Fix "Remote 'g' packet reply is too long" problems with multiple inferiors
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50
51 static void info_target_command (char *, int);
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static struct address_space *default_thread_address_space
85 (struct target_ops *self, ptid_t ptid);
86
87 static void tcomplain (void) ATTRIBUTE_NORETURN;
88
89 static int return_zero (struct target_ops *);
90
91 static int return_zero_has_execution (struct target_ops *, ptid_t);
92
93 static void target_command (char *, int);
94
95 static struct target_ops *find_default_run_target (const char *);
96
97 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
98 ptid_t ptid);
99
100 static int dummy_find_memory_regions (struct target_ops *self,
101 find_memory_region_ftype ignore1,
102 void *ignore2);
103
104 static char *dummy_make_corefile_notes (struct target_ops *self,
105 bfd *ignore1, int *ignore2);
106
107 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
108
109 static enum exec_direction_kind default_execution_direction
110 (struct target_ops *self);
111
112 static struct target_ops debug_target;
113
114 #include "target-delegates.c"
115
116 static void init_dummy_target (void);
117
118 static void update_current_target (void);
119
120 /* Vector of existing target structures. */
121 typedef struct target_ops *target_ops_p;
122 DEF_VEC_P (target_ops_p);
123 static VEC (target_ops_p) *target_structs;
124
125 /* The initial current target, so that there is always a semi-valid
126 current target. */
127
128 static struct target_ops dummy_target;
129
130 /* Top of target stack. */
131
132 static struct target_ops *target_stack;
133
134 /* The target structure we are currently using to talk to a process
135 or file or whatever "inferior" we have. */
136
137 struct target_ops current_target;
138
139 /* Command list for target. */
140
141 static struct cmd_list_element *targetlist = NULL;
142
143 /* Nonzero if we should trust readonly sections from the
144 executable when reading memory. */
145
146 static int trust_readonly = 0;
147
148 /* Nonzero if we should show true memory content including
149 memory breakpoint inserted by gdb. */
150
151 static int show_memory_breakpoints = 0;
152
153 /* These globals control whether GDB attempts to perform these
154 operations; they are useful for targets that need to prevent
155 inadvertant disruption, such as in non-stop mode. */
156
157 int may_write_registers = 1;
158
159 int may_write_memory = 1;
160
161 int may_insert_breakpoints = 1;
162
163 int may_insert_tracepoints = 1;
164
165 int may_insert_fast_tracepoints = 1;
166
167 int may_stop = 1;
168
169 /* Non-zero if we want to see trace of target level stuff. */
170
171 static unsigned int targetdebug = 0;
172
173 static void
174 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
175 {
176 update_current_target ();
177 }
178
179 static void
180 show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184 }
185
186 static void setup_target_debug (void);
187
188 /* The user just typed 'target' without the name of a target. */
189
190 static void
191 target_command (char *arg, int from_tty)
192 {
193 fputs_filtered ("Argument required (target name). Try `help target'\n",
194 gdb_stdout);
195 }
196
197 /* Default target_has_* methods for process_stratum targets. */
198
199 int
200 default_child_has_all_memory (struct target_ops *ops)
201 {
202 /* If no inferior selected, then we can't read memory here. */
203 if (ptid_equal (inferior_ptid, null_ptid))
204 return 0;
205
206 return 1;
207 }
208
209 int
210 default_child_has_memory (struct target_ops *ops)
211 {
212 /* If no inferior selected, then we can't read memory here. */
213 if (ptid_equal (inferior_ptid, null_ptid))
214 return 0;
215
216 return 1;
217 }
218
219 int
220 default_child_has_stack (struct target_ops *ops)
221 {
222 /* If no inferior selected, there's no stack. */
223 if (ptid_equal (inferior_ptid, null_ptid))
224 return 0;
225
226 return 1;
227 }
228
229 int
230 default_child_has_registers (struct target_ops *ops)
231 {
232 /* Can't read registers from no inferior. */
233 if (ptid_equal (inferior_ptid, null_ptid))
234 return 0;
235
236 return 1;
237 }
238
239 int
240 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
241 {
242 /* If there's no thread selected, then we can't make it run through
243 hoops. */
244 if (ptid_equal (the_ptid, null_ptid))
245 return 0;
246
247 return 1;
248 }
249
250
251 int
252 target_has_all_memory_1 (void)
253 {
254 struct target_ops *t;
255
256 for (t = current_target.beneath; t != NULL; t = t->beneath)
257 if (t->to_has_all_memory (t))
258 return 1;
259
260 return 0;
261 }
262
263 int
264 target_has_memory_1 (void)
265 {
266 struct target_ops *t;
267
268 for (t = current_target.beneath; t != NULL; t = t->beneath)
269 if (t->to_has_memory (t))
270 return 1;
271
272 return 0;
273 }
274
275 int
276 target_has_stack_1 (void)
277 {
278 struct target_ops *t;
279
280 for (t = current_target.beneath; t != NULL; t = t->beneath)
281 if (t->to_has_stack (t))
282 return 1;
283
284 return 0;
285 }
286
287 int
288 target_has_registers_1 (void)
289 {
290 struct target_ops *t;
291
292 for (t = current_target.beneath; t != NULL; t = t->beneath)
293 if (t->to_has_registers (t))
294 return 1;
295
296 return 0;
297 }
298
299 int
300 target_has_execution_1 (ptid_t the_ptid)
301 {
302 struct target_ops *t;
303
304 for (t = current_target.beneath; t != NULL; t = t->beneath)
305 if (t->to_has_execution (t, the_ptid))
306 return 1;
307
308 return 0;
309 }
310
311 int
312 target_has_execution_current (void)
313 {
314 return target_has_execution_1 (inferior_ptid);
315 }
316
317 /* Complete initialization of T. This ensures that various fields in
318 T are set, if needed by the target implementation. */
319
320 void
321 complete_target_initialization (struct target_ops *t)
322 {
323 /* Provide default values for all "must have" methods. */
324
325 if (t->to_has_all_memory == NULL)
326 t->to_has_all_memory = return_zero;
327
328 if (t->to_has_memory == NULL)
329 t->to_has_memory = return_zero;
330
331 if (t->to_has_stack == NULL)
332 t->to_has_stack = return_zero;
333
334 if (t->to_has_registers == NULL)
335 t->to_has_registers = return_zero;
336
337 if (t->to_has_execution == NULL)
338 t->to_has_execution = return_zero_has_execution;
339
340 /* These methods can be called on an unpushed target and so require
341 a default implementation if the target might plausibly be the
342 default run target. */
343 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
344 && t->to_supports_non_stop != NULL));
345
346 install_delegators (t);
347 }
348
349 /* This is used to implement the various target commands. */
350
351 static void
352 open_target (char *args, int from_tty, struct cmd_list_element *command)
353 {
354 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
355
356 if (targetdebug)
357 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
358 ops->to_shortname);
359
360 ops->to_open (args, from_tty);
361
362 if (targetdebug)
363 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
364 ops->to_shortname, args, from_tty);
365 }
366
367 /* Add possible target architecture T to the list and add a new
368 command 'target T->to_shortname'. Set COMPLETER as the command's
369 completer if not NULL. */
370
371 void
372 add_target_with_completer (struct target_ops *t,
373 completer_ftype *completer)
374 {
375 struct cmd_list_element *c;
376
377 complete_target_initialization (t);
378
379 VEC_safe_push (target_ops_p, target_structs, t);
380
381 if (targetlist == NULL)
382 add_prefix_cmd ("target", class_run, target_command, _("\
383 Connect to a target machine or process.\n\
384 The first argument is the type or protocol of the target machine.\n\
385 Remaining arguments are interpreted by the target protocol. For more\n\
386 information on the arguments for a particular protocol, type\n\
387 `help target ' followed by the protocol name."),
388 &targetlist, "target ", 0, &cmdlist);
389 c = add_cmd (t->to_shortname, no_class, t->to_doc, &targetlist);
390 set_cmd_sfunc (c, open_target);
391 set_cmd_context (c, t);
392 if (completer != NULL)
393 set_cmd_completer (c, completer);
394 }
395
396 /* Add a possible target architecture to the list. */
397
398 void
399 add_target (struct target_ops *t)
400 {
401 add_target_with_completer (t, NULL);
402 }
403
404 /* See target.h. */
405
406 void
407 add_deprecated_target_alias (struct target_ops *t, const char *alias)
408 {
409 struct cmd_list_element *c;
410 char *alt;
411
412 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
413 see PR cli/15104. */
414 c = add_cmd (alias, no_class, t->to_doc, &targetlist);
415 set_cmd_sfunc (c, open_target);
416 set_cmd_context (c, t);
417 alt = xstrprintf ("target %s", t->to_shortname);
418 deprecate_cmd (c, alt);
419 }
420
421 /* Stub functions */
422
423 void
424 target_kill (void)
425 {
426 current_target.to_kill (&current_target);
427 }
428
429 void
430 target_load (const char *arg, int from_tty)
431 {
432 target_dcache_invalidate ();
433 (*current_target.to_load) (&current_target, arg, from_tty);
434 }
435
436 /* Define it. */
437
438 enum target_terminal::terminal_state target_terminal::terminal_state
439 = target_terminal::terminal_is_ours;
440
441 /* See target/target.h. */
442
443 void
444 target_terminal::init (void)
445 {
446 (*current_target.to_terminal_init) (&current_target);
447
448 terminal_state = terminal_is_ours;
449 }
450
451 /* See target/target.h. */
452
453 void
454 target_terminal::inferior (void)
455 {
456 struct ui *ui = current_ui;
457
458 /* A background resume (``run&'') should leave GDB in control of the
459 terminal. */
460 if (ui->prompt_state != PROMPT_BLOCKED)
461 return;
462
463 /* Since we always run the inferior in the main console (unless "set
464 inferior-tty" is in effect), when some UI other than the main one
465 calls target_terminal::inferior, then we leave the main UI's
466 terminal settings as is. */
467 if (ui != main_ui)
468 return;
469
470 if (terminal_state == terminal_is_inferior)
471 return;
472
473 /* If GDB is resuming the inferior in the foreground, install
474 inferior's terminal modes. */
475 (*current_target.to_terminal_inferior) (&current_target);
476 terminal_state = terminal_is_inferior;
477
478 /* If the user hit C-c before, pretend that it was hit right
479 here. */
480 if (check_quit_flag ())
481 target_pass_ctrlc ();
482 }
483
484 /* See target/target.h. */
485
486 void
487 target_terminal::ours ()
488 {
489 struct ui *ui = current_ui;
490
491 /* See target_terminal::inferior. */
492 if (ui != main_ui)
493 return;
494
495 if (terminal_state == terminal_is_ours)
496 return;
497
498 (*current_target.to_terminal_ours) (&current_target);
499 terminal_state = terminal_is_ours;
500 }
501
502 /* See target/target.h. */
503
504 void
505 target_terminal::ours_for_output ()
506 {
507 struct ui *ui = current_ui;
508
509 /* See target_terminal::inferior. */
510 if (ui != main_ui)
511 return;
512
513 if (terminal_state != terminal_is_inferior)
514 return;
515 (*current_target.to_terminal_ours_for_output) (&current_target);
516 terminal_state = terminal_is_ours_for_output;
517 }
518
519 /* See target/target.h. */
520
521 void
522 target_terminal::info (const char *arg, int from_tty)
523 {
524 (*current_target.to_terminal_info) (&current_target, arg, from_tty);
525 }
526
527 /* See target.h. */
528
529 int
530 target_supports_terminal_ours (void)
531 {
532 struct target_ops *t;
533
534 for (t = current_target.beneath; t != NULL; t = t->beneath)
535 {
536 if (t->to_terminal_ours != delegate_terminal_ours
537 && t->to_terminal_ours != tdefault_terminal_ours)
538 return 1;
539 }
540
541 return 0;
542 }
543
544 static void
545 tcomplain (void)
546 {
547 error (_("You can't do that when your target is `%s'"),
548 current_target.to_shortname);
549 }
550
551 void
552 noprocess (void)
553 {
554 error (_("You can't do that without a process to debug."));
555 }
556
557 static void
558 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
559 {
560 printf_unfiltered (_("No saved terminal information.\n"));
561 }
562
563 /* A default implementation for the to_get_ada_task_ptid target method.
564
565 This function builds the PTID by using both LWP and TID as part of
566 the PTID lwp and tid elements. The pid used is the pid of the
567 inferior_ptid. */
568
569 static ptid_t
570 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
571 {
572 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
573 }
574
575 static enum exec_direction_kind
576 default_execution_direction (struct target_ops *self)
577 {
578 if (!target_can_execute_reverse)
579 return EXEC_FORWARD;
580 else if (!target_can_async_p ())
581 return EXEC_FORWARD;
582 else
583 gdb_assert_not_reached ("\
584 to_execution_direction must be implemented for reverse async");
585 }
586
587 /* Go through the target stack from top to bottom, copying over zero
588 entries in current_target, then filling in still empty entries. In
589 effect, we are doing class inheritance through the pushed target
590 vectors.
591
592 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
593 is currently implemented, is that it discards any knowledge of
594 which target an inherited method originally belonged to.
595 Consequently, new new target methods should instead explicitly and
596 locally search the target stack for the target that can handle the
597 request. */
598
599 static void
600 update_current_target (void)
601 {
602 struct target_ops *t;
603
604 /* First, reset current's contents. */
605 memset (&current_target, 0, sizeof (current_target));
606
607 /* Install the delegators. */
608 install_delegators (&current_target);
609
610 current_target.to_stratum = target_stack->to_stratum;
611
612 #define INHERIT(FIELD, TARGET) \
613 if (!current_target.FIELD) \
614 current_target.FIELD = (TARGET)->FIELD
615
616 /* Do not add any new INHERITs here. Instead, use the delegation
617 mechanism provided by make-target-delegates. */
618 for (t = target_stack; t; t = t->beneath)
619 {
620 INHERIT (to_shortname, t);
621 INHERIT (to_longname, t);
622 INHERIT (to_attach_no_wait, t);
623 INHERIT (to_have_steppable_watchpoint, t);
624 INHERIT (to_have_continuable_watchpoint, t);
625 INHERIT (to_has_thread_control, t);
626 }
627 #undef INHERIT
628
629 /* Finally, position the target-stack beneath the squashed
630 "current_target". That way code looking for a non-inherited
631 target method can quickly and simply find it. */
632 current_target.beneath = target_stack;
633
634 if (targetdebug)
635 setup_target_debug ();
636 }
637
638 /* Push a new target type into the stack of the existing target accessors,
639 possibly superseding some of the existing accessors.
640
641 Rather than allow an empty stack, we always have the dummy target at
642 the bottom stratum, so we can call the function vectors without
643 checking them. */
644
645 void
646 push_target (struct target_ops *t)
647 {
648 struct target_ops **cur;
649
650 /* Check magic number. If wrong, it probably means someone changed
651 the struct definition, but not all the places that initialize one. */
652 if (t->to_magic != OPS_MAGIC)
653 {
654 fprintf_unfiltered (gdb_stderr,
655 "Magic number of %s target struct wrong\n",
656 t->to_shortname);
657 internal_error (__FILE__, __LINE__,
658 _("failed internal consistency check"));
659 }
660
661 /* Find the proper stratum to install this target in. */
662 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
663 {
664 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
665 break;
666 }
667
668 /* If there's already targets at this stratum, remove them. */
669 /* FIXME: cagney/2003-10-15: I think this should be popping all
670 targets to CUR, and not just those at this stratum level. */
671 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
672 {
673 /* There's already something at this stratum level. Close it,
674 and un-hook it from the stack. */
675 struct target_ops *tmp = (*cur);
676
677 (*cur) = (*cur)->beneath;
678 tmp->beneath = NULL;
679 target_close (tmp);
680 }
681
682 /* We have removed all targets in our stratum, now add the new one. */
683 t->beneath = (*cur);
684 (*cur) = t;
685
686 update_current_target ();
687 }
688
689 /* Remove a target_ops vector from the stack, wherever it may be.
690 Return how many times it was removed (0 or 1). */
691
692 int
693 unpush_target (struct target_ops *t)
694 {
695 struct target_ops **cur;
696 struct target_ops *tmp;
697
698 if (t->to_stratum == dummy_stratum)
699 internal_error (__FILE__, __LINE__,
700 _("Attempt to unpush the dummy target"));
701
702 /* Look for the specified target. Note that we assume that a target
703 can only occur once in the target stack. */
704
705 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
706 {
707 if ((*cur) == t)
708 break;
709 }
710
711 /* If we don't find target_ops, quit. Only open targets should be
712 closed. */
713 if ((*cur) == NULL)
714 return 0;
715
716 /* Unchain the target. */
717 tmp = (*cur);
718 (*cur) = (*cur)->beneath;
719 tmp->beneath = NULL;
720
721 update_current_target ();
722
723 /* Finally close the target. Note we do this after unchaining, so
724 any target method calls from within the target_close
725 implementation don't end up in T anymore. */
726 target_close (t);
727
728 return 1;
729 }
730
731 /* Unpush TARGET and assert that it worked. */
732
733 static void
734 unpush_target_and_assert (struct target_ops *target)
735 {
736 if (!unpush_target (target))
737 {
738 fprintf_unfiltered (gdb_stderr,
739 "pop_all_targets couldn't find target %s\n",
740 target->to_shortname);
741 internal_error (__FILE__, __LINE__,
742 _("failed internal consistency check"));
743 }
744 }
745
746 void
747 pop_all_targets_above (enum strata above_stratum)
748 {
749 while ((int) (current_target.to_stratum) > (int) above_stratum)
750 unpush_target_and_assert (target_stack);
751 }
752
753 /* See target.h. */
754
755 void
756 pop_all_targets_at_and_above (enum strata stratum)
757 {
758 while ((int) (current_target.to_stratum) >= (int) stratum)
759 unpush_target_and_assert (target_stack);
760 }
761
762 void
763 pop_all_targets (void)
764 {
765 pop_all_targets_above (dummy_stratum);
766 }
767
768 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
769
770 int
771 target_is_pushed (struct target_ops *t)
772 {
773 struct target_ops *cur;
774
775 /* Check magic number. If wrong, it probably means someone changed
776 the struct definition, but not all the places that initialize one. */
777 if (t->to_magic != OPS_MAGIC)
778 {
779 fprintf_unfiltered (gdb_stderr,
780 "Magic number of %s target struct wrong\n",
781 t->to_shortname);
782 internal_error (__FILE__, __LINE__,
783 _("failed internal consistency check"));
784 }
785
786 for (cur = target_stack; cur != NULL; cur = cur->beneath)
787 if (cur == t)
788 return 1;
789
790 return 0;
791 }
792
793 /* Default implementation of to_get_thread_local_address. */
794
795 static void
796 generic_tls_error (void)
797 {
798 throw_error (TLS_GENERIC_ERROR,
799 _("Cannot find thread-local variables on this target"));
800 }
801
802 /* Using the objfile specified in OBJFILE, find the address for the
803 current thread's thread-local storage with offset OFFSET. */
804 CORE_ADDR
805 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
806 {
807 volatile CORE_ADDR addr = 0;
808 struct target_ops *target = &current_target;
809
810 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
811 {
812 ptid_t ptid = inferior_ptid;
813
814 TRY
815 {
816 CORE_ADDR lm_addr;
817
818 /* Fetch the load module address for this objfile. */
819 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
820 objfile);
821
822 addr = target->to_get_thread_local_address (target, ptid,
823 lm_addr, offset);
824 }
825 /* If an error occurred, print TLS related messages here. Otherwise,
826 throw the error to some higher catcher. */
827 CATCH (ex, RETURN_MASK_ALL)
828 {
829 int objfile_is_library = (objfile->flags & OBJF_SHARED);
830
831 switch (ex.error)
832 {
833 case TLS_NO_LIBRARY_SUPPORT_ERROR:
834 error (_("Cannot find thread-local variables "
835 "in this thread library."));
836 break;
837 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
838 if (objfile_is_library)
839 error (_("Cannot find shared library `%s' in dynamic"
840 " linker's load module list"), objfile_name (objfile));
841 else
842 error (_("Cannot find executable file `%s' in dynamic"
843 " linker's load module list"), objfile_name (objfile));
844 break;
845 case TLS_NOT_ALLOCATED_YET_ERROR:
846 if (objfile_is_library)
847 error (_("The inferior has not yet allocated storage for"
848 " thread-local variables in\n"
849 "the shared library `%s'\n"
850 "for %s"),
851 objfile_name (objfile), target_pid_to_str (ptid));
852 else
853 error (_("The inferior has not yet allocated storage for"
854 " thread-local variables in\n"
855 "the executable `%s'\n"
856 "for %s"),
857 objfile_name (objfile), target_pid_to_str (ptid));
858 break;
859 case TLS_GENERIC_ERROR:
860 if (objfile_is_library)
861 error (_("Cannot find thread-local storage for %s, "
862 "shared library %s:\n%s"),
863 target_pid_to_str (ptid),
864 objfile_name (objfile), ex.message);
865 else
866 error (_("Cannot find thread-local storage for %s, "
867 "executable file %s:\n%s"),
868 target_pid_to_str (ptid),
869 objfile_name (objfile), ex.message);
870 break;
871 default:
872 throw_exception (ex);
873 break;
874 }
875 }
876 END_CATCH
877 }
878 /* It wouldn't be wrong here to try a gdbarch method, too; finding
879 TLS is an ABI-specific thing. But we don't do that yet. */
880 else
881 error (_("Cannot find thread-local variables on this target"));
882
883 return addr;
884 }
885
886 const char *
887 target_xfer_status_to_string (enum target_xfer_status status)
888 {
889 #define CASE(X) case X: return #X
890 switch (status)
891 {
892 CASE(TARGET_XFER_E_IO);
893 CASE(TARGET_XFER_UNAVAILABLE);
894 default:
895 return "<unknown>";
896 }
897 #undef CASE
898 };
899
900
901 #undef MIN
902 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
903
904 /* target_read_string -- read a null terminated string, up to LEN bytes,
905 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
906 Set *STRING to a pointer to malloc'd memory containing the data; the caller
907 is responsible for freeing it. Return the number of bytes successfully
908 read. */
909
910 int
911 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
912 {
913 int tlen, offset, i;
914 gdb_byte buf[4];
915 int errcode = 0;
916 char *buffer;
917 int buffer_allocated;
918 char *bufptr;
919 unsigned int nbytes_read = 0;
920
921 gdb_assert (string);
922
923 /* Small for testing. */
924 buffer_allocated = 4;
925 buffer = (char *) xmalloc (buffer_allocated);
926 bufptr = buffer;
927
928 while (len > 0)
929 {
930 tlen = MIN (len, 4 - (memaddr & 3));
931 offset = memaddr & 3;
932
933 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
934 if (errcode != 0)
935 {
936 /* The transfer request might have crossed the boundary to an
937 unallocated region of memory. Retry the transfer, requesting
938 a single byte. */
939 tlen = 1;
940 offset = 0;
941 errcode = target_read_memory (memaddr, buf, 1);
942 if (errcode != 0)
943 goto done;
944 }
945
946 if (bufptr - buffer + tlen > buffer_allocated)
947 {
948 unsigned int bytes;
949
950 bytes = bufptr - buffer;
951 buffer_allocated *= 2;
952 buffer = (char *) xrealloc (buffer, buffer_allocated);
953 bufptr = buffer + bytes;
954 }
955
956 for (i = 0; i < tlen; i++)
957 {
958 *bufptr++ = buf[i + offset];
959 if (buf[i + offset] == '\000')
960 {
961 nbytes_read += i + 1;
962 goto done;
963 }
964 }
965
966 memaddr += tlen;
967 len -= tlen;
968 nbytes_read += tlen;
969 }
970 done:
971 *string = buffer;
972 if (errnop != NULL)
973 *errnop = errcode;
974 return nbytes_read;
975 }
976
977 struct target_section_table *
978 target_get_section_table (struct target_ops *target)
979 {
980 return (*target->to_get_section_table) (target);
981 }
982
983 /* Find a section containing ADDR. */
984
985 struct target_section *
986 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
987 {
988 struct target_section_table *table = target_get_section_table (target);
989 struct target_section *secp;
990
991 if (table == NULL)
992 return NULL;
993
994 for (secp = table->sections; secp < table->sections_end; secp++)
995 {
996 if (addr >= secp->addr && addr < secp->endaddr)
997 return secp;
998 }
999 return NULL;
1000 }
1001
1002
1003 /* Helper for the memory xfer routines. Checks the attributes of the
1004 memory region of MEMADDR against the read or write being attempted.
1005 If the access is permitted returns true, otherwise returns false.
1006 REGION_P is an optional output parameter. If not-NULL, it is
1007 filled with a pointer to the memory region of MEMADDR. REG_LEN
1008 returns LEN trimmed to the end of the region. This is how much the
1009 caller can continue requesting, if the access is permitted. A
1010 single xfer request must not straddle memory region boundaries. */
1011
1012 static int
1013 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1014 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1015 struct mem_region **region_p)
1016 {
1017 struct mem_region *region;
1018
1019 region = lookup_mem_region (memaddr);
1020
1021 if (region_p != NULL)
1022 *region_p = region;
1023
1024 switch (region->attrib.mode)
1025 {
1026 case MEM_RO:
1027 if (writebuf != NULL)
1028 return 0;
1029 break;
1030
1031 case MEM_WO:
1032 if (readbuf != NULL)
1033 return 0;
1034 break;
1035
1036 case MEM_FLASH:
1037 /* We only support writing to flash during "load" for now. */
1038 if (writebuf != NULL)
1039 error (_("Writing to flash memory forbidden in this context"));
1040 break;
1041
1042 case MEM_NONE:
1043 return 0;
1044 }
1045
1046 /* region->hi == 0 means there's no upper bound. */
1047 if (memaddr + len < region->hi || region->hi == 0)
1048 *reg_len = len;
1049 else
1050 *reg_len = region->hi - memaddr;
1051
1052 return 1;
1053 }
1054
1055 /* Read memory from more than one valid target. A core file, for
1056 instance, could have some of memory but delegate other bits to
1057 the target below it. So, we must manually try all targets. */
1058
1059 enum target_xfer_status
1060 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1061 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1062 ULONGEST *xfered_len)
1063 {
1064 enum target_xfer_status res;
1065
1066 do
1067 {
1068 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1069 readbuf, writebuf, memaddr, len,
1070 xfered_len);
1071 if (res == TARGET_XFER_OK)
1072 break;
1073
1074 /* Stop if the target reports that the memory is not available. */
1075 if (res == TARGET_XFER_UNAVAILABLE)
1076 break;
1077
1078 /* We want to continue past core files to executables, but not
1079 past a running target's memory. */
1080 if (ops->to_has_all_memory (ops))
1081 break;
1082
1083 ops = ops->beneath;
1084 }
1085 while (ops != NULL);
1086
1087 /* The cache works at the raw memory level. Make sure the cache
1088 gets updated with raw contents no matter what kind of memory
1089 object was originally being written. Note we do write-through
1090 first, so that if it fails, we don't write to the cache contents
1091 that never made it to the target. */
1092 if (writebuf != NULL
1093 && !ptid_equal (inferior_ptid, null_ptid)
1094 && target_dcache_init_p ()
1095 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1096 {
1097 DCACHE *dcache = target_dcache_get ();
1098
1099 /* Note that writing to an area of memory which wasn't present
1100 in the cache doesn't cause it to be loaded in. */
1101 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1102 }
1103
1104 return res;
1105 }
1106
1107 /* Perform a partial memory transfer.
1108 For docs see target.h, to_xfer_partial. */
1109
1110 static enum target_xfer_status
1111 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1112 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1113 ULONGEST len, ULONGEST *xfered_len)
1114 {
1115 enum target_xfer_status res;
1116 ULONGEST reg_len;
1117 struct mem_region *region;
1118 struct inferior *inf;
1119
1120 /* For accesses to unmapped overlay sections, read directly from
1121 files. Must do this first, as MEMADDR may need adjustment. */
1122 if (readbuf != NULL && overlay_debugging)
1123 {
1124 struct obj_section *section = find_pc_overlay (memaddr);
1125
1126 if (pc_in_unmapped_range (memaddr, section))
1127 {
1128 struct target_section_table *table
1129 = target_get_section_table (ops);
1130 const char *section_name = section->the_bfd_section->name;
1131
1132 memaddr = overlay_mapped_address (memaddr, section);
1133 return section_table_xfer_memory_partial (readbuf, writebuf,
1134 memaddr, len, xfered_len,
1135 table->sections,
1136 table->sections_end,
1137 section_name);
1138 }
1139 }
1140
1141 /* Try the executable files, if "trust-readonly-sections" is set. */
1142 if (readbuf != NULL && trust_readonly)
1143 {
1144 struct target_section *secp;
1145 struct target_section_table *table;
1146
1147 secp = target_section_by_addr (ops, memaddr);
1148 if (secp != NULL
1149 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1150 secp->the_bfd_section)
1151 & SEC_READONLY))
1152 {
1153 table = target_get_section_table (ops);
1154 return section_table_xfer_memory_partial (readbuf, writebuf,
1155 memaddr, len, xfered_len,
1156 table->sections,
1157 table->sections_end,
1158 NULL);
1159 }
1160 }
1161
1162 /* Try GDB's internal data cache. */
1163
1164 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1165 &region))
1166 return TARGET_XFER_E_IO;
1167
1168 if (!ptid_equal (inferior_ptid, null_ptid))
1169 inf = find_inferior_ptid (inferior_ptid);
1170 else
1171 inf = NULL;
1172
1173 if (inf != NULL
1174 && readbuf != NULL
1175 /* The dcache reads whole cache lines; that doesn't play well
1176 with reading from a trace buffer, because reading outside of
1177 the collected memory range fails. */
1178 && get_traceframe_number () == -1
1179 && (region->attrib.cache
1180 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1181 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1182 {
1183 DCACHE *dcache = target_dcache_get_or_init ();
1184
1185 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1186 reg_len, xfered_len);
1187 }
1188
1189 /* If none of those methods found the memory we wanted, fall back
1190 to a target partial transfer. Normally a single call to
1191 to_xfer_partial is enough; if it doesn't recognize an object
1192 it will call the to_xfer_partial of the next target down.
1193 But for memory this won't do. Memory is the only target
1194 object which can be read from more than one valid target.
1195 A core file, for instance, could have some of memory but
1196 delegate other bits to the target below it. So, we must
1197 manually try all targets. */
1198
1199 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1200 xfered_len);
1201
1202 /* If we still haven't got anything, return the last error. We
1203 give up. */
1204 return res;
1205 }
1206
1207 /* Perform a partial memory transfer. For docs see target.h,
1208 to_xfer_partial. */
1209
1210 static enum target_xfer_status
1211 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1212 gdb_byte *readbuf, const gdb_byte *writebuf,
1213 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1214 {
1215 enum target_xfer_status res;
1216
1217 /* Zero length requests are ok and require no work. */
1218 if (len == 0)
1219 return TARGET_XFER_EOF;
1220
1221 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1222 breakpoint insns, thus hiding out from higher layers whether
1223 there are software breakpoints inserted in the code stream. */
1224 if (readbuf != NULL)
1225 {
1226 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1227 xfered_len);
1228
1229 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1230 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1231 }
1232 else
1233 {
1234 /* A large write request is likely to be partially satisfied
1235 by memory_xfer_partial_1. We will continually malloc
1236 and free a copy of the entire write request for breakpoint
1237 shadow handling even though we only end up writing a small
1238 subset of it. Cap writes to a limit specified by the target
1239 to mitigate this. */
1240 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1241
1242 gdb::byte_vector buf (writebuf, writebuf + len);
1243 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1244 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1245 xfered_len);
1246 }
1247
1248 return res;
1249 }
1250
1251 scoped_restore_tmpl<int>
1252 make_scoped_restore_show_memory_breakpoints (int show)
1253 {
1254 return make_scoped_restore (&show_memory_breakpoints, show);
1255 }
1256
1257 /* For docs see target.h, to_xfer_partial. */
1258
1259 enum target_xfer_status
1260 target_xfer_partial (struct target_ops *ops,
1261 enum target_object object, const char *annex,
1262 gdb_byte *readbuf, const gdb_byte *writebuf,
1263 ULONGEST offset, ULONGEST len,
1264 ULONGEST *xfered_len)
1265 {
1266 enum target_xfer_status retval;
1267
1268 gdb_assert (ops->to_xfer_partial != NULL);
1269
1270 /* Transfer is done when LEN is zero. */
1271 if (len == 0)
1272 return TARGET_XFER_EOF;
1273
1274 if (writebuf && !may_write_memory)
1275 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1276 core_addr_to_string_nz (offset), plongest (len));
1277
1278 *xfered_len = 0;
1279
1280 /* If this is a memory transfer, let the memory-specific code
1281 have a look at it instead. Memory transfers are more
1282 complicated. */
1283 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1284 || object == TARGET_OBJECT_CODE_MEMORY)
1285 retval = memory_xfer_partial (ops, object, readbuf,
1286 writebuf, offset, len, xfered_len);
1287 else if (object == TARGET_OBJECT_RAW_MEMORY)
1288 {
1289 /* Skip/avoid accessing the target if the memory region
1290 attributes block the access. Check this here instead of in
1291 raw_memory_xfer_partial as otherwise we'd end up checking
1292 this twice in the case of the memory_xfer_partial path is
1293 taken; once before checking the dcache, and another in the
1294 tail call to raw_memory_xfer_partial. */
1295 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1296 NULL))
1297 return TARGET_XFER_E_IO;
1298
1299 /* Request the normal memory object from other layers. */
1300 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1301 xfered_len);
1302 }
1303 else
1304 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1305 writebuf, offset, len, xfered_len);
1306
1307 if (targetdebug)
1308 {
1309 const unsigned char *myaddr = NULL;
1310
1311 fprintf_unfiltered (gdb_stdlog,
1312 "%s:target_xfer_partial "
1313 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1314 ops->to_shortname,
1315 (int) object,
1316 (annex ? annex : "(null)"),
1317 host_address_to_string (readbuf),
1318 host_address_to_string (writebuf),
1319 core_addr_to_string_nz (offset),
1320 pulongest (len), retval,
1321 pulongest (*xfered_len));
1322
1323 if (readbuf)
1324 myaddr = readbuf;
1325 if (writebuf)
1326 myaddr = writebuf;
1327 if (retval == TARGET_XFER_OK && myaddr != NULL)
1328 {
1329 int i;
1330
1331 fputs_unfiltered (", bytes =", gdb_stdlog);
1332 for (i = 0; i < *xfered_len; i++)
1333 {
1334 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1335 {
1336 if (targetdebug < 2 && i > 0)
1337 {
1338 fprintf_unfiltered (gdb_stdlog, " ...");
1339 break;
1340 }
1341 fprintf_unfiltered (gdb_stdlog, "\n");
1342 }
1343
1344 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1345 }
1346 }
1347
1348 fputc_unfiltered ('\n', gdb_stdlog);
1349 }
1350
1351 /* Check implementations of to_xfer_partial update *XFERED_LEN
1352 properly. Do assertion after printing debug messages, so that we
1353 can find more clues on assertion failure from debugging messages. */
1354 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1355 gdb_assert (*xfered_len > 0);
1356
1357 return retval;
1358 }
1359
1360 /* Read LEN bytes of target memory at address MEMADDR, placing the
1361 results in GDB's memory at MYADDR. Returns either 0 for success or
1362 -1 if any error occurs.
1363
1364 If an error occurs, no guarantee is made about the contents of the data at
1365 MYADDR. In particular, the caller should not depend upon partial reads
1366 filling the buffer with good data. There is no way for the caller to know
1367 how much good data might have been transfered anyway. Callers that can
1368 deal with partial reads should call target_read (which will retry until
1369 it makes no progress, and then return how much was transferred). */
1370
1371 int
1372 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1373 {
1374 /* Dispatch to the topmost target, not the flattened current_target.
1375 Memory accesses check target->to_has_(all_)memory, and the
1376 flattened target doesn't inherit those. */
1377 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1378 myaddr, memaddr, len) == len)
1379 return 0;
1380 else
1381 return -1;
1382 }
1383
1384 /* See target/target.h. */
1385
1386 int
1387 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1388 {
1389 gdb_byte buf[4];
1390 int r;
1391
1392 r = target_read_memory (memaddr, buf, sizeof buf);
1393 if (r != 0)
1394 return r;
1395 *result = extract_unsigned_integer (buf, sizeof buf,
1396 gdbarch_byte_order (target_gdbarch ()));
1397 return 0;
1398 }
1399
1400 /* Like target_read_memory, but specify explicitly that this is a read
1401 from the target's raw memory. That is, this read bypasses the
1402 dcache, breakpoint shadowing, etc. */
1403
1404 int
1405 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1406 {
1407 /* See comment in target_read_memory about why the request starts at
1408 current_target.beneath. */
1409 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1410 myaddr, memaddr, len) == len)
1411 return 0;
1412 else
1413 return -1;
1414 }
1415
1416 /* Like target_read_memory, but specify explicitly that this is a read from
1417 the target's stack. This may trigger different cache behavior. */
1418
1419 int
1420 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1421 {
1422 /* See comment in target_read_memory about why the request starts at
1423 current_target.beneath. */
1424 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1425 myaddr, memaddr, len) == len)
1426 return 0;
1427 else
1428 return -1;
1429 }
1430
1431 /* Like target_read_memory, but specify explicitly that this is a read from
1432 the target's code. This may trigger different cache behavior. */
1433
1434 int
1435 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1436 {
1437 /* See comment in target_read_memory about why the request starts at
1438 current_target.beneath. */
1439 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1440 myaddr, memaddr, len) == len)
1441 return 0;
1442 else
1443 return -1;
1444 }
1445
1446 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1447 Returns either 0 for success or -1 if any error occurs. If an
1448 error occurs, no guarantee is made about how much data got written.
1449 Callers that can deal with partial writes should call
1450 target_write. */
1451
1452 int
1453 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1454 {
1455 /* See comment in target_read_memory about why the request starts at
1456 current_target.beneath. */
1457 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1458 myaddr, memaddr, len) == len)
1459 return 0;
1460 else
1461 return -1;
1462 }
1463
1464 /* Write LEN bytes from MYADDR to target raw memory at address
1465 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1466 If an error occurs, no guarantee is made about how much data got
1467 written. Callers that can deal with partial writes should call
1468 target_write. */
1469
1470 int
1471 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1472 {
1473 /* See comment in target_read_memory about why the request starts at
1474 current_target.beneath. */
1475 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1476 myaddr, memaddr, len) == len)
1477 return 0;
1478 else
1479 return -1;
1480 }
1481
1482 /* Fetch the target's memory map. */
1483
1484 VEC(mem_region_s) *
1485 target_memory_map (void)
1486 {
1487 VEC(mem_region_s) *result;
1488 struct mem_region *last_one, *this_one;
1489 int ix;
1490 result = current_target.to_memory_map (&current_target);
1491 if (result == NULL)
1492 return NULL;
1493
1494 qsort (VEC_address (mem_region_s, result),
1495 VEC_length (mem_region_s, result),
1496 sizeof (struct mem_region), mem_region_cmp);
1497
1498 /* Check that regions do not overlap. Simultaneously assign
1499 a numbering for the "mem" commands to use to refer to
1500 each region. */
1501 last_one = NULL;
1502 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1503 {
1504 this_one->number = ix;
1505
1506 if (last_one && last_one->hi > this_one->lo)
1507 {
1508 warning (_("Overlapping regions in memory map: ignoring"));
1509 VEC_free (mem_region_s, result);
1510 return NULL;
1511 }
1512 last_one = this_one;
1513 }
1514
1515 return result;
1516 }
1517
1518 void
1519 target_flash_erase (ULONGEST address, LONGEST length)
1520 {
1521 current_target.to_flash_erase (&current_target, address, length);
1522 }
1523
1524 void
1525 target_flash_done (void)
1526 {
1527 current_target.to_flash_done (&current_target);
1528 }
1529
1530 static void
1531 show_trust_readonly (struct ui_file *file, int from_tty,
1532 struct cmd_list_element *c, const char *value)
1533 {
1534 fprintf_filtered (file,
1535 _("Mode for reading from readonly sections is %s.\n"),
1536 value);
1537 }
1538
1539 /* Target vector read/write partial wrapper functions. */
1540
1541 static enum target_xfer_status
1542 target_read_partial (struct target_ops *ops,
1543 enum target_object object,
1544 const char *annex, gdb_byte *buf,
1545 ULONGEST offset, ULONGEST len,
1546 ULONGEST *xfered_len)
1547 {
1548 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1549 xfered_len);
1550 }
1551
1552 static enum target_xfer_status
1553 target_write_partial (struct target_ops *ops,
1554 enum target_object object,
1555 const char *annex, const gdb_byte *buf,
1556 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1557 {
1558 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1559 xfered_len);
1560 }
1561
1562 /* Wrappers to perform the full transfer. */
1563
1564 /* For docs on target_read see target.h. */
1565
1566 LONGEST
1567 target_read (struct target_ops *ops,
1568 enum target_object object,
1569 const char *annex, gdb_byte *buf,
1570 ULONGEST offset, LONGEST len)
1571 {
1572 LONGEST xfered_total = 0;
1573 int unit_size = 1;
1574
1575 /* If we are reading from a memory object, find the length of an addressable
1576 unit for that architecture. */
1577 if (object == TARGET_OBJECT_MEMORY
1578 || object == TARGET_OBJECT_STACK_MEMORY
1579 || object == TARGET_OBJECT_CODE_MEMORY
1580 || object == TARGET_OBJECT_RAW_MEMORY)
1581 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1582
1583 while (xfered_total < len)
1584 {
1585 ULONGEST xfered_partial;
1586 enum target_xfer_status status;
1587
1588 status = target_read_partial (ops, object, annex,
1589 buf + xfered_total * unit_size,
1590 offset + xfered_total, len - xfered_total,
1591 &xfered_partial);
1592
1593 /* Call an observer, notifying them of the xfer progress? */
1594 if (status == TARGET_XFER_EOF)
1595 return xfered_total;
1596 else if (status == TARGET_XFER_OK)
1597 {
1598 xfered_total += xfered_partial;
1599 QUIT;
1600 }
1601 else
1602 return TARGET_XFER_E_IO;
1603
1604 }
1605 return len;
1606 }
1607
1608 /* Assuming that the entire [begin, end) range of memory cannot be
1609 read, try to read whatever subrange is possible to read.
1610
1611 The function returns, in RESULT, either zero or one memory block.
1612 If there's a readable subrange at the beginning, it is completely
1613 read and returned. Any further readable subrange will not be read.
1614 Otherwise, if there's a readable subrange at the end, it will be
1615 completely read and returned. Any readable subranges before it
1616 (obviously, not starting at the beginning), will be ignored. In
1617 other cases -- either no readable subrange, or readable subrange(s)
1618 that is neither at the beginning, or end, nothing is returned.
1619
1620 The purpose of this function is to handle a read across a boundary
1621 of accessible memory in a case when memory map is not available.
1622 The above restrictions are fine for this case, but will give
1623 incorrect results if the memory is 'patchy'. However, supporting
1624 'patchy' memory would require trying to read every single byte,
1625 and it seems unacceptable solution. Explicit memory map is
1626 recommended for this case -- and target_read_memory_robust will
1627 take care of reading multiple ranges then. */
1628
1629 static void
1630 read_whatever_is_readable (struct target_ops *ops,
1631 const ULONGEST begin, const ULONGEST end,
1632 int unit_size,
1633 std::vector<memory_read_result> *result)
1634 {
1635 ULONGEST current_begin = begin;
1636 ULONGEST current_end = end;
1637 int forward;
1638 ULONGEST xfered_len;
1639
1640 /* If we previously failed to read 1 byte, nothing can be done here. */
1641 if (end - begin <= 1)
1642 return;
1643
1644 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1645
1646 /* Check that either first or the last byte is readable, and give up
1647 if not. This heuristic is meant to permit reading accessible memory
1648 at the boundary of accessible region. */
1649 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1650 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1651 {
1652 forward = 1;
1653 ++current_begin;
1654 }
1655 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1656 buf.get () + (end - begin) - 1, end - 1, 1,
1657 &xfered_len) == TARGET_XFER_OK)
1658 {
1659 forward = 0;
1660 --current_end;
1661 }
1662 else
1663 return;
1664
1665 /* Loop invariant is that the [current_begin, current_end) was previously
1666 found to be not readable as a whole.
1667
1668 Note loop condition -- if the range has 1 byte, we can't divide the range
1669 so there's no point trying further. */
1670 while (current_end - current_begin > 1)
1671 {
1672 ULONGEST first_half_begin, first_half_end;
1673 ULONGEST second_half_begin, second_half_end;
1674 LONGEST xfer;
1675 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1676
1677 if (forward)
1678 {
1679 first_half_begin = current_begin;
1680 first_half_end = middle;
1681 second_half_begin = middle;
1682 second_half_end = current_end;
1683 }
1684 else
1685 {
1686 first_half_begin = middle;
1687 first_half_end = current_end;
1688 second_half_begin = current_begin;
1689 second_half_end = middle;
1690 }
1691
1692 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1693 buf.get () + (first_half_begin - begin) * unit_size,
1694 first_half_begin,
1695 first_half_end - first_half_begin);
1696
1697 if (xfer == first_half_end - first_half_begin)
1698 {
1699 /* This half reads up fine. So, the error must be in the
1700 other half. */
1701 current_begin = second_half_begin;
1702 current_end = second_half_end;
1703 }
1704 else
1705 {
1706 /* This half is not readable. Because we've tried one byte, we
1707 know some part of this half if actually readable. Go to the next
1708 iteration to divide again and try to read.
1709
1710 We don't handle the other half, because this function only tries
1711 to read a single readable subrange. */
1712 current_begin = first_half_begin;
1713 current_end = first_half_end;
1714 }
1715 }
1716
1717 if (forward)
1718 {
1719 /* The [begin, current_begin) range has been read. */
1720 result->emplace_back (begin, current_end, std::move (buf));
1721 }
1722 else
1723 {
1724 /* The [current_end, end) range has been read. */
1725 LONGEST region_len = end - current_end;
1726
1727 gdb::unique_xmalloc_ptr<gdb_byte> data
1728 ((gdb_byte *) xmalloc (region_len * unit_size));
1729 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1730 region_len * unit_size);
1731 result->emplace_back (current_end, end, std::move (data));
1732 }
1733 }
1734
1735 std::vector<memory_read_result>
1736 read_memory_robust (struct target_ops *ops,
1737 const ULONGEST offset, const LONGEST len)
1738 {
1739 std::vector<memory_read_result> result;
1740 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1741
1742 LONGEST xfered_total = 0;
1743 while (xfered_total < len)
1744 {
1745 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1746 LONGEST region_len;
1747
1748 /* If there is no explicit region, a fake one should be created. */
1749 gdb_assert (region);
1750
1751 if (region->hi == 0)
1752 region_len = len - xfered_total;
1753 else
1754 region_len = region->hi - offset;
1755
1756 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1757 {
1758 /* Cannot read this region. Note that we can end up here only
1759 if the region is explicitly marked inaccessible, or
1760 'inaccessible-by-default' is in effect. */
1761 xfered_total += region_len;
1762 }
1763 else
1764 {
1765 LONGEST to_read = std::min (len - xfered_total, region_len);
1766 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1767 ((gdb_byte *) xmalloc (to_read * unit_size));
1768
1769 LONGEST xfered_partial =
1770 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1771 offset + xfered_total, to_read);
1772 /* Call an observer, notifying them of the xfer progress? */
1773 if (xfered_partial <= 0)
1774 {
1775 /* Got an error reading full chunk. See if maybe we can read
1776 some subrange. */
1777 read_whatever_is_readable (ops, offset + xfered_total,
1778 offset + xfered_total + to_read,
1779 unit_size, &result);
1780 xfered_total += to_read;
1781 }
1782 else
1783 {
1784 result.emplace_back (offset + xfered_total,
1785 offset + xfered_total + xfered_partial,
1786 std::move (buffer));
1787 xfered_total += xfered_partial;
1788 }
1789 QUIT;
1790 }
1791 }
1792
1793 return result;
1794 }
1795
1796
1797 /* An alternative to target_write with progress callbacks. */
1798
1799 LONGEST
1800 target_write_with_progress (struct target_ops *ops,
1801 enum target_object object,
1802 const char *annex, const gdb_byte *buf,
1803 ULONGEST offset, LONGEST len,
1804 void (*progress) (ULONGEST, void *), void *baton)
1805 {
1806 LONGEST xfered_total = 0;
1807 int unit_size = 1;
1808
1809 /* If we are writing to a memory object, find the length of an addressable
1810 unit for that architecture. */
1811 if (object == TARGET_OBJECT_MEMORY
1812 || object == TARGET_OBJECT_STACK_MEMORY
1813 || object == TARGET_OBJECT_CODE_MEMORY
1814 || object == TARGET_OBJECT_RAW_MEMORY)
1815 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1816
1817 /* Give the progress callback a chance to set up. */
1818 if (progress)
1819 (*progress) (0, baton);
1820
1821 while (xfered_total < len)
1822 {
1823 ULONGEST xfered_partial;
1824 enum target_xfer_status status;
1825
1826 status = target_write_partial (ops, object, annex,
1827 buf + xfered_total * unit_size,
1828 offset + xfered_total, len - xfered_total,
1829 &xfered_partial);
1830
1831 if (status != TARGET_XFER_OK)
1832 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1833
1834 if (progress)
1835 (*progress) (xfered_partial, baton);
1836
1837 xfered_total += xfered_partial;
1838 QUIT;
1839 }
1840 return len;
1841 }
1842
1843 /* For docs on target_write see target.h. */
1844
1845 LONGEST
1846 target_write (struct target_ops *ops,
1847 enum target_object object,
1848 const char *annex, const gdb_byte *buf,
1849 ULONGEST offset, LONGEST len)
1850 {
1851 return target_write_with_progress (ops, object, annex, buf, offset, len,
1852 NULL, NULL);
1853 }
1854
1855 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1856 the size of the transferred data. PADDING additional bytes are
1857 available in *BUF_P. This is a helper function for
1858 target_read_alloc; see the declaration of that function for more
1859 information. */
1860
1861 static LONGEST
1862 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1863 const char *annex, gdb_byte **buf_p, int padding)
1864 {
1865 size_t buf_alloc, buf_pos;
1866 gdb_byte *buf;
1867
1868 /* This function does not have a length parameter; it reads the
1869 entire OBJECT). Also, it doesn't support objects fetched partly
1870 from one target and partly from another (in a different stratum,
1871 e.g. a core file and an executable). Both reasons make it
1872 unsuitable for reading memory. */
1873 gdb_assert (object != TARGET_OBJECT_MEMORY);
1874
1875 /* Start by reading up to 4K at a time. The target will throttle
1876 this number down if necessary. */
1877 buf_alloc = 4096;
1878 buf = (gdb_byte *) xmalloc (buf_alloc);
1879 buf_pos = 0;
1880 while (1)
1881 {
1882 ULONGEST xfered_len;
1883 enum target_xfer_status status;
1884
1885 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1886 buf_pos, buf_alloc - buf_pos - padding,
1887 &xfered_len);
1888
1889 if (status == TARGET_XFER_EOF)
1890 {
1891 /* Read all there was. */
1892 if (buf_pos == 0)
1893 xfree (buf);
1894 else
1895 *buf_p = buf;
1896 return buf_pos;
1897 }
1898 else if (status != TARGET_XFER_OK)
1899 {
1900 /* An error occurred. */
1901 xfree (buf);
1902 return TARGET_XFER_E_IO;
1903 }
1904
1905 buf_pos += xfered_len;
1906
1907 /* If the buffer is filling up, expand it. */
1908 if (buf_alloc < buf_pos * 2)
1909 {
1910 buf_alloc *= 2;
1911 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1912 }
1913
1914 QUIT;
1915 }
1916 }
1917
1918 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1919 the size of the transferred data. See the declaration in "target.h"
1920 function for more information about the return value. */
1921
1922 LONGEST
1923 target_read_alloc (struct target_ops *ops, enum target_object object,
1924 const char *annex, gdb_byte **buf_p)
1925 {
1926 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1927 }
1928
1929 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1930 returned as a string, allocated using xmalloc. If an error occurs
1931 or the transfer is unsupported, NULL is returned. Empty objects
1932 are returned as allocated but empty strings. A warning is issued
1933 if the result contains any embedded NUL bytes. */
1934
1935 char *
1936 target_read_stralloc (struct target_ops *ops, enum target_object object,
1937 const char *annex)
1938 {
1939 gdb_byte *buffer;
1940 char *bufstr;
1941 LONGEST i, transferred;
1942
1943 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1944 bufstr = (char *) buffer;
1945
1946 if (transferred < 0)
1947 return NULL;
1948
1949 if (transferred == 0)
1950 return xstrdup ("");
1951
1952 bufstr[transferred] = 0;
1953
1954 /* Check for embedded NUL bytes; but allow trailing NULs. */
1955 for (i = strlen (bufstr); i < transferred; i++)
1956 if (bufstr[i] != 0)
1957 {
1958 warning (_("target object %d, annex %s, "
1959 "contained unexpected null characters"),
1960 (int) object, annex ? annex : "(none)");
1961 break;
1962 }
1963
1964 return bufstr;
1965 }
1966
1967 /* Memory transfer methods. */
1968
1969 void
1970 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1971 LONGEST len)
1972 {
1973 /* This method is used to read from an alternate, non-current
1974 target. This read must bypass the overlay support (as symbols
1975 don't match this target), and GDB's internal cache (wrong cache
1976 for this target). */
1977 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1978 != len)
1979 memory_error (TARGET_XFER_E_IO, addr);
1980 }
1981
1982 ULONGEST
1983 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1984 int len, enum bfd_endian byte_order)
1985 {
1986 gdb_byte buf[sizeof (ULONGEST)];
1987
1988 gdb_assert (len <= sizeof (buf));
1989 get_target_memory (ops, addr, buf, len);
1990 return extract_unsigned_integer (buf, len, byte_order);
1991 }
1992
1993 /* See target.h. */
1994
1995 int
1996 target_insert_breakpoint (struct gdbarch *gdbarch,
1997 struct bp_target_info *bp_tgt)
1998 {
1999 if (!may_insert_breakpoints)
2000 {
2001 warning (_("May not insert breakpoints"));
2002 return 1;
2003 }
2004
2005 return current_target.to_insert_breakpoint (&current_target,
2006 gdbarch, bp_tgt);
2007 }
2008
2009 /* See target.h. */
2010
2011 int
2012 target_remove_breakpoint (struct gdbarch *gdbarch,
2013 struct bp_target_info *bp_tgt,
2014 enum remove_bp_reason reason)
2015 {
2016 /* This is kind of a weird case to handle, but the permission might
2017 have been changed after breakpoints were inserted - in which case
2018 we should just take the user literally and assume that any
2019 breakpoints should be left in place. */
2020 if (!may_insert_breakpoints)
2021 {
2022 warning (_("May not remove breakpoints"));
2023 return 1;
2024 }
2025
2026 return current_target.to_remove_breakpoint (&current_target,
2027 gdbarch, bp_tgt, reason);
2028 }
2029
2030 static void
2031 info_target_command (char *args, int from_tty)
2032 {
2033 struct target_ops *t;
2034 int has_all_mem = 0;
2035
2036 if (symfile_objfile != NULL)
2037 printf_unfiltered (_("Symbols from \"%s\".\n"),
2038 objfile_name (symfile_objfile));
2039
2040 for (t = target_stack; t != NULL; t = t->beneath)
2041 {
2042 if (!(*t->to_has_memory) (t))
2043 continue;
2044
2045 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2046 continue;
2047 if (has_all_mem)
2048 printf_unfiltered (_("\tWhile running this, "
2049 "GDB does not access memory from...\n"));
2050 printf_unfiltered ("%s:\n", t->to_longname);
2051 (t->to_files_info) (t);
2052 has_all_mem = (*t->to_has_all_memory) (t);
2053 }
2054 }
2055
2056 /* This function is called before any new inferior is created, e.g.
2057 by running a program, attaching, or connecting to a target.
2058 It cleans up any state from previous invocations which might
2059 change between runs. This is a subset of what target_preopen
2060 resets (things which might change between targets). */
2061
2062 void
2063 target_pre_inferior (int from_tty)
2064 {
2065 /* Clear out solib state. Otherwise the solib state of the previous
2066 inferior might have survived and is entirely wrong for the new
2067 target. This has been observed on GNU/Linux using glibc 2.3. How
2068 to reproduce:
2069
2070 bash$ ./foo&
2071 [1] 4711
2072 bash$ ./foo&
2073 [1] 4712
2074 bash$ gdb ./foo
2075 [...]
2076 (gdb) attach 4711
2077 (gdb) detach
2078 (gdb) attach 4712
2079 Cannot access memory at address 0xdeadbeef
2080 */
2081
2082 /* In some OSs, the shared library list is the same/global/shared
2083 across inferiors. If code is shared between processes, so are
2084 memory regions and features. */
2085 if (!gdbarch_has_global_solist (target_gdbarch ()))
2086 {
2087 no_shared_libraries (NULL, from_tty);
2088
2089 invalidate_target_mem_regions ();
2090
2091 target_clear_description ();
2092 }
2093
2094 /* attach_flag may be set if the previous process associated with
2095 the inferior was attached to. */
2096 current_inferior ()->attach_flag = 0;
2097
2098 current_inferior ()->highest_thread_num = 0;
2099
2100 agent_capability_invalidate ();
2101 }
2102
2103 /* Callback for iterate_over_inferiors. Gets rid of the given
2104 inferior. */
2105
2106 static int
2107 dispose_inferior (struct inferior *inf, void *args)
2108 {
2109 struct thread_info *thread;
2110
2111 thread = any_thread_of_process (inf->pid);
2112 if (thread)
2113 {
2114 switch_to_thread (thread->ptid);
2115
2116 /* Core inferiors actually should be detached, not killed. */
2117 if (target_has_execution)
2118 target_kill ();
2119 else
2120 target_detach (NULL, 0);
2121 }
2122
2123 return 0;
2124 }
2125
2126 /* This is to be called by the open routine before it does
2127 anything. */
2128
2129 void
2130 target_preopen (int from_tty)
2131 {
2132 dont_repeat ();
2133
2134 if (have_inferiors ())
2135 {
2136 if (!from_tty
2137 || !have_live_inferiors ()
2138 || query (_("A program is being debugged already. Kill it? ")))
2139 iterate_over_inferiors (dispose_inferior, NULL);
2140 else
2141 error (_("Program not killed."));
2142 }
2143
2144 /* Calling target_kill may remove the target from the stack. But if
2145 it doesn't (which seems like a win for UDI), remove it now. */
2146 /* Leave the exec target, though. The user may be switching from a
2147 live process to a core of the same program. */
2148 pop_all_targets_above (file_stratum);
2149
2150 target_pre_inferior (from_tty);
2151 }
2152
2153 /* Detach a target after doing deferred register stores. */
2154
2155 void
2156 target_detach (const char *args, int from_tty)
2157 {
2158 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2159 /* Don't remove global breakpoints here. They're removed on
2160 disconnection from the target. */
2161 ;
2162 else
2163 /* If we're in breakpoints-always-inserted mode, have to remove
2164 them before detaching. */
2165 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2166
2167 prepare_for_detach ();
2168
2169 current_target.to_detach (&current_target, args, from_tty);
2170 }
2171
2172 void
2173 target_disconnect (const char *args, int from_tty)
2174 {
2175 /* If we're in breakpoints-always-inserted mode or if breakpoints
2176 are global across processes, we have to remove them before
2177 disconnecting. */
2178 remove_breakpoints ();
2179
2180 current_target.to_disconnect (&current_target, args, from_tty);
2181 }
2182
2183 /* See target/target.h. */
2184
2185 ptid_t
2186 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2187 {
2188 return (current_target.to_wait) (&current_target, ptid, status, options);
2189 }
2190
2191 /* See target.h. */
2192
2193 ptid_t
2194 default_target_wait (struct target_ops *ops,
2195 ptid_t ptid, struct target_waitstatus *status,
2196 int options)
2197 {
2198 status->kind = TARGET_WAITKIND_IGNORE;
2199 return minus_one_ptid;
2200 }
2201
2202 const char *
2203 target_pid_to_str (ptid_t ptid)
2204 {
2205 return (*current_target.to_pid_to_str) (&current_target, ptid);
2206 }
2207
2208 const char *
2209 target_thread_name (struct thread_info *info)
2210 {
2211 return current_target.to_thread_name (&current_target, info);
2212 }
2213
2214 struct thread_info *
2215 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2216 int handle_len,
2217 struct inferior *inf)
2218 {
2219 return current_target.to_thread_handle_to_thread_info
2220 (&current_target, thread_handle, handle_len, inf);
2221 }
2222
2223 void
2224 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2225 {
2226 target_dcache_invalidate ();
2227
2228 current_target.to_resume (&current_target, ptid, step, signal);
2229
2230 registers_changed_ptid (ptid);
2231 /* We only set the internal executing state here. The user/frontend
2232 running state is set at a higher level. */
2233 set_executing (ptid, 1);
2234 clear_inline_frame_state (ptid);
2235 }
2236
2237 /* If true, target_commit_resume is a nop. */
2238 static int defer_target_commit_resume;
2239
2240 /* See target.h. */
2241
2242 void
2243 target_commit_resume (void)
2244 {
2245 struct target_ops *t;
2246
2247 if (defer_target_commit_resume)
2248 return;
2249
2250 current_target.to_commit_resume (&current_target);
2251 }
2252
2253 /* See target.h. */
2254
2255 scoped_restore_tmpl<int>
2256 make_scoped_defer_target_commit_resume ()
2257 {
2258 return make_scoped_restore (&defer_target_commit_resume, 1);
2259 }
2260
2261 void
2262 target_pass_signals (int numsigs, unsigned char *pass_signals)
2263 {
2264 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2265 }
2266
2267 void
2268 target_program_signals (int numsigs, unsigned char *program_signals)
2269 {
2270 (*current_target.to_program_signals) (&current_target,
2271 numsigs, program_signals);
2272 }
2273
2274 static int
2275 default_follow_fork (struct target_ops *self, int follow_child,
2276 int detach_fork)
2277 {
2278 /* Some target returned a fork event, but did not know how to follow it. */
2279 internal_error (__FILE__, __LINE__,
2280 _("could not find a target to follow fork"));
2281 }
2282
2283 /* Look through the list of possible targets for a target that can
2284 follow forks. */
2285
2286 int
2287 target_follow_fork (int follow_child, int detach_fork)
2288 {
2289 return current_target.to_follow_fork (&current_target,
2290 follow_child, detach_fork);
2291 }
2292
2293 /* Target wrapper for follow exec hook. */
2294
2295 void
2296 target_follow_exec (struct inferior *inf, char *execd_pathname)
2297 {
2298 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2299 }
2300
2301 static void
2302 default_mourn_inferior (struct target_ops *self)
2303 {
2304 internal_error (__FILE__, __LINE__,
2305 _("could not find a target to follow mourn inferior"));
2306 }
2307
2308 void
2309 target_mourn_inferior (ptid_t ptid)
2310 {
2311 gdb_assert (ptid_equal (ptid, inferior_ptid));
2312 current_target.to_mourn_inferior (&current_target);
2313
2314 /* We no longer need to keep handles on any of the object files.
2315 Make sure to release them to avoid unnecessarily locking any
2316 of them while we're not actually debugging. */
2317 bfd_cache_close_all ();
2318 }
2319
2320 /* Look for a target which can describe architectural features, starting
2321 from TARGET. If we find one, return its description. */
2322
2323 const struct target_desc *
2324 target_read_description (struct target_ops *target)
2325 {
2326 return target->to_read_description (target);
2327 }
2328
2329 /* This implements a basic search of memory, reading target memory and
2330 performing the search here (as opposed to performing the search in on the
2331 target side with, for example, gdbserver). */
2332
2333 int
2334 simple_search_memory (struct target_ops *ops,
2335 CORE_ADDR start_addr, ULONGEST search_space_len,
2336 const gdb_byte *pattern, ULONGEST pattern_len,
2337 CORE_ADDR *found_addrp)
2338 {
2339 /* NOTE: also defined in find.c testcase. */
2340 #define SEARCH_CHUNK_SIZE 16000
2341 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2342 /* Buffer to hold memory contents for searching. */
2343 unsigned search_buf_size;
2344
2345 search_buf_size = chunk_size + pattern_len - 1;
2346
2347 /* No point in trying to allocate a buffer larger than the search space. */
2348 if (search_space_len < search_buf_size)
2349 search_buf_size = search_space_len;
2350
2351 gdb::byte_vector search_buf (search_buf_size);
2352
2353 /* Prime the search buffer. */
2354
2355 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2356 search_buf.data (), start_addr, search_buf_size)
2357 != search_buf_size)
2358 {
2359 warning (_("Unable to access %s bytes of target "
2360 "memory at %s, halting search."),
2361 pulongest (search_buf_size), hex_string (start_addr));
2362 return -1;
2363 }
2364
2365 /* Perform the search.
2366
2367 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2368 When we've scanned N bytes we copy the trailing bytes to the start and
2369 read in another N bytes. */
2370
2371 while (search_space_len >= pattern_len)
2372 {
2373 gdb_byte *found_ptr;
2374 unsigned nr_search_bytes
2375 = std::min (search_space_len, (ULONGEST) search_buf_size);
2376
2377 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2378 pattern, pattern_len);
2379
2380 if (found_ptr != NULL)
2381 {
2382 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2383
2384 *found_addrp = found_addr;
2385 return 1;
2386 }
2387
2388 /* Not found in this chunk, skip to next chunk. */
2389
2390 /* Don't let search_space_len wrap here, it's unsigned. */
2391 if (search_space_len >= chunk_size)
2392 search_space_len -= chunk_size;
2393 else
2394 search_space_len = 0;
2395
2396 if (search_space_len >= pattern_len)
2397 {
2398 unsigned keep_len = search_buf_size - chunk_size;
2399 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2400 int nr_to_read;
2401
2402 /* Copy the trailing part of the previous iteration to the front
2403 of the buffer for the next iteration. */
2404 gdb_assert (keep_len == pattern_len - 1);
2405 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2406
2407 nr_to_read = std::min (search_space_len - keep_len,
2408 (ULONGEST) chunk_size);
2409
2410 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2411 &search_buf[keep_len], read_addr,
2412 nr_to_read) != nr_to_read)
2413 {
2414 warning (_("Unable to access %s bytes of target "
2415 "memory at %s, halting search."),
2416 plongest (nr_to_read),
2417 hex_string (read_addr));
2418 return -1;
2419 }
2420
2421 start_addr += chunk_size;
2422 }
2423 }
2424
2425 /* Not found. */
2426
2427 return 0;
2428 }
2429
2430 /* Default implementation of memory-searching. */
2431
2432 static int
2433 default_search_memory (struct target_ops *self,
2434 CORE_ADDR start_addr, ULONGEST search_space_len,
2435 const gdb_byte *pattern, ULONGEST pattern_len,
2436 CORE_ADDR *found_addrp)
2437 {
2438 /* Start over from the top of the target stack. */
2439 return simple_search_memory (current_target.beneath,
2440 start_addr, search_space_len,
2441 pattern, pattern_len, found_addrp);
2442 }
2443
2444 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2445 sequence of bytes in PATTERN with length PATTERN_LEN.
2446
2447 The result is 1 if found, 0 if not found, and -1 if there was an error
2448 requiring halting of the search (e.g. memory read error).
2449 If the pattern is found the address is recorded in FOUND_ADDRP. */
2450
2451 int
2452 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2453 const gdb_byte *pattern, ULONGEST pattern_len,
2454 CORE_ADDR *found_addrp)
2455 {
2456 return current_target.to_search_memory (&current_target, start_addr,
2457 search_space_len,
2458 pattern, pattern_len, found_addrp);
2459 }
2460
2461 /* Look through the currently pushed targets. If none of them will
2462 be able to restart the currently running process, issue an error
2463 message. */
2464
2465 void
2466 target_require_runnable (void)
2467 {
2468 struct target_ops *t;
2469
2470 for (t = target_stack; t != NULL; t = t->beneath)
2471 {
2472 /* If this target knows how to create a new program, then
2473 assume we will still be able to after killing the current
2474 one. Either killing and mourning will not pop T, or else
2475 find_default_run_target will find it again. */
2476 if (t->to_create_inferior != NULL)
2477 return;
2478
2479 /* Do not worry about targets at certain strata that can not
2480 create inferiors. Assume they will be pushed again if
2481 necessary, and continue to the process_stratum. */
2482 if (t->to_stratum == thread_stratum
2483 || t->to_stratum == record_stratum
2484 || t->to_stratum == arch_stratum)
2485 continue;
2486
2487 error (_("The \"%s\" target does not support \"run\". "
2488 "Try \"help target\" or \"continue\"."),
2489 t->to_shortname);
2490 }
2491
2492 /* This function is only called if the target is running. In that
2493 case there should have been a process_stratum target and it
2494 should either know how to create inferiors, or not... */
2495 internal_error (__FILE__, __LINE__, _("No targets found"));
2496 }
2497
2498 /* Whether GDB is allowed to fall back to the default run target for
2499 "run", "attach", etc. when no target is connected yet. */
2500 static int auto_connect_native_target = 1;
2501
2502 static void
2503 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2504 struct cmd_list_element *c, const char *value)
2505 {
2506 fprintf_filtered (file,
2507 _("Whether GDB may automatically connect to the "
2508 "native target is %s.\n"),
2509 value);
2510 }
2511
2512 /* Look through the list of possible targets for a target that can
2513 execute a run or attach command without any other data. This is
2514 used to locate the default process stratum.
2515
2516 If DO_MESG is not NULL, the result is always valid (error() is
2517 called for errors); else, return NULL on error. */
2518
2519 static struct target_ops *
2520 find_default_run_target (const char *do_mesg)
2521 {
2522 struct target_ops *runable = NULL;
2523
2524 if (auto_connect_native_target)
2525 {
2526 struct target_ops *t;
2527 int count = 0;
2528 int i;
2529
2530 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2531 {
2532 if (t->to_can_run != delegate_can_run && target_can_run (t))
2533 {
2534 runable = t;
2535 ++count;
2536 }
2537 }
2538
2539 if (count != 1)
2540 runable = NULL;
2541 }
2542
2543 if (runable == NULL)
2544 {
2545 if (do_mesg)
2546 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2547 else
2548 return NULL;
2549 }
2550
2551 return runable;
2552 }
2553
2554 /* See target.h. */
2555
2556 struct target_ops *
2557 find_attach_target (void)
2558 {
2559 struct target_ops *t;
2560
2561 /* If a target on the current stack can attach, use it. */
2562 for (t = current_target.beneath; t != NULL; t = t->beneath)
2563 {
2564 if (t->to_attach != NULL)
2565 break;
2566 }
2567
2568 /* Otherwise, use the default run target for attaching. */
2569 if (t == NULL)
2570 t = find_default_run_target ("attach");
2571
2572 return t;
2573 }
2574
2575 /* See target.h. */
2576
2577 struct target_ops *
2578 find_run_target (void)
2579 {
2580 struct target_ops *t;
2581
2582 /* If a target on the current stack can attach, use it. */
2583 for (t = current_target.beneath; t != NULL; t = t->beneath)
2584 {
2585 if (t->to_create_inferior != NULL)
2586 break;
2587 }
2588
2589 /* Otherwise, use the default run target. */
2590 if (t == NULL)
2591 t = find_default_run_target ("run");
2592
2593 return t;
2594 }
2595
2596 /* Implement the "info proc" command. */
2597
2598 int
2599 target_info_proc (const char *args, enum info_proc_what what)
2600 {
2601 struct target_ops *t;
2602
2603 /* If we're already connected to something that can get us OS
2604 related data, use it. Otherwise, try using the native
2605 target. */
2606 if (current_target.to_stratum >= process_stratum)
2607 t = current_target.beneath;
2608 else
2609 t = find_default_run_target (NULL);
2610
2611 for (; t != NULL; t = t->beneath)
2612 {
2613 if (t->to_info_proc != NULL)
2614 {
2615 t->to_info_proc (t, args, what);
2616
2617 if (targetdebug)
2618 fprintf_unfiltered (gdb_stdlog,
2619 "target_info_proc (\"%s\", %d)\n", args, what);
2620
2621 return 1;
2622 }
2623 }
2624
2625 return 0;
2626 }
2627
2628 static int
2629 find_default_supports_disable_randomization (struct target_ops *self)
2630 {
2631 struct target_ops *t;
2632
2633 t = find_default_run_target (NULL);
2634 if (t && t->to_supports_disable_randomization)
2635 return (t->to_supports_disable_randomization) (t);
2636 return 0;
2637 }
2638
2639 int
2640 target_supports_disable_randomization (void)
2641 {
2642 struct target_ops *t;
2643
2644 for (t = &current_target; t != NULL; t = t->beneath)
2645 if (t->to_supports_disable_randomization)
2646 return t->to_supports_disable_randomization (t);
2647
2648 return 0;
2649 }
2650
2651 /* See target/target.h. */
2652
2653 int
2654 target_supports_multi_process (void)
2655 {
2656 return (*current_target.to_supports_multi_process) (&current_target);
2657 }
2658
2659 char *
2660 target_get_osdata (const char *type)
2661 {
2662 struct target_ops *t;
2663
2664 /* If we're already connected to something that can get us OS
2665 related data, use it. Otherwise, try using the native
2666 target. */
2667 if (current_target.to_stratum >= process_stratum)
2668 t = current_target.beneath;
2669 else
2670 t = find_default_run_target ("get OS data");
2671
2672 if (!t)
2673 return NULL;
2674
2675 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2676 }
2677
2678 static struct address_space *
2679 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2680 {
2681 struct inferior *inf;
2682
2683 /* Fall-back to the "main" address space of the inferior. */
2684 inf = find_inferior_ptid (ptid);
2685
2686 if (inf == NULL || inf->aspace == NULL)
2687 internal_error (__FILE__, __LINE__,
2688 _("Can't determine the current "
2689 "address space of thread %s\n"),
2690 target_pid_to_str (ptid));
2691
2692 return inf->aspace;
2693 }
2694
2695 /* Determine the current address space of thread PTID. */
2696
2697 struct address_space *
2698 target_thread_address_space (ptid_t ptid)
2699 {
2700 struct address_space *aspace;
2701
2702 aspace = current_target.to_thread_address_space (&current_target, ptid);
2703 gdb_assert (aspace != NULL);
2704
2705 return aspace;
2706 }
2707
2708
2709 /* Target file operations. */
2710
2711 static struct target_ops *
2712 default_fileio_target (void)
2713 {
2714 /* If we're already connected to something that can perform
2715 file I/O, use it. Otherwise, try using the native target. */
2716 if (current_target.to_stratum >= process_stratum)
2717 return current_target.beneath;
2718 else
2719 return find_default_run_target ("file I/O");
2720 }
2721
2722 /* File handle for target file operations. */
2723
2724 typedef struct
2725 {
2726 /* The target on which this file is open. */
2727 struct target_ops *t;
2728
2729 /* The file descriptor on the target. */
2730 int fd;
2731 } fileio_fh_t;
2732
2733 DEF_VEC_O (fileio_fh_t);
2734
2735 /* Vector of currently open file handles. The value returned by
2736 target_fileio_open and passed as the FD argument to other
2737 target_fileio_* functions is an index into this vector. This
2738 vector's entries are never freed; instead, files are marked as
2739 closed, and the handle becomes available for reuse. */
2740 static VEC (fileio_fh_t) *fileio_fhandles;
2741
2742 /* Macro to check whether a fileio_fh_t represents a closed file. */
2743 #define is_closed_fileio_fh(fd) ((fd) < 0)
2744
2745 /* Index into fileio_fhandles of the lowest handle that might be
2746 closed. This permits handle reuse without searching the whole
2747 list each time a new file is opened. */
2748 static int lowest_closed_fd;
2749
2750 /* Acquire a target fileio file descriptor. */
2751
2752 static int
2753 acquire_fileio_fd (struct target_ops *t, int fd)
2754 {
2755 fileio_fh_t *fh;
2756
2757 gdb_assert (!is_closed_fileio_fh (fd));
2758
2759 /* Search for closed handles to reuse. */
2760 for (;
2761 VEC_iterate (fileio_fh_t, fileio_fhandles,
2762 lowest_closed_fd, fh);
2763 lowest_closed_fd++)
2764 if (is_closed_fileio_fh (fh->fd))
2765 break;
2766
2767 /* Push a new handle if no closed handles were found. */
2768 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2769 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2770
2771 /* Fill in the handle. */
2772 fh->t = t;
2773 fh->fd = fd;
2774
2775 /* Return its index, and start the next lookup at
2776 the next index. */
2777 return lowest_closed_fd++;
2778 }
2779
2780 /* Release a target fileio file descriptor. */
2781
2782 static void
2783 release_fileio_fd (int fd, fileio_fh_t *fh)
2784 {
2785 fh->fd = -1;
2786 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2787 }
2788
2789 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2790
2791 #define fileio_fd_to_fh(fd) \
2792 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2793
2794 /* Helper for target_fileio_open and
2795 target_fileio_open_warn_if_slow. */
2796
2797 static int
2798 target_fileio_open_1 (struct inferior *inf, const char *filename,
2799 int flags, int mode, int warn_if_slow,
2800 int *target_errno)
2801 {
2802 struct target_ops *t;
2803
2804 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2805 {
2806 if (t->to_fileio_open != NULL)
2807 {
2808 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2809 warn_if_slow, target_errno);
2810
2811 if (fd < 0)
2812 fd = -1;
2813 else
2814 fd = acquire_fileio_fd (t, fd);
2815
2816 if (targetdebug)
2817 fprintf_unfiltered (gdb_stdlog,
2818 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2819 " = %d (%d)\n",
2820 inf == NULL ? 0 : inf->num,
2821 filename, flags, mode,
2822 warn_if_slow, fd,
2823 fd != -1 ? 0 : *target_errno);
2824 return fd;
2825 }
2826 }
2827
2828 *target_errno = FILEIO_ENOSYS;
2829 return -1;
2830 }
2831
2832 /* See target.h. */
2833
2834 int
2835 target_fileio_open (struct inferior *inf, const char *filename,
2836 int flags, int mode, int *target_errno)
2837 {
2838 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2839 target_errno);
2840 }
2841
2842 /* See target.h. */
2843
2844 int
2845 target_fileio_open_warn_if_slow (struct inferior *inf,
2846 const char *filename,
2847 int flags, int mode, int *target_errno)
2848 {
2849 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2850 target_errno);
2851 }
2852
2853 /* See target.h. */
2854
2855 int
2856 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2857 ULONGEST offset, int *target_errno)
2858 {
2859 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2860 int ret = -1;
2861
2862 if (is_closed_fileio_fh (fh->fd))
2863 *target_errno = EBADF;
2864 else
2865 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2866 len, offset, target_errno);
2867
2868 if (targetdebug)
2869 fprintf_unfiltered (gdb_stdlog,
2870 "target_fileio_pwrite (%d,...,%d,%s) "
2871 "= %d (%d)\n",
2872 fd, len, pulongest (offset),
2873 ret, ret != -1 ? 0 : *target_errno);
2874 return ret;
2875 }
2876
2877 /* See target.h. */
2878
2879 int
2880 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2881 ULONGEST offset, int *target_errno)
2882 {
2883 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2884 int ret = -1;
2885
2886 if (is_closed_fileio_fh (fh->fd))
2887 *target_errno = EBADF;
2888 else
2889 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2890 len, offset, target_errno);
2891
2892 if (targetdebug)
2893 fprintf_unfiltered (gdb_stdlog,
2894 "target_fileio_pread (%d,...,%d,%s) "
2895 "= %d (%d)\n",
2896 fd, len, pulongest (offset),
2897 ret, ret != -1 ? 0 : *target_errno);
2898 return ret;
2899 }
2900
2901 /* See target.h. */
2902
2903 int
2904 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2905 {
2906 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2907 int ret = -1;
2908
2909 if (is_closed_fileio_fh (fh->fd))
2910 *target_errno = EBADF;
2911 else
2912 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2913
2914 if (targetdebug)
2915 fprintf_unfiltered (gdb_stdlog,
2916 "target_fileio_fstat (%d) = %d (%d)\n",
2917 fd, ret, ret != -1 ? 0 : *target_errno);
2918 return ret;
2919 }
2920
2921 /* See target.h. */
2922
2923 int
2924 target_fileio_close (int fd, int *target_errno)
2925 {
2926 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2927 int ret = -1;
2928
2929 if (is_closed_fileio_fh (fh->fd))
2930 *target_errno = EBADF;
2931 else
2932 {
2933 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2934 release_fileio_fd (fd, fh);
2935 }
2936
2937 if (targetdebug)
2938 fprintf_unfiltered (gdb_stdlog,
2939 "target_fileio_close (%d) = %d (%d)\n",
2940 fd, ret, ret != -1 ? 0 : *target_errno);
2941 return ret;
2942 }
2943
2944 /* See target.h. */
2945
2946 int
2947 target_fileio_unlink (struct inferior *inf, const char *filename,
2948 int *target_errno)
2949 {
2950 struct target_ops *t;
2951
2952 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2953 {
2954 if (t->to_fileio_unlink != NULL)
2955 {
2956 int ret = t->to_fileio_unlink (t, inf, filename,
2957 target_errno);
2958
2959 if (targetdebug)
2960 fprintf_unfiltered (gdb_stdlog,
2961 "target_fileio_unlink (%d,%s)"
2962 " = %d (%d)\n",
2963 inf == NULL ? 0 : inf->num, filename,
2964 ret, ret != -1 ? 0 : *target_errno);
2965 return ret;
2966 }
2967 }
2968
2969 *target_errno = FILEIO_ENOSYS;
2970 return -1;
2971 }
2972
2973 /* See target.h. */
2974
2975 char *
2976 target_fileio_readlink (struct inferior *inf, const char *filename,
2977 int *target_errno)
2978 {
2979 struct target_ops *t;
2980
2981 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2982 {
2983 if (t->to_fileio_readlink != NULL)
2984 {
2985 char *ret = t->to_fileio_readlink (t, inf, filename,
2986 target_errno);
2987
2988 if (targetdebug)
2989 fprintf_unfiltered (gdb_stdlog,
2990 "target_fileio_readlink (%d,%s)"
2991 " = %s (%d)\n",
2992 inf == NULL ? 0 : inf->num,
2993 filename, ret? ret : "(nil)",
2994 ret? 0 : *target_errno);
2995 return ret;
2996 }
2997 }
2998
2999 *target_errno = FILEIO_ENOSYS;
3000 return NULL;
3001 }
3002
3003 static void
3004 target_fileio_close_cleanup (void *opaque)
3005 {
3006 int fd = *(int *) opaque;
3007 int target_errno;
3008
3009 target_fileio_close (fd, &target_errno);
3010 }
3011
3012 /* Read target file FILENAME, in the filesystem as seen by INF. If
3013 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3014 remote targets, the remote stub). Store the result in *BUF_P and
3015 return the size of the transferred data. PADDING additional bytes
3016 are available in *BUF_P. This is a helper function for
3017 target_fileio_read_alloc; see the declaration of that function for
3018 more information. */
3019
3020 static LONGEST
3021 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3022 gdb_byte **buf_p, int padding)
3023 {
3024 struct cleanup *close_cleanup;
3025 size_t buf_alloc, buf_pos;
3026 gdb_byte *buf;
3027 LONGEST n;
3028 int fd;
3029 int target_errno;
3030
3031 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3032 &target_errno);
3033 if (fd == -1)
3034 return -1;
3035
3036 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3037
3038 /* Start by reading up to 4K at a time. The target will throttle
3039 this number down if necessary. */
3040 buf_alloc = 4096;
3041 buf = (gdb_byte *) xmalloc (buf_alloc);
3042 buf_pos = 0;
3043 while (1)
3044 {
3045 n = target_fileio_pread (fd, &buf[buf_pos],
3046 buf_alloc - buf_pos - padding, buf_pos,
3047 &target_errno);
3048 if (n < 0)
3049 {
3050 /* An error occurred. */
3051 do_cleanups (close_cleanup);
3052 xfree (buf);
3053 return -1;
3054 }
3055 else if (n == 0)
3056 {
3057 /* Read all there was. */
3058 do_cleanups (close_cleanup);
3059 if (buf_pos == 0)
3060 xfree (buf);
3061 else
3062 *buf_p = buf;
3063 return buf_pos;
3064 }
3065
3066 buf_pos += n;
3067
3068 /* If the buffer is filling up, expand it. */
3069 if (buf_alloc < buf_pos * 2)
3070 {
3071 buf_alloc *= 2;
3072 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3073 }
3074
3075 QUIT;
3076 }
3077 }
3078
3079 /* See target.h. */
3080
3081 LONGEST
3082 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3083 gdb_byte **buf_p)
3084 {
3085 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3086 }
3087
3088 /* See target.h. */
3089
3090 char *
3091 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3092 {
3093 gdb_byte *buffer;
3094 char *bufstr;
3095 LONGEST i, transferred;
3096
3097 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3098 bufstr = (char *) buffer;
3099
3100 if (transferred < 0)
3101 return NULL;
3102
3103 if (transferred == 0)
3104 return xstrdup ("");
3105
3106 bufstr[transferred] = 0;
3107
3108 /* Check for embedded NUL bytes; but allow trailing NULs. */
3109 for (i = strlen (bufstr); i < transferred; i++)
3110 if (bufstr[i] != 0)
3111 {
3112 warning (_("target file %s "
3113 "contained unexpected null characters"),
3114 filename);
3115 break;
3116 }
3117
3118 return bufstr;
3119 }
3120
3121
3122 static int
3123 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3124 CORE_ADDR addr, int len)
3125 {
3126 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3127 }
3128
3129 static int
3130 default_watchpoint_addr_within_range (struct target_ops *target,
3131 CORE_ADDR addr,
3132 CORE_ADDR start, int length)
3133 {
3134 return addr >= start && addr < start + length;
3135 }
3136
3137 static struct gdbarch *
3138 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3139 {
3140 inferior *inf = find_inferior_ptid (ptid);
3141 gdb_assert (inf != NULL);
3142 return inf->gdbarch;
3143 }
3144
3145 static int
3146 return_zero (struct target_ops *ignore)
3147 {
3148 return 0;
3149 }
3150
3151 static int
3152 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3153 {
3154 return 0;
3155 }
3156
3157 /*
3158 * Find the next target down the stack from the specified target.
3159 */
3160
3161 struct target_ops *
3162 find_target_beneath (struct target_ops *t)
3163 {
3164 return t->beneath;
3165 }
3166
3167 /* See target.h. */
3168
3169 struct target_ops *
3170 find_target_at (enum strata stratum)
3171 {
3172 struct target_ops *t;
3173
3174 for (t = current_target.beneath; t != NULL; t = t->beneath)
3175 if (t->to_stratum == stratum)
3176 return t;
3177
3178 return NULL;
3179 }
3180
3181 \f
3182
3183 /* See target.h */
3184
3185 void
3186 target_announce_detach (int from_tty)
3187 {
3188 pid_t pid;
3189 const char *exec_file;
3190
3191 if (!from_tty)
3192 return;
3193
3194 exec_file = get_exec_file (0);
3195 if (exec_file == NULL)
3196 exec_file = "";
3197
3198 pid = ptid_get_pid (inferior_ptid);
3199 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3200 target_pid_to_str (pid_to_ptid (pid)));
3201 gdb_flush (gdb_stdout);
3202 }
3203
3204 /* The inferior process has died. Long live the inferior! */
3205
3206 void
3207 generic_mourn_inferior (void)
3208 {
3209 ptid_t ptid;
3210
3211 ptid = inferior_ptid;
3212 inferior_ptid = null_ptid;
3213
3214 /* Mark breakpoints uninserted in case something tries to delete a
3215 breakpoint while we delete the inferior's threads (which would
3216 fail, since the inferior is long gone). */
3217 mark_breakpoints_out ();
3218
3219 if (!ptid_equal (ptid, null_ptid))
3220 {
3221 int pid = ptid_get_pid (ptid);
3222 exit_inferior (pid);
3223 }
3224
3225 /* Note this wipes step-resume breakpoints, so needs to be done
3226 after exit_inferior, which ends up referencing the step-resume
3227 breakpoints through clear_thread_inferior_resources. */
3228 breakpoint_init_inferior (inf_exited);
3229
3230 registers_changed ();
3231
3232 reopen_exec_file ();
3233 reinit_frame_cache ();
3234
3235 if (deprecated_detach_hook)
3236 deprecated_detach_hook ();
3237 }
3238 \f
3239 /* Convert a normal process ID to a string. Returns the string in a
3240 static buffer. */
3241
3242 const char *
3243 normal_pid_to_str (ptid_t ptid)
3244 {
3245 static char buf[32];
3246
3247 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3248 return buf;
3249 }
3250
3251 static const char *
3252 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3253 {
3254 return normal_pid_to_str (ptid);
3255 }
3256
3257 /* Error-catcher for target_find_memory_regions. */
3258 static int
3259 dummy_find_memory_regions (struct target_ops *self,
3260 find_memory_region_ftype ignore1, void *ignore2)
3261 {
3262 error (_("Command not implemented for this target."));
3263 return 0;
3264 }
3265
3266 /* Error-catcher for target_make_corefile_notes. */
3267 static char *
3268 dummy_make_corefile_notes (struct target_ops *self,
3269 bfd *ignore1, int *ignore2)
3270 {
3271 error (_("Command not implemented for this target."));
3272 return NULL;
3273 }
3274
3275 /* Set up the handful of non-empty slots needed by the dummy target
3276 vector. */
3277
3278 static void
3279 init_dummy_target (void)
3280 {
3281 dummy_target.to_shortname = "None";
3282 dummy_target.to_longname = "None";
3283 dummy_target.to_doc = "";
3284 dummy_target.to_supports_disable_randomization
3285 = find_default_supports_disable_randomization;
3286 dummy_target.to_stratum = dummy_stratum;
3287 dummy_target.to_has_all_memory = return_zero;
3288 dummy_target.to_has_memory = return_zero;
3289 dummy_target.to_has_stack = return_zero;
3290 dummy_target.to_has_registers = return_zero;
3291 dummy_target.to_has_execution = return_zero_has_execution;
3292 dummy_target.to_magic = OPS_MAGIC;
3293
3294 install_dummy_methods (&dummy_target);
3295 }
3296 \f
3297
3298 void
3299 target_close (struct target_ops *targ)
3300 {
3301 gdb_assert (!target_is_pushed (targ));
3302
3303 if (targ->to_xclose != NULL)
3304 targ->to_xclose (targ);
3305 else if (targ->to_close != NULL)
3306 targ->to_close (targ);
3307
3308 if (targetdebug)
3309 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3310 }
3311
3312 int
3313 target_thread_alive (ptid_t ptid)
3314 {
3315 return current_target.to_thread_alive (&current_target, ptid);
3316 }
3317
3318 void
3319 target_update_thread_list (void)
3320 {
3321 current_target.to_update_thread_list (&current_target);
3322 }
3323
3324 void
3325 target_stop (ptid_t ptid)
3326 {
3327 if (!may_stop)
3328 {
3329 warning (_("May not interrupt or stop the target, ignoring attempt"));
3330 return;
3331 }
3332
3333 (*current_target.to_stop) (&current_target, ptid);
3334 }
3335
3336 void
3337 target_interrupt (ptid_t ptid)
3338 {
3339 if (!may_stop)
3340 {
3341 warning (_("May not interrupt or stop the target, ignoring attempt"));
3342 return;
3343 }
3344
3345 (*current_target.to_interrupt) (&current_target, ptid);
3346 }
3347
3348 /* See target.h. */
3349
3350 void
3351 target_pass_ctrlc (void)
3352 {
3353 (*current_target.to_pass_ctrlc) (&current_target);
3354 }
3355
3356 /* See target.h. */
3357
3358 void
3359 default_target_pass_ctrlc (struct target_ops *ops)
3360 {
3361 target_interrupt (inferior_ptid);
3362 }
3363
3364 /* See target/target.h. */
3365
3366 void
3367 target_stop_and_wait (ptid_t ptid)
3368 {
3369 struct target_waitstatus status;
3370 int was_non_stop = non_stop;
3371
3372 non_stop = 1;
3373 target_stop (ptid);
3374
3375 memset (&status, 0, sizeof (status));
3376 target_wait (ptid, &status, 0);
3377
3378 non_stop = was_non_stop;
3379 }
3380
3381 /* See target/target.h. */
3382
3383 void
3384 target_continue_no_signal (ptid_t ptid)
3385 {
3386 target_resume (ptid, 0, GDB_SIGNAL_0);
3387 }
3388
3389 /* See target/target.h. */
3390
3391 void
3392 target_continue (ptid_t ptid, enum gdb_signal signal)
3393 {
3394 target_resume (ptid, 0, signal);
3395 }
3396
3397 /* Concatenate ELEM to LIST, a comma separate list, and return the
3398 result. The LIST incoming argument is released. */
3399
3400 static char *
3401 str_comma_list_concat_elem (char *list, const char *elem)
3402 {
3403 if (list == NULL)
3404 return xstrdup (elem);
3405 else
3406 return reconcat (list, list, ", ", elem, (char *) NULL);
3407 }
3408
3409 /* Helper for target_options_to_string. If OPT is present in
3410 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3411 Returns the new resulting string. OPT is removed from
3412 TARGET_OPTIONS. */
3413
3414 static char *
3415 do_option (int *target_options, char *ret,
3416 int opt, const char *opt_str)
3417 {
3418 if ((*target_options & opt) != 0)
3419 {
3420 ret = str_comma_list_concat_elem (ret, opt_str);
3421 *target_options &= ~opt;
3422 }
3423
3424 return ret;
3425 }
3426
3427 char *
3428 target_options_to_string (int target_options)
3429 {
3430 char *ret = NULL;
3431
3432 #define DO_TARG_OPTION(OPT) \
3433 ret = do_option (&target_options, ret, OPT, #OPT)
3434
3435 DO_TARG_OPTION (TARGET_WNOHANG);
3436
3437 if (target_options != 0)
3438 ret = str_comma_list_concat_elem (ret, "unknown???");
3439
3440 if (ret == NULL)
3441 ret = xstrdup ("");
3442 return ret;
3443 }
3444
3445 void
3446 target_fetch_registers (struct regcache *regcache, int regno)
3447 {
3448 current_target.to_fetch_registers (&current_target, regcache, regno);
3449 if (targetdebug)
3450 regcache->debug_print_register ("target_fetch_registers", regno);
3451 }
3452
3453 void
3454 target_store_registers (struct regcache *regcache, int regno)
3455 {
3456 if (!may_write_registers)
3457 error (_("Writing to registers is not allowed (regno %d)"), regno);
3458
3459 current_target.to_store_registers (&current_target, regcache, regno);
3460 if (targetdebug)
3461 {
3462 regcache->debug_print_register ("target_store_registers", regno);
3463 }
3464 }
3465
3466 int
3467 target_core_of_thread (ptid_t ptid)
3468 {
3469 return current_target.to_core_of_thread (&current_target, ptid);
3470 }
3471
3472 int
3473 simple_verify_memory (struct target_ops *ops,
3474 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3475 {
3476 LONGEST total_xfered = 0;
3477
3478 while (total_xfered < size)
3479 {
3480 ULONGEST xfered_len;
3481 enum target_xfer_status status;
3482 gdb_byte buf[1024];
3483 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3484
3485 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3486 buf, NULL, lma + total_xfered, howmuch,
3487 &xfered_len);
3488 if (status == TARGET_XFER_OK
3489 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3490 {
3491 total_xfered += xfered_len;
3492 QUIT;
3493 }
3494 else
3495 return 0;
3496 }
3497 return 1;
3498 }
3499
3500 /* Default implementation of memory verification. */
3501
3502 static int
3503 default_verify_memory (struct target_ops *self,
3504 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3505 {
3506 /* Start over from the top of the target stack. */
3507 return simple_verify_memory (current_target.beneath,
3508 data, memaddr, size);
3509 }
3510
3511 int
3512 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3513 {
3514 return current_target.to_verify_memory (&current_target,
3515 data, memaddr, size);
3516 }
3517
3518 /* The documentation for this function is in its prototype declaration in
3519 target.h. */
3520
3521 int
3522 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3523 enum target_hw_bp_type rw)
3524 {
3525 return current_target.to_insert_mask_watchpoint (&current_target,
3526 addr, mask, rw);
3527 }
3528
3529 /* The documentation for this function is in its prototype declaration in
3530 target.h. */
3531
3532 int
3533 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3534 enum target_hw_bp_type rw)
3535 {
3536 return current_target.to_remove_mask_watchpoint (&current_target,
3537 addr, mask, rw);
3538 }
3539
3540 /* The documentation for this function is in its prototype declaration
3541 in target.h. */
3542
3543 int
3544 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3545 {
3546 return current_target.to_masked_watch_num_registers (&current_target,
3547 addr, mask);
3548 }
3549
3550 /* The documentation for this function is in its prototype declaration
3551 in target.h. */
3552
3553 int
3554 target_ranged_break_num_registers (void)
3555 {
3556 return current_target.to_ranged_break_num_registers (&current_target);
3557 }
3558
3559 /* See target.h. */
3560
3561 int
3562 target_supports_btrace (enum btrace_format format)
3563 {
3564 return current_target.to_supports_btrace (&current_target, format);
3565 }
3566
3567 /* See target.h. */
3568
3569 struct btrace_target_info *
3570 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3571 {
3572 return current_target.to_enable_btrace (&current_target, ptid, conf);
3573 }
3574
3575 /* See target.h. */
3576
3577 void
3578 target_disable_btrace (struct btrace_target_info *btinfo)
3579 {
3580 current_target.to_disable_btrace (&current_target, btinfo);
3581 }
3582
3583 /* See target.h. */
3584
3585 void
3586 target_teardown_btrace (struct btrace_target_info *btinfo)
3587 {
3588 current_target.to_teardown_btrace (&current_target, btinfo);
3589 }
3590
3591 /* See target.h. */
3592
3593 enum btrace_error
3594 target_read_btrace (struct btrace_data *btrace,
3595 struct btrace_target_info *btinfo,
3596 enum btrace_read_type type)
3597 {
3598 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3599 }
3600
3601 /* See target.h. */
3602
3603 const struct btrace_config *
3604 target_btrace_conf (const struct btrace_target_info *btinfo)
3605 {
3606 return current_target.to_btrace_conf (&current_target, btinfo);
3607 }
3608
3609 /* See target.h. */
3610
3611 void
3612 target_stop_recording (void)
3613 {
3614 current_target.to_stop_recording (&current_target);
3615 }
3616
3617 /* See target.h. */
3618
3619 void
3620 target_save_record (const char *filename)
3621 {
3622 current_target.to_save_record (&current_target, filename);
3623 }
3624
3625 /* See target.h. */
3626
3627 int
3628 target_supports_delete_record (void)
3629 {
3630 struct target_ops *t;
3631
3632 for (t = current_target.beneath; t != NULL; t = t->beneath)
3633 if (t->to_delete_record != delegate_delete_record
3634 && t->to_delete_record != tdefault_delete_record)
3635 return 1;
3636
3637 return 0;
3638 }
3639
3640 /* See target.h. */
3641
3642 void
3643 target_delete_record (void)
3644 {
3645 current_target.to_delete_record (&current_target);
3646 }
3647
3648 /* See target.h. */
3649
3650 enum record_method
3651 target_record_method (ptid_t ptid)
3652 {
3653 return current_target.to_record_method (&current_target, ptid);
3654 }
3655
3656 /* See target.h. */
3657
3658 int
3659 target_record_is_replaying (ptid_t ptid)
3660 {
3661 return current_target.to_record_is_replaying (&current_target, ptid);
3662 }
3663
3664 /* See target.h. */
3665
3666 int
3667 target_record_will_replay (ptid_t ptid, int dir)
3668 {
3669 return current_target.to_record_will_replay (&current_target, ptid, dir);
3670 }
3671
3672 /* See target.h. */
3673
3674 void
3675 target_record_stop_replaying (void)
3676 {
3677 current_target.to_record_stop_replaying (&current_target);
3678 }
3679
3680 /* See target.h. */
3681
3682 void
3683 target_goto_record_begin (void)
3684 {
3685 current_target.to_goto_record_begin (&current_target);
3686 }
3687
3688 /* See target.h. */
3689
3690 void
3691 target_goto_record_end (void)
3692 {
3693 current_target.to_goto_record_end (&current_target);
3694 }
3695
3696 /* See target.h. */
3697
3698 void
3699 target_goto_record (ULONGEST insn)
3700 {
3701 current_target.to_goto_record (&current_target, insn);
3702 }
3703
3704 /* See target.h. */
3705
3706 void
3707 target_insn_history (int size, gdb_disassembly_flags flags)
3708 {
3709 current_target.to_insn_history (&current_target, size, flags);
3710 }
3711
3712 /* See target.h. */
3713
3714 void
3715 target_insn_history_from (ULONGEST from, int size,
3716 gdb_disassembly_flags flags)
3717 {
3718 current_target.to_insn_history_from (&current_target, from, size, flags);
3719 }
3720
3721 /* See target.h. */
3722
3723 void
3724 target_insn_history_range (ULONGEST begin, ULONGEST end,
3725 gdb_disassembly_flags flags)
3726 {
3727 current_target.to_insn_history_range (&current_target, begin, end, flags);
3728 }
3729
3730 /* See target.h. */
3731
3732 void
3733 target_call_history (int size, int flags)
3734 {
3735 current_target.to_call_history (&current_target, size, flags);
3736 }
3737
3738 /* See target.h. */
3739
3740 void
3741 target_call_history_from (ULONGEST begin, int size, int flags)
3742 {
3743 current_target.to_call_history_from (&current_target, begin, size, flags);
3744 }
3745
3746 /* See target.h. */
3747
3748 void
3749 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3750 {
3751 current_target.to_call_history_range (&current_target, begin, end, flags);
3752 }
3753
3754 /* See target.h. */
3755
3756 const struct frame_unwind *
3757 target_get_unwinder (void)
3758 {
3759 return current_target.to_get_unwinder (&current_target);
3760 }
3761
3762 /* See target.h. */
3763
3764 const struct frame_unwind *
3765 target_get_tailcall_unwinder (void)
3766 {
3767 return current_target.to_get_tailcall_unwinder (&current_target);
3768 }
3769
3770 /* See target.h. */
3771
3772 void
3773 target_prepare_to_generate_core (void)
3774 {
3775 current_target.to_prepare_to_generate_core (&current_target);
3776 }
3777
3778 /* See target.h. */
3779
3780 void
3781 target_done_generating_core (void)
3782 {
3783 current_target.to_done_generating_core (&current_target);
3784 }
3785
3786 static void
3787 setup_target_debug (void)
3788 {
3789 memcpy (&debug_target, &current_target, sizeof debug_target);
3790
3791 init_debug_target (&current_target);
3792 }
3793 \f
3794
3795 static char targ_desc[] =
3796 "Names of targets and files being debugged.\nShows the entire \
3797 stack of targets currently in use (including the exec-file,\n\
3798 core-file, and process, if any), as well as the symbol file name.";
3799
3800 static void
3801 default_rcmd (struct target_ops *self, const char *command,
3802 struct ui_file *output)
3803 {
3804 error (_("\"monitor\" command not supported by this target."));
3805 }
3806
3807 static void
3808 do_monitor_command (char *cmd,
3809 int from_tty)
3810 {
3811 target_rcmd (cmd, gdb_stdtarg);
3812 }
3813
3814 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3815 ignored. */
3816
3817 void
3818 flash_erase_command (char *cmd, int from_tty)
3819 {
3820 /* Used to communicate termination of flash operations to the target. */
3821 bool found_flash_region = false;
3822 struct mem_region *m;
3823 struct gdbarch *gdbarch = target_gdbarch ();
3824
3825 VEC(mem_region_s) *mem_regions = target_memory_map ();
3826
3827 /* Iterate over all memory regions. */
3828 for (int i = 0; VEC_iterate (mem_region_s, mem_regions, i, m); i++)
3829 {
3830 /* Fetch the memory attribute. */
3831 struct mem_attrib *attrib = &m->attrib;
3832
3833 /* Is this a flash memory region? */
3834 if (attrib->mode == MEM_FLASH)
3835 {
3836 found_flash_region = true;
3837 target_flash_erase (m->lo, m->hi - m->lo);
3838
3839 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3840
3841 current_uiout->message (_("Erasing flash memory region at address "));
3842 current_uiout->field_fmt ("address", "%s", paddress (gdbarch,
3843 m->lo));
3844 current_uiout->message (", size = ");
3845 current_uiout->field_fmt ("size", "%s", hex_string (m->hi - m->lo));
3846 current_uiout->message ("\n");
3847 }
3848 }
3849
3850 /* Did we do any flash operations? If so, we need to finalize them. */
3851 if (found_flash_region)
3852 target_flash_done ();
3853 else
3854 current_uiout->message (_("No flash memory regions found.\n"));
3855 }
3856
3857 /* Print the name of each layers of our target stack. */
3858
3859 static void
3860 maintenance_print_target_stack (const char *cmd, int from_tty)
3861 {
3862 struct target_ops *t;
3863
3864 printf_filtered (_("The current target stack is:\n"));
3865
3866 for (t = target_stack; t != NULL; t = t->beneath)
3867 {
3868 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3869 }
3870 }
3871
3872 /* See target.h. */
3873
3874 void
3875 target_async (int enable)
3876 {
3877 infrun_async (enable);
3878 current_target.to_async (&current_target, enable);
3879 }
3880
3881 /* See target.h. */
3882
3883 void
3884 target_thread_events (int enable)
3885 {
3886 current_target.to_thread_events (&current_target, enable);
3887 }
3888
3889 /* Controls if targets can report that they can/are async. This is
3890 just for maintainers to use when debugging gdb. */
3891 int target_async_permitted = 1;
3892
3893 /* The set command writes to this variable. If the inferior is
3894 executing, target_async_permitted is *not* updated. */
3895 static int target_async_permitted_1 = 1;
3896
3897 static void
3898 maint_set_target_async_command (char *args, int from_tty,
3899 struct cmd_list_element *c)
3900 {
3901 if (have_live_inferiors ())
3902 {
3903 target_async_permitted_1 = target_async_permitted;
3904 error (_("Cannot change this setting while the inferior is running."));
3905 }
3906
3907 target_async_permitted = target_async_permitted_1;
3908 }
3909
3910 static void
3911 maint_show_target_async_command (struct ui_file *file, int from_tty,
3912 struct cmd_list_element *c,
3913 const char *value)
3914 {
3915 fprintf_filtered (file,
3916 _("Controlling the inferior in "
3917 "asynchronous mode is %s.\n"), value);
3918 }
3919
3920 /* Return true if the target operates in non-stop mode even with "set
3921 non-stop off". */
3922
3923 static int
3924 target_always_non_stop_p (void)
3925 {
3926 return current_target.to_always_non_stop_p (&current_target);
3927 }
3928
3929 /* See target.h. */
3930
3931 int
3932 target_is_non_stop_p (void)
3933 {
3934 return (non_stop
3935 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3936 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3937 && target_always_non_stop_p ()));
3938 }
3939
3940 /* Controls if targets can report that they always run in non-stop
3941 mode. This is just for maintainers to use when debugging gdb. */
3942 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3943
3944 /* The set command writes to this variable. If the inferior is
3945 executing, target_non_stop_enabled is *not* updated. */
3946 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3947
3948 /* Implementation of "maint set target-non-stop". */
3949
3950 static void
3951 maint_set_target_non_stop_command (char *args, int from_tty,
3952 struct cmd_list_element *c)
3953 {
3954 if (have_live_inferiors ())
3955 {
3956 target_non_stop_enabled_1 = target_non_stop_enabled;
3957 error (_("Cannot change this setting while the inferior is running."));
3958 }
3959
3960 target_non_stop_enabled = target_non_stop_enabled_1;
3961 }
3962
3963 /* Implementation of "maint show target-non-stop". */
3964
3965 static void
3966 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3967 struct cmd_list_element *c,
3968 const char *value)
3969 {
3970 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3971 fprintf_filtered (file,
3972 _("Whether the target is always in non-stop mode "
3973 "is %s (currently %s).\n"), value,
3974 target_always_non_stop_p () ? "on" : "off");
3975 else
3976 fprintf_filtered (file,
3977 _("Whether the target is always in non-stop mode "
3978 "is %s.\n"), value);
3979 }
3980
3981 /* Temporary copies of permission settings. */
3982
3983 static int may_write_registers_1 = 1;
3984 static int may_write_memory_1 = 1;
3985 static int may_insert_breakpoints_1 = 1;
3986 static int may_insert_tracepoints_1 = 1;
3987 static int may_insert_fast_tracepoints_1 = 1;
3988 static int may_stop_1 = 1;
3989
3990 /* Make the user-set values match the real values again. */
3991
3992 void
3993 update_target_permissions (void)
3994 {
3995 may_write_registers_1 = may_write_registers;
3996 may_write_memory_1 = may_write_memory;
3997 may_insert_breakpoints_1 = may_insert_breakpoints;
3998 may_insert_tracepoints_1 = may_insert_tracepoints;
3999 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4000 may_stop_1 = may_stop;
4001 }
4002
4003 /* The one function handles (most of) the permission flags in the same
4004 way. */
4005
4006 static void
4007 set_target_permissions (char *args, int from_tty,
4008 struct cmd_list_element *c)
4009 {
4010 if (target_has_execution)
4011 {
4012 update_target_permissions ();
4013 error (_("Cannot change this setting while the inferior is running."));
4014 }
4015
4016 /* Make the real values match the user-changed values. */
4017 may_write_registers = may_write_registers_1;
4018 may_insert_breakpoints = may_insert_breakpoints_1;
4019 may_insert_tracepoints = may_insert_tracepoints_1;
4020 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4021 may_stop = may_stop_1;
4022 update_observer_mode ();
4023 }
4024
4025 /* Set memory write permission independently of observer mode. */
4026
4027 static void
4028 set_write_memory_permission (char *args, int from_tty,
4029 struct cmd_list_element *c)
4030 {
4031 /* Make the real values match the user-changed values. */
4032 may_write_memory = may_write_memory_1;
4033 update_observer_mode ();
4034 }
4035
4036
4037 void
4038 initialize_targets (void)
4039 {
4040 init_dummy_target ();
4041 push_target (&dummy_target);
4042
4043 add_info ("target", info_target_command, targ_desc);
4044 add_info ("files", info_target_command, targ_desc);
4045
4046 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4047 Set target debugging."), _("\
4048 Show target debugging."), _("\
4049 When non-zero, target debugging is enabled. Higher numbers are more\n\
4050 verbose."),
4051 set_targetdebug,
4052 show_targetdebug,
4053 &setdebuglist, &showdebuglist);
4054
4055 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4056 &trust_readonly, _("\
4057 Set mode for reading from readonly sections."), _("\
4058 Show mode for reading from readonly sections."), _("\
4059 When this mode is on, memory reads from readonly sections (such as .text)\n\
4060 will be read from the object file instead of from the target. This will\n\
4061 result in significant performance improvement for remote targets."),
4062 NULL,
4063 show_trust_readonly,
4064 &setlist, &showlist);
4065
4066 add_com ("monitor", class_obscure, do_monitor_command,
4067 _("Send a command to the remote monitor (remote targets only)."));
4068
4069 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4070 _("Print the name of each layer of the internal target stack."),
4071 &maintenanceprintlist);
4072
4073 add_setshow_boolean_cmd ("target-async", no_class,
4074 &target_async_permitted_1, _("\
4075 Set whether gdb controls the inferior in asynchronous mode."), _("\
4076 Show whether gdb controls the inferior in asynchronous mode."), _("\
4077 Tells gdb whether to control the inferior in asynchronous mode."),
4078 maint_set_target_async_command,
4079 maint_show_target_async_command,
4080 &maintenance_set_cmdlist,
4081 &maintenance_show_cmdlist);
4082
4083 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4084 &target_non_stop_enabled_1, _("\
4085 Set whether gdb always controls the inferior in non-stop mode."), _("\
4086 Show whether gdb always controls the inferior in non-stop mode."), _("\
4087 Tells gdb whether to control the inferior in non-stop mode."),
4088 maint_set_target_non_stop_command,
4089 maint_show_target_non_stop_command,
4090 &maintenance_set_cmdlist,
4091 &maintenance_show_cmdlist);
4092
4093 add_setshow_boolean_cmd ("may-write-registers", class_support,
4094 &may_write_registers_1, _("\
4095 Set permission to write into registers."), _("\
4096 Show permission to write into registers."), _("\
4097 When this permission is on, GDB may write into the target's registers.\n\
4098 Otherwise, any sort of write attempt will result in an error."),
4099 set_target_permissions, NULL,
4100 &setlist, &showlist);
4101
4102 add_setshow_boolean_cmd ("may-write-memory", class_support,
4103 &may_write_memory_1, _("\
4104 Set permission to write into target memory."), _("\
4105 Show permission to write into target memory."), _("\
4106 When this permission is on, GDB may write into the target's memory.\n\
4107 Otherwise, any sort of write attempt will result in an error."),
4108 set_write_memory_permission, NULL,
4109 &setlist, &showlist);
4110
4111 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4112 &may_insert_breakpoints_1, _("\
4113 Set permission to insert breakpoints in the target."), _("\
4114 Show permission to insert breakpoints in the target."), _("\
4115 When this permission is on, GDB may insert breakpoints in the program.\n\
4116 Otherwise, any sort of insertion attempt will result in an error."),
4117 set_target_permissions, NULL,
4118 &setlist, &showlist);
4119
4120 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4121 &may_insert_tracepoints_1, _("\
4122 Set permission to insert tracepoints in the target."), _("\
4123 Show permission to insert tracepoints in the target."), _("\
4124 When this permission is on, GDB may insert tracepoints in the program.\n\
4125 Otherwise, any sort of insertion attempt will result in an error."),
4126 set_target_permissions, NULL,
4127 &setlist, &showlist);
4128
4129 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4130 &may_insert_fast_tracepoints_1, _("\
4131 Set permission to insert fast tracepoints in the target."), _("\
4132 Show permission to insert fast tracepoints in the target."), _("\
4133 When this permission is on, GDB may insert fast tracepoints.\n\
4134 Otherwise, any sort of insertion attempt will result in an error."),
4135 set_target_permissions, NULL,
4136 &setlist, &showlist);
4137
4138 add_setshow_boolean_cmd ("may-interrupt", class_support,
4139 &may_stop_1, _("\
4140 Set permission to interrupt or signal the target."), _("\
4141 Show permission to interrupt or signal the target."), _("\
4142 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4143 Otherwise, any attempt to interrupt or stop will be ignored."),
4144 set_target_permissions, NULL,
4145 &setlist, &showlist);
4146
4147 add_com ("flash-erase", no_class, flash_erase_command,
4148 _("Erase all flash memory regions."));
4149
4150 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4151 &auto_connect_native_target, _("\
4152 Set whether GDB may automatically connect to the native target."), _("\
4153 Show whether GDB may automatically connect to the native target."), _("\
4154 When on, and GDB is not connected to a target yet, GDB\n\
4155 attempts \"run\" and other commands with the native target."),
4156 NULL, show_auto_connect_native_target,
4157 &setlist, &showlist);
4158 }
This page took 0.117802 seconds and 4 git commands to generate.