* target.c (update_current_target): Inherit to_log_command.
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42
43 static void target_info (char *, int);
44
45 static void maybe_kill_then_attach (char *, int);
46
47 static void kill_or_be_killed (int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
52
53 static int nosymbol (char *, CORE_ADDR *);
54
55 static void tcomplain (void) ATTR_NORETURN;
56
57 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
58
59 static int return_zero (void);
60
61 static int return_one (void);
62
63 static int return_minus_one (void);
64
65 void target_ignore (void);
66
67 static void target_command (char *, int);
68
69 static struct target_ops *find_default_run_target (char *);
70
71 static void nosupport_runtime (void);
72
73 static LONGEST default_xfer_partial (struct target_ops *ops,
74 enum target_object object,
75 const char *annex, gdb_byte *readbuf,
76 const gdb_byte *writebuf,
77 ULONGEST offset, LONGEST len);
78
79 static LONGEST current_xfer_partial (struct target_ops *ops,
80 enum target_object object,
81 const char *annex, gdb_byte *readbuf,
82 const gdb_byte *writebuf,
83 ULONGEST offset, LONGEST len);
84
85 static LONGEST target_xfer_partial (struct target_ops *ops,
86 enum target_object object,
87 const char *annex,
88 void *readbuf, const void *writebuf,
89 ULONGEST offset, LONGEST len);
90
91 static void init_dummy_target (void);
92
93 static struct target_ops debug_target;
94
95 static void debug_to_open (char *, int);
96
97 static void debug_to_close (int);
98
99 static void debug_to_attach (char *, int);
100
101 static void debug_to_detach (char *, int);
102
103 static void debug_to_resume (ptid_t, int, enum target_signal);
104
105 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
106
107 static void debug_to_fetch_registers (struct regcache *, int);
108
109 static void debug_to_store_registers (struct regcache *, int);
110
111 static void debug_to_prepare_to_store (struct regcache *);
112
113 static void debug_to_files_info (struct target_ops *);
114
115 static int debug_to_insert_breakpoint (struct bp_target_info *);
116
117 static int debug_to_remove_breakpoint (struct bp_target_info *);
118
119 static int debug_to_can_use_hw_breakpoint (int, int, int);
120
121 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
122
123 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
124
125 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
126
127 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
128
129 static int debug_to_stopped_by_watchpoint (void);
130
131 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
132
133 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
134
135 static void debug_to_terminal_init (void);
136
137 static void debug_to_terminal_inferior (void);
138
139 static void debug_to_terminal_ours_for_output (void);
140
141 static void debug_to_terminal_save_ours (void);
142
143 static void debug_to_terminal_ours (void);
144
145 static void debug_to_terminal_info (char *, int);
146
147 static void debug_to_kill (void);
148
149 static void debug_to_load (char *, int);
150
151 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
152
153 static void debug_to_mourn_inferior (void);
154
155 static int debug_to_can_run (void);
156
157 static void debug_to_notice_signals (ptid_t);
158
159 static int debug_to_thread_alive (ptid_t);
160
161 static void debug_to_stop (void);
162
163 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
164 wierd and mysterious ways. Putting the variable here lets those
165 wierd and mysterious ways keep building while they are being
166 converted to the inferior inheritance structure. */
167 struct target_ops deprecated_child_ops;
168
169 /* Pointer to array of target architecture structures; the size of the
170 array; the current index into the array; the allocated size of the
171 array. */
172 struct target_ops **target_structs;
173 unsigned target_struct_size;
174 unsigned target_struct_index;
175 unsigned target_struct_allocsize;
176 #define DEFAULT_ALLOCSIZE 10
177
178 /* The initial current target, so that there is always a semi-valid
179 current target. */
180
181 static struct target_ops dummy_target;
182
183 /* Top of target stack. */
184
185 static struct target_ops *target_stack;
186
187 /* The target structure we are currently using to talk to a process
188 or file or whatever "inferior" we have. */
189
190 struct target_ops current_target;
191
192 /* Command list for target. */
193
194 static struct cmd_list_element *targetlist = NULL;
195
196 /* Nonzero if we are debugging an attached outside process
197 rather than an inferior. */
198
199 int attach_flag;
200
201 /* Nonzero if we should trust readonly sections from the
202 executable when reading memory. */
203
204 static int trust_readonly = 0;
205
206 /* Non-zero if we want to see trace of target level stuff. */
207
208 static int targetdebug = 0;
209 static void
210 show_targetdebug (struct ui_file *file, int from_tty,
211 struct cmd_list_element *c, const char *value)
212 {
213 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
214 }
215
216 static void setup_target_debug (void);
217
218 DCACHE *target_dcache;
219
220 /* The user just typed 'target' without the name of a target. */
221
222 static void
223 target_command (char *arg, int from_tty)
224 {
225 fputs_filtered ("Argument required (target name). Try `help target'\n",
226 gdb_stdout);
227 }
228
229 /* Add a possible target architecture to the list. */
230
231 void
232 add_target (struct target_ops *t)
233 {
234 /* Provide default values for all "must have" methods. */
235 if (t->to_xfer_partial == NULL)
236 t->to_xfer_partial = default_xfer_partial;
237
238 if (!target_structs)
239 {
240 target_struct_allocsize = DEFAULT_ALLOCSIZE;
241 target_structs = (struct target_ops **) xmalloc
242 (target_struct_allocsize * sizeof (*target_structs));
243 }
244 if (target_struct_size >= target_struct_allocsize)
245 {
246 target_struct_allocsize *= 2;
247 target_structs = (struct target_ops **)
248 xrealloc ((char *) target_structs,
249 target_struct_allocsize * sizeof (*target_structs));
250 }
251 target_structs[target_struct_size++] = t;
252
253 if (targetlist == NULL)
254 add_prefix_cmd ("target", class_run, target_command, _("\
255 Connect to a target machine or process.\n\
256 The first argument is the type or protocol of the target machine.\n\
257 Remaining arguments are interpreted by the target protocol. For more\n\
258 information on the arguments for a particular protocol, type\n\
259 `help target ' followed by the protocol name."),
260 &targetlist, "target ", 0, &cmdlist);
261 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
262 }
263
264 /* Stub functions */
265
266 void
267 target_ignore (void)
268 {
269 }
270
271 void
272 target_load (char *arg, int from_tty)
273 {
274 dcache_invalidate (target_dcache);
275 (*current_target.to_load) (arg, from_tty);
276 }
277
278 static int
279 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
280 struct target_ops *t)
281 {
282 errno = EIO; /* Can't read/write this location */
283 return 0; /* No bytes handled */
284 }
285
286 static void
287 tcomplain (void)
288 {
289 error (_("You can't do that when your target is `%s'"),
290 current_target.to_shortname);
291 }
292
293 void
294 noprocess (void)
295 {
296 error (_("You can't do that without a process to debug."));
297 }
298
299 static int
300 nosymbol (char *name, CORE_ADDR *addrp)
301 {
302 return 1; /* Symbol does not exist in target env */
303 }
304
305 static void
306 nosupport_runtime (void)
307 {
308 if (ptid_equal (inferior_ptid, null_ptid))
309 noprocess ();
310 else
311 error (_("No run-time support for this"));
312 }
313
314
315 static void
316 default_terminal_info (char *args, int from_tty)
317 {
318 printf_unfiltered (_("No saved terminal information.\n"));
319 }
320
321 /* This is the default target_create_inferior and target_attach function.
322 If the current target is executing, it asks whether to kill it off.
323 If this function returns without calling error(), it has killed off
324 the target, and the operation should be attempted. */
325
326 static void
327 kill_or_be_killed (int from_tty)
328 {
329 if (target_has_execution)
330 {
331 printf_unfiltered (_("You are already running a program:\n"));
332 target_files_info ();
333 if (query ("Kill it? "))
334 {
335 target_kill ();
336 if (target_has_execution)
337 error (_("Killing the program did not help."));
338 return;
339 }
340 else
341 {
342 error (_("Program not killed."));
343 }
344 }
345 tcomplain ();
346 }
347
348 static void
349 maybe_kill_then_attach (char *args, int from_tty)
350 {
351 kill_or_be_killed (from_tty);
352 target_attach (args, from_tty);
353 }
354
355 static void
356 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
357 int from_tty)
358 {
359 kill_or_be_killed (0);
360 target_create_inferior (exec, args, env, from_tty);
361 }
362
363 /* Go through the target stack from top to bottom, copying over zero
364 entries in current_target, then filling in still empty entries. In
365 effect, we are doing class inheritance through the pushed target
366 vectors.
367
368 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
369 is currently implemented, is that it discards any knowledge of
370 which target an inherited method originally belonged to.
371 Consequently, new new target methods should instead explicitly and
372 locally search the target stack for the target that can handle the
373 request. */
374
375 static void
376 update_current_target (void)
377 {
378 struct target_ops *t;
379
380 /* First, reset current's contents. */
381 memset (&current_target, 0, sizeof (current_target));
382
383 #define INHERIT(FIELD, TARGET) \
384 if (!current_target.FIELD) \
385 current_target.FIELD = (TARGET)->FIELD
386
387 for (t = target_stack; t; t = t->beneath)
388 {
389 INHERIT (to_shortname, t);
390 INHERIT (to_longname, t);
391 INHERIT (to_doc, t);
392 INHERIT (to_open, t);
393 INHERIT (to_close, t);
394 INHERIT (to_attach, t);
395 INHERIT (to_post_attach, t);
396 INHERIT (to_detach, t);
397 /* Do not inherit to_disconnect. */
398 INHERIT (to_resume, t);
399 INHERIT (to_wait, t);
400 INHERIT (to_fetch_registers, t);
401 INHERIT (to_store_registers, t);
402 INHERIT (to_prepare_to_store, t);
403 INHERIT (deprecated_xfer_memory, t);
404 INHERIT (to_files_info, t);
405 INHERIT (to_insert_breakpoint, t);
406 INHERIT (to_remove_breakpoint, t);
407 INHERIT (to_can_use_hw_breakpoint, t);
408 INHERIT (to_insert_hw_breakpoint, t);
409 INHERIT (to_remove_hw_breakpoint, t);
410 INHERIT (to_insert_watchpoint, t);
411 INHERIT (to_remove_watchpoint, t);
412 INHERIT (to_stopped_data_address, t);
413 INHERIT (to_stopped_by_watchpoint, t);
414 INHERIT (to_have_steppable_watchpoint, t);
415 INHERIT (to_have_continuable_watchpoint, t);
416 INHERIT (to_region_ok_for_hw_watchpoint, t);
417 INHERIT (to_terminal_init, t);
418 INHERIT (to_terminal_inferior, t);
419 INHERIT (to_terminal_ours_for_output, t);
420 INHERIT (to_terminal_ours, t);
421 INHERIT (to_terminal_save_ours, t);
422 INHERIT (to_terminal_info, t);
423 INHERIT (to_kill, t);
424 INHERIT (to_load, t);
425 INHERIT (to_lookup_symbol, t);
426 INHERIT (to_create_inferior, t);
427 INHERIT (to_post_startup_inferior, t);
428 INHERIT (to_acknowledge_created_inferior, t);
429 INHERIT (to_insert_fork_catchpoint, t);
430 INHERIT (to_remove_fork_catchpoint, t);
431 INHERIT (to_insert_vfork_catchpoint, t);
432 INHERIT (to_remove_vfork_catchpoint, t);
433 /* Do not inherit to_follow_fork. */
434 INHERIT (to_insert_exec_catchpoint, t);
435 INHERIT (to_remove_exec_catchpoint, t);
436 INHERIT (to_reported_exec_events_per_exec_call, t);
437 INHERIT (to_has_exited, t);
438 INHERIT (to_mourn_inferior, t);
439 INHERIT (to_can_run, t);
440 INHERIT (to_notice_signals, t);
441 INHERIT (to_thread_alive, t);
442 INHERIT (to_find_new_threads, t);
443 INHERIT (to_pid_to_str, t);
444 INHERIT (to_extra_thread_info, t);
445 INHERIT (to_stop, t);
446 /* Do not inherit to_xfer_partial. */
447 INHERIT (to_rcmd, t);
448 INHERIT (to_enable_exception_callback, t);
449 INHERIT (to_get_current_exception_event, t);
450 INHERIT (to_pid_to_exec_file, t);
451 INHERIT (to_log_command, t);
452 INHERIT (to_stratum, t);
453 INHERIT (to_has_all_memory, t);
454 INHERIT (to_has_memory, t);
455 INHERIT (to_has_stack, t);
456 INHERIT (to_has_registers, t);
457 INHERIT (to_has_execution, t);
458 INHERIT (to_has_thread_control, t);
459 INHERIT (to_sections, t);
460 INHERIT (to_sections_end, t);
461 INHERIT (to_can_async_p, t);
462 INHERIT (to_is_async_p, t);
463 INHERIT (to_async, t);
464 INHERIT (to_async_mask_value, t);
465 INHERIT (to_find_memory_regions, t);
466 INHERIT (to_make_corefile_notes, t);
467 INHERIT (to_get_thread_local_address, t);
468 /* Do not inherit to_read_description. */
469 INHERIT (to_magic, t);
470 /* Do not inherit to_memory_map. */
471 /* Do not inherit to_flash_erase. */
472 /* Do not inherit to_flash_done. */
473 }
474 #undef INHERIT
475
476 /* Clean up a target struct so it no longer has any zero pointers in
477 it. Some entries are defaulted to a method that print an error,
478 others are hard-wired to a standard recursive default. */
479
480 #define de_fault(field, value) \
481 if (!current_target.field) \
482 current_target.field = value
483
484 de_fault (to_open,
485 (void (*) (char *, int))
486 tcomplain);
487 de_fault (to_close,
488 (void (*) (int))
489 target_ignore);
490 de_fault (to_attach,
491 maybe_kill_then_attach);
492 de_fault (to_post_attach,
493 (void (*) (int))
494 target_ignore);
495 de_fault (to_detach,
496 (void (*) (char *, int))
497 target_ignore);
498 de_fault (to_resume,
499 (void (*) (ptid_t, int, enum target_signal))
500 noprocess);
501 de_fault (to_wait,
502 (ptid_t (*) (ptid_t, struct target_waitstatus *))
503 noprocess);
504 de_fault (to_fetch_registers,
505 (void (*) (struct regcache *, int))
506 target_ignore);
507 de_fault (to_store_registers,
508 (void (*) (struct regcache *, int))
509 noprocess);
510 de_fault (to_prepare_to_store,
511 (void (*) (struct regcache *))
512 noprocess);
513 de_fault (deprecated_xfer_memory,
514 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
515 nomemory);
516 de_fault (to_files_info,
517 (void (*) (struct target_ops *))
518 target_ignore);
519 de_fault (to_insert_breakpoint,
520 memory_insert_breakpoint);
521 de_fault (to_remove_breakpoint,
522 memory_remove_breakpoint);
523 de_fault (to_can_use_hw_breakpoint,
524 (int (*) (int, int, int))
525 return_zero);
526 de_fault (to_insert_hw_breakpoint,
527 (int (*) (struct bp_target_info *))
528 return_minus_one);
529 de_fault (to_remove_hw_breakpoint,
530 (int (*) (struct bp_target_info *))
531 return_minus_one);
532 de_fault (to_insert_watchpoint,
533 (int (*) (CORE_ADDR, int, int))
534 return_minus_one);
535 de_fault (to_remove_watchpoint,
536 (int (*) (CORE_ADDR, int, int))
537 return_minus_one);
538 de_fault (to_stopped_by_watchpoint,
539 (int (*) (void))
540 return_zero);
541 de_fault (to_stopped_data_address,
542 (int (*) (struct target_ops *, CORE_ADDR *))
543 return_zero);
544 de_fault (to_region_ok_for_hw_watchpoint,
545 default_region_ok_for_hw_watchpoint);
546 de_fault (to_terminal_init,
547 (void (*) (void))
548 target_ignore);
549 de_fault (to_terminal_inferior,
550 (void (*) (void))
551 target_ignore);
552 de_fault (to_terminal_ours_for_output,
553 (void (*) (void))
554 target_ignore);
555 de_fault (to_terminal_ours,
556 (void (*) (void))
557 target_ignore);
558 de_fault (to_terminal_save_ours,
559 (void (*) (void))
560 target_ignore);
561 de_fault (to_terminal_info,
562 default_terminal_info);
563 de_fault (to_kill,
564 (void (*) (void))
565 noprocess);
566 de_fault (to_load,
567 (void (*) (char *, int))
568 tcomplain);
569 de_fault (to_lookup_symbol,
570 (int (*) (char *, CORE_ADDR *))
571 nosymbol);
572 de_fault (to_create_inferior,
573 maybe_kill_then_create_inferior);
574 de_fault (to_post_startup_inferior,
575 (void (*) (ptid_t))
576 target_ignore);
577 de_fault (to_acknowledge_created_inferior,
578 (void (*) (int))
579 target_ignore);
580 de_fault (to_insert_fork_catchpoint,
581 (void (*) (int))
582 tcomplain);
583 de_fault (to_remove_fork_catchpoint,
584 (int (*) (int))
585 tcomplain);
586 de_fault (to_insert_vfork_catchpoint,
587 (void (*) (int))
588 tcomplain);
589 de_fault (to_remove_vfork_catchpoint,
590 (int (*) (int))
591 tcomplain);
592 de_fault (to_insert_exec_catchpoint,
593 (void (*) (int))
594 tcomplain);
595 de_fault (to_remove_exec_catchpoint,
596 (int (*) (int))
597 tcomplain);
598 de_fault (to_reported_exec_events_per_exec_call,
599 (int (*) (void))
600 return_one);
601 de_fault (to_has_exited,
602 (int (*) (int, int, int *))
603 return_zero);
604 de_fault (to_mourn_inferior,
605 (void (*) (void))
606 noprocess);
607 de_fault (to_can_run,
608 return_zero);
609 de_fault (to_notice_signals,
610 (void (*) (ptid_t))
611 target_ignore);
612 de_fault (to_thread_alive,
613 (int (*) (ptid_t))
614 return_zero);
615 de_fault (to_find_new_threads,
616 (void (*) (void))
617 target_ignore);
618 de_fault (to_extra_thread_info,
619 (char *(*) (struct thread_info *))
620 return_zero);
621 de_fault (to_stop,
622 (void (*) (void))
623 target_ignore);
624 current_target.to_xfer_partial = current_xfer_partial;
625 de_fault (to_rcmd,
626 (void (*) (char *, struct ui_file *))
627 tcomplain);
628 de_fault (to_enable_exception_callback,
629 (struct symtab_and_line * (*) (enum exception_event_kind, int))
630 nosupport_runtime);
631 de_fault (to_get_current_exception_event,
632 (struct exception_event_record * (*) (void))
633 nosupport_runtime);
634 de_fault (to_pid_to_exec_file,
635 (char *(*) (int))
636 return_zero);
637 de_fault (to_can_async_p,
638 (int (*) (void))
639 return_zero);
640 de_fault (to_is_async_p,
641 (int (*) (void))
642 return_zero);
643 de_fault (to_async,
644 (void (*) (void (*) (enum inferior_event_type, void*), void*))
645 tcomplain);
646 current_target.to_read_description = NULL;
647 #undef de_fault
648
649 /* Finally, position the target-stack beneath the squashed
650 "current_target". That way code looking for a non-inherited
651 target method can quickly and simply find it. */
652 current_target.beneath = target_stack;
653
654 if (targetdebug)
655 setup_target_debug ();
656 }
657
658 /* Mark OPS as a running target. This reverses the effect
659 of target_mark_exited. */
660
661 void
662 target_mark_running (struct target_ops *ops)
663 {
664 struct target_ops *t;
665
666 for (t = target_stack; t != NULL; t = t->beneath)
667 if (t == ops)
668 break;
669 if (t == NULL)
670 internal_error (__FILE__, __LINE__,
671 "Attempted to mark unpushed target \"%s\" as running",
672 ops->to_shortname);
673
674 ops->to_has_execution = 1;
675 ops->to_has_all_memory = 1;
676 ops->to_has_memory = 1;
677 ops->to_has_stack = 1;
678 ops->to_has_registers = 1;
679
680 update_current_target ();
681 }
682
683 /* Mark OPS as a non-running target. This reverses the effect
684 of target_mark_running. */
685
686 void
687 target_mark_exited (struct target_ops *ops)
688 {
689 struct target_ops *t;
690
691 for (t = target_stack; t != NULL; t = t->beneath)
692 if (t == ops)
693 break;
694 if (t == NULL)
695 internal_error (__FILE__, __LINE__,
696 "Attempted to mark unpushed target \"%s\" as running",
697 ops->to_shortname);
698
699 ops->to_has_execution = 0;
700 ops->to_has_all_memory = 0;
701 ops->to_has_memory = 0;
702 ops->to_has_stack = 0;
703 ops->to_has_registers = 0;
704
705 update_current_target ();
706 }
707
708 /* Push a new target type into the stack of the existing target accessors,
709 possibly superseding some of the existing accessors.
710
711 Result is zero if the pushed target ended up on top of the stack,
712 nonzero if at least one target is on top of it.
713
714 Rather than allow an empty stack, we always have the dummy target at
715 the bottom stratum, so we can call the function vectors without
716 checking them. */
717
718 int
719 push_target (struct target_ops *t)
720 {
721 struct target_ops **cur;
722
723 /* Check magic number. If wrong, it probably means someone changed
724 the struct definition, but not all the places that initialize one. */
725 if (t->to_magic != OPS_MAGIC)
726 {
727 fprintf_unfiltered (gdb_stderr,
728 "Magic number of %s target struct wrong\n",
729 t->to_shortname);
730 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
731 }
732
733 /* Find the proper stratum to install this target in. */
734 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
735 {
736 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
737 break;
738 }
739
740 /* If there's already targets at this stratum, remove them. */
741 /* FIXME: cagney/2003-10-15: I think this should be popping all
742 targets to CUR, and not just those at this stratum level. */
743 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
744 {
745 /* There's already something at this stratum level. Close it,
746 and un-hook it from the stack. */
747 struct target_ops *tmp = (*cur);
748 (*cur) = (*cur)->beneath;
749 tmp->beneath = NULL;
750 target_close (tmp, 0);
751 }
752
753 /* We have removed all targets in our stratum, now add the new one. */
754 t->beneath = (*cur);
755 (*cur) = t;
756
757 update_current_target ();
758
759 /* Not on top? */
760 return (t != target_stack);
761 }
762
763 /* Remove a target_ops vector from the stack, wherever it may be.
764 Return how many times it was removed (0 or 1). */
765
766 int
767 unpush_target (struct target_ops *t)
768 {
769 struct target_ops **cur;
770 struct target_ops *tmp;
771
772 /* Look for the specified target. Note that we assume that a target
773 can only occur once in the target stack. */
774
775 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
776 {
777 if ((*cur) == t)
778 break;
779 }
780
781 if ((*cur) == NULL)
782 return 0; /* Didn't find target_ops, quit now */
783
784 /* NOTE: cagney/2003-12-06: In '94 the close call was made
785 unconditional by moving it to before the above check that the
786 target was in the target stack (something about "Change the way
787 pushing and popping of targets work to support target overlays
788 and inheritance"). This doesn't make much sense - only open
789 targets should be closed. */
790 target_close (t, 0);
791
792 /* Unchain the target */
793 tmp = (*cur);
794 (*cur) = (*cur)->beneath;
795 tmp->beneath = NULL;
796
797 update_current_target ();
798
799 return 1;
800 }
801
802 void
803 pop_target (void)
804 {
805 target_close (&current_target, 0); /* Let it clean up */
806 if (unpush_target (target_stack) == 1)
807 return;
808
809 fprintf_unfiltered (gdb_stderr,
810 "pop_target couldn't find target %s\n",
811 current_target.to_shortname);
812 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
813 }
814
815 /* Using the objfile specified in BATON, find the address for the
816 current thread's thread-local storage with offset OFFSET. */
817 CORE_ADDR
818 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
819 {
820 volatile CORE_ADDR addr = 0;
821
822 if (target_get_thread_local_address_p ()
823 && gdbarch_fetch_tls_load_module_address_p (current_gdbarch))
824 {
825 ptid_t ptid = inferior_ptid;
826 volatile struct gdb_exception ex;
827
828 TRY_CATCH (ex, RETURN_MASK_ALL)
829 {
830 CORE_ADDR lm_addr;
831
832 /* Fetch the load module address for this objfile. */
833 lm_addr = gdbarch_fetch_tls_load_module_address (current_gdbarch,
834 objfile);
835 /* If it's 0, throw the appropriate exception. */
836 if (lm_addr == 0)
837 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
838 _("TLS load module not found"));
839
840 addr = target_get_thread_local_address (ptid, lm_addr, offset);
841 }
842 /* If an error occurred, print TLS related messages here. Otherwise,
843 throw the error to some higher catcher. */
844 if (ex.reason < 0)
845 {
846 int objfile_is_library = (objfile->flags & OBJF_SHARED);
847
848 switch (ex.error)
849 {
850 case TLS_NO_LIBRARY_SUPPORT_ERROR:
851 error (_("Cannot find thread-local variables in this thread library."));
852 break;
853 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
854 if (objfile_is_library)
855 error (_("Cannot find shared library `%s' in dynamic"
856 " linker's load module list"), objfile->name);
857 else
858 error (_("Cannot find executable file `%s' in dynamic"
859 " linker's load module list"), objfile->name);
860 break;
861 case TLS_NOT_ALLOCATED_YET_ERROR:
862 if (objfile_is_library)
863 error (_("The inferior has not yet allocated storage for"
864 " thread-local variables in\n"
865 "the shared library `%s'\n"
866 "for %s"),
867 objfile->name, target_pid_to_str (ptid));
868 else
869 error (_("The inferior has not yet allocated storage for"
870 " thread-local variables in\n"
871 "the executable `%s'\n"
872 "for %s"),
873 objfile->name, target_pid_to_str (ptid));
874 break;
875 case TLS_GENERIC_ERROR:
876 if (objfile_is_library)
877 error (_("Cannot find thread-local storage for %s, "
878 "shared library %s:\n%s"),
879 target_pid_to_str (ptid),
880 objfile->name, ex.message);
881 else
882 error (_("Cannot find thread-local storage for %s, "
883 "executable file %s:\n%s"),
884 target_pid_to_str (ptid),
885 objfile->name, ex.message);
886 break;
887 default:
888 throw_exception (ex);
889 break;
890 }
891 }
892 }
893 /* It wouldn't be wrong here to try a gdbarch method, too; finding
894 TLS is an ABI-specific thing. But we don't do that yet. */
895 else
896 error (_("Cannot find thread-local variables on this target"));
897
898 return addr;
899 }
900
901 #undef MIN
902 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
903
904 /* target_read_string -- read a null terminated string, up to LEN bytes,
905 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
906 Set *STRING to a pointer to malloc'd memory containing the data; the caller
907 is responsible for freeing it. Return the number of bytes successfully
908 read. */
909
910 int
911 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
912 {
913 int tlen, origlen, offset, i;
914 gdb_byte buf[4];
915 int errcode = 0;
916 char *buffer;
917 int buffer_allocated;
918 char *bufptr;
919 unsigned int nbytes_read = 0;
920
921 gdb_assert (string);
922
923 /* Small for testing. */
924 buffer_allocated = 4;
925 buffer = xmalloc (buffer_allocated);
926 bufptr = buffer;
927
928 origlen = len;
929
930 while (len > 0)
931 {
932 tlen = MIN (len, 4 - (memaddr & 3));
933 offset = memaddr & 3;
934
935 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
936 if (errcode != 0)
937 {
938 /* The transfer request might have crossed the boundary to an
939 unallocated region of memory. Retry the transfer, requesting
940 a single byte. */
941 tlen = 1;
942 offset = 0;
943 errcode = target_read_memory (memaddr, buf, 1);
944 if (errcode != 0)
945 goto done;
946 }
947
948 if (bufptr - buffer + tlen > buffer_allocated)
949 {
950 unsigned int bytes;
951 bytes = bufptr - buffer;
952 buffer_allocated *= 2;
953 buffer = xrealloc (buffer, buffer_allocated);
954 bufptr = buffer + bytes;
955 }
956
957 for (i = 0; i < tlen; i++)
958 {
959 *bufptr++ = buf[i + offset];
960 if (buf[i + offset] == '\000')
961 {
962 nbytes_read += i + 1;
963 goto done;
964 }
965 }
966
967 memaddr += tlen;
968 len -= tlen;
969 nbytes_read += tlen;
970 }
971 done:
972 *string = buffer;
973 if (errnop != NULL)
974 *errnop = errcode;
975 return nbytes_read;
976 }
977
978 /* Find a section containing ADDR. */
979 struct section_table *
980 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
981 {
982 struct section_table *secp;
983 for (secp = target->to_sections;
984 secp < target->to_sections_end;
985 secp++)
986 {
987 if (addr >= secp->addr && addr < secp->endaddr)
988 return secp;
989 }
990 return NULL;
991 }
992
993 /* Perform a partial memory transfer. The arguments and return
994 value are just as for target_xfer_partial. */
995
996 static LONGEST
997 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
998 ULONGEST memaddr, LONGEST len)
999 {
1000 LONGEST res;
1001 int reg_len;
1002 struct mem_region *region;
1003
1004 /* Zero length requests are ok and require no work. */
1005 if (len == 0)
1006 return 0;
1007
1008 /* Try the executable file, if "trust-readonly-sections" is set. */
1009 if (readbuf != NULL && trust_readonly)
1010 {
1011 struct section_table *secp;
1012
1013 secp = target_section_by_addr (ops, memaddr);
1014 if (secp != NULL
1015 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1016 & SEC_READONLY))
1017 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1018 }
1019
1020 /* Likewise for accesses to unmapped overlay sections. */
1021 if (readbuf != NULL && overlay_debugging)
1022 {
1023 asection *section = find_pc_overlay (memaddr);
1024 if (pc_in_unmapped_range (memaddr, section))
1025 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1026 }
1027
1028 /* Try GDB's internal data cache. */
1029 region = lookup_mem_region (memaddr);
1030 /* region->hi == 0 means there's no upper bound. */
1031 if (memaddr + len < region->hi || region->hi == 0)
1032 reg_len = len;
1033 else
1034 reg_len = region->hi - memaddr;
1035
1036 switch (region->attrib.mode)
1037 {
1038 case MEM_RO:
1039 if (writebuf != NULL)
1040 return -1;
1041 break;
1042
1043 case MEM_WO:
1044 if (readbuf != NULL)
1045 return -1;
1046 break;
1047
1048 case MEM_FLASH:
1049 /* We only support writing to flash during "load" for now. */
1050 if (writebuf != NULL)
1051 error (_("Writing to flash memory forbidden in this context"));
1052 break;
1053
1054 case MEM_NONE:
1055 return -1;
1056 }
1057
1058 if (region->attrib.cache)
1059 {
1060 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1061 memory request will start back at current_target. */
1062 if (readbuf != NULL)
1063 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1064 reg_len, 0);
1065 else
1066 /* FIXME drow/2006-08-09: If we're going to preserve const
1067 correctness dcache_xfer_memory should take readbuf and
1068 writebuf. */
1069 res = dcache_xfer_memory (target_dcache, memaddr,
1070 (void *) writebuf,
1071 reg_len, 1);
1072 if (res <= 0)
1073 return -1;
1074 else
1075 return res;
1076 }
1077
1078 /* If none of those methods found the memory we wanted, fall back
1079 to a target partial transfer. Normally a single call to
1080 to_xfer_partial is enough; if it doesn't recognize an object
1081 it will call the to_xfer_partial of the next target down.
1082 But for memory this won't do. Memory is the only target
1083 object which can be read from more than one valid target.
1084 A core file, for instance, could have some of memory but
1085 delegate other bits to the target below it. So, we must
1086 manually try all targets. */
1087
1088 do
1089 {
1090 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1091 readbuf, writebuf, memaddr, reg_len);
1092 if (res > 0)
1093 return res;
1094
1095 /* We want to continue past core files to executables, but not
1096 past a running target's memory. */
1097 if (ops->to_has_all_memory)
1098 return res;
1099
1100 ops = ops->beneath;
1101 }
1102 while (ops != NULL);
1103
1104 /* If we still haven't got anything, return the last error. We
1105 give up. */
1106 return res;
1107 }
1108
1109 static LONGEST
1110 target_xfer_partial (struct target_ops *ops,
1111 enum target_object object, const char *annex,
1112 void *readbuf, const void *writebuf,
1113 ULONGEST offset, LONGEST len)
1114 {
1115 LONGEST retval;
1116
1117 gdb_assert (ops->to_xfer_partial != NULL);
1118
1119 /* If this is a memory transfer, let the memory-specific code
1120 have a look at it instead. Memory transfers are more
1121 complicated. */
1122 if (object == TARGET_OBJECT_MEMORY)
1123 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1124 else
1125 {
1126 enum target_object raw_object = object;
1127
1128 /* If this is a raw memory transfer, request the normal
1129 memory object from other layers. */
1130 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1131 raw_object = TARGET_OBJECT_MEMORY;
1132
1133 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1134 writebuf, offset, len);
1135 }
1136
1137 if (targetdebug)
1138 {
1139 const unsigned char *myaddr = NULL;
1140
1141 fprintf_unfiltered (gdb_stdlog,
1142 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
1143 ops->to_shortname,
1144 (int) object,
1145 (annex ? annex : "(null)"),
1146 (long) readbuf, (long) writebuf,
1147 paddr_nz (offset), paddr_d (len), paddr_d (retval));
1148
1149 if (readbuf)
1150 myaddr = readbuf;
1151 if (writebuf)
1152 myaddr = writebuf;
1153 if (retval > 0 && myaddr != NULL)
1154 {
1155 int i;
1156
1157 fputs_unfiltered (", bytes =", gdb_stdlog);
1158 for (i = 0; i < retval; i++)
1159 {
1160 if ((((long) &(myaddr[i])) & 0xf) == 0)
1161 {
1162 if (targetdebug < 2 && i > 0)
1163 {
1164 fprintf_unfiltered (gdb_stdlog, " ...");
1165 break;
1166 }
1167 fprintf_unfiltered (gdb_stdlog, "\n");
1168 }
1169
1170 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1171 }
1172 }
1173
1174 fputc_unfiltered ('\n', gdb_stdlog);
1175 }
1176 return retval;
1177 }
1178
1179 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1180 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1181 if any error occurs.
1182
1183 If an error occurs, no guarantee is made about the contents of the data at
1184 MYADDR. In particular, the caller should not depend upon partial reads
1185 filling the buffer with good data. There is no way for the caller to know
1186 how much good data might have been transfered anyway. Callers that can
1187 deal with partial reads should call target_read (which will retry until
1188 it makes no progress, and then return how much was transferred). */
1189
1190 int
1191 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1192 {
1193 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1194 myaddr, memaddr, len) == len)
1195 return 0;
1196 else
1197 return EIO;
1198 }
1199
1200 int
1201 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1202 {
1203 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1204 myaddr, memaddr, len) == len)
1205 return 0;
1206 else
1207 return EIO;
1208 }
1209
1210 /* Fetch the target's memory map. */
1211
1212 VEC(mem_region_s) *
1213 target_memory_map (void)
1214 {
1215 VEC(mem_region_s) *result;
1216 struct mem_region *last_one, *this_one;
1217 int ix;
1218 struct target_ops *t;
1219
1220 if (targetdebug)
1221 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1222
1223 for (t = current_target.beneath; t != NULL; t = t->beneath)
1224 if (t->to_memory_map != NULL)
1225 break;
1226
1227 if (t == NULL)
1228 return NULL;
1229
1230 result = t->to_memory_map (t);
1231 if (result == NULL)
1232 return NULL;
1233
1234 qsort (VEC_address (mem_region_s, result),
1235 VEC_length (mem_region_s, result),
1236 sizeof (struct mem_region), mem_region_cmp);
1237
1238 /* Check that regions do not overlap. Simultaneously assign
1239 a numbering for the "mem" commands to use to refer to
1240 each region. */
1241 last_one = NULL;
1242 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1243 {
1244 this_one->number = ix;
1245
1246 if (last_one && last_one->hi > this_one->lo)
1247 {
1248 warning (_("Overlapping regions in memory map: ignoring"));
1249 VEC_free (mem_region_s, result);
1250 return NULL;
1251 }
1252 last_one = this_one;
1253 }
1254
1255 return result;
1256 }
1257
1258 void
1259 target_flash_erase (ULONGEST address, LONGEST length)
1260 {
1261 struct target_ops *t;
1262
1263 for (t = current_target.beneath; t != NULL; t = t->beneath)
1264 if (t->to_flash_erase != NULL)
1265 {
1266 if (targetdebug)
1267 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1268 paddr (address), phex (length, 0));
1269 t->to_flash_erase (t, address, length);
1270 return;
1271 }
1272
1273 tcomplain ();
1274 }
1275
1276 void
1277 target_flash_done (void)
1278 {
1279 struct target_ops *t;
1280
1281 for (t = current_target.beneath; t != NULL; t = t->beneath)
1282 if (t->to_flash_done != NULL)
1283 {
1284 if (targetdebug)
1285 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1286 t->to_flash_done (t);
1287 return;
1288 }
1289
1290 tcomplain ();
1291 }
1292
1293 #ifndef target_stopped_data_address_p
1294 int
1295 target_stopped_data_address_p (struct target_ops *target)
1296 {
1297 if (target->to_stopped_data_address
1298 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1299 return 0;
1300 if (target->to_stopped_data_address == debug_to_stopped_data_address
1301 && (debug_target.to_stopped_data_address
1302 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1303 return 0;
1304 return 1;
1305 }
1306 #endif
1307
1308 static void
1309 show_trust_readonly (struct ui_file *file, int from_tty,
1310 struct cmd_list_element *c, const char *value)
1311 {
1312 fprintf_filtered (file, _("\
1313 Mode for reading from readonly sections is %s.\n"),
1314 value);
1315 }
1316
1317 /* More generic transfers. */
1318
1319 static LONGEST
1320 default_xfer_partial (struct target_ops *ops, enum target_object object,
1321 const char *annex, gdb_byte *readbuf,
1322 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1323 {
1324 if (object == TARGET_OBJECT_MEMORY
1325 && ops->deprecated_xfer_memory != NULL)
1326 /* If available, fall back to the target's
1327 "deprecated_xfer_memory" method. */
1328 {
1329 int xfered = -1;
1330 errno = 0;
1331 if (writebuf != NULL)
1332 {
1333 void *buffer = xmalloc (len);
1334 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1335 memcpy (buffer, writebuf, len);
1336 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1337 1/*write*/, NULL, ops);
1338 do_cleanups (cleanup);
1339 }
1340 if (readbuf != NULL)
1341 xfered = ops->deprecated_xfer_memory (offset, readbuf, len, 0/*read*/,
1342 NULL, ops);
1343 if (xfered > 0)
1344 return xfered;
1345 else if (xfered == 0 && errno == 0)
1346 /* "deprecated_xfer_memory" uses 0, cross checked against
1347 ERRNO as one indication of an error. */
1348 return 0;
1349 else
1350 return -1;
1351 }
1352 else if (ops->beneath != NULL)
1353 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1354 readbuf, writebuf, offset, len);
1355 else
1356 return -1;
1357 }
1358
1359 /* The xfer_partial handler for the topmost target. Unlike the default,
1360 it does not need to handle memory specially; it just passes all
1361 requests down the stack. */
1362
1363 static LONGEST
1364 current_xfer_partial (struct target_ops *ops, enum target_object object,
1365 const char *annex, gdb_byte *readbuf,
1366 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1367 {
1368 if (ops->beneath != NULL)
1369 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1370 readbuf, writebuf, offset, len);
1371 else
1372 return -1;
1373 }
1374
1375 /* Target vector read/write partial wrapper functions.
1376
1377 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1378 (inbuf, outbuf)", instead of separate read/write methods, make life
1379 easier. */
1380
1381 static LONGEST
1382 target_read_partial (struct target_ops *ops,
1383 enum target_object object,
1384 const char *annex, gdb_byte *buf,
1385 ULONGEST offset, LONGEST len)
1386 {
1387 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1388 }
1389
1390 static LONGEST
1391 target_write_partial (struct target_ops *ops,
1392 enum target_object object,
1393 const char *annex, const gdb_byte *buf,
1394 ULONGEST offset, LONGEST len)
1395 {
1396 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1397 }
1398
1399 /* Wrappers to perform the full transfer. */
1400 LONGEST
1401 target_read (struct target_ops *ops,
1402 enum target_object object,
1403 const char *annex, gdb_byte *buf,
1404 ULONGEST offset, LONGEST len)
1405 {
1406 LONGEST xfered = 0;
1407 while (xfered < len)
1408 {
1409 LONGEST xfer = target_read_partial (ops, object, annex,
1410 (gdb_byte *) buf + xfered,
1411 offset + xfered, len - xfered);
1412 /* Call an observer, notifying them of the xfer progress? */
1413 if (xfer == 0)
1414 return xfered;
1415 if (xfer < 0)
1416 return -1;
1417 xfered += xfer;
1418 QUIT;
1419 }
1420 return len;
1421 }
1422
1423 /* An alternative to target_write with progress callbacks. */
1424
1425 LONGEST
1426 target_write_with_progress (struct target_ops *ops,
1427 enum target_object object,
1428 const char *annex, const gdb_byte *buf,
1429 ULONGEST offset, LONGEST len,
1430 void (*progress) (ULONGEST, void *), void *baton)
1431 {
1432 LONGEST xfered = 0;
1433
1434 /* Give the progress callback a chance to set up. */
1435 if (progress)
1436 (*progress) (0, baton);
1437
1438 while (xfered < len)
1439 {
1440 LONGEST xfer = target_write_partial (ops, object, annex,
1441 (gdb_byte *) buf + xfered,
1442 offset + xfered, len - xfered);
1443
1444 if (xfer == 0)
1445 return xfered;
1446 if (xfer < 0)
1447 return -1;
1448
1449 if (progress)
1450 (*progress) (xfer, baton);
1451
1452 xfered += xfer;
1453 QUIT;
1454 }
1455 return len;
1456 }
1457
1458 LONGEST
1459 target_write (struct target_ops *ops,
1460 enum target_object object,
1461 const char *annex, const gdb_byte *buf,
1462 ULONGEST offset, LONGEST len)
1463 {
1464 return target_write_with_progress (ops, object, annex, buf, offset, len,
1465 NULL, NULL);
1466 }
1467
1468 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1469 the size of the transferred data. PADDING additional bytes are
1470 available in *BUF_P. This is a helper function for
1471 target_read_alloc; see the declaration of that function for more
1472 information. */
1473
1474 static LONGEST
1475 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1476 const char *annex, gdb_byte **buf_p, int padding)
1477 {
1478 size_t buf_alloc, buf_pos;
1479 gdb_byte *buf;
1480 LONGEST n;
1481
1482 /* This function does not have a length parameter; it reads the
1483 entire OBJECT). Also, it doesn't support objects fetched partly
1484 from one target and partly from another (in a different stratum,
1485 e.g. a core file and an executable). Both reasons make it
1486 unsuitable for reading memory. */
1487 gdb_assert (object != TARGET_OBJECT_MEMORY);
1488
1489 /* Start by reading up to 4K at a time. The target will throttle
1490 this number down if necessary. */
1491 buf_alloc = 4096;
1492 buf = xmalloc (buf_alloc);
1493 buf_pos = 0;
1494 while (1)
1495 {
1496 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1497 buf_pos, buf_alloc - buf_pos - padding);
1498 if (n < 0)
1499 {
1500 /* An error occurred. */
1501 xfree (buf);
1502 return -1;
1503 }
1504 else if (n == 0)
1505 {
1506 /* Read all there was. */
1507 if (buf_pos == 0)
1508 xfree (buf);
1509 else
1510 *buf_p = buf;
1511 return buf_pos;
1512 }
1513
1514 buf_pos += n;
1515
1516 /* If the buffer is filling up, expand it. */
1517 if (buf_alloc < buf_pos * 2)
1518 {
1519 buf_alloc *= 2;
1520 buf = xrealloc (buf, buf_alloc);
1521 }
1522
1523 QUIT;
1524 }
1525 }
1526
1527 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1528 the size of the transferred data. See the declaration in "target.h"
1529 function for more information about the return value. */
1530
1531 LONGEST
1532 target_read_alloc (struct target_ops *ops, enum target_object object,
1533 const char *annex, gdb_byte **buf_p)
1534 {
1535 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1536 }
1537
1538 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1539 returned as a string, allocated using xmalloc. If an error occurs
1540 or the transfer is unsupported, NULL is returned. Empty objects
1541 are returned as allocated but empty strings. A warning is issued
1542 if the result contains any embedded NUL bytes. */
1543
1544 char *
1545 target_read_stralloc (struct target_ops *ops, enum target_object object,
1546 const char *annex)
1547 {
1548 gdb_byte *buffer;
1549 LONGEST transferred;
1550
1551 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1552
1553 if (transferred < 0)
1554 return NULL;
1555
1556 if (transferred == 0)
1557 return xstrdup ("");
1558
1559 buffer[transferred] = 0;
1560 if (strlen (buffer) < transferred)
1561 warning (_("target object %d, annex %s, "
1562 "contained unexpected null characters"),
1563 (int) object, annex ? annex : "(none)");
1564
1565 return (char *) buffer;
1566 }
1567
1568 /* Memory transfer methods. */
1569
1570 void
1571 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1572 LONGEST len)
1573 {
1574 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1575 != len)
1576 memory_error (EIO, addr);
1577 }
1578
1579 ULONGEST
1580 get_target_memory_unsigned (struct target_ops *ops,
1581 CORE_ADDR addr, int len)
1582 {
1583 gdb_byte buf[sizeof (ULONGEST)];
1584
1585 gdb_assert (len <= sizeof (buf));
1586 get_target_memory (ops, addr, buf, len);
1587 return extract_unsigned_integer (buf, len);
1588 }
1589
1590 static void
1591 target_info (char *args, int from_tty)
1592 {
1593 struct target_ops *t;
1594 int has_all_mem = 0;
1595
1596 if (symfile_objfile != NULL)
1597 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1598
1599 for (t = target_stack; t != NULL; t = t->beneath)
1600 {
1601 if (!t->to_has_memory)
1602 continue;
1603
1604 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1605 continue;
1606 if (has_all_mem)
1607 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1608 printf_unfiltered ("%s:\n", t->to_longname);
1609 (t->to_files_info) (t);
1610 has_all_mem = t->to_has_all_memory;
1611 }
1612 }
1613
1614 /* This function is called before any new inferior is created, e.g.
1615 by running a program, attaching, or connecting to a target.
1616 It cleans up any state from previous invocations which might
1617 change between runs. This is a subset of what target_preopen
1618 resets (things which might change between targets). */
1619
1620 void
1621 target_pre_inferior (int from_tty)
1622 {
1623 invalidate_target_mem_regions ();
1624
1625 target_clear_description ();
1626 }
1627
1628 /* This is to be called by the open routine before it does
1629 anything. */
1630
1631 void
1632 target_preopen (int from_tty)
1633 {
1634 dont_repeat ();
1635
1636 if (target_has_execution)
1637 {
1638 if (!from_tty
1639 || query (_("A program is being debugged already. Kill it? ")))
1640 target_kill ();
1641 else
1642 error (_("Program not killed."));
1643 }
1644
1645 /* Calling target_kill may remove the target from the stack. But if
1646 it doesn't (which seems like a win for UDI), remove it now. */
1647
1648 if (target_has_execution)
1649 pop_target ();
1650
1651 target_pre_inferior (from_tty);
1652 }
1653
1654 /* Detach a target after doing deferred register stores. */
1655
1656 void
1657 target_detach (char *args, int from_tty)
1658 {
1659 (current_target.to_detach) (args, from_tty);
1660 }
1661
1662 void
1663 target_disconnect (char *args, int from_tty)
1664 {
1665 struct target_ops *t;
1666
1667 for (t = current_target.beneath; t != NULL; t = t->beneath)
1668 if (t->to_disconnect != NULL)
1669 {
1670 if (targetdebug)
1671 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1672 args, from_tty);
1673 t->to_disconnect (t, args, from_tty);
1674 return;
1675 }
1676
1677 tcomplain ();
1678 }
1679
1680 int
1681 target_async_mask (int mask)
1682 {
1683 int saved_async_masked_status = target_async_mask_value;
1684 target_async_mask_value = mask;
1685 return saved_async_masked_status;
1686 }
1687
1688 /* Look through the list of possible targets for a target that can
1689 follow forks. */
1690
1691 int
1692 target_follow_fork (int follow_child)
1693 {
1694 struct target_ops *t;
1695
1696 for (t = current_target.beneath; t != NULL; t = t->beneath)
1697 {
1698 if (t->to_follow_fork != NULL)
1699 {
1700 int retval = t->to_follow_fork (t, follow_child);
1701 if (targetdebug)
1702 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1703 follow_child, retval);
1704 return retval;
1705 }
1706 }
1707
1708 /* Some target returned a fork event, but did not know how to follow it. */
1709 internal_error (__FILE__, __LINE__,
1710 "could not find a target to follow fork");
1711 }
1712
1713 /* Look for a target which can describe architectural features, starting
1714 from TARGET. If we find one, return its description. */
1715
1716 const struct target_desc *
1717 target_read_description (struct target_ops *target)
1718 {
1719 struct target_ops *t;
1720
1721 for (t = target; t != NULL; t = t->beneath)
1722 if (t->to_read_description != NULL)
1723 {
1724 const struct target_desc *tdesc;
1725
1726 tdesc = t->to_read_description (t);
1727 if (tdesc)
1728 return tdesc;
1729 }
1730
1731 return NULL;
1732 }
1733
1734 /* Look through the list of possible targets for a target that can
1735 execute a run or attach command without any other data. This is
1736 used to locate the default process stratum.
1737
1738 Result is always valid (error() is called for errors). */
1739
1740 static struct target_ops *
1741 find_default_run_target (char *do_mesg)
1742 {
1743 struct target_ops **t;
1744 struct target_ops *runable = NULL;
1745 int count;
1746
1747 count = 0;
1748
1749 for (t = target_structs; t < target_structs + target_struct_size;
1750 ++t)
1751 {
1752 if ((*t)->to_can_run && target_can_run (*t))
1753 {
1754 runable = *t;
1755 ++count;
1756 }
1757 }
1758
1759 if (count != 1)
1760 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
1761
1762 return runable;
1763 }
1764
1765 void
1766 find_default_attach (char *args, int from_tty)
1767 {
1768 struct target_ops *t;
1769
1770 t = find_default_run_target ("attach");
1771 (t->to_attach) (args, from_tty);
1772 return;
1773 }
1774
1775 void
1776 find_default_create_inferior (char *exec_file, char *allargs, char **env,
1777 int from_tty)
1778 {
1779 struct target_ops *t;
1780
1781 t = find_default_run_target ("run");
1782 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
1783 return;
1784 }
1785
1786 static int
1787 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1788 {
1789 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
1790 }
1791
1792 static int
1793 return_zero (void)
1794 {
1795 return 0;
1796 }
1797
1798 static int
1799 return_one (void)
1800 {
1801 return 1;
1802 }
1803
1804 static int
1805 return_minus_one (void)
1806 {
1807 return -1;
1808 }
1809
1810 /*
1811 * Resize the to_sections pointer. Also make sure that anyone that
1812 * was holding on to an old value of it gets updated.
1813 * Returns the old size.
1814 */
1815
1816 int
1817 target_resize_to_sections (struct target_ops *target, int num_added)
1818 {
1819 struct target_ops **t;
1820 struct section_table *old_value;
1821 int old_count;
1822
1823 old_value = target->to_sections;
1824
1825 if (target->to_sections)
1826 {
1827 old_count = target->to_sections_end - target->to_sections;
1828 target->to_sections = (struct section_table *)
1829 xrealloc ((char *) target->to_sections,
1830 (sizeof (struct section_table)) * (num_added + old_count));
1831 }
1832 else
1833 {
1834 old_count = 0;
1835 target->to_sections = (struct section_table *)
1836 xmalloc ((sizeof (struct section_table)) * num_added);
1837 }
1838 target->to_sections_end = target->to_sections + (num_added + old_count);
1839
1840 /* Check to see if anyone else was pointing to this structure.
1841 If old_value was null, then no one was. */
1842
1843 if (old_value)
1844 {
1845 for (t = target_structs; t < target_structs + target_struct_size;
1846 ++t)
1847 {
1848 if ((*t)->to_sections == old_value)
1849 {
1850 (*t)->to_sections = target->to_sections;
1851 (*t)->to_sections_end = target->to_sections_end;
1852 }
1853 }
1854 /* There is a flattened view of the target stack in current_target,
1855 so its to_sections pointer might also need updating. */
1856 if (current_target.to_sections == old_value)
1857 {
1858 current_target.to_sections = target->to_sections;
1859 current_target.to_sections_end = target->to_sections_end;
1860 }
1861 }
1862
1863 return old_count;
1864
1865 }
1866
1867 /* Remove all target sections taken from ABFD.
1868
1869 Scan the current target stack for targets whose section tables
1870 refer to sections from BFD, and remove those sections. We use this
1871 when we notice that the inferior has unloaded a shared object, for
1872 example. */
1873 void
1874 remove_target_sections (bfd *abfd)
1875 {
1876 struct target_ops **t;
1877
1878 for (t = target_structs; t < target_structs + target_struct_size; t++)
1879 {
1880 struct section_table *src, *dest;
1881
1882 dest = (*t)->to_sections;
1883 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1884 if (src->bfd != abfd)
1885 {
1886 /* Keep this section. */
1887 if (dest < src) *dest = *src;
1888 dest++;
1889 }
1890
1891 /* If we've dropped any sections, resize the section table. */
1892 if (dest < src)
1893 target_resize_to_sections (*t, dest - src);
1894 }
1895 }
1896
1897
1898
1899
1900 /* Find a single runnable target in the stack and return it. If for
1901 some reason there is more than one, return NULL. */
1902
1903 struct target_ops *
1904 find_run_target (void)
1905 {
1906 struct target_ops **t;
1907 struct target_ops *runable = NULL;
1908 int count;
1909
1910 count = 0;
1911
1912 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1913 {
1914 if ((*t)->to_can_run && target_can_run (*t))
1915 {
1916 runable = *t;
1917 ++count;
1918 }
1919 }
1920
1921 return (count == 1 ? runable : NULL);
1922 }
1923
1924 /* Find a single core_stratum target in the list of targets and return it.
1925 If for some reason there is more than one, return NULL. */
1926
1927 struct target_ops *
1928 find_core_target (void)
1929 {
1930 struct target_ops **t;
1931 struct target_ops *runable = NULL;
1932 int count;
1933
1934 count = 0;
1935
1936 for (t = target_structs; t < target_structs + target_struct_size;
1937 ++t)
1938 {
1939 if ((*t)->to_stratum == core_stratum)
1940 {
1941 runable = *t;
1942 ++count;
1943 }
1944 }
1945
1946 return (count == 1 ? runable : NULL);
1947 }
1948
1949 /*
1950 * Find the next target down the stack from the specified target.
1951 */
1952
1953 struct target_ops *
1954 find_target_beneath (struct target_ops *t)
1955 {
1956 return t->beneath;
1957 }
1958
1959 \f
1960 /* The inferior process has died. Long live the inferior! */
1961
1962 void
1963 generic_mourn_inferior (void)
1964 {
1965 extern int show_breakpoint_hit_counts;
1966
1967 inferior_ptid = null_ptid;
1968 attach_flag = 0;
1969 breakpoint_init_inferior (inf_exited);
1970 registers_changed ();
1971
1972 reopen_exec_file ();
1973 reinit_frame_cache ();
1974
1975 /* It is confusing to the user for ignore counts to stick around
1976 from previous runs of the inferior. So clear them. */
1977 /* However, it is more confusing for the ignore counts to disappear when
1978 using hit counts. So don't clear them if we're counting hits. */
1979 if (!show_breakpoint_hit_counts)
1980 breakpoint_clear_ignore_counts ();
1981
1982 if (deprecated_detach_hook)
1983 deprecated_detach_hook ();
1984 }
1985 \f
1986 /* Helper function for child_wait and the derivatives of child_wait.
1987 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
1988 translation of that in OURSTATUS. */
1989 void
1990 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
1991 {
1992 if (WIFEXITED (hoststatus))
1993 {
1994 ourstatus->kind = TARGET_WAITKIND_EXITED;
1995 ourstatus->value.integer = WEXITSTATUS (hoststatus);
1996 }
1997 else if (!WIFSTOPPED (hoststatus))
1998 {
1999 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2000 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2001 }
2002 else
2003 {
2004 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2005 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2006 }
2007 }
2008 \f
2009 /* Returns zero to leave the inferior alone, one to interrupt it. */
2010 int (*target_activity_function) (void);
2011 int target_activity_fd;
2012 \f
2013 /* Convert a normal process ID to a string. Returns the string in a
2014 static buffer. */
2015
2016 char *
2017 normal_pid_to_str (ptid_t ptid)
2018 {
2019 static char buf[32];
2020
2021 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2022 return buf;
2023 }
2024
2025 /* Error-catcher for target_find_memory_regions */
2026 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2027 {
2028 error (_("No target."));
2029 return 0;
2030 }
2031
2032 /* Error-catcher for target_make_corefile_notes */
2033 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2034 {
2035 error (_("No target."));
2036 return NULL;
2037 }
2038
2039 /* Set up the handful of non-empty slots needed by the dummy target
2040 vector. */
2041
2042 static void
2043 init_dummy_target (void)
2044 {
2045 dummy_target.to_shortname = "None";
2046 dummy_target.to_longname = "None";
2047 dummy_target.to_doc = "";
2048 dummy_target.to_attach = find_default_attach;
2049 dummy_target.to_create_inferior = find_default_create_inferior;
2050 dummy_target.to_pid_to_str = normal_pid_to_str;
2051 dummy_target.to_stratum = dummy_stratum;
2052 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2053 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2054 dummy_target.to_xfer_partial = default_xfer_partial;
2055 dummy_target.to_magic = OPS_MAGIC;
2056 }
2057 \f
2058 static void
2059 debug_to_open (char *args, int from_tty)
2060 {
2061 debug_target.to_open (args, from_tty);
2062
2063 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2064 }
2065
2066 static void
2067 debug_to_close (int quitting)
2068 {
2069 target_close (&debug_target, quitting);
2070 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2071 }
2072
2073 void
2074 target_close (struct target_ops *targ, int quitting)
2075 {
2076 if (targ->to_xclose != NULL)
2077 targ->to_xclose (targ, quitting);
2078 else if (targ->to_close != NULL)
2079 targ->to_close (quitting);
2080 }
2081
2082 static void
2083 debug_to_attach (char *args, int from_tty)
2084 {
2085 debug_target.to_attach (args, from_tty);
2086
2087 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2088 }
2089
2090
2091 static void
2092 debug_to_post_attach (int pid)
2093 {
2094 debug_target.to_post_attach (pid);
2095
2096 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2097 }
2098
2099 static void
2100 debug_to_detach (char *args, int from_tty)
2101 {
2102 debug_target.to_detach (args, from_tty);
2103
2104 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2105 }
2106
2107 static void
2108 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2109 {
2110 debug_target.to_resume (ptid, step, siggnal);
2111
2112 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2113 step ? "step" : "continue",
2114 target_signal_to_name (siggnal));
2115 }
2116
2117 static ptid_t
2118 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2119 {
2120 ptid_t retval;
2121
2122 retval = debug_target.to_wait (ptid, status);
2123
2124 fprintf_unfiltered (gdb_stdlog,
2125 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2126 PIDGET (retval));
2127 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2128 switch (status->kind)
2129 {
2130 case TARGET_WAITKIND_EXITED:
2131 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2132 status->value.integer);
2133 break;
2134 case TARGET_WAITKIND_STOPPED:
2135 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2136 target_signal_to_name (status->value.sig));
2137 break;
2138 case TARGET_WAITKIND_SIGNALLED:
2139 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2140 target_signal_to_name (status->value.sig));
2141 break;
2142 case TARGET_WAITKIND_LOADED:
2143 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2144 break;
2145 case TARGET_WAITKIND_FORKED:
2146 fprintf_unfiltered (gdb_stdlog, "forked\n");
2147 break;
2148 case TARGET_WAITKIND_VFORKED:
2149 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2150 break;
2151 case TARGET_WAITKIND_EXECD:
2152 fprintf_unfiltered (gdb_stdlog, "execd\n");
2153 break;
2154 case TARGET_WAITKIND_SPURIOUS:
2155 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2156 break;
2157 default:
2158 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2159 break;
2160 }
2161
2162 return retval;
2163 }
2164
2165 static void
2166 debug_print_register (const char * func,
2167 struct regcache *regcache, int regno)
2168 {
2169 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2170 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2171 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2172 + gdbarch_num_pseudo_regs (gdbarch)
2173 && gdbarch_register_name (gdbarch, regno) != NULL
2174 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2175 fprintf_unfiltered (gdb_stdlog, "(%s)",
2176 gdbarch_register_name (gdbarch, regno));
2177 else
2178 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2179 if (regno >= 0)
2180 {
2181 int i, size = register_size (gdbarch, regno);
2182 unsigned char buf[MAX_REGISTER_SIZE];
2183 regcache_cooked_read (regcache, regno, buf);
2184 fprintf_unfiltered (gdb_stdlog, " = ");
2185 for (i = 0; i < size; i++)
2186 {
2187 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2188 }
2189 if (size <= sizeof (LONGEST))
2190 {
2191 ULONGEST val = extract_unsigned_integer (buf, size);
2192 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2193 paddr_nz (val), paddr_d (val));
2194 }
2195 }
2196 fprintf_unfiltered (gdb_stdlog, "\n");
2197 }
2198
2199 static void
2200 debug_to_fetch_registers (struct regcache *regcache, int regno)
2201 {
2202 debug_target.to_fetch_registers (regcache, regno);
2203 debug_print_register ("target_fetch_registers", regcache, regno);
2204 }
2205
2206 static void
2207 debug_to_store_registers (struct regcache *regcache, int regno)
2208 {
2209 debug_target.to_store_registers (regcache, regno);
2210 debug_print_register ("target_store_registers", regcache, regno);
2211 fprintf_unfiltered (gdb_stdlog, "\n");
2212 }
2213
2214 static void
2215 debug_to_prepare_to_store (struct regcache *regcache)
2216 {
2217 debug_target.to_prepare_to_store (regcache);
2218
2219 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2220 }
2221
2222 static int
2223 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2224 int write, struct mem_attrib *attrib,
2225 struct target_ops *target)
2226 {
2227 int retval;
2228
2229 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2230 attrib, target);
2231
2232 fprintf_unfiltered (gdb_stdlog,
2233 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2234 (unsigned int) memaddr, /* possable truncate long long */
2235 len, write ? "write" : "read", retval);
2236
2237 if (retval > 0)
2238 {
2239 int i;
2240
2241 fputs_unfiltered (", bytes =", gdb_stdlog);
2242 for (i = 0; i < retval; i++)
2243 {
2244 if ((((long) &(myaddr[i])) & 0xf) == 0)
2245 {
2246 if (targetdebug < 2 && i > 0)
2247 {
2248 fprintf_unfiltered (gdb_stdlog, " ...");
2249 break;
2250 }
2251 fprintf_unfiltered (gdb_stdlog, "\n");
2252 }
2253
2254 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2255 }
2256 }
2257
2258 fputc_unfiltered ('\n', gdb_stdlog);
2259
2260 return retval;
2261 }
2262
2263 static void
2264 debug_to_files_info (struct target_ops *target)
2265 {
2266 debug_target.to_files_info (target);
2267
2268 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2269 }
2270
2271 static int
2272 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2273 {
2274 int retval;
2275
2276 retval = debug_target.to_insert_breakpoint (bp_tgt);
2277
2278 fprintf_unfiltered (gdb_stdlog,
2279 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2280 (unsigned long) bp_tgt->placed_address,
2281 (unsigned long) retval);
2282 return retval;
2283 }
2284
2285 static int
2286 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2287 {
2288 int retval;
2289
2290 retval = debug_target.to_remove_breakpoint (bp_tgt);
2291
2292 fprintf_unfiltered (gdb_stdlog,
2293 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2294 (unsigned long) bp_tgt->placed_address,
2295 (unsigned long) retval);
2296 return retval;
2297 }
2298
2299 static int
2300 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2301 {
2302 int retval;
2303
2304 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2305
2306 fprintf_unfiltered (gdb_stdlog,
2307 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2308 (unsigned long) type,
2309 (unsigned long) cnt,
2310 (unsigned long) from_tty,
2311 (unsigned long) retval);
2312 return retval;
2313 }
2314
2315 static int
2316 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2317 {
2318 CORE_ADDR retval;
2319
2320 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2321
2322 fprintf_unfiltered (gdb_stdlog,
2323 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2324 (unsigned long) addr,
2325 (unsigned long) len,
2326 (unsigned long) retval);
2327 return retval;
2328 }
2329
2330 static int
2331 debug_to_stopped_by_watchpoint (void)
2332 {
2333 int retval;
2334
2335 retval = debug_target.to_stopped_by_watchpoint ();
2336
2337 fprintf_unfiltered (gdb_stdlog,
2338 "STOPPED_BY_WATCHPOINT () = %ld\n",
2339 (unsigned long) retval);
2340 return retval;
2341 }
2342
2343 static int
2344 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2345 {
2346 int retval;
2347
2348 retval = debug_target.to_stopped_data_address (target, addr);
2349
2350 fprintf_unfiltered (gdb_stdlog,
2351 "target_stopped_data_address ([0x%lx]) = %ld\n",
2352 (unsigned long)*addr,
2353 (unsigned long)retval);
2354 return retval;
2355 }
2356
2357 static int
2358 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2359 {
2360 int retval;
2361
2362 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2363
2364 fprintf_unfiltered (gdb_stdlog,
2365 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2366 (unsigned long) bp_tgt->placed_address,
2367 (unsigned long) retval);
2368 return retval;
2369 }
2370
2371 static int
2372 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2373 {
2374 int retval;
2375
2376 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2377
2378 fprintf_unfiltered (gdb_stdlog,
2379 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2380 (unsigned long) bp_tgt->placed_address,
2381 (unsigned long) retval);
2382 return retval;
2383 }
2384
2385 static int
2386 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2387 {
2388 int retval;
2389
2390 retval = debug_target.to_insert_watchpoint (addr, len, type);
2391
2392 fprintf_unfiltered (gdb_stdlog,
2393 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2394 (unsigned long) addr, len, type, (unsigned long) retval);
2395 return retval;
2396 }
2397
2398 static int
2399 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2400 {
2401 int retval;
2402
2403 retval = debug_target.to_remove_watchpoint (addr, len, type);
2404
2405 fprintf_unfiltered (gdb_stdlog,
2406 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2407 (unsigned long) addr, len, type, (unsigned long) retval);
2408 return retval;
2409 }
2410
2411 static void
2412 debug_to_terminal_init (void)
2413 {
2414 debug_target.to_terminal_init ();
2415
2416 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2417 }
2418
2419 static void
2420 debug_to_terminal_inferior (void)
2421 {
2422 debug_target.to_terminal_inferior ();
2423
2424 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2425 }
2426
2427 static void
2428 debug_to_terminal_ours_for_output (void)
2429 {
2430 debug_target.to_terminal_ours_for_output ();
2431
2432 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2433 }
2434
2435 static void
2436 debug_to_terminal_ours (void)
2437 {
2438 debug_target.to_terminal_ours ();
2439
2440 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2441 }
2442
2443 static void
2444 debug_to_terminal_save_ours (void)
2445 {
2446 debug_target.to_terminal_save_ours ();
2447
2448 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2449 }
2450
2451 static void
2452 debug_to_terminal_info (char *arg, int from_tty)
2453 {
2454 debug_target.to_terminal_info (arg, from_tty);
2455
2456 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2457 from_tty);
2458 }
2459
2460 static void
2461 debug_to_kill (void)
2462 {
2463 debug_target.to_kill ();
2464
2465 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2466 }
2467
2468 static void
2469 debug_to_load (char *args, int from_tty)
2470 {
2471 debug_target.to_load (args, from_tty);
2472
2473 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2474 }
2475
2476 static int
2477 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2478 {
2479 int retval;
2480
2481 retval = debug_target.to_lookup_symbol (name, addrp);
2482
2483 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2484
2485 return retval;
2486 }
2487
2488 static void
2489 debug_to_create_inferior (char *exec_file, char *args, char **env,
2490 int from_tty)
2491 {
2492 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2493
2494 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2495 exec_file, args, from_tty);
2496 }
2497
2498 static void
2499 debug_to_post_startup_inferior (ptid_t ptid)
2500 {
2501 debug_target.to_post_startup_inferior (ptid);
2502
2503 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2504 PIDGET (ptid));
2505 }
2506
2507 static void
2508 debug_to_acknowledge_created_inferior (int pid)
2509 {
2510 debug_target.to_acknowledge_created_inferior (pid);
2511
2512 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2513 pid);
2514 }
2515
2516 static void
2517 debug_to_insert_fork_catchpoint (int pid)
2518 {
2519 debug_target.to_insert_fork_catchpoint (pid);
2520
2521 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2522 pid);
2523 }
2524
2525 static int
2526 debug_to_remove_fork_catchpoint (int pid)
2527 {
2528 int retval;
2529
2530 retval = debug_target.to_remove_fork_catchpoint (pid);
2531
2532 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2533 pid, retval);
2534
2535 return retval;
2536 }
2537
2538 static void
2539 debug_to_insert_vfork_catchpoint (int pid)
2540 {
2541 debug_target.to_insert_vfork_catchpoint (pid);
2542
2543 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2544 pid);
2545 }
2546
2547 static int
2548 debug_to_remove_vfork_catchpoint (int pid)
2549 {
2550 int retval;
2551
2552 retval = debug_target.to_remove_vfork_catchpoint (pid);
2553
2554 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2555 pid, retval);
2556
2557 return retval;
2558 }
2559
2560 static void
2561 debug_to_insert_exec_catchpoint (int pid)
2562 {
2563 debug_target.to_insert_exec_catchpoint (pid);
2564
2565 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2566 pid);
2567 }
2568
2569 static int
2570 debug_to_remove_exec_catchpoint (int pid)
2571 {
2572 int retval;
2573
2574 retval = debug_target.to_remove_exec_catchpoint (pid);
2575
2576 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2577 pid, retval);
2578
2579 return retval;
2580 }
2581
2582 static int
2583 debug_to_reported_exec_events_per_exec_call (void)
2584 {
2585 int reported_exec_events;
2586
2587 reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
2588
2589 fprintf_unfiltered (gdb_stdlog,
2590 "target_reported_exec_events_per_exec_call () = %d\n",
2591 reported_exec_events);
2592
2593 return reported_exec_events;
2594 }
2595
2596 static int
2597 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2598 {
2599 int has_exited;
2600
2601 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2602
2603 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2604 pid, wait_status, *exit_status, has_exited);
2605
2606 return has_exited;
2607 }
2608
2609 static void
2610 debug_to_mourn_inferior (void)
2611 {
2612 debug_target.to_mourn_inferior ();
2613
2614 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2615 }
2616
2617 static int
2618 debug_to_can_run (void)
2619 {
2620 int retval;
2621
2622 retval = debug_target.to_can_run ();
2623
2624 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2625
2626 return retval;
2627 }
2628
2629 static void
2630 debug_to_notice_signals (ptid_t ptid)
2631 {
2632 debug_target.to_notice_signals (ptid);
2633
2634 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2635 PIDGET (ptid));
2636 }
2637
2638 static int
2639 debug_to_thread_alive (ptid_t ptid)
2640 {
2641 int retval;
2642
2643 retval = debug_target.to_thread_alive (ptid);
2644
2645 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2646 PIDGET (ptid), retval);
2647
2648 return retval;
2649 }
2650
2651 static void
2652 debug_to_find_new_threads (void)
2653 {
2654 debug_target.to_find_new_threads ();
2655
2656 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2657 }
2658
2659 static void
2660 debug_to_stop (void)
2661 {
2662 debug_target.to_stop ();
2663
2664 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2665 }
2666
2667 static void
2668 debug_to_rcmd (char *command,
2669 struct ui_file *outbuf)
2670 {
2671 debug_target.to_rcmd (command, outbuf);
2672 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2673 }
2674
2675 static struct symtab_and_line *
2676 debug_to_enable_exception_callback (enum exception_event_kind kind, int enable)
2677 {
2678 struct symtab_and_line *result;
2679 result = debug_target.to_enable_exception_callback (kind, enable);
2680 fprintf_unfiltered (gdb_stdlog,
2681 "target get_exception_callback_sal (%d, %d)\n",
2682 kind, enable);
2683 return result;
2684 }
2685
2686 static struct exception_event_record *
2687 debug_to_get_current_exception_event (void)
2688 {
2689 struct exception_event_record *result;
2690 result = debug_target.to_get_current_exception_event ();
2691 fprintf_unfiltered (gdb_stdlog, "target get_current_exception_event ()\n");
2692 return result;
2693 }
2694
2695 static char *
2696 debug_to_pid_to_exec_file (int pid)
2697 {
2698 char *exec_file;
2699
2700 exec_file = debug_target.to_pid_to_exec_file (pid);
2701
2702 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2703 pid, exec_file);
2704
2705 return exec_file;
2706 }
2707
2708 static void
2709 setup_target_debug (void)
2710 {
2711 memcpy (&debug_target, &current_target, sizeof debug_target);
2712
2713 current_target.to_open = debug_to_open;
2714 current_target.to_close = debug_to_close;
2715 current_target.to_attach = debug_to_attach;
2716 current_target.to_post_attach = debug_to_post_attach;
2717 current_target.to_detach = debug_to_detach;
2718 current_target.to_resume = debug_to_resume;
2719 current_target.to_wait = debug_to_wait;
2720 current_target.to_fetch_registers = debug_to_fetch_registers;
2721 current_target.to_store_registers = debug_to_store_registers;
2722 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2723 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
2724 current_target.to_files_info = debug_to_files_info;
2725 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2726 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2727 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2728 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2729 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2730 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2731 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2732 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2733 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2734 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
2735 current_target.to_terminal_init = debug_to_terminal_init;
2736 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2737 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2738 current_target.to_terminal_ours = debug_to_terminal_ours;
2739 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2740 current_target.to_terminal_info = debug_to_terminal_info;
2741 current_target.to_kill = debug_to_kill;
2742 current_target.to_load = debug_to_load;
2743 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2744 current_target.to_create_inferior = debug_to_create_inferior;
2745 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2746 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2747 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2748 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2749 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2750 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2751 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2752 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2753 current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
2754 current_target.to_has_exited = debug_to_has_exited;
2755 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2756 current_target.to_can_run = debug_to_can_run;
2757 current_target.to_notice_signals = debug_to_notice_signals;
2758 current_target.to_thread_alive = debug_to_thread_alive;
2759 current_target.to_find_new_threads = debug_to_find_new_threads;
2760 current_target.to_stop = debug_to_stop;
2761 current_target.to_rcmd = debug_to_rcmd;
2762 current_target.to_enable_exception_callback = debug_to_enable_exception_callback;
2763 current_target.to_get_current_exception_event = debug_to_get_current_exception_event;
2764 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2765 }
2766 \f
2767
2768 static char targ_desc[] =
2769 "Names of targets and files being debugged.\n\
2770 Shows the entire stack of targets currently in use (including the exec-file,\n\
2771 core-file, and process, if any), as well as the symbol file name.";
2772
2773 static void
2774 do_monitor_command (char *cmd,
2775 int from_tty)
2776 {
2777 if ((current_target.to_rcmd
2778 == (void (*) (char *, struct ui_file *)) tcomplain)
2779 || (current_target.to_rcmd == debug_to_rcmd
2780 && (debug_target.to_rcmd
2781 == (void (*) (char *, struct ui_file *)) tcomplain)))
2782 error (_("\"monitor\" command not supported by this target."));
2783 target_rcmd (cmd, gdb_stdtarg);
2784 }
2785
2786 /* Print the name of each layers of our target stack. */
2787
2788 static void
2789 maintenance_print_target_stack (char *cmd, int from_tty)
2790 {
2791 struct target_ops *t;
2792
2793 printf_filtered (_("The current target stack is:\n"));
2794
2795 for (t = target_stack; t != NULL; t = t->beneath)
2796 {
2797 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
2798 }
2799 }
2800
2801 void
2802 initialize_targets (void)
2803 {
2804 init_dummy_target ();
2805 push_target (&dummy_target);
2806
2807 add_info ("target", target_info, targ_desc);
2808 add_info ("files", target_info, targ_desc);
2809
2810 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
2811 Set target debugging."), _("\
2812 Show target debugging."), _("\
2813 When non-zero, target debugging is enabled. Higher numbers are more\n\
2814 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
2815 command."),
2816 NULL,
2817 show_targetdebug,
2818 &setdebuglist, &showdebuglist);
2819
2820 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2821 &trust_readonly, _("\
2822 Set mode for reading from readonly sections."), _("\
2823 Show mode for reading from readonly sections."), _("\
2824 When this mode is on, memory reads from readonly sections (such as .text)\n\
2825 will be read from the object file instead of from the target. This will\n\
2826 result in significant performance improvement for remote targets."),
2827 NULL,
2828 show_trust_readonly,
2829 &setlist, &showlist);
2830
2831 add_com ("monitor", class_obscure, do_monitor_command,
2832 _("Send a command to the remote monitor (remote targets only)."));
2833
2834 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
2835 _("Print the name of each layer of the internal target stack."),
2836 &maintenanceprintlist);
2837
2838 target_dcache = dcache_init ();
2839 }
This page took 0.151488 seconds and 4 git commands to generate.