fcd877cbdea276be441042b4171a1ebf06eaa6fe
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46
47 static void target_info (char *, int);
48
49 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
51 static void default_terminal_info (struct target_ops *, const char *, int);
52
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
58
59 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
60
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
64 static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
67 static void default_mourn_inferior (struct target_ops *self);
68
69 static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
76 static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
80 static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
84
85 static int return_zero (struct target_ops *);
86
87 static int return_zero_has_execution (struct target_ops *, ptid_t);
88
89 static void target_command (char *, int);
90
91 static struct target_ops *find_default_run_target (char *);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
100 static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
103 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
105 static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
108 static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
109 struct gdbarch *gdbarch);
110
111 static struct target_ops debug_target;
112
113 #include "target-delegates.c"
114
115 static void init_dummy_target (void);
116
117 static void update_current_target (void);
118
119 /* Vector of existing target structures. */
120 typedef struct target_ops *target_ops_p;
121 DEF_VEC_P (target_ops_p);
122 static VEC (target_ops_p) *target_structs;
123
124 /* The initial current target, so that there is always a semi-valid
125 current target. */
126
127 static struct target_ops dummy_target;
128
129 /* Top of target stack. */
130
131 static struct target_ops *target_stack;
132
133 /* The target structure we are currently using to talk to a process
134 or file or whatever "inferior" we have. */
135
136 struct target_ops current_target;
137
138 /* Command list for target. */
139
140 static struct cmd_list_element *targetlist = NULL;
141
142 /* Nonzero if we should trust readonly sections from the
143 executable when reading memory. */
144
145 static int trust_readonly = 0;
146
147 /* Nonzero if we should show true memory content including
148 memory breakpoint inserted by gdb. */
149
150 static int show_memory_breakpoints = 0;
151
152 /* These globals control whether GDB attempts to perform these
153 operations; they are useful for targets that need to prevent
154 inadvertant disruption, such as in non-stop mode. */
155
156 int may_write_registers = 1;
157
158 int may_write_memory = 1;
159
160 int may_insert_breakpoints = 1;
161
162 int may_insert_tracepoints = 1;
163
164 int may_insert_fast_tracepoints = 1;
165
166 int may_stop = 1;
167
168 /* Non-zero if we want to see trace of target level stuff. */
169
170 static unsigned int targetdebug = 0;
171
172 static void
173 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
174 {
175 update_current_target ();
176 }
177
178 static void
179 show_targetdebug (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
183 }
184
185 static void setup_target_debug (void);
186
187 /* The user just typed 'target' without the name of a target. */
188
189 static void
190 target_command (char *arg, int from_tty)
191 {
192 fputs_filtered ("Argument required (target name). Try `help target'\n",
193 gdb_stdout);
194 }
195
196 /* Default target_has_* methods for process_stratum targets. */
197
198 int
199 default_child_has_all_memory (struct target_ops *ops)
200 {
201 /* If no inferior selected, then we can't read memory here. */
202 if (ptid_equal (inferior_ptid, null_ptid))
203 return 0;
204
205 return 1;
206 }
207
208 int
209 default_child_has_memory (struct target_ops *ops)
210 {
211 /* If no inferior selected, then we can't read memory here. */
212 if (ptid_equal (inferior_ptid, null_ptid))
213 return 0;
214
215 return 1;
216 }
217
218 int
219 default_child_has_stack (struct target_ops *ops)
220 {
221 /* If no inferior selected, there's no stack. */
222 if (ptid_equal (inferior_ptid, null_ptid))
223 return 0;
224
225 return 1;
226 }
227
228 int
229 default_child_has_registers (struct target_ops *ops)
230 {
231 /* Can't read registers from no inferior. */
232 if (ptid_equal (inferior_ptid, null_ptid))
233 return 0;
234
235 return 1;
236 }
237
238 int
239 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
240 {
241 /* If there's no thread selected, then we can't make it run through
242 hoops. */
243 if (ptid_equal (the_ptid, null_ptid))
244 return 0;
245
246 return 1;
247 }
248
249
250 int
251 target_has_all_memory_1 (void)
252 {
253 struct target_ops *t;
254
255 for (t = current_target.beneath; t != NULL; t = t->beneath)
256 if (t->to_has_all_memory (t))
257 return 1;
258
259 return 0;
260 }
261
262 int
263 target_has_memory_1 (void)
264 {
265 struct target_ops *t;
266
267 for (t = current_target.beneath; t != NULL; t = t->beneath)
268 if (t->to_has_memory (t))
269 return 1;
270
271 return 0;
272 }
273
274 int
275 target_has_stack_1 (void)
276 {
277 struct target_ops *t;
278
279 for (t = current_target.beneath; t != NULL; t = t->beneath)
280 if (t->to_has_stack (t))
281 return 1;
282
283 return 0;
284 }
285
286 int
287 target_has_registers_1 (void)
288 {
289 struct target_ops *t;
290
291 for (t = current_target.beneath; t != NULL; t = t->beneath)
292 if (t->to_has_registers (t))
293 return 1;
294
295 return 0;
296 }
297
298 int
299 target_has_execution_1 (ptid_t the_ptid)
300 {
301 struct target_ops *t;
302
303 for (t = current_target.beneath; t != NULL; t = t->beneath)
304 if (t->to_has_execution (t, the_ptid))
305 return 1;
306
307 return 0;
308 }
309
310 int
311 target_has_execution_current (void)
312 {
313 return target_has_execution_1 (inferior_ptid);
314 }
315
316 /* Complete initialization of T. This ensures that various fields in
317 T are set, if needed by the target implementation. */
318
319 void
320 complete_target_initialization (struct target_ops *t)
321 {
322 /* Provide default values for all "must have" methods. */
323
324 if (t->to_has_all_memory == NULL)
325 t->to_has_all_memory = return_zero;
326
327 if (t->to_has_memory == NULL)
328 t->to_has_memory = return_zero;
329
330 if (t->to_has_stack == NULL)
331 t->to_has_stack = return_zero;
332
333 if (t->to_has_registers == NULL)
334 t->to_has_registers = return_zero;
335
336 if (t->to_has_execution == NULL)
337 t->to_has_execution = return_zero_has_execution;
338
339 /* These methods can be called on an unpushed target and so require
340 a default implementation if the target might plausibly be the
341 default run target. */
342 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
343 && t->to_supports_non_stop != NULL));
344
345 install_delegators (t);
346 }
347
348 /* This is used to implement the various target commands. */
349
350 static void
351 open_target (char *args, int from_tty, struct cmd_list_element *command)
352 {
353 struct target_ops *ops = get_cmd_context (command);
354
355 if (targetdebug)
356 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
357 ops->to_shortname);
358
359 ops->to_open (args, from_tty);
360
361 if (targetdebug)
362 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
363 ops->to_shortname, args, from_tty);
364 }
365
366 /* Add possible target architecture T to the list and add a new
367 command 'target T->to_shortname'. Set COMPLETER as the command's
368 completer if not NULL. */
369
370 void
371 add_target_with_completer (struct target_ops *t,
372 completer_ftype *completer)
373 {
374 struct cmd_list_element *c;
375
376 complete_target_initialization (t);
377
378 VEC_safe_push (target_ops_p, target_structs, t);
379
380 if (targetlist == NULL)
381 add_prefix_cmd ("target", class_run, target_command, _("\
382 Connect to a target machine or process.\n\
383 The first argument is the type or protocol of the target machine.\n\
384 Remaining arguments are interpreted by the target protocol. For more\n\
385 information on the arguments for a particular protocol, type\n\
386 `help target ' followed by the protocol name."),
387 &targetlist, "target ", 0, &cmdlist);
388 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
389 set_cmd_sfunc (c, open_target);
390 set_cmd_context (c, t);
391 if (completer != NULL)
392 set_cmd_completer (c, completer);
393 }
394
395 /* Add a possible target architecture to the list. */
396
397 void
398 add_target (struct target_ops *t)
399 {
400 add_target_with_completer (t, NULL);
401 }
402
403 /* See target.h. */
404
405 void
406 add_deprecated_target_alias (struct target_ops *t, char *alias)
407 {
408 struct cmd_list_element *c;
409 char *alt;
410
411 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
412 see PR cli/15104. */
413 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
414 set_cmd_sfunc (c, open_target);
415 set_cmd_context (c, t);
416 alt = xstrprintf ("target %s", t->to_shortname);
417 deprecate_cmd (c, alt);
418 }
419
420 /* Stub functions */
421
422 void
423 target_kill (void)
424 {
425 current_target.to_kill (&current_target);
426 }
427
428 void
429 target_load (const char *arg, int from_tty)
430 {
431 target_dcache_invalidate ();
432 (*current_target.to_load) (&current_target, arg, from_tty);
433 }
434
435 void
436 target_terminal_inferior (void)
437 {
438 /* A background resume (``run&'') should leave GDB in control of the
439 terminal. Use target_can_async_p, not target_is_async_p, since at
440 this point the target is not async yet. However, if sync_execution
441 is not set, we know it will become async prior to resume. */
442 if (target_can_async_p () && !sync_execution)
443 return;
444
445 /* If GDB is resuming the inferior in the foreground, install
446 inferior's terminal modes. */
447 (*current_target.to_terminal_inferior) (&current_target);
448 }
449
450 /* See target.h. */
451
452 int
453 target_supports_terminal_ours (void)
454 {
455 struct target_ops *t;
456
457 for (t = current_target.beneath; t != NULL; t = t->beneath)
458 {
459 if (t->to_terminal_ours != delegate_terminal_ours
460 && t->to_terminal_ours != tdefault_terminal_ours)
461 return 1;
462 }
463
464 return 0;
465 }
466
467 static void
468 tcomplain (void)
469 {
470 error (_("You can't do that when your target is `%s'"),
471 current_target.to_shortname);
472 }
473
474 void
475 noprocess (void)
476 {
477 error (_("You can't do that without a process to debug."));
478 }
479
480 static void
481 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
482 {
483 printf_unfiltered (_("No saved terminal information.\n"));
484 }
485
486 /* A default implementation for the to_get_ada_task_ptid target method.
487
488 This function builds the PTID by using both LWP and TID as part of
489 the PTID lwp and tid elements. The pid used is the pid of the
490 inferior_ptid. */
491
492 static ptid_t
493 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
494 {
495 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
496 }
497
498 static enum exec_direction_kind
499 default_execution_direction (struct target_ops *self)
500 {
501 if (!target_can_execute_reverse)
502 return EXEC_FORWARD;
503 else if (!target_can_async_p ())
504 return EXEC_FORWARD;
505 else
506 gdb_assert_not_reached ("\
507 to_execution_direction must be implemented for reverse async");
508 }
509
510 /* Go through the target stack from top to bottom, copying over zero
511 entries in current_target, then filling in still empty entries. In
512 effect, we are doing class inheritance through the pushed target
513 vectors.
514
515 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
516 is currently implemented, is that it discards any knowledge of
517 which target an inherited method originally belonged to.
518 Consequently, new new target methods should instead explicitly and
519 locally search the target stack for the target that can handle the
520 request. */
521
522 static void
523 update_current_target (void)
524 {
525 struct target_ops *t;
526
527 /* First, reset current's contents. */
528 memset (&current_target, 0, sizeof (current_target));
529
530 /* Install the delegators. */
531 install_delegators (&current_target);
532
533 current_target.to_stratum = target_stack->to_stratum;
534
535 #define INHERIT(FIELD, TARGET) \
536 if (!current_target.FIELD) \
537 current_target.FIELD = (TARGET)->FIELD
538
539 /* Do not add any new INHERITs here. Instead, use the delegation
540 mechanism provided by make-target-delegates. */
541 for (t = target_stack; t; t = t->beneath)
542 {
543 INHERIT (to_shortname, t);
544 INHERIT (to_longname, t);
545 INHERIT (to_attach_no_wait, t);
546 INHERIT (to_have_steppable_watchpoint, t);
547 INHERIT (to_have_continuable_watchpoint, t);
548 INHERIT (to_has_thread_control, t);
549 }
550 #undef INHERIT
551
552 /* Finally, position the target-stack beneath the squashed
553 "current_target". That way code looking for a non-inherited
554 target method can quickly and simply find it. */
555 current_target.beneath = target_stack;
556
557 if (targetdebug)
558 setup_target_debug ();
559 }
560
561 /* Push a new target type into the stack of the existing target accessors,
562 possibly superseding some of the existing accessors.
563
564 Rather than allow an empty stack, we always have the dummy target at
565 the bottom stratum, so we can call the function vectors without
566 checking them. */
567
568 void
569 push_target (struct target_ops *t)
570 {
571 struct target_ops **cur;
572
573 /* Check magic number. If wrong, it probably means someone changed
574 the struct definition, but not all the places that initialize one. */
575 if (t->to_magic != OPS_MAGIC)
576 {
577 fprintf_unfiltered (gdb_stderr,
578 "Magic number of %s target struct wrong\n",
579 t->to_shortname);
580 internal_error (__FILE__, __LINE__,
581 _("failed internal consistency check"));
582 }
583
584 /* Find the proper stratum to install this target in. */
585 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
586 {
587 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
588 break;
589 }
590
591 /* If there's already targets at this stratum, remove them. */
592 /* FIXME: cagney/2003-10-15: I think this should be popping all
593 targets to CUR, and not just those at this stratum level. */
594 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
595 {
596 /* There's already something at this stratum level. Close it,
597 and un-hook it from the stack. */
598 struct target_ops *tmp = (*cur);
599
600 (*cur) = (*cur)->beneath;
601 tmp->beneath = NULL;
602 target_close (tmp);
603 }
604
605 /* We have removed all targets in our stratum, now add the new one. */
606 t->beneath = (*cur);
607 (*cur) = t;
608
609 update_current_target ();
610 }
611
612 /* Remove a target_ops vector from the stack, wherever it may be.
613 Return how many times it was removed (0 or 1). */
614
615 int
616 unpush_target (struct target_ops *t)
617 {
618 struct target_ops **cur;
619 struct target_ops *tmp;
620
621 if (t->to_stratum == dummy_stratum)
622 internal_error (__FILE__, __LINE__,
623 _("Attempt to unpush the dummy target"));
624
625 /* Look for the specified target. Note that we assume that a target
626 can only occur once in the target stack. */
627
628 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
629 {
630 if ((*cur) == t)
631 break;
632 }
633
634 /* If we don't find target_ops, quit. Only open targets should be
635 closed. */
636 if ((*cur) == NULL)
637 return 0;
638
639 /* Unchain the target. */
640 tmp = (*cur);
641 (*cur) = (*cur)->beneath;
642 tmp->beneath = NULL;
643
644 update_current_target ();
645
646 /* Finally close the target. Note we do this after unchaining, so
647 any target method calls from within the target_close
648 implementation don't end up in T anymore. */
649 target_close (t);
650
651 return 1;
652 }
653
654 void
655 pop_all_targets_above (enum strata above_stratum)
656 {
657 while ((int) (current_target.to_stratum) > (int) above_stratum)
658 {
659 if (!unpush_target (target_stack))
660 {
661 fprintf_unfiltered (gdb_stderr,
662 "pop_all_targets couldn't find target %s\n",
663 target_stack->to_shortname);
664 internal_error (__FILE__, __LINE__,
665 _("failed internal consistency check"));
666 break;
667 }
668 }
669 }
670
671 void
672 pop_all_targets (void)
673 {
674 pop_all_targets_above (dummy_stratum);
675 }
676
677 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
678
679 int
680 target_is_pushed (struct target_ops *t)
681 {
682 struct target_ops *cur;
683
684 /* Check magic number. If wrong, it probably means someone changed
685 the struct definition, but not all the places that initialize one. */
686 if (t->to_magic != OPS_MAGIC)
687 {
688 fprintf_unfiltered (gdb_stderr,
689 "Magic number of %s target struct wrong\n",
690 t->to_shortname);
691 internal_error (__FILE__, __LINE__,
692 _("failed internal consistency check"));
693 }
694
695 for (cur = target_stack; cur != NULL; cur = cur->beneath)
696 if (cur == t)
697 return 1;
698
699 return 0;
700 }
701
702 /* Default implementation of to_get_thread_local_address. */
703
704 static void
705 generic_tls_error (void)
706 {
707 throw_error (TLS_GENERIC_ERROR,
708 _("Cannot find thread-local variables on this target"));
709 }
710
711 /* Using the objfile specified in OBJFILE, find the address for the
712 current thread's thread-local storage with offset OFFSET. */
713 CORE_ADDR
714 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
715 {
716 volatile CORE_ADDR addr = 0;
717 struct target_ops *target = &current_target;
718
719 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
720 {
721 ptid_t ptid = inferior_ptid;
722 volatile struct gdb_exception ex;
723
724 TRY_CATCH (ex, RETURN_MASK_ALL)
725 {
726 CORE_ADDR lm_addr;
727
728 /* Fetch the load module address for this objfile. */
729 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
730 objfile);
731
732 addr = target->to_get_thread_local_address (target, ptid,
733 lm_addr, offset);
734 }
735 /* If an error occurred, print TLS related messages here. Otherwise,
736 throw the error to some higher catcher. */
737 if (ex.reason < 0)
738 {
739 int objfile_is_library = (objfile->flags & OBJF_SHARED);
740
741 switch (ex.error)
742 {
743 case TLS_NO_LIBRARY_SUPPORT_ERROR:
744 error (_("Cannot find thread-local variables "
745 "in this thread library."));
746 break;
747 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
748 if (objfile_is_library)
749 error (_("Cannot find shared library `%s' in dynamic"
750 " linker's load module list"), objfile_name (objfile));
751 else
752 error (_("Cannot find executable file `%s' in dynamic"
753 " linker's load module list"), objfile_name (objfile));
754 break;
755 case TLS_NOT_ALLOCATED_YET_ERROR:
756 if (objfile_is_library)
757 error (_("The inferior has not yet allocated storage for"
758 " thread-local variables in\n"
759 "the shared library `%s'\n"
760 "for %s"),
761 objfile_name (objfile), target_pid_to_str (ptid));
762 else
763 error (_("The inferior has not yet allocated storage for"
764 " thread-local variables in\n"
765 "the executable `%s'\n"
766 "for %s"),
767 objfile_name (objfile), target_pid_to_str (ptid));
768 break;
769 case TLS_GENERIC_ERROR:
770 if (objfile_is_library)
771 error (_("Cannot find thread-local storage for %s, "
772 "shared library %s:\n%s"),
773 target_pid_to_str (ptid),
774 objfile_name (objfile), ex.message);
775 else
776 error (_("Cannot find thread-local storage for %s, "
777 "executable file %s:\n%s"),
778 target_pid_to_str (ptid),
779 objfile_name (objfile), ex.message);
780 break;
781 default:
782 throw_exception (ex);
783 break;
784 }
785 }
786 }
787 /* It wouldn't be wrong here to try a gdbarch method, too; finding
788 TLS is an ABI-specific thing. But we don't do that yet. */
789 else
790 error (_("Cannot find thread-local variables on this target"));
791
792 return addr;
793 }
794
795 const char *
796 target_xfer_status_to_string (enum target_xfer_status status)
797 {
798 #define CASE(X) case X: return #X
799 switch (status)
800 {
801 CASE(TARGET_XFER_E_IO);
802 CASE(TARGET_XFER_UNAVAILABLE);
803 default:
804 return "<unknown>";
805 }
806 #undef CASE
807 };
808
809
810 #undef MIN
811 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
812
813 /* target_read_string -- read a null terminated string, up to LEN bytes,
814 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
815 Set *STRING to a pointer to malloc'd memory containing the data; the caller
816 is responsible for freeing it. Return the number of bytes successfully
817 read. */
818
819 int
820 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
821 {
822 int tlen, offset, i;
823 gdb_byte buf[4];
824 int errcode = 0;
825 char *buffer;
826 int buffer_allocated;
827 char *bufptr;
828 unsigned int nbytes_read = 0;
829
830 gdb_assert (string);
831
832 /* Small for testing. */
833 buffer_allocated = 4;
834 buffer = xmalloc (buffer_allocated);
835 bufptr = buffer;
836
837 while (len > 0)
838 {
839 tlen = MIN (len, 4 - (memaddr & 3));
840 offset = memaddr & 3;
841
842 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
843 if (errcode != 0)
844 {
845 /* The transfer request might have crossed the boundary to an
846 unallocated region of memory. Retry the transfer, requesting
847 a single byte. */
848 tlen = 1;
849 offset = 0;
850 errcode = target_read_memory (memaddr, buf, 1);
851 if (errcode != 0)
852 goto done;
853 }
854
855 if (bufptr - buffer + tlen > buffer_allocated)
856 {
857 unsigned int bytes;
858
859 bytes = bufptr - buffer;
860 buffer_allocated *= 2;
861 buffer = xrealloc (buffer, buffer_allocated);
862 bufptr = buffer + bytes;
863 }
864
865 for (i = 0; i < tlen; i++)
866 {
867 *bufptr++ = buf[i + offset];
868 if (buf[i + offset] == '\000')
869 {
870 nbytes_read += i + 1;
871 goto done;
872 }
873 }
874
875 memaddr += tlen;
876 len -= tlen;
877 nbytes_read += tlen;
878 }
879 done:
880 *string = buffer;
881 if (errnop != NULL)
882 *errnop = errcode;
883 return nbytes_read;
884 }
885
886 struct target_section_table *
887 target_get_section_table (struct target_ops *target)
888 {
889 return (*target->to_get_section_table) (target);
890 }
891
892 /* Find a section containing ADDR. */
893
894 struct target_section *
895 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
896 {
897 struct target_section_table *table = target_get_section_table (target);
898 struct target_section *secp;
899
900 if (table == NULL)
901 return NULL;
902
903 for (secp = table->sections; secp < table->sections_end; secp++)
904 {
905 if (addr >= secp->addr && addr < secp->endaddr)
906 return secp;
907 }
908 return NULL;
909 }
910
911
912 /* Helper for the memory xfer routines. Checks the attributes of the
913 memory region of MEMADDR against the read or write being attempted.
914 If the access is permitted returns true, otherwise returns false.
915 REGION_P is an optional output parameter. If not-NULL, it is
916 filled with a pointer to the memory region of MEMADDR. REG_LEN
917 returns LEN trimmed to the end of the region. This is how much the
918 caller can continue requesting, if the access is permitted. A
919 single xfer request must not straddle memory region boundaries. */
920
921 static int
922 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
923 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
924 struct mem_region **region_p)
925 {
926 struct mem_region *region;
927
928 region = lookup_mem_region (memaddr);
929
930 if (region_p != NULL)
931 *region_p = region;
932
933 switch (region->attrib.mode)
934 {
935 case MEM_RO:
936 if (writebuf != NULL)
937 return 0;
938 break;
939
940 case MEM_WO:
941 if (readbuf != NULL)
942 return 0;
943 break;
944
945 case MEM_FLASH:
946 /* We only support writing to flash during "load" for now. */
947 if (writebuf != NULL)
948 error (_("Writing to flash memory forbidden in this context"));
949 break;
950
951 case MEM_NONE:
952 return 0;
953 }
954
955 /* region->hi == 0 means there's no upper bound. */
956 if (memaddr + len < region->hi || region->hi == 0)
957 *reg_len = len;
958 else
959 *reg_len = region->hi - memaddr;
960
961 return 1;
962 }
963
964 /* Read memory from more than one valid target. A core file, for
965 instance, could have some of memory but delegate other bits to
966 the target below it. So, we must manually try all targets. */
967
968 static enum target_xfer_status
969 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
970 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
971 ULONGEST *xfered_len)
972 {
973 enum target_xfer_status res;
974
975 do
976 {
977 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
978 readbuf, writebuf, memaddr, len,
979 xfered_len);
980 if (res == TARGET_XFER_OK)
981 break;
982
983 /* Stop if the target reports that the memory is not available. */
984 if (res == TARGET_XFER_UNAVAILABLE)
985 break;
986
987 /* We want to continue past core files to executables, but not
988 past a running target's memory. */
989 if (ops->to_has_all_memory (ops))
990 break;
991
992 ops = ops->beneath;
993 }
994 while (ops != NULL);
995
996 /* The cache works at the raw memory level. Make sure the cache
997 gets updated with raw contents no matter what kind of memory
998 object was originally being written. Note we do write-through
999 first, so that if it fails, we don't write to the cache contents
1000 that never made it to the target. */
1001 if (writebuf != NULL
1002 && !ptid_equal (inferior_ptid, null_ptid)
1003 && target_dcache_init_p ()
1004 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1005 {
1006 DCACHE *dcache = target_dcache_get ();
1007
1008 /* Note that writing to an area of memory which wasn't present
1009 in the cache doesn't cause it to be loaded in. */
1010 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1011 }
1012
1013 return res;
1014 }
1015
1016 /* Perform a partial memory transfer.
1017 For docs see target.h, to_xfer_partial. */
1018
1019 static enum target_xfer_status
1020 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1021 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1022 ULONGEST len, ULONGEST *xfered_len)
1023 {
1024 enum target_xfer_status res;
1025 ULONGEST reg_len;
1026 struct mem_region *region;
1027 struct inferior *inf;
1028
1029 /* For accesses to unmapped overlay sections, read directly from
1030 files. Must do this first, as MEMADDR may need adjustment. */
1031 if (readbuf != NULL && overlay_debugging)
1032 {
1033 struct obj_section *section = find_pc_overlay (memaddr);
1034
1035 if (pc_in_unmapped_range (memaddr, section))
1036 {
1037 struct target_section_table *table
1038 = target_get_section_table (ops);
1039 const char *section_name = section->the_bfd_section->name;
1040
1041 memaddr = overlay_mapped_address (memaddr, section);
1042 return section_table_xfer_memory_partial (readbuf, writebuf,
1043 memaddr, len, xfered_len,
1044 table->sections,
1045 table->sections_end,
1046 section_name);
1047 }
1048 }
1049
1050 /* Try the executable files, if "trust-readonly-sections" is set. */
1051 if (readbuf != NULL && trust_readonly)
1052 {
1053 struct target_section *secp;
1054 struct target_section_table *table;
1055
1056 secp = target_section_by_addr (ops, memaddr);
1057 if (secp != NULL
1058 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1059 secp->the_bfd_section)
1060 & SEC_READONLY))
1061 {
1062 table = target_get_section_table (ops);
1063 return section_table_xfer_memory_partial (readbuf, writebuf,
1064 memaddr, len, xfered_len,
1065 table->sections,
1066 table->sections_end,
1067 NULL);
1068 }
1069 }
1070
1071 /* Try GDB's internal data cache. */
1072
1073 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1074 &region))
1075 return TARGET_XFER_E_IO;
1076
1077 if (!ptid_equal (inferior_ptid, null_ptid))
1078 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1079 else
1080 inf = NULL;
1081
1082 if (inf != NULL
1083 && readbuf != NULL
1084 /* The dcache reads whole cache lines; that doesn't play well
1085 with reading from a trace buffer, because reading outside of
1086 the collected memory range fails. */
1087 && get_traceframe_number () == -1
1088 && (region->attrib.cache
1089 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1090 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1091 {
1092 DCACHE *dcache = target_dcache_get_or_init ();
1093
1094 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1095 reg_len, xfered_len);
1096 }
1097
1098 /* If none of those methods found the memory we wanted, fall back
1099 to a target partial transfer. Normally a single call to
1100 to_xfer_partial is enough; if it doesn't recognize an object
1101 it will call the to_xfer_partial of the next target down.
1102 But for memory this won't do. Memory is the only target
1103 object which can be read from more than one valid target.
1104 A core file, for instance, could have some of memory but
1105 delegate other bits to the target below it. So, we must
1106 manually try all targets. */
1107
1108 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1109 xfered_len);
1110
1111 /* If we still haven't got anything, return the last error. We
1112 give up. */
1113 return res;
1114 }
1115
1116 /* Perform a partial memory transfer. For docs see target.h,
1117 to_xfer_partial. */
1118
1119 static enum target_xfer_status
1120 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1121 gdb_byte *readbuf, const gdb_byte *writebuf,
1122 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1123 {
1124 enum target_xfer_status res;
1125
1126 /* Zero length requests are ok and require no work. */
1127 if (len == 0)
1128 return TARGET_XFER_EOF;
1129
1130 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1131 breakpoint insns, thus hiding out from higher layers whether
1132 there are software breakpoints inserted in the code stream. */
1133 if (readbuf != NULL)
1134 {
1135 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1136 xfered_len);
1137
1138 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1139 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1140 }
1141 else
1142 {
1143 void *buf;
1144 struct cleanup *old_chain;
1145
1146 /* A large write request is likely to be partially satisfied
1147 by memory_xfer_partial_1. We will continually malloc
1148 and free a copy of the entire write request for breakpoint
1149 shadow handling even though we only end up writing a small
1150 subset of it. Cap writes to 4KB to mitigate this. */
1151 len = min (4096, len);
1152
1153 buf = xmalloc (len);
1154 old_chain = make_cleanup (xfree, buf);
1155 memcpy (buf, writebuf, len);
1156
1157 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1158 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1159 xfered_len);
1160
1161 do_cleanups (old_chain);
1162 }
1163
1164 return res;
1165 }
1166
1167 static void
1168 restore_show_memory_breakpoints (void *arg)
1169 {
1170 show_memory_breakpoints = (uintptr_t) arg;
1171 }
1172
1173 struct cleanup *
1174 make_show_memory_breakpoints_cleanup (int show)
1175 {
1176 int current = show_memory_breakpoints;
1177
1178 show_memory_breakpoints = show;
1179 return make_cleanup (restore_show_memory_breakpoints,
1180 (void *) (uintptr_t) current);
1181 }
1182
1183 /* For docs see target.h, to_xfer_partial. */
1184
1185 enum target_xfer_status
1186 target_xfer_partial (struct target_ops *ops,
1187 enum target_object object, const char *annex,
1188 gdb_byte *readbuf, const gdb_byte *writebuf,
1189 ULONGEST offset, ULONGEST len,
1190 ULONGEST *xfered_len)
1191 {
1192 enum target_xfer_status retval;
1193
1194 gdb_assert (ops->to_xfer_partial != NULL);
1195
1196 /* Transfer is done when LEN is zero. */
1197 if (len == 0)
1198 return TARGET_XFER_EOF;
1199
1200 if (writebuf && !may_write_memory)
1201 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1202 core_addr_to_string_nz (offset), plongest (len));
1203
1204 *xfered_len = 0;
1205
1206 /* If this is a memory transfer, let the memory-specific code
1207 have a look at it instead. Memory transfers are more
1208 complicated. */
1209 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1210 || object == TARGET_OBJECT_CODE_MEMORY)
1211 retval = memory_xfer_partial (ops, object, readbuf,
1212 writebuf, offset, len, xfered_len);
1213 else if (object == TARGET_OBJECT_RAW_MEMORY)
1214 {
1215 /* Skip/avoid accessing the target if the memory region
1216 attributes block the access. Check this here instead of in
1217 raw_memory_xfer_partial as otherwise we'd end up checking
1218 this twice in the case of the memory_xfer_partial path is
1219 taken; once before checking the dcache, and another in the
1220 tail call to raw_memory_xfer_partial. */
1221 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1222 NULL))
1223 return TARGET_XFER_E_IO;
1224
1225 /* Request the normal memory object from other layers. */
1226 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1227 xfered_len);
1228 }
1229 else
1230 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1231 writebuf, offset, len, xfered_len);
1232
1233 if (targetdebug)
1234 {
1235 const unsigned char *myaddr = NULL;
1236
1237 fprintf_unfiltered (gdb_stdlog,
1238 "%s:target_xfer_partial "
1239 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1240 ops->to_shortname,
1241 (int) object,
1242 (annex ? annex : "(null)"),
1243 host_address_to_string (readbuf),
1244 host_address_to_string (writebuf),
1245 core_addr_to_string_nz (offset),
1246 pulongest (len), retval,
1247 pulongest (*xfered_len));
1248
1249 if (readbuf)
1250 myaddr = readbuf;
1251 if (writebuf)
1252 myaddr = writebuf;
1253 if (retval == TARGET_XFER_OK && myaddr != NULL)
1254 {
1255 int i;
1256
1257 fputs_unfiltered (", bytes =", gdb_stdlog);
1258 for (i = 0; i < *xfered_len; i++)
1259 {
1260 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1261 {
1262 if (targetdebug < 2 && i > 0)
1263 {
1264 fprintf_unfiltered (gdb_stdlog, " ...");
1265 break;
1266 }
1267 fprintf_unfiltered (gdb_stdlog, "\n");
1268 }
1269
1270 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1271 }
1272 }
1273
1274 fputc_unfiltered ('\n', gdb_stdlog);
1275 }
1276
1277 /* Check implementations of to_xfer_partial update *XFERED_LEN
1278 properly. Do assertion after printing debug messages, so that we
1279 can find more clues on assertion failure from debugging messages. */
1280 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1281 gdb_assert (*xfered_len > 0);
1282
1283 return retval;
1284 }
1285
1286 /* Read LEN bytes of target memory at address MEMADDR, placing the
1287 results in GDB's memory at MYADDR. Returns either 0 for success or
1288 TARGET_XFER_E_IO if any error occurs.
1289
1290 If an error occurs, no guarantee is made about the contents of the data at
1291 MYADDR. In particular, the caller should not depend upon partial reads
1292 filling the buffer with good data. There is no way for the caller to know
1293 how much good data might have been transfered anyway. Callers that can
1294 deal with partial reads should call target_read (which will retry until
1295 it makes no progress, and then return how much was transferred). */
1296
1297 int
1298 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1299 {
1300 /* Dispatch to the topmost target, not the flattened current_target.
1301 Memory accesses check target->to_has_(all_)memory, and the
1302 flattened target doesn't inherit those. */
1303 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1304 myaddr, memaddr, len) == len)
1305 return 0;
1306 else
1307 return TARGET_XFER_E_IO;
1308 }
1309
1310 /* See target/target.h. */
1311
1312 int
1313 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1314 {
1315 gdb_byte buf[4];
1316 int r;
1317
1318 r = target_read_memory (memaddr, buf, sizeof buf);
1319 if (r != 0)
1320 return r;
1321 *result = extract_unsigned_integer (buf, sizeof buf,
1322 gdbarch_byte_order (target_gdbarch ()));
1323 return 0;
1324 }
1325
1326 /* Like target_read_memory, but specify explicitly that this is a read
1327 from the target's raw memory. That is, this read bypasses the
1328 dcache, breakpoint shadowing, etc. */
1329
1330 int
1331 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1332 {
1333 /* See comment in target_read_memory about why the request starts at
1334 current_target.beneath. */
1335 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1336 myaddr, memaddr, len) == len)
1337 return 0;
1338 else
1339 return TARGET_XFER_E_IO;
1340 }
1341
1342 /* Like target_read_memory, but specify explicitly that this is a read from
1343 the target's stack. This may trigger different cache behavior. */
1344
1345 int
1346 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1347 {
1348 /* See comment in target_read_memory about why the request starts at
1349 current_target.beneath. */
1350 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1351 myaddr, memaddr, len) == len)
1352 return 0;
1353 else
1354 return TARGET_XFER_E_IO;
1355 }
1356
1357 /* Like target_read_memory, but specify explicitly that this is a read from
1358 the target's code. This may trigger different cache behavior. */
1359
1360 int
1361 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1362 {
1363 /* See comment in target_read_memory about why the request starts at
1364 current_target.beneath. */
1365 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1366 myaddr, memaddr, len) == len)
1367 return 0;
1368 else
1369 return TARGET_XFER_E_IO;
1370 }
1371
1372 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1373 Returns either 0 for success or TARGET_XFER_E_IO if any
1374 error occurs. If an error occurs, no guarantee is made about how
1375 much data got written. Callers that can deal with partial writes
1376 should call target_write. */
1377
1378 int
1379 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1380 {
1381 /* See comment in target_read_memory about why the request starts at
1382 current_target.beneath. */
1383 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1384 myaddr, memaddr, len) == len)
1385 return 0;
1386 else
1387 return TARGET_XFER_E_IO;
1388 }
1389
1390 /* Write LEN bytes from MYADDR to target raw memory at address
1391 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1392 if any error occurs. If an error occurs, no guarantee is made
1393 about how much data got written. Callers that can deal with
1394 partial writes should call target_write. */
1395
1396 int
1397 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1398 {
1399 /* See comment in target_read_memory about why the request starts at
1400 current_target.beneath. */
1401 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1402 myaddr, memaddr, len) == len)
1403 return 0;
1404 else
1405 return TARGET_XFER_E_IO;
1406 }
1407
1408 /* Fetch the target's memory map. */
1409
1410 VEC(mem_region_s) *
1411 target_memory_map (void)
1412 {
1413 VEC(mem_region_s) *result;
1414 struct mem_region *last_one, *this_one;
1415 int ix;
1416 struct target_ops *t;
1417
1418 result = current_target.to_memory_map (&current_target);
1419 if (result == NULL)
1420 return NULL;
1421
1422 qsort (VEC_address (mem_region_s, result),
1423 VEC_length (mem_region_s, result),
1424 sizeof (struct mem_region), mem_region_cmp);
1425
1426 /* Check that regions do not overlap. Simultaneously assign
1427 a numbering for the "mem" commands to use to refer to
1428 each region. */
1429 last_one = NULL;
1430 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1431 {
1432 this_one->number = ix;
1433
1434 if (last_one && last_one->hi > this_one->lo)
1435 {
1436 warning (_("Overlapping regions in memory map: ignoring"));
1437 VEC_free (mem_region_s, result);
1438 return NULL;
1439 }
1440 last_one = this_one;
1441 }
1442
1443 return result;
1444 }
1445
1446 void
1447 target_flash_erase (ULONGEST address, LONGEST length)
1448 {
1449 current_target.to_flash_erase (&current_target, address, length);
1450 }
1451
1452 void
1453 target_flash_done (void)
1454 {
1455 current_target.to_flash_done (&current_target);
1456 }
1457
1458 static void
1459 show_trust_readonly (struct ui_file *file, int from_tty,
1460 struct cmd_list_element *c, const char *value)
1461 {
1462 fprintf_filtered (file,
1463 _("Mode for reading from readonly sections is %s.\n"),
1464 value);
1465 }
1466
1467 /* Target vector read/write partial wrapper functions. */
1468
1469 static enum target_xfer_status
1470 target_read_partial (struct target_ops *ops,
1471 enum target_object object,
1472 const char *annex, gdb_byte *buf,
1473 ULONGEST offset, ULONGEST len,
1474 ULONGEST *xfered_len)
1475 {
1476 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1477 xfered_len);
1478 }
1479
1480 static enum target_xfer_status
1481 target_write_partial (struct target_ops *ops,
1482 enum target_object object,
1483 const char *annex, const gdb_byte *buf,
1484 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1485 {
1486 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1487 xfered_len);
1488 }
1489
1490 /* Wrappers to perform the full transfer. */
1491
1492 /* For docs on target_read see target.h. */
1493
1494 LONGEST
1495 target_read (struct target_ops *ops,
1496 enum target_object object,
1497 const char *annex, gdb_byte *buf,
1498 ULONGEST offset, LONGEST len)
1499 {
1500 LONGEST xfered = 0;
1501
1502 while (xfered < len)
1503 {
1504 ULONGEST xfered_len;
1505 enum target_xfer_status status;
1506
1507 status = target_read_partial (ops, object, annex,
1508 (gdb_byte *) buf + xfered,
1509 offset + xfered, len - xfered,
1510 &xfered_len);
1511
1512 /* Call an observer, notifying them of the xfer progress? */
1513 if (status == TARGET_XFER_EOF)
1514 return xfered;
1515 else if (status == TARGET_XFER_OK)
1516 {
1517 xfered += xfered_len;
1518 QUIT;
1519 }
1520 else
1521 return -1;
1522
1523 }
1524 return len;
1525 }
1526
1527 /* Assuming that the entire [begin, end) range of memory cannot be
1528 read, try to read whatever subrange is possible to read.
1529
1530 The function returns, in RESULT, either zero or one memory block.
1531 If there's a readable subrange at the beginning, it is completely
1532 read and returned. Any further readable subrange will not be read.
1533 Otherwise, if there's a readable subrange at the end, it will be
1534 completely read and returned. Any readable subranges before it
1535 (obviously, not starting at the beginning), will be ignored. In
1536 other cases -- either no readable subrange, or readable subrange(s)
1537 that is neither at the beginning, or end, nothing is returned.
1538
1539 The purpose of this function is to handle a read across a boundary
1540 of accessible memory in a case when memory map is not available.
1541 The above restrictions are fine for this case, but will give
1542 incorrect results if the memory is 'patchy'. However, supporting
1543 'patchy' memory would require trying to read every single byte,
1544 and it seems unacceptable solution. Explicit memory map is
1545 recommended for this case -- and target_read_memory_robust will
1546 take care of reading multiple ranges then. */
1547
1548 static void
1549 read_whatever_is_readable (struct target_ops *ops,
1550 ULONGEST begin, ULONGEST end,
1551 VEC(memory_read_result_s) **result)
1552 {
1553 gdb_byte *buf = xmalloc (end - begin);
1554 ULONGEST current_begin = begin;
1555 ULONGEST current_end = end;
1556 int forward;
1557 memory_read_result_s r;
1558 ULONGEST xfered_len;
1559
1560 /* If we previously failed to read 1 byte, nothing can be done here. */
1561 if (end - begin <= 1)
1562 {
1563 xfree (buf);
1564 return;
1565 }
1566
1567 /* Check that either first or the last byte is readable, and give up
1568 if not. This heuristic is meant to permit reading accessible memory
1569 at the boundary of accessible region. */
1570 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1571 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1572 {
1573 forward = 1;
1574 ++current_begin;
1575 }
1576 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1577 buf + (end-begin) - 1, end - 1, 1,
1578 &xfered_len) == TARGET_XFER_OK)
1579 {
1580 forward = 0;
1581 --current_end;
1582 }
1583 else
1584 {
1585 xfree (buf);
1586 return;
1587 }
1588
1589 /* Loop invariant is that the [current_begin, current_end) was previously
1590 found to be not readable as a whole.
1591
1592 Note loop condition -- if the range has 1 byte, we can't divide the range
1593 so there's no point trying further. */
1594 while (current_end - current_begin > 1)
1595 {
1596 ULONGEST first_half_begin, first_half_end;
1597 ULONGEST second_half_begin, second_half_end;
1598 LONGEST xfer;
1599 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1600
1601 if (forward)
1602 {
1603 first_half_begin = current_begin;
1604 first_half_end = middle;
1605 second_half_begin = middle;
1606 second_half_end = current_end;
1607 }
1608 else
1609 {
1610 first_half_begin = middle;
1611 first_half_end = current_end;
1612 second_half_begin = current_begin;
1613 second_half_end = middle;
1614 }
1615
1616 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1617 buf + (first_half_begin - begin),
1618 first_half_begin,
1619 first_half_end - first_half_begin);
1620
1621 if (xfer == first_half_end - first_half_begin)
1622 {
1623 /* This half reads up fine. So, the error must be in the
1624 other half. */
1625 current_begin = second_half_begin;
1626 current_end = second_half_end;
1627 }
1628 else
1629 {
1630 /* This half is not readable. Because we've tried one byte, we
1631 know some part of this half if actually redable. Go to the next
1632 iteration to divide again and try to read.
1633
1634 We don't handle the other half, because this function only tries
1635 to read a single readable subrange. */
1636 current_begin = first_half_begin;
1637 current_end = first_half_end;
1638 }
1639 }
1640
1641 if (forward)
1642 {
1643 /* The [begin, current_begin) range has been read. */
1644 r.begin = begin;
1645 r.end = current_begin;
1646 r.data = buf;
1647 }
1648 else
1649 {
1650 /* The [current_end, end) range has been read. */
1651 LONGEST rlen = end - current_end;
1652
1653 r.data = xmalloc (rlen);
1654 memcpy (r.data, buf + current_end - begin, rlen);
1655 r.begin = current_end;
1656 r.end = end;
1657 xfree (buf);
1658 }
1659 VEC_safe_push(memory_read_result_s, (*result), &r);
1660 }
1661
1662 void
1663 free_memory_read_result_vector (void *x)
1664 {
1665 VEC(memory_read_result_s) *v = x;
1666 memory_read_result_s *current;
1667 int ix;
1668
1669 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1670 {
1671 xfree (current->data);
1672 }
1673 VEC_free (memory_read_result_s, v);
1674 }
1675
1676 VEC(memory_read_result_s) *
1677 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1678 {
1679 VEC(memory_read_result_s) *result = 0;
1680
1681 LONGEST xfered = 0;
1682 while (xfered < len)
1683 {
1684 struct mem_region *region = lookup_mem_region (offset + xfered);
1685 LONGEST rlen;
1686
1687 /* If there is no explicit region, a fake one should be created. */
1688 gdb_assert (region);
1689
1690 if (region->hi == 0)
1691 rlen = len - xfered;
1692 else
1693 rlen = region->hi - offset;
1694
1695 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1696 {
1697 /* Cannot read this region. Note that we can end up here only
1698 if the region is explicitly marked inaccessible, or
1699 'inaccessible-by-default' is in effect. */
1700 xfered += rlen;
1701 }
1702 else
1703 {
1704 LONGEST to_read = min (len - xfered, rlen);
1705 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1706
1707 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1708 (gdb_byte *) buffer,
1709 offset + xfered, to_read);
1710 /* Call an observer, notifying them of the xfer progress? */
1711 if (xfer <= 0)
1712 {
1713 /* Got an error reading full chunk. See if maybe we can read
1714 some subrange. */
1715 xfree (buffer);
1716 read_whatever_is_readable (ops, offset + xfered,
1717 offset + xfered + to_read, &result);
1718 xfered += to_read;
1719 }
1720 else
1721 {
1722 struct memory_read_result r;
1723 r.data = buffer;
1724 r.begin = offset + xfered;
1725 r.end = r.begin + xfer;
1726 VEC_safe_push (memory_read_result_s, result, &r);
1727 xfered += xfer;
1728 }
1729 QUIT;
1730 }
1731 }
1732 return result;
1733 }
1734
1735
1736 /* An alternative to target_write with progress callbacks. */
1737
1738 LONGEST
1739 target_write_with_progress (struct target_ops *ops,
1740 enum target_object object,
1741 const char *annex, const gdb_byte *buf,
1742 ULONGEST offset, LONGEST len,
1743 void (*progress) (ULONGEST, void *), void *baton)
1744 {
1745 LONGEST xfered = 0;
1746
1747 /* Give the progress callback a chance to set up. */
1748 if (progress)
1749 (*progress) (0, baton);
1750
1751 while (xfered < len)
1752 {
1753 ULONGEST xfered_len;
1754 enum target_xfer_status status;
1755
1756 status = target_write_partial (ops, object, annex,
1757 (gdb_byte *) buf + xfered,
1758 offset + xfered, len - xfered,
1759 &xfered_len);
1760
1761 if (status != TARGET_XFER_OK)
1762 return status == TARGET_XFER_EOF ? xfered : -1;
1763
1764 if (progress)
1765 (*progress) (xfered_len, baton);
1766
1767 xfered += xfered_len;
1768 QUIT;
1769 }
1770 return len;
1771 }
1772
1773 /* For docs on target_write see target.h. */
1774
1775 LONGEST
1776 target_write (struct target_ops *ops,
1777 enum target_object object,
1778 const char *annex, const gdb_byte *buf,
1779 ULONGEST offset, LONGEST len)
1780 {
1781 return target_write_with_progress (ops, object, annex, buf, offset, len,
1782 NULL, NULL);
1783 }
1784
1785 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1786 the size of the transferred data. PADDING additional bytes are
1787 available in *BUF_P. This is a helper function for
1788 target_read_alloc; see the declaration of that function for more
1789 information. */
1790
1791 static LONGEST
1792 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1793 const char *annex, gdb_byte **buf_p, int padding)
1794 {
1795 size_t buf_alloc, buf_pos;
1796 gdb_byte *buf;
1797
1798 /* This function does not have a length parameter; it reads the
1799 entire OBJECT). Also, it doesn't support objects fetched partly
1800 from one target and partly from another (in a different stratum,
1801 e.g. a core file and an executable). Both reasons make it
1802 unsuitable for reading memory. */
1803 gdb_assert (object != TARGET_OBJECT_MEMORY);
1804
1805 /* Start by reading up to 4K at a time. The target will throttle
1806 this number down if necessary. */
1807 buf_alloc = 4096;
1808 buf = xmalloc (buf_alloc);
1809 buf_pos = 0;
1810 while (1)
1811 {
1812 ULONGEST xfered_len;
1813 enum target_xfer_status status;
1814
1815 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1816 buf_pos, buf_alloc - buf_pos - padding,
1817 &xfered_len);
1818
1819 if (status == TARGET_XFER_EOF)
1820 {
1821 /* Read all there was. */
1822 if (buf_pos == 0)
1823 xfree (buf);
1824 else
1825 *buf_p = buf;
1826 return buf_pos;
1827 }
1828 else if (status != TARGET_XFER_OK)
1829 {
1830 /* An error occurred. */
1831 xfree (buf);
1832 return TARGET_XFER_E_IO;
1833 }
1834
1835 buf_pos += xfered_len;
1836
1837 /* If the buffer is filling up, expand it. */
1838 if (buf_alloc < buf_pos * 2)
1839 {
1840 buf_alloc *= 2;
1841 buf = xrealloc (buf, buf_alloc);
1842 }
1843
1844 QUIT;
1845 }
1846 }
1847
1848 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1849 the size of the transferred data. See the declaration in "target.h"
1850 function for more information about the return value. */
1851
1852 LONGEST
1853 target_read_alloc (struct target_ops *ops, enum target_object object,
1854 const char *annex, gdb_byte **buf_p)
1855 {
1856 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1857 }
1858
1859 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1860 returned as a string, allocated using xmalloc. If an error occurs
1861 or the transfer is unsupported, NULL is returned. Empty objects
1862 are returned as allocated but empty strings. A warning is issued
1863 if the result contains any embedded NUL bytes. */
1864
1865 char *
1866 target_read_stralloc (struct target_ops *ops, enum target_object object,
1867 const char *annex)
1868 {
1869 gdb_byte *buffer;
1870 char *bufstr;
1871 LONGEST i, transferred;
1872
1873 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1874 bufstr = (char *) buffer;
1875
1876 if (transferred < 0)
1877 return NULL;
1878
1879 if (transferred == 0)
1880 return xstrdup ("");
1881
1882 bufstr[transferred] = 0;
1883
1884 /* Check for embedded NUL bytes; but allow trailing NULs. */
1885 for (i = strlen (bufstr); i < transferred; i++)
1886 if (bufstr[i] != 0)
1887 {
1888 warning (_("target object %d, annex %s, "
1889 "contained unexpected null characters"),
1890 (int) object, annex ? annex : "(none)");
1891 break;
1892 }
1893
1894 return bufstr;
1895 }
1896
1897 /* Memory transfer methods. */
1898
1899 void
1900 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1901 LONGEST len)
1902 {
1903 /* This method is used to read from an alternate, non-current
1904 target. This read must bypass the overlay support (as symbols
1905 don't match this target), and GDB's internal cache (wrong cache
1906 for this target). */
1907 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1908 != len)
1909 memory_error (TARGET_XFER_E_IO, addr);
1910 }
1911
1912 ULONGEST
1913 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1914 int len, enum bfd_endian byte_order)
1915 {
1916 gdb_byte buf[sizeof (ULONGEST)];
1917
1918 gdb_assert (len <= sizeof (buf));
1919 get_target_memory (ops, addr, buf, len);
1920 return extract_unsigned_integer (buf, len, byte_order);
1921 }
1922
1923 /* See target.h. */
1924
1925 int
1926 target_insert_breakpoint (struct gdbarch *gdbarch,
1927 struct bp_target_info *bp_tgt)
1928 {
1929 if (!may_insert_breakpoints)
1930 {
1931 warning (_("May not insert breakpoints"));
1932 return 1;
1933 }
1934
1935 return current_target.to_insert_breakpoint (&current_target,
1936 gdbarch, bp_tgt);
1937 }
1938
1939 /* See target.h. */
1940
1941 int
1942 target_remove_breakpoint (struct gdbarch *gdbarch,
1943 struct bp_target_info *bp_tgt)
1944 {
1945 /* This is kind of a weird case to handle, but the permission might
1946 have been changed after breakpoints were inserted - in which case
1947 we should just take the user literally and assume that any
1948 breakpoints should be left in place. */
1949 if (!may_insert_breakpoints)
1950 {
1951 warning (_("May not remove breakpoints"));
1952 return 1;
1953 }
1954
1955 return current_target.to_remove_breakpoint (&current_target,
1956 gdbarch, bp_tgt);
1957 }
1958
1959 static void
1960 target_info (char *args, int from_tty)
1961 {
1962 struct target_ops *t;
1963 int has_all_mem = 0;
1964
1965 if (symfile_objfile != NULL)
1966 printf_unfiltered (_("Symbols from \"%s\".\n"),
1967 objfile_name (symfile_objfile));
1968
1969 for (t = target_stack; t != NULL; t = t->beneath)
1970 {
1971 if (!(*t->to_has_memory) (t))
1972 continue;
1973
1974 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1975 continue;
1976 if (has_all_mem)
1977 printf_unfiltered (_("\tWhile running this, "
1978 "GDB does not access memory from...\n"));
1979 printf_unfiltered ("%s:\n", t->to_longname);
1980 (t->to_files_info) (t);
1981 has_all_mem = (*t->to_has_all_memory) (t);
1982 }
1983 }
1984
1985 /* This function is called before any new inferior is created, e.g.
1986 by running a program, attaching, or connecting to a target.
1987 It cleans up any state from previous invocations which might
1988 change between runs. This is a subset of what target_preopen
1989 resets (things which might change between targets). */
1990
1991 void
1992 target_pre_inferior (int from_tty)
1993 {
1994 /* Clear out solib state. Otherwise the solib state of the previous
1995 inferior might have survived and is entirely wrong for the new
1996 target. This has been observed on GNU/Linux using glibc 2.3. How
1997 to reproduce:
1998
1999 bash$ ./foo&
2000 [1] 4711
2001 bash$ ./foo&
2002 [1] 4712
2003 bash$ gdb ./foo
2004 [...]
2005 (gdb) attach 4711
2006 (gdb) detach
2007 (gdb) attach 4712
2008 Cannot access memory at address 0xdeadbeef
2009 */
2010
2011 /* In some OSs, the shared library list is the same/global/shared
2012 across inferiors. If code is shared between processes, so are
2013 memory regions and features. */
2014 if (!gdbarch_has_global_solist (target_gdbarch ()))
2015 {
2016 no_shared_libraries (NULL, from_tty);
2017
2018 invalidate_target_mem_regions ();
2019
2020 target_clear_description ();
2021 }
2022
2023 agent_capability_invalidate ();
2024 }
2025
2026 /* Callback for iterate_over_inferiors. Gets rid of the given
2027 inferior. */
2028
2029 static int
2030 dispose_inferior (struct inferior *inf, void *args)
2031 {
2032 struct thread_info *thread;
2033
2034 thread = any_thread_of_process (inf->pid);
2035 if (thread)
2036 {
2037 switch_to_thread (thread->ptid);
2038
2039 /* Core inferiors actually should be detached, not killed. */
2040 if (target_has_execution)
2041 target_kill ();
2042 else
2043 target_detach (NULL, 0);
2044 }
2045
2046 return 0;
2047 }
2048
2049 /* This is to be called by the open routine before it does
2050 anything. */
2051
2052 void
2053 target_preopen (int from_tty)
2054 {
2055 dont_repeat ();
2056
2057 if (have_inferiors ())
2058 {
2059 if (!from_tty
2060 || !have_live_inferiors ()
2061 || query (_("A program is being debugged already. Kill it? ")))
2062 iterate_over_inferiors (dispose_inferior, NULL);
2063 else
2064 error (_("Program not killed."));
2065 }
2066
2067 /* Calling target_kill may remove the target from the stack. But if
2068 it doesn't (which seems like a win for UDI), remove it now. */
2069 /* Leave the exec target, though. The user may be switching from a
2070 live process to a core of the same program. */
2071 pop_all_targets_above (file_stratum);
2072
2073 target_pre_inferior (from_tty);
2074 }
2075
2076 /* Detach a target after doing deferred register stores. */
2077
2078 void
2079 target_detach (const char *args, int from_tty)
2080 {
2081 struct target_ops* t;
2082
2083 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2084 /* Don't remove global breakpoints here. They're removed on
2085 disconnection from the target. */
2086 ;
2087 else
2088 /* If we're in breakpoints-always-inserted mode, have to remove
2089 them before detaching. */
2090 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2091
2092 prepare_for_detach ();
2093
2094 current_target.to_detach (&current_target, args, from_tty);
2095 }
2096
2097 void
2098 target_disconnect (const char *args, int from_tty)
2099 {
2100 /* If we're in breakpoints-always-inserted mode or if breakpoints
2101 are global across processes, we have to remove them before
2102 disconnecting. */
2103 remove_breakpoints ();
2104
2105 current_target.to_disconnect (&current_target, args, from_tty);
2106 }
2107
2108 ptid_t
2109 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2110 {
2111 return (current_target.to_wait) (&current_target, ptid, status, options);
2112 }
2113
2114 char *
2115 target_pid_to_str (ptid_t ptid)
2116 {
2117 return (*current_target.to_pid_to_str) (&current_target, ptid);
2118 }
2119
2120 char *
2121 target_thread_name (struct thread_info *info)
2122 {
2123 return current_target.to_thread_name (&current_target, info);
2124 }
2125
2126 void
2127 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2128 {
2129 struct target_ops *t;
2130
2131 target_dcache_invalidate ();
2132
2133 current_target.to_resume (&current_target, ptid, step, signal);
2134
2135 registers_changed_ptid (ptid);
2136 /* We only set the internal executing state here. The user/frontend
2137 running state is set at a higher level. */
2138 set_executing (ptid, 1);
2139 clear_inline_frame_state (ptid);
2140 }
2141
2142 void
2143 target_pass_signals (int numsigs, unsigned char *pass_signals)
2144 {
2145 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2146 }
2147
2148 void
2149 target_program_signals (int numsigs, unsigned char *program_signals)
2150 {
2151 (*current_target.to_program_signals) (&current_target,
2152 numsigs, program_signals);
2153 }
2154
2155 static int
2156 default_follow_fork (struct target_ops *self, int follow_child,
2157 int detach_fork)
2158 {
2159 /* Some target returned a fork event, but did not know how to follow it. */
2160 internal_error (__FILE__, __LINE__,
2161 _("could not find a target to follow fork"));
2162 }
2163
2164 /* Look through the list of possible targets for a target that can
2165 follow forks. */
2166
2167 int
2168 target_follow_fork (int follow_child, int detach_fork)
2169 {
2170 return current_target.to_follow_fork (&current_target,
2171 follow_child, detach_fork);
2172 }
2173
2174 static void
2175 default_mourn_inferior (struct target_ops *self)
2176 {
2177 internal_error (__FILE__, __LINE__,
2178 _("could not find a target to follow mourn inferior"));
2179 }
2180
2181 void
2182 target_mourn_inferior (void)
2183 {
2184 current_target.to_mourn_inferior (&current_target);
2185
2186 /* We no longer need to keep handles on any of the object files.
2187 Make sure to release them to avoid unnecessarily locking any
2188 of them while we're not actually debugging. */
2189 bfd_cache_close_all ();
2190 }
2191
2192 /* Look for a target which can describe architectural features, starting
2193 from TARGET. If we find one, return its description. */
2194
2195 const struct target_desc *
2196 target_read_description (struct target_ops *target)
2197 {
2198 return target->to_read_description (target);
2199 }
2200
2201 /* This implements a basic search of memory, reading target memory and
2202 performing the search here (as opposed to performing the search in on the
2203 target side with, for example, gdbserver). */
2204
2205 int
2206 simple_search_memory (struct target_ops *ops,
2207 CORE_ADDR start_addr, ULONGEST search_space_len,
2208 const gdb_byte *pattern, ULONGEST pattern_len,
2209 CORE_ADDR *found_addrp)
2210 {
2211 /* NOTE: also defined in find.c testcase. */
2212 #define SEARCH_CHUNK_SIZE 16000
2213 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2214 /* Buffer to hold memory contents for searching. */
2215 gdb_byte *search_buf;
2216 unsigned search_buf_size;
2217 struct cleanup *old_cleanups;
2218
2219 search_buf_size = chunk_size + pattern_len - 1;
2220
2221 /* No point in trying to allocate a buffer larger than the search space. */
2222 if (search_space_len < search_buf_size)
2223 search_buf_size = search_space_len;
2224
2225 search_buf = malloc (search_buf_size);
2226 if (search_buf == NULL)
2227 error (_("Unable to allocate memory to perform the search."));
2228 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2229
2230 /* Prime the search buffer. */
2231
2232 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2233 search_buf, start_addr, search_buf_size) != search_buf_size)
2234 {
2235 warning (_("Unable to access %s bytes of target "
2236 "memory at %s, halting search."),
2237 pulongest (search_buf_size), hex_string (start_addr));
2238 do_cleanups (old_cleanups);
2239 return -1;
2240 }
2241
2242 /* Perform the search.
2243
2244 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2245 When we've scanned N bytes we copy the trailing bytes to the start and
2246 read in another N bytes. */
2247
2248 while (search_space_len >= pattern_len)
2249 {
2250 gdb_byte *found_ptr;
2251 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2252
2253 found_ptr = memmem (search_buf, nr_search_bytes,
2254 pattern, pattern_len);
2255
2256 if (found_ptr != NULL)
2257 {
2258 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2259
2260 *found_addrp = found_addr;
2261 do_cleanups (old_cleanups);
2262 return 1;
2263 }
2264
2265 /* Not found in this chunk, skip to next chunk. */
2266
2267 /* Don't let search_space_len wrap here, it's unsigned. */
2268 if (search_space_len >= chunk_size)
2269 search_space_len -= chunk_size;
2270 else
2271 search_space_len = 0;
2272
2273 if (search_space_len >= pattern_len)
2274 {
2275 unsigned keep_len = search_buf_size - chunk_size;
2276 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2277 int nr_to_read;
2278
2279 /* Copy the trailing part of the previous iteration to the front
2280 of the buffer for the next iteration. */
2281 gdb_assert (keep_len == pattern_len - 1);
2282 memcpy (search_buf, search_buf + chunk_size, keep_len);
2283
2284 nr_to_read = min (search_space_len - keep_len, chunk_size);
2285
2286 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2287 search_buf + keep_len, read_addr,
2288 nr_to_read) != nr_to_read)
2289 {
2290 warning (_("Unable to access %s bytes of target "
2291 "memory at %s, halting search."),
2292 plongest (nr_to_read),
2293 hex_string (read_addr));
2294 do_cleanups (old_cleanups);
2295 return -1;
2296 }
2297
2298 start_addr += chunk_size;
2299 }
2300 }
2301
2302 /* Not found. */
2303
2304 do_cleanups (old_cleanups);
2305 return 0;
2306 }
2307
2308 /* Default implementation of memory-searching. */
2309
2310 static int
2311 default_search_memory (struct target_ops *self,
2312 CORE_ADDR start_addr, ULONGEST search_space_len,
2313 const gdb_byte *pattern, ULONGEST pattern_len,
2314 CORE_ADDR *found_addrp)
2315 {
2316 /* Start over from the top of the target stack. */
2317 return simple_search_memory (current_target.beneath,
2318 start_addr, search_space_len,
2319 pattern, pattern_len, found_addrp);
2320 }
2321
2322 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2323 sequence of bytes in PATTERN with length PATTERN_LEN.
2324
2325 The result is 1 if found, 0 if not found, and -1 if there was an error
2326 requiring halting of the search (e.g. memory read error).
2327 If the pattern is found the address is recorded in FOUND_ADDRP. */
2328
2329 int
2330 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2331 const gdb_byte *pattern, ULONGEST pattern_len,
2332 CORE_ADDR *found_addrp)
2333 {
2334 return current_target.to_search_memory (&current_target, start_addr,
2335 search_space_len,
2336 pattern, pattern_len, found_addrp);
2337 }
2338
2339 /* Look through the currently pushed targets. If none of them will
2340 be able to restart the currently running process, issue an error
2341 message. */
2342
2343 void
2344 target_require_runnable (void)
2345 {
2346 struct target_ops *t;
2347
2348 for (t = target_stack; t != NULL; t = t->beneath)
2349 {
2350 /* If this target knows how to create a new program, then
2351 assume we will still be able to after killing the current
2352 one. Either killing and mourning will not pop T, or else
2353 find_default_run_target will find it again. */
2354 if (t->to_create_inferior != NULL)
2355 return;
2356
2357 /* Do not worry about targets at certain strata that can not
2358 create inferiors. Assume they will be pushed again if
2359 necessary, and continue to the process_stratum. */
2360 if (t->to_stratum == thread_stratum
2361 || t->to_stratum == record_stratum
2362 || t->to_stratum == arch_stratum)
2363 continue;
2364
2365 error (_("The \"%s\" target does not support \"run\". "
2366 "Try \"help target\" or \"continue\"."),
2367 t->to_shortname);
2368 }
2369
2370 /* This function is only called if the target is running. In that
2371 case there should have been a process_stratum target and it
2372 should either know how to create inferiors, or not... */
2373 internal_error (__FILE__, __LINE__, _("No targets found"));
2374 }
2375
2376 /* Whether GDB is allowed to fall back to the default run target for
2377 "run", "attach", etc. when no target is connected yet. */
2378 static int auto_connect_native_target = 1;
2379
2380 static void
2381 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2382 struct cmd_list_element *c, const char *value)
2383 {
2384 fprintf_filtered (file,
2385 _("Whether GDB may automatically connect to the "
2386 "native target is %s.\n"),
2387 value);
2388 }
2389
2390 /* Look through the list of possible targets for a target that can
2391 execute a run or attach command without any other data. This is
2392 used to locate the default process stratum.
2393
2394 If DO_MESG is not NULL, the result is always valid (error() is
2395 called for errors); else, return NULL on error. */
2396
2397 static struct target_ops *
2398 find_default_run_target (char *do_mesg)
2399 {
2400 struct target_ops *runable = NULL;
2401
2402 if (auto_connect_native_target)
2403 {
2404 struct target_ops *t;
2405 int count = 0;
2406 int i;
2407
2408 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2409 {
2410 if (t->to_can_run != delegate_can_run && target_can_run (t))
2411 {
2412 runable = t;
2413 ++count;
2414 }
2415 }
2416
2417 if (count != 1)
2418 runable = NULL;
2419 }
2420
2421 if (runable == NULL)
2422 {
2423 if (do_mesg)
2424 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2425 else
2426 return NULL;
2427 }
2428
2429 return runable;
2430 }
2431
2432 /* See target.h. */
2433
2434 struct target_ops *
2435 find_attach_target (void)
2436 {
2437 struct target_ops *t;
2438
2439 /* If a target on the current stack can attach, use it. */
2440 for (t = current_target.beneath; t != NULL; t = t->beneath)
2441 {
2442 if (t->to_attach != NULL)
2443 break;
2444 }
2445
2446 /* Otherwise, use the default run target for attaching. */
2447 if (t == NULL)
2448 t = find_default_run_target ("attach");
2449
2450 return t;
2451 }
2452
2453 /* See target.h. */
2454
2455 struct target_ops *
2456 find_run_target (void)
2457 {
2458 struct target_ops *t;
2459
2460 /* If a target on the current stack can attach, use it. */
2461 for (t = current_target.beneath; t != NULL; t = t->beneath)
2462 {
2463 if (t->to_create_inferior != NULL)
2464 break;
2465 }
2466
2467 /* Otherwise, use the default run target. */
2468 if (t == NULL)
2469 t = find_default_run_target ("run");
2470
2471 return t;
2472 }
2473
2474 /* Implement the "info proc" command. */
2475
2476 int
2477 target_info_proc (const char *args, enum info_proc_what what)
2478 {
2479 struct target_ops *t;
2480
2481 /* If we're already connected to something that can get us OS
2482 related data, use it. Otherwise, try using the native
2483 target. */
2484 if (current_target.to_stratum >= process_stratum)
2485 t = current_target.beneath;
2486 else
2487 t = find_default_run_target (NULL);
2488
2489 for (; t != NULL; t = t->beneath)
2490 {
2491 if (t->to_info_proc != NULL)
2492 {
2493 t->to_info_proc (t, args, what);
2494
2495 if (targetdebug)
2496 fprintf_unfiltered (gdb_stdlog,
2497 "target_info_proc (\"%s\", %d)\n", args, what);
2498
2499 return 1;
2500 }
2501 }
2502
2503 return 0;
2504 }
2505
2506 static int
2507 find_default_supports_disable_randomization (struct target_ops *self)
2508 {
2509 struct target_ops *t;
2510
2511 t = find_default_run_target (NULL);
2512 if (t && t->to_supports_disable_randomization)
2513 return (t->to_supports_disable_randomization) (t);
2514 return 0;
2515 }
2516
2517 int
2518 target_supports_disable_randomization (void)
2519 {
2520 struct target_ops *t;
2521
2522 for (t = &current_target; t != NULL; t = t->beneath)
2523 if (t->to_supports_disable_randomization)
2524 return t->to_supports_disable_randomization (t);
2525
2526 return 0;
2527 }
2528
2529 char *
2530 target_get_osdata (const char *type)
2531 {
2532 struct target_ops *t;
2533
2534 /* If we're already connected to something that can get us OS
2535 related data, use it. Otherwise, try using the native
2536 target. */
2537 if (current_target.to_stratum >= process_stratum)
2538 t = current_target.beneath;
2539 else
2540 t = find_default_run_target ("get OS data");
2541
2542 if (!t)
2543 return NULL;
2544
2545 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2546 }
2547
2548 static struct address_space *
2549 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2550 {
2551 struct inferior *inf;
2552
2553 /* Fall-back to the "main" address space of the inferior. */
2554 inf = find_inferior_pid (ptid_get_pid (ptid));
2555
2556 if (inf == NULL || inf->aspace == NULL)
2557 internal_error (__FILE__, __LINE__,
2558 _("Can't determine the current "
2559 "address space of thread %s\n"),
2560 target_pid_to_str (ptid));
2561
2562 return inf->aspace;
2563 }
2564
2565 /* Determine the current address space of thread PTID. */
2566
2567 struct address_space *
2568 target_thread_address_space (ptid_t ptid)
2569 {
2570 struct address_space *aspace;
2571
2572 aspace = current_target.to_thread_address_space (&current_target, ptid);
2573 gdb_assert (aspace != NULL);
2574
2575 return aspace;
2576 }
2577
2578
2579 /* Target file operations. */
2580
2581 static struct target_ops *
2582 default_fileio_target (void)
2583 {
2584 /* If we're already connected to something that can perform
2585 file I/O, use it. Otherwise, try using the native target. */
2586 if (current_target.to_stratum >= process_stratum)
2587 return current_target.beneath;
2588 else
2589 return find_default_run_target ("file I/O");
2590 }
2591
2592 /* Open FILENAME on the target, using FLAGS and MODE. Return a
2593 target file descriptor, or -1 if an error occurs (and set
2594 *TARGET_ERRNO). */
2595 int
2596 target_fileio_open (const char *filename, int flags, int mode,
2597 int *target_errno)
2598 {
2599 struct target_ops *t;
2600
2601 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2602 {
2603 if (t->to_fileio_open != NULL)
2604 {
2605 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
2606
2607 if (targetdebug)
2608 fprintf_unfiltered (gdb_stdlog,
2609 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2610 filename, flags, mode,
2611 fd, fd != -1 ? 0 : *target_errno);
2612 return fd;
2613 }
2614 }
2615
2616 *target_errno = FILEIO_ENOSYS;
2617 return -1;
2618 }
2619
2620 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2621 Return the number of bytes written, or -1 if an error occurs
2622 (and set *TARGET_ERRNO). */
2623 int
2624 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2625 ULONGEST offset, int *target_errno)
2626 {
2627 struct target_ops *t;
2628
2629 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2630 {
2631 if (t->to_fileio_pwrite != NULL)
2632 {
2633 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
2634 target_errno);
2635
2636 if (targetdebug)
2637 fprintf_unfiltered (gdb_stdlog,
2638 "target_fileio_pwrite (%d,...,%d,%s) "
2639 "= %d (%d)\n",
2640 fd, len, pulongest (offset),
2641 ret, ret != -1 ? 0 : *target_errno);
2642 return ret;
2643 }
2644 }
2645
2646 *target_errno = FILEIO_ENOSYS;
2647 return -1;
2648 }
2649
2650 /* Read up to LEN bytes FD on the target into READ_BUF.
2651 Return the number of bytes read, or -1 if an error occurs
2652 (and set *TARGET_ERRNO). */
2653 int
2654 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2655 ULONGEST offset, int *target_errno)
2656 {
2657 struct target_ops *t;
2658
2659 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2660 {
2661 if (t->to_fileio_pread != NULL)
2662 {
2663 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
2664 target_errno);
2665
2666 if (targetdebug)
2667 fprintf_unfiltered (gdb_stdlog,
2668 "target_fileio_pread (%d,...,%d,%s) "
2669 "= %d (%d)\n",
2670 fd, len, pulongest (offset),
2671 ret, ret != -1 ? 0 : *target_errno);
2672 return ret;
2673 }
2674 }
2675
2676 *target_errno = FILEIO_ENOSYS;
2677 return -1;
2678 }
2679
2680 /* Close FD on the target. Return 0, or -1 if an error occurs
2681 (and set *TARGET_ERRNO). */
2682 int
2683 target_fileio_close (int fd, int *target_errno)
2684 {
2685 struct target_ops *t;
2686
2687 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2688 {
2689 if (t->to_fileio_close != NULL)
2690 {
2691 int ret = t->to_fileio_close (t, fd, target_errno);
2692
2693 if (targetdebug)
2694 fprintf_unfiltered (gdb_stdlog,
2695 "target_fileio_close (%d) = %d (%d)\n",
2696 fd, ret, ret != -1 ? 0 : *target_errno);
2697 return ret;
2698 }
2699 }
2700
2701 *target_errno = FILEIO_ENOSYS;
2702 return -1;
2703 }
2704
2705 /* Unlink FILENAME on the target. Return 0, or -1 if an error
2706 occurs (and set *TARGET_ERRNO). */
2707 int
2708 target_fileio_unlink (const char *filename, int *target_errno)
2709 {
2710 struct target_ops *t;
2711
2712 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2713 {
2714 if (t->to_fileio_unlink != NULL)
2715 {
2716 int ret = t->to_fileio_unlink (t, filename, target_errno);
2717
2718 if (targetdebug)
2719 fprintf_unfiltered (gdb_stdlog,
2720 "target_fileio_unlink (%s) = %d (%d)\n",
2721 filename, ret, ret != -1 ? 0 : *target_errno);
2722 return ret;
2723 }
2724 }
2725
2726 *target_errno = FILEIO_ENOSYS;
2727 return -1;
2728 }
2729
2730 /* Read value of symbolic link FILENAME on the target. Return a
2731 null-terminated string allocated via xmalloc, or NULL if an error
2732 occurs (and set *TARGET_ERRNO). */
2733 char *
2734 target_fileio_readlink (const char *filename, int *target_errno)
2735 {
2736 struct target_ops *t;
2737
2738 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2739 {
2740 if (t->to_fileio_readlink != NULL)
2741 {
2742 char *ret = t->to_fileio_readlink (t, filename, target_errno);
2743
2744 if (targetdebug)
2745 fprintf_unfiltered (gdb_stdlog,
2746 "target_fileio_readlink (%s) = %s (%d)\n",
2747 filename, ret? ret : "(nil)",
2748 ret? 0 : *target_errno);
2749 return ret;
2750 }
2751 }
2752
2753 *target_errno = FILEIO_ENOSYS;
2754 return NULL;
2755 }
2756
2757 static void
2758 target_fileio_close_cleanup (void *opaque)
2759 {
2760 int fd = *(int *) opaque;
2761 int target_errno;
2762
2763 target_fileio_close (fd, &target_errno);
2764 }
2765
2766 /* Read target file FILENAME. Store the result in *BUF_P and
2767 return the size of the transferred data. PADDING additional bytes are
2768 available in *BUF_P. This is a helper function for
2769 target_fileio_read_alloc; see the declaration of that function for more
2770 information. */
2771
2772 static LONGEST
2773 target_fileio_read_alloc_1 (const char *filename,
2774 gdb_byte **buf_p, int padding)
2775 {
2776 struct cleanup *close_cleanup;
2777 size_t buf_alloc, buf_pos;
2778 gdb_byte *buf;
2779 LONGEST n;
2780 int fd;
2781 int target_errno;
2782
2783 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2784 if (fd == -1)
2785 return -1;
2786
2787 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2788
2789 /* Start by reading up to 4K at a time. The target will throttle
2790 this number down if necessary. */
2791 buf_alloc = 4096;
2792 buf = xmalloc (buf_alloc);
2793 buf_pos = 0;
2794 while (1)
2795 {
2796 n = target_fileio_pread (fd, &buf[buf_pos],
2797 buf_alloc - buf_pos - padding, buf_pos,
2798 &target_errno);
2799 if (n < 0)
2800 {
2801 /* An error occurred. */
2802 do_cleanups (close_cleanup);
2803 xfree (buf);
2804 return -1;
2805 }
2806 else if (n == 0)
2807 {
2808 /* Read all there was. */
2809 do_cleanups (close_cleanup);
2810 if (buf_pos == 0)
2811 xfree (buf);
2812 else
2813 *buf_p = buf;
2814 return buf_pos;
2815 }
2816
2817 buf_pos += n;
2818
2819 /* If the buffer is filling up, expand it. */
2820 if (buf_alloc < buf_pos * 2)
2821 {
2822 buf_alloc *= 2;
2823 buf = xrealloc (buf, buf_alloc);
2824 }
2825
2826 QUIT;
2827 }
2828 }
2829
2830 /* Read target file FILENAME. Store the result in *BUF_P and return
2831 the size of the transferred data. See the declaration in "target.h"
2832 function for more information about the return value. */
2833
2834 LONGEST
2835 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2836 {
2837 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2838 }
2839
2840 /* Read target file FILENAME. The result is NUL-terminated and
2841 returned as a string, allocated using xmalloc. If an error occurs
2842 or the transfer is unsupported, NULL is returned. Empty objects
2843 are returned as allocated but empty strings. A warning is issued
2844 if the result contains any embedded NUL bytes. */
2845
2846 char *
2847 target_fileio_read_stralloc (const char *filename)
2848 {
2849 gdb_byte *buffer;
2850 char *bufstr;
2851 LONGEST i, transferred;
2852
2853 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2854 bufstr = (char *) buffer;
2855
2856 if (transferred < 0)
2857 return NULL;
2858
2859 if (transferred == 0)
2860 return xstrdup ("");
2861
2862 bufstr[transferred] = 0;
2863
2864 /* Check for embedded NUL bytes; but allow trailing NULs. */
2865 for (i = strlen (bufstr); i < transferred; i++)
2866 if (bufstr[i] != 0)
2867 {
2868 warning (_("target file %s "
2869 "contained unexpected null characters"),
2870 filename);
2871 break;
2872 }
2873
2874 return bufstr;
2875 }
2876
2877
2878 static int
2879 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2880 CORE_ADDR addr, int len)
2881 {
2882 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2883 }
2884
2885 static int
2886 default_watchpoint_addr_within_range (struct target_ops *target,
2887 CORE_ADDR addr,
2888 CORE_ADDR start, int length)
2889 {
2890 return addr >= start && addr < start + length;
2891 }
2892
2893 static struct gdbarch *
2894 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2895 {
2896 return target_gdbarch ();
2897 }
2898
2899 static int
2900 return_zero (struct target_ops *ignore)
2901 {
2902 return 0;
2903 }
2904
2905 static int
2906 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
2907 {
2908 return 0;
2909 }
2910
2911 /*
2912 * Find the next target down the stack from the specified target.
2913 */
2914
2915 struct target_ops *
2916 find_target_beneath (struct target_ops *t)
2917 {
2918 return t->beneath;
2919 }
2920
2921 /* See target.h. */
2922
2923 struct target_ops *
2924 find_target_at (enum strata stratum)
2925 {
2926 struct target_ops *t;
2927
2928 for (t = current_target.beneath; t != NULL; t = t->beneath)
2929 if (t->to_stratum == stratum)
2930 return t;
2931
2932 return NULL;
2933 }
2934
2935 \f
2936 /* The inferior process has died. Long live the inferior! */
2937
2938 void
2939 generic_mourn_inferior (void)
2940 {
2941 ptid_t ptid;
2942
2943 ptid = inferior_ptid;
2944 inferior_ptid = null_ptid;
2945
2946 /* Mark breakpoints uninserted in case something tries to delete a
2947 breakpoint while we delete the inferior's threads (which would
2948 fail, since the inferior is long gone). */
2949 mark_breakpoints_out ();
2950
2951 if (!ptid_equal (ptid, null_ptid))
2952 {
2953 int pid = ptid_get_pid (ptid);
2954 exit_inferior (pid);
2955 }
2956
2957 /* Note this wipes step-resume breakpoints, so needs to be done
2958 after exit_inferior, which ends up referencing the step-resume
2959 breakpoints through clear_thread_inferior_resources. */
2960 breakpoint_init_inferior (inf_exited);
2961
2962 registers_changed ();
2963
2964 reopen_exec_file ();
2965 reinit_frame_cache ();
2966
2967 if (deprecated_detach_hook)
2968 deprecated_detach_hook ();
2969 }
2970 \f
2971 /* Convert a normal process ID to a string. Returns the string in a
2972 static buffer. */
2973
2974 char *
2975 normal_pid_to_str (ptid_t ptid)
2976 {
2977 static char buf[32];
2978
2979 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2980 return buf;
2981 }
2982
2983 static char *
2984 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
2985 {
2986 return normal_pid_to_str (ptid);
2987 }
2988
2989 /* Error-catcher for target_find_memory_regions. */
2990 static int
2991 dummy_find_memory_regions (struct target_ops *self,
2992 find_memory_region_ftype ignore1, void *ignore2)
2993 {
2994 error (_("Command not implemented for this target."));
2995 return 0;
2996 }
2997
2998 /* Error-catcher for target_make_corefile_notes. */
2999 static char *
3000 dummy_make_corefile_notes (struct target_ops *self,
3001 bfd *ignore1, int *ignore2)
3002 {
3003 error (_("Command not implemented for this target."));
3004 return NULL;
3005 }
3006
3007 /* Set up the handful of non-empty slots needed by the dummy target
3008 vector. */
3009
3010 static void
3011 init_dummy_target (void)
3012 {
3013 dummy_target.to_shortname = "None";
3014 dummy_target.to_longname = "None";
3015 dummy_target.to_doc = "";
3016 dummy_target.to_supports_disable_randomization
3017 = find_default_supports_disable_randomization;
3018 dummy_target.to_stratum = dummy_stratum;
3019 dummy_target.to_has_all_memory = return_zero;
3020 dummy_target.to_has_memory = return_zero;
3021 dummy_target.to_has_stack = return_zero;
3022 dummy_target.to_has_registers = return_zero;
3023 dummy_target.to_has_execution = return_zero_has_execution;
3024 dummy_target.to_magic = OPS_MAGIC;
3025
3026 install_dummy_methods (&dummy_target);
3027 }
3028 \f
3029
3030 void
3031 target_close (struct target_ops *targ)
3032 {
3033 gdb_assert (!target_is_pushed (targ));
3034
3035 if (targ->to_xclose != NULL)
3036 targ->to_xclose (targ);
3037 else if (targ->to_close != NULL)
3038 targ->to_close (targ);
3039
3040 if (targetdebug)
3041 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3042 }
3043
3044 int
3045 target_thread_alive (ptid_t ptid)
3046 {
3047 return current_target.to_thread_alive (&current_target, ptid);
3048 }
3049
3050 void
3051 target_update_thread_list (void)
3052 {
3053 current_target.to_update_thread_list (&current_target);
3054 }
3055
3056 void
3057 target_stop (ptid_t ptid)
3058 {
3059 if (!may_stop)
3060 {
3061 warning (_("May not interrupt or stop the target, ignoring attempt"));
3062 return;
3063 }
3064
3065 (*current_target.to_stop) (&current_target, ptid);
3066 }
3067
3068 /* See target/target.h. */
3069
3070 void
3071 target_stop_and_wait (ptid_t ptid)
3072 {
3073 struct target_waitstatus status;
3074 int was_non_stop = non_stop;
3075
3076 non_stop = 1;
3077 target_stop (ptid);
3078
3079 memset (&status, 0, sizeof (status));
3080 target_wait (ptid, &status, 0);
3081
3082 non_stop = was_non_stop;
3083 }
3084
3085 /* See target/target.h. */
3086
3087 void
3088 target_continue_no_signal (ptid_t ptid)
3089 {
3090 target_resume (ptid, 0, GDB_SIGNAL_0);
3091 }
3092
3093 /* Concatenate ELEM to LIST, a comma separate list, and return the
3094 result. The LIST incoming argument is released. */
3095
3096 static char *
3097 str_comma_list_concat_elem (char *list, const char *elem)
3098 {
3099 if (list == NULL)
3100 return xstrdup (elem);
3101 else
3102 return reconcat (list, list, ", ", elem, (char *) NULL);
3103 }
3104
3105 /* Helper for target_options_to_string. If OPT is present in
3106 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3107 Returns the new resulting string. OPT is removed from
3108 TARGET_OPTIONS. */
3109
3110 static char *
3111 do_option (int *target_options, char *ret,
3112 int opt, char *opt_str)
3113 {
3114 if ((*target_options & opt) != 0)
3115 {
3116 ret = str_comma_list_concat_elem (ret, opt_str);
3117 *target_options &= ~opt;
3118 }
3119
3120 return ret;
3121 }
3122
3123 char *
3124 target_options_to_string (int target_options)
3125 {
3126 char *ret = NULL;
3127
3128 #define DO_TARG_OPTION(OPT) \
3129 ret = do_option (&target_options, ret, OPT, #OPT)
3130
3131 DO_TARG_OPTION (TARGET_WNOHANG);
3132
3133 if (target_options != 0)
3134 ret = str_comma_list_concat_elem (ret, "unknown???");
3135
3136 if (ret == NULL)
3137 ret = xstrdup ("");
3138 return ret;
3139 }
3140
3141 static void
3142 debug_print_register (const char * func,
3143 struct regcache *regcache, int regno)
3144 {
3145 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3146
3147 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3148 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3149 && gdbarch_register_name (gdbarch, regno) != NULL
3150 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3151 fprintf_unfiltered (gdb_stdlog, "(%s)",
3152 gdbarch_register_name (gdbarch, regno));
3153 else
3154 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3155 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3156 {
3157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3158 int i, size = register_size (gdbarch, regno);
3159 gdb_byte buf[MAX_REGISTER_SIZE];
3160
3161 regcache_raw_collect (regcache, regno, buf);
3162 fprintf_unfiltered (gdb_stdlog, " = ");
3163 for (i = 0; i < size; i++)
3164 {
3165 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3166 }
3167 if (size <= sizeof (LONGEST))
3168 {
3169 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3170
3171 fprintf_unfiltered (gdb_stdlog, " %s %s",
3172 core_addr_to_string_nz (val), plongest (val));
3173 }
3174 }
3175 fprintf_unfiltered (gdb_stdlog, "\n");
3176 }
3177
3178 void
3179 target_fetch_registers (struct regcache *regcache, int regno)
3180 {
3181 current_target.to_fetch_registers (&current_target, regcache, regno);
3182 if (targetdebug)
3183 debug_print_register ("target_fetch_registers", regcache, regno);
3184 }
3185
3186 void
3187 target_store_registers (struct regcache *regcache, int regno)
3188 {
3189 struct target_ops *t;
3190
3191 if (!may_write_registers)
3192 error (_("Writing to registers is not allowed (regno %d)"), regno);
3193
3194 current_target.to_store_registers (&current_target, regcache, regno);
3195 if (targetdebug)
3196 {
3197 debug_print_register ("target_store_registers", regcache, regno);
3198 }
3199 }
3200
3201 int
3202 target_core_of_thread (ptid_t ptid)
3203 {
3204 return current_target.to_core_of_thread (&current_target, ptid);
3205 }
3206
3207 int
3208 simple_verify_memory (struct target_ops *ops,
3209 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3210 {
3211 LONGEST total_xfered = 0;
3212
3213 while (total_xfered < size)
3214 {
3215 ULONGEST xfered_len;
3216 enum target_xfer_status status;
3217 gdb_byte buf[1024];
3218 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3219
3220 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3221 buf, NULL, lma + total_xfered, howmuch,
3222 &xfered_len);
3223 if (status == TARGET_XFER_OK
3224 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3225 {
3226 total_xfered += xfered_len;
3227 QUIT;
3228 }
3229 else
3230 return 0;
3231 }
3232 return 1;
3233 }
3234
3235 /* Default implementation of memory verification. */
3236
3237 static int
3238 default_verify_memory (struct target_ops *self,
3239 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3240 {
3241 /* Start over from the top of the target stack. */
3242 return simple_verify_memory (current_target.beneath,
3243 data, memaddr, size);
3244 }
3245
3246 int
3247 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3248 {
3249 return current_target.to_verify_memory (&current_target,
3250 data, memaddr, size);
3251 }
3252
3253 /* The documentation for this function is in its prototype declaration in
3254 target.h. */
3255
3256 int
3257 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3258 {
3259 return current_target.to_insert_mask_watchpoint (&current_target,
3260 addr, mask, rw);
3261 }
3262
3263 /* The documentation for this function is in its prototype declaration in
3264 target.h. */
3265
3266 int
3267 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3268 {
3269 return current_target.to_remove_mask_watchpoint (&current_target,
3270 addr, mask, rw);
3271 }
3272
3273 /* The documentation for this function is in its prototype declaration
3274 in target.h. */
3275
3276 int
3277 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3278 {
3279 return current_target.to_masked_watch_num_registers (&current_target,
3280 addr, mask);
3281 }
3282
3283 /* The documentation for this function is in its prototype declaration
3284 in target.h. */
3285
3286 int
3287 target_ranged_break_num_registers (void)
3288 {
3289 return current_target.to_ranged_break_num_registers (&current_target);
3290 }
3291
3292 /* See target.h. */
3293
3294 struct btrace_target_info *
3295 target_enable_btrace (ptid_t ptid)
3296 {
3297 return current_target.to_enable_btrace (&current_target, ptid);
3298 }
3299
3300 /* See target.h. */
3301
3302 void
3303 target_disable_btrace (struct btrace_target_info *btinfo)
3304 {
3305 current_target.to_disable_btrace (&current_target, btinfo);
3306 }
3307
3308 /* See target.h. */
3309
3310 void
3311 target_teardown_btrace (struct btrace_target_info *btinfo)
3312 {
3313 current_target.to_teardown_btrace (&current_target, btinfo);
3314 }
3315
3316 /* See target.h. */
3317
3318 enum btrace_error
3319 target_read_btrace (VEC (btrace_block_s) **btrace,
3320 struct btrace_target_info *btinfo,
3321 enum btrace_read_type type)
3322 {
3323 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3324 }
3325
3326 /* See target.h. */
3327
3328 void
3329 target_stop_recording (void)
3330 {
3331 current_target.to_stop_recording (&current_target);
3332 }
3333
3334 /* See target.h. */
3335
3336 void
3337 target_save_record (const char *filename)
3338 {
3339 current_target.to_save_record (&current_target, filename);
3340 }
3341
3342 /* See target.h. */
3343
3344 int
3345 target_supports_delete_record (void)
3346 {
3347 struct target_ops *t;
3348
3349 for (t = current_target.beneath; t != NULL; t = t->beneath)
3350 if (t->to_delete_record != delegate_delete_record
3351 && t->to_delete_record != tdefault_delete_record)
3352 return 1;
3353
3354 return 0;
3355 }
3356
3357 /* See target.h. */
3358
3359 void
3360 target_delete_record (void)
3361 {
3362 current_target.to_delete_record (&current_target);
3363 }
3364
3365 /* See target.h. */
3366
3367 int
3368 target_record_is_replaying (void)
3369 {
3370 return current_target.to_record_is_replaying (&current_target);
3371 }
3372
3373 /* See target.h. */
3374
3375 void
3376 target_goto_record_begin (void)
3377 {
3378 current_target.to_goto_record_begin (&current_target);
3379 }
3380
3381 /* See target.h. */
3382
3383 void
3384 target_goto_record_end (void)
3385 {
3386 current_target.to_goto_record_end (&current_target);
3387 }
3388
3389 /* See target.h. */
3390
3391 void
3392 target_goto_record (ULONGEST insn)
3393 {
3394 current_target.to_goto_record (&current_target, insn);
3395 }
3396
3397 /* See target.h. */
3398
3399 void
3400 target_insn_history (int size, int flags)
3401 {
3402 current_target.to_insn_history (&current_target, size, flags);
3403 }
3404
3405 /* See target.h. */
3406
3407 void
3408 target_insn_history_from (ULONGEST from, int size, int flags)
3409 {
3410 current_target.to_insn_history_from (&current_target, from, size, flags);
3411 }
3412
3413 /* See target.h. */
3414
3415 void
3416 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3417 {
3418 current_target.to_insn_history_range (&current_target, begin, end, flags);
3419 }
3420
3421 /* See target.h. */
3422
3423 void
3424 target_call_history (int size, int flags)
3425 {
3426 current_target.to_call_history (&current_target, size, flags);
3427 }
3428
3429 /* See target.h. */
3430
3431 void
3432 target_call_history_from (ULONGEST begin, int size, int flags)
3433 {
3434 current_target.to_call_history_from (&current_target, begin, size, flags);
3435 }
3436
3437 /* See target.h. */
3438
3439 void
3440 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3441 {
3442 current_target.to_call_history_range (&current_target, begin, end, flags);
3443 }
3444
3445 /* See target.h. */
3446
3447 const struct frame_unwind *
3448 target_get_unwinder (void)
3449 {
3450 return current_target.to_get_unwinder (&current_target);
3451 }
3452
3453 /* See target.h. */
3454
3455 const struct frame_unwind *
3456 target_get_tailcall_unwinder (void)
3457 {
3458 return current_target.to_get_tailcall_unwinder (&current_target);
3459 }
3460
3461 /* Default implementation of to_decr_pc_after_break. */
3462
3463 static CORE_ADDR
3464 default_target_decr_pc_after_break (struct target_ops *ops,
3465 struct gdbarch *gdbarch)
3466 {
3467 return gdbarch_decr_pc_after_break (gdbarch);
3468 }
3469
3470 /* See target.h. */
3471
3472 CORE_ADDR
3473 target_decr_pc_after_break (struct gdbarch *gdbarch)
3474 {
3475 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
3476 }
3477
3478 /* See target.h. */
3479
3480 void
3481 target_prepare_to_generate_core (void)
3482 {
3483 current_target.to_prepare_to_generate_core (&current_target);
3484 }
3485
3486 /* See target.h. */
3487
3488 void
3489 target_done_generating_core (void)
3490 {
3491 current_target.to_done_generating_core (&current_target);
3492 }
3493
3494 static void
3495 setup_target_debug (void)
3496 {
3497 memcpy (&debug_target, &current_target, sizeof debug_target);
3498
3499 init_debug_target (&current_target);
3500 }
3501 \f
3502
3503 static char targ_desc[] =
3504 "Names of targets and files being debugged.\nShows the entire \
3505 stack of targets currently in use (including the exec-file,\n\
3506 core-file, and process, if any), as well as the symbol file name.";
3507
3508 static void
3509 default_rcmd (struct target_ops *self, const char *command,
3510 struct ui_file *output)
3511 {
3512 error (_("\"monitor\" command not supported by this target."));
3513 }
3514
3515 static void
3516 do_monitor_command (char *cmd,
3517 int from_tty)
3518 {
3519 target_rcmd (cmd, gdb_stdtarg);
3520 }
3521
3522 /* Print the name of each layers of our target stack. */
3523
3524 static void
3525 maintenance_print_target_stack (char *cmd, int from_tty)
3526 {
3527 struct target_ops *t;
3528
3529 printf_filtered (_("The current target stack is:\n"));
3530
3531 for (t = target_stack; t != NULL; t = t->beneath)
3532 {
3533 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3534 }
3535 }
3536
3537 /* Controls if targets can report that they can/are async. This is
3538 just for maintainers to use when debugging gdb. */
3539 int target_async_permitted = 1;
3540
3541 /* The set command writes to this variable. If the inferior is
3542 executing, target_async_permitted is *not* updated. */
3543 static int target_async_permitted_1 = 1;
3544
3545 static void
3546 maint_set_target_async_command (char *args, int from_tty,
3547 struct cmd_list_element *c)
3548 {
3549 if (have_live_inferiors ())
3550 {
3551 target_async_permitted_1 = target_async_permitted;
3552 error (_("Cannot change this setting while the inferior is running."));
3553 }
3554
3555 target_async_permitted = target_async_permitted_1;
3556 }
3557
3558 static void
3559 maint_show_target_async_command (struct ui_file *file, int from_tty,
3560 struct cmd_list_element *c,
3561 const char *value)
3562 {
3563 fprintf_filtered (file,
3564 _("Controlling the inferior in "
3565 "asynchronous mode is %s.\n"), value);
3566 }
3567
3568 /* Temporary copies of permission settings. */
3569
3570 static int may_write_registers_1 = 1;
3571 static int may_write_memory_1 = 1;
3572 static int may_insert_breakpoints_1 = 1;
3573 static int may_insert_tracepoints_1 = 1;
3574 static int may_insert_fast_tracepoints_1 = 1;
3575 static int may_stop_1 = 1;
3576
3577 /* Make the user-set values match the real values again. */
3578
3579 void
3580 update_target_permissions (void)
3581 {
3582 may_write_registers_1 = may_write_registers;
3583 may_write_memory_1 = may_write_memory;
3584 may_insert_breakpoints_1 = may_insert_breakpoints;
3585 may_insert_tracepoints_1 = may_insert_tracepoints;
3586 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3587 may_stop_1 = may_stop;
3588 }
3589
3590 /* The one function handles (most of) the permission flags in the same
3591 way. */
3592
3593 static void
3594 set_target_permissions (char *args, int from_tty,
3595 struct cmd_list_element *c)
3596 {
3597 if (target_has_execution)
3598 {
3599 update_target_permissions ();
3600 error (_("Cannot change this setting while the inferior is running."));
3601 }
3602
3603 /* Make the real values match the user-changed values. */
3604 may_write_registers = may_write_registers_1;
3605 may_insert_breakpoints = may_insert_breakpoints_1;
3606 may_insert_tracepoints = may_insert_tracepoints_1;
3607 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3608 may_stop = may_stop_1;
3609 update_observer_mode ();
3610 }
3611
3612 /* Set memory write permission independently of observer mode. */
3613
3614 static void
3615 set_write_memory_permission (char *args, int from_tty,
3616 struct cmd_list_element *c)
3617 {
3618 /* Make the real values match the user-changed values. */
3619 may_write_memory = may_write_memory_1;
3620 update_observer_mode ();
3621 }
3622
3623
3624 void
3625 initialize_targets (void)
3626 {
3627 init_dummy_target ();
3628 push_target (&dummy_target);
3629
3630 add_info ("target", target_info, targ_desc);
3631 add_info ("files", target_info, targ_desc);
3632
3633 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3634 Set target debugging."), _("\
3635 Show target debugging."), _("\
3636 When non-zero, target debugging is enabled. Higher numbers are more\n\
3637 verbose."),
3638 set_targetdebug,
3639 show_targetdebug,
3640 &setdebuglist, &showdebuglist);
3641
3642 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3643 &trust_readonly, _("\
3644 Set mode for reading from readonly sections."), _("\
3645 Show mode for reading from readonly sections."), _("\
3646 When this mode is on, memory reads from readonly sections (such as .text)\n\
3647 will be read from the object file instead of from the target. This will\n\
3648 result in significant performance improvement for remote targets."),
3649 NULL,
3650 show_trust_readonly,
3651 &setlist, &showlist);
3652
3653 add_com ("monitor", class_obscure, do_monitor_command,
3654 _("Send a command to the remote monitor (remote targets only)."));
3655
3656 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3657 _("Print the name of each layer of the internal target stack."),
3658 &maintenanceprintlist);
3659
3660 add_setshow_boolean_cmd ("target-async", no_class,
3661 &target_async_permitted_1, _("\
3662 Set whether gdb controls the inferior in asynchronous mode."), _("\
3663 Show whether gdb controls the inferior in asynchronous mode."), _("\
3664 Tells gdb whether to control the inferior in asynchronous mode."),
3665 maint_set_target_async_command,
3666 maint_show_target_async_command,
3667 &maintenance_set_cmdlist,
3668 &maintenance_show_cmdlist);
3669
3670 add_setshow_boolean_cmd ("may-write-registers", class_support,
3671 &may_write_registers_1, _("\
3672 Set permission to write into registers."), _("\
3673 Show permission to write into registers."), _("\
3674 When this permission is on, GDB may write into the target's registers.\n\
3675 Otherwise, any sort of write attempt will result in an error."),
3676 set_target_permissions, NULL,
3677 &setlist, &showlist);
3678
3679 add_setshow_boolean_cmd ("may-write-memory", class_support,
3680 &may_write_memory_1, _("\
3681 Set permission to write into target memory."), _("\
3682 Show permission to write into target memory."), _("\
3683 When this permission is on, GDB may write into the target's memory.\n\
3684 Otherwise, any sort of write attempt will result in an error."),
3685 set_write_memory_permission, NULL,
3686 &setlist, &showlist);
3687
3688 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3689 &may_insert_breakpoints_1, _("\
3690 Set permission to insert breakpoints in the target."), _("\
3691 Show permission to insert breakpoints in the target."), _("\
3692 When this permission is on, GDB may insert breakpoints in the program.\n\
3693 Otherwise, any sort of insertion attempt will result in an error."),
3694 set_target_permissions, NULL,
3695 &setlist, &showlist);
3696
3697 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3698 &may_insert_tracepoints_1, _("\
3699 Set permission to insert tracepoints in the target."), _("\
3700 Show permission to insert tracepoints in the target."), _("\
3701 When this permission is on, GDB may insert tracepoints in the program.\n\
3702 Otherwise, any sort of insertion attempt will result in an error."),
3703 set_target_permissions, NULL,
3704 &setlist, &showlist);
3705
3706 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3707 &may_insert_fast_tracepoints_1, _("\
3708 Set permission to insert fast tracepoints in the target."), _("\
3709 Show permission to insert fast tracepoints in the target."), _("\
3710 When this permission is on, GDB may insert fast tracepoints.\n\
3711 Otherwise, any sort of insertion attempt will result in an error."),
3712 set_target_permissions, NULL,
3713 &setlist, &showlist);
3714
3715 add_setshow_boolean_cmd ("may-interrupt", class_support,
3716 &may_stop_1, _("\
3717 Set permission to interrupt or signal the target."), _("\
3718 Show permission to interrupt or signal the target."), _("\
3719 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3720 Otherwise, any attempt to interrupt or stop will be ignored."),
3721 set_target_permissions, NULL,
3722 &setlist, &showlist);
3723
3724 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3725 &auto_connect_native_target, _("\
3726 Set whether GDB may automatically connect to the native target."), _("\
3727 Show whether GDB may automatically connect to the native target."), _("\
3728 When on, and GDB is not connected to a target yet, GDB\n\
3729 attempts \"run\" and other commands with the native target."),
3730 NULL, show_auto_connect_native_target,
3731 &setlist, &showlist);
3732 }
This page took 0.109335 seconds and 4 git commands to generate.