferred;
3069
3070 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3071 bufstr = (char *) buffer;
3072
3073 if (transferred < 0)
3074 return gdb::unique_xmalloc_ptr<char> (nullptr);
3075
3076 if (transferred == 0)
3077 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3078
3079 bufstr[transferred] = 0;
3080
3081 /* Check for embedded NUL bytes; but allow trailing NULs. */
3082 for (i = strlen (bufstr); i < transferred; i++)
3083 if (bufstr[i] != 0)
3084 {
3085 warning (_("target file %s "
3086 "contained unexpected null characters"),
3087 filename);
3088 break;
3089 }
3090
3091 return gdb::unique_xmalloc_ptr<char> (bufstr);
3092 }
3093
3094
3095 static int
3096 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3097 CORE_ADDR addr, int len)
3098 {
3099 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3100 }
3101
3102 static int
3103 default_watchpoint_addr_within_range (struct target_ops *target,
3104 CORE_ADDR addr,
3105 CORE_ADDR start, int length)
3106 {
3107 return addr >= start && addr < start + length;
3108 }
3109
3110 /* See target.h. */
3111
3112 target_ops *
3113 target_stack::find_beneath (const target_ops *t) const
3114 {
3115 /* Look for a non-empty slot at stratum levels beneath T's. */
3116 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
3117 if (m_stack[stratum] != NULL)
3118 return m_stack[stratum];
3119
3120 return NULL;
3121 }
3122
3123 /* See target.h. */
3124
3125 struct target_ops *
3126 find_target_at (enum strata stratum)
3127 {
3128 return g_target_stack.at (stratum);
3129 }
3130
3131 \f
3132
3133 /* See target.h */
3134
3135 void
3136 target_announce_detach (int from_tty)
3137 {
3138 pid_t pid;
3139 const char *exec_file;
3140
3141 if (!from_tty)
3142 return;
3143
3144 exec_file = get_exec_file (0);
3145 if (exec_file == NULL)
3146 exec_file = "";
3147
3148 pid = inferior_ptid.pid ();
3149 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3150 target_pid_to_str (ptid_t (pid)));
3151 gdb_flush (gdb_stdout);
3152 }
3153
3154 /* The inferior process has died. Long live the inferior! */
3155
3156 void
3157 generic_mourn_inferior (void)
3158 {
3159 inferior *inf = current_inferior ();
3160
3161 inferior_ptid = null_ptid;
3162
3163 /* Mark breakpoints uninserted in case something tries to delete a
3164 breakpoint while we delete the inferior's threads (which would
3165 fail, since the inferior is long gone). */
3166 mark_breakpoints_out ();
3167
3168 if (inf->pid != 0)
3169 exit_inferior (inf);
3170
3171 /* Note this wipes step-resume breakpoints, so needs to be done
3172 after exit_inferior, which ends up referencing the step-resume
3173 breakpoints through clear_thread_inferior_resources. */
3174 breakpoint_init_inferior (inf_exited);
3175
3176 registers_changed ();
3177
3178 reopen_exec_file ();
3179 reinit_frame_cache ();
3180
3181 if (deprecated_detach_hook)
3182 deprecated_detach_hook ();
3183 }
3184 \f
3185 /* Convert a normal process ID to a string. Returns the string in a
3186 static buffer. */
3187
3188 const char *
3189 normal_pid_to_str (ptid_t ptid)
3190 {
3191 static char buf[32];
3192
3193 xsnprintf (buf, sizeof buf, "process %d", ptid.pid ());
3194 return buf;
3195 }
3196
3197 static const char *
3198 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3199 {
3200 return normal_pid_to_str (ptid);
3201 }
3202
3203 /* Error-catcher for target_find_memory_regions. */
3204 static int
3205 dummy_find_memory_regions (struct target_ops *self,
3206 find_memory_region_ftype ignore1, void *ignore2)
3207 {
3208 error (_("Command not implemented for this target."));
3209 return 0;
3210 }
3211
3212 /* Error-catcher for target_make_corefile_notes. */
3213 static char *
3214 dummy_make_corefile_notes (struct target_ops *self,
3215 bfd *ignore1, int *ignore2)
3216 {
3217 error (_("Command not implemented for this target."));
3218 return NULL;
3219 }
3220
3221 #include "target-delegates.c"
3222
3223
3224 static const target_info dummy_target_info = {
3225 "None",
3226 N_("None"),
3227 ""
3228 };
3229
3230 strata
3231 dummy_target::stratum () const
3232 {
3233 return dummy_stratum;
3234 }
3235
3236 strata
3237 debug_target::stratum () const
3238 {
3239 return debug_stratum;
3240 }
3241
3242 const target_info &
3243 dummy_target::info () const
3244 {
3245 return dummy_target_info;
3246 }
3247
3248 const target_info &
3249 debug_target::info () const
3250 {
3251 return beneath ()->info ();
3252 }
3253
3254 \f
3255
3256 void
3257 target_close (struct target_ops *targ)
3258 {
3259 gdb_assert (!target_is_pushed (targ));
3260
3261 fileio_handles_invalidate_target (targ);
3262
3263 targ->close ();
3264
3265 if (targetdebug)
3266 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3267 }
3268
3269 int
3270 target_thread_alive (ptid_t ptid)
3271 {
3272 return current_top_target ()->thread_alive (ptid);
3273 }
3274
3275 void
3276 target_update_thread_list (void)
3277 {
3278 current_top_target ()->update_thread_list ();
3279 }
3280
3281 void
3282 target_stop (ptid_t ptid)
3283 {
3284 if (!may_stop)
3285 {
3286 warning (_("May not interrupt or stop the target, ignoring attempt"));
3287 return;
3288 }
3289
3290 current_top_target ()->stop (ptid);
3291 }
3292
3293 void
3294 target_interrupt ()
3295 {
3296 if (!may_stop)
3297 {
3298 warning (_("May not interrupt or stop the target, ignoring attempt"));
3299 return;
3300 }
3301
3302 current_top_target ()->interrupt ();
3303 }
3304
3305 /* See target.h. */
3306
3307 void
3308 target_pass_ctrlc (void)
3309 {
3310 current_top_target ()->pass_ctrlc ();
3311 }
3312
3313 /* See target.h. */
3314
3315 void
3316 default_target_pass_ctrlc (struct target_ops *ops)
3317 {
3318 target_interrupt ();
3319 }
3320
3321 /* See target/target.h. */
3322
3323 void
3324 target_stop_and_wait (ptid_t ptid)
3325 {
3326 struct target_waitstatus status;
3327 int was_non_stop = non_stop;
3328
3329 non_stop = 1;
3330 target_stop (ptid);
3331
3332 memset (&status, 0, sizeof (status));
3333 target_wait (ptid, &status, 0);
3334
3335 non_stop = was_non_stop;
3336 }
3337
3338 /* See target/target.h. */
3339
3340 void
3341 target_continue_no_signal (ptid_t ptid)
3342 {
3343 target_resume (ptid, 0, GDB_SIGNAL_0);
3344 }
3345
3346 /* See target/target.h. */
3347
3348 void
3349 target_continue (ptid_t ptid, enum gdb_signal signal)
3350 {
3351 target_resume (ptid, 0, signal);
3352 }
3353
3354 /* Concatenate ELEM to LIST, a comma-separated list. */
3355
3356 static void
3357 str_comma_list_concat_elem (std::string *list, const char *elem)
3358 {
3359 if (!list->empty ())
3360 list->append (", ");
3361
3362 list->append (elem);
3363 }
3364
3365 /* Helper for target_options_to_string. If OPT is present in
3366 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3367 OPT is removed from TARGET_OPTIONS. */
3368
3369 static void
3370 do_option (int *target_options, std::string *ret,
3371 int opt, const char *opt_str)
3372 {
3373 if ((*target_options & opt) != 0)
3374 {
3375 str_comma_list_concat_elem (ret, opt_str);
3376 *target_options &= ~opt;
3377 }
3378 }
3379
3380 /* See target.h. */
3381
3382 std::string
3383 target_options_to_string (int target_options)
3384 {
3385 std::string ret;
3386
3387 #define DO_TARG_OPTION(OPT) \
3388 do_option (&target_options, &ret, OPT, #OPT)
3389
3390 DO_TARG_OPTION (TARGET_WNOHANG);
3391
3392 if (target_options != 0)
3393 str_comma_list_concat_elem (&ret, "unknown???");
3394
3395 return ret;
3396 }
3397
3398 void
3399 target_fetch_registers (struct regcache *regcache, int regno)
3400 {
3401 current_top_target ()->fetch_registers (regcache, regno);
3402 if (targetdebug)
3403 regcache->debug_print_register ("target_fetch_registers", regno);
3404 }
3405
3406 void
3407 target_store_registers (struct regcache *regcache, int regno)
3408 {
3409 if (!may_write_registers)
3410 error (_("Writing to registers is not allowed (regno %d)"), regno);
3411
3412 current_top_target ()->store_registers (regcache, regno);
3413 if (targetdebug)
3414 {
3415 regcache->debug_print_register ("target_store_registers", regno);
3416 }
3417 }
3418
3419 int
3420 target_core_of_thread (ptid_t ptid)
3421 {
3422 return current_top_target ()->core_of_thread (ptid);
3423 }
3424
3425 int
3426 simple_verify_memory (struct target_ops *ops,
3427 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3428 {
3429 LONGEST total_xfered = 0;
3430
3431 while (total_xfered < size)
3432 {
3433 ULONGEST xfered_len;
3434 enum target_xfer_status status;
3435 gdb_byte buf[1024];
3436 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3437
3438 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3439 buf, NULL, lma + total_xfered, howmuch,
3440 &xfered_len);
3441 if (status == TARGET_XFER_OK
3442 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3443 {
3444 total_xfered += xfered_len;
3445 QUIT;
3446 }
3447 else
3448 return 0;
3449 }
3450 return 1;
3451 }
3452
3453 /* Default implementation of memory verification. */
3454
3455 static int
3456 default_verify_memory (struct target_ops *self,
3457 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3458 {
3459 /* Start over from the top of the target stack. */
3460 return simple_verify_memory (current_top_target (),
3461 data, memaddr, size);
3462 }
3463
3464 int
3465 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3466 {
3467 return current_top_target ()->verify_memory (data, memaddr, size);
3468 }
3469
3470 /* The documentation for this function is in its prototype declaration in
3471 target.h. */
3472
3473 int
3474 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3475 enum target_hw_bp_type rw)
3476 {
3477 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3478 }
3479
3480 /* The documentation for this function is in its prototype declaration in
3481 target.h. */
3482
3483 int
3484 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3485 enum target_hw_bp_type rw)
3486 {
3487 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3488 }
3489
3490 /* The documentation for this function is in its prototype declaration
3491 in target.h. */
3492
3493 int
3494 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3495 {
3496 return current_top_target ()->masked_watch_num_registers (addr, mask);
3497 }
3498
3499 /* The documentation for this function is in its prototype declaration
3500 in target.h. */
3501
3502 int
3503 target_ranged_break_num_registers (void)
3504 {
3505 return current_top_target ()->ranged_break_num_registers ();
3506 }
3507
3508 /* See target.h. */
3509
3510 struct btrace_target_info *
3511 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3512 {
3513 return current_top_target ()->enable_btrace (ptid, conf);
3514 }
3515
3516 /* See target.h. */
3517
3518 void
3519 target_disable_btrace (struct btrace_target_info *btinfo)
3520 {
3521 current_top_target ()->disable_btrace (btinfo);
3522 }
3523
3524 /* See target.h. */
3525
3526 void
3527 target_teardown_btrace (struct btrace_target_info *btinfo)
3528 {
3529 current_top_target ()->teardown_btrace (btinfo);
3530 }
3531
3532 /* See target.h. */
3533
3534 enum btrace_error
3535 target_read_btrace (struct btrace_data *btrace,
3536 struct btrace_target_info *btinfo,
3537 enum btrace_read_type type)
3538 {
3539 return current_top_target ()->read_btrace (btrace, btinfo, type);
3540 }
3541
3542 /* See target.h. */
3543
3544 const struct btrace_config *
3545 target_btrace_conf (const struct btrace_target_info *btinfo)
3546 {
3547 return current_top_target ()->btrace_conf (btinfo);
3548 }
3549
3550 /* See target.h. */
3551
3552 void
3553 target_stop_recording (void)
3554 {
3555 current_top_target ()->stop_recording ();
3556 }
3557
3558 /* See target.h. */
3559
3560 void
3561 target_save_record (const char *filename)
3562 {
3563 current_top_target ()->save_record (filename);
3564 }
3565
3566 /* See target.h. */
3567
3568 int
3569 target_supports_delete_record ()
3570 {
3571 return current_top_target ()->supports_delete_record ();
3572 }
3573
3574 /* See target.h. */
3575
3576 void
3577 target_delete_record (void)
3578 {
3579 current_top_target ()->delete_record ();
3580 }
3581
3582 /* See target.h. */
3583
3584 enum record_method
3585 target_record_method (ptid_t ptid)
3586 {
3587 return current_top_target ()->record_method (ptid);
3588 }
3589
3590 /* See target.h. */
3591
3592 int
3593 target_record_is_replaying (ptid_t ptid)
3594 {
3595 return current_top_target ()->record_is_replaying (ptid);
3596 }
3597
3598 /* See target.h. */
3599
3600 int
3601 target_record_will_replay (ptid_t ptid, int dir)
3602 {
3603 return current_top_target ()->record_will_replay (ptid, dir);
3604 }
3605
3606 /* See target.h. */
3607
3608 void
3609 target_record_stop_replaying (void)
3610 {
3611 current_top_target ()->record_stop_replaying ();
3612 }
3613
3614 /* See target.h. */
3615
3616 void
3617 target_goto_record_begin (void)
3618 {
3619 current_top_target ()->goto_record_begin ();
3620 }
3621
3622 /* See target.h. */
3623
3624 void
3625 target_goto_record_end (void)
3626 {
3627 current_top_target ()->goto_record_end ();
3628 }
3629
3630 /* See target.h. */
3631
3632 void
3633 target_goto_record (ULONGEST insn)
3634 {
3635 current_top_target ()->goto_record (insn);
3636 }
3637
3638 /* See target.h. */
3639
3640 void
3641 target_insn_history (int size, gdb_disassembly_flags flags)
3642 {
3643 current_top_target ()->insn_history (size, flags);
3644 }
3645
3646 /* See target.h. */
3647
3648 void
3649 target_insn_history_from (ULONGEST from, int size,
3650 gdb_disassembly_flags flags)
3651 {
3652 current_top_target ()->insn_history_from (from, size, flags);
3653 }
3654
3655 /* See target.h. */
3656
3657 void
3658 target_insn_history_range (ULONGEST begin, ULONGEST end,
3659 gdb_disassembly_flags flags)
3660 {
3661 current_top_target ()->insn_history_range (begin, end, flags);
3662 }
3663
3664 /* See target.h. */
3665
3666 void
3667 target_call_history (int size, record_print_flags flags)
3668 {
3669 current_top_target ()->call_history (size, flags);
3670 }
3671
3672 /* See target.h. */
3673
3674 void
3675 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3676 {
3677 current_top_target ()->call_history_from (begin, size, flags);
3678 }
3679
3680 /* See target.h. */
3681
3682 void
3683 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3684 {
3685 current_top_target ()->call_history_range (begin, end, flags);
3686 }
3687
3688 /* See target.h. */
3689
3690 const struct frame_unwind *
3691 target_get_unwinder (void)
3692 {
3693 return current_top_target ()->get_unwinder ();
3694 }
3695
3696 /* See target.h. */
3697
3698 const struct frame_unwind *
3699 target_get_tailcall_unwinder (void)
3700 {
3701 return current_top_target ()->get_tailcall_unwinder ();
3702 }
3703
3704 /* See target.h. */
3705
3706 void
3707 target_prepare_to_generate_core (void)
3708 {
3709 current_top_target ()->prepare_to_generate_core ();
3710 }
3711
3712 /* See target.h. */
3713
3714 void
3715 target_done_generating_core (void)
3716 {
3717 current_top_target ()->done_generating_core ();
3718 }
3719
3720 \f
3721
3722 static char targ_desc[] =
3723 "Names of targets and files being debugged.\nShows the entire \
3724 stack of targets currently in use (including the exec-file,\n\
3725 core-file, and process, if any), as well as the symbol file name.";
3726
3727 static void
3728 default_rcmd (struct target_ops *self, const char *command,
3729 struct ui_file *output)
3730 {
3731 error (_("\"monitor\" command not supported by this target."));
3732 }
3733
3734 static void
3735 do_monitor_command (const char *cmd, int from_tty)
3736 {
3737 target_rcmd (cmd, gdb_stdtarg);
3738 }
3739
3740 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3741 ignored. */
3742
3743 void
3744 flash_erase_command (const char *cmd, int from_tty)
3745 {
3746 /* Used to communicate termination of flash operations to the target. */
3747 bool found_flash_region = false;
3748 struct gdbarch *gdbarch = target_gdbarch ();
3749
3750 std::vector<mem_region> mem_regions = target_memory_map ();
3751
3752 /* Iterate over all memory regions. */
3753 for (const mem_region &m : mem_regions)
3754 {
3755 /* Is this a flash memory region? */
3756 if (m.attrib.mode == MEM_FLASH)
3757 {
3758 found_flash_region = true;
3759 target_flash_erase (m.lo, m.hi - m.lo);
3760
3761 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3762
3763 current_uiout->message (_("Erasing flash memory region at address "));
3764 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3765 current_uiout->message (", size = ");
3766 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3767 current_uiout->message ("\n");
3768 }
3769 }
3770
3771 /* Did we do any flash operations? If so, we need to finalize them. */
3772 if (found_flash_region)
3773 target_flash_done ();
3774 else
3775 current_uiout->message (_("No flash memory regions found.\n"));
3776 }
3777
3778 /* Print the name of each layers of our target stack. */
3779
3780 static void
3781 maintenance_print_target_stack (const char *cmd, int from_tty)
3782 {
3783 printf_filtered (_("The current target stack is:\n"));
3784
3785 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3786 {
3787 if (t->stratum () == debug_stratum)
3788 continue;
3789 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3790 }
3791 }
3792
3793 /* See target.h. */
3794
3795 void
3796 target_async (int enable)
3797 {
3798 infrun_async (enable);
3799 current_top_target ()->async (enable);
3800 }
3801
3802 /* See target.h. */
3803
3804 void
3805 target_thread_events (int enable)
3806 {
3807 current_top_target ()->thread_events (enable);
3808 }
3809
3810 /* Controls if targets can report that they can/are async. This is
3811 just for maintainers to use when debugging gdb. */
3812 int target_async_permitted = 1;
3813
3814 /* The set command writes to this variable. If the inferior is
3815 executing, target_async_permitted is *not* updated. */
3816 static int target_async_permitted_1 = 1;
3817
3818 static void
3819 maint_set_target_async_command (const char *args, int from_tty,
3820 struct cmd_list_element *c)
3821 {
3822 if (have_live_inferiors ())
3823 {
3824 target_async_permitted_1 = target_async_permitted;
3825 error (_("Cannot change this setting while the inferior is running."));
3826 }
3827
3828 target_async_permitted = target_async_permitted_1;
3829 }
3830
3831 static void
3832 maint_show_target_async_command (struct ui_file *file, int from_tty,
3833 struct cmd_list_element *c,
3834 const char *value)
3835 {
3836 fprintf_filtered (file,
3837 _("Controlling the inferior in "
3838 "asynchronous mode is %s.\n"), value);
3839 }
3840
3841 /* Return true if the target operates in non-stop mode even with "set
3842 non-stop off". */
3843
3844 static int
3845 target_always_non_stop_p (void)
3846 {
3847 return current_top_target ()->always_non_stop_p ();
3848 }
3849
3850 /* See target.h. */
3851
3852 int
3853 target_is_non_stop_p (void)
3854 {
3855 return (non_stop
3856 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3857 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3858 && target_always_non_stop_p ()));
3859 }
3860
3861 /* Controls if targets can report that they always run in non-stop
3862 mode. This is just for maintainers to use when debugging gdb. */
3863 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3864
3865 /* The set command writes to this variable. If the inferior is
3866 executing, target_non_stop_enabled is *not* updated. */
3867 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3868
3869 /* Implementation of "maint set target-non-stop". */
3870
3871 static void
3872 maint_set_target_non_stop_command (const char *args, int from_tty,
3873 struct cmd_list_element *c)
3874 {
3875 if (have_live_inferiors ())
3876 {
3877 target_non_stop_enabled_1 = target_non_stop_enabled;
3878 error (_("Cannot change this setting while the inferior is running."));
3879 }
3880
3881 target_non_stop_enabled = target_non_stop_enabled_1;
3882 }
3883
3884 /* Implementation of "maint show target-non-stop". */
3885
3886 static void
3887 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3888 struct cmd_list_element *c,
3889 const char *value)
3890 {
3891 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3892 fprintf_filtered (file,
3893 _("Whether the target is always in non-stop mode "
3894 "is %s (currently %s).\n"), value,
3895 target_always_non_stop_p () ? "on" : "off");
3896 else
3897 fprintf_filtered (file,
3898 _("Whether the target is always in non-stop mode "
3899 "is %s.\n"), value);
3900 }
3901
3902 /* Temporary copies of permission settings. */
3903
3904 static int may_write_registers_1 = 1;
3905 static int may_write_memory_1 = 1;
3906 static int may_insert_breakpoints_1 = 1;
3907 static int may_insert_tracepoints_1 = 1;
3908 static int may_insert_fast_tracepoints_1 = 1;
3909 static int may_stop_1 = 1;
3910
3911 /* Make the user-set values match the real values again. */
3912
3913 void
3914 update_target_permissions (void)
3915 {
3916 may_write_registers_1 = may_write_registers;
3917 may_write_memory_1 = may_write_memory;
3918 may_insert_breakpoints_1 = may_insert_breakpoints;
3919 may_insert_tracepoints_1 = may_insert_tracepoints;
3920 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3921 may_stop_1 = may_stop;
3922 }
3923
3924 /* The one function handles (most of) the permission flags in the same
3925 way. */
3926
3927 static void
3928 set_target_permissions (const char *args, int from_tty,
3929 struct cmd_list_element *c)
3930 {
3931 if (target_has_execution)
3932 {
3933 update_target_permissions ();
3934 error (_("Cannot change this setting while the inferior is running."));
3935 }
3936
3937 /* Make the real values match the user-changed values. */
3938 may_write_registers = may_write_registers_1;
3939 may_insert_breakpoints = may_insert_breakpoints_1;
3940 may_insert_tracepoints = may_insert_tracepoints_1;
3941 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3942 may_stop = may_stop_1;
3943 update_observer_mode ();
3944 }
3945
3946 /* Set memory write permission independently of observer mode. */
3947
3948 static void
3949 set_write_memory_permission (const char *args, int from_tty,
3950 struct cmd_list_element *c)
3951 {
3952 /* Make the real values match the user-changed values. */
3953 may_write_memory = may_write_memory_1;
3954 update_observer_mode ();
3955 }
3956
3957 void
3958 initialize_targets (void)
3959 {
3960 the_dummy_target = new dummy_target ();
3961 push_target (the_dummy_target);
3962
3963 the_debug_target = new debug_target ();
3964
3965 add_info ("target", info_target_command, targ_desc);
3966 add_info ("files", info_target_command, targ_desc);
3967
3968 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3969 Set target debugging."), _("\
3970 Show target debugging."), _("\
3971 When non-zero, target debugging is enabled. Higher numbers are more\n\
3972 verbose."),
3973 set_targetdebug,
3974 show_targetdebug,
3975 &setdebuglist, &showdebuglist);
3976
3977 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3978 &trust_readonly, _("\
3979 Set mode for reading from readonly sections."), _("\
3980 Show mode for reading from readonly sections."), _("\
3981 When this mode is on, memory reads from readonly sections (such as .text)\n\
3982 will be read from the object file instead of from the target. This will\n\
3983 result in significant performance improvement for remote targets."),
3984 NULL,
3985 show_trust_readonly,
3986 &setlist, &showlist);
3987
3988 add_com ("monitor", class_obscure, do_monitor_command,
3989 _("Send a command to the remote monitor (remote targets only)."));
3990
3991 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3992 _("Print the name of each layer of the internal target stack."),
3993 &maintenanceprintlist);
3994
3995 add_setshow_boolean_cmd ("target-async", no_class,
3996 &target_async_permitted_1, _("\
3997 Set whether gdb controls the inferior in asynchronous mode."), _("\
3998 Show whether gdb controls the inferior in asynchronous mode."), _("\
3999 Tells gdb whether to control the inferior in asynchronous mode."),
4000 maint_set_target_async_command,
4001 maint_show_target_async_command,
4002 &maintenance_set_cmdlist,
4003 &maintenance_show_cmdlist);
4004
4005 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4006 &target_non_stop_enabled_1, _("\
4007 Set whether gdb always controls the inferior in non-stop mode."), _("\
4008 Show whether gdb always controls the inferior in non-stop mode."), _("\
4009 Tells gdb whether to control the inferior in non-stop mode."),
4010 maint_set_target_non_stop_command,
4011 maint_show_target_non_stop_command,
4012 &maintenance_set_cmdlist,
4013 &maintenance_show_cmdlist);
4014
4015 add_setshow_boolean_cmd ("may-write-registers", class_support,
4016 &may_write_registers_1, _("\
4017 Set permission to write into registers."), _("\
4018 Show permission to write into registers."), _("\
4019 When this permission is on, GDB may write into the target's registers.\n\
4020 Otherwise, any sort of write attempt will result in an error."),
4021 set_target_permissions, NULL,
4022 &setlist, &showlist);
4023
4024 add_setshow_boolean_cmd ("may-write-memory", class_support,
4025 &may_write_memory_1, _("\
4026 Set permission to write into target memory."), _("\
4027 Show permission to write into target memory."), _("\
4028 When this permission is on, GDB may write into the target's memory.\n\
4029 Otherwise, any sort of write attempt will result in an error."),
4030 set_write_memory_permission, NULL,
4031 &setlist, &showlist);
4032
4033 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4034 &may_insert_breakpoints_1, _("\
4035 Set permission to insert breakpoints in the target."), _("\
4036 Show permission to insert breakpoints in the target."), _("\
4037 When this permission is on, GDB may insert breakpoints in the program.\n\
4038 Otherwise, any sort of insertion attempt will result in an error."),
4039 set_target_permissions, NULL,
4040 &setlist, &showlist);
4041
4042 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4043 &may_insert_tracepoints_1, _("\
4044 Set permission to insert tracepoints in the target."), _("\
4045 Show permission to insert tracepoints in the target."), _("\
4046 When this permission is on, GDB may insert tracepoints in the program.\n\
4047 Otherwise, any sort of insertion attempt will result in an error."),
4048 set_target_permissions, NULL,
4049 &setlist, &showlist);
4050
4051 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4052 &may_insert_fast_tracepoints_1, _("\
4053 Set permission to insert fast tracepoints in the target."), _("\
4054 Show permission to insert fast tracepoints in the target."), _("\
4055 When this permission is on, GDB may insert fast tracepoints.\n\
4056 Otherwise, any sort of insertion attempt will result in an error."),
4057 set_target_permissions, NULL,
4058 &setlist, &showlist);
4059
4060 add_setshow_boolean_cmd ("may-interrupt", class_support,
4061 &may_stop_1, _("\
4062 Set permission to interrupt or signal the target."), _("\
4063 Show permission to interrupt or signal the target."), _("\
4064 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4065 Otherwise, any attempt to interrupt or stop will be ignored."),
4066 set_target_permissions, NULL,
4067 &setlist, &showlist);
4068
4069 add_com ("flash-erase", no_class, flash_erase_command,
4070 _("Erase all flash memory regions."));
4071
4072 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4073 &auto_connect_native_target, _("\
4074 Set whether GDB may automatically connect to the native target."), _("\
4075 Show whether GDB may automatically connect to the native target."), _("\
4076 When on, and GDB is not connected to a target yet, GDB\n\
4077 attempts \"run\" and other commands with the native target."),
4078 NULL, show_auto_connect_native_target,
4079 &setlist, &showlist);
4080 }
This page took 0.120574 seconds and 4 git commands to generate.