C++ify fileio_fh_t, replace VEC with std::vector
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50 #include "terminal.h"
51 #include <algorithm>
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static struct address_space *default_thread_address_space
85 (struct target_ops *self, ptid_t ptid);
86
87 static void tcomplain (void) ATTRIBUTE_NORETURN;
88
89 static int return_zero (struct target_ops *);
90
91 static int return_zero_has_execution (struct target_ops *, ptid_t);
92
93 static struct target_ops *find_default_run_target (const char *);
94
95 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
96 ptid_t ptid);
97
98 static int dummy_find_memory_regions (struct target_ops *self,
99 find_memory_region_ftype ignore1,
100 void *ignore2);
101
102 static char *dummy_make_corefile_notes (struct target_ops *self,
103 bfd *ignore1, int *ignore2);
104
105 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
106
107 static enum exec_direction_kind default_execution_direction
108 (struct target_ops *self);
109
110 static struct target_ops debug_target;
111
112 #include "target-delegates.c"
113
114 static void init_dummy_target (void);
115
116 static void update_current_target (void);
117
118 /* Vector of existing target structures. */
119 typedef struct target_ops *target_ops_p;
120 DEF_VEC_P (target_ops_p);
121 static VEC (target_ops_p) *target_structs;
122
123 /* The initial current target, so that there is always a semi-valid
124 current target. */
125
126 static struct target_ops dummy_target;
127
128 /* Top of target stack. */
129
130 static struct target_ops *target_stack;
131
132 /* The target structure we are currently using to talk to a process
133 or file or whatever "inferior" we have. */
134
135 struct target_ops current_target;
136
137 /* Command list for target. */
138
139 static struct cmd_list_element *targetlist = NULL;
140
141 /* Nonzero if we should trust readonly sections from the
142 executable when reading memory. */
143
144 static int trust_readonly = 0;
145
146 /* Nonzero if we should show true memory content including
147 memory breakpoint inserted by gdb. */
148
149 static int show_memory_breakpoints = 0;
150
151 /* These globals control whether GDB attempts to perform these
152 operations; they are useful for targets that need to prevent
153 inadvertant disruption, such as in non-stop mode. */
154
155 int may_write_registers = 1;
156
157 int may_write_memory = 1;
158
159 int may_insert_breakpoints = 1;
160
161 int may_insert_tracepoints = 1;
162
163 int may_insert_fast_tracepoints = 1;
164
165 int may_stop = 1;
166
167 /* Non-zero if we want to see trace of target level stuff. */
168
169 static unsigned int targetdebug = 0;
170
171 static void
172 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
173 {
174 update_current_target ();
175 }
176
177 static void
178 show_targetdebug (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
182 }
183
184 static void setup_target_debug (void);
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (const char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 /* Default target_has_* methods for process_stratum targets. */
196
197 int
198 default_child_has_all_memory (struct target_ops *ops)
199 {
200 /* If no inferior selected, then we can't read memory here. */
201 if (ptid_equal (inferior_ptid, null_ptid))
202 return 0;
203
204 return 1;
205 }
206
207 int
208 default_child_has_memory (struct target_ops *ops)
209 {
210 /* If no inferior selected, then we can't read memory here. */
211 if (ptid_equal (inferior_ptid, null_ptid))
212 return 0;
213
214 return 1;
215 }
216
217 int
218 default_child_has_stack (struct target_ops *ops)
219 {
220 /* If no inferior selected, there's no stack. */
221 if (ptid_equal (inferior_ptid, null_ptid))
222 return 0;
223
224 return 1;
225 }
226
227 int
228 default_child_has_registers (struct target_ops *ops)
229 {
230 /* Can't read registers from no inferior. */
231 if (ptid_equal (inferior_ptid, null_ptid))
232 return 0;
233
234 return 1;
235 }
236
237 int
238 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
239 {
240 /* If there's no thread selected, then we can't make it run through
241 hoops. */
242 if (ptid_equal (the_ptid, null_ptid))
243 return 0;
244
245 return 1;
246 }
247
248
249 int
250 target_has_all_memory_1 (void)
251 {
252 struct target_ops *t;
253
254 for (t = current_target.beneath; t != NULL; t = t->beneath)
255 if (t->to_has_all_memory (t))
256 return 1;
257
258 return 0;
259 }
260
261 int
262 target_has_memory_1 (void)
263 {
264 struct target_ops *t;
265
266 for (t = current_target.beneath; t != NULL; t = t->beneath)
267 if (t->to_has_memory (t))
268 return 1;
269
270 return 0;
271 }
272
273 int
274 target_has_stack_1 (void)
275 {
276 struct target_ops *t;
277
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_stack (t))
280 return 1;
281
282 return 0;
283 }
284
285 int
286 target_has_registers_1 (void)
287 {
288 struct target_ops *t;
289
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_registers (t))
292 return 1;
293
294 return 0;
295 }
296
297 int
298 target_has_execution_1 (ptid_t the_ptid)
299 {
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_execution (t, the_ptid))
304 return 1;
305
306 return 0;
307 }
308
309 int
310 target_has_execution_current (void)
311 {
312 return target_has_execution_1 (inferior_ptid);
313 }
314
315 /* Complete initialization of T. This ensures that various fields in
316 T are set, if needed by the target implementation. */
317
318 void
319 complete_target_initialization (struct target_ops *t)
320 {
321 /* Provide default values for all "must have" methods. */
322
323 if (t->to_has_all_memory == NULL)
324 t->to_has_all_memory = return_zero;
325
326 if (t->to_has_memory == NULL)
327 t->to_has_memory = return_zero;
328
329 if (t->to_has_stack == NULL)
330 t->to_has_stack = return_zero;
331
332 if (t->to_has_registers == NULL)
333 t->to_has_registers = return_zero;
334
335 if (t->to_has_execution == NULL)
336 t->to_has_execution = return_zero_has_execution;
337
338 /* These methods can be called on an unpushed target and so require
339 a default implementation if the target might plausibly be the
340 default run target. */
341 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
342 && t->to_supports_non_stop != NULL));
343
344 install_delegators (t);
345 }
346
347 /* This is used to implement the various target commands. */
348
349 static void
350 open_target (const char *args, int from_tty, struct cmd_list_element *command)
351 {
352 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
353
354 if (targetdebug)
355 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
356 ops->to_shortname);
357
358 ops->to_open (args, from_tty);
359
360 if (targetdebug)
361 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
362 ops->to_shortname, args, from_tty);
363 }
364
365 /* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
368
369 void
370 add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
372 {
373 struct cmd_list_element *c;
374
375 complete_target_initialization (t);
376
377 VEC_safe_push (target_ops_p, target_structs, t);
378
379 if (targetlist == NULL)
380 add_prefix_cmd ("target", class_run, target_command, _("\
381 Connect to a target machine or process.\n\
382 The first argument is the type or protocol of the target machine.\n\
383 Remaining arguments are interpreted by the target protocol. For more\n\
384 information on the arguments for a particular protocol, type\n\
385 `help target ' followed by the protocol name."),
386 &targetlist, "target ", 0, &cmdlist);
387 c = add_cmd (t->to_shortname, no_class, t->to_doc, &targetlist);
388 set_cmd_sfunc (c, open_target);
389 set_cmd_context (c, t);
390 if (completer != NULL)
391 set_cmd_completer (c, completer);
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 add_target_with_completer (t, NULL);
400 }
401
402 /* See target.h. */
403
404 void
405 add_deprecated_target_alias (struct target_ops *t, const char *alias)
406 {
407 struct cmd_list_element *c;
408 char *alt;
409
410 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
411 see PR cli/15104. */
412 c = add_cmd (alias, no_class, t->to_doc, &targetlist);
413 set_cmd_sfunc (c, open_target);
414 set_cmd_context (c, t);
415 alt = xstrprintf ("target %s", t->to_shortname);
416 deprecate_cmd (c, alt);
417 }
418
419 /* Stub functions */
420
421 void
422 target_kill (void)
423 {
424 current_target.to_kill (&current_target);
425 }
426
427 void
428 target_load (const char *arg, int from_tty)
429 {
430 target_dcache_invalidate ();
431 (*current_target.to_load) (&current_target, arg, from_tty);
432 }
433
434 /* Define it. */
435
436 target_terminal_state target_terminal::m_terminal_state
437 = target_terminal_state::is_ours;
438
439 /* See target/target.h. */
440
441 void
442 target_terminal::init (void)
443 {
444 (*current_target.to_terminal_init) (&current_target);
445
446 m_terminal_state = target_terminal_state::is_ours;
447 }
448
449 /* See target/target.h. */
450
451 void
452 target_terminal::inferior (void)
453 {
454 struct ui *ui = current_ui;
455
456 /* A background resume (``run&'') should leave GDB in control of the
457 terminal. */
458 if (ui->prompt_state != PROMPT_BLOCKED)
459 return;
460
461 /* Since we always run the inferior in the main console (unless "set
462 inferior-tty" is in effect), when some UI other than the main one
463 calls target_terminal::inferior, then we leave the main UI's
464 terminal settings as is. */
465 if (ui != main_ui)
466 return;
467
468 /* If GDB is resuming the inferior in the foreground, install
469 inferior's terminal modes. */
470
471 struct inferior *inf = current_inferior ();
472
473 if (inf->terminal_state != target_terminal_state::is_inferior)
474 {
475 (*current_target.to_terminal_inferior) (&current_target);
476 inf->terminal_state = target_terminal_state::is_inferior;
477 }
478
479 m_terminal_state = target_terminal_state::is_inferior;
480
481 /* If the user hit C-c before, pretend that it was hit right
482 here. */
483 if (check_quit_flag ())
484 target_pass_ctrlc ();
485 }
486
487 /* See target/target.h. */
488
489 void
490 target_terminal::restore_inferior (void)
491 {
492 struct ui *ui = current_ui;
493
494 /* See target_terminal::inferior(). */
495 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
496 return;
497
498 /* Restore the terminal settings of inferiors that were in the
499 foreground but are now ours_for_output due to a temporary
500 target_target::ours_for_output() call. */
501
502 {
503 scoped_restore_current_inferior restore_inferior;
504 struct inferior *inf;
505
506 ALL_INFERIORS (inf)
507 {
508 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
509 {
510 set_current_inferior (inf);
511 (*current_target.to_terminal_inferior) (&current_target);
512 inf->terminal_state = target_terminal_state::is_inferior;
513 }
514 }
515 }
516
517 m_terminal_state = target_terminal_state::is_inferior;
518
519 /* If the user hit C-c before, pretend that it was hit right
520 here. */
521 if (check_quit_flag ())
522 target_pass_ctrlc ();
523 }
524
525 /* Switch terminal state to DESIRED_STATE, either is_ours, or
526 is_ours_for_output. */
527
528 static void
529 target_terminal_is_ours_kind (target_terminal_state desired_state)
530 {
531 scoped_restore_current_inferior restore_inferior;
532 struct inferior *inf;
533
534 /* Must do this in two passes. First, have all inferiors save the
535 current terminal settings. Then, after all inferiors have add a
536 chance to safely save the terminal settings, restore GDB's
537 terminal settings. */
538
539 ALL_INFERIORS (inf)
540 {
541 if (inf->terminal_state == target_terminal_state::is_inferior)
542 {
543 set_current_inferior (inf);
544 (*current_target.to_terminal_save_inferior) (&current_target);
545 }
546 }
547
548 ALL_INFERIORS (inf)
549 {
550 /* Note we don't check is_inferior here like above because we
551 need to handle 'is_ours_for_output -> is_ours' too. Careful
552 to never transition from 'is_ours' to 'is_ours_for_output',
553 though. */
554 if (inf->terminal_state != target_terminal_state::is_ours
555 && inf->terminal_state != desired_state)
556 {
557 set_current_inferior (inf);
558 if (desired_state == target_terminal_state::is_ours)
559 (*current_target.to_terminal_ours) (&current_target);
560 else if (desired_state == target_terminal_state::is_ours_for_output)
561 (*current_target.to_terminal_ours_for_output) (&current_target);
562 else
563 gdb_assert_not_reached ("unhandled desired state");
564 inf->terminal_state = desired_state;
565 }
566 }
567 }
568
569 /* See target/target.h. */
570
571 void
572 target_terminal::ours ()
573 {
574 struct ui *ui = current_ui;
575
576 /* See target_terminal::inferior. */
577 if (ui != main_ui)
578 return;
579
580 if (m_terminal_state == target_terminal_state::is_ours)
581 return;
582
583 target_terminal_is_ours_kind (target_terminal_state::is_ours);
584 m_terminal_state = target_terminal_state::is_ours;
585 }
586
587 /* See target/target.h. */
588
589 void
590 target_terminal::ours_for_output ()
591 {
592 struct ui *ui = current_ui;
593
594 /* See target_terminal::inferior. */
595 if (ui != main_ui)
596 return;
597
598 if (!target_terminal::is_inferior ())
599 return;
600
601 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
602 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
603 }
604
605 /* See target/target.h. */
606
607 void
608 target_terminal::info (const char *arg, int from_tty)
609 {
610 (*current_target.to_terminal_info) (&current_target, arg, from_tty);
611 }
612
613 /* See target.h. */
614
615 int
616 target_supports_terminal_ours (void)
617 {
618 struct target_ops *t;
619
620 for (t = current_target.beneath; t != NULL; t = t->beneath)
621 {
622 if (t->to_terminal_ours != delegate_terminal_ours
623 && t->to_terminal_ours != tdefault_terminal_ours)
624 return 1;
625 }
626
627 return 0;
628 }
629
630 static void
631 tcomplain (void)
632 {
633 error (_("You can't do that when your target is `%s'"),
634 current_target.to_shortname);
635 }
636
637 void
638 noprocess (void)
639 {
640 error (_("You can't do that without a process to debug."));
641 }
642
643 static void
644 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
645 {
646 printf_unfiltered (_("No saved terminal information.\n"));
647 }
648
649 /* A default implementation for the to_get_ada_task_ptid target method.
650
651 This function builds the PTID by using both LWP and TID as part of
652 the PTID lwp and tid elements. The pid used is the pid of the
653 inferior_ptid. */
654
655 static ptid_t
656 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
657 {
658 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
659 }
660
661 static enum exec_direction_kind
662 default_execution_direction (struct target_ops *self)
663 {
664 if (!target_can_execute_reverse)
665 return EXEC_FORWARD;
666 else if (!target_can_async_p ())
667 return EXEC_FORWARD;
668 else
669 gdb_assert_not_reached ("\
670 to_execution_direction must be implemented for reverse async");
671 }
672
673 /* Go through the target stack from top to bottom, copying over zero
674 entries in current_target, then filling in still empty entries. In
675 effect, we are doing class inheritance through the pushed target
676 vectors.
677
678 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
679 is currently implemented, is that it discards any knowledge of
680 which target an inherited method originally belonged to.
681 Consequently, new new target methods should instead explicitly and
682 locally search the target stack for the target that can handle the
683 request. */
684
685 static void
686 update_current_target (void)
687 {
688 struct target_ops *t;
689
690 /* First, reset current's contents. */
691 memset (&current_target, 0, sizeof (current_target));
692
693 /* Install the delegators. */
694 install_delegators (&current_target);
695
696 current_target.to_stratum = target_stack->to_stratum;
697
698 #define INHERIT(FIELD, TARGET) \
699 if (!current_target.FIELD) \
700 current_target.FIELD = (TARGET)->FIELD
701
702 /* Do not add any new INHERITs here. Instead, use the delegation
703 mechanism provided by make-target-delegates. */
704 for (t = target_stack; t; t = t->beneath)
705 {
706 INHERIT (to_shortname, t);
707 INHERIT (to_longname, t);
708 INHERIT (to_attach_no_wait, t);
709 INHERIT (to_have_steppable_watchpoint, t);
710 INHERIT (to_have_continuable_watchpoint, t);
711 INHERIT (to_has_thread_control, t);
712 }
713 #undef INHERIT
714
715 /* Finally, position the target-stack beneath the squashed
716 "current_target". That way code looking for a non-inherited
717 target method can quickly and simply find it. */
718 current_target.beneath = target_stack;
719
720 if (targetdebug)
721 setup_target_debug ();
722 }
723
724 /* Push a new target type into the stack of the existing target accessors,
725 possibly superseding some of the existing accessors.
726
727 Rather than allow an empty stack, we always have the dummy target at
728 the bottom stratum, so we can call the function vectors without
729 checking them. */
730
731 void
732 push_target (struct target_ops *t)
733 {
734 struct target_ops **cur;
735
736 /* Check magic number. If wrong, it probably means someone changed
737 the struct definition, but not all the places that initialize one. */
738 if (t->to_magic != OPS_MAGIC)
739 {
740 fprintf_unfiltered (gdb_stderr,
741 "Magic number of %s target struct wrong\n",
742 t->to_shortname);
743 internal_error (__FILE__, __LINE__,
744 _("failed internal consistency check"));
745 }
746
747 /* Find the proper stratum to install this target in. */
748 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
749 {
750 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
751 break;
752 }
753
754 /* If there's already targets at this stratum, remove them. */
755 /* FIXME: cagney/2003-10-15: I think this should be popping all
756 targets to CUR, and not just those at this stratum level. */
757 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
758 {
759 /* There's already something at this stratum level. Close it,
760 and un-hook it from the stack. */
761 struct target_ops *tmp = (*cur);
762
763 (*cur) = (*cur)->beneath;
764 tmp->beneath = NULL;
765 target_close (tmp);
766 }
767
768 /* We have removed all targets in our stratum, now add the new one. */
769 t->beneath = (*cur);
770 (*cur) = t;
771
772 update_current_target ();
773 }
774
775 /* Remove a target_ops vector from the stack, wherever it may be.
776 Return how many times it was removed (0 or 1). */
777
778 int
779 unpush_target (struct target_ops *t)
780 {
781 struct target_ops **cur;
782 struct target_ops *tmp;
783
784 if (t->to_stratum == dummy_stratum)
785 internal_error (__FILE__, __LINE__,
786 _("Attempt to unpush the dummy target"));
787
788 /* Look for the specified target. Note that we assume that a target
789 can only occur once in the target stack. */
790
791 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
792 {
793 if ((*cur) == t)
794 break;
795 }
796
797 /* If we don't find target_ops, quit. Only open targets should be
798 closed. */
799 if ((*cur) == NULL)
800 return 0;
801
802 /* Unchain the target. */
803 tmp = (*cur);
804 (*cur) = (*cur)->beneath;
805 tmp->beneath = NULL;
806
807 update_current_target ();
808
809 /* Finally close the target. Note we do this after unchaining, so
810 any target method calls from within the target_close
811 implementation don't end up in T anymore. */
812 target_close (t);
813
814 return 1;
815 }
816
817 /* Unpush TARGET and assert that it worked. */
818
819 static void
820 unpush_target_and_assert (struct target_ops *target)
821 {
822 if (!unpush_target (target))
823 {
824 fprintf_unfiltered (gdb_stderr,
825 "pop_all_targets couldn't find target %s\n",
826 target->to_shortname);
827 internal_error (__FILE__, __LINE__,
828 _("failed internal consistency check"));
829 }
830 }
831
832 void
833 pop_all_targets_above (enum strata above_stratum)
834 {
835 while ((int) (current_target.to_stratum) > (int) above_stratum)
836 unpush_target_and_assert (target_stack);
837 }
838
839 /* See target.h. */
840
841 void
842 pop_all_targets_at_and_above (enum strata stratum)
843 {
844 while ((int) (current_target.to_stratum) >= (int) stratum)
845 unpush_target_and_assert (target_stack);
846 }
847
848 void
849 pop_all_targets (void)
850 {
851 pop_all_targets_above (dummy_stratum);
852 }
853
854 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
855
856 int
857 target_is_pushed (struct target_ops *t)
858 {
859 struct target_ops *cur;
860
861 /* Check magic number. If wrong, it probably means someone changed
862 the struct definition, but not all the places that initialize one. */
863 if (t->to_magic != OPS_MAGIC)
864 {
865 fprintf_unfiltered (gdb_stderr,
866 "Magic number of %s target struct wrong\n",
867 t->to_shortname);
868 internal_error (__FILE__, __LINE__,
869 _("failed internal consistency check"));
870 }
871
872 for (cur = target_stack; cur != NULL; cur = cur->beneath)
873 if (cur == t)
874 return 1;
875
876 return 0;
877 }
878
879 /* Default implementation of to_get_thread_local_address. */
880
881 static void
882 generic_tls_error (void)
883 {
884 throw_error (TLS_GENERIC_ERROR,
885 _("Cannot find thread-local variables on this target"));
886 }
887
888 /* Using the objfile specified in OBJFILE, find the address for the
889 current thread's thread-local storage with offset OFFSET. */
890 CORE_ADDR
891 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
892 {
893 volatile CORE_ADDR addr = 0;
894 struct target_ops *target = &current_target;
895
896 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
897 {
898 ptid_t ptid = inferior_ptid;
899
900 TRY
901 {
902 CORE_ADDR lm_addr;
903
904 /* Fetch the load module address for this objfile. */
905 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
906 objfile);
907
908 addr = target->to_get_thread_local_address (target, ptid,
909 lm_addr, offset);
910 }
911 /* If an error occurred, print TLS related messages here. Otherwise,
912 throw the error to some higher catcher. */
913 CATCH (ex, RETURN_MASK_ALL)
914 {
915 int objfile_is_library = (objfile->flags & OBJF_SHARED);
916
917 switch (ex.error)
918 {
919 case TLS_NO_LIBRARY_SUPPORT_ERROR:
920 error (_("Cannot find thread-local variables "
921 "in this thread library."));
922 break;
923 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
924 if (objfile_is_library)
925 error (_("Cannot find shared library `%s' in dynamic"
926 " linker's load module list"), objfile_name (objfile));
927 else
928 error (_("Cannot find executable file `%s' in dynamic"
929 " linker's load module list"), objfile_name (objfile));
930 break;
931 case TLS_NOT_ALLOCATED_YET_ERROR:
932 if (objfile_is_library)
933 error (_("The inferior has not yet allocated storage for"
934 " thread-local variables in\n"
935 "the shared library `%s'\n"
936 "for %s"),
937 objfile_name (objfile), target_pid_to_str (ptid));
938 else
939 error (_("The inferior has not yet allocated storage for"
940 " thread-local variables in\n"
941 "the executable `%s'\n"
942 "for %s"),
943 objfile_name (objfile), target_pid_to_str (ptid));
944 break;
945 case TLS_GENERIC_ERROR:
946 if (objfile_is_library)
947 error (_("Cannot find thread-local storage for %s, "
948 "shared library %s:\n%s"),
949 target_pid_to_str (ptid),
950 objfile_name (objfile), ex.message);
951 else
952 error (_("Cannot find thread-local storage for %s, "
953 "executable file %s:\n%s"),
954 target_pid_to_str (ptid),
955 objfile_name (objfile), ex.message);
956 break;
957 default:
958 throw_exception (ex);
959 break;
960 }
961 }
962 END_CATCH
963 }
964 /* It wouldn't be wrong here to try a gdbarch method, too; finding
965 TLS is an ABI-specific thing. But we don't do that yet. */
966 else
967 error (_("Cannot find thread-local variables on this target"));
968
969 return addr;
970 }
971
972 const char *
973 target_xfer_status_to_string (enum target_xfer_status status)
974 {
975 #define CASE(X) case X: return #X
976 switch (status)
977 {
978 CASE(TARGET_XFER_E_IO);
979 CASE(TARGET_XFER_UNAVAILABLE);
980 default:
981 return "<unknown>";
982 }
983 #undef CASE
984 };
985
986
987 #undef MIN
988 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
989
990 /* target_read_string -- read a null terminated string, up to LEN bytes,
991 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
992 Set *STRING to a pointer to malloc'd memory containing the data; the caller
993 is responsible for freeing it. Return the number of bytes successfully
994 read. */
995
996 int
997 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
998 int len, int *errnop)
999 {
1000 int tlen, offset, i;
1001 gdb_byte buf[4];
1002 int errcode = 0;
1003 char *buffer;
1004 int buffer_allocated;
1005 char *bufptr;
1006 unsigned int nbytes_read = 0;
1007
1008 gdb_assert (string);
1009
1010 /* Small for testing. */
1011 buffer_allocated = 4;
1012 buffer = (char *) xmalloc (buffer_allocated);
1013 bufptr = buffer;
1014
1015 while (len > 0)
1016 {
1017 tlen = MIN (len, 4 - (memaddr & 3));
1018 offset = memaddr & 3;
1019
1020 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1021 if (errcode != 0)
1022 {
1023 /* The transfer request might have crossed the boundary to an
1024 unallocated region of memory. Retry the transfer, requesting
1025 a single byte. */
1026 tlen = 1;
1027 offset = 0;
1028 errcode = target_read_memory (memaddr, buf, 1);
1029 if (errcode != 0)
1030 goto done;
1031 }
1032
1033 if (bufptr - buffer + tlen > buffer_allocated)
1034 {
1035 unsigned int bytes;
1036
1037 bytes = bufptr - buffer;
1038 buffer_allocated *= 2;
1039 buffer = (char *) xrealloc (buffer, buffer_allocated);
1040 bufptr = buffer + bytes;
1041 }
1042
1043 for (i = 0; i < tlen; i++)
1044 {
1045 *bufptr++ = buf[i + offset];
1046 if (buf[i + offset] == '\000')
1047 {
1048 nbytes_read += i + 1;
1049 goto done;
1050 }
1051 }
1052
1053 memaddr += tlen;
1054 len -= tlen;
1055 nbytes_read += tlen;
1056 }
1057 done:
1058 string->reset (buffer);
1059 if (errnop != NULL)
1060 *errnop = errcode;
1061 return nbytes_read;
1062 }
1063
1064 struct target_section_table *
1065 target_get_section_table (struct target_ops *target)
1066 {
1067 return (*target->to_get_section_table) (target);
1068 }
1069
1070 /* Find a section containing ADDR. */
1071
1072 struct target_section *
1073 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1074 {
1075 struct target_section_table *table = target_get_section_table (target);
1076 struct target_section *secp;
1077
1078 if (table == NULL)
1079 return NULL;
1080
1081 for (secp = table->sections; secp < table->sections_end; secp++)
1082 {
1083 if (addr >= secp->addr && addr < secp->endaddr)
1084 return secp;
1085 }
1086 return NULL;
1087 }
1088
1089
1090 /* Helper for the memory xfer routines. Checks the attributes of the
1091 memory region of MEMADDR against the read or write being attempted.
1092 If the access is permitted returns true, otherwise returns false.
1093 REGION_P is an optional output parameter. If not-NULL, it is
1094 filled with a pointer to the memory region of MEMADDR. REG_LEN
1095 returns LEN trimmed to the end of the region. This is how much the
1096 caller can continue requesting, if the access is permitted. A
1097 single xfer request must not straddle memory region boundaries. */
1098
1099 static int
1100 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1101 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1102 struct mem_region **region_p)
1103 {
1104 struct mem_region *region;
1105
1106 region = lookup_mem_region (memaddr);
1107
1108 if (region_p != NULL)
1109 *region_p = region;
1110
1111 switch (region->attrib.mode)
1112 {
1113 case MEM_RO:
1114 if (writebuf != NULL)
1115 return 0;
1116 break;
1117
1118 case MEM_WO:
1119 if (readbuf != NULL)
1120 return 0;
1121 break;
1122
1123 case MEM_FLASH:
1124 /* We only support writing to flash during "load" for now. */
1125 if (writebuf != NULL)
1126 error (_("Writing to flash memory forbidden in this context"));
1127 break;
1128
1129 case MEM_NONE:
1130 return 0;
1131 }
1132
1133 /* region->hi == 0 means there's no upper bound. */
1134 if (memaddr + len < region->hi || region->hi == 0)
1135 *reg_len = len;
1136 else
1137 *reg_len = region->hi - memaddr;
1138
1139 return 1;
1140 }
1141
1142 /* Read memory from more than one valid target. A core file, for
1143 instance, could have some of memory but delegate other bits to
1144 the target below it. So, we must manually try all targets. */
1145
1146 enum target_xfer_status
1147 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1148 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1149 ULONGEST *xfered_len)
1150 {
1151 enum target_xfer_status res;
1152
1153 do
1154 {
1155 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1156 readbuf, writebuf, memaddr, len,
1157 xfered_len);
1158 if (res == TARGET_XFER_OK)
1159 break;
1160
1161 /* Stop if the target reports that the memory is not available. */
1162 if (res == TARGET_XFER_UNAVAILABLE)
1163 break;
1164
1165 /* We want to continue past core files to executables, but not
1166 past a running target's memory. */
1167 if (ops->to_has_all_memory (ops))
1168 break;
1169
1170 ops = ops->beneath;
1171 }
1172 while (ops != NULL);
1173
1174 /* The cache works at the raw memory level. Make sure the cache
1175 gets updated with raw contents no matter what kind of memory
1176 object was originally being written. Note we do write-through
1177 first, so that if it fails, we don't write to the cache contents
1178 that never made it to the target. */
1179 if (writebuf != NULL
1180 && !ptid_equal (inferior_ptid, null_ptid)
1181 && target_dcache_init_p ()
1182 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1183 {
1184 DCACHE *dcache = target_dcache_get ();
1185
1186 /* Note that writing to an area of memory which wasn't present
1187 in the cache doesn't cause it to be loaded in. */
1188 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1189 }
1190
1191 return res;
1192 }
1193
1194 /* Perform a partial memory transfer.
1195 For docs see target.h, to_xfer_partial. */
1196
1197 static enum target_xfer_status
1198 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1199 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1200 ULONGEST len, ULONGEST *xfered_len)
1201 {
1202 enum target_xfer_status res;
1203 ULONGEST reg_len;
1204 struct mem_region *region;
1205 struct inferior *inf;
1206
1207 /* For accesses to unmapped overlay sections, read directly from
1208 files. Must do this first, as MEMADDR may need adjustment. */
1209 if (readbuf != NULL && overlay_debugging)
1210 {
1211 struct obj_section *section = find_pc_overlay (memaddr);
1212
1213 if (pc_in_unmapped_range (memaddr, section))
1214 {
1215 struct target_section_table *table
1216 = target_get_section_table (ops);
1217 const char *section_name = section->the_bfd_section->name;
1218
1219 memaddr = overlay_mapped_address (memaddr, section);
1220 return section_table_xfer_memory_partial (readbuf, writebuf,
1221 memaddr, len, xfered_len,
1222 table->sections,
1223 table->sections_end,
1224 section_name);
1225 }
1226 }
1227
1228 /* Try the executable files, if "trust-readonly-sections" is set. */
1229 if (readbuf != NULL && trust_readonly)
1230 {
1231 struct target_section *secp;
1232 struct target_section_table *table;
1233
1234 secp = target_section_by_addr (ops, memaddr);
1235 if (secp != NULL
1236 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1237 secp->the_bfd_section)
1238 & SEC_READONLY))
1239 {
1240 table = target_get_section_table (ops);
1241 return section_table_xfer_memory_partial (readbuf, writebuf,
1242 memaddr, len, xfered_len,
1243 table->sections,
1244 table->sections_end,
1245 NULL);
1246 }
1247 }
1248
1249 /* Try GDB's internal data cache. */
1250
1251 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1252 &region))
1253 return TARGET_XFER_E_IO;
1254
1255 if (!ptid_equal (inferior_ptid, null_ptid))
1256 inf = find_inferior_ptid (inferior_ptid);
1257 else
1258 inf = NULL;
1259
1260 if (inf != NULL
1261 && readbuf != NULL
1262 /* The dcache reads whole cache lines; that doesn't play well
1263 with reading from a trace buffer, because reading outside of
1264 the collected memory range fails. */
1265 && get_traceframe_number () == -1
1266 && (region->attrib.cache
1267 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1268 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1269 {
1270 DCACHE *dcache = target_dcache_get_or_init ();
1271
1272 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1273 reg_len, xfered_len);
1274 }
1275
1276 /* If none of those methods found the memory we wanted, fall back
1277 to a target partial transfer. Normally a single call to
1278 to_xfer_partial is enough; if it doesn't recognize an object
1279 it will call the to_xfer_partial of the next target down.
1280 But for memory this won't do. Memory is the only target
1281 object which can be read from more than one valid target.
1282 A core file, for instance, could have some of memory but
1283 delegate other bits to the target below it. So, we must
1284 manually try all targets. */
1285
1286 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1287 xfered_len);
1288
1289 /* If we still haven't got anything, return the last error. We
1290 give up. */
1291 return res;
1292 }
1293
1294 /* Perform a partial memory transfer. For docs see target.h,
1295 to_xfer_partial. */
1296
1297 static enum target_xfer_status
1298 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1299 gdb_byte *readbuf, const gdb_byte *writebuf,
1300 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1301 {
1302 enum target_xfer_status res;
1303
1304 /* Zero length requests are ok and require no work. */
1305 if (len == 0)
1306 return TARGET_XFER_EOF;
1307
1308 memaddr = address_significant (target_gdbarch (), memaddr);
1309
1310 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1311 breakpoint insns, thus hiding out from higher layers whether
1312 there are software breakpoints inserted in the code stream. */
1313 if (readbuf != NULL)
1314 {
1315 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1316 xfered_len);
1317
1318 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1319 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1320 }
1321 else
1322 {
1323 /* A large write request is likely to be partially satisfied
1324 by memory_xfer_partial_1. We will continually malloc
1325 and free a copy of the entire write request for breakpoint
1326 shadow handling even though we only end up writing a small
1327 subset of it. Cap writes to a limit specified by the target
1328 to mitigate this. */
1329 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1330
1331 gdb::byte_vector buf (writebuf, writebuf + len);
1332 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1333 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1334 xfered_len);
1335 }
1336
1337 return res;
1338 }
1339
1340 scoped_restore_tmpl<int>
1341 make_scoped_restore_show_memory_breakpoints (int show)
1342 {
1343 return make_scoped_restore (&show_memory_breakpoints, show);
1344 }
1345
1346 /* For docs see target.h, to_xfer_partial. */
1347
1348 enum target_xfer_status
1349 target_xfer_partial (struct target_ops *ops,
1350 enum target_object object, const char *annex,
1351 gdb_byte *readbuf, const gdb_byte *writebuf,
1352 ULONGEST offset, ULONGEST len,
1353 ULONGEST *xfered_len)
1354 {
1355 enum target_xfer_status retval;
1356
1357 gdb_assert (ops->to_xfer_partial != NULL);
1358
1359 /* Transfer is done when LEN is zero. */
1360 if (len == 0)
1361 return TARGET_XFER_EOF;
1362
1363 if (writebuf && !may_write_memory)
1364 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1365 core_addr_to_string_nz (offset), plongest (len));
1366
1367 *xfered_len = 0;
1368
1369 /* If this is a memory transfer, let the memory-specific code
1370 have a look at it instead. Memory transfers are more
1371 complicated. */
1372 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1373 || object == TARGET_OBJECT_CODE_MEMORY)
1374 retval = memory_xfer_partial (ops, object, readbuf,
1375 writebuf, offset, len, xfered_len);
1376 else if (object == TARGET_OBJECT_RAW_MEMORY)
1377 {
1378 /* Skip/avoid accessing the target if the memory region
1379 attributes block the access. Check this here instead of in
1380 raw_memory_xfer_partial as otherwise we'd end up checking
1381 this twice in the case of the memory_xfer_partial path is
1382 taken; once before checking the dcache, and another in the
1383 tail call to raw_memory_xfer_partial. */
1384 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1385 NULL))
1386 return TARGET_XFER_E_IO;
1387
1388 /* Request the normal memory object from other layers. */
1389 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1390 xfered_len);
1391 }
1392 else
1393 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1394 writebuf, offset, len, xfered_len);
1395
1396 if (targetdebug)
1397 {
1398 const unsigned char *myaddr = NULL;
1399
1400 fprintf_unfiltered (gdb_stdlog,
1401 "%s:target_xfer_partial "
1402 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1403 ops->to_shortname,
1404 (int) object,
1405 (annex ? annex : "(null)"),
1406 host_address_to_string (readbuf),
1407 host_address_to_string (writebuf),
1408 core_addr_to_string_nz (offset),
1409 pulongest (len), retval,
1410 pulongest (*xfered_len));
1411
1412 if (readbuf)
1413 myaddr = readbuf;
1414 if (writebuf)
1415 myaddr = writebuf;
1416 if (retval == TARGET_XFER_OK && myaddr != NULL)
1417 {
1418 int i;
1419
1420 fputs_unfiltered (", bytes =", gdb_stdlog);
1421 for (i = 0; i < *xfered_len; i++)
1422 {
1423 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1424 {
1425 if (targetdebug < 2 && i > 0)
1426 {
1427 fprintf_unfiltered (gdb_stdlog, " ...");
1428 break;
1429 }
1430 fprintf_unfiltered (gdb_stdlog, "\n");
1431 }
1432
1433 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1434 }
1435 }
1436
1437 fputc_unfiltered ('\n', gdb_stdlog);
1438 }
1439
1440 /* Check implementations of to_xfer_partial update *XFERED_LEN
1441 properly. Do assertion after printing debug messages, so that we
1442 can find more clues on assertion failure from debugging messages. */
1443 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1444 gdb_assert (*xfered_len > 0);
1445
1446 return retval;
1447 }
1448
1449 /* Read LEN bytes of target memory at address MEMADDR, placing the
1450 results in GDB's memory at MYADDR. Returns either 0 for success or
1451 -1 if any error occurs.
1452
1453 If an error occurs, no guarantee is made about the contents of the data at
1454 MYADDR. In particular, the caller should not depend upon partial reads
1455 filling the buffer with good data. There is no way for the caller to know
1456 how much good data might have been transfered anyway. Callers that can
1457 deal with partial reads should call target_read (which will retry until
1458 it makes no progress, and then return how much was transferred). */
1459
1460 int
1461 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1462 {
1463 /* Dispatch to the topmost target, not the flattened current_target.
1464 Memory accesses check target->to_has_(all_)memory, and the
1465 flattened target doesn't inherit those. */
1466 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1467 myaddr, memaddr, len) == len)
1468 return 0;
1469 else
1470 return -1;
1471 }
1472
1473 /* See target/target.h. */
1474
1475 int
1476 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1477 {
1478 gdb_byte buf[4];
1479 int r;
1480
1481 r = target_read_memory (memaddr, buf, sizeof buf);
1482 if (r != 0)
1483 return r;
1484 *result = extract_unsigned_integer (buf, sizeof buf,
1485 gdbarch_byte_order (target_gdbarch ()));
1486 return 0;
1487 }
1488
1489 /* Like target_read_memory, but specify explicitly that this is a read
1490 from the target's raw memory. That is, this read bypasses the
1491 dcache, breakpoint shadowing, etc. */
1492
1493 int
1494 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1495 {
1496 /* See comment in target_read_memory about why the request starts at
1497 current_target.beneath. */
1498 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1499 myaddr, memaddr, len) == len)
1500 return 0;
1501 else
1502 return -1;
1503 }
1504
1505 /* Like target_read_memory, but specify explicitly that this is a read from
1506 the target's stack. This may trigger different cache behavior. */
1507
1508 int
1509 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1510 {
1511 /* See comment in target_read_memory about why the request starts at
1512 current_target.beneath. */
1513 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1514 myaddr, memaddr, len) == len)
1515 return 0;
1516 else
1517 return -1;
1518 }
1519
1520 /* Like target_read_memory, but specify explicitly that this is a read from
1521 the target's code. This may trigger different cache behavior. */
1522
1523 int
1524 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1525 {
1526 /* See comment in target_read_memory about why the request starts at
1527 current_target.beneath. */
1528 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1529 myaddr, memaddr, len) == len)
1530 return 0;
1531 else
1532 return -1;
1533 }
1534
1535 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1536 Returns either 0 for success or -1 if any error occurs. If an
1537 error occurs, no guarantee is made about how much data got written.
1538 Callers that can deal with partial writes should call
1539 target_write. */
1540
1541 int
1542 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1543 {
1544 /* See comment in target_read_memory about why the request starts at
1545 current_target.beneath. */
1546 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1547 myaddr, memaddr, len) == len)
1548 return 0;
1549 else
1550 return -1;
1551 }
1552
1553 /* Write LEN bytes from MYADDR to target raw memory at address
1554 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1555 If an error occurs, no guarantee is made about how much data got
1556 written. Callers that can deal with partial writes should call
1557 target_write. */
1558
1559 int
1560 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1561 {
1562 /* See comment in target_read_memory about why the request starts at
1563 current_target.beneath. */
1564 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1565 myaddr, memaddr, len) == len)
1566 return 0;
1567 else
1568 return -1;
1569 }
1570
1571 /* Fetch the target's memory map. */
1572
1573 std::vector<mem_region>
1574 target_memory_map (void)
1575 {
1576 std::vector<mem_region> result
1577 = current_target.to_memory_map (&current_target);
1578 if (result.empty ())
1579 return result;
1580
1581 std::sort (result.begin (), result.end ());
1582
1583 /* Check that regions do not overlap. Simultaneously assign
1584 a numbering for the "mem" commands to use to refer to
1585 each region. */
1586 mem_region *last_one = NULL;
1587 for (size_t ix = 0; ix < result.size (); ix++)
1588 {
1589 mem_region *this_one = &result[ix];
1590 this_one->number = ix;
1591
1592 if (last_one != NULL && last_one->hi > this_one->lo)
1593 {
1594 warning (_("Overlapping regions in memory map: ignoring"));
1595 return std::vector<mem_region> ();
1596 }
1597
1598 last_one = this_one;
1599 }
1600
1601 return result;
1602 }
1603
1604 void
1605 target_flash_erase (ULONGEST address, LONGEST length)
1606 {
1607 current_target.to_flash_erase (&current_target, address, length);
1608 }
1609
1610 void
1611 target_flash_done (void)
1612 {
1613 current_target.to_flash_done (&current_target);
1614 }
1615
1616 static void
1617 show_trust_readonly (struct ui_file *file, int from_tty,
1618 struct cmd_list_element *c, const char *value)
1619 {
1620 fprintf_filtered (file,
1621 _("Mode for reading from readonly sections is %s.\n"),
1622 value);
1623 }
1624
1625 /* Target vector read/write partial wrapper functions. */
1626
1627 static enum target_xfer_status
1628 target_read_partial (struct target_ops *ops,
1629 enum target_object object,
1630 const char *annex, gdb_byte *buf,
1631 ULONGEST offset, ULONGEST len,
1632 ULONGEST *xfered_len)
1633 {
1634 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1635 xfered_len);
1636 }
1637
1638 static enum target_xfer_status
1639 target_write_partial (struct target_ops *ops,
1640 enum target_object object,
1641 const char *annex, const gdb_byte *buf,
1642 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1643 {
1644 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1645 xfered_len);
1646 }
1647
1648 /* Wrappers to perform the full transfer. */
1649
1650 /* For docs on target_read see target.h. */
1651
1652 LONGEST
1653 target_read (struct target_ops *ops,
1654 enum target_object object,
1655 const char *annex, gdb_byte *buf,
1656 ULONGEST offset, LONGEST len)
1657 {
1658 LONGEST xfered_total = 0;
1659 int unit_size = 1;
1660
1661 /* If we are reading from a memory object, find the length of an addressable
1662 unit for that architecture. */
1663 if (object == TARGET_OBJECT_MEMORY
1664 || object == TARGET_OBJECT_STACK_MEMORY
1665 || object == TARGET_OBJECT_CODE_MEMORY
1666 || object == TARGET_OBJECT_RAW_MEMORY)
1667 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1668
1669 while (xfered_total < len)
1670 {
1671 ULONGEST xfered_partial;
1672 enum target_xfer_status status;
1673
1674 status = target_read_partial (ops, object, annex,
1675 buf + xfered_total * unit_size,
1676 offset + xfered_total, len - xfered_total,
1677 &xfered_partial);
1678
1679 /* Call an observer, notifying them of the xfer progress? */
1680 if (status == TARGET_XFER_EOF)
1681 return xfered_total;
1682 else if (status == TARGET_XFER_OK)
1683 {
1684 xfered_total += xfered_partial;
1685 QUIT;
1686 }
1687 else
1688 return TARGET_XFER_E_IO;
1689
1690 }
1691 return len;
1692 }
1693
1694 /* Assuming that the entire [begin, end) range of memory cannot be
1695 read, try to read whatever subrange is possible to read.
1696
1697 The function returns, in RESULT, either zero or one memory block.
1698 If there's a readable subrange at the beginning, it is completely
1699 read and returned. Any further readable subrange will not be read.
1700 Otherwise, if there's a readable subrange at the end, it will be
1701 completely read and returned. Any readable subranges before it
1702 (obviously, not starting at the beginning), will be ignored. In
1703 other cases -- either no readable subrange, or readable subrange(s)
1704 that is neither at the beginning, or end, nothing is returned.
1705
1706 The purpose of this function is to handle a read across a boundary
1707 of accessible memory in a case when memory map is not available.
1708 The above restrictions are fine for this case, but will give
1709 incorrect results if the memory is 'patchy'. However, supporting
1710 'patchy' memory would require trying to read every single byte,
1711 and it seems unacceptable solution. Explicit memory map is
1712 recommended for this case -- and target_read_memory_robust will
1713 take care of reading multiple ranges then. */
1714
1715 static void
1716 read_whatever_is_readable (struct target_ops *ops,
1717 const ULONGEST begin, const ULONGEST end,
1718 int unit_size,
1719 std::vector<memory_read_result> *result)
1720 {
1721 ULONGEST current_begin = begin;
1722 ULONGEST current_end = end;
1723 int forward;
1724 ULONGEST xfered_len;
1725
1726 /* If we previously failed to read 1 byte, nothing can be done here. */
1727 if (end - begin <= 1)
1728 return;
1729
1730 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1731
1732 /* Check that either first or the last byte is readable, and give up
1733 if not. This heuristic is meant to permit reading accessible memory
1734 at the boundary of accessible region. */
1735 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1736 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1737 {
1738 forward = 1;
1739 ++current_begin;
1740 }
1741 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1742 buf.get () + (end - begin) - 1, end - 1, 1,
1743 &xfered_len) == TARGET_XFER_OK)
1744 {
1745 forward = 0;
1746 --current_end;
1747 }
1748 else
1749 return;
1750
1751 /* Loop invariant is that the [current_begin, current_end) was previously
1752 found to be not readable as a whole.
1753
1754 Note loop condition -- if the range has 1 byte, we can't divide the range
1755 so there's no point trying further. */
1756 while (current_end - current_begin > 1)
1757 {
1758 ULONGEST first_half_begin, first_half_end;
1759 ULONGEST second_half_begin, second_half_end;
1760 LONGEST xfer;
1761 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1762
1763 if (forward)
1764 {
1765 first_half_begin = current_begin;
1766 first_half_end = middle;
1767 second_half_begin = middle;
1768 second_half_end = current_end;
1769 }
1770 else
1771 {
1772 first_half_begin = middle;
1773 first_half_end = current_end;
1774 second_half_begin = current_begin;
1775 second_half_end = middle;
1776 }
1777
1778 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1779 buf.get () + (first_half_begin - begin) * unit_size,
1780 first_half_begin,
1781 first_half_end - first_half_begin);
1782
1783 if (xfer == first_half_end - first_half_begin)
1784 {
1785 /* This half reads up fine. So, the error must be in the
1786 other half. */
1787 current_begin = second_half_begin;
1788 current_end = second_half_end;
1789 }
1790 else
1791 {
1792 /* This half is not readable. Because we've tried one byte, we
1793 know some part of this half if actually readable. Go to the next
1794 iteration to divide again and try to read.
1795
1796 We don't handle the other half, because this function only tries
1797 to read a single readable subrange. */
1798 current_begin = first_half_begin;
1799 current_end = first_half_end;
1800 }
1801 }
1802
1803 if (forward)
1804 {
1805 /* The [begin, current_begin) range has been read. */
1806 result->emplace_back (begin, current_end, std::move (buf));
1807 }
1808 else
1809 {
1810 /* The [current_end, end) range has been read. */
1811 LONGEST region_len = end - current_end;
1812
1813 gdb::unique_xmalloc_ptr<gdb_byte> data
1814 ((gdb_byte *) xmalloc (region_len * unit_size));
1815 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1816 region_len * unit_size);
1817 result->emplace_back (current_end, end, std::move (data));
1818 }
1819 }
1820
1821 std::vector<memory_read_result>
1822 read_memory_robust (struct target_ops *ops,
1823 const ULONGEST offset, const LONGEST len)
1824 {
1825 std::vector<memory_read_result> result;
1826 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1827
1828 LONGEST xfered_total = 0;
1829 while (xfered_total < len)
1830 {
1831 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1832 LONGEST region_len;
1833
1834 /* If there is no explicit region, a fake one should be created. */
1835 gdb_assert (region);
1836
1837 if (region->hi == 0)
1838 region_len = len - xfered_total;
1839 else
1840 region_len = region->hi - offset;
1841
1842 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1843 {
1844 /* Cannot read this region. Note that we can end up here only
1845 if the region is explicitly marked inaccessible, or
1846 'inaccessible-by-default' is in effect. */
1847 xfered_total += region_len;
1848 }
1849 else
1850 {
1851 LONGEST to_read = std::min (len - xfered_total, region_len);
1852 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1853 ((gdb_byte *) xmalloc (to_read * unit_size));
1854
1855 LONGEST xfered_partial =
1856 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1857 offset + xfered_total, to_read);
1858 /* Call an observer, notifying them of the xfer progress? */
1859 if (xfered_partial <= 0)
1860 {
1861 /* Got an error reading full chunk. See if maybe we can read
1862 some subrange. */
1863 read_whatever_is_readable (ops, offset + xfered_total,
1864 offset + xfered_total + to_read,
1865 unit_size, &result);
1866 xfered_total += to_read;
1867 }
1868 else
1869 {
1870 result.emplace_back (offset + xfered_total,
1871 offset + xfered_total + xfered_partial,
1872 std::move (buffer));
1873 xfered_total += xfered_partial;
1874 }
1875 QUIT;
1876 }
1877 }
1878
1879 return result;
1880 }
1881
1882
1883 /* An alternative to target_write with progress callbacks. */
1884
1885 LONGEST
1886 target_write_with_progress (struct target_ops *ops,
1887 enum target_object object,
1888 const char *annex, const gdb_byte *buf,
1889 ULONGEST offset, LONGEST len,
1890 void (*progress) (ULONGEST, void *), void *baton)
1891 {
1892 LONGEST xfered_total = 0;
1893 int unit_size = 1;
1894
1895 /* If we are writing to a memory object, find the length of an addressable
1896 unit for that architecture. */
1897 if (object == TARGET_OBJECT_MEMORY
1898 || object == TARGET_OBJECT_STACK_MEMORY
1899 || object == TARGET_OBJECT_CODE_MEMORY
1900 || object == TARGET_OBJECT_RAW_MEMORY)
1901 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1902
1903 /* Give the progress callback a chance to set up. */
1904 if (progress)
1905 (*progress) (0, baton);
1906
1907 while (xfered_total < len)
1908 {
1909 ULONGEST xfered_partial;
1910 enum target_xfer_status status;
1911
1912 status = target_write_partial (ops, object, annex,
1913 buf + xfered_total * unit_size,
1914 offset + xfered_total, len - xfered_total,
1915 &xfered_partial);
1916
1917 if (status != TARGET_XFER_OK)
1918 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1919
1920 if (progress)
1921 (*progress) (xfered_partial, baton);
1922
1923 xfered_total += xfered_partial;
1924 QUIT;
1925 }
1926 return len;
1927 }
1928
1929 /* For docs on target_write see target.h. */
1930
1931 LONGEST
1932 target_write (struct target_ops *ops,
1933 enum target_object object,
1934 const char *annex, const gdb_byte *buf,
1935 ULONGEST offset, LONGEST len)
1936 {
1937 return target_write_with_progress (ops, object, annex, buf, offset, len,
1938 NULL, NULL);
1939 }
1940
1941 /* Help for target_read_alloc and target_read_stralloc. See their comments
1942 for details. */
1943
1944 template <typename T>
1945 gdb::optional<gdb::def_vector<T>>
1946 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1947 const char *annex)
1948 {
1949 gdb::def_vector<T> buf;
1950 size_t buf_pos = 0;
1951 const int chunk = 4096;
1952
1953 /* This function does not have a length parameter; it reads the
1954 entire OBJECT). Also, it doesn't support objects fetched partly
1955 from one target and partly from another (in a different stratum,
1956 e.g. a core file and an executable). Both reasons make it
1957 unsuitable for reading memory. */
1958 gdb_assert (object != TARGET_OBJECT_MEMORY);
1959
1960 /* Start by reading up to 4K at a time. The target will throttle
1961 this number down if necessary. */
1962 while (1)
1963 {
1964 ULONGEST xfered_len;
1965 enum target_xfer_status status;
1966
1967 buf.resize (buf_pos + chunk);
1968
1969 status = target_read_partial (ops, object, annex,
1970 (gdb_byte *) &buf[buf_pos],
1971 buf_pos, chunk,
1972 &xfered_len);
1973
1974 if (status == TARGET_XFER_EOF)
1975 {
1976 /* Read all there was. */
1977 buf.resize (buf_pos);
1978 return buf;
1979 }
1980 else if (status != TARGET_XFER_OK)
1981 {
1982 /* An error occurred. */
1983 return {};
1984 }
1985
1986 buf_pos += xfered_len;
1987
1988 QUIT;
1989 }
1990 }
1991
1992 /* See target.h */
1993
1994 gdb::optional<gdb::byte_vector>
1995 target_read_alloc (struct target_ops *ops, enum target_object object,
1996 const char *annex)
1997 {
1998 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1999 }
2000
2001 /* See target.h. */
2002
2003 gdb::optional<gdb::char_vector>
2004 target_read_stralloc (struct target_ops *ops, enum target_object object,
2005 const char *annex)
2006 {
2007 gdb::optional<gdb::char_vector> buf
2008 = target_read_alloc_1<char> (ops, object, annex);
2009
2010 if (!buf)
2011 return {};
2012
2013 if (buf->back () != '\0')
2014 buf->push_back ('\0');
2015
2016 /* Check for embedded NUL bytes; but allow trailing NULs. */
2017 for (auto it = std::find (buf->begin (), buf->end (), '\0');
2018 it != buf->end (); it++)
2019 if (*it != '\0')
2020 {
2021 warning (_("target object %d, annex %s, "
2022 "contained unexpected null characters"),
2023 (int) object, annex ? annex : "(none)");
2024 break;
2025 }
2026
2027 return buf;
2028 }
2029
2030 /* Memory transfer methods. */
2031
2032 void
2033 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2034 LONGEST len)
2035 {
2036 /* This method is used to read from an alternate, non-current
2037 target. This read must bypass the overlay support (as symbols
2038 don't match this target), and GDB's internal cache (wrong cache
2039 for this target). */
2040 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2041 != len)
2042 memory_error (TARGET_XFER_E_IO, addr);
2043 }
2044
2045 ULONGEST
2046 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2047 int len, enum bfd_endian byte_order)
2048 {
2049 gdb_byte buf[sizeof (ULONGEST)];
2050
2051 gdb_assert (len <= sizeof (buf));
2052 get_target_memory (ops, addr, buf, len);
2053 return extract_unsigned_integer (buf, len, byte_order);
2054 }
2055
2056 /* See target.h. */
2057
2058 int
2059 target_insert_breakpoint (struct gdbarch *gdbarch,
2060 struct bp_target_info *bp_tgt)
2061 {
2062 if (!may_insert_breakpoints)
2063 {
2064 warning (_("May not insert breakpoints"));
2065 return 1;
2066 }
2067
2068 return current_target.to_insert_breakpoint (&current_target,
2069 gdbarch, bp_tgt);
2070 }
2071
2072 /* See target.h. */
2073
2074 int
2075 target_remove_breakpoint (struct gdbarch *gdbarch,
2076 struct bp_target_info *bp_tgt,
2077 enum remove_bp_reason reason)
2078 {
2079 /* This is kind of a weird case to handle, but the permission might
2080 have been changed after breakpoints were inserted - in which case
2081 we should just take the user literally and assume that any
2082 breakpoints should be left in place. */
2083 if (!may_insert_breakpoints)
2084 {
2085 warning (_("May not remove breakpoints"));
2086 return 1;
2087 }
2088
2089 return current_target.to_remove_breakpoint (&current_target,
2090 gdbarch, bp_tgt, reason);
2091 }
2092
2093 static void
2094 info_target_command (const char *args, int from_tty)
2095 {
2096 struct target_ops *t;
2097 int has_all_mem = 0;
2098
2099 if (symfile_objfile != NULL)
2100 printf_unfiltered (_("Symbols from \"%s\".\n"),
2101 objfile_name (symfile_objfile));
2102
2103 for (t = target_stack; t != NULL; t = t->beneath)
2104 {
2105 if (!(*t->to_has_memory) (t))
2106 continue;
2107
2108 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2109 continue;
2110 if (has_all_mem)
2111 printf_unfiltered (_("\tWhile running this, "
2112 "GDB does not access memory from...\n"));
2113 printf_unfiltered ("%s:\n", t->to_longname);
2114 (t->to_files_info) (t);
2115 has_all_mem = (*t->to_has_all_memory) (t);
2116 }
2117 }
2118
2119 /* This function is called before any new inferior is created, e.g.
2120 by running a program, attaching, or connecting to a target.
2121 It cleans up any state from previous invocations which might
2122 change between runs. This is a subset of what target_preopen
2123 resets (things which might change between targets). */
2124
2125 void
2126 target_pre_inferior (int from_tty)
2127 {
2128 /* Clear out solib state. Otherwise the solib state of the previous
2129 inferior might have survived and is entirely wrong for the new
2130 target. This has been observed on GNU/Linux using glibc 2.3. How
2131 to reproduce:
2132
2133 bash$ ./foo&
2134 [1] 4711
2135 bash$ ./foo&
2136 [1] 4712
2137 bash$ gdb ./foo
2138 [...]
2139 (gdb) attach 4711
2140 (gdb) detach
2141 (gdb) attach 4712
2142 Cannot access memory at address 0xdeadbeef
2143 */
2144
2145 /* In some OSs, the shared library list is the same/global/shared
2146 across inferiors. If code is shared between processes, so are
2147 memory regions and features. */
2148 if (!gdbarch_has_global_solist (target_gdbarch ()))
2149 {
2150 no_shared_libraries (NULL, from_tty);
2151
2152 invalidate_target_mem_regions ();
2153
2154 target_clear_description ();
2155 }
2156
2157 /* attach_flag may be set if the previous process associated with
2158 the inferior was attached to. */
2159 current_inferior ()->attach_flag = 0;
2160
2161 current_inferior ()->highest_thread_num = 0;
2162
2163 agent_capability_invalidate ();
2164 }
2165
2166 /* Callback for iterate_over_inferiors. Gets rid of the given
2167 inferior. */
2168
2169 static int
2170 dispose_inferior (struct inferior *inf, void *args)
2171 {
2172 struct thread_info *thread;
2173
2174 thread = any_thread_of_process (inf->pid);
2175 if (thread)
2176 {
2177 switch_to_thread (thread->ptid);
2178
2179 /* Core inferiors actually should be detached, not killed. */
2180 if (target_has_execution)
2181 target_kill ();
2182 else
2183 target_detach (inf, 0);
2184 }
2185
2186 return 0;
2187 }
2188
2189 /* This is to be called by the open routine before it does
2190 anything. */
2191
2192 void
2193 target_preopen (int from_tty)
2194 {
2195 dont_repeat ();
2196
2197 if (have_inferiors ())
2198 {
2199 if (!from_tty
2200 || !have_live_inferiors ()
2201 || query (_("A program is being debugged already. Kill it? ")))
2202 iterate_over_inferiors (dispose_inferior, NULL);
2203 else
2204 error (_("Program not killed."));
2205 }
2206
2207 /* Calling target_kill may remove the target from the stack. But if
2208 it doesn't (which seems like a win for UDI), remove it now. */
2209 /* Leave the exec target, though. The user may be switching from a
2210 live process to a core of the same program. */
2211 pop_all_targets_above (file_stratum);
2212
2213 target_pre_inferior (from_tty);
2214 }
2215
2216 /* See target.h. */
2217
2218 void
2219 target_detach (inferior *inf, int from_tty)
2220 {
2221 /* As long as some to_detach implementations rely on the current_inferior
2222 (either directly, or indirectly, like through target_gdbarch or by
2223 reading memory), INF needs to be the current inferior. When that
2224 requirement will become no longer true, then we can remove this
2225 assertion. */
2226 gdb_assert (inf == current_inferior ());
2227
2228 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2229 /* Don't remove global breakpoints here. They're removed on
2230 disconnection from the target. */
2231 ;
2232 else
2233 /* If we're in breakpoints-always-inserted mode, have to remove
2234 them before detaching. */
2235 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2236
2237 prepare_for_detach ();
2238
2239 current_target.to_detach (&current_target, inf, from_tty);
2240 }
2241
2242 void
2243 target_disconnect (const char *args, int from_tty)
2244 {
2245 /* If we're in breakpoints-always-inserted mode or if breakpoints
2246 are global across processes, we have to remove them before
2247 disconnecting. */
2248 remove_breakpoints ();
2249
2250 current_target.to_disconnect (&current_target, args, from_tty);
2251 }
2252
2253 /* See target/target.h. */
2254
2255 ptid_t
2256 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2257 {
2258 return (current_target.to_wait) (&current_target, ptid, status, options);
2259 }
2260
2261 /* See target.h. */
2262
2263 ptid_t
2264 default_target_wait (struct target_ops *ops,
2265 ptid_t ptid, struct target_waitstatus *status,
2266 int options)
2267 {
2268 status->kind = TARGET_WAITKIND_IGNORE;
2269 return minus_one_ptid;
2270 }
2271
2272 const char *
2273 target_pid_to_str (ptid_t ptid)
2274 {
2275 return (*current_target.to_pid_to_str) (&current_target, ptid);
2276 }
2277
2278 const char *
2279 target_thread_name (struct thread_info *info)
2280 {
2281 return current_target.to_thread_name (&current_target, info);
2282 }
2283
2284 struct thread_info *
2285 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2286 int handle_len,
2287 struct inferior *inf)
2288 {
2289 return current_target.to_thread_handle_to_thread_info
2290 (&current_target, thread_handle, handle_len, inf);
2291 }
2292
2293 void
2294 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2295 {
2296 target_dcache_invalidate ();
2297
2298 current_target.to_resume (&current_target, ptid, step, signal);
2299
2300 registers_changed_ptid (ptid);
2301 /* We only set the internal executing state here. The user/frontend
2302 running state is set at a higher level. */
2303 set_executing (ptid, 1);
2304 clear_inline_frame_state (ptid);
2305 }
2306
2307 /* If true, target_commit_resume is a nop. */
2308 static int defer_target_commit_resume;
2309
2310 /* See target.h. */
2311
2312 void
2313 target_commit_resume (void)
2314 {
2315 if (defer_target_commit_resume)
2316 return;
2317
2318 current_target.to_commit_resume (&current_target);
2319 }
2320
2321 /* See target.h. */
2322
2323 scoped_restore_tmpl<int>
2324 make_scoped_defer_target_commit_resume ()
2325 {
2326 return make_scoped_restore (&defer_target_commit_resume, 1);
2327 }
2328
2329 void
2330 target_pass_signals (int numsigs, unsigned char *pass_signals)
2331 {
2332 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2333 }
2334
2335 void
2336 target_program_signals (int numsigs, unsigned char *program_signals)
2337 {
2338 (*current_target.to_program_signals) (&current_target,
2339 numsigs, program_signals);
2340 }
2341
2342 static int
2343 default_follow_fork (struct target_ops *self, int follow_child,
2344 int detach_fork)
2345 {
2346 /* Some target returned a fork event, but did not know how to follow it. */
2347 internal_error (__FILE__, __LINE__,
2348 _("could not find a target to follow fork"));
2349 }
2350
2351 /* Look through the list of possible targets for a target that can
2352 follow forks. */
2353
2354 int
2355 target_follow_fork (int follow_child, int detach_fork)
2356 {
2357 return current_target.to_follow_fork (&current_target,
2358 follow_child, detach_fork);
2359 }
2360
2361 /* Target wrapper for follow exec hook. */
2362
2363 void
2364 target_follow_exec (struct inferior *inf, char *execd_pathname)
2365 {
2366 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2367 }
2368
2369 static void
2370 default_mourn_inferior (struct target_ops *self)
2371 {
2372 internal_error (__FILE__, __LINE__,
2373 _("could not find a target to follow mourn inferior"));
2374 }
2375
2376 void
2377 target_mourn_inferior (ptid_t ptid)
2378 {
2379 gdb_assert (ptid_equal (ptid, inferior_ptid));
2380 current_target.to_mourn_inferior (&current_target);
2381
2382 /* We no longer need to keep handles on any of the object files.
2383 Make sure to release them to avoid unnecessarily locking any
2384 of them while we're not actually debugging. */
2385 bfd_cache_close_all ();
2386 }
2387
2388 /* Look for a target which can describe architectural features, starting
2389 from TARGET. If we find one, return its description. */
2390
2391 const struct target_desc *
2392 target_read_description (struct target_ops *target)
2393 {
2394 return target->to_read_description (target);
2395 }
2396
2397 /* This implements a basic search of memory, reading target memory and
2398 performing the search here (as opposed to performing the search in on the
2399 target side with, for example, gdbserver). */
2400
2401 int
2402 simple_search_memory (struct target_ops *ops,
2403 CORE_ADDR start_addr, ULONGEST search_space_len,
2404 const gdb_byte *pattern, ULONGEST pattern_len,
2405 CORE_ADDR *found_addrp)
2406 {
2407 /* NOTE: also defined in find.c testcase. */
2408 #define SEARCH_CHUNK_SIZE 16000
2409 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2410 /* Buffer to hold memory contents for searching. */
2411 unsigned search_buf_size;
2412
2413 search_buf_size = chunk_size + pattern_len - 1;
2414
2415 /* No point in trying to allocate a buffer larger than the search space. */
2416 if (search_space_len < search_buf_size)
2417 search_buf_size = search_space_len;
2418
2419 gdb::byte_vector search_buf (search_buf_size);
2420
2421 /* Prime the search buffer. */
2422
2423 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2424 search_buf.data (), start_addr, search_buf_size)
2425 != search_buf_size)
2426 {
2427 warning (_("Unable to access %s bytes of target "
2428 "memory at %s, halting search."),
2429 pulongest (search_buf_size), hex_string (start_addr));
2430 return -1;
2431 }
2432
2433 /* Perform the search.
2434
2435 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2436 When we've scanned N bytes we copy the trailing bytes to the start and
2437 read in another N bytes. */
2438
2439 while (search_space_len >= pattern_len)
2440 {
2441 gdb_byte *found_ptr;
2442 unsigned nr_search_bytes
2443 = std::min (search_space_len, (ULONGEST) search_buf_size);
2444
2445 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2446 pattern, pattern_len);
2447
2448 if (found_ptr != NULL)
2449 {
2450 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2451
2452 *found_addrp = found_addr;
2453 return 1;
2454 }
2455
2456 /* Not found in this chunk, skip to next chunk. */
2457
2458 /* Don't let search_space_len wrap here, it's unsigned. */
2459 if (search_space_len >= chunk_size)
2460 search_space_len -= chunk_size;
2461 else
2462 search_space_len = 0;
2463
2464 if (search_space_len >= pattern_len)
2465 {
2466 unsigned keep_len = search_buf_size - chunk_size;
2467 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2468 int nr_to_read;
2469
2470 /* Copy the trailing part of the previous iteration to the front
2471 of the buffer for the next iteration. */
2472 gdb_assert (keep_len == pattern_len - 1);
2473 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2474
2475 nr_to_read = std::min (search_space_len - keep_len,
2476 (ULONGEST) chunk_size);
2477
2478 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2479 &search_buf[keep_len], read_addr,
2480 nr_to_read) != nr_to_read)
2481 {
2482 warning (_("Unable to access %s bytes of target "
2483 "memory at %s, halting search."),
2484 plongest (nr_to_read),
2485 hex_string (read_addr));
2486 return -1;
2487 }
2488
2489 start_addr += chunk_size;
2490 }
2491 }
2492
2493 /* Not found. */
2494
2495 return 0;
2496 }
2497
2498 /* Default implementation of memory-searching. */
2499
2500 static int
2501 default_search_memory (struct target_ops *self,
2502 CORE_ADDR start_addr, ULONGEST search_space_len,
2503 const gdb_byte *pattern, ULONGEST pattern_len,
2504 CORE_ADDR *found_addrp)
2505 {
2506 /* Start over from the top of the target stack. */
2507 return simple_search_memory (current_target.beneath,
2508 start_addr, search_space_len,
2509 pattern, pattern_len, found_addrp);
2510 }
2511
2512 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2513 sequence of bytes in PATTERN with length PATTERN_LEN.
2514
2515 The result is 1 if found, 0 if not found, and -1 if there was an error
2516 requiring halting of the search (e.g. memory read error).
2517 If the pattern is found the address is recorded in FOUND_ADDRP. */
2518
2519 int
2520 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2521 const gdb_byte *pattern, ULONGEST pattern_len,
2522 CORE_ADDR *found_addrp)
2523 {
2524 return current_target.to_search_memory (&current_target, start_addr,
2525 search_space_len,
2526 pattern, pattern_len, found_addrp);
2527 }
2528
2529 /* Look through the currently pushed targets. If none of them will
2530 be able to restart the currently running process, issue an error
2531 message. */
2532
2533 void
2534 target_require_runnable (void)
2535 {
2536 struct target_ops *t;
2537
2538 for (t = target_stack; t != NULL; t = t->beneath)
2539 {
2540 /* If this target knows how to create a new program, then
2541 assume we will still be able to after killing the current
2542 one. Either killing and mourning will not pop T, or else
2543 find_default_run_target will find it again. */
2544 if (t->to_create_inferior != NULL)
2545 return;
2546
2547 /* Do not worry about targets at certain strata that can not
2548 create inferiors. Assume they will be pushed again if
2549 necessary, and continue to the process_stratum. */
2550 if (t->to_stratum == thread_stratum
2551 || t->to_stratum == record_stratum
2552 || t->to_stratum == arch_stratum)
2553 continue;
2554
2555 error (_("The \"%s\" target does not support \"run\". "
2556 "Try \"help target\" or \"continue\"."),
2557 t->to_shortname);
2558 }
2559
2560 /* This function is only called if the target is running. In that
2561 case there should have been a process_stratum target and it
2562 should either know how to create inferiors, or not... */
2563 internal_error (__FILE__, __LINE__, _("No targets found"));
2564 }
2565
2566 /* Whether GDB is allowed to fall back to the default run target for
2567 "run", "attach", etc. when no target is connected yet. */
2568 static int auto_connect_native_target = 1;
2569
2570 static void
2571 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2572 struct cmd_list_element *c, const char *value)
2573 {
2574 fprintf_filtered (file,
2575 _("Whether GDB may automatically connect to the "
2576 "native target is %s.\n"),
2577 value);
2578 }
2579
2580 /* Look through the list of possible targets for a target that can
2581 execute a run or attach command without any other data. This is
2582 used to locate the default process stratum.
2583
2584 If DO_MESG is not NULL, the result is always valid (error() is
2585 called for errors); else, return NULL on error. */
2586
2587 static struct target_ops *
2588 find_default_run_target (const char *do_mesg)
2589 {
2590 struct target_ops *runable = NULL;
2591
2592 if (auto_connect_native_target)
2593 {
2594 struct target_ops *t;
2595 int count = 0;
2596 int i;
2597
2598 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2599 {
2600 if (t->to_can_run != delegate_can_run && target_can_run (t))
2601 {
2602 runable = t;
2603 ++count;
2604 }
2605 }
2606
2607 if (count != 1)
2608 runable = NULL;
2609 }
2610
2611 if (runable == NULL)
2612 {
2613 if (do_mesg)
2614 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2615 else
2616 return NULL;
2617 }
2618
2619 return runable;
2620 }
2621
2622 /* See target.h. */
2623
2624 struct target_ops *
2625 find_attach_target (void)
2626 {
2627 struct target_ops *t;
2628
2629 /* If a target on the current stack can attach, use it. */
2630 for (t = current_target.beneath; t != NULL; t = t->beneath)
2631 {
2632 if (t->to_attach != NULL)
2633 break;
2634 }
2635
2636 /* Otherwise, use the default run target for attaching. */
2637 if (t == NULL)
2638 t = find_default_run_target ("attach");
2639
2640 return t;
2641 }
2642
2643 /* See target.h. */
2644
2645 struct target_ops *
2646 find_run_target (void)
2647 {
2648 struct target_ops *t;
2649
2650 /* If a target on the current stack can attach, use it. */
2651 for (t = current_target.beneath; t != NULL; t = t->beneath)
2652 {
2653 if (t->to_create_inferior != NULL)
2654 break;
2655 }
2656
2657 /* Otherwise, use the default run target. */
2658 if (t == NULL)
2659 t = find_default_run_target ("run");
2660
2661 return t;
2662 }
2663
2664 /* Implement the "info proc" command. */
2665
2666 int
2667 target_info_proc (const char *args, enum info_proc_what what)
2668 {
2669 struct target_ops *t;
2670
2671 /* If we're already connected to something that can get us OS
2672 related data, use it. Otherwise, try using the native
2673 target. */
2674 if (current_target.to_stratum >= process_stratum)
2675 t = current_target.beneath;
2676 else
2677 t = find_default_run_target (NULL);
2678
2679 for (; t != NULL; t = t->beneath)
2680 {
2681 if (t->to_info_proc != NULL)
2682 {
2683 t->to_info_proc (t, args, what);
2684
2685 if (targetdebug)
2686 fprintf_unfiltered (gdb_stdlog,
2687 "target_info_proc (\"%s\", %d)\n", args, what);
2688
2689 return 1;
2690 }
2691 }
2692
2693 return 0;
2694 }
2695
2696 static int
2697 find_default_supports_disable_randomization (struct target_ops *self)
2698 {
2699 struct target_ops *t;
2700
2701 t = find_default_run_target (NULL);
2702 if (t && t->to_supports_disable_randomization)
2703 return (t->to_supports_disable_randomization) (t);
2704 return 0;
2705 }
2706
2707 int
2708 target_supports_disable_randomization (void)
2709 {
2710 struct target_ops *t;
2711
2712 for (t = &current_target; t != NULL; t = t->beneath)
2713 if (t->to_supports_disable_randomization)
2714 return t->to_supports_disable_randomization (t);
2715
2716 return 0;
2717 }
2718
2719 /* See target/target.h. */
2720
2721 int
2722 target_supports_multi_process (void)
2723 {
2724 return (*current_target.to_supports_multi_process) (&current_target);
2725 }
2726
2727 /* See target.h. */
2728
2729 gdb::optional<gdb::char_vector>
2730 target_get_osdata (const char *type)
2731 {
2732 struct target_ops *t;
2733
2734 /* If we're already connected to something that can get us OS
2735 related data, use it. Otherwise, try using the native
2736 target. */
2737 if (current_target.to_stratum >= process_stratum)
2738 t = current_target.beneath;
2739 else
2740 t = find_default_run_target ("get OS data");
2741
2742 if (!t)
2743 return {};
2744
2745 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2746 }
2747
2748 static struct address_space *
2749 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2750 {
2751 struct inferior *inf;
2752
2753 /* Fall-back to the "main" address space of the inferior. */
2754 inf = find_inferior_ptid (ptid);
2755
2756 if (inf == NULL || inf->aspace == NULL)
2757 internal_error (__FILE__, __LINE__,
2758 _("Can't determine the current "
2759 "address space of thread %s\n"),
2760 target_pid_to_str (ptid));
2761
2762 return inf->aspace;
2763 }
2764
2765 /* Determine the current address space of thread PTID. */
2766
2767 struct address_space *
2768 target_thread_address_space (ptid_t ptid)
2769 {
2770 struct address_space *aspace;
2771
2772 aspace = current_target.to_thread_address_space (&current_target, ptid);
2773 gdb_assert (aspace != NULL);
2774
2775 return aspace;
2776 }
2777
2778
2779 /* Target file operations. */
2780
2781 static struct target_ops *
2782 default_fileio_target (void)
2783 {
2784 /* If we're already connected to something that can perform
2785 file I/O, use it. Otherwise, try using the native target. */
2786 if (current_target.to_stratum >= process_stratum)
2787 return current_target.beneath;
2788 else
2789 return find_default_run_target ("file I/O");
2790 }
2791
2792 /* File handle for target file operations. */
2793
2794 struct fileio_fh_t
2795 {
2796 /* The target on which this file is open. */
2797 target_ops *target;
2798
2799 /* The file descriptor on the target. */
2800 int target_fd;
2801
2802 /* Check whether this fileio_fh_t represents a closed file. */
2803 bool is_closed ()
2804 {
2805 return target_fd < 0;
2806 }
2807 };
2808
2809 /* Vector of currently open file handles. The value returned by
2810 target_fileio_open and passed as the FD argument to other
2811 target_fileio_* functions is an index into this vector. This
2812 vector's entries are never freed; instead, files are marked as
2813 closed, and the handle becomes available for reuse. */
2814 static std::vector<fileio_fh_t> fileio_fhandles;
2815
2816 /* Index into fileio_fhandles of the lowest handle that might be
2817 closed. This permits handle reuse without searching the whole
2818 list each time a new file is opened. */
2819 static int lowest_closed_fd;
2820
2821 /* Acquire a target fileio file descriptor. */
2822
2823 static int
2824 acquire_fileio_fd (target_ops *target, int target_fd)
2825 {
2826 /* Search for closed handles to reuse. */
2827 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2828 {
2829 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2830
2831 if (fh.is_closed ())
2832 break;
2833 }
2834
2835 /* Push a new handle if no closed handles were found. */
2836 if (lowest_closed_fd == fileio_fhandles.size ())
2837 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2838 else
2839 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2840
2841 /* Should no longer be marked closed. */
2842 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2843
2844 /* Return its index, and start the next lookup at
2845 the next index. */
2846 return lowest_closed_fd++;
2847 }
2848
2849 /* Release a target fileio file descriptor. */
2850
2851 static void
2852 release_fileio_fd (int fd, fileio_fh_t *fh)
2853 {
2854 fh->target_fd = -1;
2855 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2856 }
2857
2858 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2859
2860 static fileio_fh_t *
2861 fileio_fd_to_fh (int fd)
2862 {
2863 return &fileio_fhandles[fd];
2864 }
2865
2866 /* Helper for target_fileio_open and
2867 target_fileio_open_warn_if_slow. */
2868
2869 static int
2870 target_fileio_open_1 (struct inferior *inf, const char *filename,
2871 int flags, int mode, int warn_if_slow,
2872 int *target_errno)
2873 {
2874 struct target_ops *t;
2875
2876 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2877 {
2878 if (t->to_fileio_open != NULL)
2879 {
2880 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2881 warn_if_slow, target_errno);
2882
2883 if (fd < 0)
2884 fd = -1;
2885 else
2886 fd = acquire_fileio_fd (t, fd);
2887
2888 if (targetdebug)
2889 fprintf_unfiltered (gdb_stdlog,
2890 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2891 " = %d (%d)\n",
2892 inf == NULL ? 0 : inf->num,
2893 filename, flags, mode,
2894 warn_if_slow, fd,
2895 fd != -1 ? 0 : *target_errno);
2896 return fd;
2897 }
2898 }
2899
2900 *target_errno = FILEIO_ENOSYS;
2901 return -1;
2902 }
2903
2904 /* See target.h. */
2905
2906 int
2907 target_fileio_open (struct inferior *inf, const char *filename,
2908 int flags, int mode, int *target_errno)
2909 {
2910 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2911 target_errno);
2912 }
2913
2914 /* See target.h. */
2915
2916 int
2917 target_fileio_open_warn_if_slow (struct inferior *inf,
2918 const char *filename,
2919 int flags, int mode, int *target_errno)
2920 {
2921 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2922 target_errno);
2923 }
2924
2925 /* See target.h. */
2926
2927 int
2928 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2929 ULONGEST offset, int *target_errno)
2930 {
2931 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2932 int ret = -1;
2933
2934 if (fh->is_closed ())
2935 *target_errno = EBADF;
2936 else
2937 ret = fh->target->to_fileio_pwrite (fh->target, fh->target_fd, write_buf,
2938 len, offset, target_errno);
2939
2940 if (targetdebug)
2941 fprintf_unfiltered (gdb_stdlog,
2942 "target_fileio_pwrite (%d,...,%d,%s) "
2943 "= %d (%d)\n",
2944 fd, len, pulongest (offset),
2945 ret, ret != -1 ? 0 : *target_errno);
2946 return ret;
2947 }
2948
2949 /* See target.h. */
2950
2951 int
2952 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2953 ULONGEST offset, int *target_errno)
2954 {
2955 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2956 int ret = -1;
2957
2958 if (fh->is_closed ())
2959 *target_errno = EBADF;
2960 else
2961 ret = fh->target->to_fileio_pread (fh->target, fh->target_fd, read_buf,
2962 len, offset, target_errno);
2963
2964 if (targetdebug)
2965 fprintf_unfiltered (gdb_stdlog,
2966 "target_fileio_pread (%d,...,%d,%s) "
2967 "= %d (%d)\n",
2968 fd, len, pulongest (offset),
2969 ret, ret != -1 ? 0 : *target_errno);
2970 return ret;
2971 }
2972
2973 /* See target.h. */
2974
2975 int
2976 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2977 {
2978 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2979 int ret = -1;
2980
2981 if (fh->is_closed ())
2982 *target_errno = EBADF;
2983 else
2984 ret = fh->target->to_fileio_fstat (fh->target, fh->target_fd,
2985 sb, target_errno);
2986
2987 if (targetdebug)
2988 fprintf_unfiltered (gdb_stdlog,
2989 "target_fileio_fstat (%d) = %d (%d)\n",
2990 fd, ret, ret != -1 ? 0 : *target_errno);
2991 return ret;
2992 }
2993
2994 /* See target.h. */
2995
2996 int
2997 target_fileio_close (int fd, int *target_errno)
2998 {
2999 fileio_fh_t *fh = fileio_fd_to_fh (fd);
3000 int ret = -1;
3001
3002 if (fh->is_closed ())
3003 *target_errno = EBADF;
3004 else
3005 {
3006 ret = fh->target->to_fileio_close (fh->target, fh->target_fd,
3007 target_errno);
3008 release_fileio_fd (fd, fh);
3009 }
3010
3011 if (targetdebug)
3012 fprintf_unfiltered (gdb_stdlog,
3013 "target_fileio_close (%d) = %d (%d)\n",
3014 fd, ret, ret != -1 ? 0 : *target_errno);
3015 return ret;
3016 }
3017
3018 /* See target.h. */
3019
3020 int
3021 target_fileio_unlink (struct inferior *inf, const char *filename,
3022 int *target_errno)
3023 {
3024 struct target_ops *t;
3025
3026 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3027 {
3028 if (t->to_fileio_unlink != NULL)
3029 {
3030 int ret = t->to_fileio_unlink (t, inf, filename,
3031 target_errno);
3032
3033 if (targetdebug)
3034 fprintf_unfiltered (gdb_stdlog,
3035 "target_fileio_unlink (%d,%s)"
3036 " = %d (%d)\n",
3037 inf == NULL ? 0 : inf->num, filename,
3038 ret, ret != -1 ? 0 : *target_errno);
3039 return ret;
3040 }
3041 }
3042
3043 *target_errno = FILEIO_ENOSYS;
3044 return -1;
3045 }
3046
3047 /* See target.h. */
3048
3049 gdb::optional<std::string>
3050 target_fileio_readlink (struct inferior *inf, const char *filename,
3051 int *target_errno)
3052 {
3053 struct target_ops *t;
3054
3055 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3056 {
3057 if (t->to_fileio_readlink != NULL)
3058 {
3059 gdb::optional<std::string> ret
3060 = t->to_fileio_readlink (t, inf, filename, target_errno);
3061
3062 if (targetdebug)
3063 fprintf_unfiltered (gdb_stdlog,
3064 "target_fileio_readlink (%d,%s)"
3065 " = %s (%d)\n",
3066 inf == NULL ? 0 : inf->num,
3067 filename, ret ? ret->c_str () : "(nil)",
3068 ret ? 0 : *target_errno);
3069 return ret;
3070 }
3071 }
3072
3073 *target_errno = FILEIO_ENOSYS;
3074 return {};
3075 }
3076
3077 /* Like scoped_fd, but specific to target fileio. */
3078
3079 class scoped_target_fd
3080 {
3081 public:
3082 explicit scoped_target_fd (int fd) noexcept
3083 : m_fd (fd)
3084 {
3085 }
3086
3087 ~scoped_target_fd ()
3088 {
3089 if (m_fd >= 0)
3090 {
3091 int target_errno;
3092
3093 target_fileio_close (m_fd, &target_errno);
3094 }
3095 }
3096
3097 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3098
3099 int get () const noexcept
3100 {
3101 return m_fd;
3102 }
3103
3104 private:
3105 int m_fd;
3106 };
3107
3108 /* Read target file FILENAME, in the filesystem as seen by INF. If
3109 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3110 remote targets, the remote stub). Store the result in *BUF_P and
3111 return the size of the transferred data. PADDING additional bytes
3112 are available in *BUF_P. This is a helper function for
3113 target_fileio_read_alloc; see the declaration of that function for
3114 more information. */
3115
3116 static LONGEST
3117 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3118 gdb_byte **buf_p, int padding)
3119 {
3120 size_t buf_alloc, buf_pos;
3121 gdb_byte *buf;
3122 LONGEST n;
3123 int target_errno;
3124
3125 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3126 0700, &target_errno));
3127 if (fd.get () == -1)
3128 return -1;
3129
3130 /* Start by reading up to 4K at a time. The target will throttle
3131 this number down if necessary. */
3132 buf_alloc = 4096;
3133 buf = (gdb_byte *) xmalloc (buf_alloc);
3134 buf_pos = 0;
3135 while (1)
3136 {
3137 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3138 buf_alloc - buf_pos - padding, buf_pos,
3139 &target_errno);
3140 if (n < 0)
3141 {
3142 /* An error occurred. */
3143 xfree (buf);
3144 return -1;
3145 }
3146 else if (n == 0)
3147 {
3148 /* Read all there was. */
3149 if (buf_pos == 0)
3150 xfree (buf);
3151 else
3152 *buf_p = buf;
3153 return buf_pos;
3154 }
3155
3156 buf_pos += n;
3157
3158 /* If the buffer is filling up, expand it. */
3159 if (buf_alloc < buf_pos * 2)
3160 {
3161 buf_alloc *= 2;
3162 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3163 }
3164
3165 QUIT;
3166 }
3167 }
3168
3169 /* See target.h. */
3170
3171 LONGEST
3172 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3173 gdb_byte **buf_p)
3174 {
3175 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3176 }
3177
3178 /* See target.h. */
3179
3180 gdb::unique_xmalloc_ptr<char>
3181 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3182 {
3183 gdb_byte *buffer;
3184 char *bufstr;
3185 LONGEST i, transferred;
3186
3187 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3188 bufstr = (char *) buffer;
3189
3190 if (transferred < 0)
3191 return gdb::unique_xmalloc_ptr<char> (nullptr);
3192
3193 if (transferred == 0)
3194 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3195
3196 bufstr[transferred] = 0;
3197
3198 /* Check for embedded NUL bytes; but allow trailing NULs. */
3199 for (i = strlen (bufstr); i < transferred; i++)
3200 if (bufstr[i] != 0)
3201 {
3202 warning (_("target file %s "
3203 "contained unexpected null characters"),
3204 filename);
3205 break;
3206 }
3207
3208 return gdb::unique_xmalloc_ptr<char> (bufstr);
3209 }
3210
3211
3212 static int
3213 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3214 CORE_ADDR addr, int len)
3215 {
3216 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3217 }
3218
3219 static int
3220 default_watchpoint_addr_within_range (struct target_ops *target,
3221 CORE_ADDR addr,
3222 CORE_ADDR start, int length)
3223 {
3224 return addr >= start && addr < start + length;
3225 }
3226
3227 static struct gdbarch *
3228 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3229 {
3230 inferior *inf = find_inferior_ptid (ptid);
3231 gdb_assert (inf != NULL);
3232 return inf->gdbarch;
3233 }
3234
3235 static int
3236 return_zero (struct target_ops *ignore)
3237 {
3238 return 0;
3239 }
3240
3241 static int
3242 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3243 {
3244 return 0;
3245 }
3246
3247 /*
3248 * Find the next target down the stack from the specified target.
3249 */
3250
3251 struct target_ops *
3252 find_target_beneath (struct target_ops *t)
3253 {
3254 return t->beneath;
3255 }
3256
3257 /* See target.h. */
3258
3259 struct target_ops *
3260 find_target_at (enum strata stratum)
3261 {
3262 struct target_ops *t;
3263
3264 for (t = current_target.beneath; t != NULL; t = t->beneath)
3265 if (t->to_stratum == stratum)
3266 return t;
3267
3268 return NULL;
3269 }
3270
3271 \f
3272
3273 /* See target.h */
3274
3275 void
3276 target_announce_detach (int from_tty)
3277 {
3278 pid_t pid;
3279 const char *exec_file;
3280
3281 if (!from_tty)
3282 return;
3283
3284 exec_file = get_exec_file (0);
3285 if (exec_file == NULL)
3286 exec_file = "";
3287
3288 pid = ptid_get_pid (inferior_ptid);
3289 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3290 target_pid_to_str (pid_to_ptid (pid)));
3291 gdb_flush (gdb_stdout);
3292 }
3293
3294 /* The inferior process has died. Long live the inferior! */
3295
3296 void
3297 generic_mourn_inferior (void)
3298 {
3299 ptid_t ptid;
3300
3301 ptid = inferior_ptid;
3302 inferior_ptid = null_ptid;
3303
3304 /* Mark breakpoints uninserted in case something tries to delete a
3305 breakpoint while we delete the inferior's threads (which would
3306 fail, since the inferior is long gone). */
3307 mark_breakpoints_out ();
3308
3309 if (!ptid_equal (ptid, null_ptid))
3310 {
3311 int pid = ptid_get_pid (ptid);
3312 exit_inferior (pid);
3313 }
3314
3315 /* Note this wipes step-resume breakpoints, so needs to be done
3316 after exit_inferior, which ends up referencing the step-resume
3317 breakpoints through clear_thread_inferior_resources. */
3318 breakpoint_init_inferior (inf_exited);
3319
3320 registers_changed ();
3321
3322 reopen_exec_file ();
3323 reinit_frame_cache ();
3324
3325 if (deprecated_detach_hook)
3326 deprecated_detach_hook ();
3327 }
3328 \f
3329 /* Convert a normal process ID to a string. Returns the string in a
3330 static buffer. */
3331
3332 const char *
3333 normal_pid_to_str (ptid_t ptid)
3334 {
3335 static char buf[32];
3336
3337 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3338 return buf;
3339 }
3340
3341 static const char *
3342 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3343 {
3344 return normal_pid_to_str (ptid);
3345 }
3346
3347 /* Error-catcher for target_find_memory_regions. */
3348 static int
3349 dummy_find_memory_regions (struct target_ops *self,
3350 find_memory_region_ftype ignore1, void *ignore2)
3351 {
3352 error (_("Command not implemented for this target."));
3353 return 0;
3354 }
3355
3356 /* Error-catcher for target_make_corefile_notes. */
3357 static char *
3358 dummy_make_corefile_notes (struct target_ops *self,
3359 bfd *ignore1, int *ignore2)
3360 {
3361 error (_("Command not implemented for this target."));
3362 return NULL;
3363 }
3364
3365 /* Set up the handful of non-empty slots needed by the dummy target
3366 vector. */
3367
3368 static void
3369 init_dummy_target (void)
3370 {
3371 dummy_target.to_shortname = "None";
3372 dummy_target.to_longname = "None";
3373 dummy_target.to_doc = "";
3374 dummy_target.to_supports_disable_randomization
3375 = find_default_supports_disable_randomization;
3376 dummy_target.to_stratum = dummy_stratum;
3377 dummy_target.to_has_all_memory = return_zero;
3378 dummy_target.to_has_memory = return_zero;
3379 dummy_target.to_has_stack = return_zero;
3380 dummy_target.to_has_registers = return_zero;
3381 dummy_target.to_has_execution = return_zero_has_execution;
3382 dummy_target.to_magic = OPS_MAGIC;
3383
3384 install_dummy_methods (&dummy_target);
3385 }
3386 \f
3387
3388 void
3389 target_close (struct target_ops *targ)
3390 {
3391 gdb_assert (!target_is_pushed (targ));
3392
3393 if (targ->to_xclose != NULL)
3394 targ->to_xclose (targ);
3395 else if (targ->to_close != NULL)
3396 targ->to_close (targ);
3397
3398 if (targetdebug)
3399 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3400 }
3401
3402 int
3403 target_thread_alive (ptid_t ptid)
3404 {
3405 return current_target.to_thread_alive (&current_target, ptid);
3406 }
3407
3408 void
3409 target_update_thread_list (void)
3410 {
3411 current_target.to_update_thread_list (&current_target);
3412 }
3413
3414 void
3415 target_stop (ptid_t ptid)
3416 {
3417 if (!may_stop)
3418 {
3419 warning (_("May not interrupt or stop the target, ignoring attempt"));
3420 return;
3421 }
3422
3423 (*current_target.to_stop) (&current_target, ptid);
3424 }
3425
3426 void
3427 target_interrupt ()
3428 {
3429 if (!may_stop)
3430 {
3431 warning (_("May not interrupt or stop the target, ignoring attempt"));
3432 return;
3433 }
3434
3435 (*current_target.to_interrupt) (&current_target);
3436 }
3437
3438 /* See target.h. */
3439
3440 void
3441 target_pass_ctrlc (void)
3442 {
3443 (*current_target.to_pass_ctrlc) (&current_target);
3444 }
3445
3446 /* See target.h. */
3447
3448 void
3449 default_target_pass_ctrlc (struct target_ops *ops)
3450 {
3451 target_interrupt ();
3452 }
3453
3454 /* See target/target.h. */
3455
3456 void
3457 target_stop_and_wait (ptid_t ptid)
3458 {
3459 struct target_waitstatus status;
3460 int was_non_stop = non_stop;
3461
3462 non_stop = 1;
3463 target_stop (ptid);
3464
3465 memset (&status, 0, sizeof (status));
3466 target_wait (ptid, &status, 0);
3467
3468 non_stop = was_non_stop;
3469 }
3470
3471 /* See target/target.h. */
3472
3473 void
3474 target_continue_no_signal (ptid_t ptid)
3475 {
3476 target_resume (ptid, 0, GDB_SIGNAL_0);
3477 }
3478
3479 /* See target/target.h. */
3480
3481 void
3482 target_continue (ptid_t ptid, enum gdb_signal signal)
3483 {
3484 target_resume (ptid, 0, signal);
3485 }
3486
3487 /* Concatenate ELEM to LIST, a comma separate list, and return the
3488 result. The LIST incoming argument is released. */
3489
3490 static char *
3491 str_comma_list_concat_elem (char *list, const char *elem)
3492 {
3493 if (list == NULL)
3494 return xstrdup (elem);
3495 else
3496 return reconcat (list, list, ", ", elem, (char *) NULL);
3497 }
3498
3499 /* Helper for target_options_to_string. If OPT is present in
3500 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3501 Returns the new resulting string. OPT is removed from
3502 TARGET_OPTIONS. */
3503
3504 static char *
3505 do_option (int *target_options, char *ret,
3506 int opt, const char *opt_str)
3507 {
3508 if ((*target_options & opt) != 0)
3509 {
3510 ret = str_comma_list_concat_elem (ret, opt_str);
3511 *target_options &= ~opt;
3512 }
3513
3514 return ret;
3515 }
3516
3517 char *
3518 target_options_to_string (int target_options)
3519 {
3520 char *ret = NULL;
3521
3522 #define DO_TARG_OPTION(OPT) \
3523 ret = do_option (&target_options, ret, OPT, #OPT)
3524
3525 DO_TARG_OPTION (TARGET_WNOHANG);
3526
3527 if (target_options != 0)
3528 ret = str_comma_list_concat_elem (ret, "unknown???");
3529
3530 if (ret == NULL)
3531 ret = xstrdup ("");
3532 return ret;
3533 }
3534
3535 void
3536 target_fetch_registers (struct regcache *regcache, int regno)
3537 {
3538 current_target.to_fetch_registers (&current_target, regcache, regno);
3539 if (targetdebug)
3540 regcache->debug_print_register ("target_fetch_registers", regno);
3541 }
3542
3543 void
3544 target_store_registers (struct regcache *regcache, int regno)
3545 {
3546 if (!may_write_registers)
3547 error (_("Writing to registers is not allowed (regno %d)"), regno);
3548
3549 current_target.to_store_registers (&current_target, regcache, regno);
3550 if (targetdebug)
3551 {
3552 regcache->debug_print_register ("target_store_registers", regno);
3553 }
3554 }
3555
3556 int
3557 target_core_of_thread (ptid_t ptid)
3558 {
3559 return current_target.to_core_of_thread (&current_target, ptid);
3560 }
3561
3562 int
3563 simple_verify_memory (struct target_ops *ops,
3564 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3565 {
3566 LONGEST total_xfered = 0;
3567
3568 while (total_xfered < size)
3569 {
3570 ULONGEST xfered_len;
3571 enum target_xfer_status status;
3572 gdb_byte buf[1024];
3573 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3574
3575 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3576 buf, NULL, lma + total_xfered, howmuch,
3577 &xfered_len);
3578 if (status == TARGET_XFER_OK
3579 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3580 {
3581 total_xfered += xfered_len;
3582 QUIT;
3583 }
3584 else
3585 return 0;
3586 }
3587 return 1;
3588 }
3589
3590 /* Default implementation of memory verification. */
3591
3592 static int
3593 default_verify_memory (struct target_ops *self,
3594 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3595 {
3596 /* Start over from the top of the target stack. */
3597 return simple_verify_memory (current_target.beneath,
3598 data, memaddr, size);
3599 }
3600
3601 int
3602 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3603 {
3604 return current_target.to_verify_memory (&current_target,
3605 data, memaddr, size);
3606 }
3607
3608 /* The documentation for this function is in its prototype declaration in
3609 target.h. */
3610
3611 int
3612 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3613 enum target_hw_bp_type rw)
3614 {
3615 return current_target.to_insert_mask_watchpoint (&current_target,
3616 addr, mask, rw);
3617 }
3618
3619 /* The documentation for this function is in its prototype declaration in
3620 target.h. */
3621
3622 int
3623 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3624 enum target_hw_bp_type rw)
3625 {
3626 return current_target.to_remove_mask_watchpoint (&current_target,
3627 addr, mask, rw);
3628 }
3629
3630 /* The documentation for this function is in its prototype declaration
3631 in target.h. */
3632
3633 int
3634 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3635 {
3636 return current_target.to_masked_watch_num_registers (&current_target,
3637 addr, mask);
3638 }
3639
3640 /* The documentation for this function is in its prototype declaration
3641 in target.h. */
3642
3643 int
3644 target_ranged_break_num_registers (void)
3645 {
3646 return current_target.to_ranged_break_num_registers (&current_target);
3647 }
3648
3649 /* See target.h. */
3650
3651 struct btrace_target_info *
3652 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3653 {
3654 return current_target.to_enable_btrace (&current_target, ptid, conf);
3655 }
3656
3657 /* See target.h. */
3658
3659 void
3660 target_disable_btrace (struct btrace_target_info *btinfo)
3661 {
3662 current_target.to_disable_btrace (&current_target, btinfo);
3663 }
3664
3665 /* See target.h. */
3666
3667 void
3668 target_teardown_btrace (struct btrace_target_info *btinfo)
3669 {
3670 current_target.to_teardown_btrace (&current_target, btinfo);
3671 }
3672
3673 /* See target.h. */
3674
3675 enum btrace_error
3676 target_read_btrace (struct btrace_data *btrace,
3677 struct btrace_target_info *btinfo,
3678 enum btrace_read_type type)
3679 {
3680 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3681 }
3682
3683 /* See target.h. */
3684
3685 const struct btrace_config *
3686 target_btrace_conf (const struct btrace_target_info *btinfo)
3687 {
3688 return current_target.to_btrace_conf (&current_target, btinfo);
3689 }
3690
3691 /* See target.h. */
3692
3693 void
3694 target_stop_recording (void)
3695 {
3696 current_target.to_stop_recording (&current_target);
3697 }
3698
3699 /* See target.h. */
3700
3701 void
3702 target_save_record (const char *filename)
3703 {
3704 current_target.to_save_record (&current_target, filename);
3705 }
3706
3707 /* See target.h. */
3708
3709 int
3710 target_supports_delete_record (void)
3711 {
3712 struct target_ops *t;
3713
3714 for (t = current_target.beneath; t != NULL; t = t->beneath)
3715 if (t->to_delete_record != delegate_delete_record
3716 && t->to_delete_record != tdefault_delete_record)
3717 return 1;
3718
3719 return 0;
3720 }
3721
3722 /* See target.h. */
3723
3724 void
3725 target_delete_record (void)
3726 {
3727 current_target.to_delete_record (&current_target);
3728 }
3729
3730 /* See target.h. */
3731
3732 enum record_method
3733 target_record_method (ptid_t ptid)
3734 {
3735 return current_target.to_record_method (&current_target, ptid);
3736 }
3737
3738 /* See target.h. */
3739
3740 int
3741 target_record_is_replaying (ptid_t ptid)
3742 {
3743 return current_target.to_record_is_replaying (&current_target, ptid);
3744 }
3745
3746 /* See target.h. */
3747
3748 int
3749 target_record_will_replay (ptid_t ptid, int dir)
3750 {
3751 return current_target.to_record_will_replay (&current_target, ptid, dir);
3752 }
3753
3754 /* See target.h. */
3755
3756 void
3757 target_record_stop_replaying (void)
3758 {
3759 current_target.to_record_stop_replaying (&current_target);
3760 }
3761
3762 /* See target.h. */
3763
3764 void
3765 target_goto_record_begin (void)
3766 {
3767 current_target.to_goto_record_begin (&current_target);
3768 }
3769
3770 /* See target.h. */
3771
3772 void
3773 target_goto_record_end (void)
3774 {
3775 current_target.to_goto_record_end (&current_target);
3776 }
3777
3778 /* See target.h. */
3779
3780 void
3781 target_goto_record (ULONGEST insn)
3782 {
3783 current_target.to_goto_record (&current_target, insn);
3784 }
3785
3786 /* See target.h. */
3787
3788 void
3789 target_insn_history (int size, gdb_disassembly_flags flags)
3790 {
3791 current_target.to_insn_history (&current_target, size, flags);
3792 }
3793
3794 /* See target.h. */
3795
3796 void
3797 target_insn_history_from (ULONGEST from, int size,
3798 gdb_disassembly_flags flags)
3799 {
3800 current_target.to_insn_history_from (&current_target, from, size, flags);
3801 }
3802
3803 /* See target.h. */
3804
3805 void
3806 target_insn_history_range (ULONGEST begin, ULONGEST end,
3807 gdb_disassembly_flags flags)
3808 {
3809 current_target.to_insn_history_range (&current_target, begin, end, flags);
3810 }
3811
3812 /* See target.h. */
3813
3814 void
3815 target_call_history (int size, record_print_flags flags)
3816 {
3817 current_target.to_call_history (&current_target, size, flags);
3818 }
3819
3820 /* See target.h. */
3821
3822 void
3823 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3824 {
3825 current_target.to_call_history_from (&current_target, begin, size, flags);
3826 }
3827
3828 /* See target.h. */
3829
3830 void
3831 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3832 {
3833 current_target.to_call_history_range (&current_target, begin, end, flags);
3834 }
3835
3836 /* See target.h. */
3837
3838 const struct frame_unwind *
3839 target_get_unwinder (void)
3840 {
3841 return current_target.to_get_unwinder (&current_target);
3842 }
3843
3844 /* See target.h. */
3845
3846 const struct frame_unwind *
3847 target_get_tailcall_unwinder (void)
3848 {
3849 return current_target.to_get_tailcall_unwinder (&current_target);
3850 }
3851
3852 /* See target.h. */
3853
3854 void
3855 target_prepare_to_generate_core (void)
3856 {
3857 current_target.to_prepare_to_generate_core (&current_target);
3858 }
3859
3860 /* See target.h. */
3861
3862 void
3863 target_done_generating_core (void)
3864 {
3865 current_target.to_done_generating_core (&current_target);
3866 }
3867
3868 static void
3869 setup_target_debug (void)
3870 {
3871 memcpy (&debug_target, &current_target, sizeof debug_target);
3872
3873 init_debug_target (&current_target);
3874 }
3875 \f
3876
3877 static char targ_desc[] =
3878 "Names of targets and files being debugged.\nShows the entire \
3879 stack of targets currently in use (including the exec-file,\n\
3880 core-file, and process, if any), as well as the symbol file name.";
3881
3882 static void
3883 default_rcmd (struct target_ops *self, const char *command,
3884 struct ui_file *output)
3885 {
3886 error (_("\"monitor\" command not supported by this target."));
3887 }
3888
3889 static void
3890 do_monitor_command (const char *cmd, int from_tty)
3891 {
3892 target_rcmd (cmd, gdb_stdtarg);
3893 }
3894
3895 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3896 ignored. */
3897
3898 void
3899 flash_erase_command (const char *cmd, int from_tty)
3900 {
3901 /* Used to communicate termination of flash operations to the target. */
3902 bool found_flash_region = false;
3903 struct gdbarch *gdbarch = target_gdbarch ();
3904
3905 std::vector<mem_region> mem_regions = target_memory_map ();
3906
3907 /* Iterate over all memory regions. */
3908 for (const mem_region &m : mem_regions)
3909 {
3910 /* Is this a flash memory region? */
3911 if (m.attrib.mode == MEM_FLASH)
3912 {
3913 found_flash_region = true;
3914 target_flash_erase (m.lo, m.hi - m.lo);
3915
3916 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3917
3918 current_uiout->message (_("Erasing flash memory region at address "));
3919 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3920 current_uiout->message (", size = ");
3921 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3922 current_uiout->message ("\n");
3923 }
3924 }
3925
3926 /* Did we do any flash operations? If so, we need to finalize them. */
3927 if (found_flash_region)
3928 target_flash_done ();
3929 else
3930 current_uiout->message (_("No flash memory regions found.\n"));
3931 }
3932
3933 /* Print the name of each layers of our target stack. */
3934
3935 static void
3936 maintenance_print_target_stack (const char *cmd, int from_tty)
3937 {
3938 struct target_ops *t;
3939
3940 printf_filtered (_("The current target stack is:\n"));
3941
3942 for (t = target_stack; t != NULL; t = t->beneath)
3943 {
3944 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3945 }
3946 }
3947
3948 /* See target.h. */
3949
3950 void
3951 target_async (int enable)
3952 {
3953 infrun_async (enable);
3954 current_target.to_async (&current_target, enable);
3955 }
3956
3957 /* See target.h. */
3958
3959 void
3960 target_thread_events (int enable)
3961 {
3962 current_target.to_thread_events (&current_target, enable);
3963 }
3964
3965 /* Controls if targets can report that they can/are async. This is
3966 just for maintainers to use when debugging gdb. */
3967 int target_async_permitted = 1;
3968
3969 /* The set command writes to this variable. If the inferior is
3970 executing, target_async_permitted is *not* updated. */
3971 static int target_async_permitted_1 = 1;
3972
3973 static void
3974 maint_set_target_async_command (const char *args, int from_tty,
3975 struct cmd_list_element *c)
3976 {
3977 if (have_live_inferiors ())
3978 {
3979 target_async_permitted_1 = target_async_permitted;
3980 error (_("Cannot change this setting while the inferior is running."));
3981 }
3982
3983 target_async_permitted = target_async_permitted_1;
3984 }
3985
3986 static void
3987 maint_show_target_async_command (struct ui_file *file, int from_tty,
3988 struct cmd_list_element *c,
3989 const char *value)
3990 {
3991 fprintf_filtered (file,
3992 _("Controlling the inferior in "
3993 "asynchronous mode is %s.\n"), value);
3994 }
3995
3996 /* Return true if the target operates in non-stop mode even with "set
3997 non-stop off". */
3998
3999 static int
4000 target_always_non_stop_p (void)
4001 {
4002 return current_target.to_always_non_stop_p (&current_target);
4003 }
4004
4005 /* See target.h. */
4006
4007 int
4008 target_is_non_stop_p (void)
4009 {
4010 return (non_stop
4011 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
4012 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
4013 && target_always_non_stop_p ()));
4014 }
4015
4016 /* Controls if targets can report that they always run in non-stop
4017 mode. This is just for maintainers to use when debugging gdb. */
4018 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
4019
4020 /* The set command writes to this variable. If the inferior is
4021 executing, target_non_stop_enabled is *not* updated. */
4022 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
4023
4024 /* Implementation of "maint set target-non-stop". */
4025
4026 static void
4027 maint_set_target_non_stop_command (const char *args, int from_tty,
4028 struct cmd_list_element *c)
4029 {
4030 if (have_live_inferiors ())
4031 {
4032 target_non_stop_enabled_1 = target_non_stop_enabled;
4033 error (_("Cannot change this setting while the inferior is running."));
4034 }
4035
4036 target_non_stop_enabled = target_non_stop_enabled_1;
4037 }
4038
4039 /* Implementation of "maint show target-non-stop". */
4040
4041 static void
4042 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4043 struct cmd_list_element *c,
4044 const char *value)
4045 {
4046 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4047 fprintf_filtered (file,
4048 _("Whether the target is always in non-stop mode "
4049 "is %s (currently %s).\n"), value,
4050 target_always_non_stop_p () ? "on" : "off");
4051 else
4052 fprintf_filtered (file,
4053 _("Whether the target is always in non-stop mode "
4054 "is %s.\n"), value);
4055 }
4056
4057 /* Temporary copies of permission settings. */
4058
4059 static int may_write_registers_1 = 1;
4060 static int may_write_memory_1 = 1;
4061 static int may_insert_breakpoints_1 = 1;
4062 static int may_insert_tracepoints_1 = 1;
4063 static int may_insert_fast_tracepoints_1 = 1;
4064 static int may_stop_1 = 1;
4065
4066 /* Make the user-set values match the real values again. */
4067
4068 void
4069 update_target_permissions (void)
4070 {
4071 may_write_registers_1 = may_write_registers;
4072 may_write_memory_1 = may_write_memory;
4073 may_insert_breakpoints_1 = may_insert_breakpoints;
4074 may_insert_tracepoints_1 = may_insert_tracepoints;
4075 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4076 may_stop_1 = may_stop;
4077 }
4078
4079 /* The one function handles (most of) the permission flags in the same
4080 way. */
4081
4082 static void
4083 set_target_permissions (const char *args, int from_tty,
4084 struct cmd_list_element *c)
4085 {
4086 if (target_has_execution)
4087 {
4088 update_target_permissions ();
4089 error (_("Cannot change this setting while the inferior is running."));
4090 }
4091
4092 /* Make the real values match the user-changed values. */
4093 may_write_registers = may_write_registers_1;
4094 may_insert_breakpoints = may_insert_breakpoints_1;
4095 may_insert_tracepoints = may_insert_tracepoints_1;
4096 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4097 may_stop = may_stop_1;
4098 update_observer_mode ();
4099 }
4100
4101 /* Set memory write permission independently of observer mode. */
4102
4103 static void
4104 set_write_memory_permission (const char *args, int from_tty,
4105 struct cmd_list_element *c)
4106 {
4107 /* Make the real values match the user-changed values. */
4108 may_write_memory = may_write_memory_1;
4109 update_observer_mode ();
4110 }
4111
4112 #if GDB_SELF_TEST
4113 namespace selftests {
4114
4115 static int
4116 test_target_has_registers (target_ops *self)
4117 {
4118 return 1;
4119 }
4120
4121 static int
4122 test_target_has_stack (target_ops *self)
4123 {
4124 return 1;
4125 }
4126
4127 static int
4128 test_target_has_memory (target_ops *self)
4129 {
4130 return 1;
4131 }
4132
4133 static void
4134 test_target_prepare_to_store (target_ops *self, regcache *regs)
4135 {
4136 }
4137
4138 static void
4139 test_target_store_registers (target_ops *self, regcache *regs, int regno)
4140 {
4141 }
4142
4143 test_target_ops::test_target_ops ()
4144 : target_ops {}
4145 {
4146 to_magic = OPS_MAGIC;
4147 to_stratum = process_stratum;
4148 to_has_memory = test_target_has_memory;
4149 to_has_stack = test_target_has_stack;
4150 to_has_registers = test_target_has_registers;
4151 to_prepare_to_store = test_target_prepare_to_store;
4152 to_store_registers = test_target_store_registers;
4153
4154 complete_target_initialization (this);
4155 }
4156
4157 } // namespace selftests
4158 #endif /* GDB_SELF_TEST */
4159
4160 void
4161 initialize_targets (void)
4162 {
4163 init_dummy_target ();
4164 push_target (&dummy_target);
4165
4166 add_info ("target", info_target_command, targ_desc);
4167 add_info ("files", info_target_command, targ_desc);
4168
4169 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4170 Set target debugging."), _("\
4171 Show target debugging."), _("\
4172 When non-zero, target debugging is enabled. Higher numbers are more\n\
4173 verbose."),
4174 set_targetdebug,
4175 show_targetdebug,
4176 &setdebuglist, &showdebuglist);
4177
4178 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4179 &trust_readonly, _("\
4180 Set mode for reading from readonly sections."), _("\
4181 Show mode for reading from readonly sections."), _("\
4182 When this mode is on, memory reads from readonly sections (such as .text)\n\
4183 will be read from the object file instead of from the target. This will\n\
4184 result in significant performance improvement for remote targets."),
4185 NULL,
4186 show_trust_readonly,
4187 &setlist, &showlist);
4188
4189 add_com ("monitor", class_obscure, do_monitor_command,
4190 _("Send a command to the remote monitor (remote targets only)."));
4191
4192 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4193 _("Print the name of each layer of the internal target stack."),
4194 &maintenanceprintlist);
4195
4196 add_setshow_boolean_cmd ("target-async", no_class,
4197 &target_async_permitted_1, _("\
4198 Set whether gdb controls the inferior in asynchronous mode."), _("\
4199 Show whether gdb controls the inferior in asynchronous mode."), _("\
4200 Tells gdb whether to control the inferior in asynchronous mode."),
4201 maint_set_target_async_command,
4202 maint_show_target_async_command,
4203 &maintenance_set_cmdlist,
4204 &maintenance_show_cmdlist);
4205
4206 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4207 &target_non_stop_enabled_1, _("\
4208 Set whether gdb always controls the inferior in non-stop mode."), _("\
4209 Show whether gdb always controls the inferior in non-stop mode."), _("\
4210 Tells gdb whether to control the inferior in non-stop mode."),
4211 maint_set_target_non_stop_command,
4212 maint_show_target_non_stop_command,
4213 &maintenance_set_cmdlist,
4214 &maintenance_show_cmdlist);
4215
4216 add_setshow_boolean_cmd ("may-write-registers", class_support,
4217 &may_write_registers_1, _("\
4218 Set permission to write into registers."), _("\
4219 Show permission to write into registers."), _("\
4220 When this permission is on, GDB may write into the target's registers.\n\
4221 Otherwise, any sort of write attempt will result in an error."),
4222 set_target_permissions, NULL,
4223 &setlist, &showlist);
4224
4225 add_setshow_boolean_cmd ("may-write-memory", class_support,
4226 &may_write_memory_1, _("\
4227 Set permission to write into target memory."), _("\
4228 Show permission to write into target memory."), _("\
4229 When this permission is on, GDB may write into the target's memory.\n\
4230 Otherwise, any sort of write attempt will result in an error."),
4231 set_write_memory_permission, NULL,
4232 &setlist, &showlist);
4233
4234 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4235 &may_insert_breakpoints_1, _("\
4236 Set permission to insert breakpoints in the target."), _("\
4237 Show permission to insert breakpoints in the target."), _("\
4238 When this permission is on, GDB may insert breakpoints in the program.\n\
4239 Otherwise, any sort of insertion attempt will result in an error."),
4240 set_target_permissions, NULL,
4241 &setlist, &showlist);
4242
4243 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4244 &may_insert_tracepoints_1, _("\
4245 Set permission to insert tracepoints in the target."), _("\
4246 Show permission to insert tracepoints in the target."), _("\
4247 When this permission is on, GDB may insert tracepoints in the program.\n\
4248 Otherwise, any sort of insertion attempt will result in an error."),
4249 set_target_permissions, NULL,
4250 &setlist, &showlist);
4251
4252 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4253 &may_insert_fast_tracepoints_1, _("\
4254 Set permission to insert fast tracepoints in the target."), _("\
4255 Show permission to insert fast tracepoints in the target."), _("\
4256 When this permission is on, GDB may insert fast tracepoints.\n\
4257 Otherwise, any sort of insertion attempt will result in an error."),
4258 set_target_permissions, NULL,
4259 &setlist, &showlist);
4260
4261 add_setshow_boolean_cmd ("may-interrupt", class_support,
4262 &may_stop_1, _("\
4263 Set permission to interrupt or signal the target."), _("\
4264 Show permission to interrupt or signal the target."), _("\
4265 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4266 Otherwise, any attempt to interrupt or stop will be ignored."),
4267 set_target_permissions, NULL,
4268 &setlist, &showlist);
4269
4270 add_com ("flash-erase", no_class, flash_erase_command,
4271 _("Erase all flash memory regions."));
4272
4273 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4274 &auto_connect_native_target, _("\
4275 Set whether GDB may automatically connect to the native target."), _("\
4276 Show whether GDB may automatically connect to the native target."), _("\
4277 When on, and GDB is not connected to a target yet, GDB\n\
4278 attempts \"run\" and other commands with the native target."),
4279 NULL, show_auto_connect_native_target,
4280 &setlist, &showlist);
4281 }
This page took 0.194576 seconds and 4 git commands to generate.