*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44 #include "exec.h"
45 #include "inline-frame.h"
46 #include "tracepoint.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static void tcomplain (void) ATTRIBUTE_NORETURN;
58
59 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
60
61 static int return_zero (void);
62
63 static int return_one (void);
64
65 static int return_minus_one (void);
66
67 void target_ignore (void);
68
69 static void target_command (char *, int);
70
71 static struct target_ops *find_default_run_target (char *);
72
73 static LONGEST default_xfer_partial (struct target_ops *ops,
74 enum target_object object,
75 const char *annex, gdb_byte *readbuf,
76 const gdb_byte *writebuf,
77 ULONGEST offset, LONGEST len);
78
79 static LONGEST current_xfer_partial (struct target_ops *ops,
80 enum target_object object,
81 const char *annex, gdb_byte *readbuf,
82 const gdb_byte *writebuf,
83 ULONGEST offset, LONGEST len);
84
85 static LONGEST target_xfer_partial (struct target_ops *ops,
86 enum target_object object,
87 const char *annex,
88 void *readbuf, const void *writebuf,
89 ULONGEST offset, LONGEST len);
90
91 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
92 ptid_t ptid);
93
94 static void init_dummy_target (void);
95
96 static struct target_ops debug_target;
97
98 static void debug_to_open (char *, int);
99
100 static void debug_to_prepare_to_store (struct regcache *);
101
102 static void debug_to_files_info (struct target_ops *);
103
104 static int debug_to_insert_breakpoint (struct gdbarch *,
105 struct bp_target_info *);
106
107 static int debug_to_remove_breakpoint (struct gdbarch *,
108 struct bp_target_info *);
109
110 static int debug_to_can_use_hw_breakpoint (int, int, int);
111
112 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
113 struct bp_target_info *);
114
115 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
116 struct bp_target_info *);
117
118 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
119 struct expression *);
120
121 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
122 struct expression *);
123
124 static int debug_to_stopped_by_watchpoint (void);
125
126 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
127
128 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
129 CORE_ADDR, CORE_ADDR, int);
130
131 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
132
133 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
134 struct expression *);
135
136 static void debug_to_terminal_init (void);
137
138 static void debug_to_terminal_inferior (void);
139
140 static void debug_to_terminal_ours_for_output (void);
141
142 static void debug_to_terminal_save_ours (void);
143
144 static void debug_to_terminal_ours (void);
145
146 static void debug_to_terminal_info (char *, int);
147
148 static void debug_to_load (char *, int);
149
150 static int debug_to_can_run (void);
151
152 static void debug_to_stop (ptid_t);
153
154 /* Pointer to array of target architecture structures; the size of the
155 array; the current index into the array; the allocated size of the
156 array. */
157 struct target_ops **target_structs;
158 unsigned target_struct_size;
159 unsigned target_struct_index;
160 unsigned target_struct_allocsize;
161 #define DEFAULT_ALLOCSIZE 10
162
163 /* The initial current target, so that there is always a semi-valid
164 current target. */
165
166 static struct target_ops dummy_target;
167
168 /* Top of target stack. */
169
170 static struct target_ops *target_stack;
171
172 /* The target structure we are currently using to talk to a process
173 or file or whatever "inferior" we have. */
174
175 struct target_ops current_target;
176
177 /* Command list for target. */
178
179 static struct cmd_list_element *targetlist = NULL;
180
181 /* Nonzero if we should trust readonly sections from the
182 executable when reading memory. */
183
184 static int trust_readonly = 0;
185
186 /* Nonzero if we should show true memory content including
187 memory breakpoint inserted by gdb. */
188
189 static int show_memory_breakpoints = 0;
190
191 /* These globals control whether GDB attempts to perform these
192 operations; they are useful for targets that need to prevent
193 inadvertant disruption, such as in non-stop mode. */
194
195 int may_write_registers = 1;
196
197 int may_write_memory = 1;
198
199 int may_insert_breakpoints = 1;
200
201 int may_insert_tracepoints = 1;
202
203 int may_insert_fast_tracepoints = 1;
204
205 int may_stop = 1;
206
207 /* Non-zero if we want to see trace of target level stuff. */
208
209 static int targetdebug = 0;
210 static void
211 show_targetdebug (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
215 }
216
217 static void setup_target_debug (void);
218
219 /* The option sets this. */
220 static int stack_cache_enabled_p_1 = 1;
221 /* And set_stack_cache_enabled_p updates this.
222 The reason for the separation is so that we don't flush the cache for
223 on->on transitions. */
224 static int stack_cache_enabled_p = 1;
225
226 /* This is called *after* the stack-cache has been set.
227 Flush the cache for off->on and on->off transitions.
228 There's no real need to flush the cache for on->off transitions,
229 except cleanliness. */
230
231 static void
232 set_stack_cache_enabled_p (char *args, int from_tty,
233 struct cmd_list_element *c)
234 {
235 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
236 target_dcache_invalidate ();
237
238 stack_cache_enabled_p = stack_cache_enabled_p_1;
239 }
240
241 static void
242 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
246 }
247
248 /* Cache of memory operations, to speed up remote access. */
249 static DCACHE *target_dcache;
250
251 /* Invalidate the target dcache. */
252
253 void
254 target_dcache_invalidate (void)
255 {
256 dcache_invalidate (target_dcache);
257 }
258
259 /* The user just typed 'target' without the name of a target. */
260
261 static void
262 target_command (char *arg, int from_tty)
263 {
264 fputs_filtered ("Argument required (target name). Try `help target'\n",
265 gdb_stdout);
266 }
267
268 /* Default target_has_* methods for process_stratum targets. */
269
270 int
271 default_child_has_all_memory (struct target_ops *ops)
272 {
273 /* If no inferior selected, then we can't read memory here. */
274 if (ptid_equal (inferior_ptid, null_ptid))
275 return 0;
276
277 return 1;
278 }
279
280 int
281 default_child_has_memory (struct target_ops *ops)
282 {
283 /* If no inferior selected, then we can't read memory here. */
284 if (ptid_equal (inferior_ptid, null_ptid))
285 return 0;
286
287 return 1;
288 }
289
290 int
291 default_child_has_stack (struct target_ops *ops)
292 {
293 /* If no inferior selected, there's no stack. */
294 if (ptid_equal (inferior_ptid, null_ptid))
295 return 0;
296
297 return 1;
298 }
299
300 int
301 default_child_has_registers (struct target_ops *ops)
302 {
303 /* Can't read registers from no inferior. */
304 if (ptid_equal (inferior_ptid, null_ptid))
305 return 0;
306
307 return 1;
308 }
309
310 int
311 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
312 {
313 /* If there's no thread selected, then we can't make it run through
314 hoops. */
315 if (ptid_equal (the_ptid, null_ptid))
316 return 0;
317
318 return 1;
319 }
320
321
322 int
323 target_has_all_memory_1 (void)
324 {
325 struct target_ops *t;
326
327 for (t = current_target.beneath; t != NULL; t = t->beneath)
328 if (t->to_has_all_memory (t))
329 return 1;
330
331 return 0;
332 }
333
334 int
335 target_has_memory_1 (void)
336 {
337 struct target_ops *t;
338
339 for (t = current_target.beneath; t != NULL; t = t->beneath)
340 if (t->to_has_memory (t))
341 return 1;
342
343 return 0;
344 }
345
346 int
347 target_has_stack_1 (void)
348 {
349 struct target_ops *t;
350
351 for (t = current_target.beneath; t != NULL; t = t->beneath)
352 if (t->to_has_stack (t))
353 return 1;
354
355 return 0;
356 }
357
358 int
359 target_has_registers_1 (void)
360 {
361 struct target_ops *t;
362
363 for (t = current_target.beneath; t != NULL; t = t->beneath)
364 if (t->to_has_registers (t))
365 return 1;
366
367 return 0;
368 }
369
370 int
371 target_has_execution_1 (ptid_t the_ptid)
372 {
373 struct target_ops *t;
374
375 for (t = current_target.beneath; t != NULL; t = t->beneath)
376 if (t->to_has_execution (t, the_ptid))
377 return 1;
378
379 return 0;
380 }
381
382 int
383 target_has_execution_current (void)
384 {
385 return target_has_execution_1 (inferior_ptid);
386 }
387
388 /* Add a possible target architecture to the list. */
389
390 void
391 add_target (struct target_ops *t)
392 {
393 /* Provide default values for all "must have" methods. */
394 if (t->to_xfer_partial == NULL)
395 t->to_xfer_partial = default_xfer_partial;
396
397 if (t->to_has_all_memory == NULL)
398 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
399
400 if (t->to_has_memory == NULL)
401 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
402
403 if (t->to_has_stack == NULL)
404 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
405
406 if (t->to_has_registers == NULL)
407 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
408
409 if (t->to_has_execution == NULL)
410 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
411
412 if (!target_structs)
413 {
414 target_struct_allocsize = DEFAULT_ALLOCSIZE;
415 target_structs = (struct target_ops **) xmalloc
416 (target_struct_allocsize * sizeof (*target_structs));
417 }
418 if (target_struct_size >= target_struct_allocsize)
419 {
420 target_struct_allocsize *= 2;
421 target_structs = (struct target_ops **)
422 xrealloc ((char *) target_structs,
423 target_struct_allocsize * sizeof (*target_structs));
424 }
425 target_structs[target_struct_size++] = t;
426
427 if (targetlist == NULL)
428 add_prefix_cmd ("target", class_run, target_command, _("\
429 Connect to a target machine or process.\n\
430 The first argument is the type or protocol of the target machine.\n\
431 Remaining arguments are interpreted by the target protocol. For more\n\
432 information on the arguments for a particular protocol, type\n\
433 `help target ' followed by the protocol name."),
434 &targetlist, "target ", 0, &cmdlist);
435 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
436 }
437
438 /* Stub functions */
439
440 void
441 target_ignore (void)
442 {
443 }
444
445 void
446 target_kill (void)
447 {
448 struct target_ops *t;
449
450 for (t = current_target.beneath; t != NULL; t = t->beneath)
451 if (t->to_kill != NULL)
452 {
453 if (targetdebug)
454 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
455
456 t->to_kill (t);
457 return;
458 }
459
460 noprocess ();
461 }
462
463 void
464 target_load (char *arg, int from_tty)
465 {
466 target_dcache_invalidate ();
467 (*current_target.to_load) (arg, from_tty);
468 }
469
470 void
471 target_create_inferior (char *exec_file, char *args,
472 char **env, int from_tty)
473 {
474 struct target_ops *t;
475
476 for (t = current_target.beneath; t != NULL; t = t->beneath)
477 {
478 if (t->to_create_inferior != NULL)
479 {
480 t->to_create_inferior (t, exec_file, args, env, from_tty);
481 if (targetdebug)
482 fprintf_unfiltered (gdb_stdlog,
483 "target_create_inferior (%s, %s, xxx, %d)\n",
484 exec_file, args, from_tty);
485 return;
486 }
487 }
488
489 internal_error (__FILE__, __LINE__,
490 _("could not find a target to create inferior"));
491 }
492
493 void
494 target_terminal_inferior (void)
495 {
496 /* A background resume (``run&'') should leave GDB in control of the
497 terminal. Use target_can_async_p, not target_is_async_p, since at
498 this point the target is not async yet. However, if sync_execution
499 is not set, we know it will become async prior to resume. */
500 if (target_can_async_p () && !sync_execution)
501 return;
502
503 /* If GDB is resuming the inferior in the foreground, install
504 inferior's terminal modes. */
505 (*current_target.to_terminal_inferior) ();
506 }
507
508 static int
509 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
510 struct target_ops *t)
511 {
512 errno = EIO; /* Can't read/write this location. */
513 return 0; /* No bytes handled. */
514 }
515
516 static void
517 tcomplain (void)
518 {
519 error (_("You can't do that when your target is `%s'"),
520 current_target.to_shortname);
521 }
522
523 void
524 noprocess (void)
525 {
526 error (_("You can't do that without a process to debug."));
527 }
528
529 static void
530 default_terminal_info (char *args, int from_tty)
531 {
532 printf_unfiltered (_("No saved terminal information.\n"));
533 }
534
535 /* A default implementation for the to_get_ada_task_ptid target method.
536
537 This function builds the PTID by using both LWP and TID as part of
538 the PTID lwp and tid elements. The pid used is the pid of the
539 inferior_ptid. */
540
541 static ptid_t
542 default_get_ada_task_ptid (long lwp, long tid)
543 {
544 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
545 }
546
547 static enum exec_direction_kind
548 default_execution_direction (void)
549 {
550 if (!target_can_execute_reverse)
551 return EXEC_FORWARD;
552 else if (!target_can_async_p ())
553 return EXEC_FORWARD;
554 else
555 gdb_assert_not_reached ("\
556 to_execution_direction must be implemented for reverse async");
557 }
558
559 /* Go through the target stack from top to bottom, copying over zero
560 entries in current_target, then filling in still empty entries. In
561 effect, we are doing class inheritance through the pushed target
562 vectors.
563
564 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
565 is currently implemented, is that it discards any knowledge of
566 which target an inherited method originally belonged to.
567 Consequently, new new target methods should instead explicitly and
568 locally search the target stack for the target that can handle the
569 request. */
570
571 static void
572 update_current_target (void)
573 {
574 struct target_ops *t;
575
576 /* First, reset current's contents. */
577 memset (&current_target, 0, sizeof (current_target));
578
579 #define INHERIT(FIELD, TARGET) \
580 if (!current_target.FIELD) \
581 current_target.FIELD = (TARGET)->FIELD
582
583 for (t = target_stack; t; t = t->beneath)
584 {
585 INHERIT (to_shortname, t);
586 INHERIT (to_longname, t);
587 INHERIT (to_doc, t);
588 /* Do not inherit to_open. */
589 /* Do not inherit to_close. */
590 /* Do not inherit to_attach. */
591 INHERIT (to_post_attach, t);
592 INHERIT (to_attach_no_wait, t);
593 /* Do not inherit to_detach. */
594 /* Do not inherit to_disconnect. */
595 /* Do not inherit to_resume. */
596 /* Do not inherit to_wait. */
597 /* Do not inherit to_fetch_registers. */
598 /* Do not inherit to_store_registers. */
599 INHERIT (to_prepare_to_store, t);
600 INHERIT (deprecated_xfer_memory, t);
601 INHERIT (to_files_info, t);
602 INHERIT (to_insert_breakpoint, t);
603 INHERIT (to_remove_breakpoint, t);
604 INHERIT (to_can_use_hw_breakpoint, t);
605 INHERIT (to_insert_hw_breakpoint, t);
606 INHERIT (to_remove_hw_breakpoint, t);
607 /* Do not inherit to_ranged_break_num_registers. */
608 INHERIT (to_insert_watchpoint, t);
609 INHERIT (to_remove_watchpoint, t);
610 /* Do not inherit to_insert_mask_watchpoint. */
611 /* Do not inherit to_remove_mask_watchpoint. */
612 INHERIT (to_stopped_data_address, t);
613 INHERIT (to_have_steppable_watchpoint, t);
614 INHERIT (to_have_continuable_watchpoint, t);
615 INHERIT (to_stopped_by_watchpoint, t);
616 INHERIT (to_watchpoint_addr_within_range, t);
617 INHERIT (to_region_ok_for_hw_watchpoint, t);
618 INHERIT (to_can_accel_watchpoint_condition, t);
619 /* Do not inherit to_masked_watch_num_registers. */
620 INHERIT (to_terminal_init, t);
621 INHERIT (to_terminal_inferior, t);
622 INHERIT (to_terminal_ours_for_output, t);
623 INHERIT (to_terminal_ours, t);
624 INHERIT (to_terminal_save_ours, t);
625 INHERIT (to_terminal_info, t);
626 /* Do not inherit to_kill. */
627 INHERIT (to_load, t);
628 /* Do no inherit to_create_inferior. */
629 INHERIT (to_post_startup_inferior, t);
630 INHERIT (to_insert_fork_catchpoint, t);
631 INHERIT (to_remove_fork_catchpoint, t);
632 INHERIT (to_insert_vfork_catchpoint, t);
633 INHERIT (to_remove_vfork_catchpoint, t);
634 /* Do not inherit to_follow_fork. */
635 INHERIT (to_insert_exec_catchpoint, t);
636 INHERIT (to_remove_exec_catchpoint, t);
637 INHERIT (to_set_syscall_catchpoint, t);
638 INHERIT (to_has_exited, t);
639 /* Do not inherit to_mourn_inferior. */
640 INHERIT (to_can_run, t);
641 /* Do not inherit to_pass_signals. */
642 /* Do not inherit to_thread_alive. */
643 /* Do not inherit to_find_new_threads. */
644 /* Do not inherit to_pid_to_str. */
645 INHERIT (to_extra_thread_info, t);
646 INHERIT (to_thread_name, t);
647 INHERIT (to_stop, t);
648 /* Do not inherit to_xfer_partial. */
649 INHERIT (to_rcmd, t);
650 INHERIT (to_pid_to_exec_file, t);
651 INHERIT (to_log_command, t);
652 INHERIT (to_stratum, t);
653 /* Do not inherit to_has_all_memory. */
654 /* Do not inherit to_has_memory. */
655 /* Do not inherit to_has_stack. */
656 /* Do not inherit to_has_registers. */
657 /* Do not inherit to_has_execution. */
658 INHERIT (to_has_thread_control, t);
659 INHERIT (to_can_async_p, t);
660 INHERIT (to_is_async_p, t);
661 INHERIT (to_async, t);
662 INHERIT (to_find_memory_regions, t);
663 INHERIT (to_make_corefile_notes, t);
664 INHERIT (to_get_bookmark, t);
665 INHERIT (to_goto_bookmark, t);
666 /* Do not inherit to_get_thread_local_address. */
667 INHERIT (to_can_execute_reverse, t);
668 INHERIT (to_execution_direction, t);
669 INHERIT (to_thread_architecture, t);
670 /* Do not inherit to_read_description. */
671 INHERIT (to_get_ada_task_ptid, t);
672 /* Do not inherit to_search_memory. */
673 INHERIT (to_supports_multi_process, t);
674 INHERIT (to_supports_enable_disable_tracepoint, t);
675 INHERIT (to_trace_init, t);
676 INHERIT (to_download_tracepoint, t);
677 INHERIT (to_download_trace_state_variable, t);
678 INHERIT (to_enable_tracepoint, t);
679 INHERIT (to_disable_tracepoint, t);
680 INHERIT (to_trace_set_readonly_regions, t);
681 INHERIT (to_trace_start, t);
682 INHERIT (to_get_trace_status, t);
683 INHERIT (to_trace_stop, t);
684 INHERIT (to_trace_find, t);
685 INHERIT (to_get_trace_state_variable_value, t);
686 INHERIT (to_save_trace_data, t);
687 INHERIT (to_upload_tracepoints, t);
688 INHERIT (to_upload_trace_state_variables, t);
689 INHERIT (to_get_raw_trace_data, t);
690 INHERIT (to_set_disconnected_tracing, t);
691 INHERIT (to_set_circular_trace_buffer, t);
692 INHERIT (to_get_tib_address, t);
693 INHERIT (to_set_permissions, t);
694 INHERIT (to_static_tracepoint_marker_at, t);
695 INHERIT (to_static_tracepoint_markers_by_strid, t);
696 INHERIT (to_traceframe_info, t);
697 INHERIT (to_magic, t);
698 /* Do not inherit to_memory_map. */
699 /* Do not inherit to_flash_erase. */
700 /* Do not inherit to_flash_done. */
701 }
702 #undef INHERIT
703
704 /* Clean up a target struct so it no longer has any zero pointers in
705 it. Some entries are defaulted to a method that print an error,
706 others are hard-wired to a standard recursive default. */
707
708 #define de_fault(field, value) \
709 if (!current_target.field) \
710 current_target.field = value
711
712 de_fault (to_open,
713 (void (*) (char *, int))
714 tcomplain);
715 de_fault (to_close,
716 (void (*) (int))
717 target_ignore);
718 de_fault (to_post_attach,
719 (void (*) (int))
720 target_ignore);
721 de_fault (to_prepare_to_store,
722 (void (*) (struct regcache *))
723 noprocess);
724 de_fault (deprecated_xfer_memory,
725 (int (*) (CORE_ADDR, gdb_byte *, int, int,
726 struct mem_attrib *, struct target_ops *))
727 nomemory);
728 de_fault (to_files_info,
729 (void (*) (struct target_ops *))
730 target_ignore);
731 de_fault (to_insert_breakpoint,
732 memory_insert_breakpoint);
733 de_fault (to_remove_breakpoint,
734 memory_remove_breakpoint);
735 de_fault (to_can_use_hw_breakpoint,
736 (int (*) (int, int, int))
737 return_zero);
738 de_fault (to_insert_hw_breakpoint,
739 (int (*) (struct gdbarch *, struct bp_target_info *))
740 return_minus_one);
741 de_fault (to_remove_hw_breakpoint,
742 (int (*) (struct gdbarch *, struct bp_target_info *))
743 return_minus_one);
744 de_fault (to_insert_watchpoint,
745 (int (*) (CORE_ADDR, int, int, struct expression *))
746 return_minus_one);
747 de_fault (to_remove_watchpoint,
748 (int (*) (CORE_ADDR, int, int, struct expression *))
749 return_minus_one);
750 de_fault (to_stopped_by_watchpoint,
751 (int (*) (void))
752 return_zero);
753 de_fault (to_stopped_data_address,
754 (int (*) (struct target_ops *, CORE_ADDR *))
755 return_zero);
756 de_fault (to_watchpoint_addr_within_range,
757 default_watchpoint_addr_within_range);
758 de_fault (to_region_ok_for_hw_watchpoint,
759 default_region_ok_for_hw_watchpoint);
760 de_fault (to_can_accel_watchpoint_condition,
761 (int (*) (CORE_ADDR, int, int, struct expression *))
762 return_zero);
763 de_fault (to_terminal_init,
764 (void (*) (void))
765 target_ignore);
766 de_fault (to_terminal_inferior,
767 (void (*) (void))
768 target_ignore);
769 de_fault (to_terminal_ours_for_output,
770 (void (*) (void))
771 target_ignore);
772 de_fault (to_terminal_ours,
773 (void (*) (void))
774 target_ignore);
775 de_fault (to_terminal_save_ours,
776 (void (*) (void))
777 target_ignore);
778 de_fault (to_terminal_info,
779 default_terminal_info);
780 de_fault (to_load,
781 (void (*) (char *, int))
782 tcomplain);
783 de_fault (to_post_startup_inferior,
784 (void (*) (ptid_t))
785 target_ignore);
786 de_fault (to_insert_fork_catchpoint,
787 (int (*) (int))
788 return_one);
789 de_fault (to_remove_fork_catchpoint,
790 (int (*) (int))
791 return_one);
792 de_fault (to_insert_vfork_catchpoint,
793 (int (*) (int))
794 return_one);
795 de_fault (to_remove_vfork_catchpoint,
796 (int (*) (int))
797 return_one);
798 de_fault (to_insert_exec_catchpoint,
799 (int (*) (int))
800 return_one);
801 de_fault (to_remove_exec_catchpoint,
802 (int (*) (int))
803 return_one);
804 de_fault (to_set_syscall_catchpoint,
805 (int (*) (int, int, int, int, int *))
806 return_one);
807 de_fault (to_has_exited,
808 (int (*) (int, int, int *))
809 return_zero);
810 de_fault (to_can_run,
811 return_zero);
812 de_fault (to_extra_thread_info,
813 (char *(*) (struct thread_info *))
814 return_zero);
815 de_fault (to_thread_name,
816 (char *(*) (struct thread_info *))
817 return_zero);
818 de_fault (to_stop,
819 (void (*) (ptid_t))
820 target_ignore);
821 current_target.to_xfer_partial = current_xfer_partial;
822 de_fault (to_rcmd,
823 (void (*) (char *, struct ui_file *))
824 tcomplain);
825 de_fault (to_pid_to_exec_file,
826 (char *(*) (int))
827 return_zero);
828 de_fault (to_async,
829 (void (*) (void (*) (enum inferior_event_type, void*), void*))
830 tcomplain);
831 de_fault (to_thread_architecture,
832 default_thread_architecture);
833 current_target.to_read_description = NULL;
834 de_fault (to_get_ada_task_ptid,
835 (ptid_t (*) (long, long))
836 default_get_ada_task_ptid);
837 de_fault (to_supports_multi_process,
838 (int (*) (void))
839 return_zero);
840 de_fault (to_supports_enable_disable_tracepoint,
841 (int (*) (void))
842 return_zero);
843 de_fault (to_trace_init,
844 (void (*) (void))
845 tcomplain);
846 de_fault (to_download_tracepoint,
847 (void (*) (struct breakpoint *))
848 tcomplain);
849 de_fault (to_download_trace_state_variable,
850 (void (*) (struct trace_state_variable *))
851 tcomplain);
852 de_fault (to_enable_tracepoint,
853 (void (*) (struct bp_location *))
854 tcomplain);
855 de_fault (to_disable_tracepoint,
856 (void (*) (struct bp_location *))
857 tcomplain);
858 de_fault (to_trace_set_readonly_regions,
859 (void (*) (void))
860 tcomplain);
861 de_fault (to_trace_start,
862 (void (*) (void))
863 tcomplain);
864 de_fault (to_get_trace_status,
865 (int (*) (struct trace_status *))
866 return_minus_one);
867 de_fault (to_trace_stop,
868 (void (*) (void))
869 tcomplain);
870 de_fault (to_trace_find,
871 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
872 return_minus_one);
873 de_fault (to_get_trace_state_variable_value,
874 (int (*) (int, LONGEST *))
875 return_zero);
876 de_fault (to_save_trace_data,
877 (int (*) (const char *))
878 tcomplain);
879 de_fault (to_upload_tracepoints,
880 (int (*) (struct uploaded_tp **))
881 return_zero);
882 de_fault (to_upload_trace_state_variables,
883 (int (*) (struct uploaded_tsv **))
884 return_zero);
885 de_fault (to_get_raw_trace_data,
886 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
887 tcomplain);
888 de_fault (to_set_disconnected_tracing,
889 (void (*) (int))
890 target_ignore);
891 de_fault (to_set_circular_trace_buffer,
892 (void (*) (int))
893 target_ignore);
894 de_fault (to_get_tib_address,
895 (int (*) (ptid_t, CORE_ADDR *))
896 tcomplain);
897 de_fault (to_set_permissions,
898 (void (*) (void))
899 target_ignore);
900 de_fault (to_static_tracepoint_marker_at,
901 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
902 return_zero);
903 de_fault (to_static_tracepoint_markers_by_strid,
904 (VEC(static_tracepoint_marker_p) * (*) (const char *))
905 tcomplain);
906 de_fault (to_traceframe_info,
907 (struct traceframe_info * (*) (void))
908 tcomplain);
909 de_fault (to_execution_direction, default_execution_direction);
910
911 #undef de_fault
912
913 /* Finally, position the target-stack beneath the squashed
914 "current_target". That way code looking for a non-inherited
915 target method can quickly and simply find it. */
916 current_target.beneath = target_stack;
917
918 if (targetdebug)
919 setup_target_debug ();
920 }
921
922 /* Push a new target type into the stack of the existing target accessors,
923 possibly superseding some of the existing accessors.
924
925 Rather than allow an empty stack, we always have the dummy target at
926 the bottom stratum, so we can call the function vectors without
927 checking them. */
928
929 void
930 push_target (struct target_ops *t)
931 {
932 struct target_ops **cur;
933
934 /* Check magic number. If wrong, it probably means someone changed
935 the struct definition, but not all the places that initialize one. */
936 if (t->to_magic != OPS_MAGIC)
937 {
938 fprintf_unfiltered (gdb_stderr,
939 "Magic number of %s target struct wrong\n",
940 t->to_shortname);
941 internal_error (__FILE__, __LINE__,
942 _("failed internal consistency check"));
943 }
944
945 /* Find the proper stratum to install this target in. */
946 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
947 {
948 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
949 break;
950 }
951
952 /* If there's already targets at this stratum, remove them. */
953 /* FIXME: cagney/2003-10-15: I think this should be popping all
954 targets to CUR, and not just those at this stratum level. */
955 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
956 {
957 /* There's already something at this stratum level. Close it,
958 and un-hook it from the stack. */
959 struct target_ops *tmp = (*cur);
960
961 (*cur) = (*cur)->beneath;
962 tmp->beneath = NULL;
963 target_close (tmp, 0);
964 }
965
966 /* We have removed all targets in our stratum, now add the new one. */
967 t->beneath = (*cur);
968 (*cur) = t;
969
970 update_current_target ();
971 }
972
973 /* Remove a target_ops vector from the stack, wherever it may be.
974 Return how many times it was removed (0 or 1). */
975
976 int
977 unpush_target (struct target_ops *t)
978 {
979 struct target_ops **cur;
980 struct target_ops *tmp;
981
982 if (t->to_stratum == dummy_stratum)
983 internal_error (__FILE__, __LINE__,
984 _("Attempt to unpush the dummy target"));
985
986 /* Look for the specified target. Note that we assume that a target
987 can only occur once in the target stack. */
988
989 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
990 {
991 if ((*cur) == t)
992 break;
993 }
994
995 if ((*cur) == NULL)
996 return 0; /* Didn't find target_ops, quit now. */
997
998 /* NOTE: cagney/2003-12-06: In '94 the close call was made
999 unconditional by moving it to before the above check that the
1000 target was in the target stack (something about "Change the way
1001 pushing and popping of targets work to support target overlays
1002 and inheritance"). This doesn't make much sense - only open
1003 targets should be closed. */
1004 target_close (t, 0);
1005
1006 /* Unchain the target. */
1007 tmp = (*cur);
1008 (*cur) = (*cur)->beneath;
1009 tmp->beneath = NULL;
1010
1011 update_current_target ();
1012
1013 return 1;
1014 }
1015
1016 void
1017 pop_target (void)
1018 {
1019 target_close (target_stack, 0); /* Let it clean up. */
1020 if (unpush_target (target_stack) == 1)
1021 return;
1022
1023 fprintf_unfiltered (gdb_stderr,
1024 "pop_target couldn't find target %s\n",
1025 current_target.to_shortname);
1026 internal_error (__FILE__, __LINE__,
1027 _("failed internal consistency check"));
1028 }
1029
1030 void
1031 pop_all_targets_above (enum strata above_stratum, int quitting)
1032 {
1033 while ((int) (current_target.to_stratum) > (int) above_stratum)
1034 {
1035 target_close (target_stack, quitting);
1036 if (!unpush_target (target_stack))
1037 {
1038 fprintf_unfiltered (gdb_stderr,
1039 "pop_all_targets couldn't find target %s\n",
1040 target_stack->to_shortname);
1041 internal_error (__FILE__, __LINE__,
1042 _("failed internal consistency check"));
1043 break;
1044 }
1045 }
1046 }
1047
1048 void
1049 pop_all_targets (int quitting)
1050 {
1051 pop_all_targets_above (dummy_stratum, quitting);
1052 }
1053
1054 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1055
1056 int
1057 target_is_pushed (struct target_ops *t)
1058 {
1059 struct target_ops **cur;
1060
1061 /* Check magic number. If wrong, it probably means someone changed
1062 the struct definition, but not all the places that initialize one. */
1063 if (t->to_magic != OPS_MAGIC)
1064 {
1065 fprintf_unfiltered (gdb_stderr,
1066 "Magic number of %s target struct wrong\n",
1067 t->to_shortname);
1068 internal_error (__FILE__, __LINE__,
1069 _("failed internal consistency check"));
1070 }
1071
1072 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1073 if (*cur == t)
1074 return 1;
1075
1076 return 0;
1077 }
1078
1079 /* Using the objfile specified in OBJFILE, find the address for the
1080 current thread's thread-local storage with offset OFFSET. */
1081 CORE_ADDR
1082 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1083 {
1084 volatile CORE_ADDR addr = 0;
1085 struct target_ops *target;
1086
1087 for (target = current_target.beneath;
1088 target != NULL;
1089 target = target->beneath)
1090 {
1091 if (target->to_get_thread_local_address != NULL)
1092 break;
1093 }
1094
1095 if (target != NULL
1096 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1097 {
1098 ptid_t ptid = inferior_ptid;
1099 volatile struct gdb_exception ex;
1100
1101 TRY_CATCH (ex, RETURN_MASK_ALL)
1102 {
1103 CORE_ADDR lm_addr;
1104
1105 /* Fetch the load module address for this objfile. */
1106 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1107 objfile);
1108 /* If it's 0, throw the appropriate exception. */
1109 if (lm_addr == 0)
1110 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1111 _("TLS load module not found"));
1112
1113 addr = target->to_get_thread_local_address (target, ptid,
1114 lm_addr, offset);
1115 }
1116 /* If an error occurred, print TLS related messages here. Otherwise,
1117 throw the error to some higher catcher. */
1118 if (ex.reason < 0)
1119 {
1120 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1121
1122 switch (ex.error)
1123 {
1124 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1125 error (_("Cannot find thread-local variables "
1126 "in this thread library."));
1127 break;
1128 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1129 if (objfile_is_library)
1130 error (_("Cannot find shared library `%s' in dynamic"
1131 " linker's load module list"), objfile->name);
1132 else
1133 error (_("Cannot find executable file `%s' in dynamic"
1134 " linker's load module list"), objfile->name);
1135 break;
1136 case TLS_NOT_ALLOCATED_YET_ERROR:
1137 if (objfile_is_library)
1138 error (_("The inferior has not yet allocated storage for"
1139 " thread-local variables in\n"
1140 "the shared library `%s'\n"
1141 "for %s"),
1142 objfile->name, target_pid_to_str (ptid));
1143 else
1144 error (_("The inferior has not yet allocated storage for"
1145 " thread-local variables in\n"
1146 "the executable `%s'\n"
1147 "for %s"),
1148 objfile->name, target_pid_to_str (ptid));
1149 break;
1150 case TLS_GENERIC_ERROR:
1151 if (objfile_is_library)
1152 error (_("Cannot find thread-local storage for %s, "
1153 "shared library %s:\n%s"),
1154 target_pid_to_str (ptid),
1155 objfile->name, ex.message);
1156 else
1157 error (_("Cannot find thread-local storage for %s, "
1158 "executable file %s:\n%s"),
1159 target_pid_to_str (ptid),
1160 objfile->name, ex.message);
1161 break;
1162 default:
1163 throw_exception (ex);
1164 break;
1165 }
1166 }
1167 }
1168 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1169 TLS is an ABI-specific thing. But we don't do that yet. */
1170 else
1171 error (_("Cannot find thread-local variables on this target"));
1172
1173 return addr;
1174 }
1175
1176 #undef MIN
1177 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1178
1179 /* target_read_string -- read a null terminated string, up to LEN bytes,
1180 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1181 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1182 is responsible for freeing it. Return the number of bytes successfully
1183 read. */
1184
1185 int
1186 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1187 {
1188 int tlen, origlen, offset, i;
1189 gdb_byte buf[4];
1190 int errcode = 0;
1191 char *buffer;
1192 int buffer_allocated;
1193 char *bufptr;
1194 unsigned int nbytes_read = 0;
1195
1196 gdb_assert (string);
1197
1198 /* Small for testing. */
1199 buffer_allocated = 4;
1200 buffer = xmalloc (buffer_allocated);
1201 bufptr = buffer;
1202
1203 origlen = len;
1204
1205 while (len > 0)
1206 {
1207 tlen = MIN (len, 4 - (memaddr & 3));
1208 offset = memaddr & 3;
1209
1210 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1211 if (errcode != 0)
1212 {
1213 /* The transfer request might have crossed the boundary to an
1214 unallocated region of memory. Retry the transfer, requesting
1215 a single byte. */
1216 tlen = 1;
1217 offset = 0;
1218 errcode = target_read_memory (memaddr, buf, 1);
1219 if (errcode != 0)
1220 goto done;
1221 }
1222
1223 if (bufptr - buffer + tlen > buffer_allocated)
1224 {
1225 unsigned int bytes;
1226
1227 bytes = bufptr - buffer;
1228 buffer_allocated *= 2;
1229 buffer = xrealloc (buffer, buffer_allocated);
1230 bufptr = buffer + bytes;
1231 }
1232
1233 for (i = 0; i < tlen; i++)
1234 {
1235 *bufptr++ = buf[i + offset];
1236 if (buf[i + offset] == '\000')
1237 {
1238 nbytes_read += i + 1;
1239 goto done;
1240 }
1241 }
1242
1243 memaddr += tlen;
1244 len -= tlen;
1245 nbytes_read += tlen;
1246 }
1247 done:
1248 *string = buffer;
1249 if (errnop != NULL)
1250 *errnop = errcode;
1251 return nbytes_read;
1252 }
1253
1254 struct target_section_table *
1255 target_get_section_table (struct target_ops *target)
1256 {
1257 struct target_ops *t;
1258
1259 if (targetdebug)
1260 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1261
1262 for (t = target; t != NULL; t = t->beneath)
1263 if (t->to_get_section_table != NULL)
1264 return (*t->to_get_section_table) (t);
1265
1266 return NULL;
1267 }
1268
1269 /* Find a section containing ADDR. */
1270
1271 struct target_section *
1272 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1273 {
1274 struct target_section_table *table = target_get_section_table (target);
1275 struct target_section *secp;
1276
1277 if (table == NULL)
1278 return NULL;
1279
1280 for (secp = table->sections; secp < table->sections_end; secp++)
1281 {
1282 if (addr >= secp->addr && addr < secp->endaddr)
1283 return secp;
1284 }
1285 return NULL;
1286 }
1287
1288 /* Read memory from the live target, even if currently inspecting a
1289 traceframe. The return is the same as that of target_read. */
1290
1291 static LONGEST
1292 target_read_live_memory (enum target_object object,
1293 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1294 {
1295 int ret;
1296 struct cleanup *cleanup;
1297
1298 /* Switch momentarily out of tfind mode so to access live memory.
1299 Note that this must not clear global state, such as the frame
1300 cache, which must still remain valid for the previous traceframe.
1301 We may be _building_ the frame cache at this point. */
1302 cleanup = make_cleanup_restore_traceframe_number ();
1303 set_traceframe_number (-1);
1304
1305 ret = target_read (current_target.beneath, object, NULL,
1306 myaddr, memaddr, len);
1307
1308 do_cleanups (cleanup);
1309 return ret;
1310 }
1311
1312 /* Using the set of read-only target sections of OPS, read live
1313 read-only memory. Note that the actual reads start from the
1314 top-most target again.
1315
1316 For interface/parameters/return description see target.h,
1317 to_xfer_partial. */
1318
1319 static LONGEST
1320 memory_xfer_live_readonly_partial (struct target_ops *ops,
1321 enum target_object object,
1322 gdb_byte *readbuf, ULONGEST memaddr,
1323 LONGEST len)
1324 {
1325 struct target_section *secp;
1326 struct target_section_table *table;
1327
1328 secp = target_section_by_addr (ops, memaddr);
1329 if (secp != NULL
1330 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1331 & SEC_READONLY))
1332 {
1333 struct target_section *p;
1334 ULONGEST memend = memaddr + len;
1335
1336 table = target_get_section_table (ops);
1337
1338 for (p = table->sections; p < table->sections_end; p++)
1339 {
1340 if (memaddr >= p->addr)
1341 {
1342 if (memend <= p->endaddr)
1343 {
1344 /* Entire transfer is within this section. */
1345 return target_read_live_memory (object, memaddr,
1346 readbuf, len);
1347 }
1348 else if (memaddr >= p->endaddr)
1349 {
1350 /* This section ends before the transfer starts. */
1351 continue;
1352 }
1353 else
1354 {
1355 /* This section overlaps the transfer. Just do half. */
1356 len = p->endaddr - memaddr;
1357 return target_read_live_memory (object, memaddr,
1358 readbuf, len);
1359 }
1360 }
1361 }
1362 }
1363
1364 return 0;
1365 }
1366
1367 /* Perform a partial memory transfer.
1368 For docs see target.h, to_xfer_partial. */
1369
1370 static LONGEST
1371 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1372 void *readbuf, const void *writebuf, ULONGEST memaddr,
1373 LONGEST len)
1374 {
1375 LONGEST res;
1376 int reg_len;
1377 struct mem_region *region;
1378 struct inferior *inf;
1379
1380 /* Zero length requests are ok and require no work. */
1381 if (len == 0)
1382 return 0;
1383
1384 /* For accesses to unmapped overlay sections, read directly from
1385 files. Must do this first, as MEMADDR may need adjustment. */
1386 if (readbuf != NULL && overlay_debugging)
1387 {
1388 struct obj_section *section = find_pc_overlay (memaddr);
1389
1390 if (pc_in_unmapped_range (memaddr, section))
1391 {
1392 struct target_section_table *table
1393 = target_get_section_table (ops);
1394 const char *section_name = section->the_bfd_section->name;
1395
1396 memaddr = overlay_mapped_address (memaddr, section);
1397 return section_table_xfer_memory_partial (readbuf, writebuf,
1398 memaddr, len,
1399 table->sections,
1400 table->sections_end,
1401 section_name);
1402 }
1403 }
1404
1405 /* Try the executable files, if "trust-readonly-sections" is set. */
1406 if (readbuf != NULL && trust_readonly)
1407 {
1408 struct target_section *secp;
1409 struct target_section_table *table;
1410
1411 secp = target_section_by_addr (ops, memaddr);
1412 if (secp != NULL
1413 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1414 & SEC_READONLY))
1415 {
1416 table = target_get_section_table (ops);
1417 return section_table_xfer_memory_partial (readbuf, writebuf,
1418 memaddr, len,
1419 table->sections,
1420 table->sections_end,
1421 NULL);
1422 }
1423 }
1424
1425 /* If reading unavailable memory in the context of traceframes, and
1426 this address falls within a read-only section, fallback to
1427 reading from live memory. */
1428 if (readbuf != NULL && get_traceframe_number () != -1)
1429 {
1430 VEC(mem_range_s) *available;
1431
1432 /* If we fail to get the set of available memory, then the
1433 target does not support querying traceframe info, and so we
1434 attempt reading from the traceframe anyway (assuming the
1435 target implements the old QTro packet then). */
1436 if (traceframe_available_memory (&available, memaddr, len))
1437 {
1438 struct cleanup *old_chain;
1439
1440 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1441
1442 if (VEC_empty (mem_range_s, available)
1443 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1444 {
1445 /* Don't read into the traceframe's available
1446 memory. */
1447 if (!VEC_empty (mem_range_s, available))
1448 {
1449 LONGEST oldlen = len;
1450
1451 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1452 gdb_assert (len <= oldlen);
1453 }
1454
1455 do_cleanups (old_chain);
1456
1457 /* This goes through the topmost target again. */
1458 res = memory_xfer_live_readonly_partial (ops, object,
1459 readbuf, memaddr, len);
1460 if (res > 0)
1461 return res;
1462
1463 /* No use trying further, we know some memory starting
1464 at MEMADDR isn't available. */
1465 return -1;
1466 }
1467
1468 /* Don't try to read more than how much is available, in
1469 case the target implements the deprecated QTro packet to
1470 cater for older GDBs (the target's knowledge of read-only
1471 sections may be outdated by now). */
1472 len = VEC_index (mem_range_s, available, 0)->length;
1473
1474 do_cleanups (old_chain);
1475 }
1476 }
1477
1478 /* Try GDB's internal data cache. */
1479 region = lookup_mem_region (memaddr);
1480 /* region->hi == 0 means there's no upper bound. */
1481 if (memaddr + len < region->hi || region->hi == 0)
1482 reg_len = len;
1483 else
1484 reg_len = region->hi - memaddr;
1485
1486 switch (region->attrib.mode)
1487 {
1488 case MEM_RO:
1489 if (writebuf != NULL)
1490 return -1;
1491 break;
1492
1493 case MEM_WO:
1494 if (readbuf != NULL)
1495 return -1;
1496 break;
1497
1498 case MEM_FLASH:
1499 /* We only support writing to flash during "load" for now. */
1500 if (writebuf != NULL)
1501 error (_("Writing to flash memory forbidden in this context"));
1502 break;
1503
1504 case MEM_NONE:
1505 return -1;
1506 }
1507
1508 if (!ptid_equal (inferior_ptid, null_ptid))
1509 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1510 else
1511 inf = NULL;
1512
1513 if (inf != NULL
1514 /* The dcache reads whole cache lines; that doesn't play well
1515 with reading from a trace buffer, because reading outside of
1516 the collected memory range fails. */
1517 && get_traceframe_number () == -1
1518 && (region->attrib.cache
1519 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1520 {
1521 if (readbuf != NULL)
1522 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1523 reg_len, 0);
1524 else
1525 /* FIXME drow/2006-08-09: If we're going to preserve const
1526 correctness dcache_xfer_memory should take readbuf and
1527 writebuf. */
1528 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1529 (void *) writebuf,
1530 reg_len, 1);
1531 if (res <= 0)
1532 return -1;
1533 else
1534 {
1535 if (readbuf && !show_memory_breakpoints)
1536 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1537 return res;
1538 }
1539 }
1540
1541 /* If none of those methods found the memory we wanted, fall back
1542 to a target partial transfer. Normally a single call to
1543 to_xfer_partial is enough; if it doesn't recognize an object
1544 it will call the to_xfer_partial of the next target down.
1545 But for memory this won't do. Memory is the only target
1546 object which can be read from more than one valid target.
1547 A core file, for instance, could have some of memory but
1548 delegate other bits to the target below it. So, we must
1549 manually try all targets. */
1550
1551 do
1552 {
1553 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1554 readbuf, writebuf, memaddr, reg_len);
1555 if (res > 0)
1556 break;
1557
1558 /* We want to continue past core files to executables, but not
1559 past a running target's memory. */
1560 if (ops->to_has_all_memory (ops))
1561 break;
1562
1563 ops = ops->beneath;
1564 }
1565 while (ops != NULL);
1566
1567 if (res > 0 && readbuf != NULL && !show_memory_breakpoints)
1568 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1569
1570 /* Make sure the cache gets updated no matter what - if we are writing
1571 to the stack. Even if this write is not tagged as such, we still need
1572 to update the cache. */
1573
1574 if (res > 0
1575 && inf != NULL
1576 && writebuf != NULL
1577 && !region->attrib.cache
1578 && stack_cache_enabled_p
1579 && object != TARGET_OBJECT_STACK_MEMORY)
1580 {
1581 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1582 }
1583
1584 /* If we still haven't got anything, return the last error. We
1585 give up. */
1586 return res;
1587 }
1588
1589 static void
1590 restore_show_memory_breakpoints (void *arg)
1591 {
1592 show_memory_breakpoints = (uintptr_t) arg;
1593 }
1594
1595 struct cleanup *
1596 make_show_memory_breakpoints_cleanup (int show)
1597 {
1598 int current = show_memory_breakpoints;
1599
1600 show_memory_breakpoints = show;
1601 return make_cleanup (restore_show_memory_breakpoints,
1602 (void *) (uintptr_t) current);
1603 }
1604
1605 /* For docs see target.h, to_xfer_partial. */
1606
1607 static LONGEST
1608 target_xfer_partial (struct target_ops *ops,
1609 enum target_object object, const char *annex,
1610 void *readbuf, const void *writebuf,
1611 ULONGEST offset, LONGEST len)
1612 {
1613 LONGEST retval;
1614
1615 gdb_assert (ops->to_xfer_partial != NULL);
1616
1617 if (writebuf && !may_write_memory)
1618 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1619 core_addr_to_string_nz (offset), plongest (len));
1620
1621 /* If this is a memory transfer, let the memory-specific code
1622 have a look at it instead. Memory transfers are more
1623 complicated. */
1624 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1625 retval = memory_xfer_partial (ops, object, readbuf,
1626 writebuf, offset, len);
1627 else
1628 {
1629 enum target_object raw_object = object;
1630
1631 /* If this is a raw memory transfer, request the normal
1632 memory object from other layers. */
1633 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1634 raw_object = TARGET_OBJECT_MEMORY;
1635
1636 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1637 writebuf, offset, len);
1638 }
1639
1640 if (targetdebug)
1641 {
1642 const unsigned char *myaddr = NULL;
1643
1644 fprintf_unfiltered (gdb_stdlog,
1645 "%s:target_xfer_partial "
1646 "(%d, %s, %s, %s, %s, %s) = %s",
1647 ops->to_shortname,
1648 (int) object,
1649 (annex ? annex : "(null)"),
1650 host_address_to_string (readbuf),
1651 host_address_to_string (writebuf),
1652 core_addr_to_string_nz (offset),
1653 plongest (len), plongest (retval));
1654
1655 if (readbuf)
1656 myaddr = readbuf;
1657 if (writebuf)
1658 myaddr = writebuf;
1659 if (retval > 0 && myaddr != NULL)
1660 {
1661 int i;
1662
1663 fputs_unfiltered (", bytes =", gdb_stdlog);
1664 for (i = 0; i < retval; i++)
1665 {
1666 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1667 {
1668 if (targetdebug < 2 && i > 0)
1669 {
1670 fprintf_unfiltered (gdb_stdlog, " ...");
1671 break;
1672 }
1673 fprintf_unfiltered (gdb_stdlog, "\n");
1674 }
1675
1676 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1677 }
1678 }
1679
1680 fputc_unfiltered ('\n', gdb_stdlog);
1681 }
1682 return retval;
1683 }
1684
1685 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1686 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1687 if any error occurs.
1688
1689 If an error occurs, no guarantee is made about the contents of the data at
1690 MYADDR. In particular, the caller should not depend upon partial reads
1691 filling the buffer with good data. There is no way for the caller to know
1692 how much good data might have been transfered anyway. Callers that can
1693 deal with partial reads should call target_read (which will retry until
1694 it makes no progress, and then return how much was transferred). */
1695
1696 int
1697 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1698 {
1699 /* Dispatch to the topmost target, not the flattened current_target.
1700 Memory accesses check target->to_has_(all_)memory, and the
1701 flattened target doesn't inherit those. */
1702 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1703 myaddr, memaddr, len) == len)
1704 return 0;
1705 else
1706 return EIO;
1707 }
1708
1709 /* Like target_read_memory, but specify explicitly that this is a read from
1710 the target's stack. This may trigger different cache behavior. */
1711
1712 int
1713 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1714 {
1715 /* Dispatch to the topmost target, not the flattened current_target.
1716 Memory accesses check target->to_has_(all_)memory, and the
1717 flattened target doesn't inherit those. */
1718
1719 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1720 myaddr, memaddr, len) == len)
1721 return 0;
1722 else
1723 return EIO;
1724 }
1725
1726 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1727 Returns either 0 for success or an errno value if any error occurs.
1728 If an error occurs, no guarantee is made about how much data got written.
1729 Callers that can deal with partial writes should call target_write. */
1730
1731 int
1732 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1733 {
1734 /* Dispatch to the topmost target, not the flattened current_target.
1735 Memory accesses check target->to_has_(all_)memory, and the
1736 flattened target doesn't inherit those. */
1737 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1738 myaddr, memaddr, len) == len)
1739 return 0;
1740 else
1741 return EIO;
1742 }
1743
1744 /* Fetch the target's memory map. */
1745
1746 VEC(mem_region_s) *
1747 target_memory_map (void)
1748 {
1749 VEC(mem_region_s) *result;
1750 struct mem_region *last_one, *this_one;
1751 int ix;
1752 struct target_ops *t;
1753
1754 if (targetdebug)
1755 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1756
1757 for (t = current_target.beneath; t != NULL; t = t->beneath)
1758 if (t->to_memory_map != NULL)
1759 break;
1760
1761 if (t == NULL)
1762 return NULL;
1763
1764 result = t->to_memory_map (t);
1765 if (result == NULL)
1766 return NULL;
1767
1768 qsort (VEC_address (mem_region_s, result),
1769 VEC_length (mem_region_s, result),
1770 sizeof (struct mem_region), mem_region_cmp);
1771
1772 /* Check that regions do not overlap. Simultaneously assign
1773 a numbering for the "mem" commands to use to refer to
1774 each region. */
1775 last_one = NULL;
1776 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1777 {
1778 this_one->number = ix;
1779
1780 if (last_one && last_one->hi > this_one->lo)
1781 {
1782 warning (_("Overlapping regions in memory map: ignoring"));
1783 VEC_free (mem_region_s, result);
1784 return NULL;
1785 }
1786 last_one = this_one;
1787 }
1788
1789 return result;
1790 }
1791
1792 void
1793 target_flash_erase (ULONGEST address, LONGEST length)
1794 {
1795 struct target_ops *t;
1796
1797 for (t = current_target.beneath; t != NULL; t = t->beneath)
1798 if (t->to_flash_erase != NULL)
1799 {
1800 if (targetdebug)
1801 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1802 hex_string (address), phex (length, 0));
1803 t->to_flash_erase (t, address, length);
1804 return;
1805 }
1806
1807 tcomplain ();
1808 }
1809
1810 void
1811 target_flash_done (void)
1812 {
1813 struct target_ops *t;
1814
1815 for (t = current_target.beneath; t != NULL; t = t->beneath)
1816 if (t->to_flash_done != NULL)
1817 {
1818 if (targetdebug)
1819 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1820 t->to_flash_done (t);
1821 return;
1822 }
1823
1824 tcomplain ();
1825 }
1826
1827 static void
1828 show_trust_readonly (struct ui_file *file, int from_tty,
1829 struct cmd_list_element *c, const char *value)
1830 {
1831 fprintf_filtered (file,
1832 _("Mode for reading from readonly sections is %s.\n"),
1833 value);
1834 }
1835
1836 /* More generic transfers. */
1837
1838 static LONGEST
1839 default_xfer_partial (struct target_ops *ops, enum target_object object,
1840 const char *annex, gdb_byte *readbuf,
1841 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1842 {
1843 if (object == TARGET_OBJECT_MEMORY
1844 && ops->deprecated_xfer_memory != NULL)
1845 /* If available, fall back to the target's
1846 "deprecated_xfer_memory" method. */
1847 {
1848 int xfered = -1;
1849
1850 errno = 0;
1851 if (writebuf != NULL)
1852 {
1853 void *buffer = xmalloc (len);
1854 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1855
1856 memcpy (buffer, writebuf, len);
1857 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1858 1/*write*/, NULL, ops);
1859 do_cleanups (cleanup);
1860 }
1861 if (readbuf != NULL)
1862 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1863 0/*read*/, NULL, ops);
1864 if (xfered > 0)
1865 return xfered;
1866 else if (xfered == 0 && errno == 0)
1867 /* "deprecated_xfer_memory" uses 0, cross checked against
1868 ERRNO as one indication of an error. */
1869 return 0;
1870 else
1871 return -1;
1872 }
1873 else if (ops->beneath != NULL)
1874 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1875 readbuf, writebuf, offset, len);
1876 else
1877 return -1;
1878 }
1879
1880 /* The xfer_partial handler for the topmost target. Unlike the default,
1881 it does not need to handle memory specially; it just passes all
1882 requests down the stack. */
1883
1884 static LONGEST
1885 current_xfer_partial (struct target_ops *ops, enum target_object object,
1886 const char *annex, gdb_byte *readbuf,
1887 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1888 {
1889 if (ops->beneath != NULL)
1890 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1891 readbuf, writebuf, offset, len);
1892 else
1893 return -1;
1894 }
1895
1896 /* Target vector read/write partial wrapper functions. */
1897
1898 static LONGEST
1899 target_read_partial (struct target_ops *ops,
1900 enum target_object object,
1901 const char *annex, gdb_byte *buf,
1902 ULONGEST offset, LONGEST len)
1903 {
1904 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1905 }
1906
1907 static LONGEST
1908 target_write_partial (struct target_ops *ops,
1909 enum target_object object,
1910 const char *annex, const gdb_byte *buf,
1911 ULONGEST offset, LONGEST len)
1912 {
1913 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1914 }
1915
1916 /* Wrappers to perform the full transfer. */
1917
1918 /* For docs on target_read see target.h. */
1919
1920 LONGEST
1921 target_read (struct target_ops *ops,
1922 enum target_object object,
1923 const char *annex, gdb_byte *buf,
1924 ULONGEST offset, LONGEST len)
1925 {
1926 LONGEST xfered = 0;
1927
1928 while (xfered < len)
1929 {
1930 LONGEST xfer = target_read_partial (ops, object, annex,
1931 (gdb_byte *) buf + xfered,
1932 offset + xfered, len - xfered);
1933
1934 /* Call an observer, notifying them of the xfer progress? */
1935 if (xfer == 0)
1936 return xfered;
1937 if (xfer < 0)
1938 return -1;
1939 xfered += xfer;
1940 QUIT;
1941 }
1942 return len;
1943 }
1944
1945 /* Assuming that the entire [begin, end) range of memory cannot be
1946 read, try to read whatever subrange is possible to read.
1947
1948 The function returns, in RESULT, either zero or one memory block.
1949 If there's a readable subrange at the beginning, it is completely
1950 read and returned. Any further readable subrange will not be read.
1951 Otherwise, if there's a readable subrange at the end, it will be
1952 completely read and returned. Any readable subranges before it
1953 (obviously, not starting at the beginning), will be ignored. In
1954 other cases -- either no readable subrange, or readable subrange(s)
1955 that is neither at the beginning, or end, nothing is returned.
1956
1957 The purpose of this function is to handle a read across a boundary
1958 of accessible memory in a case when memory map is not available.
1959 The above restrictions are fine for this case, but will give
1960 incorrect results if the memory is 'patchy'. However, supporting
1961 'patchy' memory would require trying to read every single byte,
1962 and it seems unacceptable solution. Explicit memory map is
1963 recommended for this case -- and target_read_memory_robust will
1964 take care of reading multiple ranges then. */
1965
1966 static void
1967 read_whatever_is_readable (struct target_ops *ops,
1968 ULONGEST begin, ULONGEST end,
1969 VEC(memory_read_result_s) **result)
1970 {
1971 gdb_byte *buf = xmalloc (end - begin);
1972 ULONGEST current_begin = begin;
1973 ULONGEST current_end = end;
1974 int forward;
1975 memory_read_result_s r;
1976
1977 /* If we previously failed to read 1 byte, nothing can be done here. */
1978 if (end - begin <= 1)
1979 {
1980 xfree (buf);
1981 return;
1982 }
1983
1984 /* Check that either first or the last byte is readable, and give up
1985 if not. This heuristic is meant to permit reading accessible memory
1986 at the boundary of accessible region. */
1987 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1988 buf, begin, 1) == 1)
1989 {
1990 forward = 1;
1991 ++current_begin;
1992 }
1993 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1994 buf + (end-begin) - 1, end - 1, 1) == 1)
1995 {
1996 forward = 0;
1997 --current_end;
1998 }
1999 else
2000 {
2001 xfree (buf);
2002 return;
2003 }
2004
2005 /* Loop invariant is that the [current_begin, current_end) was previously
2006 found to be not readable as a whole.
2007
2008 Note loop condition -- if the range has 1 byte, we can't divide the range
2009 so there's no point trying further. */
2010 while (current_end - current_begin > 1)
2011 {
2012 ULONGEST first_half_begin, first_half_end;
2013 ULONGEST second_half_begin, second_half_end;
2014 LONGEST xfer;
2015 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2016
2017 if (forward)
2018 {
2019 first_half_begin = current_begin;
2020 first_half_end = middle;
2021 second_half_begin = middle;
2022 second_half_end = current_end;
2023 }
2024 else
2025 {
2026 first_half_begin = middle;
2027 first_half_end = current_end;
2028 second_half_begin = current_begin;
2029 second_half_end = middle;
2030 }
2031
2032 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2033 buf + (first_half_begin - begin),
2034 first_half_begin,
2035 first_half_end - first_half_begin);
2036
2037 if (xfer == first_half_end - first_half_begin)
2038 {
2039 /* This half reads up fine. So, the error must be in the
2040 other half. */
2041 current_begin = second_half_begin;
2042 current_end = second_half_end;
2043 }
2044 else
2045 {
2046 /* This half is not readable. Because we've tried one byte, we
2047 know some part of this half if actually redable. Go to the next
2048 iteration to divide again and try to read.
2049
2050 We don't handle the other half, because this function only tries
2051 to read a single readable subrange. */
2052 current_begin = first_half_begin;
2053 current_end = first_half_end;
2054 }
2055 }
2056
2057 if (forward)
2058 {
2059 /* The [begin, current_begin) range has been read. */
2060 r.begin = begin;
2061 r.end = current_begin;
2062 r.data = buf;
2063 }
2064 else
2065 {
2066 /* The [current_end, end) range has been read. */
2067 LONGEST rlen = end - current_end;
2068
2069 r.data = xmalloc (rlen);
2070 memcpy (r.data, buf + current_end - begin, rlen);
2071 r.begin = current_end;
2072 r.end = end;
2073 xfree (buf);
2074 }
2075 VEC_safe_push(memory_read_result_s, (*result), &r);
2076 }
2077
2078 void
2079 free_memory_read_result_vector (void *x)
2080 {
2081 VEC(memory_read_result_s) *v = x;
2082 memory_read_result_s *current;
2083 int ix;
2084
2085 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2086 {
2087 xfree (current->data);
2088 }
2089 VEC_free (memory_read_result_s, v);
2090 }
2091
2092 VEC(memory_read_result_s) *
2093 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2094 {
2095 VEC(memory_read_result_s) *result = 0;
2096
2097 LONGEST xfered = 0;
2098 while (xfered < len)
2099 {
2100 struct mem_region *region = lookup_mem_region (offset + xfered);
2101 LONGEST rlen;
2102
2103 /* If there is no explicit region, a fake one should be created. */
2104 gdb_assert (region);
2105
2106 if (region->hi == 0)
2107 rlen = len - xfered;
2108 else
2109 rlen = region->hi - offset;
2110
2111 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2112 {
2113 /* Cannot read this region. Note that we can end up here only
2114 if the region is explicitly marked inaccessible, or
2115 'inaccessible-by-default' is in effect. */
2116 xfered += rlen;
2117 }
2118 else
2119 {
2120 LONGEST to_read = min (len - xfered, rlen);
2121 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2122
2123 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2124 (gdb_byte *) buffer,
2125 offset + xfered, to_read);
2126 /* Call an observer, notifying them of the xfer progress? */
2127 if (xfer <= 0)
2128 {
2129 /* Got an error reading full chunk. See if maybe we can read
2130 some subrange. */
2131 xfree (buffer);
2132 read_whatever_is_readable (ops, offset + xfered,
2133 offset + xfered + to_read, &result);
2134 xfered += to_read;
2135 }
2136 else
2137 {
2138 struct memory_read_result r;
2139 r.data = buffer;
2140 r.begin = offset + xfered;
2141 r.end = r.begin + xfer;
2142 VEC_safe_push (memory_read_result_s, result, &r);
2143 xfered += xfer;
2144 }
2145 QUIT;
2146 }
2147 }
2148 return result;
2149 }
2150
2151
2152 /* An alternative to target_write with progress callbacks. */
2153
2154 LONGEST
2155 target_write_with_progress (struct target_ops *ops,
2156 enum target_object object,
2157 const char *annex, const gdb_byte *buf,
2158 ULONGEST offset, LONGEST len,
2159 void (*progress) (ULONGEST, void *), void *baton)
2160 {
2161 LONGEST xfered = 0;
2162
2163 /* Give the progress callback a chance to set up. */
2164 if (progress)
2165 (*progress) (0, baton);
2166
2167 while (xfered < len)
2168 {
2169 LONGEST xfer = target_write_partial (ops, object, annex,
2170 (gdb_byte *) buf + xfered,
2171 offset + xfered, len - xfered);
2172
2173 if (xfer == 0)
2174 return xfered;
2175 if (xfer < 0)
2176 return -1;
2177
2178 if (progress)
2179 (*progress) (xfer, baton);
2180
2181 xfered += xfer;
2182 QUIT;
2183 }
2184 return len;
2185 }
2186
2187 /* For docs on target_write see target.h. */
2188
2189 LONGEST
2190 target_write (struct target_ops *ops,
2191 enum target_object object,
2192 const char *annex, const gdb_byte *buf,
2193 ULONGEST offset, LONGEST len)
2194 {
2195 return target_write_with_progress (ops, object, annex, buf, offset, len,
2196 NULL, NULL);
2197 }
2198
2199 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2200 the size of the transferred data. PADDING additional bytes are
2201 available in *BUF_P. This is a helper function for
2202 target_read_alloc; see the declaration of that function for more
2203 information. */
2204
2205 static LONGEST
2206 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2207 const char *annex, gdb_byte **buf_p, int padding)
2208 {
2209 size_t buf_alloc, buf_pos;
2210 gdb_byte *buf;
2211 LONGEST n;
2212
2213 /* This function does not have a length parameter; it reads the
2214 entire OBJECT). Also, it doesn't support objects fetched partly
2215 from one target and partly from another (in a different stratum,
2216 e.g. a core file and an executable). Both reasons make it
2217 unsuitable for reading memory. */
2218 gdb_assert (object != TARGET_OBJECT_MEMORY);
2219
2220 /* Start by reading up to 4K at a time. The target will throttle
2221 this number down if necessary. */
2222 buf_alloc = 4096;
2223 buf = xmalloc (buf_alloc);
2224 buf_pos = 0;
2225 while (1)
2226 {
2227 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2228 buf_pos, buf_alloc - buf_pos - padding);
2229 if (n < 0)
2230 {
2231 /* An error occurred. */
2232 xfree (buf);
2233 return -1;
2234 }
2235 else if (n == 0)
2236 {
2237 /* Read all there was. */
2238 if (buf_pos == 0)
2239 xfree (buf);
2240 else
2241 *buf_p = buf;
2242 return buf_pos;
2243 }
2244
2245 buf_pos += n;
2246
2247 /* If the buffer is filling up, expand it. */
2248 if (buf_alloc < buf_pos * 2)
2249 {
2250 buf_alloc *= 2;
2251 buf = xrealloc (buf, buf_alloc);
2252 }
2253
2254 QUIT;
2255 }
2256 }
2257
2258 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2259 the size of the transferred data. See the declaration in "target.h"
2260 function for more information about the return value. */
2261
2262 LONGEST
2263 target_read_alloc (struct target_ops *ops, enum target_object object,
2264 const char *annex, gdb_byte **buf_p)
2265 {
2266 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2267 }
2268
2269 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2270 returned as a string, allocated using xmalloc. If an error occurs
2271 or the transfer is unsupported, NULL is returned. Empty objects
2272 are returned as allocated but empty strings. A warning is issued
2273 if the result contains any embedded NUL bytes. */
2274
2275 char *
2276 target_read_stralloc (struct target_ops *ops, enum target_object object,
2277 const char *annex)
2278 {
2279 gdb_byte *buffer;
2280 LONGEST transferred;
2281
2282 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2283
2284 if (transferred < 0)
2285 return NULL;
2286
2287 if (transferred == 0)
2288 return xstrdup ("");
2289
2290 buffer[transferred] = 0;
2291 if (strlen (buffer) < transferred)
2292 warning (_("target object %d, annex %s, "
2293 "contained unexpected null characters"),
2294 (int) object, annex ? annex : "(none)");
2295
2296 return (char *) buffer;
2297 }
2298
2299 /* Memory transfer methods. */
2300
2301 void
2302 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2303 LONGEST len)
2304 {
2305 /* This method is used to read from an alternate, non-current
2306 target. This read must bypass the overlay support (as symbols
2307 don't match this target), and GDB's internal cache (wrong cache
2308 for this target). */
2309 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2310 != len)
2311 memory_error (EIO, addr);
2312 }
2313
2314 ULONGEST
2315 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2316 int len, enum bfd_endian byte_order)
2317 {
2318 gdb_byte buf[sizeof (ULONGEST)];
2319
2320 gdb_assert (len <= sizeof (buf));
2321 get_target_memory (ops, addr, buf, len);
2322 return extract_unsigned_integer (buf, len, byte_order);
2323 }
2324
2325 int
2326 target_insert_breakpoint (struct gdbarch *gdbarch,
2327 struct bp_target_info *bp_tgt)
2328 {
2329 if (!may_insert_breakpoints)
2330 {
2331 warning (_("May not insert breakpoints"));
2332 return 1;
2333 }
2334
2335 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2336 }
2337
2338 int
2339 target_remove_breakpoint (struct gdbarch *gdbarch,
2340 struct bp_target_info *bp_tgt)
2341 {
2342 /* This is kind of a weird case to handle, but the permission might
2343 have been changed after breakpoints were inserted - in which case
2344 we should just take the user literally and assume that any
2345 breakpoints should be left in place. */
2346 if (!may_insert_breakpoints)
2347 {
2348 warning (_("May not remove breakpoints"));
2349 return 1;
2350 }
2351
2352 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2353 }
2354
2355 static void
2356 target_info (char *args, int from_tty)
2357 {
2358 struct target_ops *t;
2359 int has_all_mem = 0;
2360
2361 if (symfile_objfile != NULL)
2362 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2363
2364 for (t = target_stack; t != NULL; t = t->beneath)
2365 {
2366 if (!(*t->to_has_memory) (t))
2367 continue;
2368
2369 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2370 continue;
2371 if (has_all_mem)
2372 printf_unfiltered (_("\tWhile running this, "
2373 "GDB does not access memory from...\n"));
2374 printf_unfiltered ("%s:\n", t->to_longname);
2375 (t->to_files_info) (t);
2376 has_all_mem = (*t->to_has_all_memory) (t);
2377 }
2378 }
2379
2380 /* This function is called before any new inferior is created, e.g.
2381 by running a program, attaching, or connecting to a target.
2382 It cleans up any state from previous invocations which might
2383 change between runs. This is a subset of what target_preopen
2384 resets (things which might change between targets). */
2385
2386 void
2387 target_pre_inferior (int from_tty)
2388 {
2389 /* Clear out solib state. Otherwise the solib state of the previous
2390 inferior might have survived and is entirely wrong for the new
2391 target. This has been observed on GNU/Linux using glibc 2.3. How
2392 to reproduce:
2393
2394 bash$ ./foo&
2395 [1] 4711
2396 bash$ ./foo&
2397 [1] 4712
2398 bash$ gdb ./foo
2399 [...]
2400 (gdb) attach 4711
2401 (gdb) detach
2402 (gdb) attach 4712
2403 Cannot access memory at address 0xdeadbeef
2404 */
2405
2406 /* In some OSs, the shared library list is the same/global/shared
2407 across inferiors. If code is shared between processes, so are
2408 memory regions and features. */
2409 if (!gdbarch_has_global_solist (target_gdbarch))
2410 {
2411 no_shared_libraries (NULL, from_tty);
2412
2413 invalidate_target_mem_regions ();
2414
2415 target_clear_description ();
2416 }
2417 }
2418
2419 /* Callback for iterate_over_inferiors. Gets rid of the given
2420 inferior. */
2421
2422 static int
2423 dispose_inferior (struct inferior *inf, void *args)
2424 {
2425 struct thread_info *thread;
2426
2427 thread = any_thread_of_process (inf->pid);
2428 if (thread)
2429 {
2430 switch_to_thread (thread->ptid);
2431
2432 /* Core inferiors actually should be detached, not killed. */
2433 if (target_has_execution)
2434 target_kill ();
2435 else
2436 target_detach (NULL, 0);
2437 }
2438
2439 return 0;
2440 }
2441
2442 /* This is to be called by the open routine before it does
2443 anything. */
2444
2445 void
2446 target_preopen (int from_tty)
2447 {
2448 dont_repeat ();
2449
2450 if (have_inferiors ())
2451 {
2452 if (!from_tty
2453 || !have_live_inferiors ()
2454 || query (_("A program is being debugged already. Kill it? ")))
2455 iterate_over_inferiors (dispose_inferior, NULL);
2456 else
2457 error (_("Program not killed."));
2458 }
2459
2460 /* Calling target_kill may remove the target from the stack. But if
2461 it doesn't (which seems like a win for UDI), remove it now. */
2462 /* Leave the exec target, though. The user may be switching from a
2463 live process to a core of the same program. */
2464 pop_all_targets_above (file_stratum, 0);
2465
2466 target_pre_inferior (from_tty);
2467 }
2468
2469 /* Detach a target after doing deferred register stores. */
2470
2471 void
2472 target_detach (char *args, int from_tty)
2473 {
2474 struct target_ops* t;
2475
2476 if (gdbarch_has_global_breakpoints (target_gdbarch))
2477 /* Don't remove global breakpoints here. They're removed on
2478 disconnection from the target. */
2479 ;
2480 else
2481 /* If we're in breakpoints-always-inserted mode, have to remove
2482 them before detaching. */
2483 remove_breakpoints_pid (PIDGET (inferior_ptid));
2484
2485 prepare_for_detach ();
2486
2487 for (t = current_target.beneath; t != NULL; t = t->beneath)
2488 {
2489 if (t->to_detach != NULL)
2490 {
2491 t->to_detach (t, args, from_tty);
2492 if (targetdebug)
2493 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2494 args, from_tty);
2495 return;
2496 }
2497 }
2498
2499 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2500 }
2501
2502 void
2503 target_disconnect (char *args, int from_tty)
2504 {
2505 struct target_ops *t;
2506
2507 /* If we're in breakpoints-always-inserted mode or if breakpoints
2508 are global across processes, we have to remove them before
2509 disconnecting. */
2510 remove_breakpoints ();
2511
2512 for (t = current_target.beneath; t != NULL; t = t->beneath)
2513 if (t->to_disconnect != NULL)
2514 {
2515 if (targetdebug)
2516 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2517 args, from_tty);
2518 t->to_disconnect (t, args, from_tty);
2519 return;
2520 }
2521
2522 tcomplain ();
2523 }
2524
2525 ptid_t
2526 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2527 {
2528 struct target_ops *t;
2529
2530 for (t = current_target.beneath; t != NULL; t = t->beneath)
2531 {
2532 if (t->to_wait != NULL)
2533 {
2534 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2535
2536 if (targetdebug)
2537 {
2538 char *status_string;
2539
2540 status_string = target_waitstatus_to_string (status);
2541 fprintf_unfiltered (gdb_stdlog,
2542 "target_wait (%d, status) = %d, %s\n",
2543 PIDGET (ptid), PIDGET (retval),
2544 status_string);
2545 xfree (status_string);
2546 }
2547
2548 return retval;
2549 }
2550 }
2551
2552 noprocess ();
2553 }
2554
2555 char *
2556 target_pid_to_str (ptid_t ptid)
2557 {
2558 struct target_ops *t;
2559
2560 for (t = current_target.beneath; t != NULL; t = t->beneath)
2561 {
2562 if (t->to_pid_to_str != NULL)
2563 return (*t->to_pid_to_str) (t, ptid);
2564 }
2565
2566 return normal_pid_to_str (ptid);
2567 }
2568
2569 char *
2570 target_thread_name (struct thread_info *info)
2571 {
2572 struct target_ops *t;
2573
2574 for (t = current_target.beneath; t != NULL; t = t->beneath)
2575 {
2576 if (t->to_thread_name != NULL)
2577 return (*t->to_thread_name) (info);
2578 }
2579
2580 return NULL;
2581 }
2582
2583 void
2584 target_resume (ptid_t ptid, int step, enum target_signal signal)
2585 {
2586 struct target_ops *t;
2587
2588 target_dcache_invalidate ();
2589
2590 for (t = current_target.beneath; t != NULL; t = t->beneath)
2591 {
2592 if (t->to_resume != NULL)
2593 {
2594 t->to_resume (t, ptid, step, signal);
2595 if (targetdebug)
2596 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2597 PIDGET (ptid),
2598 step ? "step" : "continue",
2599 target_signal_to_name (signal));
2600
2601 registers_changed_ptid (ptid);
2602 set_executing (ptid, 1);
2603 set_running (ptid, 1);
2604 clear_inline_frame_state (ptid);
2605 return;
2606 }
2607 }
2608
2609 noprocess ();
2610 }
2611
2612 void
2613 target_pass_signals (int numsigs, unsigned char *pass_signals)
2614 {
2615 struct target_ops *t;
2616
2617 for (t = current_target.beneath; t != NULL; t = t->beneath)
2618 {
2619 if (t->to_pass_signals != NULL)
2620 {
2621 if (targetdebug)
2622 {
2623 int i;
2624
2625 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2626 numsigs);
2627
2628 for (i = 0; i < numsigs; i++)
2629 if (pass_signals[i])
2630 fprintf_unfiltered (gdb_stdlog, " %s",
2631 target_signal_to_name (i));
2632
2633 fprintf_unfiltered (gdb_stdlog, " })\n");
2634 }
2635
2636 (*t->to_pass_signals) (numsigs, pass_signals);
2637 return;
2638 }
2639 }
2640 }
2641
2642 /* Look through the list of possible targets for a target that can
2643 follow forks. */
2644
2645 int
2646 target_follow_fork (int follow_child)
2647 {
2648 struct target_ops *t;
2649
2650 for (t = current_target.beneath; t != NULL; t = t->beneath)
2651 {
2652 if (t->to_follow_fork != NULL)
2653 {
2654 int retval = t->to_follow_fork (t, follow_child);
2655
2656 if (targetdebug)
2657 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2658 follow_child, retval);
2659 return retval;
2660 }
2661 }
2662
2663 /* Some target returned a fork event, but did not know how to follow it. */
2664 internal_error (__FILE__, __LINE__,
2665 _("could not find a target to follow fork"));
2666 }
2667
2668 void
2669 target_mourn_inferior (void)
2670 {
2671 struct target_ops *t;
2672
2673 for (t = current_target.beneath; t != NULL; t = t->beneath)
2674 {
2675 if (t->to_mourn_inferior != NULL)
2676 {
2677 t->to_mourn_inferior (t);
2678 if (targetdebug)
2679 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2680
2681 /* We no longer need to keep handles on any of the object files.
2682 Make sure to release them to avoid unnecessarily locking any
2683 of them while we're not actually debugging. */
2684 bfd_cache_close_all ();
2685
2686 return;
2687 }
2688 }
2689
2690 internal_error (__FILE__, __LINE__,
2691 _("could not find a target to follow mourn inferior"));
2692 }
2693
2694 /* Look for a target which can describe architectural features, starting
2695 from TARGET. If we find one, return its description. */
2696
2697 const struct target_desc *
2698 target_read_description (struct target_ops *target)
2699 {
2700 struct target_ops *t;
2701
2702 for (t = target; t != NULL; t = t->beneath)
2703 if (t->to_read_description != NULL)
2704 {
2705 const struct target_desc *tdesc;
2706
2707 tdesc = t->to_read_description (t);
2708 if (tdesc)
2709 return tdesc;
2710 }
2711
2712 return NULL;
2713 }
2714
2715 /* The default implementation of to_search_memory.
2716 This implements a basic search of memory, reading target memory and
2717 performing the search here (as opposed to performing the search in on the
2718 target side with, for example, gdbserver). */
2719
2720 int
2721 simple_search_memory (struct target_ops *ops,
2722 CORE_ADDR start_addr, ULONGEST search_space_len,
2723 const gdb_byte *pattern, ULONGEST pattern_len,
2724 CORE_ADDR *found_addrp)
2725 {
2726 /* NOTE: also defined in find.c testcase. */
2727 #define SEARCH_CHUNK_SIZE 16000
2728 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2729 /* Buffer to hold memory contents for searching. */
2730 gdb_byte *search_buf;
2731 unsigned search_buf_size;
2732 struct cleanup *old_cleanups;
2733
2734 search_buf_size = chunk_size + pattern_len - 1;
2735
2736 /* No point in trying to allocate a buffer larger than the search space. */
2737 if (search_space_len < search_buf_size)
2738 search_buf_size = search_space_len;
2739
2740 search_buf = malloc (search_buf_size);
2741 if (search_buf == NULL)
2742 error (_("Unable to allocate memory to perform the search."));
2743 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2744
2745 /* Prime the search buffer. */
2746
2747 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2748 search_buf, start_addr, search_buf_size) != search_buf_size)
2749 {
2750 warning (_("Unable to access target memory at %s, halting search."),
2751 hex_string (start_addr));
2752 do_cleanups (old_cleanups);
2753 return -1;
2754 }
2755
2756 /* Perform the search.
2757
2758 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2759 When we've scanned N bytes we copy the trailing bytes to the start and
2760 read in another N bytes. */
2761
2762 while (search_space_len >= pattern_len)
2763 {
2764 gdb_byte *found_ptr;
2765 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2766
2767 found_ptr = memmem (search_buf, nr_search_bytes,
2768 pattern, pattern_len);
2769
2770 if (found_ptr != NULL)
2771 {
2772 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2773
2774 *found_addrp = found_addr;
2775 do_cleanups (old_cleanups);
2776 return 1;
2777 }
2778
2779 /* Not found in this chunk, skip to next chunk. */
2780
2781 /* Don't let search_space_len wrap here, it's unsigned. */
2782 if (search_space_len >= chunk_size)
2783 search_space_len -= chunk_size;
2784 else
2785 search_space_len = 0;
2786
2787 if (search_space_len >= pattern_len)
2788 {
2789 unsigned keep_len = search_buf_size - chunk_size;
2790 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2791 int nr_to_read;
2792
2793 /* Copy the trailing part of the previous iteration to the front
2794 of the buffer for the next iteration. */
2795 gdb_assert (keep_len == pattern_len - 1);
2796 memcpy (search_buf, search_buf + chunk_size, keep_len);
2797
2798 nr_to_read = min (search_space_len - keep_len, chunk_size);
2799
2800 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2801 search_buf + keep_len, read_addr,
2802 nr_to_read) != nr_to_read)
2803 {
2804 warning (_("Unable to access target "
2805 "memory at %s, halting search."),
2806 hex_string (read_addr));
2807 do_cleanups (old_cleanups);
2808 return -1;
2809 }
2810
2811 start_addr += chunk_size;
2812 }
2813 }
2814
2815 /* Not found. */
2816
2817 do_cleanups (old_cleanups);
2818 return 0;
2819 }
2820
2821 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2822 sequence of bytes in PATTERN with length PATTERN_LEN.
2823
2824 The result is 1 if found, 0 if not found, and -1 if there was an error
2825 requiring halting of the search (e.g. memory read error).
2826 If the pattern is found the address is recorded in FOUND_ADDRP. */
2827
2828 int
2829 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2830 const gdb_byte *pattern, ULONGEST pattern_len,
2831 CORE_ADDR *found_addrp)
2832 {
2833 struct target_ops *t;
2834 int found;
2835
2836 /* We don't use INHERIT to set current_target.to_search_memory,
2837 so we have to scan the target stack and handle targetdebug
2838 ourselves. */
2839
2840 if (targetdebug)
2841 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2842 hex_string (start_addr));
2843
2844 for (t = current_target.beneath; t != NULL; t = t->beneath)
2845 if (t->to_search_memory != NULL)
2846 break;
2847
2848 if (t != NULL)
2849 {
2850 found = t->to_search_memory (t, start_addr, search_space_len,
2851 pattern, pattern_len, found_addrp);
2852 }
2853 else
2854 {
2855 /* If a special version of to_search_memory isn't available, use the
2856 simple version. */
2857 found = simple_search_memory (current_target.beneath,
2858 start_addr, search_space_len,
2859 pattern, pattern_len, found_addrp);
2860 }
2861
2862 if (targetdebug)
2863 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2864
2865 return found;
2866 }
2867
2868 /* Look through the currently pushed targets. If none of them will
2869 be able to restart the currently running process, issue an error
2870 message. */
2871
2872 void
2873 target_require_runnable (void)
2874 {
2875 struct target_ops *t;
2876
2877 for (t = target_stack; t != NULL; t = t->beneath)
2878 {
2879 /* If this target knows how to create a new program, then
2880 assume we will still be able to after killing the current
2881 one. Either killing and mourning will not pop T, or else
2882 find_default_run_target will find it again. */
2883 if (t->to_create_inferior != NULL)
2884 return;
2885
2886 /* Do not worry about thread_stratum targets that can not
2887 create inferiors. Assume they will be pushed again if
2888 necessary, and continue to the process_stratum. */
2889 if (t->to_stratum == thread_stratum
2890 || t->to_stratum == arch_stratum)
2891 continue;
2892
2893 error (_("The \"%s\" target does not support \"run\". "
2894 "Try \"help target\" or \"continue\"."),
2895 t->to_shortname);
2896 }
2897
2898 /* This function is only called if the target is running. In that
2899 case there should have been a process_stratum target and it
2900 should either know how to create inferiors, or not... */
2901 internal_error (__FILE__, __LINE__, _("No targets found"));
2902 }
2903
2904 /* Look through the list of possible targets for a target that can
2905 execute a run or attach command without any other data. This is
2906 used to locate the default process stratum.
2907
2908 If DO_MESG is not NULL, the result is always valid (error() is
2909 called for errors); else, return NULL on error. */
2910
2911 static struct target_ops *
2912 find_default_run_target (char *do_mesg)
2913 {
2914 struct target_ops **t;
2915 struct target_ops *runable = NULL;
2916 int count;
2917
2918 count = 0;
2919
2920 for (t = target_structs; t < target_structs + target_struct_size;
2921 ++t)
2922 {
2923 if ((*t)->to_can_run && target_can_run (*t))
2924 {
2925 runable = *t;
2926 ++count;
2927 }
2928 }
2929
2930 if (count != 1)
2931 {
2932 if (do_mesg)
2933 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2934 else
2935 return NULL;
2936 }
2937
2938 return runable;
2939 }
2940
2941 void
2942 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2943 {
2944 struct target_ops *t;
2945
2946 t = find_default_run_target ("attach");
2947 (t->to_attach) (t, args, from_tty);
2948 return;
2949 }
2950
2951 void
2952 find_default_create_inferior (struct target_ops *ops,
2953 char *exec_file, char *allargs, char **env,
2954 int from_tty)
2955 {
2956 struct target_ops *t;
2957
2958 t = find_default_run_target ("run");
2959 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2960 return;
2961 }
2962
2963 static int
2964 find_default_can_async_p (void)
2965 {
2966 struct target_ops *t;
2967
2968 /* This may be called before the target is pushed on the stack;
2969 look for the default process stratum. If there's none, gdb isn't
2970 configured with a native debugger, and target remote isn't
2971 connected yet. */
2972 t = find_default_run_target (NULL);
2973 if (t && t->to_can_async_p)
2974 return (t->to_can_async_p) ();
2975 return 0;
2976 }
2977
2978 static int
2979 find_default_is_async_p (void)
2980 {
2981 struct target_ops *t;
2982
2983 /* This may be called before the target is pushed on the stack;
2984 look for the default process stratum. If there's none, gdb isn't
2985 configured with a native debugger, and target remote isn't
2986 connected yet. */
2987 t = find_default_run_target (NULL);
2988 if (t && t->to_is_async_p)
2989 return (t->to_is_async_p) ();
2990 return 0;
2991 }
2992
2993 static int
2994 find_default_supports_non_stop (void)
2995 {
2996 struct target_ops *t;
2997
2998 t = find_default_run_target (NULL);
2999 if (t && t->to_supports_non_stop)
3000 return (t->to_supports_non_stop) ();
3001 return 0;
3002 }
3003
3004 int
3005 target_supports_non_stop (void)
3006 {
3007 struct target_ops *t;
3008
3009 for (t = &current_target; t != NULL; t = t->beneath)
3010 if (t->to_supports_non_stop)
3011 return t->to_supports_non_stop ();
3012
3013 return 0;
3014 }
3015
3016 static int
3017 find_default_supports_disable_randomization (void)
3018 {
3019 struct target_ops *t;
3020
3021 t = find_default_run_target (NULL);
3022 if (t && t->to_supports_disable_randomization)
3023 return (t->to_supports_disable_randomization) ();
3024 return 0;
3025 }
3026
3027 int
3028 target_supports_disable_randomization (void)
3029 {
3030 struct target_ops *t;
3031
3032 for (t = &current_target; t != NULL; t = t->beneath)
3033 if (t->to_supports_disable_randomization)
3034 return t->to_supports_disable_randomization ();
3035
3036 return 0;
3037 }
3038
3039 char *
3040 target_get_osdata (const char *type)
3041 {
3042 struct target_ops *t;
3043
3044 /* If we're already connected to something that can get us OS
3045 related data, use it. Otherwise, try using the native
3046 target. */
3047 if (current_target.to_stratum >= process_stratum)
3048 t = current_target.beneath;
3049 else
3050 t = find_default_run_target ("get OS data");
3051
3052 if (!t)
3053 return NULL;
3054
3055 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3056 }
3057
3058 /* Determine the current address space of thread PTID. */
3059
3060 struct address_space *
3061 target_thread_address_space (ptid_t ptid)
3062 {
3063 struct address_space *aspace;
3064 struct inferior *inf;
3065 struct target_ops *t;
3066
3067 for (t = current_target.beneath; t != NULL; t = t->beneath)
3068 {
3069 if (t->to_thread_address_space != NULL)
3070 {
3071 aspace = t->to_thread_address_space (t, ptid);
3072 gdb_assert (aspace);
3073
3074 if (targetdebug)
3075 fprintf_unfiltered (gdb_stdlog,
3076 "target_thread_address_space (%s) = %d\n",
3077 target_pid_to_str (ptid),
3078 address_space_num (aspace));
3079 return aspace;
3080 }
3081 }
3082
3083 /* Fall-back to the "main" address space of the inferior. */
3084 inf = find_inferior_pid (ptid_get_pid (ptid));
3085
3086 if (inf == NULL || inf->aspace == NULL)
3087 internal_error (__FILE__, __LINE__,
3088 _("Can't determine the current "
3089 "address space of thread %s\n"),
3090 target_pid_to_str (ptid));
3091
3092 return inf->aspace;
3093 }
3094
3095 static int
3096 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3097 {
3098 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
3099 }
3100
3101 static int
3102 default_watchpoint_addr_within_range (struct target_ops *target,
3103 CORE_ADDR addr,
3104 CORE_ADDR start, int length)
3105 {
3106 return addr >= start && addr < start + length;
3107 }
3108
3109 static struct gdbarch *
3110 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3111 {
3112 return target_gdbarch;
3113 }
3114
3115 static int
3116 return_zero (void)
3117 {
3118 return 0;
3119 }
3120
3121 static int
3122 return_one (void)
3123 {
3124 return 1;
3125 }
3126
3127 static int
3128 return_minus_one (void)
3129 {
3130 return -1;
3131 }
3132
3133 /* Find a single runnable target in the stack and return it. If for
3134 some reason there is more than one, return NULL. */
3135
3136 struct target_ops *
3137 find_run_target (void)
3138 {
3139 struct target_ops **t;
3140 struct target_ops *runable = NULL;
3141 int count;
3142
3143 count = 0;
3144
3145 for (t = target_structs; t < target_structs + target_struct_size; ++t)
3146 {
3147 if ((*t)->to_can_run && target_can_run (*t))
3148 {
3149 runable = *t;
3150 ++count;
3151 }
3152 }
3153
3154 return (count == 1 ? runable : NULL);
3155 }
3156
3157 /*
3158 * Find the next target down the stack from the specified target.
3159 */
3160
3161 struct target_ops *
3162 find_target_beneath (struct target_ops *t)
3163 {
3164 return t->beneath;
3165 }
3166
3167 \f
3168 /* The inferior process has died. Long live the inferior! */
3169
3170 void
3171 generic_mourn_inferior (void)
3172 {
3173 ptid_t ptid;
3174
3175 ptid = inferior_ptid;
3176 inferior_ptid = null_ptid;
3177
3178 if (!ptid_equal (ptid, null_ptid))
3179 {
3180 int pid = ptid_get_pid (ptid);
3181 exit_inferior (pid);
3182 }
3183
3184 breakpoint_init_inferior (inf_exited);
3185 registers_changed ();
3186
3187 reopen_exec_file ();
3188 reinit_frame_cache ();
3189
3190 if (deprecated_detach_hook)
3191 deprecated_detach_hook ();
3192 }
3193 \f
3194 /* Helper function for child_wait and the derivatives of child_wait.
3195 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
3196 translation of that in OURSTATUS. */
3197 void
3198 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
3199 {
3200 if (WIFEXITED (hoststatus))
3201 {
3202 ourstatus->kind = TARGET_WAITKIND_EXITED;
3203 ourstatus->value.integer = WEXITSTATUS (hoststatus);
3204 }
3205 else if (!WIFSTOPPED (hoststatus))
3206 {
3207 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3208 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
3209 }
3210 else
3211 {
3212 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3213 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
3214 }
3215 }
3216 \f
3217 /* Convert a normal process ID to a string. Returns the string in a
3218 static buffer. */
3219
3220 char *
3221 normal_pid_to_str (ptid_t ptid)
3222 {
3223 static char buf[32];
3224
3225 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3226 return buf;
3227 }
3228
3229 static char *
3230 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3231 {
3232 return normal_pid_to_str (ptid);
3233 }
3234
3235 /* Error-catcher for target_find_memory_regions. */
3236 static int
3237 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3238 {
3239 error (_("Command not implemented for this target."));
3240 return 0;
3241 }
3242
3243 /* Error-catcher for target_make_corefile_notes. */
3244 static char *
3245 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3246 {
3247 error (_("Command not implemented for this target."));
3248 return NULL;
3249 }
3250
3251 /* Error-catcher for target_get_bookmark. */
3252 static gdb_byte *
3253 dummy_get_bookmark (char *ignore1, int ignore2)
3254 {
3255 tcomplain ();
3256 return NULL;
3257 }
3258
3259 /* Error-catcher for target_goto_bookmark. */
3260 static void
3261 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3262 {
3263 tcomplain ();
3264 }
3265
3266 /* Set up the handful of non-empty slots needed by the dummy target
3267 vector. */
3268
3269 static void
3270 init_dummy_target (void)
3271 {
3272 dummy_target.to_shortname = "None";
3273 dummy_target.to_longname = "None";
3274 dummy_target.to_doc = "";
3275 dummy_target.to_attach = find_default_attach;
3276 dummy_target.to_detach =
3277 (void (*)(struct target_ops *, char *, int))target_ignore;
3278 dummy_target.to_create_inferior = find_default_create_inferior;
3279 dummy_target.to_can_async_p = find_default_can_async_p;
3280 dummy_target.to_is_async_p = find_default_is_async_p;
3281 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3282 dummy_target.to_supports_disable_randomization
3283 = find_default_supports_disable_randomization;
3284 dummy_target.to_pid_to_str = dummy_pid_to_str;
3285 dummy_target.to_stratum = dummy_stratum;
3286 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3287 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3288 dummy_target.to_get_bookmark = dummy_get_bookmark;
3289 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3290 dummy_target.to_xfer_partial = default_xfer_partial;
3291 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3292 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3293 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3294 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3295 dummy_target.to_has_execution
3296 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3297 dummy_target.to_stopped_by_watchpoint = return_zero;
3298 dummy_target.to_stopped_data_address =
3299 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3300 dummy_target.to_magic = OPS_MAGIC;
3301 }
3302 \f
3303 static void
3304 debug_to_open (char *args, int from_tty)
3305 {
3306 debug_target.to_open (args, from_tty);
3307
3308 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3309 }
3310
3311 void
3312 target_close (struct target_ops *targ, int quitting)
3313 {
3314 if (targ->to_xclose != NULL)
3315 targ->to_xclose (targ, quitting);
3316 else if (targ->to_close != NULL)
3317 targ->to_close (quitting);
3318
3319 if (targetdebug)
3320 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
3321 }
3322
3323 void
3324 target_attach (char *args, int from_tty)
3325 {
3326 struct target_ops *t;
3327
3328 for (t = current_target.beneath; t != NULL; t = t->beneath)
3329 {
3330 if (t->to_attach != NULL)
3331 {
3332 t->to_attach (t, args, from_tty);
3333 if (targetdebug)
3334 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3335 args, from_tty);
3336 return;
3337 }
3338 }
3339
3340 internal_error (__FILE__, __LINE__,
3341 _("could not find a target to attach"));
3342 }
3343
3344 int
3345 target_thread_alive (ptid_t ptid)
3346 {
3347 struct target_ops *t;
3348
3349 for (t = current_target.beneath; t != NULL; t = t->beneath)
3350 {
3351 if (t->to_thread_alive != NULL)
3352 {
3353 int retval;
3354
3355 retval = t->to_thread_alive (t, ptid);
3356 if (targetdebug)
3357 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3358 PIDGET (ptid), retval);
3359
3360 return retval;
3361 }
3362 }
3363
3364 return 0;
3365 }
3366
3367 void
3368 target_find_new_threads (void)
3369 {
3370 struct target_ops *t;
3371
3372 for (t = current_target.beneath; t != NULL; t = t->beneath)
3373 {
3374 if (t->to_find_new_threads != NULL)
3375 {
3376 t->to_find_new_threads (t);
3377 if (targetdebug)
3378 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3379
3380 return;
3381 }
3382 }
3383 }
3384
3385 void
3386 target_stop (ptid_t ptid)
3387 {
3388 if (!may_stop)
3389 {
3390 warning (_("May not interrupt or stop the target, ignoring attempt"));
3391 return;
3392 }
3393
3394 (*current_target.to_stop) (ptid);
3395 }
3396
3397 static void
3398 debug_to_post_attach (int pid)
3399 {
3400 debug_target.to_post_attach (pid);
3401
3402 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3403 }
3404
3405 /* Return a pretty printed form of target_waitstatus.
3406 Space for the result is malloc'd, caller must free. */
3407
3408 char *
3409 target_waitstatus_to_string (const struct target_waitstatus *ws)
3410 {
3411 const char *kind_str = "status->kind = ";
3412
3413 switch (ws->kind)
3414 {
3415 case TARGET_WAITKIND_EXITED:
3416 return xstrprintf ("%sexited, status = %d",
3417 kind_str, ws->value.integer);
3418 case TARGET_WAITKIND_STOPPED:
3419 return xstrprintf ("%sstopped, signal = %s",
3420 kind_str, target_signal_to_name (ws->value.sig));
3421 case TARGET_WAITKIND_SIGNALLED:
3422 return xstrprintf ("%ssignalled, signal = %s",
3423 kind_str, target_signal_to_name (ws->value.sig));
3424 case TARGET_WAITKIND_LOADED:
3425 return xstrprintf ("%sloaded", kind_str);
3426 case TARGET_WAITKIND_FORKED:
3427 return xstrprintf ("%sforked", kind_str);
3428 case TARGET_WAITKIND_VFORKED:
3429 return xstrprintf ("%svforked", kind_str);
3430 case TARGET_WAITKIND_EXECD:
3431 return xstrprintf ("%sexecd", kind_str);
3432 case TARGET_WAITKIND_SYSCALL_ENTRY:
3433 return xstrprintf ("%sentered syscall", kind_str);
3434 case TARGET_WAITKIND_SYSCALL_RETURN:
3435 return xstrprintf ("%sexited syscall", kind_str);
3436 case TARGET_WAITKIND_SPURIOUS:
3437 return xstrprintf ("%sspurious", kind_str);
3438 case TARGET_WAITKIND_IGNORE:
3439 return xstrprintf ("%signore", kind_str);
3440 case TARGET_WAITKIND_NO_HISTORY:
3441 return xstrprintf ("%sno-history", kind_str);
3442 default:
3443 return xstrprintf ("%sunknown???", kind_str);
3444 }
3445 }
3446
3447 static void
3448 debug_print_register (const char * func,
3449 struct regcache *regcache, int regno)
3450 {
3451 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3452
3453 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3454 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3455 && gdbarch_register_name (gdbarch, regno) != NULL
3456 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3457 fprintf_unfiltered (gdb_stdlog, "(%s)",
3458 gdbarch_register_name (gdbarch, regno));
3459 else
3460 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3461 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3462 {
3463 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3464 int i, size = register_size (gdbarch, regno);
3465 unsigned char buf[MAX_REGISTER_SIZE];
3466
3467 regcache_raw_collect (regcache, regno, buf);
3468 fprintf_unfiltered (gdb_stdlog, " = ");
3469 for (i = 0; i < size; i++)
3470 {
3471 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3472 }
3473 if (size <= sizeof (LONGEST))
3474 {
3475 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3476
3477 fprintf_unfiltered (gdb_stdlog, " %s %s",
3478 core_addr_to_string_nz (val), plongest (val));
3479 }
3480 }
3481 fprintf_unfiltered (gdb_stdlog, "\n");
3482 }
3483
3484 void
3485 target_fetch_registers (struct regcache *regcache, int regno)
3486 {
3487 struct target_ops *t;
3488
3489 for (t = current_target.beneath; t != NULL; t = t->beneath)
3490 {
3491 if (t->to_fetch_registers != NULL)
3492 {
3493 t->to_fetch_registers (t, regcache, regno);
3494 if (targetdebug)
3495 debug_print_register ("target_fetch_registers", regcache, regno);
3496 return;
3497 }
3498 }
3499 }
3500
3501 void
3502 target_store_registers (struct regcache *regcache, int regno)
3503 {
3504 struct target_ops *t;
3505
3506 if (!may_write_registers)
3507 error (_("Writing to registers is not allowed (regno %d)"), regno);
3508
3509 for (t = current_target.beneath; t != NULL; t = t->beneath)
3510 {
3511 if (t->to_store_registers != NULL)
3512 {
3513 t->to_store_registers (t, regcache, regno);
3514 if (targetdebug)
3515 {
3516 debug_print_register ("target_store_registers", regcache, regno);
3517 }
3518 return;
3519 }
3520 }
3521
3522 noprocess ();
3523 }
3524
3525 int
3526 target_core_of_thread (ptid_t ptid)
3527 {
3528 struct target_ops *t;
3529
3530 for (t = current_target.beneath; t != NULL; t = t->beneath)
3531 {
3532 if (t->to_core_of_thread != NULL)
3533 {
3534 int retval = t->to_core_of_thread (t, ptid);
3535
3536 if (targetdebug)
3537 fprintf_unfiltered (gdb_stdlog,
3538 "target_core_of_thread (%d) = %d\n",
3539 PIDGET (ptid), retval);
3540 return retval;
3541 }
3542 }
3543
3544 return -1;
3545 }
3546
3547 int
3548 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3549 {
3550 struct target_ops *t;
3551
3552 for (t = current_target.beneath; t != NULL; t = t->beneath)
3553 {
3554 if (t->to_verify_memory != NULL)
3555 {
3556 int retval = t->to_verify_memory (t, data, memaddr, size);
3557
3558 if (targetdebug)
3559 fprintf_unfiltered (gdb_stdlog,
3560 "target_verify_memory (%s, %s) = %d\n",
3561 paddress (target_gdbarch, memaddr),
3562 pulongest (size),
3563 retval);
3564 return retval;
3565 }
3566 }
3567
3568 tcomplain ();
3569 }
3570
3571 /* The documentation for this function is in its prototype declaration in
3572 target.h. */
3573
3574 int
3575 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3576 {
3577 struct target_ops *t;
3578
3579 for (t = current_target.beneath; t != NULL; t = t->beneath)
3580 if (t->to_insert_mask_watchpoint != NULL)
3581 {
3582 int ret;
3583
3584 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
3585
3586 if (targetdebug)
3587 fprintf_unfiltered (gdb_stdlog, "\
3588 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3589 core_addr_to_string (addr),
3590 core_addr_to_string (mask), rw, ret);
3591
3592 return ret;
3593 }
3594
3595 return 1;
3596 }
3597
3598 /* The documentation for this function is in its prototype declaration in
3599 target.h. */
3600
3601 int
3602 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3603 {
3604 struct target_ops *t;
3605
3606 for (t = current_target.beneath; t != NULL; t = t->beneath)
3607 if (t->to_remove_mask_watchpoint != NULL)
3608 {
3609 int ret;
3610
3611 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
3612
3613 if (targetdebug)
3614 fprintf_unfiltered (gdb_stdlog, "\
3615 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3616 core_addr_to_string (addr),
3617 core_addr_to_string (mask), rw, ret);
3618
3619 return ret;
3620 }
3621
3622 return 1;
3623 }
3624
3625 /* The documentation for this function is in its prototype declaration
3626 in target.h. */
3627
3628 int
3629 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3630 {
3631 struct target_ops *t;
3632
3633 for (t = current_target.beneath; t != NULL; t = t->beneath)
3634 if (t->to_masked_watch_num_registers != NULL)
3635 return t->to_masked_watch_num_registers (t, addr, mask);
3636
3637 return -1;
3638 }
3639
3640 /* The documentation for this function is in its prototype declaration
3641 in target.h. */
3642
3643 int
3644 target_ranged_break_num_registers (void)
3645 {
3646 struct target_ops *t;
3647
3648 for (t = current_target.beneath; t != NULL; t = t->beneath)
3649 if (t->to_ranged_break_num_registers != NULL)
3650 return t->to_ranged_break_num_registers (t);
3651
3652 return -1;
3653 }
3654
3655 static void
3656 debug_to_prepare_to_store (struct regcache *regcache)
3657 {
3658 debug_target.to_prepare_to_store (regcache);
3659
3660 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3661 }
3662
3663 static int
3664 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
3665 int write, struct mem_attrib *attrib,
3666 struct target_ops *target)
3667 {
3668 int retval;
3669
3670 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
3671 attrib, target);
3672
3673 fprintf_unfiltered (gdb_stdlog,
3674 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
3675 paddress (target_gdbarch, memaddr), len,
3676 write ? "write" : "read", retval);
3677
3678 if (retval > 0)
3679 {
3680 int i;
3681
3682 fputs_unfiltered (", bytes =", gdb_stdlog);
3683 for (i = 0; i < retval; i++)
3684 {
3685 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
3686 {
3687 if (targetdebug < 2 && i > 0)
3688 {
3689 fprintf_unfiltered (gdb_stdlog, " ...");
3690 break;
3691 }
3692 fprintf_unfiltered (gdb_stdlog, "\n");
3693 }
3694
3695 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
3696 }
3697 }
3698
3699 fputc_unfiltered ('\n', gdb_stdlog);
3700
3701 return retval;
3702 }
3703
3704 static void
3705 debug_to_files_info (struct target_ops *target)
3706 {
3707 debug_target.to_files_info (target);
3708
3709 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3710 }
3711
3712 static int
3713 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
3714 struct bp_target_info *bp_tgt)
3715 {
3716 int retval;
3717
3718 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
3719
3720 fprintf_unfiltered (gdb_stdlog,
3721 "target_insert_breakpoint (%s, xxx) = %ld\n",
3722 core_addr_to_string (bp_tgt->placed_address),
3723 (unsigned long) retval);
3724 return retval;
3725 }
3726
3727 static int
3728 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
3729 struct bp_target_info *bp_tgt)
3730 {
3731 int retval;
3732
3733 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
3734
3735 fprintf_unfiltered (gdb_stdlog,
3736 "target_remove_breakpoint (%s, xxx) = %ld\n",
3737 core_addr_to_string (bp_tgt->placed_address),
3738 (unsigned long) retval);
3739 return retval;
3740 }
3741
3742 static int
3743 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
3744 {
3745 int retval;
3746
3747 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
3748
3749 fprintf_unfiltered (gdb_stdlog,
3750 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3751 (unsigned long) type,
3752 (unsigned long) cnt,
3753 (unsigned long) from_tty,
3754 (unsigned long) retval);
3755 return retval;
3756 }
3757
3758 static int
3759 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3760 {
3761 CORE_ADDR retval;
3762
3763 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
3764
3765 fprintf_unfiltered (gdb_stdlog,
3766 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3767 core_addr_to_string (addr), (unsigned long) len,
3768 core_addr_to_string (retval));
3769 return retval;
3770 }
3771
3772 static int
3773 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
3774 struct expression *cond)
3775 {
3776 int retval;
3777
3778 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
3779 rw, cond);
3780
3781 fprintf_unfiltered (gdb_stdlog,
3782 "target_can_accel_watchpoint_condition "
3783 "(%s, %d, %d, %s) = %ld\n",
3784 core_addr_to_string (addr), len, rw,
3785 host_address_to_string (cond), (unsigned long) retval);
3786 return retval;
3787 }
3788
3789 static int
3790 debug_to_stopped_by_watchpoint (void)
3791 {
3792 int retval;
3793
3794 retval = debug_target.to_stopped_by_watchpoint ();
3795
3796 fprintf_unfiltered (gdb_stdlog,
3797 "target_stopped_by_watchpoint () = %ld\n",
3798 (unsigned long) retval);
3799 return retval;
3800 }
3801
3802 static int
3803 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3804 {
3805 int retval;
3806
3807 retval = debug_target.to_stopped_data_address (target, addr);
3808
3809 fprintf_unfiltered (gdb_stdlog,
3810 "target_stopped_data_address ([%s]) = %ld\n",
3811 core_addr_to_string (*addr),
3812 (unsigned long)retval);
3813 return retval;
3814 }
3815
3816 static int
3817 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3818 CORE_ADDR addr,
3819 CORE_ADDR start, int length)
3820 {
3821 int retval;
3822
3823 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3824 start, length);
3825
3826 fprintf_filtered (gdb_stdlog,
3827 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3828 core_addr_to_string (addr), core_addr_to_string (start),
3829 length, retval);
3830 return retval;
3831 }
3832
3833 static int
3834 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
3835 struct bp_target_info *bp_tgt)
3836 {
3837 int retval;
3838
3839 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
3840
3841 fprintf_unfiltered (gdb_stdlog,
3842 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3843 core_addr_to_string (bp_tgt->placed_address),
3844 (unsigned long) retval);
3845 return retval;
3846 }
3847
3848 static int
3849 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
3850 struct bp_target_info *bp_tgt)
3851 {
3852 int retval;
3853
3854 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
3855
3856 fprintf_unfiltered (gdb_stdlog,
3857 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3858 core_addr_to_string (bp_tgt->placed_address),
3859 (unsigned long) retval);
3860 return retval;
3861 }
3862
3863 static int
3864 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
3865 struct expression *cond)
3866 {
3867 int retval;
3868
3869 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
3870
3871 fprintf_unfiltered (gdb_stdlog,
3872 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3873 core_addr_to_string (addr), len, type,
3874 host_address_to_string (cond), (unsigned long) retval);
3875 return retval;
3876 }
3877
3878 static int
3879 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
3880 struct expression *cond)
3881 {
3882 int retval;
3883
3884 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
3885
3886 fprintf_unfiltered (gdb_stdlog,
3887 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3888 core_addr_to_string (addr), len, type,
3889 host_address_to_string (cond), (unsigned long) retval);
3890 return retval;
3891 }
3892
3893 static void
3894 debug_to_terminal_init (void)
3895 {
3896 debug_target.to_terminal_init ();
3897
3898 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3899 }
3900
3901 static void
3902 debug_to_terminal_inferior (void)
3903 {
3904 debug_target.to_terminal_inferior ();
3905
3906 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3907 }
3908
3909 static void
3910 debug_to_terminal_ours_for_output (void)
3911 {
3912 debug_target.to_terminal_ours_for_output ();
3913
3914 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3915 }
3916
3917 static void
3918 debug_to_terminal_ours (void)
3919 {
3920 debug_target.to_terminal_ours ();
3921
3922 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3923 }
3924
3925 static void
3926 debug_to_terminal_save_ours (void)
3927 {
3928 debug_target.to_terminal_save_ours ();
3929
3930 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3931 }
3932
3933 static void
3934 debug_to_terminal_info (char *arg, int from_tty)
3935 {
3936 debug_target.to_terminal_info (arg, from_tty);
3937
3938 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3939 from_tty);
3940 }
3941
3942 static void
3943 debug_to_load (char *args, int from_tty)
3944 {
3945 debug_target.to_load (args, from_tty);
3946
3947 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3948 }
3949
3950 static void
3951 debug_to_post_startup_inferior (ptid_t ptid)
3952 {
3953 debug_target.to_post_startup_inferior (ptid);
3954
3955 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3956 PIDGET (ptid));
3957 }
3958
3959 static int
3960 debug_to_insert_fork_catchpoint (int pid)
3961 {
3962 int retval;
3963
3964 retval = debug_target.to_insert_fork_catchpoint (pid);
3965
3966 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
3967 pid, retval);
3968
3969 return retval;
3970 }
3971
3972 static int
3973 debug_to_remove_fork_catchpoint (int pid)
3974 {
3975 int retval;
3976
3977 retval = debug_target.to_remove_fork_catchpoint (pid);
3978
3979 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3980 pid, retval);
3981
3982 return retval;
3983 }
3984
3985 static int
3986 debug_to_insert_vfork_catchpoint (int pid)
3987 {
3988 int retval;
3989
3990 retval = debug_target.to_insert_vfork_catchpoint (pid);
3991
3992 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
3993 pid, retval);
3994
3995 return retval;
3996 }
3997
3998 static int
3999 debug_to_remove_vfork_catchpoint (int pid)
4000 {
4001 int retval;
4002
4003 retval = debug_target.to_remove_vfork_catchpoint (pid);
4004
4005 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4006 pid, retval);
4007
4008 return retval;
4009 }
4010
4011 static int
4012 debug_to_insert_exec_catchpoint (int pid)
4013 {
4014 int retval;
4015
4016 retval = debug_target.to_insert_exec_catchpoint (pid);
4017
4018 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4019 pid, retval);
4020
4021 return retval;
4022 }
4023
4024 static int
4025 debug_to_remove_exec_catchpoint (int pid)
4026 {
4027 int retval;
4028
4029 retval = debug_target.to_remove_exec_catchpoint (pid);
4030
4031 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4032 pid, retval);
4033
4034 return retval;
4035 }
4036
4037 static int
4038 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4039 {
4040 int has_exited;
4041
4042 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4043
4044 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4045 pid, wait_status, *exit_status, has_exited);
4046
4047 return has_exited;
4048 }
4049
4050 static int
4051 debug_to_can_run (void)
4052 {
4053 int retval;
4054
4055 retval = debug_target.to_can_run ();
4056
4057 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4058
4059 return retval;
4060 }
4061
4062 static struct gdbarch *
4063 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4064 {
4065 struct gdbarch *retval;
4066
4067 retval = debug_target.to_thread_architecture (ops, ptid);
4068
4069 fprintf_unfiltered (gdb_stdlog,
4070 "target_thread_architecture (%s) = %s [%s]\n",
4071 target_pid_to_str (ptid),
4072 host_address_to_string (retval),
4073 gdbarch_bfd_arch_info (retval)->printable_name);
4074 return retval;
4075 }
4076
4077 static void
4078 debug_to_stop (ptid_t ptid)
4079 {
4080 debug_target.to_stop (ptid);
4081
4082 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4083 target_pid_to_str (ptid));
4084 }
4085
4086 static void
4087 debug_to_rcmd (char *command,
4088 struct ui_file *outbuf)
4089 {
4090 debug_target.to_rcmd (command, outbuf);
4091 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4092 }
4093
4094 static char *
4095 debug_to_pid_to_exec_file (int pid)
4096 {
4097 char *exec_file;
4098
4099 exec_file = debug_target.to_pid_to_exec_file (pid);
4100
4101 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4102 pid, exec_file);
4103
4104 return exec_file;
4105 }
4106
4107 static void
4108 setup_target_debug (void)
4109 {
4110 memcpy (&debug_target, &current_target, sizeof debug_target);
4111
4112 current_target.to_open = debug_to_open;
4113 current_target.to_post_attach = debug_to_post_attach;
4114 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4115 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4116 current_target.to_files_info = debug_to_files_info;
4117 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4118 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4119 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4120 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4121 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4122 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4123 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4124 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4125 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4126 current_target.to_watchpoint_addr_within_range
4127 = debug_to_watchpoint_addr_within_range;
4128 current_target.to_region_ok_for_hw_watchpoint
4129 = debug_to_region_ok_for_hw_watchpoint;
4130 current_target.to_can_accel_watchpoint_condition
4131 = debug_to_can_accel_watchpoint_condition;
4132 current_target.to_terminal_init = debug_to_terminal_init;
4133 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4134 current_target.to_terminal_ours_for_output
4135 = debug_to_terminal_ours_for_output;
4136 current_target.to_terminal_ours = debug_to_terminal_ours;
4137 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4138 current_target.to_terminal_info = debug_to_terminal_info;
4139 current_target.to_load = debug_to_load;
4140 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4141 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4142 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4143 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4144 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4145 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4146 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4147 current_target.to_has_exited = debug_to_has_exited;
4148 current_target.to_can_run = debug_to_can_run;
4149 current_target.to_stop = debug_to_stop;
4150 current_target.to_rcmd = debug_to_rcmd;
4151 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4152 current_target.to_thread_architecture = debug_to_thread_architecture;
4153 }
4154 \f
4155
4156 static char targ_desc[] =
4157 "Names of targets and files being debugged.\nShows the entire \
4158 stack of targets currently in use (including the exec-file,\n\
4159 core-file, and process, if any), as well as the symbol file name.";
4160
4161 static void
4162 do_monitor_command (char *cmd,
4163 int from_tty)
4164 {
4165 if ((current_target.to_rcmd
4166 == (void (*) (char *, struct ui_file *)) tcomplain)
4167 || (current_target.to_rcmd == debug_to_rcmd
4168 && (debug_target.to_rcmd
4169 == (void (*) (char *, struct ui_file *)) tcomplain)))
4170 error (_("\"monitor\" command not supported by this target."));
4171 target_rcmd (cmd, gdb_stdtarg);
4172 }
4173
4174 /* Print the name of each layers of our target stack. */
4175
4176 static void
4177 maintenance_print_target_stack (char *cmd, int from_tty)
4178 {
4179 struct target_ops *t;
4180
4181 printf_filtered (_("The current target stack is:\n"));
4182
4183 for (t = target_stack; t != NULL; t = t->beneath)
4184 {
4185 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4186 }
4187 }
4188
4189 /* Controls if async mode is permitted. */
4190 int target_async_permitted = 0;
4191
4192 /* The set command writes to this variable. If the inferior is
4193 executing, linux_nat_async_permitted is *not* updated. */
4194 static int target_async_permitted_1 = 0;
4195
4196 static void
4197 set_maintenance_target_async_permitted (char *args, int from_tty,
4198 struct cmd_list_element *c)
4199 {
4200 if (have_live_inferiors ())
4201 {
4202 target_async_permitted_1 = target_async_permitted;
4203 error (_("Cannot change this setting while the inferior is running."));
4204 }
4205
4206 target_async_permitted = target_async_permitted_1;
4207 }
4208
4209 static void
4210 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
4211 struct cmd_list_element *c,
4212 const char *value)
4213 {
4214 fprintf_filtered (file,
4215 _("Controlling the inferior in "
4216 "asynchronous mode is %s.\n"), value);
4217 }
4218
4219 /* Temporary copies of permission settings. */
4220
4221 static int may_write_registers_1 = 1;
4222 static int may_write_memory_1 = 1;
4223 static int may_insert_breakpoints_1 = 1;
4224 static int may_insert_tracepoints_1 = 1;
4225 static int may_insert_fast_tracepoints_1 = 1;
4226 static int may_stop_1 = 1;
4227
4228 /* Make the user-set values match the real values again. */
4229
4230 void
4231 update_target_permissions (void)
4232 {
4233 may_write_registers_1 = may_write_registers;
4234 may_write_memory_1 = may_write_memory;
4235 may_insert_breakpoints_1 = may_insert_breakpoints;
4236 may_insert_tracepoints_1 = may_insert_tracepoints;
4237 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4238 may_stop_1 = may_stop;
4239 }
4240
4241 /* The one function handles (most of) the permission flags in the same
4242 way. */
4243
4244 static void
4245 set_target_permissions (char *args, int from_tty,
4246 struct cmd_list_element *c)
4247 {
4248 if (target_has_execution)
4249 {
4250 update_target_permissions ();
4251 error (_("Cannot change this setting while the inferior is running."));
4252 }
4253
4254 /* Make the real values match the user-changed values. */
4255 may_write_registers = may_write_registers_1;
4256 may_insert_breakpoints = may_insert_breakpoints_1;
4257 may_insert_tracepoints = may_insert_tracepoints_1;
4258 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4259 may_stop = may_stop_1;
4260 update_observer_mode ();
4261 }
4262
4263 /* Set memory write permission independently of observer mode. */
4264
4265 static void
4266 set_write_memory_permission (char *args, int from_tty,
4267 struct cmd_list_element *c)
4268 {
4269 /* Make the real values match the user-changed values. */
4270 may_write_memory = may_write_memory_1;
4271 update_observer_mode ();
4272 }
4273
4274
4275 void
4276 initialize_targets (void)
4277 {
4278 init_dummy_target ();
4279 push_target (&dummy_target);
4280
4281 add_info ("target", target_info, targ_desc);
4282 add_info ("files", target_info, targ_desc);
4283
4284 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4285 Set target debugging."), _("\
4286 Show target debugging."), _("\
4287 When non-zero, target debugging is enabled. Higher numbers are more\n\
4288 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4289 command."),
4290 NULL,
4291 show_targetdebug,
4292 &setdebuglist, &showdebuglist);
4293
4294 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4295 &trust_readonly, _("\
4296 Set mode for reading from readonly sections."), _("\
4297 Show mode for reading from readonly sections."), _("\
4298 When this mode is on, memory reads from readonly sections (such as .text)\n\
4299 will be read from the object file instead of from the target. This will\n\
4300 result in significant performance improvement for remote targets."),
4301 NULL,
4302 show_trust_readonly,
4303 &setlist, &showlist);
4304
4305 add_com ("monitor", class_obscure, do_monitor_command,
4306 _("Send a command to the remote monitor (remote targets only)."));
4307
4308 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4309 _("Print the name of each layer of the internal target stack."),
4310 &maintenanceprintlist);
4311
4312 add_setshow_boolean_cmd ("target-async", no_class,
4313 &target_async_permitted_1, _("\
4314 Set whether gdb controls the inferior in asynchronous mode."), _("\
4315 Show whether gdb controls the inferior in asynchronous mode."), _("\
4316 Tells gdb whether to control the inferior in asynchronous mode."),
4317 set_maintenance_target_async_permitted,
4318 show_maintenance_target_async_permitted,
4319 &setlist,
4320 &showlist);
4321
4322 add_setshow_boolean_cmd ("stack-cache", class_support,
4323 &stack_cache_enabled_p_1, _("\
4324 Set cache use for stack access."), _("\
4325 Show cache use for stack access."), _("\
4326 When on, use the data cache for all stack access, regardless of any\n\
4327 configured memory regions. This improves remote performance significantly.\n\
4328 By default, caching for stack access is on."),
4329 set_stack_cache_enabled_p,
4330 show_stack_cache_enabled_p,
4331 &setlist, &showlist);
4332
4333 add_setshow_boolean_cmd ("may-write-registers", class_support,
4334 &may_write_registers_1, _("\
4335 Set permission to write into registers."), _("\
4336 Show permission to write into registers."), _("\
4337 When this permission is on, GDB may write into the target's registers.\n\
4338 Otherwise, any sort of write attempt will result in an error."),
4339 set_target_permissions, NULL,
4340 &setlist, &showlist);
4341
4342 add_setshow_boolean_cmd ("may-write-memory", class_support,
4343 &may_write_memory_1, _("\
4344 Set permission to write into target memory."), _("\
4345 Show permission to write into target memory."), _("\
4346 When this permission is on, GDB may write into the target's memory.\n\
4347 Otherwise, any sort of write attempt will result in an error."),
4348 set_write_memory_permission, NULL,
4349 &setlist, &showlist);
4350
4351 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4352 &may_insert_breakpoints_1, _("\
4353 Set permission to insert breakpoints in the target."), _("\
4354 Show permission to insert breakpoints in the target."), _("\
4355 When this permission is on, GDB may insert breakpoints in the program.\n\
4356 Otherwise, any sort of insertion attempt will result in an error."),
4357 set_target_permissions, NULL,
4358 &setlist, &showlist);
4359
4360 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4361 &may_insert_tracepoints_1, _("\
4362 Set permission to insert tracepoints in the target."), _("\
4363 Show permission to insert tracepoints in the target."), _("\
4364 When this permission is on, GDB may insert tracepoints in the program.\n\
4365 Otherwise, any sort of insertion attempt will result in an error."),
4366 set_target_permissions, NULL,
4367 &setlist, &showlist);
4368
4369 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4370 &may_insert_fast_tracepoints_1, _("\
4371 Set permission to insert fast tracepoints in the target."), _("\
4372 Show permission to insert fast tracepoints in the target."), _("\
4373 When this permission is on, GDB may insert fast tracepoints.\n\
4374 Otherwise, any sort of insertion attempt will result in an error."),
4375 set_target_permissions, NULL,
4376 &setlist, &showlist);
4377
4378 add_setshow_boolean_cmd ("may-interrupt", class_support,
4379 &may_stop_1, _("\
4380 Set permission to interrupt or signal the target."), _("\
4381 Show permission to interrupt or signal the target."), _("\
4382 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4383 Otherwise, any attempt to interrupt or stop will be ignored."),
4384 set_target_permissions, NULL,
4385 &setlist, &showlist);
4386
4387
4388 target_dcache = dcache_init ();
4389 }
This page took 0.122248 seconds and 4 git commands to generate.