Run a few more binutils tests non-native
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50 #include "terminal.h"
51 #include <algorithm>
52 #include <unordered_map>
53
54 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
55
56 static void default_terminal_info (struct target_ops *, const char *, int);
57
58 static int default_watchpoint_addr_within_range (struct target_ops *,
59 CORE_ADDR, CORE_ADDR, int);
60
61 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
62 CORE_ADDR, int);
63
64 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
65
66 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
67 long lwp, long tid);
68
69 static int default_follow_fork (struct target_ops *self, int follow_child,
70 int detach_fork);
71
72 static void default_mourn_inferior (struct target_ops *self);
73
74 static int default_search_memory (struct target_ops *ops,
75 CORE_ADDR start_addr,
76 ULONGEST search_space_len,
77 const gdb_byte *pattern,
78 ULONGEST pattern_len,
79 CORE_ADDR *found_addrp);
80
81 static int default_verify_memory (struct target_ops *self,
82 const gdb_byte *data,
83 CORE_ADDR memaddr, ULONGEST size);
84
85 static struct address_space *default_thread_address_space
86 (struct target_ops *self, ptid_t ptid);
87
88 static void tcomplain (void) ATTRIBUTE_NORETURN;
89
90 static struct target_ops *find_default_run_target (const char *);
91
92 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
93 ptid_t ptid);
94
95 static int dummy_find_memory_regions (struct target_ops *self,
96 find_memory_region_ftype ignore1,
97 void *ignore2);
98
99 static char *dummy_make_corefile_notes (struct target_ops *self,
100 bfd *ignore1, int *ignore2);
101
102 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
103
104 static enum exec_direction_kind default_execution_direction
105 (struct target_ops *self);
106
107 /* Mapping between target_info objects (which have address identity)
108 and corresponding open/factory function/callback. Each add_target
109 call adds one entry to this map, and registers a "target
110 TARGET_NAME" command that when invoked calls the factory registered
111 here. The target_info object is associated with the command via
112 the command's context. */
113 static std::unordered_map<const target_info *, target_open_ftype *>
114 target_factories;
115
116 /* The initial current target, so that there is always a semi-valid
117 current target. */
118
119 static struct target_ops *the_dummy_target;
120 static struct target_ops *the_debug_target;
121
122 /* Top of target stack. */
123 /* The target structure we are currently using to talk to a process
124 or file or whatever "inferior" we have. */
125
126 struct target_ops *target_stack;
127
128 /* Command list for target. */
129
130 static struct cmd_list_element *targetlist = NULL;
131
132 /* Nonzero if we should trust readonly sections from the
133 executable when reading memory. */
134
135 static int trust_readonly = 0;
136
137 /* Nonzero if we should show true memory content including
138 memory breakpoint inserted by gdb. */
139
140 static int show_memory_breakpoints = 0;
141
142 /* These globals control whether GDB attempts to perform these
143 operations; they are useful for targets that need to prevent
144 inadvertant disruption, such as in non-stop mode. */
145
146 int may_write_registers = 1;
147
148 int may_write_memory = 1;
149
150 int may_insert_breakpoints = 1;
151
152 int may_insert_tracepoints = 1;
153
154 int may_insert_fast_tracepoints = 1;
155
156 int may_stop = 1;
157
158 /* Non-zero if we want to see trace of target level stuff. */
159
160 static unsigned int targetdebug = 0;
161
162 static void
163 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
164 {
165 if (targetdebug)
166 push_target (the_debug_target);
167 else
168 unpush_target (the_debug_target);
169 }
170
171 static void
172 show_targetdebug (struct ui_file *file, int from_tty,
173 struct cmd_list_element *c, const char *value)
174 {
175 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
176 }
177
178 /* The user just typed 'target' without the name of a target. */
179
180 static void
181 target_command (const char *arg, int from_tty)
182 {
183 fputs_filtered ("Argument required (target name). Try `help target'\n",
184 gdb_stdout);
185 }
186
187 #if GDB_SELF_TEST
188 namespace selftests {
189
190 /* A mock process_stratum target_ops that doesn't read/write registers
191 anywhere. */
192
193 static const target_info test_target_info = {
194 "test",
195 N_("unit tests target"),
196 N_("You should never see this"),
197 };
198
199 const target_info &
200 test_target_ops::info () const
201 {
202 return test_target_info;
203 }
204
205 } /* namespace selftests */
206 #endif /* GDB_SELF_TEST */
207
208 /* Default target_has_* methods for process_stratum targets. */
209
210 int
211 default_child_has_all_memory ()
212 {
213 /* If no inferior selected, then we can't read memory here. */
214 if (ptid_equal (inferior_ptid, null_ptid))
215 return 0;
216
217 return 1;
218 }
219
220 int
221 default_child_has_memory ()
222 {
223 /* If no inferior selected, then we can't read memory here. */
224 if (ptid_equal (inferior_ptid, null_ptid))
225 return 0;
226
227 return 1;
228 }
229
230 int
231 default_child_has_stack ()
232 {
233 /* If no inferior selected, there's no stack. */
234 if (ptid_equal (inferior_ptid, null_ptid))
235 return 0;
236
237 return 1;
238 }
239
240 int
241 default_child_has_registers ()
242 {
243 /* Can't read registers from no inferior. */
244 if (ptid_equal (inferior_ptid, null_ptid))
245 return 0;
246
247 return 1;
248 }
249
250 int
251 default_child_has_execution (ptid_t the_ptid)
252 {
253 /* If there's no thread selected, then we can't make it run through
254 hoops. */
255 if (ptid_equal (the_ptid, null_ptid))
256 return 0;
257
258 return 1;
259 }
260
261
262 int
263 target_has_all_memory_1 (void)
264 {
265 struct target_ops *t;
266
267 for (t = target_stack; t != NULL; t = t->beneath)
268 if (t->has_all_memory ())
269 return 1;
270
271 return 0;
272 }
273
274 int
275 target_has_memory_1 (void)
276 {
277 struct target_ops *t;
278
279 for (t = target_stack; t != NULL; t = t->beneath)
280 if (t->has_memory ())
281 return 1;
282
283 return 0;
284 }
285
286 int
287 target_has_stack_1 (void)
288 {
289 struct target_ops *t;
290
291 for (t = target_stack; t != NULL; t = t->beneath)
292 if (t->has_stack ())
293 return 1;
294
295 return 0;
296 }
297
298 int
299 target_has_registers_1 (void)
300 {
301 struct target_ops *t;
302
303 for (t = target_stack; t != NULL; t = t->beneath)
304 if (t->has_registers ())
305 return 1;
306
307 return 0;
308 }
309
310 int
311 target_has_execution_1 (ptid_t the_ptid)
312 {
313 struct target_ops *t;
314
315 for (t = target_stack; t != NULL; t = t->beneath)
316 if (t->has_execution (the_ptid))
317 return 1;
318
319 return 0;
320 }
321
322 int
323 target_has_execution_current (void)
324 {
325 return target_has_execution_1 (inferior_ptid);
326 }
327
328 /* This is used to implement the various target commands. */
329
330 static void
331 open_target (const char *args, int from_tty, struct cmd_list_element *command)
332 {
333 auto *ti = static_cast<target_info *> (get_cmd_context (command));
334 target_open_ftype *func = target_factories[ti];
335
336 if (targetdebug)
337 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
338 ti->shortname);
339
340 func (args, from_tty);
341
342 if (targetdebug)
343 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
344 ti->shortname, args, from_tty);
345 }
346
347 /* See target.h. */
348
349 void
350 add_target (const target_info &t, target_open_ftype *func,
351 completer_ftype *completer)
352 {
353 struct cmd_list_element *c;
354
355 auto &func_slot = target_factories[&t];
356 if (func_slot != nullptr)
357 internal_error (__FILE__, __LINE__,
358 _("target already added (\"%s\")."), t.shortname);
359 func_slot = func;
360
361 if (targetlist == NULL)
362 add_prefix_cmd ("target", class_run, target_command, _("\
363 Connect to a target machine or process.\n\
364 The first argument is the type or protocol of the target machine.\n\
365 Remaining arguments are interpreted by the target protocol. For more\n\
366 information on the arguments for a particular protocol, type\n\
367 `help target ' followed by the protocol name."),
368 &targetlist, "target ", 0, &cmdlist);
369 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
370 set_cmd_context (c, (void *) &t);
371 set_cmd_sfunc (c, open_target);
372 if (completer != NULL)
373 set_cmd_completer (c, completer);
374 }
375
376 /* See target.h. */
377
378 void
379 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
380 {
381 struct cmd_list_element *c;
382 char *alt;
383
384 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
385 see PR cli/15104. */
386 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
387 set_cmd_sfunc (c, open_target);
388 set_cmd_context (c, (void *) &tinfo);
389 alt = xstrprintf ("target %s", tinfo.shortname);
390 deprecate_cmd (c, alt);
391 }
392
393 /* Stub functions */
394
395 void
396 target_kill (void)
397 {
398 target_stack->kill ();
399 }
400
401 void
402 target_load (const char *arg, int from_tty)
403 {
404 target_dcache_invalidate ();
405 target_stack->load (arg, from_tty);
406 }
407
408 /* Define it. */
409
410 target_terminal_state target_terminal::m_terminal_state
411 = target_terminal_state::is_ours;
412
413 /* See target/target.h. */
414
415 void
416 target_terminal::init (void)
417 {
418 target_stack->terminal_init ();
419
420 m_terminal_state = target_terminal_state::is_ours;
421 }
422
423 /* See target/target.h. */
424
425 void
426 target_terminal::inferior (void)
427 {
428 struct ui *ui = current_ui;
429
430 /* A background resume (``run&'') should leave GDB in control of the
431 terminal. */
432 if (ui->prompt_state != PROMPT_BLOCKED)
433 return;
434
435 /* Since we always run the inferior in the main console (unless "set
436 inferior-tty" is in effect), when some UI other than the main one
437 calls target_terminal::inferior, then we leave the main UI's
438 terminal settings as is. */
439 if (ui != main_ui)
440 return;
441
442 /* If GDB is resuming the inferior in the foreground, install
443 inferior's terminal modes. */
444
445 struct inferior *inf = current_inferior ();
446
447 if (inf->terminal_state != target_terminal_state::is_inferior)
448 {
449 target_stack->terminal_inferior ();
450 inf->terminal_state = target_terminal_state::is_inferior;
451 }
452
453 m_terminal_state = target_terminal_state::is_inferior;
454
455 /* If the user hit C-c before, pretend that it was hit right
456 here. */
457 if (check_quit_flag ())
458 target_pass_ctrlc ();
459 }
460
461 /* See target/target.h. */
462
463 void
464 target_terminal::restore_inferior (void)
465 {
466 struct ui *ui = current_ui;
467
468 /* See target_terminal::inferior(). */
469 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
470 return;
471
472 /* Restore the terminal settings of inferiors that were in the
473 foreground but are now ours_for_output due to a temporary
474 target_target::ours_for_output() call. */
475
476 {
477 scoped_restore_current_inferior restore_inferior;
478 struct inferior *inf;
479
480 ALL_INFERIORS (inf)
481 {
482 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
483 {
484 set_current_inferior (inf);
485 target_stack->terminal_inferior ();
486 inf->terminal_state = target_terminal_state::is_inferior;
487 }
488 }
489 }
490
491 m_terminal_state = target_terminal_state::is_inferior;
492
493 /* If the user hit C-c before, pretend that it was hit right
494 here. */
495 if (check_quit_flag ())
496 target_pass_ctrlc ();
497 }
498
499 /* Switch terminal state to DESIRED_STATE, either is_ours, or
500 is_ours_for_output. */
501
502 static void
503 target_terminal_is_ours_kind (target_terminal_state desired_state)
504 {
505 scoped_restore_current_inferior restore_inferior;
506 struct inferior *inf;
507
508 /* Must do this in two passes. First, have all inferiors save the
509 current terminal settings. Then, after all inferiors have add a
510 chance to safely save the terminal settings, restore GDB's
511 terminal settings. */
512
513 ALL_INFERIORS (inf)
514 {
515 if (inf->terminal_state == target_terminal_state::is_inferior)
516 {
517 set_current_inferior (inf);
518 target_stack->terminal_save_inferior ();
519 }
520 }
521
522 ALL_INFERIORS (inf)
523 {
524 /* Note we don't check is_inferior here like above because we
525 need to handle 'is_ours_for_output -> is_ours' too. Careful
526 to never transition from 'is_ours' to 'is_ours_for_output',
527 though. */
528 if (inf->terminal_state != target_terminal_state::is_ours
529 && inf->terminal_state != desired_state)
530 {
531 set_current_inferior (inf);
532 if (desired_state == target_terminal_state::is_ours)
533 target_stack->terminal_ours ();
534 else if (desired_state == target_terminal_state::is_ours_for_output)
535 target_stack->terminal_ours_for_output ();
536 else
537 gdb_assert_not_reached ("unhandled desired state");
538 inf->terminal_state = desired_state;
539 }
540 }
541 }
542
543 /* See target/target.h. */
544
545 void
546 target_terminal::ours ()
547 {
548 struct ui *ui = current_ui;
549
550 /* See target_terminal::inferior. */
551 if (ui != main_ui)
552 return;
553
554 if (m_terminal_state == target_terminal_state::is_ours)
555 return;
556
557 target_terminal_is_ours_kind (target_terminal_state::is_ours);
558 m_terminal_state = target_terminal_state::is_ours;
559 }
560
561 /* See target/target.h. */
562
563 void
564 target_terminal::ours_for_output ()
565 {
566 struct ui *ui = current_ui;
567
568 /* See target_terminal::inferior. */
569 if (ui != main_ui)
570 return;
571
572 if (!target_terminal::is_inferior ())
573 return;
574
575 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
576 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
577 }
578
579 /* See target/target.h. */
580
581 void
582 target_terminal::info (const char *arg, int from_tty)
583 {
584 target_stack->terminal_info (arg, from_tty);
585 }
586
587 /* See target.h. */
588
589 int
590 target_supports_terminal_ours (void)
591 {
592 return target_stack->supports_terminal_ours ();
593 }
594
595 static void
596 tcomplain (void)
597 {
598 error (_("You can't do that when your target is `%s'"),
599 target_stack->shortname ());
600 }
601
602 void
603 noprocess (void)
604 {
605 error (_("You can't do that without a process to debug."));
606 }
607
608 static void
609 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
610 {
611 printf_unfiltered (_("No saved terminal information.\n"));
612 }
613
614 /* A default implementation for the to_get_ada_task_ptid target method.
615
616 This function builds the PTID by using both LWP and TID as part of
617 the PTID lwp and tid elements. The pid used is the pid of the
618 inferior_ptid. */
619
620 static ptid_t
621 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
622 {
623 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
624 }
625
626 static enum exec_direction_kind
627 default_execution_direction (struct target_ops *self)
628 {
629 if (!target_can_execute_reverse)
630 return EXEC_FORWARD;
631 else if (!target_can_async_p ())
632 return EXEC_FORWARD;
633 else
634 gdb_assert_not_reached ("\
635 to_execution_direction must be implemented for reverse async");
636 }
637
638 /* Push a new target type into the stack of the existing target accessors,
639 possibly superseding some of the existing accessors.
640
641 Rather than allow an empty stack, we always have the dummy target at
642 the bottom stratum, so we can call the function vectors without
643 checking them. */
644
645 void
646 push_target (struct target_ops *t)
647 {
648 struct target_ops **cur;
649
650 /* Find the proper stratum to install this target in. */
651 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
652 {
653 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
654 break;
655 }
656
657 /* If there's already targets at this stratum, remove them. */
658 /* FIXME: cagney/2003-10-15: I think this should be popping all
659 targets to CUR, and not just those at this stratum level. */
660 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
661 {
662 /* There's already something at this stratum level. Close it,
663 and un-hook it from the stack. */
664 struct target_ops *tmp = (*cur);
665
666 (*cur) = (*cur)->beneath;
667 tmp->beneath = NULL;
668 target_close (tmp);
669 }
670
671 /* We have removed all targets in our stratum, now add the new one. */
672 t->beneath = (*cur);
673 (*cur) = t;
674 }
675
676 /* Remove a target_ops vector from the stack, wherever it may be.
677 Return how many times it was removed (0 or 1). */
678
679 int
680 unpush_target (struct target_ops *t)
681 {
682 struct target_ops **cur;
683 struct target_ops *tmp;
684
685 if (t->to_stratum == dummy_stratum)
686 internal_error (__FILE__, __LINE__,
687 _("Attempt to unpush the dummy target"));
688
689 /* Look for the specified target. Note that we assume that a target
690 can only occur once in the target stack. */
691
692 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
693 {
694 if ((*cur) == t)
695 break;
696 }
697
698 /* If we don't find target_ops, quit. Only open targets should be
699 closed. */
700 if ((*cur) == NULL)
701 return 0;
702
703 /* Unchain the target. */
704 tmp = (*cur);
705 (*cur) = (*cur)->beneath;
706 tmp->beneath = NULL;
707
708 /* Finally close the target. Note we do this after unchaining, so
709 any target method calls from within the target_close
710 implementation don't end up in T anymore. */
711 target_close (t);
712
713 return 1;
714 }
715
716 /* Unpush TARGET and assert that it worked. */
717
718 static void
719 unpush_target_and_assert (struct target_ops *target)
720 {
721 if (!unpush_target (target))
722 {
723 fprintf_unfiltered (gdb_stderr,
724 "pop_all_targets couldn't find target %s\n",
725 target->shortname ());
726 internal_error (__FILE__, __LINE__,
727 _("failed internal consistency check"));
728 }
729 }
730
731 void
732 pop_all_targets_above (enum strata above_stratum)
733 {
734 while ((int) (target_stack->to_stratum) > (int) above_stratum)
735 unpush_target_and_assert (target_stack);
736 }
737
738 /* See target.h. */
739
740 void
741 pop_all_targets_at_and_above (enum strata stratum)
742 {
743 while ((int) (target_stack->to_stratum) >= (int) stratum)
744 unpush_target_and_assert (target_stack);
745 }
746
747 void
748 pop_all_targets (void)
749 {
750 pop_all_targets_above (dummy_stratum);
751 }
752
753 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
754
755 int
756 target_is_pushed (struct target_ops *t)
757 {
758 struct target_ops *cur;
759
760 for (cur = target_stack; cur != NULL; cur = cur->beneath)
761 if (cur == t)
762 return 1;
763
764 return 0;
765 }
766
767 /* Default implementation of to_get_thread_local_address. */
768
769 static void
770 generic_tls_error (void)
771 {
772 throw_error (TLS_GENERIC_ERROR,
773 _("Cannot find thread-local variables on this target"));
774 }
775
776 /* Using the objfile specified in OBJFILE, find the address for the
777 current thread's thread-local storage with offset OFFSET. */
778 CORE_ADDR
779 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
780 {
781 volatile CORE_ADDR addr = 0;
782 struct target_ops *target = target_stack;
783
784 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
785 {
786 ptid_t ptid = inferior_ptid;
787
788 TRY
789 {
790 CORE_ADDR lm_addr;
791
792 /* Fetch the load module address for this objfile. */
793 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
794 objfile);
795
796 addr = target->get_thread_local_address (ptid, lm_addr, offset);
797 }
798 /* If an error occurred, print TLS related messages here. Otherwise,
799 throw the error to some higher catcher. */
800 CATCH (ex, RETURN_MASK_ALL)
801 {
802 int objfile_is_library = (objfile->flags & OBJF_SHARED);
803
804 switch (ex.error)
805 {
806 case TLS_NO_LIBRARY_SUPPORT_ERROR:
807 error (_("Cannot find thread-local variables "
808 "in this thread library."));
809 break;
810 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
811 if (objfile_is_library)
812 error (_("Cannot find shared library `%s' in dynamic"
813 " linker's load module list"), objfile_name (objfile));
814 else
815 error (_("Cannot find executable file `%s' in dynamic"
816 " linker's load module list"), objfile_name (objfile));
817 break;
818 case TLS_NOT_ALLOCATED_YET_ERROR:
819 if (objfile_is_library)
820 error (_("The inferior has not yet allocated storage for"
821 " thread-local variables in\n"
822 "the shared library `%s'\n"
823 "for %s"),
824 objfile_name (objfile), target_pid_to_str (ptid));
825 else
826 error (_("The inferior has not yet allocated storage for"
827 " thread-local variables in\n"
828 "the executable `%s'\n"
829 "for %s"),
830 objfile_name (objfile), target_pid_to_str (ptid));
831 break;
832 case TLS_GENERIC_ERROR:
833 if (objfile_is_library)
834 error (_("Cannot find thread-local storage for %s, "
835 "shared library %s:\n%s"),
836 target_pid_to_str (ptid),
837 objfile_name (objfile), ex.message);
838 else
839 error (_("Cannot find thread-local storage for %s, "
840 "executable file %s:\n%s"),
841 target_pid_to_str (ptid),
842 objfile_name (objfile), ex.message);
843 break;
844 default:
845 throw_exception (ex);
846 break;
847 }
848 }
849 END_CATCH
850 }
851 /* It wouldn't be wrong here to try a gdbarch method, too; finding
852 TLS is an ABI-specific thing. But we don't do that yet. */
853 else
854 error (_("Cannot find thread-local variables on this target"));
855
856 return addr;
857 }
858
859 const char *
860 target_xfer_status_to_string (enum target_xfer_status status)
861 {
862 #define CASE(X) case X: return #X
863 switch (status)
864 {
865 CASE(TARGET_XFER_E_IO);
866 CASE(TARGET_XFER_UNAVAILABLE);
867 default:
868 return "<unknown>";
869 }
870 #undef CASE
871 };
872
873
874 #undef MIN
875 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
876
877 /* target_read_string -- read a null terminated string, up to LEN bytes,
878 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
879 Set *STRING to a pointer to malloc'd memory containing the data; the caller
880 is responsible for freeing it. Return the number of bytes successfully
881 read. */
882
883 int
884 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
885 int len, int *errnop)
886 {
887 int tlen, offset, i;
888 gdb_byte buf[4];
889 int errcode = 0;
890 char *buffer;
891 int buffer_allocated;
892 char *bufptr;
893 unsigned int nbytes_read = 0;
894
895 gdb_assert (string);
896
897 /* Small for testing. */
898 buffer_allocated = 4;
899 buffer = (char *) xmalloc (buffer_allocated);
900 bufptr = buffer;
901
902 while (len > 0)
903 {
904 tlen = MIN (len, 4 - (memaddr & 3));
905 offset = memaddr & 3;
906
907 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
908 if (errcode != 0)
909 {
910 /* The transfer request might have crossed the boundary to an
911 unallocated region of memory. Retry the transfer, requesting
912 a single byte. */
913 tlen = 1;
914 offset = 0;
915 errcode = target_read_memory (memaddr, buf, 1);
916 if (errcode != 0)
917 goto done;
918 }
919
920 if (bufptr - buffer + tlen > buffer_allocated)
921 {
922 unsigned int bytes;
923
924 bytes = bufptr - buffer;
925 buffer_allocated *= 2;
926 buffer = (char *) xrealloc (buffer, buffer_allocated);
927 bufptr = buffer + bytes;
928 }
929
930 for (i = 0; i < tlen; i++)
931 {
932 *bufptr++ = buf[i + offset];
933 if (buf[i + offset] == '\000')
934 {
935 nbytes_read += i + 1;
936 goto done;
937 }
938 }
939
940 memaddr += tlen;
941 len -= tlen;
942 nbytes_read += tlen;
943 }
944 done:
945 string->reset (buffer);
946 if (errnop != NULL)
947 *errnop = errcode;
948 return nbytes_read;
949 }
950
951 struct target_section_table *
952 target_get_section_table (struct target_ops *target)
953 {
954 return target->get_section_table ();
955 }
956
957 /* Find a section containing ADDR. */
958
959 struct target_section *
960 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
961 {
962 struct target_section_table *table = target_get_section_table (target);
963 struct target_section *secp;
964
965 if (table == NULL)
966 return NULL;
967
968 for (secp = table->sections; secp < table->sections_end; secp++)
969 {
970 if (addr >= secp->addr && addr < secp->endaddr)
971 return secp;
972 }
973 return NULL;
974 }
975
976
977 /* Helper for the memory xfer routines. Checks the attributes of the
978 memory region of MEMADDR against the read or write being attempted.
979 If the access is permitted returns true, otherwise returns false.
980 REGION_P is an optional output parameter. If not-NULL, it is
981 filled with a pointer to the memory region of MEMADDR. REG_LEN
982 returns LEN trimmed to the end of the region. This is how much the
983 caller can continue requesting, if the access is permitted. A
984 single xfer request must not straddle memory region boundaries. */
985
986 static int
987 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
988 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
989 struct mem_region **region_p)
990 {
991 struct mem_region *region;
992
993 region = lookup_mem_region (memaddr);
994
995 if (region_p != NULL)
996 *region_p = region;
997
998 switch (region->attrib.mode)
999 {
1000 case MEM_RO:
1001 if (writebuf != NULL)
1002 return 0;
1003 break;
1004
1005 case MEM_WO:
1006 if (readbuf != NULL)
1007 return 0;
1008 break;
1009
1010 case MEM_FLASH:
1011 /* We only support writing to flash during "load" for now. */
1012 if (writebuf != NULL)
1013 error (_("Writing to flash memory forbidden in this context"));
1014 break;
1015
1016 case MEM_NONE:
1017 return 0;
1018 }
1019
1020 /* region->hi == 0 means there's no upper bound. */
1021 if (memaddr + len < region->hi || region->hi == 0)
1022 *reg_len = len;
1023 else
1024 *reg_len = region->hi - memaddr;
1025
1026 return 1;
1027 }
1028
1029 /* Read memory from more than one valid target. A core file, for
1030 instance, could have some of memory but delegate other bits to
1031 the target below it. So, we must manually try all targets. */
1032
1033 enum target_xfer_status
1034 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1035 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1036 ULONGEST *xfered_len)
1037 {
1038 enum target_xfer_status res;
1039
1040 do
1041 {
1042 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1043 readbuf, writebuf, memaddr, len,
1044 xfered_len);
1045 if (res == TARGET_XFER_OK)
1046 break;
1047
1048 /* Stop if the target reports that the memory is not available. */
1049 if (res == TARGET_XFER_UNAVAILABLE)
1050 break;
1051
1052 /* We want to continue past core files to executables, but not
1053 past a running target's memory. */
1054 if (ops->has_all_memory ())
1055 break;
1056
1057 ops = ops->beneath;
1058 }
1059 while (ops != NULL);
1060
1061 /* The cache works at the raw memory level. Make sure the cache
1062 gets updated with raw contents no matter what kind of memory
1063 object was originally being written. Note we do write-through
1064 first, so that if it fails, we don't write to the cache contents
1065 that never made it to the target. */
1066 if (writebuf != NULL
1067 && !ptid_equal (inferior_ptid, null_ptid)
1068 && target_dcache_init_p ()
1069 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1070 {
1071 DCACHE *dcache = target_dcache_get ();
1072
1073 /* Note that writing to an area of memory which wasn't present
1074 in the cache doesn't cause it to be loaded in. */
1075 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1076 }
1077
1078 return res;
1079 }
1080
1081 /* Perform a partial memory transfer.
1082 For docs see target.h, to_xfer_partial. */
1083
1084 static enum target_xfer_status
1085 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1086 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1087 ULONGEST len, ULONGEST *xfered_len)
1088 {
1089 enum target_xfer_status res;
1090 ULONGEST reg_len;
1091 struct mem_region *region;
1092 struct inferior *inf;
1093
1094 /* For accesses to unmapped overlay sections, read directly from
1095 files. Must do this first, as MEMADDR may need adjustment. */
1096 if (readbuf != NULL && overlay_debugging)
1097 {
1098 struct obj_section *section = find_pc_overlay (memaddr);
1099
1100 if (pc_in_unmapped_range (memaddr, section))
1101 {
1102 struct target_section_table *table
1103 = target_get_section_table (ops);
1104 const char *section_name = section->the_bfd_section->name;
1105
1106 memaddr = overlay_mapped_address (memaddr, section);
1107 return section_table_xfer_memory_partial (readbuf, writebuf,
1108 memaddr, len, xfered_len,
1109 table->sections,
1110 table->sections_end,
1111 section_name);
1112 }
1113 }
1114
1115 /* Try the executable files, if "trust-readonly-sections" is set. */
1116 if (readbuf != NULL && trust_readonly)
1117 {
1118 struct target_section *secp;
1119 struct target_section_table *table;
1120
1121 secp = target_section_by_addr (ops, memaddr);
1122 if (secp != NULL
1123 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1124 secp->the_bfd_section)
1125 & SEC_READONLY))
1126 {
1127 table = target_get_section_table (ops);
1128 return section_table_xfer_memory_partial (readbuf, writebuf,
1129 memaddr, len, xfered_len,
1130 table->sections,
1131 table->sections_end,
1132 NULL);
1133 }
1134 }
1135
1136 /* Try GDB's internal data cache. */
1137
1138 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1139 &region))
1140 return TARGET_XFER_E_IO;
1141
1142 if (!ptid_equal (inferior_ptid, null_ptid))
1143 inf = find_inferior_ptid (inferior_ptid);
1144 else
1145 inf = NULL;
1146
1147 if (inf != NULL
1148 && readbuf != NULL
1149 /* The dcache reads whole cache lines; that doesn't play well
1150 with reading from a trace buffer, because reading outside of
1151 the collected memory range fails. */
1152 && get_traceframe_number () == -1
1153 && (region->attrib.cache
1154 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1155 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1156 {
1157 DCACHE *dcache = target_dcache_get_or_init ();
1158
1159 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1160 reg_len, xfered_len);
1161 }
1162
1163 /* If none of those methods found the memory we wanted, fall back
1164 to a target partial transfer. Normally a single call to
1165 to_xfer_partial is enough; if it doesn't recognize an object
1166 it will call the to_xfer_partial of the next target down.
1167 But for memory this won't do. Memory is the only target
1168 object which can be read from more than one valid target.
1169 A core file, for instance, could have some of memory but
1170 delegate other bits to the target below it. So, we must
1171 manually try all targets. */
1172
1173 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1174 xfered_len);
1175
1176 /* If we still haven't got anything, return the last error. We
1177 give up. */
1178 return res;
1179 }
1180
1181 /* Perform a partial memory transfer. For docs see target.h,
1182 to_xfer_partial. */
1183
1184 static enum target_xfer_status
1185 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1186 gdb_byte *readbuf, const gdb_byte *writebuf,
1187 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1188 {
1189 enum target_xfer_status res;
1190
1191 /* Zero length requests are ok and require no work. */
1192 if (len == 0)
1193 return TARGET_XFER_EOF;
1194
1195 memaddr = address_significant (target_gdbarch (), memaddr);
1196
1197 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1198 breakpoint insns, thus hiding out from higher layers whether
1199 there are software breakpoints inserted in the code stream. */
1200 if (readbuf != NULL)
1201 {
1202 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1203 xfered_len);
1204
1205 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1206 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1207 }
1208 else
1209 {
1210 /* A large write request is likely to be partially satisfied
1211 by memory_xfer_partial_1. We will continually malloc
1212 and free a copy of the entire write request for breakpoint
1213 shadow handling even though we only end up writing a small
1214 subset of it. Cap writes to a limit specified by the target
1215 to mitigate this. */
1216 len = std::min (ops->get_memory_xfer_limit (), len);
1217
1218 gdb::byte_vector buf (writebuf, writebuf + len);
1219 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1220 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1221 xfered_len);
1222 }
1223
1224 return res;
1225 }
1226
1227 scoped_restore_tmpl<int>
1228 make_scoped_restore_show_memory_breakpoints (int show)
1229 {
1230 return make_scoped_restore (&show_memory_breakpoints, show);
1231 }
1232
1233 /* For docs see target.h, to_xfer_partial. */
1234
1235 enum target_xfer_status
1236 target_xfer_partial (struct target_ops *ops,
1237 enum target_object object, const char *annex,
1238 gdb_byte *readbuf, const gdb_byte *writebuf,
1239 ULONGEST offset, ULONGEST len,
1240 ULONGEST *xfered_len)
1241 {
1242 enum target_xfer_status retval;
1243
1244 /* Transfer is done when LEN is zero. */
1245 if (len == 0)
1246 return TARGET_XFER_EOF;
1247
1248 if (writebuf && !may_write_memory)
1249 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1250 core_addr_to_string_nz (offset), plongest (len));
1251
1252 *xfered_len = 0;
1253
1254 /* If this is a memory transfer, let the memory-specific code
1255 have a look at it instead. Memory transfers are more
1256 complicated. */
1257 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1258 || object == TARGET_OBJECT_CODE_MEMORY)
1259 retval = memory_xfer_partial (ops, object, readbuf,
1260 writebuf, offset, len, xfered_len);
1261 else if (object == TARGET_OBJECT_RAW_MEMORY)
1262 {
1263 /* Skip/avoid accessing the target if the memory region
1264 attributes block the access. Check this here instead of in
1265 raw_memory_xfer_partial as otherwise we'd end up checking
1266 this twice in the case of the memory_xfer_partial path is
1267 taken; once before checking the dcache, and another in the
1268 tail call to raw_memory_xfer_partial. */
1269 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1270 NULL))
1271 return TARGET_XFER_E_IO;
1272
1273 /* Request the normal memory object from other layers. */
1274 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1275 xfered_len);
1276 }
1277 else
1278 retval = ops->xfer_partial (object, annex, readbuf,
1279 writebuf, offset, len, xfered_len);
1280
1281 if (targetdebug)
1282 {
1283 const unsigned char *myaddr = NULL;
1284
1285 fprintf_unfiltered (gdb_stdlog,
1286 "%s:target_xfer_partial "
1287 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1288 ops->shortname (),
1289 (int) object,
1290 (annex ? annex : "(null)"),
1291 host_address_to_string (readbuf),
1292 host_address_to_string (writebuf),
1293 core_addr_to_string_nz (offset),
1294 pulongest (len), retval,
1295 pulongest (*xfered_len));
1296
1297 if (readbuf)
1298 myaddr = readbuf;
1299 if (writebuf)
1300 myaddr = writebuf;
1301 if (retval == TARGET_XFER_OK && myaddr != NULL)
1302 {
1303 int i;
1304
1305 fputs_unfiltered (", bytes =", gdb_stdlog);
1306 for (i = 0; i < *xfered_len; i++)
1307 {
1308 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1309 {
1310 if (targetdebug < 2 && i > 0)
1311 {
1312 fprintf_unfiltered (gdb_stdlog, " ...");
1313 break;
1314 }
1315 fprintf_unfiltered (gdb_stdlog, "\n");
1316 }
1317
1318 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1319 }
1320 }
1321
1322 fputc_unfiltered ('\n', gdb_stdlog);
1323 }
1324
1325 /* Check implementations of to_xfer_partial update *XFERED_LEN
1326 properly. Do assertion after printing debug messages, so that we
1327 can find more clues on assertion failure from debugging messages. */
1328 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1329 gdb_assert (*xfered_len > 0);
1330
1331 return retval;
1332 }
1333
1334 /* Read LEN bytes of target memory at address MEMADDR, placing the
1335 results in GDB's memory at MYADDR. Returns either 0 for success or
1336 -1 if any error occurs.
1337
1338 If an error occurs, no guarantee is made about the contents of the data at
1339 MYADDR. In particular, the caller should not depend upon partial reads
1340 filling the buffer with good data. There is no way for the caller to know
1341 how much good data might have been transfered anyway. Callers that can
1342 deal with partial reads should call target_read (which will retry until
1343 it makes no progress, and then return how much was transferred). */
1344
1345 int
1346 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1347 {
1348 if (target_read (target_stack, TARGET_OBJECT_MEMORY, NULL,
1349 myaddr, memaddr, len) == len)
1350 return 0;
1351 else
1352 return -1;
1353 }
1354
1355 /* See target/target.h. */
1356
1357 int
1358 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1359 {
1360 gdb_byte buf[4];
1361 int r;
1362
1363 r = target_read_memory (memaddr, buf, sizeof buf);
1364 if (r != 0)
1365 return r;
1366 *result = extract_unsigned_integer (buf, sizeof buf,
1367 gdbarch_byte_order (target_gdbarch ()));
1368 return 0;
1369 }
1370
1371 /* Like target_read_memory, but specify explicitly that this is a read
1372 from the target's raw memory. That is, this read bypasses the
1373 dcache, breakpoint shadowing, etc. */
1374
1375 int
1376 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1377 {
1378 if (target_read (target_stack, TARGET_OBJECT_RAW_MEMORY, NULL,
1379 myaddr, memaddr, len) == len)
1380 return 0;
1381 else
1382 return -1;
1383 }
1384
1385 /* Like target_read_memory, but specify explicitly that this is a read from
1386 the target's stack. This may trigger different cache behavior. */
1387
1388 int
1389 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1390 {
1391 if (target_read (target_stack, TARGET_OBJECT_STACK_MEMORY, NULL,
1392 myaddr, memaddr, len) == len)
1393 return 0;
1394 else
1395 return -1;
1396 }
1397
1398 /* Like target_read_memory, but specify explicitly that this is a read from
1399 the target's code. This may trigger different cache behavior. */
1400
1401 int
1402 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1403 {
1404 if (target_read (target_stack, TARGET_OBJECT_CODE_MEMORY, NULL,
1405 myaddr, memaddr, len) == len)
1406 return 0;
1407 else
1408 return -1;
1409 }
1410
1411 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1412 Returns either 0 for success or -1 if any error occurs. If an
1413 error occurs, no guarantee is made about how much data got written.
1414 Callers that can deal with partial writes should call
1415 target_write. */
1416
1417 int
1418 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1419 {
1420 if (target_write (target_stack, TARGET_OBJECT_MEMORY, NULL,
1421 myaddr, memaddr, len) == len)
1422 return 0;
1423 else
1424 return -1;
1425 }
1426
1427 /* Write LEN bytes from MYADDR to target raw memory at address
1428 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1429 If an error occurs, no guarantee is made about how much data got
1430 written. Callers that can deal with partial writes should call
1431 target_write. */
1432
1433 int
1434 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1435 {
1436 if (target_write (target_stack, TARGET_OBJECT_RAW_MEMORY, NULL,
1437 myaddr, memaddr, len) == len)
1438 return 0;
1439 else
1440 return -1;
1441 }
1442
1443 /* Fetch the target's memory map. */
1444
1445 std::vector<mem_region>
1446 target_memory_map (void)
1447 {
1448 std::vector<mem_region> result = target_stack->memory_map ();
1449 if (result.empty ())
1450 return result;
1451
1452 std::sort (result.begin (), result.end ());
1453
1454 /* Check that regions do not overlap. Simultaneously assign
1455 a numbering for the "mem" commands to use to refer to
1456 each region. */
1457 mem_region *last_one = NULL;
1458 for (size_t ix = 0; ix < result.size (); ix++)
1459 {
1460 mem_region *this_one = &result[ix];
1461 this_one->number = ix;
1462
1463 if (last_one != NULL && last_one->hi > this_one->lo)
1464 {
1465 warning (_("Overlapping regions in memory map: ignoring"));
1466 return std::vector<mem_region> ();
1467 }
1468
1469 last_one = this_one;
1470 }
1471
1472 return result;
1473 }
1474
1475 void
1476 target_flash_erase (ULONGEST address, LONGEST length)
1477 {
1478 target_stack->flash_erase (address, length);
1479 }
1480
1481 void
1482 target_flash_done (void)
1483 {
1484 target_stack->flash_done ();
1485 }
1486
1487 static void
1488 show_trust_readonly (struct ui_file *file, int from_tty,
1489 struct cmd_list_element *c, const char *value)
1490 {
1491 fprintf_filtered (file,
1492 _("Mode for reading from readonly sections is %s.\n"),
1493 value);
1494 }
1495
1496 /* Target vector read/write partial wrapper functions. */
1497
1498 static enum target_xfer_status
1499 target_read_partial (struct target_ops *ops,
1500 enum target_object object,
1501 const char *annex, gdb_byte *buf,
1502 ULONGEST offset, ULONGEST len,
1503 ULONGEST *xfered_len)
1504 {
1505 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1506 xfered_len);
1507 }
1508
1509 static enum target_xfer_status
1510 target_write_partial (struct target_ops *ops,
1511 enum target_object object,
1512 const char *annex, const gdb_byte *buf,
1513 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1514 {
1515 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1516 xfered_len);
1517 }
1518
1519 /* Wrappers to perform the full transfer. */
1520
1521 /* For docs on target_read see target.h. */
1522
1523 LONGEST
1524 target_read (struct target_ops *ops,
1525 enum target_object object,
1526 const char *annex, gdb_byte *buf,
1527 ULONGEST offset, LONGEST len)
1528 {
1529 LONGEST xfered_total = 0;
1530 int unit_size = 1;
1531
1532 /* If we are reading from a memory object, find the length of an addressable
1533 unit for that architecture. */
1534 if (object == TARGET_OBJECT_MEMORY
1535 || object == TARGET_OBJECT_STACK_MEMORY
1536 || object == TARGET_OBJECT_CODE_MEMORY
1537 || object == TARGET_OBJECT_RAW_MEMORY)
1538 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1539
1540 while (xfered_total < len)
1541 {
1542 ULONGEST xfered_partial;
1543 enum target_xfer_status status;
1544
1545 status = target_read_partial (ops, object, annex,
1546 buf + xfered_total * unit_size,
1547 offset + xfered_total, len - xfered_total,
1548 &xfered_partial);
1549
1550 /* Call an observer, notifying them of the xfer progress? */
1551 if (status == TARGET_XFER_EOF)
1552 return xfered_total;
1553 else if (status == TARGET_XFER_OK)
1554 {
1555 xfered_total += xfered_partial;
1556 QUIT;
1557 }
1558 else
1559 return TARGET_XFER_E_IO;
1560
1561 }
1562 return len;
1563 }
1564
1565 /* Assuming that the entire [begin, end) range of memory cannot be
1566 read, try to read whatever subrange is possible to read.
1567
1568 The function returns, in RESULT, either zero or one memory block.
1569 If there's a readable subrange at the beginning, it is completely
1570 read and returned. Any further readable subrange will not be read.
1571 Otherwise, if there's a readable subrange at the end, it will be
1572 completely read and returned. Any readable subranges before it
1573 (obviously, not starting at the beginning), will be ignored. In
1574 other cases -- either no readable subrange, or readable subrange(s)
1575 that is neither at the beginning, or end, nothing is returned.
1576
1577 The purpose of this function is to handle a read across a boundary
1578 of accessible memory in a case when memory map is not available.
1579 The above restrictions are fine for this case, but will give
1580 incorrect results if the memory is 'patchy'. However, supporting
1581 'patchy' memory would require trying to read every single byte,
1582 and it seems unacceptable solution. Explicit memory map is
1583 recommended for this case -- and target_read_memory_robust will
1584 take care of reading multiple ranges then. */
1585
1586 static void
1587 read_whatever_is_readable (struct target_ops *ops,
1588 const ULONGEST begin, const ULONGEST end,
1589 int unit_size,
1590 std::vector<memory_read_result> *result)
1591 {
1592 ULONGEST current_begin = begin;
1593 ULONGEST current_end = end;
1594 int forward;
1595 ULONGEST xfered_len;
1596
1597 /* If we previously failed to read 1 byte, nothing can be done here. */
1598 if (end - begin <= 1)
1599 return;
1600
1601 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1602
1603 /* Check that either first or the last byte is readable, and give up
1604 if not. This heuristic is meant to permit reading accessible memory
1605 at the boundary of accessible region. */
1606 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1607 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1608 {
1609 forward = 1;
1610 ++current_begin;
1611 }
1612 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1613 buf.get () + (end - begin) - 1, end - 1, 1,
1614 &xfered_len) == TARGET_XFER_OK)
1615 {
1616 forward = 0;
1617 --current_end;
1618 }
1619 else
1620 return;
1621
1622 /* Loop invariant is that the [current_begin, current_end) was previously
1623 found to be not readable as a whole.
1624
1625 Note loop condition -- if the range has 1 byte, we can't divide the range
1626 so there's no point trying further. */
1627 while (current_end - current_begin > 1)
1628 {
1629 ULONGEST first_half_begin, first_half_end;
1630 ULONGEST second_half_begin, second_half_end;
1631 LONGEST xfer;
1632 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1633
1634 if (forward)
1635 {
1636 first_half_begin = current_begin;
1637 first_half_end = middle;
1638 second_half_begin = middle;
1639 second_half_end = current_end;
1640 }
1641 else
1642 {
1643 first_half_begin = middle;
1644 first_half_end = current_end;
1645 second_half_begin = current_begin;
1646 second_half_end = middle;
1647 }
1648
1649 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1650 buf.get () + (first_half_begin - begin) * unit_size,
1651 first_half_begin,
1652 first_half_end - first_half_begin);
1653
1654 if (xfer == first_half_end - first_half_begin)
1655 {
1656 /* This half reads up fine. So, the error must be in the
1657 other half. */
1658 current_begin = second_half_begin;
1659 current_end = second_half_end;
1660 }
1661 else
1662 {
1663 /* This half is not readable. Because we've tried one byte, we
1664 know some part of this half if actually readable. Go to the next
1665 iteration to divide again and try to read.
1666
1667 We don't handle the other half, because this function only tries
1668 to read a single readable subrange. */
1669 current_begin = first_half_begin;
1670 current_end = first_half_end;
1671 }
1672 }
1673
1674 if (forward)
1675 {
1676 /* The [begin, current_begin) range has been read. */
1677 result->emplace_back (begin, current_end, std::move (buf));
1678 }
1679 else
1680 {
1681 /* The [current_end, end) range has been read. */
1682 LONGEST region_len = end - current_end;
1683
1684 gdb::unique_xmalloc_ptr<gdb_byte> data
1685 ((gdb_byte *) xmalloc (region_len * unit_size));
1686 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1687 region_len * unit_size);
1688 result->emplace_back (current_end, end, std::move (data));
1689 }
1690 }
1691
1692 std::vector<memory_read_result>
1693 read_memory_robust (struct target_ops *ops,
1694 const ULONGEST offset, const LONGEST len)
1695 {
1696 std::vector<memory_read_result> result;
1697 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1698
1699 LONGEST xfered_total = 0;
1700 while (xfered_total < len)
1701 {
1702 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1703 LONGEST region_len;
1704
1705 /* If there is no explicit region, a fake one should be created. */
1706 gdb_assert (region);
1707
1708 if (region->hi == 0)
1709 region_len = len - xfered_total;
1710 else
1711 region_len = region->hi - offset;
1712
1713 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1714 {
1715 /* Cannot read this region. Note that we can end up here only
1716 if the region is explicitly marked inaccessible, or
1717 'inaccessible-by-default' is in effect. */
1718 xfered_total += region_len;
1719 }
1720 else
1721 {
1722 LONGEST to_read = std::min (len - xfered_total, region_len);
1723 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1724 ((gdb_byte *) xmalloc (to_read * unit_size));
1725
1726 LONGEST xfered_partial =
1727 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1728 offset + xfered_total, to_read);
1729 /* Call an observer, notifying them of the xfer progress? */
1730 if (xfered_partial <= 0)
1731 {
1732 /* Got an error reading full chunk. See if maybe we can read
1733 some subrange. */
1734 read_whatever_is_readable (ops, offset + xfered_total,
1735 offset + xfered_total + to_read,
1736 unit_size, &result);
1737 xfered_total += to_read;
1738 }
1739 else
1740 {
1741 result.emplace_back (offset + xfered_total,
1742 offset + xfered_total + xfered_partial,
1743 std::move (buffer));
1744 xfered_total += xfered_partial;
1745 }
1746 QUIT;
1747 }
1748 }
1749
1750 return result;
1751 }
1752
1753
1754 /* An alternative to target_write with progress callbacks. */
1755
1756 LONGEST
1757 target_write_with_progress (struct target_ops *ops,
1758 enum target_object object,
1759 const char *annex, const gdb_byte *buf,
1760 ULONGEST offset, LONGEST len,
1761 void (*progress) (ULONGEST, void *), void *baton)
1762 {
1763 LONGEST xfered_total = 0;
1764 int unit_size = 1;
1765
1766 /* If we are writing to a memory object, find the length of an addressable
1767 unit for that architecture. */
1768 if (object == TARGET_OBJECT_MEMORY
1769 || object == TARGET_OBJECT_STACK_MEMORY
1770 || object == TARGET_OBJECT_CODE_MEMORY
1771 || object == TARGET_OBJECT_RAW_MEMORY)
1772 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1773
1774 /* Give the progress callback a chance to set up. */
1775 if (progress)
1776 (*progress) (0, baton);
1777
1778 while (xfered_total < len)
1779 {
1780 ULONGEST xfered_partial;
1781 enum target_xfer_status status;
1782
1783 status = target_write_partial (ops, object, annex,
1784 buf + xfered_total * unit_size,
1785 offset + xfered_total, len - xfered_total,
1786 &xfered_partial);
1787
1788 if (status != TARGET_XFER_OK)
1789 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1790
1791 if (progress)
1792 (*progress) (xfered_partial, baton);
1793
1794 xfered_total += xfered_partial;
1795 QUIT;
1796 }
1797 return len;
1798 }
1799
1800 /* For docs on target_write see target.h. */
1801
1802 LONGEST
1803 target_write (struct target_ops *ops,
1804 enum target_object object,
1805 const char *annex, const gdb_byte *buf,
1806 ULONGEST offset, LONGEST len)
1807 {
1808 return target_write_with_progress (ops, object, annex, buf, offset, len,
1809 NULL, NULL);
1810 }
1811
1812 /* Help for target_read_alloc and target_read_stralloc. See their comments
1813 for details. */
1814
1815 template <typename T>
1816 gdb::optional<gdb::def_vector<T>>
1817 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1818 const char *annex)
1819 {
1820 gdb::def_vector<T> buf;
1821 size_t buf_pos = 0;
1822 const int chunk = 4096;
1823
1824 /* This function does not have a length parameter; it reads the
1825 entire OBJECT). Also, it doesn't support objects fetched partly
1826 from one target and partly from another (in a different stratum,
1827 e.g. a core file and an executable). Both reasons make it
1828 unsuitable for reading memory. */
1829 gdb_assert (object != TARGET_OBJECT_MEMORY);
1830
1831 /* Start by reading up to 4K at a time. The target will throttle
1832 this number down if necessary. */
1833 while (1)
1834 {
1835 ULONGEST xfered_len;
1836 enum target_xfer_status status;
1837
1838 buf.resize (buf_pos + chunk);
1839
1840 status = target_read_partial (ops, object, annex,
1841 (gdb_byte *) &buf[buf_pos],
1842 buf_pos, chunk,
1843 &xfered_len);
1844
1845 if (status == TARGET_XFER_EOF)
1846 {
1847 /* Read all there was. */
1848 buf.resize (buf_pos);
1849 return buf;
1850 }
1851 else if (status != TARGET_XFER_OK)
1852 {
1853 /* An error occurred. */
1854 return {};
1855 }
1856
1857 buf_pos += xfered_len;
1858
1859 QUIT;
1860 }
1861 }
1862
1863 /* See target.h */
1864
1865 gdb::optional<gdb::byte_vector>
1866 target_read_alloc (struct target_ops *ops, enum target_object object,
1867 const char *annex)
1868 {
1869 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1870 }
1871
1872 /* See target.h. */
1873
1874 gdb::optional<gdb::char_vector>
1875 target_read_stralloc (struct target_ops *ops, enum target_object object,
1876 const char *annex)
1877 {
1878 gdb::optional<gdb::char_vector> buf
1879 = target_read_alloc_1<char> (ops, object, annex);
1880
1881 if (!buf)
1882 return {};
1883
1884 if (buf->back () != '\0')
1885 buf->push_back ('\0');
1886
1887 /* Check for embedded NUL bytes; but allow trailing NULs. */
1888 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1889 it != buf->end (); it++)
1890 if (*it != '\0')
1891 {
1892 warning (_("target object %d, annex %s, "
1893 "contained unexpected null characters"),
1894 (int) object, annex ? annex : "(none)");
1895 break;
1896 }
1897
1898 return buf;
1899 }
1900
1901 /* Memory transfer methods. */
1902
1903 void
1904 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1905 LONGEST len)
1906 {
1907 /* This method is used to read from an alternate, non-current
1908 target. This read must bypass the overlay support (as symbols
1909 don't match this target), and GDB's internal cache (wrong cache
1910 for this target). */
1911 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1912 != len)
1913 memory_error (TARGET_XFER_E_IO, addr);
1914 }
1915
1916 ULONGEST
1917 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1918 int len, enum bfd_endian byte_order)
1919 {
1920 gdb_byte buf[sizeof (ULONGEST)];
1921
1922 gdb_assert (len <= sizeof (buf));
1923 get_target_memory (ops, addr, buf, len);
1924 return extract_unsigned_integer (buf, len, byte_order);
1925 }
1926
1927 /* See target.h. */
1928
1929 int
1930 target_insert_breakpoint (struct gdbarch *gdbarch,
1931 struct bp_target_info *bp_tgt)
1932 {
1933 if (!may_insert_breakpoints)
1934 {
1935 warning (_("May not insert breakpoints"));
1936 return 1;
1937 }
1938
1939 return target_stack->insert_breakpoint (gdbarch, bp_tgt);
1940 }
1941
1942 /* See target.h. */
1943
1944 int
1945 target_remove_breakpoint (struct gdbarch *gdbarch,
1946 struct bp_target_info *bp_tgt,
1947 enum remove_bp_reason reason)
1948 {
1949 /* This is kind of a weird case to handle, but the permission might
1950 have been changed after breakpoints were inserted - in which case
1951 we should just take the user literally and assume that any
1952 breakpoints should be left in place. */
1953 if (!may_insert_breakpoints)
1954 {
1955 warning (_("May not remove breakpoints"));
1956 return 1;
1957 }
1958
1959 return target_stack->remove_breakpoint (gdbarch, bp_tgt, reason);
1960 }
1961
1962 static void
1963 info_target_command (const char *args, int from_tty)
1964 {
1965 struct target_ops *t;
1966 int has_all_mem = 0;
1967
1968 if (symfile_objfile != NULL)
1969 printf_unfiltered (_("Symbols from \"%s\".\n"),
1970 objfile_name (symfile_objfile));
1971
1972 for (t = target_stack; t != NULL; t = t->beneath)
1973 {
1974 if (!t->has_memory ())
1975 continue;
1976
1977 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1978 continue;
1979 if (has_all_mem)
1980 printf_unfiltered (_("\tWhile running this, "
1981 "GDB does not access memory from...\n"));
1982 printf_unfiltered ("%s:\n", t->longname ());
1983 t->files_info ();
1984 has_all_mem = t->has_all_memory ();
1985 }
1986 }
1987
1988 /* This function is called before any new inferior is created, e.g.
1989 by running a program, attaching, or connecting to a target.
1990 It cleans up any state from previous invocations which might
1991 change between runs. This is a subset of what target_preopen
1992 resets (things which might change between targets). */
1993
1994 void
1995 target_pre_inferior (int from_tty)
1996 {
1997 /* Clear out solib state. Otherwise the solib state of the previous
1998 inferior might have survived and is entirely wrong for the new
1999 target. This has been observed on GNU/Linux using glibc 2.3. How
2000 to reproduce:
2001
2002 bash$ ./foo&
2003 [1] 4711
2004 bash$ ./foo&
2005 [1] 4712
2006 bash$ gdb ./foo
2007 [...]
2008 (gdb) attach 4711
2009 (gdb) detach
2010 (gdb) attach 4712
2011 Cannot access memory at address 0xdeadbeef
2012 */
2013
2014 /* In some OSs, the shared library list is the same/global/shared
2015 across inferiors. If code is shared between processes, so are
2016 memory regions and features. */
2017 if (!gdbarch_has_global_solist (target_gdbarch ()))
2018 {
2019 no_shared_libraries (NULL, from_tty);
2020
2021 invalidate_target_mem_regions ();
2022
2023 target_clear_description ();
2024 }
2025
2026 /* attach_flag may be set if the previous process associated with
2027 the inferior was attached to. */
2028 current_inferior ()->attach_flag = 0;
2029
2030 current_inferior ()->highest_thread_num = 0;
2031
2032 agent_capability_invalidate ();
2033 }
2034
2035 /* Callback for iterate_over_inferiors. Gets rid of the given
2036 inferior. */
2037
2038 static int
2039 dispose_inferior (struct inferior *inf, void *args)
2040 {
2041 struct thread_info *thread;
2042
2043 thread = any_thread_of_process (inf->pid);
2044 if (thread)
2045 {
2046 switch_to_thread (thread->ptid);
2047
2048 /* Core inferiors actually should be detached, not killed. */
2049 if (target_has_execution)
2050 target_kill ();
2051 else
2052 target_detach (inf, 0);
2053 }
2054
2055 return 0;
2056 }
2057
2058 /* This is to be called by the open routine before it does
2059 anything. */
2060
2061 void
2062 target_preopen (int from_tty)
2063 {
2064 dont_repeat ();
2065
2066 if (have_inferiors ())
2067 {
2068 if (!from_tty
2069 || !have_live_inferiors ()
2070 || query (_("A program is being debugged already. Kill it? ")))
2071 iterate_over_inferiors (dispose_inferior, NULL);
2072 else
2073 error (_("Program not killed."));
2074 }
2075
2076 /* Calling target_kill may remove the target from the stack. But if
2077 it doesn't (which seems like a win for UDI), remove it now. */
2078 /* Leave the exec target, though. The user may be switching from a
2079 live process to a core of the same program. */
2080 pop_all_targets_above (file_stratum);
2081
2082 target_pre_inferior (from_tty);
2083 }
2084
2085 /* See target.h. */
2086
2087 void
2088 target_detach (inferior *inf, int from_tty)
2089 {
2090 /* As long as some to_detach implementations rely on the current_inferior
2091 (either directly, or indirectly, like through target_gdbarch or by
2092 reading memory), INF needs to be the current inferior. When that
2093 requirement will become no longer true, then we can remove this
2094 assertion. */
2095 gdb_assert (inf == current_inferior ());
2096
2097 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2098 /* Don't remove global breakpoints here. They're removed on
2099 disconnection from the target. */
2100 ;
2101 else
2102 /* If we're in breakpoints-always-inserted mode, have to remove
2103 them before detaching. */
2104 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2105
2106 prepare_for_detach ();
2107
2108 target_stack->detach (inf, from_tty);
2109 }
2110
2111 void
2112 target_disconnect (const char *args, int from_tty)
2113 {
2114 /* If we're in breakpoints-always-inserted mode or if breakpoints
2115 are global across processes, we have to remove them before
2116 disconnecting. */
2117 remove_breakpoints ();
2118
2119 target_stack->disconnect (args, from_tty);
2120 }
2121
2122 /* See target/target.h. */
2123
2124 ptid_t
2125 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2126 {
2127 return target_stack->wait (ptid, status, options);
2128 }
2129
2130 /* See target.h. */
2131
2132 ptid_t
2133 default_target_wait (struct target_ops *ops,
2134 ptid_t ptid, struct target_waitstatus *status,
2135 int options)
2136 {
2137 status->kind = TARGET_WAITKIND_IGNORE;
2138 return minus_one_ptid;
2139 }
2140
2141 const char *
2142 target_pid_to_str (ptid_t ptid)
2143 {
2144 return target_stack->pid_to_str (ptid);
2145 }
2146
2147 const char *
2148 target_thread_name (struct thread_info *info)
2149 {
2150 return target_stack->thread_name (info);
2151 }
2152
2153 struct thread_info *
2154 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2155 int handle_len,
2156 struct inferior *inf)
2157 {
2158 return target_stack->thread_handle_to_thread_info (thread_handle,
2159 handle_len, inf);
2160 }
2161
2162 void
2163 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2164 {
2165 target_dcache_invalidate ();
2166
2167 target_stack->resume (ptid, step, signal);
2168
2169 registers_changed_ptid (ptid);
2170 /* We only set the internal executing state here. The user/frontend
2171 running state is set at a higher level. */
2172 set_executing (ptid, 1);
2173 clear_inline_frame_state (ptid);
2174 }
2175
2176 /* If true, target_commit_resume is a nop. */
2177 static int defer_target_commit_resume;
2178
2179 /* See target.h. */
2180
2181 void
2182 target_commit_resume (void)
2183 {
2184 if (defer_target_commit_resume)
2185 return;
2186
2187 target_stack->commit_resume ();
2188 }
2189
2190 /* See target.h. */
2191
2192 scoped_restore_tmpl<int>
2193 make_scoped_defer_target_commit_resume ()
2194 {
2195 return make_scoped_restore (&defer_target_commit_resume, 1);
2196 }
2197
2198 void
2199 target_pass_signals (int numsigs, unsigned char *pass_signals)
2200 {
2201 target_stack->pass_signals (numsigs, pass_signals);
2202 }
2203
2204 void
2205 target_program_signals (int numsigs, unsigned char *program_signals)
2206 {
2207 target_stack->program_signals (numsigs, program_signals);
2208 }
2209
2210 static int
2211 default_follow_fork (struct target_ops *self, int follow_child,
2212 int detach_fork)
2213 {
2214 /* Some target returned a fork event, but did not know how to follow it. */
2215 internal_error (__FILE__, __LINE__,
2216 _("could not find a target to follow fork"));
2217 }
2218
2219 /* Look through the list of possible targets for a target that can
2220 follow forks. */
2221
2222 int
2223 target_follow_fork (int follow_child, int detach_fork)
2224 {
2225 return target_stack->follow_fork (follow_child, detach_fork);
2226 }
2227
2228 /* Target wrapper for follow exec hook. */
2229
2230 void
2231 target_follow_exec (struct inferior *inf, char *execd_pathname)
2232 {
2233 target_stack->follow_exec (inf, execd_pathname);
2234 }
2235
2236 static void
2237 default_mourn_inferior (struct target_ops *self)
2238 {
2239 internal_error (__FILE__, __LINE__,
2240 _("could not find a target to follow mourn inferior"));
2241 }
2242
2243 void
2244 target_mourn_inferior (ptid_t ptid)
2245 {
2246 gdb_assert (ptid_equal (ptid, inferior_ptid));
2247 target_stack->mourn_inferior ();
2248
2249 /* We no longer need to keep handles on any of the object files.
2250 Make sure to release them to avoid unnecessarily locking any
2251 of them while we're not actually debugging. */
2252 bfd_cache_close_all ();
2253 }
2254
2255 /* Look for a target which can describe architectural features, starting
2256 from TARGET. If we find one, return its description. */
2257
2258 const struct target_desc *
2259 target_read_description (struct target_ops *target)
2260 {
2261 return target->read_description ();
2262 }
2263
2264 /* This implements a basic search of memory, reading target memory and
2265 performing the search here (as opposed to performing the search in on the
2266 target side with, for example, gdbserver). */
2267
2268 int
2269 simple_search_memory (struct target_ops *ops,
2270 CORE_ADDR start_addr, ULONGEST search_space_len,
2271 const gdb_byte *pattern, ULONGEST pattern_len,
2272 CORE_ADDR *found_addrp)
2273 {
2274 /* NOTE: also defined in find.c testcase. */
2275 #define SEARCH_CHUNK_SIZE 16000
2276 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2277 /* Buffer to hold memory contents for searching. */
2278 unsigned search_buf_size;
2279
2280 search_buf_size = chunk_size + pattern_len - 1;
2281
2282 /* No point in trying to allocate a buffer larger than the search space. */
2283 if (search_space_len < search_buf_size)
2284 search_buf_size = search_space_len;
2285
2286 gdb::byte_vector search_buf (search_buf_size);
2287
2288 /* Prime the search buffer. */
2289
2290 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2291 search_buf.data (), start_addr, search_buf_size)
2292 != search_buf_size)
2293 {
2294 warning (_("Unable to access %s bytes of target "
2295 "memory at %s, halting search."),
2296 pulongest (search_buf_size), hex_string (start_addr));
2297 return -1;
2298 }
2299
2300 /* Perform the search.
2301
2302 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2303 When we've scanned N bytes we copy the trailing bytes to the start and
2304 read in another N bytes. */
2305
2306 while (search_space_len >= pattern_len)
2307 {
2308 gdb_byte *found_ptr;
2309 unsigned nr_search_bytes
2310 = std::min (search_space_len, (ULONGEST) search_buf_size);
2311
2312 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2313 pattern, pattern_len);
2314
2315 if (found_ptr != NULL)
2316 {
2317 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2318
2319 *found_addrp = found_addr;
2320 return 1;
2321 }
2322
2323 /* Not found in this chunk, skip to next chunk. */
2324
2325 /* Don't let search_space_len wrap here, it's unsigned. */
2326 if (search_space_len >= chunk_size)
2327 search_space_len -= chunk_size;
2328 else
2329 search_space_len = 0;
2330
2331 if (search_space_len >= pattern_len)
2332 {
2333 unsigned keep_len = search_buf_size - chunk_size;
2334 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2335 int nr_to_read;
2336
2337 /* Copy the trailing part of the previous iteration to the front
2338 of the buffer for the next iteration. */
2339 gdb_assert (keep_len == pattern_len - 1);
2340 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2341
2342 nr_to_read = std::min (search_space_len - keep_len,
2343 (ULONGEST) chunk_size);
2344
2345 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2346 &search_buf[keep_len], read_addr,
2347 nr_to_read) != nr_to_read)
2348 {
2349 warning (_("Unable to access %s bytes of target "
2350 "memory at %s, halting search."),
2351 plongest (nr_to_read),
2352 hex_string (read_addr));
2353 return -1;
2354 }
2355
2356 start_addr += chunk_size;
2357 }
2358 }
2359
2360 /* Not found. */
2361
2362 return 0;
2363 }
2364
2365 /* Default implementation of memory-searching. */
2366
2367 static int
2368 default_search_memory (struct target_ops *self,
2369 CORE_ADDR start_addr, ULONGEST search_space_len,
2370 const gdb_byte *pattern, ULONGEST pattern_len,
2371 CORE_ADDR *found_addrp)
2372 {
2373 /* Start over from the top of the target stack. */
2374 return simple_search_memory (target_stack,
2375 start_addr, search_space_len,
2376 pattern, pattern_len, found_addrp);
2377 }
2378
2379 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2380 sequence of bytes in PATTERN with length PATTERN_LEN.
2381
2382 The result is 1 if found, 0 if not found, and -1 if there was an error
2383 requiring halting of the search (e.g. memory read error).
2384 If the pattern is found the address is recorded in FOUND_ADDRP. */
2385
2386 int
2387 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2388 const gdb_byte *pattern, ULONGEST pattern_len,
2389 CORE_ADDR *found_addrp)
2390 {
2391 return target_stack->search_memory (start_addr, search_space_len,
2392 pattern, pattern_len, found_addrp);
2393 }
2394
2395 /* Look through the currently pushed targets. If none of them will
2396 be able to restart the currently running process, issue an error
2397 message. */
2398
2399 void
2400 target_require_runnable (void)
2401 {
2402 struct target_ops *t;
2403
2404 for (t = target_stack; t != NULL; t = t->beneath)
2405 {
2406 /* If this target knows how to create a new program, then
2407 assume we will still be able to after killing the current
2408 one. Either killing and mourning will not pop T, or else
2409 find_default_run_target will find it again. */
2410 if (t->can_create_inferior ())
2411 return;
2412
2413 /* Do not worry about targets at certain strata that can not
2414 create inferiors. Assume they will be pushed again if
2415 necessary, and continue to the process_stratum. */
2416 if (t->to_stratum > process_stratum)
2417 continue;
2418
2419 error (_("The \"%s\" target does not support \"run\". "
2420 "Try \"help target\" or \"continue\"."),
2421 t->shortname ());
2422 }
2423
2424 /* This function is only called if the target is running. In that
2425 case there should have been a process_stratum target and it
2426 should either know how to create inferiors, or not... */
2427 internal_error (__FILE__, __LINE__, _("No targets found"));
2428 }
2429
2430 /* Whether GDB is allowed to fall back to the default run target for
2431 "run", "attach", etc. when no target is connected yet. */
2432 static int auto_connect_native_target = 1;
2433
2434 static void
2435 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2436 struct cmd_list_element *c, const char *value)
2437 {
2438 fprintf_filtered (file,
2439 _("Whether GDB may automatically connect to the "
2440 "native target is %s.\n"),
2441 value);
2442 }
2443
2444 /* A pointer to the target that can respond to "run" or "attach".
2445 Native targets are always singletons and instantiated early at GDB
2446 startup. */
2447 static target_ops *the_native_target;
2448
2449 /* See target.h. */
2450
2451 void
2452 set_native_target (target_ops *target)
2453 {
2454 if (the_native_target != NULL)
2455 internal_error (__FILE__, __LINE__,
2456 _("native target already set (\"%s\")."),
2457 the_native_target->longname ());
2458
2459 the_native_target = target;
2460 }
2461
2462 /* See target.h. */
2463
2464 target_ops *
2465 get_native_target ()
2466 {
2467 return the_native_target;
2468 }
2469
2470 /* Look through the list of possible targets for a target that can
2471 execute a run or attach command without any other data. This is
2472 used to locate the default process stratum.
2473
2474 If DO_MESG is not NULL, the result is always valid (error() is
2475 called for errors); else, return NULL on error. */
2476
2477 static struct target_ops *
2478 find_default_run_target (const char *do_mesg)
2479 {
2480 if (auto_connect_native_target && the_native_target != NULL)
2481 return the_native_target;
2482
2483 if (do_mesg != NULL)
2484 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2485 return NULL;
2486 }
2487
2488 /* See target.h. */
2489
2490 struct target_ops *
2491 find_attach_target (void)
2492 {
2493 /* If a target on the current stack can attach, use it. */
2494 for (target_ops *t = target_stack; t != NULL; t = t->beneath)
2495 {
2496 if (t->can_attach ())
2497 return t;
2498 }
2499
2500 /* Otherwise, use the default run target for attaching. */
2501 return find_default_run_target ("attach");
2502 }
2503
2504 /* See target.h. */
2505
2506 struct target_ops *
2507 find_run_target (void)
2508 {
2509 /* If a target on the current stack can run, use it. */
2510 for (target_ops *t = target_stack; t != NULL; t = t->beneath)
2511 {
2512 if (t->can_create_inferior ())
2513 return t;
2514 }
2515
2516 /* Otherwise, use the default run target. */
2517 return find_default_run_target ("run");
2518 }
2519
2520 bool
2521 target_ops::info_proc (const char *args, enum info_proc_what what)
2522 {
2523 return false;
2524 }
2525
2526 /* Implement the "info proc" command. */
2527
2528 int
2529 target_info_proc (const char *args, enum info_proc_what what)
2530 {
2531 struct target_ops *t;
2532
2533 /* If we're already connected to something that can get us OS
2534 related data, use it. Otherwise, try using the native
2535 target. */
2536 t = find_target_at (process_stratum);
2537 if (t == NULL)
2538 t = find_default_run_target (NULL);
2539
2540 for (; t != NULL; t = t->beneath)
2541 {
2542 if (t->info_proc (args, what))
2543 {
2544 if (targetdebug)
2545 fprintf_unfiltered (gdb_stdlog,
2546 "target_info_proc (\"%s\", %d)\n", args, what);
2547
2548 return 1;
2549 }
2550 }
2551
2552 return 0;
2553 }
2554
2555 static int
2556 find_default_supports_disable_randomization (struct target_ops *self)
2557 {
2558 struct target_ops *t;
2559
2560 t = find_default_run_target (NULL);
2561 if (t != NULL)
2562 return t->supports_disable_randomization ();
2563 return 0;
2564 }
2565
2566 int
2567 target_supports_disable_randomization (void)
2568 {
2569 return target_stack->supports_disable_randomization ();
2570 }
2571
2572 /* See target/target.h. */
2573
2574 int
2575 target_supports_multi_process (void)
2576 {
2577 return target_stack->supports_multi_process ();
2578 }
2579
2580 /* See target.h. */
2581
2582 gdb::optional<gdb::char_vector>
2583 target_get_osdata (const char *type)
2584 {
2585 struct target_ops *t;
2586
2587 /* If we're already connected to something that can get us OS
2588 related data, use it. Otherwise, try using the native
2589 target. */
2590 t = find_target_at (process_stratum);
2591 if (t == NULL)
2592 t = find_default_run_target ("get OS data");
2593
2594 if (!t)
2595 return {};
2596
2597 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2598 }
2599
2600 static struct address_space *
2601 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2602 {
2603 struct inferior *inf;
2604
2605 /* Fall-back to the "main" address space of the inferior. */
2606 inf = find_inferior_ptid (ptid);
2607
2608 if (inf == NULL || inf->aspace == NULL)
2609 internal_error (__FILE__, __LINE__,
2610 _("Can't determine the current "
2611 "address space of thread %s\n"),
2612 target_pid_to_str (ptid));
2613
2614 return inf->aspace;
2615 }
2616
2617 /* Determine the current address space of thread PTID. */
2618
2619 struct address_space *
2620 target_thread_address_space (ptid_t ptid)
2621 {
2622 struct address_space *aspace;
2623
2624 aspace = target_stack->thread_address_space (ptid);
2625 gdb_assert (aspace != NULL);
2626
2627 return aspace;
2628 }
2629
2630 void
2631 target_ops::close ()
2632 {
2633 }
2634
2635 bool
2636 target_ops::can_attach ()
2637 {
2638 return 0;
2639 }
2640
2641 void
2642 target_ops::attach (const char *, int)
2643 {
2644 gdb_assert_not_reached ("target_ops::attach called");
2645 }
2646
2647 bool
2648 target_ops::can_create_inferior ()
2649 {
2650 return 0;
2651 }
2652
2653 void
2654 target_ops::create_inferior (const char *, const std::string &,
2655 char **, int)
2656 {
2657 gdb_assert_not_reached ("target_ops::create_inferior called");
2658 }
2659
2660 bool
2661 target_ops::can_run ()
2662 {
2663 return false;
2664 }
2665
2666 int
2667 target_can_run ()
2668 {
2669 struct target_ops *t;
2670
2671 for (t = target_stack; t != NULL; t = t->beneath)
2672 {
2673 if (t->can_run ())
2674 return 1;
2675 }
2676
2677 return 0;
2678 }
2679
2680 /* Target file operations. */
2681
2682 static struct target_ops *
2683 default_fileio_target (void)
2684 {
2685 struct target_ops *t;
2686
2687 /* If we're already connected to something that can perform
2688 file I/O, use it. Otherwise, try using the native target. */
2689 t = find_target_at (process_stratum);
2690 if (t != NULL)
2691 return t;
2692 return find_default_run_target ("file I/O");
2693 }
2694
2695 /* File handle for target file operations. */
2696
2697 struct fileio_fh_t
2698 {
2699 /* The target on which this file is open. NULL if the target is
2700 meanwhile closed while the handle is open. */
2701 target_ops *target;
2702
2703 /* The file descriptor on the target. */
2704 int target_fd;
2705
2706 /* Check whether this fileio_fh_t represents a closed file. */
2707 bool is_closed ()
2708 {
2709 return target_fd < 0;
2710 }
2711 };
2712
2713 /* Vector of currently open file handles. The value returned by
2714 target_fileio_open and passed as the FD argument to other
2715 target_fileio_* functions is an index into this vector. This
2716 vector's entries are never freed; instead, files are marked as
2717 closed, and the handle becomes available for reuse. */
2718 static std::vector<fileio_fh_t> fileio_fhandles;
2719
2720 /* Index into fileio_fhandles of the lowest handle that might be
2721 closed. This permits handle reuse without searching the whole
2722 list each time a new file is opened. */
2723 static int lowest_closed_fd;
2724
2725 /* Invalidate the target associated with open handles that were open
2726 on target TARG, since we're about to close (and maybe destroy) the
2727 target. The handles remain open from the client's perspective, but
2728 trying to do anything with them other than closing them will fail
2729 with EIO. */
2730
2731 static void
2732 fileio_handles_invalidate_target (target_ops *targ)
2733 {
2734 for (fileio_fh_t &fh : fileio_fhandles)
2735 if (fh.target == targ)
2736 fh.target = NULL;
2737 }
2738
2739 /* Acquire a target fileio file descriptor. */
2740
2741 static int
2742 acquire_fileio_fd (target_ops *target, int target_fd)
2743 {
2744 /* Search for closed handles to reuse. */
2745 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2746 {
2747 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2748
2749 if (fh.is_closed ())
2750 break;
2751 }
2752
2753 /* Push a new handle if no closed handles were found. */
2754 if (lowest_closed_fd == fileio_fhandles.size ())
2755 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2756 else
2757 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2758
2759 /* Should no longer be marked closed. */
2760 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2761
2762 /* Return its index, and start the next lookup at
2763 the next index. */
2764 return lowest_closed_fd++;
2765 }
2766
2767 /* Release a target fileio file descriptor. */
2768
2769 static void
2770 release_fileio_fd (int fd, fileio_fh_t *fh)
2771 {
2772 fh->target_fd = -1;
2773 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2774 }
2775
2776 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2777
2778 static fileio_fh_t *
2779 fileio_fd_to_fh (int fd)
2780 {
2781 return &fileio_fhandles[fd];
2782 }
2783
2784
2785 /* Default implementations of file i/o methods. We don't want these
2786 to delegate automatically, because we need to know which target
2787 supported the method, in order to call it directly from within
2788 pread/pwrite, etc. */
2789
2790 int
2791 target_ops::fileio_open (struct inferior *inf, const char *filename,
2792 int flags, int mode, int warn_if_slow,
2793 int *target_errno)
2794 {
2795 *target_errno = FILEIO_ENOSYS;
2796 return -1;
2797 }
2798
2799 int
2800 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2801 ULONGEST offset, int *target_errno)
2802 {
2803 *target_errno = FILEIO_ENOSYS;
2804 return -1;
2805 }
2806
2807 int
2808 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2809 ULONGEST offset, int *target_errno)
2810 {
2811 *target_errno = FILEIO_ENOSYS;
2812 return -1;
2813 }
2814
2815 int
2816 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2817 {
2818 *target_errno = FILEIO_ENOSYS;
2819 return -1;
2820 }
2821
2822 int
2823 target_ops::fileio_close (int fd, int *target_errno)
2824 {
2825 *target_errno = FILEIO_ENOSYS;
2826 return -1;
2827 }
2828
2829 int
2830 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2831 int *target_errno)
2832 {
2833 *target_errno = FILEIO_ENOSYS;
2834 return -1;
2835 }
2836
2837 gdb::optional<std::string>
2838 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2839 int *target_errno)
2840 {
2841 *target_errno = FILEIO_ENOSYS;
2842 return {};
2843 }
2844
2845 /* Helper for target_fileio_open and
2846 target_fileio_open_warn_if_slow. */
2847
2848 static int
2849 target_fileio_open_1 (struct inferior *inf, const char *filename,
2850 int flags, int mode, int warn_if_slow,
2851 int *target_errno)
2852 {
2853 struct target_ops *t;
2854
2855 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2856 {
2857 int fd = t->fileio_open (inf, filename, flags, mode,
2858 warn_if_slow, target_errno);
2859
2860 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2861 continue;
2862
2863 if (fd < 0)
2864 fd = -1;
2865 else
2866 fd = acquire_fileio_fd (t, fd);
2867
2868 if (targetdebug)
2869 fprintf_unfiltered (gdb_stdlog,
2870 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2871 " = %d (%d)\n",
2872 inf == NULL ? 0 : inf->num,
2873 filename, flags, mode,
2874 warn_if_slow, fd,
2875 fd != -1 ? 0 : *target_errno);
2876 return fd;
2877 }
2878
2879 *target_errno = FILEIO_ENOSYS;
2880 return -1;
2881 }
2882
2883 /* See target.h. */
2884
2885 int
2886 target_fileio_open (struct inferior *inf, const char *filename,
2887 int flags, int mode, int *target_errno)
2888 {
2889 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2890 target_errno);
2891 }
2892
2893 /* See target.h. */
2894
2895 int
2896 target_fileio_open_warn_if_slow (struct inferior *inf,
2897 const char *filename,
2898 int flags, int mode, int *target_errno)
2899 {
2900 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2901 target_errno);
2902 }
2903
2904 /* See target.h. */
2905
2906 int
2907 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2908 ULONGEST offset, int *target_errno)
2909 {
2910 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2911 int ret = -1;
2912
2913 if (fh->is_closed ())
2914 *target_errno = EBADF;
2915 else if (fh->target == NULL)
2916 *target_errno = EIO;
2917 else
2918 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2919 len, offset, target_errno);
2920
2921 if (targetdebug)
2922 fprintf_unfiltered (gdb_stdlog,
2923 "target_fileio_pwrite (%d,...,%d,%s) "
2924 "= %d (%d)\n",
2925 fd, len, pulongest (offset),
2926 ret, ret != -1 ? 0 : *target_errno);
2927 return ret;
2928 }
2929
2930 /* See target.h. */
2931
2932 int
2933 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2934 ULONGEST offset, int *target_errno)
2935 {
2936 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2937 int ret = -1;
2938
2939 if (fh->is_closed ())
2940 *target_errno = EBADF;
2941 else if (fh->target == NULL)
2942 *target_errno = EIO;
2943 else
2944 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2945 len, offset, target_errno);
2946
2947 if (targetdebug)
2948 fprintf_unfiltered (gdb_stdlog,
2949 "target_fileio_pread (%d,...,%d,%s) "
2950 "= %d (%d)\n",
2951 fd, len, pulongest (offset),
2952 ret, ret != -1 ? 0 : *target_errno);
2953 return ret;
2954 }
2955
2956 /* See target.h. */
2957
2958 int
2959 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2960 {
2961 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2962 int ret = -1;
2963
2964 if (fh->is_closed ())
2965 *target_errno = EBADF;
2966 else if (fh->target == NULL)
2967 *target_errno = EIO;
2968 else
2969 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2970
2971 if (targetdebug)
2972 fprintf_unfiltered (gdb_stdlog,
2973 "target_fileio_fstat (%d) = %d (%d)\n",
2974 fd, ret, ret != -1 ? 0 : *target_errno);
2975 return ret;
2976 }
2977
2978 /* See target.h. */
2979
2980 int
2981 target_fileio_close (int fd, int *target_errno)
2982 {
2983 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2984 int ret = -1;
2985
2986 if (fh->is_closed ())
2987 *target_errno = EBADF;
2988 else
2989 {
2990 if (fh->target != NULL)
2991 ret = fh->target->fileio_close (fh->target_fd,
2992 target_errno);
2993 else
2994 ret = 0;
2995 release_fileio_fd (fd, fh);
2996 }
2997
2998 if (targetdebug)
2999 fprintf_unfiltered (gdb_stdlog,
3000 "target_fileio_close (%d) = %d (%d)\n",
3001 fd, ret, ret != -1 ? 0 : *target_errno);
3002 return ret;
3003 }
3004
3005 /* See target.h. */
3006
3007 int
3008 target_fileio_unlink (struct inferior *inf, const char *filename,
3009 int *target_errno)
3010 {
3011 struct target_ops *t;
3012
3013 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3014 {
3015 int ret = t->fileio_unlink (inf, filename, target_errno);
3016
3017 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
3018 continue;
3019
3020 if (targetdebug)
3021 fprintf_unfiltered (gdb_stdlog,
3022 "target_fileio_unlink (%d,%s)"
3023 " = %d (%d)\n",
3024 inf == NULL ? 0 : inf->num, filename,
3025 ret, ret != -1 ? 0 : *target_errno);
3026 return ret;
3027 }
3028
3029 *target_errno = FILEIO_ENOSYS;
3030 return -1;
3031 }
3032
3033 /* See target.h. */
3034
3035 gdb::optional<std::string>
3036 target_fileio_readlink (struct inferior *inf, const char *filename,
3037 int *target_errno)
3038 {
3039 struct target_ops *t;
3040
3041 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3042 {
3043 gdb::optional<std::string> ret
3044 = t->fileio_readlink (inf, filename, target_errno);
3045
3046 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
3047 continue;
3048
3049 if (targetdebug)
3050 fprintf_unfiltered (gdb_stdlog,
3051 "target_fileio_readlink (%d,%s)"
3052 " = %s (%d)\n",
3053 inf == NULL ? 0 : inf->num,
3054 filename, ret ? ret->c_str () : "(nil)",
3055 ret ? 0 : *target_errno);
3056 return ret;
3057 }
3058
3059 *target_errno = FILEIO_ENOSYS;
3060 return {};
3061 }
3062
3063 /* Like scoped_fd, but specific to target fileio. */
3064
3065 class scoped_target_fd
3066 {
3067 public:
3068 explicit scoped_target_fd (int fd) noexcept
3069 : m_fd (fd)
3070 {
3071 }
3072
3073 ~scoped_target_fd ()
3074 {
3075 if (m_fd >= 0)
3076 {
3077 int target_errno;
3078
3079 target_fileio_close (m_fd, &target_errno);
3080 }
3081 }
3082
3083 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3084
3085 int get () const noexcept
3086 {
3087 return m_fd;
3088 }
3089
3090 private:
3091 int m_fd;
3092 };
3093
3094 /* Read target file FILENAME, in the filesystem as seen by INF. If
3095 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3096 remote targets, the remote stub). Store the result in *BUF_P and
3097 return the size of the transferred data. PADDING additional bytes
3098 are available in *BUF_P. This is a helper function for
3099 target_fileio_read_alloc; see the declaration of that function for
3100 more information. */
3101
3102 static LONGEST
3103 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3104 gdb_byte **buf_p, int padding)
3105 {
3106 size_t buf_alloc, buf_pos;
3107 gdb_byte *buf;
3108 LONGEST n;
3109 int target_errno;
3110
3111 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3112 0700, &target_errno));
3113 if (fd.get () == -1)
3114 return -1;
3115
3116 /* Start by reading up to 4K at a time. The target will throttle
3117 this number down if necessary. */
3118 buf_alloc = 4096;
3119 buf = (gdb_byte *) xmalloc (buf_alloc);
3120 buf_pos = 0;
3121 while (1)
3122 {
3123 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3124 buf_alloc - buf_pos - padding, buf_pos,
3125 &target_errno);
3126 if (n < 0)
3127 {
3128 /* An error occurred. */
3129 xfree (buf);
3130 return -1;
3131 }
3132 else if (n == 0)
3133 {
3134 /* Read all there was. */
3135 if (buf_pos == 0)
3136 xfree (buf);
3137 else
3138 *buf_p = buf;
3139 return buf_pos;
3140 }
3141
3142 buf_pos += n;
3143
3144 /* If the buffer is filling up, expand it. */
3145 if (buf_alloc < buf_pos * 2)
3146 {
3147 buf_alloc *= 2;
3148 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3149 }
3150
3151 QUIT;
3152 }
3153 }
3154
3155 /* See target.h. */
3156
3157 LONGEST
3158 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3159 gdb_byte **buf_p)
3160 {
3161 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3162 }
3163
3164 /* See target.h. */
3165
3166 gdb::unique_xmalloc_ptr<char>
3167 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3168 {
3169 gdb_byte *buffer;
3170 char *bufstr;
3171 LONGEST i, transferred;
3172
3173 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3174 bufstr = (char *) buffer;
3175
3176 if (transferred < 0)
3177 return gdb::unique_xmalloc_ptr<char> (nullptr);
3178
3179 if (transferred == 0)
3180 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3181
3182 bufstr[transferred] = 0;
3183
3184 /* Check for embedded NUL bytes; but allow trailing NULs. */
3185 for (i = strlen (bufstr); i < transferred; i++)
3186 if (bufstr[i] != 0)
3187 {
3188 warning (_("target file %s "
3189 "contained unexpected null characters"),
3190 filename);
3191 break;
3192 }
3193
3194 return gdb::unique_xmalloc_ptr<char> (bufstr);
3195 }
3196
3197
3198 static int
3199 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3200 CORE_ADDR addr, int len)
3201 {
3202 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3203 }
3204
3205 static int
3206 default_watchpoint_addr_within_range (struct target_ops *target,
3207 CORE_ADDR addr,
3208 CORE_ADDR start, int length)
3209 {
3210 return addr >= start && addr < start + length;
3211 }
3212
3213 static struct gdbarch *
3214 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3215 {
3216 inferior *inf = find_inferior_ptid (ptid);
3217 gdb_assert (inf != NULL);
3218 return inf->gdbarch;
3219 }
3220
3221 /*
3222 * Find the next target down the stack from the specified target.
3223 */
3224
3225 struct target_ops *
3226 find_target_beneath (struct target_ops *t)
3227 {
3228 return t->beneath;
3229 }
3230
3231 /* See target.h. */
3232
3233 struct target_ops *
3234 find_target_at (enum strata stratum)
3235 {
3236 struct target_ops *t;
3237
3238 for (t = target_stack; t != NULL; t = t->beneath)
3239 if (t->to_stratum == stratum)
3240 return t;
3241
3242 return NULL;
3243 }
3244
3245 \f
3246
3247 /* See target.h */
3248
3249 void
3250 target_announce_detach (int from_tty)
3251 {
3252 pid_t pid;
3253 const char *exec_file;
3254
3255 if (!from_tty)
3256 return;
3257
3258 exec_file = get_exec_file (0);
3259 if (exec_file == NULL)
3260 exec_file = "";
3261
3262 pid = ptid_get_pid (inferior_ptid);
3263 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3264 target_pid_to_str (pid_to_ptid (pid)));
3265 gdb_flush (gdb_stdout);
3266 }
3267
3268 /* The inferior process has died. Long live the inferior! */
3269
3270 void
3271 generic_mourn_inferior (void)
3272 {
3273 ptid_t ptid;
3274
3275 ptid = inferior_ptid;
3276 inferior_ptid = null_ptid;
3277
3278 /* Mark breakpoints uninserted in case something tries to delete a
3279 breakpoint while we delete the inferior's threads (which would
3280 fail, since the inferior is long gone). */
3281 mark_breakpoints_out ();
3282
3283 if (!ptid_equal (ptid, null_ptid))
3284 {
3285 int pid = ptid_get_pid (ptid);
3286 exit_inferior (pid);
3287 }
3288
3289 /* Note this wipes step-resume breakpoints, so needs to be done
3290 after exit_inferior, which ends up referencing the step-resume
3291 breakpoints through clear_thread_inferior_resources. */
3292 breakpoint_init_inferior (inf_exited);
3293
3294 registers_changed ();
3295
3296 reopen_exec_file ();
3297 reinit_frame_cache ();
3298
3299 if (deprecated_detach_hook)
3300 deprecated_detach_hook ();
3301 }
3302 \f
3303 /* Convert a normal process ID to a string. Returns the string in a
3304 static buffer. */
3305
3306 const char *
3307 normal_pid_to_str (ptid_t ptid)
3308 {
3309 static char buf[32];
3310
3311 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3312 return buf;
3313 }
3314
3315 static const char *
3316 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3317 {
3318 return normal_pid_to_str (ptid);
3319 }
3320
3321 /* Error-catcher for target_find_memory_regions. */
3322 static int
3323 dummy_find_memory_regions (struct target_ops *self,
3324 find_memory_region_ftype ignore1, void *ignore2)
3325 {
3326 error (_("Command not implemented for this target."));
3327 return 0;
3328 }
3329
3330 /* Error-catcher for target_make_corefile_notes. */
3331 static char *
3332 dummy_make_corefile_notes (struct target_ops *self,
3333 bfd *ignore1, int *ignore2)
3334 {
3335 error (_("Command not implemented for this target."));
3336 return NULL;
3337 }
3338
3339 #include "target-delegates.c"
3340
3341
3342 static const target_info dummy_target_info = {
3343 "None",
3344 N_("None"),
3345 ""
3346 };
3347
3348 dummy_target::dummy_target ()
3349 {
3350 to_stratum = dummy_stratum;
3351 }
3352
3353 debug_target::debug_target ()
3354 {
3355 to_stratum = debug_stratum;
3356 }
3357
3358 const target_info &
3359 dummy_target::info () const
3360 {
3361 return dummy_target_info;
3362 }
3363
3364 const target_info &
3365 debug_target::info () const
3366 {
3367 return beneath->info ();
3368 }
3369
3370 \f
3371
3372 void
3373 target_close (struct target_ops *targ)
3374 {
3375 gdb_assert (!target_is_pushed (targ));
3376
3377 fileio_handles_invalidate_target (targ);
3378
3379 targ->close ();
3380
3381 if (targetdebug)
3382 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3383 }
3384
3385 int
3386 target_thread_alive (ptid_t ptid)
3387 {
3388 return target_stack->thread_alive (ptid);
3389 }
3390
3391 void
3392 target_update_thread_list (void)
3393 {
3394 target_stack->update_thread_list ();
3395 }
3396
3397 void
3398 target_stop (ptid_t ptid)
3399 {
3400 if (!may_stop)
3401 {
3402 warning (_("May not interrupt or stop the target, ignoring attempt"));
3403 return;
3404 }
3405
3406 target_stack->stop (ptid);
3407 }
3408
3409 void
3410 target_interrupt ()
3411 {
3412 if (!may_stop)
3413 {
3414 warning (_("May not interrupt or stop the target, ignoring attempt"));
3415 return;
3416 }
3417
3418 target_stack->interrupt ();
3419 }
3420
3421 /* See target.h. */
3422
3423 void
3424 target_pass_ctrlc (void)
3425 {
3426 target_stack->pass_ctrlc ();
3427 }
3428
3429 /* See target.h. */
3430
3431 void
3432 default_target_pass_ctrlc (struct target_ops *ops)
3433 {
3434 target_interrupt ();
3435 }
3436
3437 /* See target/target.h. */
3438
3439 void
3440 target_stop_and_wait (ptid_t ptid)
3441 {
3442 struct target_waitstatus status;
3443 int was_non_stop = non_stop;
3444
3445 non_stop = 1;
3446 target_stop (ptid);
3447
3448 memset (&status, 0, sizeof (status));
3449 target_wait (ptid, &status, 0);
3450
3451 non_stop = was_non_stop;
3452 }
3453
3454 /* See target/target.h. */
3455
3456 void
3457 target_continue_no_signal (ptid_t ptid)
3458 {
3459 target_resume (ptid, 0, GDB_SIGNAL_0);
3460 }
3461
3462 /* See target/target.h. */
3463
3464 void
3465 target_continue (ptid_t ptid, enum gdb_signal signal)
3466 {
3467 target_resume (ptid, 0, signal);
3468 }
3469
3470 /* Concatenate ELEM to LIST, a comma separate list, and return the
3471 result. The LIST incoming argument is released. */
3472
3473 static char *
3474 str_comma_list_concat_elem (char *list, const char *elem)
3475 {
3476 if (list == NULL)
3477 return xstrdup (elem);
3478 else
3479 return reconcat (list, list, ", ", elem, (char *) NULL);
3480 }
3481
3482 /* Helper for target_options_to_string. If OPT is present in
3483 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3484 Returns the new resulting string. OPT is removed from
3485 TARGET_OPTIONS. */
3486
3487 static char *
3488 do_option (int *target_options, char *ret,
3489 int opt, const char *opt_str)
3490 {
3491 if ((*target_options & opt) != 0)
3492 {
3493 ret = str_comma_list_concat_elem (ret, opt_str);
3494 *target_options &= ~opt;
3495 }
3496
3497 return ret;
3498 }
3499
3500 char *
3501 target_options_to_string (int target_options)
3502 {
3503 char *ret = NULL;
3504
3505 #define DO_TARG_OPTION(OPT) \
3506 ret = do_option (&target_options, ret, OPT, #OPT)
3507
3508 DO_TARG_OPTION (TARGET_WNOHANG);
3509
3510 if (target_options != 0)
3511 ret = str_comma_list_concat_elem (ret, "unknown???");
3512
3513 if (ret == NULL)
3514 ret = xstrdup ("");
3515 return ret;
3516 }
3517
3518 void
3519 target_fetch_registers (struct regcache *regcache, int regno)
3520 {
3521 target_stack->fetch_registers (regcache, regno);
3522 if (targetdebug)
3523 regcache->debug_print_register ("target_fetch_registers", regno);
3524 }
3525
3526 void
3527 target_store_registers (struct regcache *regcache, int regno)
3528 {
3529 if (!may_write_registers)
3530 error (_("Writing to registers is not allowed (regno %d)"), regno);
3531
3532 target_stack->store_registers (regcache, regno);
3533 if (targetdebug)
3534 {
3535 regcache->debug_print_register ("target_store_registers", regno);
3536 }
3537 }
3538
3539 int
3540 target_core_of_thread (ptid_t ptid)
3541 {
3542 return target_stack->core_of_thread (ptid);
3543 }
3544
3545 int
3546 simple_verify_memory (struct target_ops *ops,
3547 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3548 {
3549 LONGEST total_xfered = 0;
3550
3551 while (total_xfered < size)
3552 {
3553 ULONGEST xfered_len;
3554 enum target_xfer_status status;
3555 gdb_byte buf[1024];
3556 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3557
3558 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3559 buf, NULL, lma + total_xfered, howmuch,
3560 &xfered_len);
3561 if (status == TARGET_XFER_OK
3562 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3563 {
3564 total_xfered += xfered_len;
3565 QUIT;
3566 }
3567 else
3568 return 0;
3569 }
3570 return 1;
3571 }
3572
3573 /* Default implementation of memory verification. */
3574
3575 static int
3576 default_verify_memory (struct target_ops *self,
3577 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3578 {
3579 /* Start over from the top of the target stack. */
3580 return simple_verify_memory (target_stack,
3581 data, memaddr, size);
3582 }
3583
3584 int
3585 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3586 {
3587 return target_stack->verify_memory (data, memaddr, size);
3588 }
3589
3590 /* The documentation for this function is in its prototype declaration in
3591 target.h. */
3592
3593 int
3594 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3595 enum target_hw_bp_type rw)
3596 {
3597 return target_stack->insert_mask_watchpoint (addr, mask, rw);
3598 }
3599
3600 /* The documentation for this function is in its prototype declaration in
3601 target.h. */
3602
3603 int
3604 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3605 enum target_hw_bp_type rw)
3606 {
3607 return target_stack->remove_mask_watchpoint (addr, mask, rw);
3608 }
3609
3610 /* The documentation for this function is in its prototype declaration
3611 in target.h. */
3612
3613 int
3614 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3615 {
3616 return target_stack->masked_watch_num_registers (addr, mask);
3617 }
3618
3619 /* The documentation for this function is in its prototype declaration
3620 in target.h. */
3621
3622 int
3623 target_ranged_break_num_registers (void)
3624 {
3625 return target_stack->ranged_break_num_registers ();
3626 }
3627
3628 /* See target.h. */
3629
3630 struct btrace_target_info *
3631 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3632 {
3633 return target_stack->enable_btrace (ptid, conf);
3634 }
3635
3636 /* See target.h. */
3637
3638 void
3639 target_disable_btrace (struct btrace_target_info *btinfo)
3640 {
3641 target_stack->disable_btrace (btinfo);
3642 }
3643
3644 /* See target.h. */
3645
3646 void
3647 target_teardown_btrace (struct btrace_target_info *btinfo)
3648 {
3649 target_stack->teardown_btrace (btinfo);
3650 }
3651
3652 /* See target.h. */
3653
3654 enum btrace_error
3655 target_read_btrace (struct btrace_data *btrace,
3656 struct btrace_target_info *btinfo,
3657 enum btrace_read_type type)
3658 {
3659 return target_stack->read_btrace (btrace, btinfo, type);
3660 }
3661
3662 /* See target.h. */
3663
3664 const struct btrace_config *
3665 target_btrace_conf (const struct btrace_target_info *btinfo)
3666 {
3667 return target_stack->btrace_conf (btinfo);
3668 }
3669
3670 /* See target.h. */
3671
3672 void
3673 target_stop_recording (void)
3674 {
3675 target_stack->stop_recording ();
3676 }
3677
3678 /* See target.h. */
3679
3680 void
3681 target_save_record (const char *filename)
3682 {
3683 target_stack->save_record (filename);
3684 }
3685
3686 /* See target.h. */
3687
3688 int
3689 target_supports_delete_record ()
3690 {
3691 return target_stack->supports_delete_record ();
3692 }
3693
3694 /* See target.h. */
3695
3696 void
3697 target_delete_record (void)
3698 {
3699 target_stack->delete_record ();
3700 }
3701
3702 /* See target.h. */
3703
3704 enum record_method
3705 target_record_method (ptid_t ptid)
3706 {
3707 return target_stack->record_method (ptid);
3708 }
3709
3710 /* See target.h. */
3711
3712 int
3713 target_record_is_replaying (ptid_t ptid)
3714 {
3715 return target_stack->record_is_replaying (ptid);
3716 }
3717
3718 /* See target.h. */
3719
3720 int
3721 target_record_will_replay (ptid_t ptid, int dir)
3722 {
3723 return target_stack->record_will_replay (ptid, dir);
3724 }
3725
3726 /* See target.h. */
3727
3728 void
3729 target_record_stop_replaying (void)
3730 {
3731 target_stack->record_stop_replaying ();
3732 }
3733
3734 /* See target.h. */
3735
3736 void
3737 target_goto_record_begin (void)
3738 {
3739 target_stack->goto_record_begin ();
3740 }
3741
3742 /* See target.h. */
3743
3744 void
3745 target_goto_record_end (void)
3746 {
3747 target_stack->goto_record_end ();
3748 }
3749
3750 /* See target.h. */
3751
3752 void
3753 target_goto_record (ULONGEST insn)
3754 {
3755 target_stack->goto_record (insn);
3756 }
3757
3758 /* See target.h. */
3759
3760 void
3761 target_insn_history (int size, gdb_disassembly_flags flags)
3762 {
3763 target_stack->insn_history (size, flags);
3764 }
3765
3766 /* See target.h. */
3767
3768 void
3769 target_insn_history_from (ULONGEST from, int size,
3770 gdb_disassembly_flags flags)
3771 {
3772 target_stack->insn_history_from (from, size, flags);
3773 }
3774
3775 /* See target.h. */
3776
3777 void
3778 target_insn_history_range (ULONGEST begin, ULONGEST end,
3779 gdb_disassembly_flags flags)
3780 {
3781 target_stack->insn_history_range (begin, end, flags);
3782 }
3783
3784 /* See target.h. */
3785
3786 void
3787 target_call_history (int size, record_print_flags flags)
3788 {
3789 target_stack->call_history (size, flags);
3790 }
3791
3792 /* See target.h. */
3793
3794 void
3795 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3796 {
3797 target_stack->call_history_from (begin, size, flags);
3798 }
3799
3800 /* See target.h. */
3801
3802 void
3803 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3804 {
3805 target_stack->call_history_range (begin, end, flags);
3806 }
3807
3808 /* See target.h. */
3809
3810 const struct frame_unwind *
3811 target_get_unwinder (void)
3812 {
3813 return target_stack->get_unwinder ();
3814 }
3815
3816 /* See target.h. */
3817
3818 const struct frame_unwind *
3819 target_get_tailcall_unwinder (void)
3820 {
3821 return target_stack->get_tailcall_unwinder ();
3822 }
3823
3824 /* See target.h. */
3825
3826 void
3827 target_prepare_to_generate_core (void)
3828 {
3829 target_stack->prepare_to_generate_core ();
3830 }
3831
3832 /* See target.h. */
3833
3834 void
3835 target_done_generating_core (void)
3836 {
3837 target_stack->done_generating_core ();
3838 }
3839
3840 \f
3841
3842 static char targ_desc[] =
3843 "Names of targets and files being debugged.\nShows the entire \
3844 stack of targets currently in use (including the exec-file,\n\
3845 core-file, and process, if any), as well as the symbol file name.";
3846
3847 static void
3848 default_rcmd (struct target_ops *self, const char *command,
3849 struct ui_file *output)
3850 {
3851 error (_("\"monitor\" command not supported by this target."));
3852 }
3853
3854 static void
3855 do_monitor_command (const char *cmd, int from_tty)
3856 {
3857 target_rcmd (cmd, gdb_stdtarg);
3858 }
3859
3860 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3861 ignored. */
3862
3863 void
3864 flash_erase_command (const char *cmd, int from_tty)
3865 {
3866 /* Used to communicate termination of flash operations to the target. */
3867 bool found_flash_region = false;
3868 struct gdbarch *gdbarch = target_gdbarch ();
3869
3870 std::vector<mem_region> mem_regions = target_memory_map ();
3871
3872 /* Iterate over all memory regions. */
3873 for (const mem_region &m : mem_regions)
3874 {
3875 /* Is this a flash memory region? */
3876 if (m.attrib.mode == MEM_FLASH)
3877 {
3878 found_flash_region = true;
3879 target_flash_erase (m.lo, m.hi - m.lo);
3880
3881 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3882
3883 current_uiout->message (_("Erasing flash memory region at address "));
3884 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3885 current_uiout->message (", size = ");
3886 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3887 current_uiout->message ("\n");
3888 }
3889 }
3890
3891 /* Did we do any flash operations? If so, we need to finalize them. */
3892 if (found_flash_region)
3893 target_flash_done ();
3894 else
3895 current_uiout->message (_("No flash memory regions found.\n"));
3896 }
3897
3898 /* Print the name of each layers of our target stack. */
3899
3900 static void
3901 maintenance_print_target_stack (const char *cmd, int from_tty)
3902 {
3903 struct target_ops *t;
3904
3905 printf_filtered (_("The current target stack is:\n"));
3906
3907 for (t = target_stack; t != NULL; t = t->beneath)
3908 {
3909 if (t->to_stratum == debug_stratum)
3910 continue;
3911 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3912 }
3913 }
3914
3915 /* See target.h. */
3916
3917 void
3918 target_async (int enable)
3919 {
3920 infrun_async (enable);
3921 target_stack->async (enable);
3922 }
3923
3924 /* See target.h. */
3925
3926 void
3927 target_thread_events (int enable)
3928 {
3929 target_stack->thread_events (enable);
3930 }
3931
3932 /* Controls if targets can report that they can/are async. This is
3933 just for maintainers to use when debugging gdb. */
3934 int target_async_permitted = 1;
3935
3936 /* The set command writes to this variable. If the inferior is
3937 executing, target_async_permitted is *not* updated. */
3938 static int target_async_permitted_1 = 1;
3939
3940 static void
3941 maint_set_target_async_command (const char *args, int from_tty,
3942 struct cmd_list_element *c)
3943 {
3944 if (have_live_inferiors ())
3945 {
3946 target_async_permitted_1 = target_async_permitted;
3947 error (_("Cannot change this setting while the inferior is running."));
3948 }
3949
3950 target_async_permitted = target_async_permitted_1;
3951 }
3952
3953 static void
3954 maint_show_target_async_command (struct ui_file *file, int from_tty,
3955 struct cmd_list_element *c,
3956 const char *value)
3957 {
3958 fprintf_filtered (file,
3959 _("Controlling the inferior in "
3960 "asynchronous mode is %s.\n"), value);
3961 }
3962
3963 /* Return true if the target operates in non-stop mode even with "set
3964 non-stop off". */
3965
3966 static int
3967 target_always_non_stop_p (void)
3968 {
3969 return target_stack->always_non_stop_p ();
3970 }
3971
3972 /* See target.h. */
3973
3974 int
3975 target_is_non_stop_p (void)
3976 {
3977 return (non_stop
3978 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3979 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3980 && target_always_non_stop_p ()));
3981 }
3982
3983 /* Controls if targets can report that they always run in non-stop
3984 mode. This is just for maintainers to use when debugging gdb. */
3985 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3986
3987 /* The set command writes to this variable. If the inferior is
3988 executing, target_non_stop_enabled is *not* updated. */
3989 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3990
3991 /* Implementation of "maint set target-non-stop". */
3992
3993 static void
3994 maint_set_target_non_stop_command (const char *args, int from_tty,
3995 struct cmd_list_element *c)
3996 {
3997 if (have_live_inferiors ())
3998 {
3999 target_non_stop_enabled_1 = target_non_stop_enabled;
4000 error (_("Cannot change this setting while the inferior is running."));
4001 }
4002
4003 target_non_stop_enabled = target_non_stop_enabled_1;
4004 }
4005
4006 /* Implementation of "maint show target-non-stop". */
4007
4008 static void
4009 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4010 struct cmd_list_element *c,
4011 const char *value)
4012 {
4013 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4014 fprintf_filtered (file,
4015 _("Whether the target is always in non-stop mode "
4016 "is %s (currently %s).\n"), value,
4017 target_always_non_stop_p () ? "on" : "off");
4018 else
4019 fprintf_filtered (file,
4020 _("Whether the target is always in non-stop mode "
4021 "is %s.\n"), value);
4022 }
4023
4024 /* Temporary copies of permission settings. */
4025
4026 static int may_write_registers_1 = 1;
4027 static int may_write_memory_1 = 1;
4028 static int may_insert_breakpoints_1 = 1;
4029 static int may_insert_tracepoints_1 = 1;
4030 static int may_insert_fast_tracepoints_1 = 1;
4031 static int may_stop_1 = 1;
4032
4033 /* Make the user-set values match the real values again. */
4034
4035 void
4036 update_target_permissions (void)
4037 {
4038 may_write_registers_1 = may_write_registers;
4039 may_write_memory_1 = may_write_memory;
4040 may_insert_breakpoints_1 = may_insert_breakpoints;
4041 may_insert_tracepoints_1 = may_insert_tracepoints;
4042 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4043 may_stop_1 = may_stop;
4044 }
4045
4046 /* The one function handles (most of) the permission flags in the same
4047 way. */
4048
4049 static void
4050 set_target_permissions (const char *args, int from_tty,
4051 struct cmd_list_element *c)
4052 {
4053 if (target_has_execution)
4054 {
4055 update_target_permissions ();
4056 error (_("Cannot change this setting while the inferior is running."));
4057 }
4058
4059 /* Make the real values match the user-changed values. */
4060 may_write_registers = may_write_registers_1;
4061 may_insert_breakpoints = may_insert_breakpoints_1;
4062 may_insert_tracepoints = may_insert_tracepoints_1;
4063 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4064 may_stop = may_stop_1;
4065 update_observer_mode ();
4066 }
4067
4068 /* Set memory write permission independently of observer mode. */
4069
4070 static void
4071 set_write_memory_permission (const char *args, int from_tty,
4072 struct cmd_list_element *c)
4073 {
4074 /* Make the real values match the user-changed values. */
4075 may_write_memory = may_write_memory_1;
4076 update_observer_mode ();
4077 }
4078
4079 void
4080 initialize_targets (void)
4081 {
4082 the_dummy_target = new dummy_target ();
4083 push_target (the_dummy_target);
4084
4085 the_debug_target = new debug_target ();
4086
4087 add_info ("target", info_target_command, targ_desc);
4088 add_info ("files", info_target_command, targ_desc);
4089
4090 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4091 Set target debugging."), _("\
4092 Show target debugging."), _("\
4093 When non-zero, target debugging is enabled. Higher numbers are more\n\
4094 verbose."),
4095 set_targetdebug,
4096 show_targetdebug,
4097 &setdebuglist, &showdebuglist);
4098
4099 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4100 &trust_readonly, _("\
4101 Set mode for reading from readonly sections."), _("\
4102 Show mode for reading from readonly sections."), _("\
4103 When this mode is on, memory reads from readonly sections (such as .text)\n\
4104 will be read from the object file instead of from the target. This will\n\
4105 result in significant performance improvement for remote targets."),
4106 NULL,
4107 show_trust_readonly,
4108 &setlist, &showlist);
4109
4110 add_com ("monitor", class_obscure, do_monitor_command,
4111 _("Send a command to the remote monitor (remote targets only)."));
4112
4113 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4114 _("Print the name of each layer of the internal target stack."),
4115 &maintenanceprintlist);
4116
4117 add_setshow_boolean_cmd ("target-async", no_class,
4118 &target_async_permitted_1, _("\
4119 Set whether gdb controls the inferior in asynchronous mode."), _("\
4120 Show whether gdb controls the inferior in asynchronous mode."), _("\
4121 Tells gdb whether to control the inferior in asynchronous mode."),
4122 maint_set_target_async_command,
4123 maint_show_target_async_command,
4124 &maintenance_set_cmdlist,
4125 &maintenance_show_cmdlist);
4126
4127 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4128 &target_non_stop_enabled_1, _("\
4129 Set whether gdb always controls the inferior in non-stop mode."), _("\
4130 Show whether gdb always controls the inferior in non-stop mode."), _("\
4131 Tells gdb whether to control the inferior in non-stop mode."),
4132 maint_set_target_non_stop_command,
4133 maint_show_target_non_stop_command,
4134 &maintenance_set_cmdlist,
4135 &maintenance_show_cmdlist);
4136
4137 add_setshow_boolean_cmd ("may-write-registers", class_support,
4138 &may_write_registers_1, _("\
4139 Set permission to write into registers."), _("\
4140 Show permission to write into registers."), _("\
4141 When this permission is on, GDB may write into the target's registers.\n\
4142 Otherwise, any sort of write attempt will result in an error."),
4143 set_target_permissions, NULL,
4144 &setlist, &showlist);
4145
4146 add_setshow_boolean_cmd ("may-write-memory", class_support,
4147 &may_write_memory_1, _("\
4148 Set permission to write into target memory."), _("\
4149 Show permission to write into target memory."), _("\
4150 When this permission is on, GDB may write into the target's memory.\n\
4151 Otherwise, any sort of write attempt will result in an error."),
4152 set_write_memory_permission, NULL,
4153 &setlist, &showlist);
4154
4155 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4156 &may_insert_breakpoints_1, _("\
4157 Set permission to insert breakpoints in the target."), _("\
4158 Show permission to insert breakpoints in the target."), _("\
4159 When this permission is on, GDB may insert breakpoints in the program.\n\
4160 Otherwise, any sort of insertion attempt will result in an error."),
4161 set_target_permissions, NULL,
4162 &setlist, &showlist);
4163
4164 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4165 &may_insert_tracepoints_1, _("\
4166 Set permission to insert tracepoints in the target."), _("\
4167 Show permission to insert tracepoints in the target."), _("\
4168 When this permission is on, GDB may insert tracepoints in the program.\n\
4169 Otherwise, any sort of insertion attempt will result in an error."),
4170 set_target_permissions, NULL,
4171 &setlist, &showlist);
4172
4173 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4174 &may_insert_fast_tracepoints_1, _("\
4175 Set permission to insert fast tracepoints in the target."), _("\
4176 Show permission to insert fast tracepoints in the target."), _("\
4177 When this permission is on, GDB may insert fast tracepoints.\n\
4178 Otherwise, any sort of insertion attempt will result in an error."),
4179 set_target_permissions, NULL,
4180 &setlist, &showlist);
4181
4182 add_setshow_boolean_cmd ("may-interrupt", class_support,
4183 &may_stop_1, _("\
4184 Set permission to interrupt or signal the target."), _("\
4185 Show permission to interrupt or signal the target."), _("\
4186 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4187 Otherwise, any attempt to interrupt or stop will be ignored."),
4188 set_target_permissions, NULL,
4189 &setlist, &showlist);
4190
4191 add_com ("flash-erase", no_class, flash_erase_command,
4192 _("Erase all flash memory regions."));
4193
4194 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4195 &auto_connect_native_target, _("\
4196 Set whether GDB may automatically connect to the native target."), _("\
4197 Show whether GDB may automatically connect to the native target."), _("\
4198 When on, and GDB is not connected to a target yet, GDB\n\
4199 attempts \"run\" and other commands with the native target."),
4200 NULL, show_auto_connect_native_target,
4201 &setlist, &showlist);
4202 }
This page took 0.144765 seconds and 4 git commands to generate.