Remote thread create/exit events
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46
47 static void target_info (char *, int);
48
49 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
51 static void default_terminal_info (struct target_ops *, const char *, int);
52
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
58
59 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
60
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
64 static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
67 static void default_mourn_inferior (struct target_ops *self);
68
69 static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
76 static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
80 static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
84
85 static int return_zero (struct target_ops *);
86
87 static int return_zero_has_execution (struct target_ops *, ptid_t);
88
89 static void target_command (char *, int);
90
91 static struct target_ops *find_default_run_target (char *);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
100 static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
103 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
105 static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
108 static struct target_ops debug_target;
109
110 #include "target-delegates.c"
111
112 static void init_dummy_target (void);
113
114 static void update_current_target (void);
115
116 /* Vector of existing target structures. */
117 typedef struct target_ops *target_ops_p;
118 DEF_VEC_P (target_ops_p);
119 static VEC (target_ops_p) *target_structs;
120
121 /* The initial current target, so that there is always a semi-valid
122 current target. */
123
124 static struct target_ops dummy_target;
125
126 /* Top of target stack. */
127
128 static struct target_ops *target_stack;
129
130 /* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133 struct target_ops current_target;
134
135 /* Command list for target. */
136
137 static struct cmd_list_element *targetlist = NULL;
138
139 /* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142 static int trust_readonly = 0;
143
144 /* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147 static int show_memory_breakpoints = 0;
148
149 /* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153 int may_write_registers = 1;
154
155 int may_write_memory = 1;
156
157 int may_insert_breakpoints = 1;
158
159 int may_insert_tracepoints = 1;
160
161 int may_insert_fast_tracepoints = 1;
162
163 int may_stop = 1;
164
165 /* Non-zero if we want to see trace of target level stuff. */
166
167 static unsigned int targetdebug = 0;
168
169 static void
170 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
171 {
172 update_current_target ();
173 }
174
175 static void
176 show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180 }
181
182 static void setup_target_debug (void);
183
184 /* The user just typed 'target' without the name of a target. */
185
186 static void
187 target_command (char *arg, int from_tty)
188 {
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191 }
192
193 /* Default target_has_* methods for process_stratum targets. */
194
195 int
196 default_child_has_all_memory (struct target_ops *ops)
197 {
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203 }
204
205 int
206 default_child_has_memory (struct target_ops *ops)
207 {
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213 }
214
215 int
216 default_child_has_stack (struct target_ops *ops)
217 {
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223 }
224
225 int
226 default_child_has_registers (struct target_ops *ops)
227 {
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233 }
234
235 int
236 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
237 {
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
240 if (ptid_equal (the_ptid, null_ptid))
241 return 0;
242
243 return 1;
244 }
245
246
247 int
248 target_has_all_memory_1 (void)
249 {
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257 }
258
259 int
260 target_has_memory_1 (void)
261 {
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269 }
270
271 int
272 target_has_stack_1 (void)
273 {
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281 }
282
283 int
284 target_has_registers_1 (void)
285 {
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293 }
294
295 int
296 target_has_execution_1 (ptid_t the_ptid)
297 {
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
301 if (t->to_has_execution (t, the_ptid))
302 return 1;
303
304 return 0;
305 }
306
307 int
308 target_has_execution_current (void)
309 {
310 return target_has_execution_1 (inferior_ptid);
311 }
312
313 /* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
315
316 void
317 complete_target_initialization (struct target_ops *t)
318 {
319 /* Provide default values for all "must have" methods. */
320
321 if (t->to_has_all_memory == NULL)
322 t->to_has_all_memory = return_zero;
323
324 if (t->to_has_memory == NULL)
325 t->to_has_memory = return_zero;
326
327 if (t->to_has_stack == NULL)
328 t->to_has_stack = return_zero;
329
330 if (t->to_has_registers == NULL)
331 t->to_has_registers = return_zero;
332
333 if (t->to_has_execution == NULL)
334 t->to_has_execution = return_zero_has_execution;
335
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
342 install_delegators (t);
343 }
344
345 /* This is used to implement the various target commands. */
346
347 static void
348 open_target (char *args, int from_tty, struct cmd_list_element *command)
349 {
350 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361 }
362
363 /* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367 void
368 add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370 {
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
374
375 VEC_safe_push (target_ops_p, target_structs, t);
376
377 if (targetlist == NULL)
378 add_prefix_cmd ("target", class_run, target_command, _("\
379 Connect to a target machine or process.\n\
380 The first argument is the type or protocol of the target machine.\n\
381 Remaining arguments are interpreted by the target protocol. For more\n\
382 information on the arguments for a particular protocol, type\n\
383 `help target ' followed by the protocol name."),
384 &targetlist, "target ", 0, &cmdlist);
385 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390 }
391
392 /* Add a possible target architecture to the list. */
393
394 void
395 add_target (struct target_ops *t)
396 {
397 add_target_with_completer (t, NULL);
398 }
399
400 /* See target.h. */
401
402 void
403 add_deprecated_target_alias (struct target_ops *t, char *alias)
404 {
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
410 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415 }
416
417 /* Stub functions */
418
419 void
420 target_kill (void)
421 {
422 current_target.to_kill (&current_target);
423 }
424
425 void
426 target_load (const char *arg, int from_tty)
427 {
428 target_dcache_invalidate ();
429 (*current_target.to_load) (&current_target, arg, from_tty);
430 }
431
432 /* Possible terminal states. */
433
434 enum terminal_state
435 {
436 /* The inferior's terminal settings are in effect. */
437 terminal_is_inferior = 0,
438
439 /* Some of our terminal settings are in effect, enough to get
440 proper output. */
441 terminal_is_ours_for_output = 1,
442
443 /* Our terminal settings are in effect, for output and input. */
444 terminal_is_ours = 2
445 };
446
447 static enum terminal_state terminal_state = terminal_is_ours;
448
449 /* See target.h. */
450
451 void
452 target_terminal_init (void)
453 {
454 (*current_target.to_terminal_init) (&current_target);
455
456 terminal_state = terminal_is_ours;
457 }
458
459 /* See target.h. */
460
461 int
462 target_terminal_is_inferior (void)
463 {
464 return (terminal_state == terminal_is_inferior);
465 }
466
467 /* See target.h. */
468
469 void
470 target_terminal_inferior (void)
471 {
472 /* A background resume (``run&'') should leave GDB in control of the
473 terminal. Use target_can_async_p, not target_is_async_p, since at
474 this point the target is not async yet. However, if sync_execution
475 is not set, we know it will become async prior to resume. */
476 if (target_can_async_p () && !sync_execution)
477 return;
478
479 if (terminal_state == terminal_is_inferior)
480 return;
481
482 /* If GDB is resuming the inferior in the foreground, install
483 inferior's terminal modes. */
484 (*current_target.to_terminal_inferior) (&current_target);
485 terminal_state = terminal_is_inferior;
486 }
487
488 /* See target.h. */
489
490 void
491 target_terminal_ours (void)
492 {
493 if (terminal_state == terminal_is_ours)
494 return;
495
496 (*current_target.to_terminal_ours) (&current_target);
497 terminal_state = terminal_is_ours;
498 }
499
500 /* See target.h. */
501
502 void
503 target_terminal_ours_for_output (void)
504 {
505 if (terminal_state != terminal_is_inferior)
506 return;
507 (*current_target.to_terminal_ours_for_output) (&current_target);
508 terminal_state = terminal_is_ours_for_output;
509 }
510
511 /* See target.h. */
512
513 int
514 target_supports_terminal_ours (void)
515 {
516 struct target_ops *t;
517
518 for (t = current_target.beneath; t != NULL; t = t->beneath)
519 {
520 if (t->to_terminal_ours != delegate_terminal_ours
521 && t->to_terminal_ours != tdefault_terminal_ours)
522 return 1;
523 }
524
525 return 0;
526 }
527
528 /* Restore the terminal to its previous state (helper for
529 make_cleanup_restore_target_terminal). */
530
531 static void
532 cleanup_restore_target_terminal (void *arg)
533 {
534 enum terminal_state *previous_state = (enum terminal_state *) arg;
535
536 switch (*previous_state)
537 {
538 case terminal_is_ours:
539 target_terminal_ours ();
540 break;
541 case terminal_is_ours_for_output:
542 target_terminal_ours_for_output ();
543 break;
544 case terminal_is_inferior:
545 target_terminal_inferior ();
546 break;
547 }
548 }
549
550 /* See target.h. */
551
552 struct cleanup *
553 make_cleanup_restore_target_terminal (void)
554 {
555 enum terminal_state *ts = XNEW (enum terminal_state);
556
557 *ts = terminal_state;
558
559 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
560 }
561
562 static void
563 tcomplain (void)
564 {
565 error (_("You can't do that when your target is `%s'"),
566 current_target.to_shortname);
567 }
568
569 void
570 noprocess (void)
571 {
572 error (_("You can't do that without a process to debug."));
573 }
574
575 static void
576 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
577 {
578 printf_unfiltered (_("No saved terminal information.\n"));
579 }
580
581 /* A default implementation for the to_get_ada_task_ptid target method.
582
583 This function builds the PTID by using both LWP and TID as part of
584 the PTID lwp and tid elements. The pid used is the pid of the
585 inferior_ptid. */
586
587 static ptid_t
588 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
589 {
590 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
591 }
592
593 static enum exec_direction_kind
594 default_execution_direction (struct target_ops *self)
595 {
596 if (!target_can_execute_reverse)
597 return EXEC_FORWARD;
598 else if (!target_can_async_p ())
599 return EXEC_FORWARD;
600 else
601 gdb_assert_not_reached ("\
602 to_execution_direction must be implemented for reverse async");
603 }
604
605 /* Go through the target stack from top to bottom, copying over zero
606 entries in current_target, then filling in still empty entries. In
607 effect, we are doing class inheritance through the pushed target
608 vectors.
609
610 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
611 is currently implemented, is that it discards any knowledge of
612 which target an inherited method originally belonged to.
613 Consequently, new new target methods should instead explicitly and
614 locally search the target stack for the target that can handle the
615 request. */
616
617 static void
618 update_current_target (void)
619 {
620 struct target_ops *t;
621
622 /* First, reset current's contents. */
623 memset (&current_target, 0, sizeof (current_target));
624
625 /* Install the delegators. */
626 install_delegators (&current_target);
627
628 current_target.to_stratum = target_stack->to_stratum;
629
630 #define INHERIT(FIELD, TARGET) \
631 if (!current_target.FIELD) \
632 current_target.FIELD = (TARGET)->FIELD
633
634 /* Do not add any new INHERITs here. Instead, use the delegation
635 mechanism provided by make-target-delegates. */
636 for (t = target_stack; t; t = t->beneath)
637 {
638 INHERIT (to_shortname, t);
639 INHERIT (to_longname, t);
640 INHERIT (to_attach_no_wait, t);
641 INHERIT (to_have_steppable_watchpoint, t);
642 INHERIT (to_have_continuable_watchpoint, t);
643 INHERIT (to_has_thread_control, t);
644 }
645 #undef INHERIT
646
647 /* Finally, position the target-stack beneath the squashed
648 "current_target". That way code looking for a non-inherited
649 target method can quickly and simply find it. */
650 current_target.beneath = target_stack;
651
652 if (targetdebug)
653 setup_target_debug ();
654 }
655
656 /* Push a new target type into the stack of the existing target accessors,
657 possibly superseding some of the existing accessors.
658
659 Rather than allow an empty stack, we always have the dummy target at
660 the bottom stratum, so we can call the function vectors without
661 checking them. */
662
663 void
664 push_target (struct target_ops *t)
665 {
666 struct target_ops **cur;
667
668 /* Check magic number. If wrong, it probably means someone changed
669 the struct definition, but not all the places that initialize one. */
670 if (t->to_magic != OPS_MAGIC)
671 {
672 fprintf_unfiltered (gdb_stderr,
673 "Magic number of %s target struct wrong\n",
674 t->to_shortname);
675 internal_error (__FILE__, __LINE__,
676 _("failed internal consistency check"));
677 }
678
679 /* Find the proper stratum to install this target in. */
680 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
681 {
682 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
683 break;
684 }
685
686 /* If there's already targets at this stratum, remove them. */
687 /* FIXME: cagney/2003-10-15: I think this should be popping all
688 targets to CUR, and not just those at this stratum level. */
689 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
690 {
691 /* There's already something at this stratum level. Close it,
692 and un-hook it from the stack. */
693 struct target_ops *tmp = (*cur);
694
695 (*cur) = (*cur)->beneath;
696 tmp->beneath = NULL;
697 target_close (tmp);
698 }
699
700 /* We have removed all targets in our stratum, now add the new one. */
701 t->beneath = (*cur);
702 (*cur) = t;
703
704 update_current_target ();
705 }
706
707 /* Remove a target_ops vector from the stack, wherever it may be.
708 Return how many times it was removed (0 or 1). */
709
710 int
711 unpush_target (struct target_ops *t)
712 {
713 struct target_ops **cur;
714 struct target_ops *tmp;
715
716 if (t->to_stratum == dummy_stratum)
717 internal_error (__FILE__, __LINE__,
718 _("Attempt to unpush the dummy target"));
719
720 /* Look for the specified target. Note that we assume that a target
721 can only occur once in the target stack. */
722
723 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
724 {
725 if ((*cur) == t)
726 break;
727 }
728
729 /* If we don't find target_ops, quit. Only open targets should be
730 closed. */
731 if ((*cur) == NULL)
732 return 0;
733
734 /* Unchain the target. */
735 tmp = (*cur);
736 (*cur) = (*cur)->beneath;
737 tmp->beneath = NULL;
738
739 update_current_target ();
740
741 /* Finally close the target. Note we do this after unchaining, so
742 any target method calls from within the target_close
743 implementation don't end up in T anymore. */
744 target_close (t);
745
746 return 1;
747 }
748
749 /* Unpush TARGET and assert that it worked. */
750
751 static void
752 unpush_target_and_assert (struct target_ops *target)
753 {
754 if (!unpush_target (target))
755 {
756 fprintf_unfiltered (gdb_stderr,
757 "pop_all_targets couldn't find target %s\n",
758 target->to_shortname);
759 internal_error (__FILE__, __LINE__,
760 _("failed internal consistency check"));
761 }
762 }
763
764 void
765 pop_all_targets_above (enum strata above_stratum)
766 {
767 while ((int) (current_target.to_stratum) > (int) above_stratum)
768 unpush_target_and_assert (target_stack);
769 }
770
771 /* See target.h. */
772
773 void
774 pop_all_targets_at_and_above (enum strata stratum)
775 {
776 while ((int) (current_target.to_stratum) >= (int) stratum)
777 unpush_target_and_assert (target_stack);
778 }
779
780 void
781 pop_all_targets (void)
782 {
783 pop_all_targets_above (dummy_stratum);
784 }
785
786 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
787
788 int
789 target_is_pushed (struct target_ops *t)
790 {
791 struct target_ops *cur;
792
793 /* Check magic number. If wrong, it probably means someone changed
794 the struct definition, but not all the places that initialize one. */
795 if (t->to_magic != OPS_MAGIC)
796 {
797 fprintf_unfiltered (gdb_stderr,
798 "Magic number of %s target struct wrong\n",
799 t->to_shortname);
800 internal_error (__FILE__, __LINE__,
801 _("failed internal consistency check"));
802 }
803
804 for (cur = target_stack; cur != NULL; cur = cur->beneath)
805 if (cur == t)
806 return 1;
807
808 return 0;
809 }
810
811 /* Default implementation of to_get_thread_local_address. */
812
813 static void
814 generic_tls_error (void)
815 {
816 throw_error (TLS_GENERIC_ERROR,
817 _("Cannot find thread-local variables on this target"));
818 }
819
820 /* Using the objfile specified in OBJFILE, find the address for the
821 current thread's thread-local storage with offset OFFSET. */
822 CORE_ADDR
823 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
824 {
825 volatile CORE_ADDR addr = 0;
826 struct target_ops *target = &current_target;
827
828 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
829 {
830 ptid_t ptid = inferior_ptid;
831
832 TRY
833 {
834 CORE_ADDR lm_addr;
835
836 /* Fetch the load module address for this objfile. */
837 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
838 objfile);
839
840 addr = target->to_get_thread_local_address (target, ptid,
841 lm_addr, offset);
842 }
843 /* If an error occurred, print TLS related messages here. Otherwise,
844 throw the error to some higher catcher. */
845 CATCH (ex, RETURN_MASK_ALL)
846 {
847 int objfile_is_library = (objfile->flags & OBJF_SHARED);
848
849 switch (ex.error)
850 {
851 case TLS_NO_LIBRARY_SUPPORT_ERROR:
852 error (_("Cannot find thread-local variables "
853 "in this thread library."));
854 break;
855 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
856 if (objfile_is_library)
857 error (_("Cannot find shared library `%s' in dynamic"
858 " linker's load module list"), objfile_name (objfile));
859 else
860 error (_("Cannot find executable file `%s' in dynamic"
861 " linker's load module list"), objfile_name (objfile));
862 break;
863 case TLS_NOT_ALLOCATED_YET_ERROR:
864 if (objfile_is_library)
865 error (_("The inferior has not yet allocated storage for"
866 " thread-local variables in\n"
867 "the shared library `%s'\n"
868 "for %s"),
869 objfile_name (objfile), target_pid_to_str (ptid));
870 else
871 error (_("The inferior has not yet allocated storage for"
872 " thread-local variables in\n"
873 "the executable `%s'\n"
874 "for %s"),
875 objfile_name (objfile), target_pid_to_str (ptid));
876 break;
877 case TLS_GENERIC_ERROR:
878 if (objfile_is_library)
879 error (_("Cannot find thread-local storage for %s, "
880 "shared library %s:\n%s"),
881 target_pid_to_str (ptid),
882 objfile_name (objfile), ex.message);
883 else
884 error (_("Cannot find thread-local storage for %s, "
885 "executable file %s:\n%s"),
886 target_pid_to_str (ptid),
887 objfile_name (objfile), ex.message);
888 break;
889 default:
890 throw_exception (ex);
891 break;
892 }
893 }
894 END_CATCH
895 }
896 /* It wouldn't be wrong here to try a gdbarch method, too; finding
897 TLS is an ABI-specific thing. But we don't do that yet. */
898 else
899 error (_("Cannot find thread-local variables on this target"));
900
901 return addr;
902 }
903
904 const char *
905 target_xfer_status_to_string (enum target_xfer_status status)
906 {
907 #define CASE(X) case X: return #X
908 switch (status)
909 {
910 CASE(TARGET_XFER_E_IO);
911 CASE(TARGET_XFER_UNAVAILABLE);
912 default:
913 return "<unknown>";
914 }
915 #undef CASE
916 };
917
918
919 #undef MIN
920 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
921
922 /* target_read_string -- read a null terminated string, up to LEN bytes,
923 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
924 Set *STRING to a pointer to malloc'd memory containing the data; the caller
925 is responsible for freeing it. Return the number of bytes successfully
926 read. */
927
928 int
929 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
930 {
931 int tlen, offset, i;
932 gdb_byte buf[4];
933 int errcode = 0;
934 char *buffer;
935 int buffer_allocated;
936 char *bufptr;
937 unsigned int nbytes_read = 0;
938
939 gdb_assert (string);
940
941 /* Small for testing. */
942 buffer_allocated = 4;
943 buffer = (char *) xmalloc (buffer_allocated);
944 bufptr = buffer;
945
946 while (len > 0)
947 {
948 tlen = MIN (len, 4 - (memaddr & 3));
949 offset = memaddr & 3;
950
951 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
952 if (errcode != 0)
953 {
954 /* The transfer request might have crossed the boundary to an
955 unallocated region of memory. Retry the transfer, requesting
956 a single byte. */
957 tlen = 1;
958 offset = 0;
959 errcode = target_read_memory (memaddr, buf, 1);
960 if (errcode != 0)
961 goto done;
962 }
963
964 if (bufptr - buffer + tlen > buffer_allocated)
965 {
966 unsigned int bytes;
967
968 bytes = bufptr - buffer;
969 buffer_allocated *= 2;
970 buffer = (char *) xrealloc (buffer, buffer_allocated);
971 bufptr = buffer + bytes;
972 }
973
974 for (i = 0; i < tlen; i++)
975 {
976 *bufptr++ = buf[i + offset];
977 if (buf[i + offset] == '\000')
978 {
979 nbytes_read += i + 1;
980 goto done;
981 }
982 }
983
984 memaddr += tlen;
985 len -= tlen;
986 nbytes_read += tlen;
987 }
988 done:
989 *string = buffer;
990 if (errnop != NULL)
991 *errnop = errcode;
992 return nbytes_read;
993 }
994
995 struct target_section_table *
996 target_get_section_table (struct target_ops *target)
997 {
998 return (*target->to_get_section_table) (target);
999 }
1000
1001 /* Find a section containing ADDR. */
1002
1003 struct target_section *
1004 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1005 {
1006 struct target_section_table *table = target_get_section_table (target);
1007 struct target_section *secp;
1008
1009 if (table == NULL)
1010 return NULL;
1011
1012 for (secp = table->sections; secp < table->sections_end; secp++)
1013 {
1014 if (addr >= secp->addr && addr < secp->endaddr)
1015 return secp;
1016 }
1017 return NULL;
1018 }
1019
1020
1021 /* Helper for the memory xfer routines. Checks the attributes of the
1022 memory region of MEMADDR against the read or write being attempted.
1023 If the access is permitted returns true, otherwise returns false.
1024 REGION_P is an optional output parameter. If not-NULL, it is
1025 filled with a pointer to the memory region of MEMADDR. REG_LEN
1026 returns LEN trimmed to the end of the region. This is how much the
1027 caller can continue requesting, if the access is permitted. A
1028 single xfer request must not straddle memory region boundaries. */
1029
1030 static int
1031 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1032 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1033 struct mem_region **region_p)
1034 {
1035 struct mem_region *region;
1036
1037 region = lookup_mem_region (memaddr);
1038
1039 if (region_p != NULL)
1040 *region_p = region;
1041
1042 switch (region->attrib.mode)
1043 {
1044 case MEM_RO:
1045 if (writebuf != NULL)
1046 return 0;
1047 break;
1048
1049 case MEM_WO:
1050 if (readbuf != NULL)
1051 return 0;
1052 break;
1053
1054 case MEM_FLASH:
1055 /* We only support writing to flash during "load" for now. */
1056 if (writebuf != NULL)
1057 error (_("Writing to flash memory forbidden in this context"));
1058 break;
1059
1060 case MEM_NONE:
1061 return 0;
1062 }
1063
1064 /* region->hi == 0 means there's no upper bound. */
1065 if (memaddr + len < region->hi || region->hi == 0)
1066 *reg_len = len;
1067 else
1068 *reg_len = region->hi - memaddr;
1069
1070 return 1;
1071 }
1072
1073 /* Read memory from more than one valid target. A core file, for
1074 instance, could have some of memory but delegate other bits to
1075 the target below it. So, we must manually try all targets. */
1076
1077 enum target_xfer_status
1078 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1079 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1080 ULONGEST *xfered_len)
1081 {
1082 enum target_xfer_status res;
1083
1084 do
1085 {
1086 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1087 readbuf, writebuf, memaddr, len,
1088 xfered_len);
1089 if (res == TARGET_XFER_OK)
1090 break;
1091
1092 /* Stop if the target reports that the memory is not available. */
1093 if (res == TARGET_XFER_UNAVAILABLE)
1094 break;
1095
1096 /* We want to continue past core files to executables, but not
1097 past a running target's memory. */
1098 if (ops->to_has_all_memory (ops))
1099 break;
1100
1101 ops = ops->beneath;
1102 }
1103 while (ops != NULL);
1104
1105 /* The cache works at the raw memory level. Make sure the cache
1106 gets updated with raw contents no matter what kind of memory
1107 object was originally being written. Note we do write-through
1108 first, so that if it fails, we don't write to the cache contents
1109 that never made it to the target. */
1110 if (writebuf != NULL
1111 && !ptid_equal (inferior_ptid, null_ptid)
1112 && target_dcache_init_p ()
1113 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1114 {
1115 DCACHE *dcache = target_dcache_get ();
1116
1117 /* Note that writing to an area of memory which wasn't present
1118 in the cache doesn't cause it to be loaded in. */
1119 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1120 }
1121
1122 return res;
1123 }
1124
1125 /* Perform a partial memory transfer.
1126 For docs see target.h, to_xfer_partial. */
1127
1128 static enum target_xfer_status
1129 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1130 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1131 ULONGEST len, ULONGEST *xfered_len)
1132 {
1133 enum target_xfer_status res;
1134 ULONGEST reg_len;
1135 struct mem_region *region;
1136 struct inferior *inf;
1137
1138 /* For accesses to unmapped overlay sections, read directly from
1139 files. Must do this first, as MEMADDR may need adjustment. */
1140 if (readbuf != NULL && overlay_debugging)
1141 {
1142 struct obj_section *section = find_pc_overlay (memaddr);
1143
1144 if (pc_in_unmapped_range (memaddr, section))
1145 {
1146 struct target_section_table *table
1147 = target_get_section_table (ops);
1148 const char *section_name = section->the_bfd_section->name;
1149
1150 memaddr = overlay_mapped_address (memaddr, section);
1151 return section_table_xfer_memory_partial (readbuf, writebuf,
1152 memaddr, len, xfered_len,
1153 table->sections,
1154 table->sections_end,
1155 section_name);
1156 }
1157 }
1158
1159 /* Try the executable files, if "trust-readonly-sections" is set. */
1160 if (readbuf != NULL && trust_readonly)
1161 {
1162 struct target_section *secp;
1163 struct target_section_table *table;
1164
1165 secp = target_section_by_addr (ops, memaddr);
1166 if (secp != NULL
1167 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1168 secp->the_bfd_section)
1169 & SEC_READONLY))
1170 {
1171 table = target_get_section_table (ops);
1172 return section_table_xfer_memory_partial (readbuf, writebuf,
1173 memaddr, len, xfered_len,
1174 table->sections,
1175 table->sections_end,
1176 NULL);
1177 }
1178 }
1179
1180 /* Try GDB's internal data cache. */
1181
1182 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1183 &region))
1184 return TARGET_XFER_E_IO;
1185
1186 if (!ptid_equal (inferior_ptid, null_ptid))
1187 inf = find_inferior_ptid (inferior_ptid);
1188 else
1189 inf = NULL;
1190
1191 if (inf != NULL
1192 && readbuf != NULL
1193 /* The dcache reads whole cache lines; that doesn't play well
1194 with reading from a trace buffer, because reading outside of
1195 the collected memory range fails. */
1196 && get_traceframe_number () == -1
1197 && (region->attrib.cache
1198 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1199 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1200 {
1201 DCACHE *dcache = target_dcache_get_or_init ();
1202
1203 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1204 reg_len, xfered_len);
1205 }
1206
1207 /* If none of those methods found the memory we wanted, fall back
1208 to a target partial transfer. Normally a single call to
1209 to_xfer_partial is enough; if it doesn't recognize an object
1210 it will call the to_xfer_partial of the next target down.
1211 But for memory this won't do. Memory is the only target
1212 object which can be read from more than one valid target.
1213 A core file, for instance, could have some of memory but
1214 delegate other bits to the target below it. So, we must
1215 manually try all targets. */
1216
1217 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1218 xfered_len);
1219
1220 /* If we still haven't got anything, return the last error. We
1221 give up. */
1222 return res;
1223 }
1224
1225 /* Perform a partial memory transfer. For docs see target.h,
1226 to_xfer_partial. */
1227
1228 static enum target_xfer_status
1229 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1230 gdb_byte *readbuf, const gdb_byte *writebuf,
1231 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1232 {
1233 enum target_xfer_status res;
1234
1235 /* Zero length requests are ok and require no work. */
1236 if (len == 0)
1237 return TARGET_XFER_EOF;
1238
1239 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1240 breakpoint insns, thus hiding out from higher layers whether
1241 there are software breakpoints inserted in the code stream. */
1242 if (readbuf != NULL)
1243 {
1244 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1245 xfered_len);
1246
1247 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1248 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1249 }
1250 else
1251 {
1252 gdb_byte *buf;
1253 struct cleanup *old_chain;
1254
1255 /* A large write request is likely to be partially satisfied
1256 by memory_xfer_partial_1. We will continually malloc
1257 and free a copy of the entire write request for breakpoint
1258 shadow handling even though we only end up writing a small
1259 subset of it. Cap writes to 4KB to mitigate this. */
1260 len = min (4096, len);
1261
1262 buf = (gdb_byte *) xmalloc (len);
1263 old_chain = make_cleanup (xfree, buf);
1264 memcpy (buf, writebuf, len);
1265
1266 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1267 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1268 xfered_len);
1269
1270 do_cleanups (old_chain);
1271 }
1272
1273 return res;
1274 }
1275
1276 static void
1277 restore_show_memory_breakpoints (void *arg)
1278 {
1279 show_memory_breakpoints = (uintptr_t) arg;
1280 }
1281
1282 struct cleanup *
1283 make_show_memory_breakpoints_cleanup (int show)
1284 {
1285 int current = show_memory_breakpoints;
1286
1287 show_memory_breakpoints = show;
1288 return make_cleanup (restore_show_memory_breakpoints,
1289 (void *) (uintptr_t) current);
1290 }
1291
1292 /* For docs see target.h, to_xfer_partial. */
1293
1294 enum target_xfer_status
1295 target_xfer_partial (struct target_ops *ops,
1296 enum target_object object, const char *annex,
1297 gdb_byte *readbuf, const gdb_byte *writebuf,
1298 ULONGEST offset, ULONGEST len,
1299 ULONGEST *xfered_len)
1300 {
1301 enum target_xfer_status retval;
1302
1303 gdb_assert (ops->to_xfer_partial != NULL);
1304
1305 /* Transfer is done when LEN is zero. */
1306 if (len == 0)
1307 return TARGET_XFER_EOF;
1308
1309 if (writebuf && !may_write_memory)
1310 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1311 core_addr_to_string_nz (offset), plongest (len));
1312
1313 *xfered_len = 0;
1314
1315 /* If this is a memory transfer, let the memory-specific code
1316 have a look at it instead. Memory transfers are more
1317 complicated. */
1318 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1319 || object == TARGET_OBJECT_CODE_MEMORY)
1320 retval = memory_xfer_partial (ops, object, readbuf,
1321 writebuf, offset, len, xfered_len);
1322 else if (object == TARGET_OBJECT_RAW_MEMORY)
1323 {
1324 /* Skip/avoid accessing the target if the memory region
1325 attributes block the access. Check this here instead of in
1326 raw_memory_xfer_partial as otherwise we'd end up checking
1327 this twice in the case of the memory_xfer_partial path is
1328 taken; once before checking the dcache, and another in the
1329 tail call to raw_memory_xfer_partial. */
1330 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1331 NULL))
1332 return TARGET_XFER_E_IO;
1333
1334 /* Request the normal memory object from other layers. */
1335 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1336 xfered_len);
1337 }
1338 else
1339 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1340 writebuf, offset, len, xfered_len);
1341
1342 if (targetdebug)
1343 {
1344 const unsigned char *myaddr = NULL;
1345
1346 fprintf_unfiltered (gdb_stdlog,
1347 "%s:target_xfer_partial "
1348 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1349 ops->to_shortname,
1350 (int) object,
1351 (annex ? annex : "(null)"),
1352 host_address_to_string (readbuf),
1353 host_address_to_string (writebuf),
1354 core_addr_to_string_nz (offset),
1355 pulongest (len), retval,
1356 pulongest (*xfered_len));
1357
1358 if (readbuf)
1359 myaddr = readbuf;
1360 if (writebuf)
1361 myaddr = writebuf;
1362 if (retval == TARGET_XFER_OK && myaddr != NULL)
1363 {
1364 int i;
1365
1366 fputs_unfiltered (", bytes =", gdb_stdlog);
1367 for (i = 0; i < *xfered_len; i++)
1368 {
1369 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1370 {
1371 if (targetdebug < 2 && i > 0)
1372 {
1373 fprintf_unfiltered (gdb_stdlog, " ...");
1374 break;
1375 }
1376 fprintf_unfiltered (gdb_stdlog, "\n");
1377 }
1378
1379 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1380 }
1381 }
1382
1383 fputc_unfiltered ('\n', gdb_stdlog);
1384 }
1385
1386 /* Check implementations of to_xfer_partial update *XFERED_LEN
1387 properly. Do assertion after printing debug messages, so that we
1388 can find more clues on assertion failure from debugging messages. */
1389 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1390 gdb_assert (*xfered_len > 0);
1391
1392 return retval;
1393 }
1394
1395 /* Read LEN bytes of target memory at address MEMADDR, placing the
1396 results in GDB's memory at MYADDR. Returns either 0 for success or
1397 -1 if any error occurs.
1398
1399 If an error occurs, no guarantee is made about the contents of the data at
1400 MYADDR. In particular, the caller should not depend upon partial reads
1401 filling the buffer with good data. There is no way for the caller to know
1402 how much good data might have been transfered anyway. Callers that can
1403 deal with partial reads should call target_read (which will retry until
1404 it makes no progress, and then return how much was transferred). */
1405
1406 int
1407 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1408 {
1409 /* Dispatch to the topmost target, not the flattened current_target.
1410 Memory accesses check target->to_has_(all_)memory, and the
1411 flattened target doesn't inherit those. */
1412 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1413 myaddr, memaddr, len) == len)
1414 return 0;
1415 else
1416 return -1;
1417 }
1418
1419 /* See target/target.h. */
1420
1421 int
1422 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1423 {
1424 gdb_byte buf[4];
1425 int r;
1426
1427 r = target_read_memory (memaddr, buf, sizeof buf);
1428 if (r != 0)
1429 return r;
1430 *result = extract_unsigned_integer (buf, sizeof buf,
1431 gdbarch_byte_order (target_gdbarch ()));
1432 return 0;
1433 }
1434
1435 /* Like target_read_memory, but specify explicitly that this is a read
1436 from the target's raw memory. That is, this read bypasses the
1437 dcache, breakpoint shadowing, etc. */
1438
1439 int
1440 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1441 {
1442 /* See comment in target_read_memory about why the request starts at
1443 current_target.beneath. */
1444 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1445 myaddr, memaddr, len) == len)
1446 return 0;
1447 else
1448 return -1;
1449 }
1450
1451 /* Like target_read_memory, but specify explicitly that this is a read from
1452 the target's stack. This may trigger different cache behavior. */
1453
1454 int
1455 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1456 {
1457 /* See comment in target_read_memory about why the request starts at
1458 current_target.beneath. */
1459 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1460 myaddr, memaddr, len) == len)
1461 return 0;
1462 else
1463 return -1;
1464 }
1465
1466 /* Like target_read_memory, but specify explicitly that this is a read from
1467 the target's code. This may trigger different cache behavior. */
1468
1469 int
1470 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1471 {
1472 /* See comment in target_read_memory about why the request starts at
1473 current_target.beneath. */
1474 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1475 myaddr, memaddr, len) == len)
1476 return 0;
1477 else
1478 return -1;
1479 }
1480
1481 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1482 Returns either 0 for success or -1 if any error occurs. If an
1483 error occurs, no guarantee is made about how much data got written.
1484 Callers that can deal with partial writes should call
1485 target_write. */
1486
1487 int
1488 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1489 {
1490 /* See comment in target_read_memory about why the request starts at
1491 current_target.beneath. */
1492 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1493 myaddr, memaddr, len) == len)
1494 return 0;
1495 else
1496 return -1;
1497 }
1498
1499 /* Write LEN bytes from MYADDR to target raw memory at address
1500 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1501 If an error occurs, no guarantee is made about how much data got
1502 written. Callers that can deal with partial writes should call
1503 target_write. */
1504
1505 int
1506 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1507 {
1508 /* See comment in target_read_memory about why the request starts at
1509 current_target.beneath. */
1510 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1511 myaddr, memaddr, len) == len)
1512 return 0;
1513 else
1514 return -1;
1515 }
1516
1517 /* Fetch the target's memory map. */
1518
1519 VEC(mem_region_s) *
1520 target_memory_map (void)
1521 {
1522 VEC(mem_region_s) *result;
1523 struct mem_region *last_one, *this_one;
1524 int ix;
1525 struct target_ops *t;
1526
1527 result = current_target.to_memory_map (&current_target);
1528 if (result == NULL)
1529 return NULL;
1530
1531 qsort (VEC_address (mem_region_s, result),
1532 VEC_length (mem_region_s, result),
1533 sizeof (struct mem_region), mem_region_cmp);
1534
1535 /* Check that regions do not overlap. Simultaneously assign
1536 a numbering for the "mem" commands to use to refer to
1537 each region. */
1538 last_one = NULL;
1539 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1540 {
1541 this_one->number = ix;
1542
1543 if (last_one && last_one->hi > this_one->lo)
1544 {
1545 warning (_("Overlapping regions in memory map: ignoring"));
1546 VEC_free (mem_region_s, result);
1547 return NULL;
1548 }
1549 last_one = this_one;
1550 }
1551
1552 return result;
1553 }
1554
1555 void
1556 target_flash_erase (ULONGEST address, LONGEST length)
1557 {
1558 current_target.to_flash_erase (&current_target, address, length);
1559 }
1560
1561 void
1562 target_flash_done (void)
1563 {
1564 current_target.to_flash_done (&current_target);
1565 }
1566
1567 static void
1568 show_trust_readonly (struct ui_file *file, int from_tty,
1569 struct cmd_list_element *c, const char *value)
1570 {
1571 fprintf_filtered (file,
1572 _("Mode for reading from readonly sections is %s.\n"),
1573 value);
1574 }
1575
1576 /* Target vector read/write partial wrapper functions. */
1577
1578 static enum target_xfer_status
1579 target_read_partial (struct target_ops *ops,
1580 enum target_object object,
1581 const char *annex, gdb_byte *buf,
1582 ULONGEST offset, ULONGEST len,
1583 ULONGEST *xfered_len)
1584 {
1585 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1586 xfered_len);
1587 }
1588
1589 static enum target_xfer_status
1590 target_write_partial (struct target_ops *ops,
1591 enum target_object object,
1592 const char *annex, const gdb_byte *buf,
1593 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1594 {
1595 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1596 xfered_len);
1597 }
1598
1599 /* Wrappers to perform the full transfer. */
1600
1601 /* For docs on target_read see target.h. */
1602
1603 LONGEST
1604 target_read (struct target_ops *ops,
1605 enum target_object object,
1606 const char *annex, gdb_byte *buf,
1607 ULONGEST offset, LONGEST len)
1608 {
1609 LONGEST xfered_total = 0;
1610 int unit_size = 1;
1611
1612 /* If we are reading from a memory object, find the length of an addressable
1613 unit for that architecture. */
1614 if (object == TARGET_OBJECT_MEMORY
1615 || object == TARGET_OBJECT_STACK_MEMORY
1616 || object == TARGET_OBJECT_CODE_MEMORY
1617 || object == TARGET_OBJECT_RAW_MEMORY)
1618 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1619
1620 while (xfered_total < len)
1621 {
1622 ULONGEST xfered_partial;
1623 enum target_xfer_status status;
1624
1625 status = target_read_partial (ops, object, annex,
1626 buf + xfered_total * unit_size,
1627 offset + xfered_total, len - xfered_total,
1628 &xfered_partial);
1629
1630 /* Call an observer, notifying them of the xfer progress? */
1631 if (status == TARGET_XFER_EOF)
1632 return xfered_total;
1633 else if (status == TARGET_XFER_OK)
1634 {
1635 xfered_total += xfered_partial;
1636 QUIT;
1637 }
1638 else
1639 return TARGET_XFER_E_IO;
1640
1641 }
1642 return len;
1643 }
1644
1645 /* Assuming that the entire [begin, end) range of memory cannot be
1646 read, try to read whatever subrange is possible to read.
1647
1648 The function returns, in RESULT, either zero or one memory block.
1649 If there's a readable subrange at the beginning, it is completely
1650 read and returned. Any further readable subrange will not be read.
1651 Otherwise, if there's a readable subrange at the end, it will be
1652 completely read and returned. Any readable subranges before it
1653 (obviously, not starting at the beginning), will be ignored. In
1654 other cases -- either no readable subrange, or readable subrange(s)
1655 that is neither at the beginning, or end, nothing is returned.
1656
1657 The purpose of this function is to handle a read across a boundary
1658 of accessible memory in a case when memory map is not available.
1659 The above restrictions are fine for this case, but will give
1660 incorrect results if the memory is 'patchy'. However, supporting
1661 'patchy' memory would require trying to read every single byte,
1662 and it seems unacceptable solution. Explicit memory map is
1663 recommended for this case -- and target_read_memory_robust will
1664 take care of reading multiple ranges then. */
1665
1666 static void
1667 read_whatever_is_readable (struct target_ops *ops,
1668 const ULONGEST begin, const ULONGEST end,
1669 int unit_size,
1670 VEC(memory_read_result_s) **result)
1671 {
1672 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1673 ULONGEST current_begin = begin;
1674 ULONGEST current_end = end;
1675 int forward;
1676 memory_read_result_s r;
1677 ULONGEST xfered_len;
1678
1679 /* If we previously failed to read 1 byte, nothing can be done here. */
1680 if (end - begin <= 1)
1681 {
1682 xfree (buf);
1683 return;
1684 }
1685
1686 /* Check that either first or the last byte is readable, and give up
1687 if not. This heuristic is meant to permit reading accessible memory
1688 at the boundary of accessible region. */
1689 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1690 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1691 {
1692 forward = 1;
1693 ++current_begin;
1694 }
1695 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1696 buf + (end - begin) - 1, end - 1, 1,
1697 &xfered_len) == TARGET_XFER_OK)
1698 {
1699 forward = 0;
1700 --current_end;
1701 }
1702 else
1703 {
1704 xfree (buf);
1705 return;
1706 }
1707
1708 /* Loop invariant is that the [current_begin, current_end) was previously
1709 found to be not readable as a whole.
1710
1711 Note loop condition -- if the range has 1 byte, we can't divide the range
1712 so there's no point trying further. */
1713 while (current_end - current_begin > 1)
1714 {
1715 ULONGEST first_half_begin, first_half_end;
1716 ULONGEST second_half_begin, second_half_end;
1717 LONGEST xfer;
1718 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1719
1720 if (forward)
1721 {
1722 first_half_begin = current_begin;
1723 first_half_end = middle;
1724 second_half_begin = middle;
1725 second_half_end = current_end;
1726 }
1727 else
1728 {
1729 first_half_begin = middle;
1730 first_half_end = current_end;
1731 second_half_begin = current_begin;
1732 second_half_end = middle;
1733 }
1734
1735 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1736 buf + (first_half_begin - begin) * unit_size,
1737 first_half_begin,
1738 first_half_end - first_half_begin);
1739
1740 if (xfer == first_half_end - first_half_begin)
1741 {
1742 /* This half reads up fine. So, the error must be in the
1743 other half. */
1744 current_begin = second_half_begin;
1745 current_end = second_half_end;
1746 }
1747 else
1748 {
1749 /* This half is not readable. Because we've tried one byte, we
1750 know some part of this half if actually readable. Go to the next
1751 iteration to divide again and try to read.
1752
1753 We don't handle the other half, because this function only tries
1754 to read a single readable subrange. */
1755 current_begin = first_half_begin;
1756 current_end = first_half_end;
1757 }
1758 }
1759
1760 if (forward)
1761 {
1762 /* The [begin, current_begin) range has been read. */
1763 r.begin = begin;
1764 r.end = current_begin;
1765 r.data = buf;
1766 }
1767 else
1768 {
1769 /* The [current_end, end) range has been read. */
1770 LONGEST region_len = end - current_end;
1771
1772 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1773 memcpy (r.data, buf + (current_end - begin) * unit_size,
1774 region_len * unit_size);
1775 r.begin = current_end;
1776 r.end = end;
1777 xfree (buf);
1778 }
1779 VEC_safe_push(memory_read_result_s, (*result), &r);
1780 }
1781
1782 void
1783 free_memory_read_result_vector (void *x)
1784 {
1785 VEC(memory_read_result_s) *v = (VEC(memory_read_result_s) *) x;
1786 memory_read_result_s *current;
1787 int ix;
1788
1789 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1790 {
1791 xfree (current->data);
1792 }
1793 VEC_free (memory_read_result_s, v);
1794 }
1795
1796 VEC(memory_read_result_s) *
1797 read_memory_robust (struct target_ops *ops,
1798 const ULONGEST offset, const LONGEST len)
1799 {
1800 VEC(memory_read_result_s) *result = 0;
1801 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1802
1803 LONGEST xfered_total = 0;
1804 while (xfered_total < len)
1805 {
1806 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1807 LONGEST region_len;
1808
1809 /* If there is no explicit region, a fake one should be created. */
1810 gdb_assert (region);
1811
1812 if (region->hi == 0)
1813 region_len = len - xfered_total;
1814 else
1815 region_len = region->hi - offset;
1816
1817 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1818 {
1819 /* Cannot read this region. Note that we can end up here only
1820 if the region is explicitly marked inaccessible, or
1821 'inaccessible-by-default' is in effect. */
1822 xfered_total += region_len;
1823 }
1824 else
1825 {
1826 LONGEST to_read = min (len - xfered_total, region_len);
1827 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1828
1829 LONGEST xfered_partial =
1830 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1831 (gdb_byte *) buffer,
1832 offset + xfered_total, to_read);
1833 /* Call an observer, notifying them of the xfer progress? */
1834 if (xfered_partial <= 0)
1835 {
1836 /* Got an error reading full chunk. See if maybe we can read
1837 some subrange. */
1838 xfree (buffer);
1839 read_whatever_is_readable (ops, offset + xfered_total,
1840 offset + xfered_total + to_read,
1841 unit_size, &result);
1842 xfered_total += to_read;
1843 }
1844 else
1845 {
1846 struct memory_read_result r;
1847 r.data = buffer;
1848 r.begin = offset + xfered_total;
1849 r.end = r.begin + xfered_partial;
1850 VEC_safe_push (memory_read_result_s, result, &r);
1851 xfered_total += xfered_partial;
1852 }
1853 QUIT;
1854 }
1855 }
1856 return result;
1857 }
1858
1859
1860 /* An alternative to target_write with progress callbacks. */
1861
1862 LONGEST
1863 target_write_with_progress (struct target_ops *ops,
1864 enum target_object object,
1865 const char *annex, const gdb_byte *buf,
1866 ULONGEST offset, LONGEST len,
1867 void (*progress) (ULONGEST, void *), void *baton)
1868 {
1869 LONGEST xfered_total = 0;
1870 int unit_size = 1;
1871
1872 /* If we are writing to a memory object, find the length of an addressable
1873 unit for that architecture. */
1874 if (object == TARGET_OBJECT_MEMORY
1875 || object == TARGET_OBJECT_STACK_MEMORY
1876 || object == TARGET_OBJECT_CODE_MEMORY
1877 || object == TARGET_OBJECT_RAW_MEMORY)
1878 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1879
1880 /* Give the progress callback a chance to set up. */
1881 if (progress)
1882 (*progress) (0, baton);
1883
1884 while (xfered_total < len)
1885 {
1886 ULONGEST xfered_partial;
1887 enum target_xfer_status status;
1888
1889 status = target_write_partial (ops, object, annex,
1890 buf + xfered_total * unit_size,
1891 offset + xfered_total, len - xfered_total,
1892 &xfered_partial);
1893
1894 if (status != TARGET_XFER_OK)
1895 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1896
1897 if (progress)
1898 (*progress) (xfered_partial, baton);
1899
1900 xfered_total += xfered_partial;
1901 QUIT;
1902 }
1903 return len;
1904 }
1905
1906 /* For docs on target_write see target.h. */
1907
1908 LONGEST
1909 target_write (struct target_ops *ops,
1910 enum target_object object,
1911 const char *annex, const gdb_byte *buf,
1912 ULONGEST offset, LONGEST len)
1913 {
1914 return target_write_with_progress (ops, object, annex, buf, offset, len,
1915 NULL, NULL);
1916 }
1917
1918 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1919 the size of the transferred data. PADDING additional bytes are
1920 available in *BUF_P. This is a helper function for
1921 target_read_alloc; see the declaration of that function for more
1922 information. */
1923
1924 static LONGEST
1925 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1926 const char *annex, gdb_byte **buf_p, int padding)
1927 {
1928 size_t buf_alloc, buf_pos;
1929 gdb_byte *buf;
1930
1931 /* This function does not have a length parameter; it reads the
1932 entire OBJECT). Also, it doesn't support objects fetched partly
1933 from one target and partly from another (in a different stratum,
1934 e.g. a core file and an executable). Both reasons make it
1935 unsuitable for reading memory. */
1936 gdb_assert (object != TARGET_OBJECT_MEMORY);
1937
1938 /* Start by reading up to 4K at a time. The target will throttle
1939 this number down if necessary. */
1940 buf_alloc = 4096;
1941 buf = (gdb_byte *) xmalloc (buf_alloc);
1942 buf_pos = 0;
1943 while (1)
1944 {
1945 ULONGEST xfered_len;
1946 enum target_xfer_status status;
1947
1948 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1949 buf_pos, buf_alloc - buf_pos - padding,
1950 &xfered_len);
1951
1952 if (status == TARGET_XFER_EOF)
1953 {
1954 /* Read all there was. */
1955 if (buf_pos == 0)
1956 xfree (buf);
1957 else
1958 *buf_p = buf;
1959 return buf_pos;
1960 }
1961 else if (status != TARGET_XFER_OK)
1962 {
1963 /* An error occurred. */
1964 xfree (buf);
1965 return TARGET_XFER_E_IO;
1966 }
1967
1968 buf_pos += xfered_len;
1969
1970 /* If the buffer is filling up, expand it. */
1971 if (buf_alloc < buf_pos * 2)
1972 {
1973 buf_alloc *= 2;
1974 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1975 }
1976
1977 QUIT;
1978 }
1979 }
1980
1981 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1982 the size of the transferred data. See the declaration in "target.h"
1983 function for more information about the return value. */
1984
1985 LONGEST
1986 target_read_alloc (struct target_ops *ops, enum target_object object,
1987 const char *annex, gdb_byte **buf_p)
1988 {
1989 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1990 }
1991
1992 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1993 returned as a string, allocated using xmalloc. If an error occurs
1994 or the transfer is unsupported, NULL is returned. Empty objects
1995 are returned as allocated but empty strings. A warning is issued
1996 if the result contains any embedded NUL bytes. */
1997
1998 char *
1999 target_read_stralloc (struct target_ops *ops, enum target_object object,
2000 const char *annex)
2001 {
2002 gdb_byte *buffer;
2003 char *bufstr;
2004 LONGEST i, transferred;
2005
2006 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2007 bufstr = (char *) buffer;
2008
2009 if (transferred < 0)
2010 return NULL;
2011
2012 if (transferred == 0)
2013 return xstrdup ("");
2014
2015 bufstr[transferred] = 0;
2016
2017 /* Check for embedded NUL bytes; but allow trailing NULs. */
2018 for (i = strlen (bufstr); i < transferred; i++)
2019 if (bufstr[i] != 0)
2020 {
2021 warning (_("target object %d, annex %s, "
2022 "contained unexpected null characters"),
2023 (int) object, annex ? annex : "(none)");
2024 break;
2025 }
2026
2027 return bufstr;
2028 }
2029
2030 /* Memory transfer methods. */
2031
2032 void
2033 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2034 LONGEST len)
2035 {
2036 /* This method is used to read from an alternate, non-current
2037 target. This read must bypass the overlay support (as symbols
2038 don't match this target), and GDB's internal cache (wrong cache
2039 for this target). */
2040 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2041 != len)
2042 memory_error (TARGET_XFER_E_IO, addr);
2043 }
2044
2045 ULONGEST
2046 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2047 int len, enum bfd_endian byte_order)
2048 {
2049 gdb_byte buf[sizeof (ULONGEST)];
2050
2051 gdb_assert (len <= sizeof (buf));
2052 get_target_memory (ops, addr, buf, len);
2053 return extract_unsigned_integer (buf, len, byte_order);
2054 }
2055
2056 /* See target.h. */
2057
2058 int
2059 target_insert_breakpoint (struct gdbarch *gdbarch,
2060 struct bp_target_info *bp_tgt)
2061 {
2062 if (!may_insert_breakpoints)
2063 {
2064 warning (_("May not insert breakpoints"));
2065 return 1;
2066 }
2067
2068 return current_target.to_insert_breakpoint (&current_target,
2069 gdbarch, bp_tgt);
2070 }
2071
2072 /* See target.h. */
2073
2074 int
2075 target_remove_breakpoint (struct gdbarch *gdbarch,
2076 struct bp_target_info *bp_tgt)
2077 {
2078 /* This is kind of a weird case to handle, but the permission might
2079 have been changed after breakpoints were inserted - in which case
2080 we should just take the user literally and assume that any
2081 breakpoints should be left in place. */
2082 if (!may_insert_breakpoints)
2083 {
2084 warning (_("May not remove breakpoints"));
2085 return 1;
2086 }
2087
2088 return current_target.to_remove_breakpoint (&current_target,
2089 gdbarch, bp_tgt);
2090 }
2091
2092 static void
2093 target_info (char *args, int from_tty)
2094 {
2095 struct target_ops *t;
2096 int has_all_mem = 0;
2097
2098 if (symfile_objfile != NULL)
2099 printf_unfiltered (_("Symbols from \"%s\".\n"),
2100 objfile_name (symfile_objfile));
2101
2102 for (t = target_stack; t != NULL; t = t->beneath)
2103 {
2104 if (!(*t->to_has_memory) (t))
2105 continue;
2106
2107 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2108 continue;
2109 if (has_all_mem)
2110 printf_unfiltered (_("\tWhile running this, "
2111 "GDB does not access memory from...\n"));
2112 printf_unfiltered ("%s:\n", t->to_longname);
2113 (t->to_files_info) (t);
2114 has_all_mem = (*t->to_has_all_memory) (t);
2115 }
2116 }
2117
2118 /* This function is called before any new inferior is created, e.g.
2119 by running a program, attaching, or connecting to a target.
2120 It cleans up any state from previous invocations which might
2121 change between runs. This is a subset of what target_preopen
2122 resets (things which might change between targets). */
2123
2124 void
2125 target_pre_inferior (int from_tty)
2126 {
2127 /* Clear out solib state. Otherwise the solib state of the previous
2128 inferior might have survived and is entirely wrong for the new
2129 target. This has been observed on GNU/Linux using glibc 2.3. How
2130 to reproduce:
2131
2132 bash$ ./foo&
2133 [1] 4711
2134 bash$ ./foo&
2135 [1] 4712
2136 bash$ gdb ./foo
2137 [...]
2138 (gdb) attach 4711
2139 (gdb) detach
2140 (gdb) attach 4712
2141 Cannot access memory at address 0xdeadbeef
2142 */
2143
2144 /* In some OSs, the shared library list is the same/global/shared
2145 across inferiors. If code is shared between processes, so are
2146 memory regions and features. */
2147 if (!gdbarch_has_global_solist (target_gdbarch ()))
2148 {
2149 no_shared_libraries (NULL, from_tty);
2150
2151 invalidate_target_mem_regions ();
2152
2153 target_clear_description ();
2154 }
2155
2156 /* attach_flag may be set if the previous process associated with
2157 the inferior was attached to. */
2158 current_inferior ()->attach_flag = 0;
2159
2160 agent_capability_invalidate ();
2161 }
2162
2163 /* Callback for iterate_over_inferiors. Gets rid of the given
2164 inferior. */
2165
2166 static int
2167 dispose_inferior (struct inferior *inf, void *args)
2168 {
2169 struct thread_info *thread;
2170
2171 thread = any_thread_of_process (inf->pid);
2172 if (thread)
2173 {
2174 switch_to_thread (thread->ptid);
2175
2176 /* Core inferiors actually should be detached, not killed. */
2177 if (target_has_execution)
2178 target_kill ();
2179 else
2180 target_detach (NULL, 0);
2181 }
2182
2183 return 0;
2184 }
2185
2186 /* This is to be called by the open routine before it does
2187 anything. */
2188
2189 void
2190 target_preopen (int from_tty)
2191 {
2192 dont_repeat ();
2193
2194 if (have_inferiors ())
2195 {
2196 if (!from_tty
2197 || !have_live_inferiors ()
2198 || query (_("A program is being debugged already. Kill it? ")))
2199 iterate_over_inferiors (dispose_inferior, NULL);
2200 else
2201 error (_("Program not killed."));
2202 }
2203
2204 /* Calling target_kill may remove the target from the stack. But if
2205 it doesn't (which seems like a win for UDI), remove it now. */
2206 /* Leave the exec target, though. The user may be switching from a
2207 live process to a core of the same program. */
2208 pop_all_targets_above (file_stratum);
2209
2210 target_pre_inferior (from_tty);
2211 }
2212
2213 /* Detach a target after doing deferred register stores. */
2214
2215 void
2216 target_detach (const char *args, int from_tty)
2217 {
2218 struct target_ops* t;
2219
2220 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2221 /* Don't remove global breakpoints here. They're removed on
2222 disconnection from the target. */
2223 ;
2224 else
2225 /* If we're in breakpoints-always-inserted mode, have to remove
2226 them before detaching. */
2227 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2228
2229 prepare_for_detach ();
2230
2231 current_target.to_detach (&current_target, args, from_tty);
2232 }
2233
2234 void
2235 target_disconnect (const char *args, int from_tty)
2236 {
2237 /* If we're in breakpoints-always-inserted mode or if breakpoints
2238 are global across processes, we have to remove them before
2239 disconnecting. */
2240 remove_breakpoints ();
2241
2242 current_target.to_disconnect (&current_target, args, from_tty);
2243 }
2244
2245 ptid_t
2246 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2247 {
2248 return (current_target.to_wait) (&current_target, ptid, status, options);
2249 }
2250
2251 /* See target.h. */
2252
2253 ptid_t
2254 default_target_wait (struct target_ops *ops,
2255 ptid_t ptid, struct target_waitstatus *status,
2256 int options)
2257 {
2258 status->kind = TARGET_WAITKIND_IGNORE;
2259 return minus_one_ptid;
2260 }
2261
2262 char *
2263 target_pid_to_str (ptid_t ptid)
2264 {
2265 return (*current_target.to_pid_to_str) (&current_target, ptid);
2266 }
2267
2268 const char *
2269 target_thread_name (struct thread_info *info)
2270 {
2271 return current_target.to_thread_name (&current_target, info);
2272 }
2273
2274 void
2275 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2276 {
2277 struct target_ops *t;
2278
2279 target_dcache_invalidate ();
2280
2281 current_target.to_resume (&current_target, ptid, step, signal);
2282
2283 registers_changed_ptid (ptid);
2284 /* We only set the internal executing state here. The user/frontend
2285 running state is set at a higher level. */
2286 set_executing (ptid, 1);
2287 clear_inline_frame_state (ptid);
2288 }
2289
2290 void
2291 target_pass_signals (int numsigs, unsigned char *pass_signals)
2292 {
2293 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2294 }
2295
2296 void
2297 target_program_signals (int numsigs, unsigned char *program_signals)
2298 {
2299 (*current_target.to_program_signals) (&current_target,
2300 numsigs, program_signals);
2301 }
2302
2303 static int
2304 default_follow_fork (struct target_ops *self, int follow_child,
2305 int detach_fork)
2306 {
2307 /* Some target returned a fork event, but did not know how to follow it. */
2308 internal_error (__FILE__, __LINE__,
2309 _("could not find a target to follow fork"));
2310 }
2311
2312 /* Look through the list of possible targets for a target that can
2313 follow forks. */
2314
2315 int
2316 target_follow_fork (int follow_child, int detach_fork)
2317 {
2318 return current_target.to_follow_fork (&current_target,
2319 follow_child, detach_fork);
2320 }
2321
2322 /* Target wrapper for follow exec hook. */
2323
2324 void
2325 target_follow_exec (struct inferior *inf, char *execd_pathname)
2326 {
2327 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2328 }
2329
2330 static void
2331 default_mourn_inferior (struct target_ops *self)
2332 {
2333 internal_error (__FILE__, __LINE__,
2334 _("could not find a target to follow mourn inferior"));
2335 }
2336
2337 void
2338 target_mourn_inferior (void)
2339 {
2340 current_target.to_mourn_inferior (&current_target);
2341
2342 /* We no longer need to keep handles on any of the object files.
2343 Make sure to release them to avoid unnecessarily locking any
2344 of them while we're not actually debugging. */
2345 bfd_cache_close_all ();
2346 }
2347
2348 /* Look for a target which can describe architectural features, starting
2349 from TARGET. If we find one, return its description. */
2350
2351 const struct target_desc *
2352 target_read_description (struct target_ops *target)
2353 {
2354 return target->to_read_description (target);
2355 }
2356
2357 /* This implements a basic search of memory, reading target memory and
2358 performing the search here (as opposed to performing the search in on the
2359 target side with, for example, gdbserver). */
2360
2361 int
2362 simple_search_memory (struct target_ops *ops,
2363 CORE_ADDR start_addr, ULONGEST search_space_len,
2364 const gdb_byte *pattern, ULONGEST pattern_len,
2365 CORE_ADDR *found_addrp)
2366 {
2367 /* NOTE: also defined in find.c testcase. */
2368 #define SEARCH_CHUNK_SIZE 16000
2369 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2370 /* Buffer to hold memory contents for searching. */
2371 gdb_byte *search_buf;
2372 unsigned search_buf_size;
2373 struct cleanup *old_cleanups;
2374
2375 search_buf_size = chunk_size + pattern_len - 1;
2376
2377 /* No point in trying to allocate a buffer larger than the search space. */
2378 if (search_space_len < search_buf_size)
2379 search_buf_size = search_space_len;
2380
2381 search_buf = (gdb_byte *) malloc (search_buf_size);
2382 if (search_buf == NULL)
2383 error (_("Unable to allocate memory to perform the search."));
2384 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2385
2386 /* Prime the search buffer. */
2387
2388 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2389 search_buf, start_addr, search_buf_size) != search_buf_size)
2390 {
2391 warning (_("Unable to access %s bytes of target "
2392 "memory at %s, halting search."),
2393 pulongest (search_buf_size), hex_string (start_addr));
2394 do_cleanups (old_cleanups);
2395 return -1;
2396 }
2397
2398 /* Perform the search.
2399
2400 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2401 When we've scanned N bytes we copy the trailing bytes to the start and
2402 read in another N bytes. */
2403
2404 while (search_space_len >= pattern_len)
2405 {
2406 gdb_byte *found_ptr;
2407 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2408
2409 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2410 pattern, pattern_len);
2411
2412 if (found_ptr != NULL)
2413 {
2414 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2415
2416 *found_addrp = found_addr;
2417 do_cleanups (old_cleanups);
2418 return 1;
2419 }
2420
2421 /* Not found in this chunk, skip to next chunk. */
2422
2423 /* Don't let search_space_len wrap here, it's unsigned. */
2424 if (search_space_len >= chunk_size)
2425 search_space_len -= chunk_size;
2426 else
2427 search_space_len = 0;
2428
2429 if (search_space_len >= pattern_len)
2430 {
2431 unsigned keep_len = search_buf_size - chunk_size;
2432 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2433 int nr_to_read;
2434
2435 /* Copy the trailing part of the previous iteration to the front
2436 of the buffer for the next iteration. */
2437 gdb_assert (keep_len == pattern_len - 1);
2438 memcpy (search_buf, search_buf + chunk_size, keep_len);
2439
2440 nr_to_read = min (search_space_len - keep_len, chunk_size);
2441
2442 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2443 search_buf + keep_len, read_addr,
2444 nr_to_read) != nr_to_read)
2445 {
2446 warning (_("Unable to access %s bytes of target "
2447 "memory at %s, halting search."),
2448 plongest (nr_to_read),
2449 hex_string (read_addr));
2450 do_cleanups (old_cleanups);
2451 return -1;
2452 }
2453
2454 start_addr += chunk_size;
2455 }
2456 }
2457
2458 /* Not found. */
2459
2460 do_cleanups (old_cleanups);
2461 return 0;
2462 }
2463
2464 /* Default implementation of memory-searching. */
2465
2466 static int
2467 default_search_memory (struct target_ops *self,
2468 CORE_ADDR start_addr, ULONGEST search_space_len,
2469 const gdb_byte *pattern, ULONGEST pattern_len,
2470 CORE_ADDR *found_addrp)
2471 {
2472 /* Start over from the top of the target stack. */
2473 return simple_search_memory (current_target.beneath,
2474 start_addr, search_space_len,
2475 pattern, pattern_len, found_addrp);
2476 }
2477
2478 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2479 sequence of bytes in PATTERN with length PATTERN_LEN.
2480
2481 The result is 1 if found, 0 if not found, and -1 if there was an error
2482 requiring halting of the search (e.g. memory read error).
2483 If the pattern is found the address is recorded in FOUND_ADDRP. */
2484
2485 int
2486 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2487 const gdb_byte *pattern, ULONGEST pattern_len,
2488 CORE_ADDR *found_addrp)
2489 {
2490 return current_target.to_search_memory (&current_target, start_addr,
2491 search_space_len,
2492 pattern, pattern_len, found_addrp);
2493 }
2494
2495 /* Look through the currently pushed targets. If none of them will
2496 be able to restart the currently running process, issue an error
2497 message. */
2498
2499 void
2500 target_require_runnable (void)
2501 {
2502 struct target_ops *t;
2503
2504 for (t = target_stack; t != NULL; t = t->beneath)
2505 {
2506 /* If this target knows how to create a new program, then
2507 assume we will still be able to after killing the current
2508 one. Either killing and mourning will not pop T, or else
2509 find_default_run_target will find it again. */
2510 if (t->to_create_inferior != NULL)
2511 return;
2512
2513 /* Do not worry about targets at certain strata that can not
2514 create inferiors. Assume they will be pushed again if
2515 necessary, and continue to the process_stratum. */
2516 if (t->to_stratum == thread_stratum
2517 || t->to_stratum == record_stratum
2518 || t->to_stratum == arch_stratum)
2519 continue;
2520
2521 error (_("The \"%s\" target does not support \"run\". "
2522 "Try \"help target\" or \"continue\"."),
2523 t->to_shortname);
2524 }
2525
2526 /* This function is only called if the target is running. In that
2527 case there should have been a process_stratum target and it
2528 should either know how to create inferiors, or not... */
2529 internal_error (__FILE__, __LINE__, _("No targets found"));
2530 }
2531
2532 /* Whether GDB is allowed to fall back to the default run target for
2533 "run", "attach", etc. when no target is connected yet. */
2534 static int auto_connect_native_target = 1;
2535
2536 static void
2537 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2538 struct cmd_list_element *c, const char *value)
2539 {
2540 fprintf_filtered (file,
2541 _("Whether GDB may automatically connect to the "
2542 "native target is %s.\n"),
2543 value);
2544 }
2545
2546 /* Look through the list of possible targets for a target that can
2547 execute a run or attach command without any other data. This is
2548 used to locate the default process stratum.
2549
2550 If DO_MESG is not NULL, the result is always valid (error() is
2551 called for errors); else, return NULL on error. */
2552
2553 static struct target_ops *
2554 find_default_run_target (char *do_mesg)
2555 {
2556 struct target_ops *runable = NULL;
2557
2558 if (auto_connect_native_target)
2559 {
2560 struct target_ops *t;
2561 int count = 0;
2562 int i;
2563
2564 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2565 {
2566 if (t->to_can_run != delegate_can_run && target_can_run (t))
2567 {
2568 runable = t;
2569 ++count;
2570 }
2571 }
2572
2573 if (count != 1)
2574 runable = NULL;
2575 }
2576
2577 if (runable == NULL)
2578 {
2579 if (do_mesg)
2580 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2581 else
2582 return NULL;
2583 }
2584
2585 return runable;
2586 }
2587
2588 /* See target.h. */
2589
2590 struct target_ops *
2591 find_attach_target (void)
2592 {
2593 struct target_ops *t;
2594
2595 /* If a target on the current stack can attach, use it. */
2596 for (t = current_target.beneath; t != NULL; t = t->beneath)
2597 {
2598 if (t->to_attach != NULL)
2599 break;
2600 }
2601
2602 /* Otherwise, use the default run target for attaching. */
2603 if (t == NULL)
2604 t = find_default_run_target ("attach");
2605
2606 return t;
2607 }
2608
2609 /* See target.h. */
2610
2611 struct target_ops *
2612 find_run_target (void)
2613 {
2614 struct target_ops *t;
2615
2616 /* If a target on the current stack can attach, use it. */
2617 for (t = current_target.beneath; t != NULL; t = t->beneath)
2618 {
2619 if (t->to_create_inferior != NULL)
2620 break;
2621 }
2622
2623 /* Otherwise, use the default run target. */
2624 if (t == NULL)
2625 t = find_default_run_target ("run");
2626
2627 return t;
2628 }
2629
2630 /* Implement the "info proc" command. */
2631
2632 int
2633 target_info_proc (const char *args, enum info_proc_what what)
2634 {
2635 struct target_ops *t;
2636
2637 /* If we're already connected to something that can get us OS
2638 related data, use it. Otherwise, try using the native
2639 target. */
2640 if (current_target.to_stratum >= process_stratum)
2641 t = current_target.beneath;
2642 else
2643 t = find_default_run_target (NULL);
2644
2645 for (; t != NULL; t = t->beneath)
2646 {
2647 if (t->to_info_proc != NULL)
2648 {
2649 t->to_info_proc (t, args, what);
2650
2651 if (targetdebug)
2652 fprintf_unfiltered (gdb_stdlog,
2653 "target_info_proc (\"%s\", %d)\n", args, what);
2654
2655 return 1;
2656 }
2657 }
2658
2659 return 0;
2660 }
2661
2662 static int
2663 find_default_supports_disable_randomization (struct target_ops *self)
2664 {
2665 struct target_ops *t;
2666
2667 t = find_default_run_target (NULL);
2668 if (t && t->to_supports_disable_randomization)
2669 return (t->to_supports_disable_randomization) (t);
2670 return 0;
2671 }
2672
2673 int
2674 target_supports_disable_randomization (void)
2675 {
2676 struct target_ops *t;
2677
2678 for (t = &current_target; t != NULL; t = t->beneath)
2679 if (t->to_supports_disable_randomization)
2680 return t->to_supports_disable_randomization (t);
2681
2682 return 0;
2683 }
2684
2685 char *
2686 target_get_osdata (const char *type)
2687 {
2688 struct target_ops *t;
2689
2690 /* If we're already connected to something that can get us OS
2691 related data, use it. Otherwise, try using the native
2692 target. */
2693 if (current_target.to_stratum >= process_stratum)
2694 t = current_target.beneath;
2695 else
2696 t = find_default_run_target ("get OS data");
2697
2698 if (!t)
2699 return NULL;
2700
2701 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2702 }
2703
2704 static struct address_space *
2705 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2706 {
2707 struct inferior *inf;
2708
2709 /* Fall-back to the "main" address space of the inferior. */
2710 inf = find_inferior_ptid (ptid);
2711
2712 if (inf == NULL || inf->aspace == NULL)
2713 internal_error (__FILE__, __LINE__,
2714 _("Can't determine the current "
2715 "address space of thread %s\n"),
2716 target_pid_to_str (ptid));
2717
2718 return inf->aspace;
2719 }
2720
2721 /* Determine the current address space of thread PTID. */
2722
2723 struct address_space *
2724 target_thread_address_space (ptid_t ptid)
2725 {
2726 struct address_space *aspace;
2727
2728 aspace = current_target.to_thread_address_space (&current_target, ptid);
2729 gdb_assert (aspace != NULL);
2730
2731 return aspace;
2732 }
2733
2734
2735 /* Target file operations. */
2736
2737 static struct target_ops *
2738 default_fileio_target (void)
2739 {
2740 /* If we're already connected to something that can perform
2741 file I/O, use it. Otherwise, try using the native target. */
2742 if (current_target.to_stratum >= process_stratum)
2743 return current_target.beneath;
2744 else
2745 return find_default_run_target ("file I/O");
2746 }
2747
2748 /* File handle for target file operations. */
2749
2750 typedef struct
2751 {
2752 /* The target on which this file is open. */
2753 struct target_ops *t;
2754
2755 /* The file descriptor on the target. */
2756 int fd;
2757 } fileio_fh_t;
2758
2759 DEF_VEC_O (fileio_fh_t);
2760
2761 /* Vector of currently open file handles. The value returned by
2762 target_fileio_open and passed as the FD argument to other
2763 target_fileio_* functions is an index into this vector. This
2764 vector's entries are never freed; instead, files are marked as
2765 closed, and the handle becomes available for reuse. */
2766 static VEC (fileio_fh_t) *fileio_fhandles;
2767
2768 /* Macro to check whether a fileio_fh_t represents a closed file. */
2769 #define is_closed_fileio_fh(fd) ((fd) < 0)
2770
2771 /* Index into fileio_fhandles of the lowest handle that might be
2772 closed. This permits handle reuse without searching the whole
2773 list each time a new file is opened. */
2774 static int lowest_closed_fd;
2775
2776 /* Acquire a target fileio file descriptor. */
2777
2778 static int
2779 acquire_fileio_fd (struct target_ops *t, int fd)
2780 {
2781 fileio_fh_t *fh, buf;
2782
2783 gdb_assert (!is_closed_fileio_fh (fd));
2784
2785 /* Search for closed handles to reuse. */
2786 for (;
2787 VEC_iterate (fileio_fh_t, fileio_fhandles,
2788 lowest_closed_fd, fh);
2789 lowest_closed_fd++)
2790 if (is_closed_fileio_fh (fh->fd))
2791 break;
2792
2793 /* Push a new handle if no closed handles were found. */
2794 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2795 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2796
2797 /* Fill in the handle. */
2798 fh->t = t;
2799 fh->fd = fd;
2800
2801 /* Return its index, and start the next lookup at
2802 the next index. */
2803 return lowest_closed_fd++;
2804 }
2805
2806 /* Release a target fileio file descriptor. */
2807
2808 static void
2809 release_fileio_fd (int fd, fileio_fh_t *fh)
2810 {
2811 fh->fd = -1;
2812 lowest_closed_fd = min (lowest_closed_fd, fd);
2813 }
2814
2815 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2816
2817 #define fileio_fd_to_fh(fd) \
2818 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2819
2820 /* Helper for target_fileio_open and
2821 target_fileio_open_warn_if_slow. */
2822
2823 static int
2824 target_fileio_open_1 (struct inferior *inf, const char *filename,
2825 int flags, int mode, int warn_if_slow,
2826 int *target_errno)
2827 {
2828 struct target_ops *t;
2829
2830 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2831 {
2832 if (t->to_fileio_open != NULL)
2833 {
2834 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2835 warn_if_slow, target_errno);
2836
2837 if (fd < 0)
2838 fd = -1;
2839 else
2840 fd = acquire_fileio_fd (t, fd);
2841
2842 if (targetdebug)
2843 fprintf_unfiltered (gdb_stdlog,
2844 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2845 " = %d (%d)\n",
2846 inf == NULL ? 0 : inf->num,
2847 filename, flags, mode,
2848 warn_if_slow, fd,
2849 fd != -1 ? 0 : *target_errno);
2850 return fd;
2851 }
2852 }
2853
2854 *target_errno = FILEIO_ENOSYS;
2855 return -1;
2856 }
2857
2858 /* See target.h. */
2859
2860 int
2861 target_fileio_open (struct inferior *inf, const char *filename,
2862 int flags, int mode, int *target_errno)
2863 {
2864 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2865 target_errno);
2866 }
2867
2868 /* See target.h. */
2869
2870 int
2871 target_fileio_open_warn_if_slow (struct inferior *inf,
2872 const char *filename,
2873 int flags, int mode, int *target_errno)
2874 {
2875 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2876 target_errno);
2877 }
2878
2879 /* See target.h. */
2880
2881 int
2882 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2883 ULONGEST offset, int *target_errno)
2884 {
2885 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2886 int ret = -1;
2887
2888 if (is_closed_fileio_fh (fh->fd))
2889 *target_errno = EBADF;
2890 else
2891 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2892 len, offset, target_errno);
2893
2894 if (targetdebug)
2895 fprintf_unfiltered (gdb_stdlog,
2896 "target_fileio_pwrite (%d,...,%d,%s) "
2897 "= %d (%d)\n",
2898 fd, len, pulongest (offset),
2899 ret, ret != -1 ? 0 : *target_errno);
2900 return ret;
2901 }
2902
2903 /* See target.h. */
2904
2905 int
2906 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2907 ULONGEST offset, int *target_errno)
2908 {
2909 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2910 int ret = -1;
2911
2912 if (is_closed_fileio_fh (fh->fd))
2913 *target_errno = EBADF;
2914 else
2915 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2916 len, offset, target_errno);
2917
2918 if (targetdebug)
2919 fprintf_unfiltered (gdb_stdlog,
2920 "target_fileio_pread (%d,...,%d,%s) "
2921 "= %d (%d)\n",
2922 fd, len, pulongest (offset),
2923 ret, ret != -1 ? 0 : *target_errno);
2924 return ret;
2925 }
2926
2927 /* See target.h. */
2928
2929 int
2930 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2931 {
2932 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2933 int ret = -1;
2934
2935 if (is_closed_fileio_fh (fh->fd))
2936 *target_errno = EBADF;
2937 else
2938 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2939
2940 if (targetdebug)
2941 fprintf_unfiltered (gdb_stdlog,
2942 "target_fileio_fstat (%d) = %d (%d)\n",
2943 fd, ret, ret != -1 ? 0 : *target_errno);
2944 return ret;
2945 }
2946
2947 /* See target.h. */
2948
2949 int
2950 target_fileio_close (int fd, int *target_errno)
2951 {
2952 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2953 int ret = -1;
2954
2955 if (is_closed_fileio_fh (fh->fd))
2956 *target_errno = EBADF;
2957 else
2958 {
2959 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2960 release_fileio_fd (fd, fh);
2961 }
2962
2963 if (targetdebug)
2964 fprintf_unfiltered (gdb_stdlog,
2965 "target_fileio_close (%d) = %d (%d)\n",
2966 fd, ret, ret != -1 ? 0 : *target_errno);
2967 return ret;
2968 }
2969
2970 /* See target.h. */
2971
2972 int
2973 target_fileio_unlink (struct inferior *inf, const char *filename,
2974 int *target_errno)
2975 {
2976 struct target_ops *t;
2977
2978 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2979 {
2980 if (t->to_fileio_unlink != NULL)
2981 {
2982 int ret = t->to_fileio_unlink (t, inf, filename,
2983 target_errno);
2984
2985 if (targetdebug)
2986 fprintf_unfiltered (gdb_stdlog,
2987 "target_fileio_unlink (%d,%s)"
2988 " = %d (%d)\n",
2989 inf == NULL ? 0 : inf->num, filename,
2990 ret, ret != -1 ? 0 : *target_errno);
2991 return ret;
2992 }
2993 }
2994
2995 *target_errno = FILEIO_ENOSYS;
2996 return -1;
2997 }
2998
2999 /* See target.h. */
3000
3001 char *
3002 target_fileio_readlink (struct inferior *inf, const char *filename,
3003 int *target_errno)
3004 {
3005 struct target_ops *t;
3006
3007 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3008 {
3009 if (t->to_fileio_readlink != NULL)
3010 {
3011 char *ret = t->to_fileio_readlink (t, inf, filename,
3012 target_errno);
3013
3014 if (targetdebug)
3015 fprintf_unfiltered (gdb_stdlog,
3016 "target_fileio_readlink (%d,%s)"
3017 " = %s (%d)\n",
3018 inf == NULL ? 0 : inf->num,
3019 filename, ret? ret : "(nil)",
3020 ret? 0 : *target_errno);
3021 return ret;
3022 }
3023 }
3024
3025 *target_errno = FILEIO_ENOSYS;
3026 return NULL;
3027 }
3028
3029 static void
3030 target_fileio_close_cleanup (void *opaque)
3031 {
3032 int fd = *(int *) opaque;
3033 int target_errno;
3034
3035 target_fileio_close (fd, &target_errno);
3036 }
3037
3038 /* Read target file FILENAME, in the filesystem as seen by INF. If
3039 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3040 remote targets, the remote stub). Store the result in *BUF_P and
3041 return the size of the transferred data. PADDING additional bytes
3042 are available in *BUF_P. This is a helper function for
3043 target_fileio_read_alloc; see the declaration of that function for
3044 more information. */
3045
3046 static LONGEST
3047 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3048 gdb_byte **buf_p, int padding)
3049 {
3050 struct cleanup *close_cleanup;
3051 size_t buf_alloc, buf_pos;
3052 gdb_byte *buf;
3053 LONGEST n;
3054 int fd;
3055 int target_errno;
3056
3057 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3058 &target_errno);
3059 if (fd == -1)
3060 return -1;
3061
3062 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3063
3064 /* Start by reading up to 4K at a time. The target will throttle
3065 this number down if necessary. */
3066 buf_alloc = 4096;
3067 buf = (gdb_byte *) xmalloc (buf_alloc);
3068 buf_pos = 0;
3069 while (1)
3070 {
3071 n = target_fileio_pread (fd, &buf[buf_pos],
3072 buf_alloc - buf_pos - padding, buf_pos,
3073 &target_errno);
3074 if (n < 0)
3075 {
3076 /* An error occurred. */
3077 do_cleanups (close_cleanup);
3078 xfree (buf);
3079 return -1;
3080 }
3081 else if (n == 0)
3082 {
3083 /* Read all there was. */
3084 do_cleanups (close_cleanup);
3085 if (buf_pos == 0)
3086 xfree (buf);
3087 else
3088 *buf_p = buf;
3089 return buf_pos;
3090 }
3091
3092 buf_pos += n;
3093
3094 /* If the buffer is filling up, expand it. */
3095 if (buf_alloc < buf_pos * 2)
3096 {
3097 buf_alloc *= 2;
3098 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3099 }
3100
3101 QUIT;
3102 }
3103 }
3104
3105 /* See target.h. */
3106
3107 LONGEST
3108 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3109 gdb_byte **buf_p)
3110 {
3111 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3112 }
3113
3114 /* See target.h. */
3115
3116 char *
3117 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3118 {
3119 gdb_byte *buffer;
3120 char *bufstr;
3121 LONGEST i, transferred;
3122
3123 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3124 bufstr = (char *) buffer;
3125
3126 if (transferred < 0)
3127 return NULL;
3128
3129 if (transferred == 0)
3130 return xstrdup ("");
3131
3132 bufstr[transferred] = 0;
3133
3134 /* Check for embedded NUL bytes; but allow trailing NULs. */
3135 for (i = strlen (bufstr); i < transferred; i++)
3136 if (bufstr[i] != 0)
3137 {
3138 warning (_("target file %s "
3139 "contained unexpected null characters"),
3140 filename);
3141 break;
3142 }
3143
3144 return bufstr;
3145 }
3146
3147
3148 static int
3149 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3150 CORE_ADDR addr, int len)
3151 {
3152 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3153 }
3154
3155 static int
3156 default_watchpoint_addr_within_range (struct target_ops *target,
3157 CORE_ADDR addr,
3158 CORE_ADDR start, int length)
3159 {
3160 return addr >= start && addr < start + length;
3161 }
3162
3163 static struct gdbarch *
3164 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3165 {
3166 return target_gdbarch ();
3167 }
3168
3169 static int
3170 return_zero (struct target_ops *ignore)
3171 {
3172 return 0;
3173 }
3174
3175 static int
3176 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3177 {
3178 return 0;
3179 }
3180
3181 /*
3182 * Find the next target down the stack from the specified target.
3183 */
3184
3185 struct target_ops *
3186 find_target_beneath (struct target_ops *t)
3187 {
3188 return t->beneath;
3189 }
3190
3191 /* See target.h. */
3192
3193 struct target_ops *
3194 find_target_at (enum strata stratum)
3195 {
3196 struct target_ops *t;
3197
3198 for (t = current_target.beneath; t != NULL; t = t->beneath)
3199 if (t->to_stratum == stratum)
3200 return t;
3201
3202 return NULL;
3203 }
3204
3205 \f
3206 /* The inferior process has died. Long live the inferior! */
3207
3208 void
3209 generic_mourn_inferior (void)
3210 {
3211 ptid_t ptid;
3212
3213 ptid = inferior_ptid;
3214 inferior_ptid = null_ptid;
3215
3216 /* Mark breakpoints uninserted in case something tries to delete a
3217 breakpoint while we delete the inferior's threads (which would
3218 fail, since the inferior is long gone). */
3219 mark_breakpoints_out ();
3220
3221 if (!ptid_equal (ptid, null_ptid))
3222 {
3223 int pid = ptid_get_pid (ptid);
3224 exit_inferior (pid);
3225 }
3226
3227 /* Note this wipes step-resume breakpoints, so needs to be done
3228 after exit_inferior, which ends up referencing the step-resume
3229 breakpoints through clear_thread_inferior_resources. */
3230 breakpoint_init_inferior (inf_exited);
3231
3232 registers_changed ();
3233
3234 reopen_exec_file ();
3235 reinit_frame_cache ();
3236
3237 if (deprecated_detach_hook)
3238 deprecated_detach_hook ();
3239 }
3240 \f
3241 /* Convert a normal process ID to a string. Returns the string in a
3242 static buffer. */
3243
3244 char *
3245 normal_pid_to_str (ptid_t ptid)
3246 {
3247 static char buf[32];
3248
3249 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3250 return buf;
3251 }
3252
3253 static char *
3254 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3255 {
3256 return normal_pid_to_str (ptid);
3257 }
3258
3259 /* Error-catcher for target_find_memory_regions. */
3260 static int
3261 dummy_find_memory_regions (struct target_ops *self,
3262 find_memory_region_ftype ignore1, void *ignore2)
3263 {
3264 error (_("Command not implemented for this target."));
3265 return 0;
3266 }
3267
3268 /* Error-catcher for target_make_corefile_notes. */
3269 static char *
3270 dummy_make_corefile_notes (struct target_ops *self,
3271 bfd *ignore1, int *ignore2)
3272 {
3273 error (_("Command not implemented for this target."));
3274 return NULL;
3275 }
3276
3277 /* Set up the handful of non-empty slots needed by the dummy target
3278 vector. */
3279
3280 static void
3281 init_dummy_target (void)
3282 {
3283 dummy_target.to_shortname = "None";
3284 dummy_target.to_longname = "None";
3285 dummy_target.to_doc = "";
3286 dummy_target.to_supports_disable_randomization
3287 = find_default_supports_disable_randomization;
3288 dummy_target.to_stratum = dummy_stratum;
3289 dummy_target.to_has_all_memory = return_zero;
3290 dummy_target.to_has_memory = return_zero;
3291 dummy_target.to_has_stack = return_zero;
3292 dummy_target.to_has_registers = return_zero;
3293 dummy_target.to_has_execution = return_zero_has_execution;
3294 dummy_target.to_magic = OPS_MAGIC;
3295
3296 install_dummy_methods (&dummy_target);
3297 }
3298 \f
3299
3300 void
3301 target_close (struct target_ops *targ)
3302 {
3303 gdb_assert (!target_is_pushed (targ));
3304
3305 if (targ->to_xclose != NULL)
3306 targ->to_xclose (targ);
3307 else if (targ->to_close != NULL)
3308 targ->to_close (targ);
3309
3310 if (targetdebug)
3311 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3312 }
3313
3314 int
3315 target_thread_alive (ptid_t ptid)
3316 {
3317 return current_target.to_thread_alive (&current_target, ptid);
3318 }
3319
3320 void
3321 target_update_thread_list (void)
3322 {
3323 current_target.to_update_thread_list (&current_target);
3324 }
3325
3326 void
3327 target_stop (ptid_t ptid)
3328 {
3329 if (!may_stop)
3330 {
3331 warning (_("May not interrupt or stop the target, ignoring attempt"));
3332 return;
3333 }
3334
3335 (*current_target.to_stop) (&current_target, ptid);
3336 }
3337
3338 void
3339 target_interrupt (ptid_t ptid)
3340 {
3341 if (!may_stop)
3342 {
3343 warning (_("May not interrupt or stop the target, ignoring attempt"));
3344 return;
3345 }
3346
3347 (*current_target.to_interrupt) (&current_target, ptid);
3348 }
3349
3350 /* See target.h. */
3351
3352 void
3353 target_check_pending_interrupt (void)
3354 {
3355 (*current_target.to_check_pending_interrupt) (&current_target);
3356 }
3357
3358 /* See target/target.h. */
3359
3360 void
3361 target_stop_and_wait (ptid_t ptid)
3362 {
3363 struct target_waitstatus status;
3364 int was_non_stop = non_stop;
3365
3366 non_stop = 1;
3367 target_stop (ptid);
3368
3369 memset (&status, 0, sizeof (status));
3370 target_wait (ptid, &status, 0);
3371
3372 non_stop = was_non_stop;
3373 }
3374
3375 /* See target/target.h. */
3376
3377 void
3378 target_continue_no_signal (ptid_t ptid)
3379 {
3380 target_resume (ptid, 0, GDB_SIGNAL_0);
3381 }
3382
3383 /* Concatenate ELEM to LIST, a comma separate list, and return the
3384 result. The LIST incoming argument is released. */
3385
3386 static char *
3387 str_comma_list_concat_elem (char *list, const char *elem)
3388 {
3389 if (list == NULL)
3390 return xstrdup (elem);
3391 else
3392 return reconcat (list, list, ", ", elem, (char *) NULL);
3393 }
3394
3395 /* Helper for target_options_to_string. If OPT is present in
3396 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3397 Returns the new resulting string. OPT is removed from
3398 TARGET_OPTIONS. */
3399
3400 static char *
3401 do_option (int *target_options, char *ret,
3402 int opt, char *opt_str)
3403 {
3404 if ((*target_options & opt) != 0)
3405 {
3406 ret = str_comma_list_concat_elem (ret, opt_str);
3407 *target_options &= ~opt;
3408 }
3409
3410 return ret;
3411 }
3412
3413 char *
3414 target_options_to_string (int target_options)
3415 {
3416 char *ret = NULL;
3417
3418 #define DO_TARG_OPTION(OPT) \
3419 ret = do_option (&target_options, ret, OPT, #OPT)
3420
3421 DO_TARG_OPTION (TARGET_WNOHANG);
3422
3423 if (target_options != 0)
3424 ret = str_comma_list_concat_elem (ret, "unknown???");
3425
3426 if (ret == NULL)
3427 ret = xstrdup ("");
3428 return ret;
3429 }
3430
3431 static void
3432 debug_print_register (const char * func,
3433 struct regcache *regcache, int regno)
3434 {
3435 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3436
3437 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3438 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3439 && gdbarch_register_name (gdbarch, regno) != NULL
3440 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3441 fprintf_unfiltered (gdb_stdlog, "(%s)",
3442 gdbarch_register_name (gdbarch, regno));
3443 else
3444 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3445 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3446 {
3447 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3448 int i, size = register_size (gdbarch, regno);
3449 gdb_byte buf[MAX_REGISTER_SIZE];
3450
3451 regcache_raw_collect (regcache, regno, buf);
3452 fprintf_unfiltered (gdb_stdlog, " = ");
3453 for (i = 0; i < size; i++)
3454 {
3455 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3456 }
3457 if (size <= sizeof (LONGEST))
3458 {
3459 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3460
3461 fprintf_unfiltered (gdb_stdlog, " %s %s",
3462 core_addr_to_string_nz (val), plongest (val));
3463 }
3464 }
3465 fprintf_unfiltered (gdb_stdlog, "\n");
3466 }
3467
3468 void
3469 target_fetch_registers (struct regcache *regcache, int regno)
3470 {
3471 current_target.to_fetch_registers (&current_target, regcache, regno);
3472 if (targetdebug)
3473 debug_print_register ("target_fetch_registers", regcache, regno);
3474 }
3475
3476 void
3477 target_store_registers (struct regcache *regcache, int regno)
3478 {
3479 struct target_ops *t;
3480
3481 if (!may_write_registers)
3482 error (_("Writing to registers is not allowed (regno %d)"), regno);
3483
3484 current_target.to_store_registers (&current_target, regcache, regno);
3485 if (targetdebug)
3486 {
3487 debug_print_register ("target_store_registers", regcache, regno);
3488 }
3489 }
3490
3491 int
3492 target_core_of_thread (ptid_t ptid)
3493 {
3494 return current_target.to_core_of_thread (&current_target, ptid);
3495 }
3496
3497 int
3498 simple_verify_memory (struct target_ops *ops,
3499 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3500 {
3501 LONGEST total_xfered = 0;
3502
3503 while (total_xfered < size)
3504 {
3505 ULONGEST xfered_len;
3506 enum target_xfer_status status;
3507 gdb_byte buf[1024];
3508 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3509
3510 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3511 buf, NULL, lma + total_xfered, howmuch,
3512 &xfered_len);
3513 if (status == TARGET_XFER_OK
3514 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3515 {
3516 total_xfered += xfered_len;
3517 QUIT;
3518 }
3519 else
3520 return 0;
3521 }
3522 return 1;
3523 }
3524
3525 /* Default implementation of memory verification. */
3526
3527 static int
3528 default_verify_memory (struct target_ops *self,
3529 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3530 {
3531 /* Start over from the top of the target stack. */
3532 return simple_verify_memory (current_target.beneath,
3533 data, memaddr, size);
3534 }
3535
3536 int
3537 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3538 {
3539 return current_target.to_verify_memory (&current_target,
3540 data, memaddr, size);
3541 }
3542
3543 /* The documentation for this function is in its prototype declaration in
3544 target.h. */
3545
3546 int
3547 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3548 enum target_hw_bp_type rw)
3549 {
3550 return current_target.to_insert_mask_watchpoint (&current_target,
3551 addr, mask, rw);
3552 }
3553
3554 /* The documentation for this function is in its prototype declaration in
3555 target.h. */
3556
3557 int
3558 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3559 enum target_hw_bp_type rw)
3560 {
3561 return current_target.to_remove_mask_watchpoint (&current_target,
3562 addr, mask, rw);
3563 }
3564
3565 /* The documentation for this function is in its prototype declaration
3566 in target.h. */
3567
3568 int
3569 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3570 {
3571 return current_target.to_masked_watch_num_registers (&current_target,
3572 addr, mask);
3573 }
3574
3575 /* The documentation for this function is in its prototype declaration
3576 in target.h. */
3577
3578 int
3579 target_ranged_break_num_registers (void)
3580 {
3581 return current_target.to_ranged_break_num_registers (&current_target);
3582 }
3583
3584 /* See target.h. */
3585
3586 int
3587 target_supports_btrace (enum btrace_format format)
3588 {
3589 return current_target.to_supports_btrace (&current_target, format);
3590 }
3591
3592 /* See target.h. */
3593
3594 struct btrace_target_info *
3595 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3596 {
3597 return current_target.to_enable_btrace (&current_target, ptid, conf);
3598 }
3599
3600 /* See target.h. */
3601
3602 void
3603 target_disable_btrace (struct btrace_target_info *btinfo)
3604 {
3605 current_target.to_disable_btrace (&current_target, btinfo);
3606 }
3607
3608 /* See target.h. */
3609
3610 void
3611 target_teardown_btrace (struct btrace_target_info *btinfo)
3612 {
3613 current_target.to_teardown_btrace (&current_target, btinfo);
3614 }
3615
3616 /* See target.h. */
3617
3618 enum btrace_error
3619 target_read_btrace (struct btrace_data *btrace,
3620 struct btrace_target_info *btinfo,
3621 enum btrace_read_type type)
3622 {
3623 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3624 }
3625
3626 /* See target.h. */
3627
3628 const struct btrace_config *
3629 target_btrace_conf (const struct btrace_target_info *btinfo)
3630 {
3631 return current_target.to_btrace_conf (&current_target, btinfo);
3632 }
3633
3634 /* See target.h. */
3635
3636 void
3637 target_stop_recording (void)
3638 {
3639 current_target.to_stop_recording (&current_target);
3640 }
3641
3642 /* See target.h. */
3643
3644 void
3645 target_save_record (const char *filename)
3646 {
3647 current_target.to_save_record (&current_target, filename);
3648 }
3649
3650 /* See target.h. */
3651
3652 int
3653 target_supports_delete_record (void)
3654 {
3655 struct target_ops *t;
3656
3657 for (t = current_target.beneath; t != NULL; t = t->beneath)
3658 if (t->to_delete_record != delegate_delete_record
3659 && t->to_delete_record != tdefault_delete_record)
3660 return 1;
3661
3662 return 0;
3663 }
3664
3665 /* See target.h. */
3666
3667 void
3668 target_delete_record (void)
3669 {
3670 current_target.to_delete_record (&current_target);
3671 }
3672
3673 /* See target.h. */
3674
3675 int
3676 target_record_is_replaying (ptid_t ptid)
3677 {
3678 return current_target.to_record_is_replaying (&current_target, ptid);
3679 }
3680
3681 /* See target.h. */
3682
3683 int
3684 target_record_will_replay (ptid_t ptid, int dir)
3685 {
3686 return current_target.to_record_will_replay (&current_target, ptid, dir);
3687 }
3688
3689 /* See target.h. */
3690
3691 void
3692 target_record_stop_replaying (void)
3693 {
3694 current_target.to_record_stop_replaying (&current_target);
3695 }
3696
3697 /* See target.h. */
3698
3699 void
3700 target_goto_record_begin (void)
3701 {
3702 current_target.to_goto_record_begin (&current_target);
3703 }
3704
3705 /* See target.h. */
3706
3707 void
3708 target_goto_record_end (void)
3709 {
3710 current_target.to_goto_record_end (&current_target);
3711 }
3712
3713 /* See target.h. */
3714
3715 void
3716 target_goto_record (ULONGEST insn)
3717 {
3718 current_target.to_goto_record (&current_target, insn);
3719 }
3720
3721 /* See target.h. */
3722
3723 void
3724 target_insn_history (int size, int flags)
3725 {
3726 current_target.to_insn_history (&current_target, size, flags);
3727 }
3728
3729 /* See target.h. */
3730
3731 void
3732 target_insn_history_from (ULONGEST from, int size, int flags)
3733 {
3734 current_target.to_insn_history_from (&current_target, from, size, flags);
3735 }
3736
3737 /* See target.h. */
3738
3739 void
3740 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3741 {
3742 current_target.to_insn_history_range (&current_target, begin, end, flags);
3743 }
3744
3745 /* See target.h. */
3746
3747 void
3748 target_call_history (int size, int flags)
3749 {
3750 current_target.to_call_history (&current_target, size, flags);
3751 }
3752
3753 /* See target.h. */
3754
3755 void
3756 target_call_history_from (ULONGEST begin, int size, int flags)
3757 {
3758 current_target.to_call_history_from (&current_target, begin, size, flags);
3759 }
3760
3761 /* See target.h. */
3762
3763 void
3764 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3765 {
3766 current_target.to_call_history_range (&current_target, begin, end, flags);
3767 }
3768
3769 /* See target.h. */
3770
3771 const struct frame_unwind *
3772 target_get_unwinder (void)
3773 {
3774 return current_target.to_get_unwinder (&current_target);
3775 }
3776
3777 /* See target.h. */
3778
3779 const struct frame_unwind *
3780 target_get_tailcall_unwinder (void)
3781 {
3782 return current_target.to_get_tailcall_unwinder (&current_target);
3783 }
3784
3785 /* See target.h. */
3786
3787 void
3788 target_prepare_to_generate_core (void)
3789 {
3790 current_target.to_prepare_to_generate_core (&current_target);
3791 }
3792
3793 /* See target.h. */
3794
3795 void
3796 target_done_generating_core (void)
3797 {
3798 current_target.to_done_generating_core (&current_target);
3799 }
3800
3801 static void
3802 setup_target_debug (void)
3803 {
3804 memcpy (&debug_target, &current_target, sizeof debug_target);
3805
3806 init_debug_target (&current_target);
3807 }
3808 \f
3809
3810 static char targ_desc[] =
3811 "Names of targets and files being debugged.\nShows the entire \
3812 stack of targets currently in use (including the exec-file,\n\
3813 core-file, and process, if any), as well as the symbol file name.";
3814
3815 static void
3816 default_rcmd (struct target_ops *self, const char *command,
3817 struct ui_file *output)
3818 {
3819 error (_("\"monitor\" command not supported by this target."));
3820 }
3821
3822 static void
3823 do_monitor_command (char *cmd,
3824 int from_tty)
3825 {
3826 target_rcmd (cmd, gdb_stdtarg);
3827 }
3828
3829 /* Print the name of each layers of our target stack. */
3830
3831 static void
3832 maintenance_print_target_stack (char *cmd, int from_tty)
3833 {
3834 struct target_ops *t;
3835
3836 printf_filtered (_("The current target stack is:\n"));
3837
3838 for (t = target_stack; t != NULL; t = t->beneath)
3839 {
3840 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3841 }
3842 }
3843
3844 /* See target.h. */
3845
3846 void
3847 target_async (int enable)
3848 {
3849 infrun_async (enable);
3850 current_target.to_async (&current_target, enable);
3851 }
3852
3853 /* See target.h. */
3854
3855 void
3856 target_thread_events (int enable)
3857 {
3858 current_target.to_thread_events (&current_target, enable);
3859 }
3860
3861 /* Controls if targets can report that they can/are async. This is
3862 just for maintainers to use when debugging gdb. */
3863 int target_async_permitted = 1;
3864
3865 /* The set command writes to this variable. If the inferior is
3866 executing, target_async_permitted is *not* updated. */
3867 static int target_async_permitted_1 = 1;
3868
3869 static void
3870 maint_set_target_async_command (char *args, int from_tty,
3871 struct cmd_list_element *c)
3872 {
3873 if (have_live_inferiors ())
3874 {
3875 target_async_permitted_1 = target_async_permitted;
3876 error (_("Cannot change this setting while the inferior is running."));
3877 }
3878
3879 target_async_permitted = target_async_permitted_1;
3880 }
3881
3882 static void
3883 maint_show_target_async_command (struct ui_file *file, int from_tty,
3884 struct cmd_list_element *c,
3885 const char *value)
3886 {
3887 fprintf_filtered (file,
3888 _("Controlling the inferior in "
3889 "asynchronous mode is %s.\n"), value);
3890 }
3891
3892 /* Return true if the target operates in non-stop mode even with "set
3893 non-stop off". */
3894
3895 static int
3896 target_always_non_stop_p (void)
3897 {
3898 return current_target.to_always_non_stop_p (&current_target);
3899 }
3900
3901 /* See target.h. */
3902
3903 int
3904 target_is_non_stop_p (void)
3905 {
3906 return (non_stop
3907 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3908 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3909 && target_always_non_stop_p ()));
3910 }
3911
3912 /* Controls if targets can report that they always run in non-stop
3913 mode. This is just for maintainers to use when debugging gdb. */
3914 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3915
3916 /* The set command writes to this variable. If the inferior is
3917 executing, target_non_stop_enabled is *not* updated. */
3918 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3919
3920 /* Implementation of "maint set target-non-stop". */
3921
3922 static void
3923 maint_set_target_non_stop_command (char *args, int from_tty,
3924 struct cmd_list_element *c)
3925 {
3926 if (have_live_inferiors ())
3927 {
3928 target_non_stop_enabled_1 = target_non_stop_enabled;
3929 error (_("Cannot change this setting while the inferior is running."));
3930 }
3931
3932 target_non_stop_enabled = target_non_stop_enabled_1;
3933 }
3934
3935 /* Implementation of "maint show target-non-stop". */
3936
3937 static void
3938 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3939 struct cmd_list_element *c,
3940 const char *value)
3941 {
3942 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3943 fprintf_filtered (file,
3944 _("Whether the target is always in non-stop mode "
3945 "is %s (currently %s).\n"), value,
3946 target_always_non_stop_p () ? "on" : "off");
3947 else
3948 fprintf_filtered (file,
3949 _("Whether the target is always in non-stop mode "
3950 "is %s.\n"), value);
3951 }
3952
3953 /* Temporary copies of permission settings. */
3954
3955 static int may_write_registers_1 = 1;
3956 static int may_write_memory_1 = 1;
3957 static int may_insert_breakpoints_1 = 1;
3958 static int may_insert_tracepoints_1 = 1;
3959 static int may_insert_fast_tracepoints_1 = 1;
3960 static int may_stop_1 = 1;
3961
3962 /* Make the user-set values match the real values again. */
3963
3964 void
3965 update_target_permissions (void)
3966 {
3967 may_write_registers_1 = may_write_registers;
3968 may_write_memory_1 = may_write_memory;
3969 may_insert_breakpoints_1 = may_insert_breakpoints;
3970 may_insert_tracepoints_1 = may_insert_tracepoints;
3971 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3972 may_stop_1 = may_stop;
3973 }
3974
3975 /* The one function handles (most of) the permission flags in the same
3976 way. */
3977
3978 static void
3979 set_target_permissions (char *args, int from_tty,
3980 struct cmd_list_element *c)
3981 {
3982 if (target_has_execution)
3983 {
3984 update_target_permissions ();
3985 error (_("Cannot change this setting while the inferior is running."));
3986 }
3987
3988 /* Make the real values match the user-changed values. */
3989 may_write_registers = may_write_registers_1;
3990 may_insert_breakpoints = may_insert_breakpoints_1;
3991 may_insert_tracepoints = may_insert_tracepoints_1;
3992 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3993 may_stop = may_stop_1;
3994 update_observer_mode ();
3995 }
3996
3997 /* Set memory write permission independently of observer mode. */
3998
3999 static void
4000 set_write_memory_permission (char *args, int from_tty,
4001 struct cmd_list_element *c)
4002 {
4003 /* Make the real values match the user-changed values. */
4004 may_write_memory = may_write_memory_1;
4005 update_observer_mode ();
4006 }
4007
4008
4009 void
4010 initialize_targets (void)
4011 {
4012 init_dummy_target ();
4013 push_target (&dummy_target);
4014
4015 add_info ("target", target_info, targ_desc);
4016 add_info ("files", target_info, targ_desc);
4017
4018 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4019 Set target debugging."), _("\
4020 Show target debugging."), _("\
4021 When non-zero, target debugging is enabled. Higher numbers are more\n\
4022 verbose."),
4023 set_targetdebug,
4024 show_targetdebug,
4025 &setdebuglist, &showdebuglist);
4026
4027 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4028 &trust_readonly, _("\
4029 Set mode for reading from readonly sections."), _("\
4030 Show mode for reading from readonly sections."), _("\
4031 When this mode is on, memory reads from readonly sections (such as .text)\n\
4032 will be read from the object file instead of from the target. This will\n\
4033 result in significant performance improvement for remote targets."),
4034 NULL,
4035 show_trust_readonly,
4036 &setlist, &showlist);
4037
4038 add_com ("monitor", class_obscure, do_monitor_command,
4039 _("Send a command to the remote monitor (remote targets only)."));
4040
4041 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4042 _("Print the name of each layer of the internal target stack."),
4043 &maintenanceprintlist);
4044
4045 add_setshow_boolean_cmd ("target-async", no_class,
4046 &target_async_permitted_1, _("\
4047 Set whether gdb controls the inferior in asynchronous mode."), _("\
4048 Show whether gdb controls the inferior in asynchronous mode."), _("\
4049 Tells gdb whether to control the inferior in asynchronous mode."),
4050 maint_set_target_async_command,
4051 maint_show_target_async_command,
4052 &maintenance_set_cmdlist,
4053 &maintenance_show_cmdlist);
4054
4055 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4056 &target_non_stop_enabled_1, _("\
4057 Set whether gdb always controls the inferior in non-stop mode."), _("\
4058 Show whether gdb always controls the inferior in non-stop mode."), _("\
4059 Tells gdb whether to control the inferior in non-stop mode."),
4060 maint_set_target_non_stop_command,
4061 maint_show_target_non_stop_command,
4062 &maintenance_set_cmdlist,
4063 &maintenance_show_cmdlist);
4064
4065 add_setshow_boolean_cmd ("may-write-registers", class_support,
4066 &may_write_registers_1, _("\
4067 Set permission to write into registers."), _("\
4068 Show permission to write into registers."), _("\
4069 When this permission is on, GDB may write into the target's registers.\n\
4070 Otherwise, any sort of write attempt will result in an error."),
4071 set_target_permissions, NULL,
4072 &setlist, &showlist);
4073
4074 add_setshow_boolean_cmd ("may-write-memory", class_support,
4075 &may_write_memory_1, _("\
4076 Set permission to write into target memory."), _("\
4077 Show permission to write into target memory."), _("\
4078 When this permission is on, GDB may write into the target's memory.\n\
4079 Otherwise, any sort of write attempt will result in an error."),
4080 set_write_memory_permission, NULL,
4081 &setlist, &showlist);
4082
4083 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4084 &may_insert_breakpoints_1, _("\
4085 Set permission to insert breakpoints in the target."), _("\
4086 Show permission to insert breakpoints in the target."), _("\
4087 When this permission is on, GDB may insert breakpoints in the program.\n\
4088 Otherwise, any sort of insertion attempt will result in an error."),
4089 set_target_permissions, NULL,
4090 &setlist, &showlist);
4091
4092 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4093 &may_insert_tracepoints_1, _("\
4094 Set permission to insert tracepoints in the target."), _("\
4095 Show permission to insert tracepoints in the target."), _("\
4096 When this permission is on, GDB may insert tracepoints in the program.\n\
4097 Otherwise, any sort of insertion attempt will result in an error."),
4098 set_target_permissions, NULL,
4099 &setlist, &showlist);
4100
4101 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4102 &may_insert_fast_tracepoints_1, _("\
4103 Set permission to insert fast tracepoints in the target."), _("\
4104 Show permission to insert fast tracepoints in the target."), _("\
4105 When this permission is on, GDB may insert fast tracepoints.\n\
4106 Otherwise, any sort of insertion attempt will result in an error."),
4107 set_target_permissions, NULL,
4108 &setlist, &showlist);
4109
4110 add_setshow_boolean_cmd ("may-interrupt", class_support,
4111 &may_stop_1, _("\
4112 Set permission to interrupt or signal the target."), _("\
4113 Show permission to interrupt or signal the target."), _("\
4114 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4115 Otherwise, any attempt to interrupt or stop will be ignored."),
4116 set_target_permissions, NULL,
4117 &setlist, &showlist);
4118
4119 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4120 &auto_connect_native_target, _("\
4121 Set whether GDB may automatically connect to the native target."), _("\
4122 Show whether GDB may automatically connect to the native target."), _("\
4123 When on, and GDB is not connected to a target yet, GDB\n\
4124 attempts \"run\" and other commands with the native target."),
4125 NULL, show_auto_connect_native_target,
4126 &setlist, &showlist);
4127 }
This page took 0.134901 seconds and 4 git commands to generate.