Rename target_{stop,continue}_ptid
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "exceptions.h"
37 #include "target-descriptions.h"
38 #include "gdbthread.h"
39 #include "solib.h"
40 #include "exec.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "gdb/fileio.h"
44 #include "agent.h"
45 #include "auxv.h"
46 #include "target-debug.h"
47
48 static void target_info (char *, int);
49
50 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
51
52 static void default_terminal_info (struct target_ops *, const char *, int);
53
54 static int default_watchpoint_addr_within_range (struct target_ops *,
55 CORE_ADDR, CORE_ADDR, int);
56
57 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
58 CORE_ADDR, int);
59
60 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
61
62 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
63 long lwp, long tid);
64
65 static int default_follow_fork (struct target_ops *self, int follow_child,
66 int detach_fork);
67
68 static void default_mourn_inferior (struct target_ops *self);
69
70 static int default_search_memory (struct target_ops *ops,
71 CORE_ADDR start_addr,
72 ULONGEST search_space_len,
73 const gdb_byte *pattern,
74 ULONGEST pattern_len,
75 CORE_ADDR *found_addrp);
76
77 static int default_verify_memory (struct target_ops *self,
78 const gdb_byte *data,
79 CORE_ADDR memaddr, ULONGEST size);
80
81 static struct address_space *default_thread_address_space
82 (struct target_ops *self, ptid_t ptid);
83
84 static void tcomplain (void) ATTRIBUTE_NORETURN;
85
86 static int return_zero (struct target_ops *);
87
88 static int return_zero_has_execution (struct target_ops *, ptid_t);
89
90 static void target_command (char *, int);
91
92 static struct target_ops *find_default_run_target (char *);
93
94 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
95 ptid_t ptid);
96
97 static int dummy_find_memory_regions (struct target_ops *self,
98 find_memory_region_ftype ignore1,
99 void *ignore2);
100
101 static char *dummy_make_corefile_notes (struct target_ops *self,
102 bfd *ignore1, int *ignore2);
103
104 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
105
106 static enum exec_direction_kind default_execution_direction
107 (struct target_ops *self);
108
109 static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
110 struct gdbarch *gdbarch);
111
112 static struct target_ops debug_target;
113
114 #include "target-delegates.c"
115
116 static void init_dummy_target (void);
117
118 static void update_current_target (void);
119
120 /* Vector of existing target structures. */
121 typedef struct target_ops *target_ops_p;
122 DEF_VEC_P (target_ops_p);
123 static VEC (target_ops_p) *target_structs;
124
125 /* The initial current target, so that there is always a semi-valid
126 current target. */
127
128 static struct target_ops dummy_target;
129
130 /* Top of target stack. */
131
132 static struct target_ops *target_stack;
133
134 /* The target structure we are currently using to talk to a process
135 or file or whatever "inferior" we have. */
136
137 struct target_ops current_target;
138
139 /* Command list for target. */
140
141 static struct cmd_list_element *targetlist = NULL;
142
143 /* Nonzero if we should trust readonly sections from the
144 executable when reading memory. */
145
146 static int trust_readonly = 0;
147
148 /* Nonzero if we should show true memory content including
149 memory breakpoint inserted by gdb. */
150
151 static int show_memory_breakpoints = 0;
152
153 /* These globals control whether GDB attempts to perform these
154 operations; they are useful for targets that need to prevent
155 inadvertant disruption, such as in non-stop mode. */
156
157 int may_write_registers = 1;
158
159 int may_write_memory = 1;
160
161 int may_insert_breakpoints = 1;
162
163 int may_insert_tracepoints = 1;
164
165 int may_insert_fast_tracepoints = 1;
166
167 int may_stop = 1;
168
169 /* Non-zero if we want to see trace of target level stuff. */
170
171 static unsigned int targetdebug = 0;
172
173 static void
174 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
175 {
176 update_current_target ();
177 }
178
179 static void
180 show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184 }
185
186 static void setup_target_debug (void);
187
188 /* The user just typed 'target' without the name of a target. */
189
190 static void
191 target_command (char *arg, int from_tty)
192 {
193 fputs_filtered ("Argument required (target name). Try `help target'\n",
194 gdb_stdout);
195 }
196
197 /* Default target_has_* methods for process_stratum targets. */
198
199 int
200 default_child_has_all_memory (struct target_ops *ops)
201 {
202 /* If no inferior selected, then we can't read memory here. */
203 if (ptid_equal (inferior_ptid, null_ptid))
204 return 0;
205
206 return 1;
207 }
208
209 int
210 default_child_has_memory (struct target_ops *ops)
211 {
212 /* If no inferior selected, then we can't read memory here. */
213 if (ptid_equal (inferior_ptid, null_ptid))
214 return 0;
215
216 return 1;
217 }
218
219 int
220 default_child_has_stack (struct target_ops *ops)
221 {
222 /* If no inferior selected, there's no stack. */
223 if (ptid_equal (inferior_ptid, null_ptid))
224 return 0;
225
226 return 1;
227 }
228
229 int
230 default_child_has_registers (struct target_ops *ops)
231 {
232 /* Can't read registers from no inferior. */
233 if (ptid_equal (inferior_ptid, null_ptid))
234 return 0;
235
236 return 1;
237 }
238
239 int
240 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
241 {
242 /* If there's no thread selected, then we can't make it run through
243 hoops. */
244 if (ptid_equal (the_ptid, null_ptid))
245 return 0;
246
247 return 1;
248 }
249
250
251 int
252 target_has_all_memory_1 (void)
253 {
254 struct target_ops *t;
255
256 for (t = current_target.beneath; t != NULL; t = t->beneath)
257 if (t->to_has_all_memory (t))
258 return 1;
259
260 return 0;
261 }
262
263 int
264 target_has_memory_1 (void)
265 {
266 struct target_ops *t;
267
268 for (t = current_target.beneath; t != NULL; t = t->beneath)
269 if (t->to_has_memory (t))
270 return 1;
271
272 return 0;
273 }
274
275 int
276 target_has_stack_1 (void)
277 {
278 struct target_ops *t;
279
280 for (t = current_target.beneath; t != NULL; t = t->beneath)
281 if (t->to_has_stack (t))
282 return 1;
283
284 return 0;
285 }
286
287 int
288 target_has_registers_1 (void)
289 {
290 struct target_ops *t;
291
292 for (t = current_target.beneath; t != NULL; t = t->beneath)
293 if (t->to_has_registers (t))
294 return 1;
295
296 return 0;
297 }
298
299 int
300 target_has_execution_1 (ptid_t the_ptid)
301 {
302 struct target_ops *t;
303
304 for (t = current_target.beneath; t != NULL; t = t->beneath)
305 if (t->to_has_execution (t, the_ptid))
306 return 1;
307
308 return 0;
309 }
310
311 int
312 target_has_execution_current (void)
313 {
314 return target_has_execution_1 (inferior_ptid);
315 }
316
317 /* Complete initialization of T. This ensures that various fields in
318 T are set, if needed by the target implementation. */
319
320 void
321 complete_target_initialization (struct target_ops *t)
322 {
323 /* Provide default values for all "must have" methods. */
324
325 if (t->to_has_all_memory == NULL)
326 t->to_has_all_memory = return_zero;
327
328 if (t->to_has_memory == NULL)
329 t->to_has_memory = return_zero;
330
331 if (t->to_has_stack == NULL)
332 t->to_has_stack = return_zero;
333
334 if (t->to_has_registers == NULL)
335 t->to_has_registers = return_zero;
336
337 if (t->to_has_execution == NULL)
338 t->to_has_execution = return_zero_has_execution;
339
340 /* These methods can be called on an unpushed target and so require
341 a default implementation if the target might plausibly be the
342 default run target. */
343 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
344 && t->to_supports_non_stop != NULL));
345
346 install_delegators (t);
347 }
348
349 /* This is used to implement the various target commands. */
350
351 static void
352 open_target (char *args, int from_tty, struct cmd_list_element *command)
353 {
354 struct target_ops *ops = get_cmd_context (command);
355
356 if (targetdebug)
357 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
358 ops->to_shortname);
359
360 ops->to_open (args, from_tty);
361
362 if (targetdebug)
363 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
364 ops->to_shortname, args, from_tty);
365 }
366
367 /* Add possible target architecture T to the list and add a new
368 command 'target T->to_shortname'. Set COMPLETER as the command's
369 completer if not NULL. */
370
371 void
372 add_target_with_completer (struct target_ops *t,
373 completer_ftype *completer)
374 {
375 struct cmd_list_element *c;
376
377 complete_target_initialization (t);
378
379 VEC_safe_push (target_ops_p, target_structs, t);
380
381 if (targetlist == NULL)
382 add_prefix_cmd ("target", class_run, target_command, _("\
383 Connect to a target machine or process.\n\
384 The first argument is the type or protocol of the target machine.\n\
385 Remaining arguments are interpreted by the target protocol. For more\n\
386 information on the arguments for a particular protocol, type\n\
387 `help target ' followed by the protocol name."),
388 &targetlist, "target ", 0, &cmdlist);
389 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
390 set_cmd_sfunc (c, open_target);
391 set_cmd_context (c, t);
392 if (completer != NULL)
393 set_cmd_completer (c, completer);
394 }
395
396 /* Add a possible target architecture to the list. */
397
398 void
399 add_target (struct target_ops *t)
400 {
401 add_target_with_completer (t, NULL);
402 }
403
404 /* See target.h. */
405
406 void
407 add_deprecated_target_alias (struct target_ops *t, char *alias)
408 {
409 struct cmd_list_element *c;
410 char *alt;
411
412 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
413 see PR cli/15104. */
414 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
415 set_cmd_sfunc (c, open_target);
416 set_cmd_context (c, t);
417 alt = xstrprintf ("target %s", t->to_shortname);
418 deprecate_cmd (c, alt);
419 }
420
421 /* Stub functions */
422
423 void
424 target_kill (void)
425 {
426 current_target.to_kill (&current_target);
427 }
428
429 void
430 target_load (const char *arg, int from_tty)
431 {
432 target_dcache_invalidate ();
433 (*current_target.to_load) (&current_target, arg, from_tty);
434 }
435
436 void
437 target_terminal_inferior (void)
438 {
439 /* A background resume (``run&'') should leave GDB in control of the
440 terminal. Use target_can_async_p, not target_is_async_p, since at
441 this point the target is not async yet. However, if sync_execution
442 is not set, we know it will become async prior to resume. */
443 if (target_can_async_p () && !sync_execution)
444 return;
445
446 /* If GDB is resuming the inferior in the foreground, install
447 inferior's terminal modes. */
448 (*current_target.to_terminal_inferior) (&current_target);
449 }
450
451 /* See target.h. */
452
453 int
454 target_supports_terminal_ours (void)
455 {
456 struct target_ops *t;
457
458 for (t = current_target.beneath; t != NULL; t = t->beneath)
459 {
460 if (t->to_terminal_ours != delegate_terminal_ours
461 && t->to_terminal_ours != tdefault_terminal_ours)
462 return 1;
463 }
464
465 return 0;
466 }
467
468 static void
469 tcomplain (void)
470 {
471 error (_("You can't do that when your target is `%s'"),
472 current_target.to_shortname);
473 }
474
475 void
476 noprocess (void)
477 {
478 error (_("You can't do that without a process to debug."));
479 }
480
481 static void
482 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
483 {
484 printf_unfiltered (_("No saved terminal information.\n"));
485 }
486
487 /* A default implementation for the to_get_ada_task_ptid target method.
488
489 This function builds the PTID by using both LWP and TID as part of
490 the PTID lwp and tid elements. The pid used is the pid of the
491 inferior_ptid. */
492
493 static ptid_t
494 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
495 {
496 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
497 }
498
499 static enum exec_direction_kind
500 default_execution_direction (struct target_ops *self)
501 {
502 if (!target_can_execute_reverse)
503 return EXEC_FORWARD;
504 else if (!target_can_async_p ())
505 return EXEC_FORWARD;
506 else
507 gdb_assert_not_reached ("\
508 to_execution_direction must be implemented for reverse async");
509 }
510
511 /* Go through the target stack from top to bottom, copying over zero
512 entries in current_target, then filling in still empty entries. In
513 effect, we are doing class inheritance through the pushed target
514 vectors.
515
516 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
517 is currently implemented, is that it discards any knowledge of
518 which target an inherited method originally belonged to.
519 Consequently, new new target methods should instead explicitly and
520 locally search the target stack for the target that can handle the
521 request. */
522
523 static void
524 update_current_target (void)
525 {
526 struct target_ops *t;
527
528 /* First, reset current's contents. */
529 memset (&current_target, 0, sizeof (current_target));
530
531 /* Install the delegators. */
532 install_delegators (&current_target);
533
534 current_target.to_stratum = target_stack->to_stratum;
535
536 #define INHERIT(FIELD, TARGET) \
537 if (!current_target.FIELD) \
538 current_target.FIELD = (TARGET)->FIELD
539
540 /* Do not add any new INHERITs here. Instead, use the delegation
541 mechanism provided by make-target-delegates. */
542 for (t = target_stack; t; t = t->beneath)
543 {
544 INHERIT (to_shortname, t);
545 INHERIT (to_longname, t);
546 INHERIT (to_attach_no_wait, t);
547 INHERIT (to_have_steppable_watchpoint, t);
548 INHERIT (to_have_continuable_watchpoint, t);
549 INHERIT (to_has_thread_control, t);
550 }
551 #undef INHERIT
552
553 /* Finally, position the target-stack beneath the squashed
554 "current_target". That way code looking for a non-inherited
555 target method can quickly and simply find it. */
556 current_target.beneath = target_stack;
557
558 if (targetdebug)
559 setup_target_debug ();
560 }
561
562 /* Push a new target type into the stack of the existing target accessors,
563 possibly superseding some of the existing accessors.
564
565 Rather than allow an empty stack, we always have the dummy target at
566 the bottom stratum, so we can call the function vectors without
567 checking them. */
568
569 void
570 push_target (struct target_ops *t)
571 {
572 struct target_ops **cur;
573
574 /* Check magic number. If wrong, it probably means someone changed
575 the struct definition, but not all the places that initialize one. */
576 if (t->to_magic != OPS_MAGIC)
577 {
578 fprintf_unfiltered (gdb_stderr,
579 "Magic number of %s target struct wrong\n",
580 t->to_shortname);
581 internal_error (__FILE__, __LINE__,
582 _("failed internal consistency check"));
583 }
584
585 /* Find the proper stratum to install this target in. */
586 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
587 {
588 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
589 break;
590 }
591
592 /* If there's already targets at this stratum, remove them. */
593 /* FIXME: cagney/2003-10-15: I think this should be popping all
594 targets to CUR, and not just those at this stratum level. */
595 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
596 {
597 /* There's already something at this stratum level. Close it,
598 and un-hook it from the stack. */
599 struct target_ops *tmp = (*cur);
600
601 (*cur) = (*cur)->beneath;
602 tmp->beneath = NULL;
603 target_close (tmp);
604 }
605
606 /* We have removed all targets in our stratum, now add the new one. */
607 t->beneath = (*cur);
608 (*cur) = t;
609
610 update_current_target ();
611 }
612
613 /* Remove a target_ops vector from the stack, wherever it may be.
614 Return how many times it was removed (0 or 1). */
615
616 int
617 unpush_target (struct target_ops *t)
618 {
619 struct target_ops **cur;
620 struct target_ops *tmp;
621
622 if (t->to_stratum == dummy_stratum)
623 internal_error (__FILE__, __LINE__,
624 _("Attempt to unpush the dummy target"));
625
626 /* Look for the specified target. Note that we assume that a target
627 can only occur once in the target stack. */
628
629 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
630 {
631 if ((*cur) == t)
632 break;
633 }
634
635 /* If we don't find target_ops, quit. Only open targets should be
636 closed. */
637 if ((*cur) == NULL)
638 return 0;
639
640 /* Unchain the target. */
641 tmp = (*cur);
642 (*cur) = (*cur)->beneath;
643 tmp->beneath = NULL;
644
645 update_current_target ();
646
647 /* Finally close the target. Note we do this after unchaining, so
648 any target method calls from within the target_close
649 implementation don't end up in T anymore. */
650 target_close (t);
651
652 return 1;
653 }
654
655 void
656 pop_all_targets_above (enum strata above_stratum)
657 {
658 while ((int) (current_target.to_stratum) > (int) above_stratum)
659 {
660 if (!unpush_target (target_stack))
661 {
662 fprintf_unfiltered (gdb_stderr,
663 "pop_all_targets couldn't find target %s\n",
664 target_stack->to_shortname);
665 internal_error (__FILE__, __LINE__,
666 _("failed internal consistency check"));
667 break;
668 }
669 }
670 }
671
672 void
673 pop_all_targets (void)
674 {
675 pop_all_targets_above (dummy_stratum);
676 }
677
678 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
679
680 int
681 target_is_pushed (struct target_ops *t)
682 {
683 struct target_ops *cur;
684
685 /* Check magic number. If wrong, it probably means someone changed
686 the struct definition, but not all the places that initialize one. */
687 if (t->to_magic != OPS_MAGIC)
688 {
689 fprintf_unfiltered (gdb_stderr,
690 "Magic number of %s target struct wrong\n",
691 t->to_shortname);
692 internal_error (__FILE__, __LINE__,
693 _("failed internal consistency check"));
694 }
695
696 for (cur = target_stack; cur != NULL; cur = cur->beneath)
697 if (cur == t)
698 return 1;
699
700 return 0;
701 }
702
703 /* Default implementation of to_get_thread_local_address. */
704
705 static void
706 generic_tls_error (void)
707 {
708 throw_error (TLS_GENERIC_ERROR,
709 _("Cannot find thread-local variables on this target"));
710 }
711
712 /* Using the objfile specified in OBJFILE, find the address for the
713 current thread's thread-local storage with offset OFFSET. */
714 CORE_ADDR
715 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
716 {
717 volatile CORE_ADDR addr = 0;
718 struct target_ops *target = &current_target;
719
720 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
721 {
722 ptid_t ptid = inferior_ptid;
723 volatile struct gdb_exception ex;
724
725 TRY_CATCH (ex, RETURN_MASK_ALL)
726 {
727 CORE_ADDR lm_addr;
728
729 /* Fetch the load module address for this objfile. */
730 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
731 objfile);
732
733 addr = target->to_get_thread_local_address (target, ptid,
734 lm_addr, offset);
735 }
736 /* If an error occurred, print TLS related messages here. Otherwise,
737 throw the error to some higher catcher. */
738 if (ex.reason < 0)
739 {
740 int objfile_is_library = (objfile->flags & OBJF_SHARED);
741
742 switch (ex.error)
743 {
744 case TLS_NO_LIBRARY_SUPPORT_ERROR:
745 error (_("Cannot find thread-local variables "
746 "in this thread library."));
747 break;
748 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
749 if (objfile_is_library)
750 error (_("Cannot find shared library `%s' in dynamic"
751 " linker's load module list"), objfile_name (objfile));
752 else
753 error (_("Cannot find executable file `%s' in dynamic"
754 " linker's load module list"), objfile_name (objfile));
755 break;
756 case TLS_NOT_ALLOCATED_YET_ERROR:
757 if (objfile_is_library)
758 error (_("The inferior has not yet allocated storage for"
759 " thread-local variables in\n"
760 "the shared library `%s'\n"
761 "for %s"),
762 objfile_name (objfile), target_pid_to_str (ptid));
763 else
764 error (_("The inferior has not yet allocated storage for"
765 " thread-local variables in\n"
766 "the executable `%s'\n"
767 "for %s"),
768 objfile_name (objfile), target_pid_to_str (ptid));
769 break;
770 case TLS_GENERIC_ERROR:
771 if (objfile_is_library)
772 error (_("Cannot find thread-local storage for %s, "
773 "shared library %s:\n%s"),
774 target_pid_to_str (ptid),
775 objfile_name (objfile), ex.message);
776 else
777 error (_("Cannot find thread-local storage for %s, "
778 "executable file %s:\n%s"),
779 target_pid_to_str (ptid),
780 objfile_name (objfile), ex.message);
781 break;
782 default:
783 throw_exception (ex);
784 break;
785 }
786 }
787 }
788 /* It wouldn't be wrong here to try a gdbarch method, too; finding
789 TLS is an ABI-specific thing. But we don't do that yet. */
790 else
791 error (_("Cannot find thread-local variables on this target"));
792
793 return addr;
794 }
795
796 const char *
797 target_xfer_status_to_string (enum target_xfer_status status)
798 {
799 #define CASE(X) case X: return #X
800 switch (status)
801 {
802 CASE(TARGET_XFER_E_IO);
803 CASE(TARGET_XFER_UNAVAILABLE);
804 default:
805 return "<unknown>";
806 }
807 #undef CASE
808 };
809
810
811 #undef MIN
812 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
813
814 /* target_read_string -- read a null terminated string, up to LEN bytes,
815 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
816 Set *STRING to a pointer to malloc'd memory containing the data; the caller
817 is responsible for freeing it. Return the number of bytes successfully
818 read. */
819
820 int
821 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
822 {
823 int tlen, offset, i;
824 gdb_byte buf[4];
825 int errcode = 0;
826 char *buffer;
827 int buffer_allocated;
828 char *bufptr;
829 unsigned int nbytes_read = 0;
830
831 gdb_assert (string);
832
833 /* Small for testing. */
834 buffer_allocated = 4;
835 buffer = xmalloc (buffer_allocated);
836 bufptr = buffer;
837
838 while (len > 0)
839 {
840 tlen = MIN (len, 4 - (memaddr & 3));
841 offset = memaddr & 3;
842
843 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
844 if (errcode != 0)
845 {
846 /* The transfer request might have crossed the boundary to an
847 unallocated region of memory. Retry the transfer, requesting
848 a single byte. */
849 tlen = 1;
850 offset = 0;
851 errcode = target_read_memory (memaddr, buf, 1);
852 if (errcode != 0)
853 goto done;
854 }
855
856 if (bufptr - buffer + tlen > buffer_allocated)
857 {
858 unsigned int bytes;
859
860 bytes = bufptr - buffer;
861 buffer_allocated *= 2;
862 buffer = xrealloc (buffer, buffer_allocated);
863 bufptr = buffer + bytes;
864 }
865
866 for (i = 0; i < tlen; i++)
867 {
868 *bufptr++ = buf[i + offset];
869 if (buf[i + offset] == '\000')
870 {
871 nbytes_read += i + 1;
872 goto done;
873 }
874 }
875
876 memaddr += tlen;
877 len -= tlen;
878 nbytes_read += tlen;
879 }
880 done:
881 *string = buffer;
882 if (errnop != NULL)
883 *errnop = errcode;
884 return nbytes_read;
885 }
886
887 struct target_section_table *
888 target_get_section_table (struct target_ops *target)
889 {
890 return (*target->to_get_section_table) (target);
891 }
892
893 /* Find a section containing ADDR. */
894
895 struct target_section *
896 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
897 {
898 struct target_section_table *table = target_get_section_table (target);
899 struct target_section *secp;
900
901 if (table == NULL)
902 return NULL;
903
904 for (secp = table->sections; secp < table->sections_end; secp++)
905 {
906 if (addr >= secp->addr && addr < secp->endaddr)
907 return secp;
908 }
909 return NULL;
910 }
911
912 /* Read memory from more than one valid target. A core file, for
913 instance, could have some of memory but delegate other bits to
914 the target below it. So, we must manually try all targets. */
915
916 static enum target_xfer_status
917 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
918 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
919 ULONGEST *xfered_len)
920 {
921 enum target_xfer_status res;
922
923 do
924 {
925 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
926 readbuf, writebuf, memaddr, len,
927 xfered_len);
928 if (res == TARGET_XFER_OK)
929 break;
930
931 /* Stop if the target reports that the memory is not available. */
932 if (res == TARGET_XFER_UNAVAILABLE)
933 break;
934
935 /* We want to continue past core files to executables, but not
936 past a running target's memory. */
937 if (ops->to_has_all_memory (ops))
938 break;
939
940 ops = ops->beneath;
941 }
942 while (ops != NULL);
943
944 /* The cache works at the raw memory level. Make sure the cache
945 gets updated with raw contents no matter what kind of memory
946 object was originally being written. Note we do write-through
947 first, so that if it fails, we don't write to the cache contents
948 that never made it to the target. */
949 if (writebuf != NULL
950 && !ptid_equal (inferior_ptid, null_ptid)
951 && target_dcache_init_p ()
952 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
953 {
954 DCACHE *dcache = target_dcache_get ();
955
956 /* Note that writing to an area of memory which wasn't present
957 in the cache doesn't cause it to be loaded in. */
958 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
959 }
960
961 return res;
962 }
963
964 /* Perform a partial memory transfer.
965 For docs see target.h, to_xfer_partial. */
966
967 static enum target_xfer_status
968 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
969 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
970 ULONGEST len, ULONGEST *xfered_len)
971 {
972 enum target_xfer_status res;
973 int reg_len;
974 struct mem_region *region;
975 struct inferior *inf;
976
977 /* For accesses to unmapped overlay sections, read directly from
978 files. Must do this first, as MEMADDR may need adjustment. */
979 if (readbuf != NULL && overlay_debugging)
980 {
981 struct obj_section *section = find_pc_overlay (memaddr);
982
983 if (pc_in_unmapped_range (memaddr, section))
984 {
985 struct target_section_table *table
986 = target_get_section_table (ops);
987 const char *section_name = section->the_bfd_section->name;
988
989 memaddr = overlay_mapped_address (memaddr, section);
990 return section_table_xfer_memory_partial (readbuf, writebuf,
991 memaddr, len, xfered_len,
992 table->sections,
993 table->sections_end,
994 section_name);
995 }
996 }
997
998 /* Try the executable files, if "trust-readonly-sections" is set. */
999 if (readbuf != NULL && trust_readonly)
1000 {
1001 struct target_section *secp;
1002 struct target_section_table *table;
1003
1004 secp = target_section_by_addr (ops, memaddr);
1005 if (secp != NULL
1006 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1007 secp->the_bfd_section)
1008 & SEC_READONLY))
1009 {
1010 table = target_get_section_table (ops);
1011 return section_table_xfer_memory_partial (readbuf, writebuf,
1012 memaddr, len, xfered_len,
1013 table->sections,
1014 table->sections_end,
1015 NULL);
1016 }
1017 }
1018
1019 /* Try GDB's internal data cache. */
1020 region = lookup_mem_region (memaddr);
1021 /* region->hi == 0 means there's no upper bound. */
1022 if (memaddr + len < region->hi || region->hi == 0)
1023 reg_len = len;
1024 else
1025 reg_len = region->hi - memaddr;
1026
1027 switch (region->attrib.mode)
1028 {
1029 case MEM_RO:
1030 if (writebuf != NULL)
1031 return TARGET_XFER_E_IO;
1032 break;
1033
1034 case MEM_WO:
1035 if (readbuf != NULL)
1036 return TARGET_XFER_E_IO;
1037 break;
1038
1039 case MEM_FLASH:
1040 /* We only support writing to flash during "load" for now. */
1041 if (writebuf != NULL)
1042 error (_("Writing to flash memory forbidden in this context"));
1043 break;
1044
1045 case MEM_NONE:
1046 return TARGET_XFER_E_IO;
1047 }
1048
1049 if (!ptid_equal (inferior_ptid, null_ptid))
1050 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1051 else
1052 inf = NULL;
1053
1054 if (inf != NULL
1055 && readbuf != NULL
1056 /* The dcache reads whole cache lines; that doesn't play well
1057 with reading from a trace buffer, because reading outside of
1058 the collected memory range fails. */
1059 && get_traceframe_number () == -1
1060 && (region->attrib.cache
1061 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1062 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1063 {
1064 DCACHE *dcache = target_dcache_get_or_init ();
1065
1066 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1067 reg_len, xfered_len);
1068 }
1069
1070 /* If none of those methods found the memory we wanted, fall back
1071 to a target partial transfer. Normally a single call to
1072 to_xfer_partial is enough; if it doesn't recognize an object
1073 it will call the to_xfer_partial of the next target down.
1074 But for memory this won't do. Memory is the only target
1075 object which can be read from more than one valid target.
1076 A core file, for instance, could have some of memory but
1077 delegate other bits to the target below it. So, we must
1078 manually try all targets. */
1079
1080 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1081 xfered_len);
1082
1083 /* If we still haven't got anything, return the last error. We
1084 give up. */
1085 return res;
1086 }
1087
1088 /* Perform a partial memory transfer. For docs see target.h,
1089 to_xfer_partial. */
1090
1091 static enum target_xfer_status
1092 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1093 gdb_byte *readbuf, const gdb_byte *writebuf,
1094 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1095 {
1096 enum target_xfer_status res;
1097
1098 /* Zero length requests are ok and require no work. */
1099 if (len == 0)
1100 return TARGET_XFER_EOF;
1101
1102 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1103 breakpoint insns, thus hiding out from higher layers whether
1104 there are software breakpoints inserted in the code stream. */
1105 if (readbuf != NULL)
1106 {
1107 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1108 xfered_len);
1109
1110 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1111 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1112 }
1113 else
1114 {
1115 void *buf;
1116 struct cleanup *old_chain;
1117
1118 /* A large write request is likely to be partially satisfied
1119 by memory_xfer_partial_1. We will continually malloc
1120 and free a copy of the entire write request for breakpoint
1121 shadow handling even though we only end up writing a small
1122 subset of it. Cap writes to 4KB to mitigate this. */
1123 len = min (4096, len);
1124
1125 buf = xmalloc (len);
1126 old_chain = make_cleanup (xfree, buf);
1127 memcpy (buf, writebuf, len);
1128
1129 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1130 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1131 xfered_len);
1132
1133 do_cleanups (old_chain);
1134 }
1135
1136 return res;
1137 }
1138
1139 static void
1140 restore_show_memory_breakpoints (void *arg)
1141 {
1142 show_memory_breakpoints = (uintptr_t) arg;
1143 }
1144
1145 struct cleanup *
1146 make_show_memory_breakpoints_cleanup (int show)
1147 {
1148 int current = show_memory_breakpoints;
1149
1150 show_memory_breakpoints = show;
1151 return make_cleanup (restore_show_memory_breakpoints,
1152 (void *) (uintptr_t) current);
1153 }
1154
1155 /* For docs see target.h, to_xfer_partial. */
1156
1157 enum target_xfer_status
1158 target_xfer_partial (struct target_ops *ops,
1159 enum target_object object, const char *annex,
1160 gdb_byte *readbuf, const gdb_byte *writebuf,
1161 ULONGEST offset, ULONGEST len,
1162 ULONGEST *xfered_len)
1163 {
1164 enum target_xfer_status retval;
1165
1166 gdb_assert (ops->to_xfer_partial != NULL);
1167
1168 /* Transfer is done when LEN is zero. */
1169 if (len == 0)
1170 return TARGET_XFER_EOF;
1171
1172 if (writebuf && !may_write_memory)
1173 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1174 core_addr_to_string_nz (offset), plongest (len));
1175
1176 *xfered_len = 0;
1177
1178 /* If this is a memory transfer, let the memory-specific code
1179 have a look at it instead. Memory transfers are more
1180 complicated. */
1181 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1182 || object == TARGET_OBJECT_CODE_MEMORY)
1183 retval = memory_xfer_partial (ops, object, readbuf,
1184 writebuf, offset, len, xfered_len);
1185 else if (object == TARGET_OBJECT_RAW_MEMORY)
1186 {
1187 /* Request the normal memory object from other layers. */
1188 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1189 xfered_len);
1190 }
1191 else
1192 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1193 writebuf, offset, len, xfered_len);
1194
1195 if (targetdebug)
1196 {
1197 const unsigned char *myaddr = NULL;
1198
1199 fprintf_unfiltered (gdb_stdlog,
1200 "%s:target_xfer_partial "
1201 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1202 ops->to_shortname,
1203 (int) object,
1204 (annex ? annex : "(null)"),
1205 host_address_to_string (readbuf),
1206 host_address_to_string (writebuf),
1207 core_addr_to_string_nz (offset),
1208 pulongest (len), retval,
1209 pulongest (*xfered_len));
1210
1211 if (readbuf)
1212 myaddr = readbuf;
1213 if (writebuf)
1214 myaddr = writebuf;
1215 if (retval == TARGET_XFER_OK && myaddr != NULL)
1216 {
1217 int i;
1218
1219 fputs_unfiltered (", bytes =", gdb_stdlog);
1220 for (i = 0; i < *xfered_len; i++)
1221 {
1222 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1223 {
1224 if (targetdebug < 2 && i > 0)
1225 {
1226 fprintf_unfiltered (gdb_stdlog, " ...");
1227 break;
1228 }
1229 fprintf_unfiltered (gdb_stdlog, "\n");
1230 }
1231
1232 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1233 }
1234 }
1235
1236 fputc_unfiltered ('\n', gdb_stdlog);
1237 }
1238
1239 /* Check implementations of to_xfer_partial update *XFERED_LEN
1240 properly. Do assertion after printing debug messages, so that we
1241 can find more clues on assertion failure from debugging messages. */
1242 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1243 gdb_assert (*xfered_len > 0);
1244
1245 return retval;
1246 }
1247
1248 /* Read LEN bytes of target memory at address MEMADDR, placing the
1249 results in GDB's memory at MYADDR. Returns either 0 for success or
1250 TARGET_XFER_E_IO if any error occurs.
1251
1252 If an error occurs, no guarantee is made about the contents of the data at
1253 MYADDR. In particular, the caller should not depend upon partial reads
1254 filling the buffer with good data. There is no way for the caller to know
1255 how much good data might have been transfered anyway. Callers that can
1256 deal with partial reads should call target_read (which will retry until
1257 it makes no progress, and then return how much was transferred). */
1258
1259 int
1260 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1261 {
1262 /* Dispatch to the topmost target, not the flattened current_target.
1263 Memory accesses check target->to_has_(all_)memory, and the
1264 flattened target doesn't inherit those. */
1265 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1266 myaddr, memaddr, len) == len)
1267 return 0;
1268 else
1269 return TARGET_XFER_E_IO;
1270 }
1271
1272 /* See target/target.h. */
1273
1274 int
1275 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1276 {
1277 gdb_byte buf[4];
1278 int r;
1279
1280 r = target_read_memory (memaddr, buf, sizeof buf);
1281 if (r != 0)
1282 return r;
1283 *result = extract_unsigned_integer (buf, sizeof buf,
1284 gdbarch_byte_order (target_gdbarch ()));
1285 return 0;
1286 }
1287
1288 /* Like target_read_memory, but specify explicitly that this is a read
1289 from the target's raw memory. That is, this read bypasses the
1290 dcache, breakpoint shadowing, etc. */
1291
1292 int
1293 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1294 {
1295 /* See comment in target_read_memory about why the request starts at
1296 current_target.beneath. */
1297 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1298 myaddr, memaddr, len) == len)
1299 return 0;
1300 else
1301 return TARGET_XFER_E_IO;
1302 }
1303
1304 /* Like target_read_memory, but specify explicitly that this is a read from
1305 the target's stack. This may trigger different cache behavior. */
1306
1307 int
1308 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1309 {
1310 /* See comment in target_read_memory about why the request starts at
1311 current_target.beneath. */
1312 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1313 myaddr, memaddr, len) == len)
1314 return 0;
1315 else
1316 return TARGET_XFER_E_IO;
1317 }
1318
1319 /* Like target_read_memory, but specify explicitly that this is a read from
1320 the target's code. This may trigger different cache behavior. */
1321
1322 int
1323 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1324 {
1325 /* See comment in target_read_memory about why the request starts at
1326 current_target.beneath. */
1327 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1328 myaddr, memaddr, len) == len)
1329 return 0;
1330 else
1331 return TARGET_XFER_E_IO;
1332 }
1333
1334 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1335 Returns either 0 for success or TARGET_XFER_E_IO if any
1336 error occurs. If an error occurs, no guarantee is made about how
1337 much data got written. Callers that can deal with partial writes
1338 should call target_write. */
1339
1340 int
1341 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1342 {
1343 /* See comment in target_read_memory about why the request starts at
1344 current_target.beneath. */
1345 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1346 myaddr, memaddr, len) == len)
1347 return 0;
1348 else
1349 return TARGET_XFER_E_IO;
1350 }
1351
1352 /* Write LEN bytes from MYADDR to target raw memory at address
1353 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1354 if any error occurs. If an error occurs, no guarantee is made
1355 about how much data got written. Callers that can deal with
1356 partial writes should call target_write. */
1357
1358 int
1359 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1360 {
1361 /* See comment in target_read_memory about why the request starts at
1362 current_target.beneath. */
1363 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1364 myaddr, memaddr, len) == len)
1365 return 0;
1366 else
1367 return TARGET_XFER_E_IO;
1368 }
1369
1370 /* Fetch the target's memory map. */
1371
1372 VEC(mem_region_s) *
1373 target_memory_map (void)
1374 {
1375 VEC(mem_region_s) *result;
1376 struct mem_region *last_one, *this_one;
1377 int ix;
1378 struct target_ops *t;
1379
1380 result = current_target.to_memory_map (&current_target);
1381 if (result == NULL)
1382 return NULL;
1383
1384 qsort (VEC_address (mem_region_s, result),
1385 VEC_length (mem_region_s, result),
1386 sizeof (struct mem_region), mem_region_cmp);
1387
1388 /* Check that regions do not overlap. Simultaneously assign
1389 a numbering for the "mem" commands to use to refer to
1390 each region. */
1391 last_one = NULL;
1392 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1393 {
1394 this_one->number = ix;
1395
1396 if (last_one && last_one->hi > this_one->lo)
1397 {
1398 warning (_("Overlapping regions in memory map: ignoring"));
1399 VEC_free (mem_region_s, result);
1400 return NULL;
1401 }
1402 last_one = this_one;
1403 }
1404
1405 return result;
1406 }
1407
1408 void
1409 target_flash_erase (ULONGEST address, LONGEST length)
1410 {
1411 current_target.to_flash_erase (&current_target, address, length);
1412 }
1413
1414 void
1415 target_flash_done (void)
1416 {
1417 current_target.to_flash_done (&current_target);
1418 }
1419
1420 static void
1421 show_trust_readonly (struct ui_file *file, int from_tty,
1422 struct cmd_list_element *c, const char *value)
1423 {
1424 fprintf_filtered (file,
1425 _("Mode for reading from readonly sections is %s.\n"),
1426 value);
1427 }
1428
1429 /* Target vector read/write partial wrapper functions. */
1430
1431 static enum target_xfer_status
1432 target_read_partial (struct target_ops *ops,
1433 enum target_object object,
1434 const char *annex, gdb_byte *buf,
1435 ULONGEST offset, ULONGEST len,
1436 ULONGEST *xfered_len)
1437 {
1438 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1439 xfered_len);
1440 }
1441
1442 static enum target_xfer_status
1443 target_write_partial (struct target_ops *ops,
1444 enum target_object object,
1445 const char *annex, const gdb_byte *buf,
1446 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1447 {
1448 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1449 xfered_len);
1450 }
1451
1452 /* Wrappers to perform the full transfer. */
1453
1454 /* For docs on target_read see target.h. */
1455
1456 LONGEST
1457 target_read (struct target_ops *ops,
1458 enum target_object object,
1459 const char *annex, gdb_byte *buf,
1460 ULONGEST offset, LONGEST len)
1461 {
1462 LONGEST xfered = 0;
1463
1464 while (xfered < len)
1465 {
1466 ULONGEST xfered_len;
1467 enum target_xfer_status status;
1468
1469 status = target_read_partial (ops, object, annex,
1470 (gdb_byte *) buf + xfered,
1471 offset + xfered, len - xfered,
1472 &xfered_len);
1473
1474 /* Call an observer, notifying them of the xfer progress? */
1475 if (status == TARGET_XFER_EOF)
1476 return xfered;
1477 else if (status == TARGET_XFER_OK)
1478 {
1479 xfered += xfered_len;
1480 QUIT;
1481 }
1482 else
1483 return -1;
1484
1485 }
1486 return len;
1487 }
1488
1489 /* Assuming that the entire [begin, end) range of memory cannot be
1490 read, try to read whatever subrange is possible to read.
1491
1492 The function returns, in RESULT, either zero or one memory block.
1493 If there's a readable subrange at the beginning, it is completely
1494 read and returned. Any further readable subrange will not be read.
1495 Otherwise, if there's a readable subrange at the end, it will be
1496 completely read and returned. Any readable subranges before it
1497 (obviously, not starting at the beginning), will be ignored. In
1498 other cases -- either no readable subrange, or readable subrange(s)
1499 that is neither at the beginning, or end, nothing is returned.
1500
1501 The purpose of this function is to handle a read across a boundary
1502 of accessible memory in a case when memory map is not available.
1503 The above restrictions are fine for this case, but will give
1504 incorrect results if the memory is 'patchy'. However, supporting
1505 'patchy' memory would require trying to read every single byte,
1506 and it seems unacceptable solution. Explicit memory map is
1507 recommended for this case -- and target_read_memory_robust will
1508 take care of reading multiple ranges then. */
1509
1510 static void
1511 read_whatever_is_readable (struct target_ops *ops,
1512 ULONGEST begin, ULONGEST end,
1513 VEC(memory_read_result_s) **result)
1514 {
1515 gdb_byte *buf = xmalloc (end - begin);
1516 ULONGEST current_begin = begin;
1517 ULONGEST current_end = end;
1518 int forward;
1519 memory_read_result_s r;
1520 ULONGEST xfered_len;
1521
1522 /* If we previously failed to read 1 byte, nothing can be done here. */
1523 if (end - begin <= 1)
1524 {
1525 xfree (buf);
1526 return;
1527 }
1528
1529 /* Check that either first or the last byte is readable, and give up
1530 if not. This heuristic is meant to permit reading accessible memory
1531 at the boundary of accessible region. */
1532 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1533 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1534 {
1535 forward = 1;
1536 ++current_begin;
1537 }
1538 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1539 buf + (end-begin) - 1, end - 1, 1,
1540 &xfered_len) == TARGET_XFER_OK)
1541 {
1542 forward = 0;
1543 --current_end;
1544 }
1545 else
1546 {
1547 xfree (buf);
1548 return;
1549 }
1550
1551 /* Loop invariant is that the [current_begin, current_end) was previously
1552 found to be not readable as a whole.
1553
1554 Note loop condition -- if the range has 1 byte, we can't divide the range
1555 so there's no point trying further. */
1556 while (current_end - current_begin > 1)
1557 {
1558 ULONGEST first_half_begin, first_half_end;
1559 ULONGEST second_half_begin, second_half_end;
1560 LONGEST xfer;
1561 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1562
1563 if (forward)
1564 {
1565 first_half_begin = current_begin;
1566 first_half_end = middle;
1567 second_half_begin = middle;
1568 second_half_end = current_end;
1569 }
1570 else
1571 {
1572 first_half_begin = middle;
1573 first_half_end = current_end;
1574 second_half_begin = current_begin;
1575 second_half_end = middle;
1576 }
1577
1578 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1579 buf + (first_half_begin - begin),
1580 first_half_begin,
1581 first_half_end - first_half_begin);
1582
1583 if (xfer == first_half_end - first_half_begin)
1584 {
1585 /* This half reads up fine. So, the error must be in the
1586 other half. */
1587 current_begin = second_half_begin;
1588 current_end = second_half_end;
1589 }
1590 else
1591 {
1592 /* This half is not readable. Because we've tried one byte, we
1593 know some part of this half if actually redable. Go to the next
1594 iteration to divide again and try to read.
1595
1596 We don't handle the other half, because this function only tries
1597 to read a single readable subrange. */
1598 current_begin = first_half_begin;
1599 current_end = first_half_end;
1600 }
1601 }
1602
1603 if (forward)
1604 {
1605 /* The [begin, current_begin) range has been read. */
1606 r.begin = begin;
1607 r.end = current_begin;
1608 r.data = buf;
1609 }
1610 else
1611 {
1612 /* The [current_end, end) range has been read. */
1613 LONGEST rlen = end - current_end;
1614
1615 r.data = xmalloc (rlen);
1616 memcpy (r.data, buf + current_end - begin, rlen);
1617 r.begin = current_end;
1618 r.end = end;
1619 xfree (buf);
1620 }
1621 VEC_safe_push(memory_read_result_s, (*result), &r);
1622 }
1623
1624 void
1625 free_memory_read_result_vector (void *x)
1626 {
1627 VEC(memory_read_result_s) *v = x;
1628 memory_read_result_s *current;
1629 int ix;
1630
1631 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1632 {
1633 xfree (current->data);
1634 }
1635 VEC_free (memory_read_result_s, v);
1636 }
1637
1638 VEC(memory_read_result_s) *
1639 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1640 {
1641 VEC(memory_read_result_s) *result = 0;
1642
1643 LONGEST xfered = 0;
1644 while (xfered < len)
1645 {
1646 struct mem_region *region = lookup_mem_region (offset + xfered);
1647 LONGEST rlen;
1648
1649 /* If there is no explicit region, a fake one should be created. */
1650 gdb_assert (region);
1651
1652 if (region->hi == 0)
1653 rlen = len - xfered;
1654 else
1655 rlen = region->hi - offset;
1656
1657 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1658 {
1659 /* Cannot read this region. Note that we can end up here only
1660 if the region is explicitly marked inaccessible, or
1661 'inaccessible-by-default' is in effect. */
1662 xfered += rlen;
1663 }
1664 else
1665 {
1666 LONGEST to_read = min (len - xfered, rlen);
1667 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1668
1669 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1670 (gdb_byte *) buffer,
1671 offset + xfered, to_read);
1672 /* Call an observer, notifying them of the xfer progress? */
1673 if (xfer <= 0)
1674 {
1675 /* Got an error reading full chunk. See if maybe we can read
1676 some subrange. */
1677 xfree (buffer);
1678 read_whatever_is_readable (ops, offset + xfered,
1679 offset + xfered + to_read, &result);
1680 xfered += to_read;
1681 }
1682 else
1683 {
1684 struct memory_read_result r;
1685 r.data = buffer;
1686 r.begin = offset + xfered;
1687 r.end = r.begin + xfer;
1688 VEC_safe_push (memory_read_result_s, result, &r);
1689 xfered += xfer;
1690 }
1691 QUIT;
1692 }
1693 }
1694 return result;
1695 }
1696
1697
1698 /* An alternative to target_write with progress callbacks. */
1699
1700 LONGEST
1701 target_write_with_progress (struct target_ops *ops,
1702 enum target_object object,
1703 const char *annex, const gdb_byte *buf,
1704 ULONGEST offset, LONGEST len,
1705 void (*progress) (ULONGEST, void *), void *baton)
1706 {
1707 LONGEST xfered = 0;
1708
1709 /* Give the progress callback a chance to set up. */
1710 if (progress)
1711 (*progress) (0, baton);
1712
1713 while (xfered < len)
1714 {
1715 ULONGEST xfered_len;
1716 enum target_xfer_status status;
1717
1718 status = target_write_partial (ops, object, annex,
1719 (gdb_byte *) buf + xfered,
1720 offset + xfered, len - xfered,
1721 &xfered_len);
1722
1723 if (status != TARGET_XFER_OK)
1724 return status == TARGET_XFER_EOF ? xfered : -1;
1725
1726 if (progress)
1727 (*progress) (xfered_len, baton);
1728
1729 xfered += xfered_len;
1730 QUIT;
1731 }
1732 return len;
1733 }
1734
1735 /* For docs on target_write see target.h. */
1736
1737 LONGEST
1738 target_write (struct target_ops *ops,
1739 enum target_object object,
1740 const char *annex, const gdb_byte *buf,
1741 ULONGEST offset, LONGEST len)
1742 {
1743 return target_write_with_progress (ops, object, annex, buf, offset, len,
1744 NULL, NULL);
1745 }
1746
1747 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1748 the size of the transferred data. PADDING additional bytes are
1749 available in *BUF_P. This is a helper function for
1750 target_read_alloc; see the declaration of that function for more
1751 information. */
1752
1753 static LONGEST
1754 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1755 const char *annex, gdb_byte **buf_p, int padding)
1756 {
1757 size_t buf_alloc, buf_pos;
1758 gdb_byte *buf;
1759
1760 /* This function does not have a length parameter; it reads the
1761 entire OBJECT). Also, it doesn't support objects fetched partly
1762 from one target and partly from another (in a different stratum,
1763 e.g. a core file and an executable). Both reasons make it
1764 unsuitable for reading memory. */
1765 gdb_assert (object != TARGET_OBJECT_MEMORY);
1766
1767 /* Start by reading up to 4K at a time. The target will throttle
1768 this number down if necessary. */
1769 buf_alloc = 4096;
1770 buf = xmalloc (buf_alloc);
1771 buf_pos = 0;
1772 while (1)
1773 {
1774 ULONGEST xfered_len;
1775 enum target_xfer_status status;
1776
1777 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1778 buf_pos, buf_alloc - buf_pos - padding,
1779 &xfered_len);
1780
1781 if (status == TARGET_XFER_EOF)
1782 {
1783 /* Read all there was. */
1784 if (buf_pos == 0)
1785 xfree (buf);
1786 else
1787 *buf_p = buf;
1788 return buf_pos;
1789 }
1790 else if (status != TARGET_XFER_OK)
1791 {
1792 /* An error occurred. */
1793 xfree (buf);
1794 return TARGET_XFER_E_IO;
1795 }
1796
1797 buf_pos += xfered_len;
1798
1799 /* If the buffer is filling up, expand it. */
1800 if (buf_alloc < buf_pos * 2)
1801 {
1802 buf_alloc *= 2;
1803 buf = xrealloc (buf, buf_alloc);
1804 }
1805
1806 QUIT;
1807 }
1808 }
1809
1810 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1811 the size of the transferred data. See the declaration in "target.h"
1812 function for more information about the return value. */
1813
1814 LONGEST
1815 target_read_alloc (struct target_ops *ops, enum target_object object,
1816 const char *annex, gdb_byte **buf_p)
1817 {
1818 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1819 }
1820
1821 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1822 returned as a string, allocated using xmalloc. If an error occurs
1823 or the transfer is unsupported, NULL is returned. Empty objects
1824 are returned as allocated but empty strings. A warning is issued
1825 if the result contains any embedded NUL bytes. */
1826
1827 char *
1828 target_read_stralloc (struct target_ops *ops, enum target_object object,
1829 const char *annex)
1830 {
1831 gdb_byte *buffer;
1832 char *bufstr;
1833 LONGEST i, transferred;
1834
1835 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1836 bufstr = (char *) buffer;
1837
1838 if (transferred < 0)
1839 return NULL;
1840
1841 if (transferred == 0)
1842 return xstrdup ("");
1843
1844 bufstr[transferred] = 0;
1845
1846 /* Check for embedded NUL bytes; but allow trailing NULs. */
1847 for (i = strlen (bufstr); i < transferred; i++)
1848 if (bufstr[i] != 0)
1849 {
1850 warning (_("target object %d, annex %s, "
1851 "contained unexpected null characters"),
1852 (int) object, annex ? annex : "(none)");
1853 break;
1854 }
1855
1856 return bufstr;
1857 }
1858
1859 /* Memory transfer methods. */
1860
1861 void
1862 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1863 LONGEST len)
1864 {
1865 /* This method is used to read from an alternate, non-current
1866 target. This read must bypass the overlay support (as symbols
1867 don't match this target), and GDB's internal cache (wrong cache
1868 for this target). */
1869 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1870 != len)
1871 memory_error (TARGET_XFER_E_IO, addr);
1872 }
1873
1874 ULONGEST
1875 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1876 int len, enum bfd_endian byte_order)
1877 {
1878 gdb_byte buf[sizeof (ULONGEST)];
1879
1880 gdb_assert (len <= sizeof (buf));
1881 get_target_memory (ops, addr, buf, len);
1882 return extract_unsigned_integer (buf, len, byte_order);
1883 }
1884
1885 /* See target.h. */
1886
1887 int
1888 target_insert_breakpoint (struct gdbarch *gdbarch,
1889 struct bp_target_info *bp_tgt)
1890 {
1891 if (!may_insert_breakpoints)
1892 {
1893 warning (_("May not insert breakpoints"));
1894 return 1;
1895 }
1896
1897 return current_target.to_insert_breakpoint (&current_target,
1898 gdbarch, bp_tgt);
1899 }
1900
1901 /* See target.h. */
1902
1903 int
1904 target_remove_breakpoint (struct gdbarch *gdbarch,
1905 struct bp_target_info *bp_tgt)
1906 {
1907 /* This is kind of a weird case to handle, but the permission might
1908 have been changed after breakpoints were inserted - in which case
1909 we should just take the user literally and assume that any
1910 breakpoints should be left in place. */
1911 if (!may_insert_breakpoints)
1912 {
1913 warning (_("May not remove breakpoints"));
1914 return 1;
1915 }
1916
1917 return current_target.to_remove_breakpoint (&current_target,
1918 gdbarch, bp_tgt);
1919 }
1920
1921 static void
1922 target_info (char *args, int from_tty)
1923 {
1924 struct target_ops *t;
1925 int has_all_mem = 0;
1926
1927 if (symfile_objfile != NULL)
1928 printf_unfiltered (_("Symbols from \"%s\".\n"),
1929 objfile_name (symfile_objfile));
1930
1931 for (t = target_stack; t != NULL; t = t->beneath)
1932 {
1933 if (!(*t->to_has_memory) (t))
1934 continue;
1935
1936 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1937 continue;
1938 if (has_all_mem)
1939 printf_unfiltered (_("\tWhile running this, "
1940 "GDB does not access memory from...\n"));
1941 printf_unfiltered ("%s:\n", t->to_longname);
1942 (t->to_files_info) (t);
1943 has_all_mem = (*t->to_has_all_memory) (t);
1944 }
1945 }
1946
1947 /* This function is called before any new inferior is created, e.g.
1948 by running a program, attaching, or connecting to a target.
1949 It cleans up any state from previous invocations which might
1950 change between runs. This is a subset of what target_preopen
1951 resets (things which might change between targets). */
1952
1953 void
1954 target_pre_inferior (int from_tty)
1955 {
1956 /* Clear out solib state. Otherwise the solib state of the previous
1957 inferior might have survived and is entirely wrong for the new
1958 target. This has been observed on GNU/Linux using glibc 2.3. How
1959 to reproduce:
1960
1961 bash$ ./foo&
1962 [1] 4711
1963 bash$ ./foo&
1964 [1] 4712
1965 bash$ gdb ./foo
1966 [...]
1967 (gdb) attach 4711
1968 (gdb) detach
1969 (gdb) attach 4712
1970 Cannot access memory at address 0xdeadbeef
1971 */
1972
1973 /* In some OSs, the shared library list is the same/global/shared
1974 across inferiors. If code is shared between processes, so are
1975 memory regions and features. */
1976 if (!gdbarch_has_global_solist (target_gdbarch ()))
1977 {
1978 no_shared_libraries (NULL, from_tty);
1979
1980 invalidate_target_mem_regions ();
1981
1982 target_clear_description ();
1983 }
1984
1985 agent_capability_invalidate ();
1986 }
1987
1988 /* Callback for iterate_over_inferiors. Gets rid of the given
1989 inferior. */
1990
1991 static int
1992 dispose_inferior (struct inferior *inf, void *args)
1993 {
1994 struct thread_info *thread;
1995
1996 thread = any_thread_of_process (inf->pid);
1997 if (thread)
1998 {
1999 switch_to_thread (thread->ptid);
2000
2001 /* Core inferiors actually should be detached, not killed. */
2002 if (target_has_execution)
2003 target_kill ();
2004 else
2005 target_detach (NULL, 0);
2006 }
2007
2008 return 0;
2009 }
2010
2011 /* This is to be called by the open routine before it does
2012 anything. */
2013
2014 void
2015 target_preopen (int from_tty)
2016 {
2017 dont_repeat ();
2018
2019 if (have_inferiors ())
2020 {
2021 if (!from_tty
2022 || !have_live_inferiors ()
2023 || query (_("A program is being debugged already. Kill it? ")))
2024 iterate_over_inferiors (dispose_inferior, NULL);
2025 else
2026 error (_("Program not killed."));
2027 }
2028
2029 /* Calling target_kill may remove the target from the stack. But if
2030 it doesn't (which seems like a win for UDI), remove it now. */
2031 /* Leave the exec target, though. The user may be switching from a
2032 live process to a core of the same program. */
2033 pop_all_targets_above (file_stratum);
2034
2035 target_pre_inferior (from_tty);
2036 }
2037
2038 /* Detach a target after doing deferred register stores. */
2039
2040 void
2041 target_detach (const char *args, int from_tty)
2042 {
2043 struct target_ops* t;
2044
2045 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2046 /* Don't remove global breakpoints here. They're removed on
2047 disconnection from the target. */
2048 ;
2049 else
2050 /* If we're in breakpoints-always-inserted mode, have to remove
2051 them before detaching. */
2052 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2053
2054 prepare_for_detach ();
2055
2056 current_target.to_detach (&current_target, args, from_tty);
2057 }
2058
2059 void
2060 target_disconnect (const char *args, int from_tty)
2061 {
2062 /* If we're in breakpoints-always-inserted mode or if breakpoints
2063 are global across processes, we have to remove them before
2064 disconnecting. */
2065 remove_breakpoints ();
2066
2067 current_target.to_disconnect (&current_target, args, from_tty);
2068 }
2069
2070 ptid_t
2071 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2072 {
2073 return (current_target.to_wait) (&current_target, ptid, status, options);
2074 }
2075
2076 char *
2077 target_pid_to_str (ptid_t ptid)
2078 {
2079 return (*current_target.to_pid_to_str) (&current_target, ptid);
2080 }
2081
2082 char *
2083 target_thread_name (struct thread_info *info)
2084 {
2085 return current_target.to_thread_name (&current_target, info);
2086 }
2087
2088 void
2089 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2090 {
2091 struct target_ops *t;
2092
2093 target_dcache_invalidate ();
2094
2095 current_target.to_resume (&current_target, ptid, step, signal);
2096
2097 registers_changed_ptid (ptid);
2098 /* We only set the internal executing state here. The user/frontend
2099 running state is set at a higher level. */
2100 set_executing (ptid, 1);
2101 clear_inline_frame_state (ptid);
2102 }
2103
2104 void
2105 target_pass_signals (int numsigs, unsigned char *pass_signals)
2106 {
2107 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2108 }
2109
2110 void
2111 target_program_signals (int numsigs, unsigned char *program_signals)
2112 {
2113 (*current_target.to_program_signals) (&current_target,
2114 numsigs, program_signals);
2115 }
2116
2117 static int
2118 default_follow_fork (struct target_ops *self, int follow_child,
2119 int detach_fork)
2120 {
2121 /* Some target returned a fork event, but did not know how to follow it. */
2122 internal_error (__FILE__, __LINE__,
2123 _("could not find a target to follow fork"));
2124 }
2125
2126 /* Look through the list of possible targets for a target that can
2127 follow forks. */
2128
2129 int
2130 target_follow_fork (int follow_child, int detach_fork)
2131 {
2132 return current_target.to_follow_fork (&current_target,
2133 follow_child, detach_fork);
2134 }
2135
2136 static void
2137 default_mourn_inferior (struct target_ops *self)
2138 {
2139 internal_error (__FILE__, __LINE__,
2140 _("could not find a target to follow mourn inferior"));
2141 }
2142
2143 void
2144 target_mourn_inferior (void)
2145 {
2146 current_target.to_mourn_inferior (&current_target);
2147
2148 /* We no longer need to keep handles on any of the object files.
2149 Make sure to release them to avoid unnecessarily locking any
2150 of them while we're not actually debugging. */
2151 bfd_cache_close_all ();
2152 }
2153
2154 /* Look for a target which can describe architectural features, starting
2155 from TARGET. If we find one, return its description. */
2156
2157 const struct target_desc *
2158 target_read_description (struct target_ops *target)
2159 {
2160 return target->to_read_description (target);
2161 }
2162
2163 /* This implements a basic search of memory, reading target memory and
2164 performing the search here (as opposed to performing the search in on the
2165 target side with, for example, gdbserver). */
2166
2167 int
2168 simple_search_memory (struct target_ops *ops,
2169 CORE_ADDR start_addr, ULONGEST search_space_len,
2170 const gdb_byte *pattern, ULONGEST pattern_len,
2171 CORE_ADDR *found_addrp)
2172 {
2173 /* NOTE: also defined in find.c testcase. */
2174 #define SEARCH_CHUNK_SIZE 16000
2175 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2176 /* Buffer to hold memory contents for searching. */
2177 gdb_byte *search_buf;
2178 unsigned search_buf_size;
2179 struct cleanup *old_cleanups;
2180
2181 search_buf_size = chunk_size + pattern_len - 1;
2182
2183 /* No point in trying to allocate a buffer larger than the search space. */
2184 if (search_space_len < search_buf_size)
2185 search_buf_size = search_space_len;
2186
2187 search_buf = malloc (search_buf_size);
2188 if (search_buf == NULL)
2189 error (_("Unable to allocate memory to perform the search."));
2190 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2191
2192 /* Prime the search buffer. */
2193
2194 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2195 search_buf, start_addr, search_buf_size) != search_buf_size)
2196 {
2197 warning (_("Unable to access %s bytes of target "
2198 "memory at %s, halting search."),
2199 pulongest (search_buf_size), hex_string (start_addr));
2200 do_cleanups (old_cleanups);
2201 return -1;
2202 }
2203
2204 /* Perform the search.
2205
2206 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2207 When we've scanned N bytes we copy the trailing bytes to the start and
2208 read in another N bytes. */
2209
2210 while (search_space_len >= pattern_len)
2211 {
2212 gdb_byte *found_ptr;
2213 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2214
2215 found_ptr = memmem (search_buf, nr_search_bytes,
2216 pattern, pattern_len);
2217
2218 if (found_ptr != NULL)
2219 {
2220 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2221
2222 *found_addrp = found_addr;
2223 do_cleanups (old_cleanups);
2224 return 1;
2225 }
2226
2227 /* Not found in this chunk, skip to next chunk. */
2228
2229 /* Don't let search_space_len wrap here, it's unsigned. */
2230 if (search_space_len >= chunk_size)
2231 search_space_len -= chunk_size;
2232 else
2233 search_space_len = 0;
2234
2235 if (search_space_len >= pattern_len)
2236 {
2237 unsigned keep_len = search_buf_size - chunk_size;
2238 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2239 int nr_to_read;
2240
2241 /* Copy the trailing part of the previous iteration to the front
2242 of the buffer for the next iteration. */
2243 gdb_assert (keep_len == pattern_len - 1);
2244 memcpy (search_buf, search_buf + chunk_size, keep_len);
2245
2246 nr_to_read = min (search_space_len - keep_len, chunk_size);
2247
2248 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2249 search_buf + keep_len, read_addr,
2250 nr_to_read) != nr_to_read)
2251 {
2252 warning (_("Unable to access %s bytes of target "
2253 "memory at %s, halting search."),
2254 plongest (nr_to_read),
2255 hex_string (read_addr));
2256 do_cleanups (old_cleanups);
2257 return -1;
2258 }
2259
2260 start_addr += chunk_size;
2261 }
2262 }
2263
2264 /* Not found. */
2265
2266 do_cleanups (old_cleanups);
2267 return 0;
2268 }
2269
2270 /* Default implementation of memory-searching. */
2271
2272 static int
2273 default_search_memory (struct target_ops *self,
2274 CORE_ADDR start_addr, ULONGEST search_space_len,
2275 const gdb_byte *pattern, ULONGEST pattern_len,
2276 CORE_ADDR *found_addrp)
2277 {
2278 /* Start over from the top of the target stack. */
2279 return simple_search_memory (current_target.beneath,
2280 start_addr, search_space_len,
2281 pattern, pattern_len, found_addrp);
2282 }
2283
2284 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2285 sequence of bytes in PATTERN with length PATTERN_LEN.
2286
2287 The result is 1 if found, 0 if not found, and -1 if there was an error
2288 requiring halting of the search (e.g. memory read error).
2289 If the pattern is found the address is recorded in FOUND_ADDRP. */
2290
2291 int
2292 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2293 const gdb_byte *pattern, ULONGEST pattern_len,
2294 CORE_ADDR *found_addrp)
2295 {
2296 return current_target.to_search_memory (&current_target, start_addr,
2297 search_space_len,
2298 pattern, pattern_len, found_addrp);
2299 }
2300
2301 /* Look through the currently pushed targets. If none of them will
2302 be able to restart the currently running process, issue an error
2303 message. */
2304
2305 void
2306 target_require_runnable (void)
2307 {
2308 struct target_ops *t;
2309
2310 for (t = target_stack; t != NULL; t = t->beneath)
2311 {
2312 /* If this target knows how to create a new program, then
2313 assume we will still be able to after killing the current
2314 one. Either killing and mourning will not pop T, or else
2315 find_default_run_target will find it again. */
2316 if (t->to_create_inferior != NULL)
2317 return;
2318
2319 /* Do not worry about targets at certain strata that can not
2320 create inferiors. Assume they will be pushed again if
2321 necessary, and continue to the process_stratum. */
2322 if (t->to_stratum == thread_stratum
2323 || t->to_stratum == record_stratum
2324 || t->to_stratum == arch_stratum)
2325 continue;
2326
2327 error (_("The \"%s\" target does not support \"run\". "
2328 "Try \"help target\" or \"continue\"."),
2329 t->to_shortname);
2330 }
2331
2332 /* This function is only called if the target is running. In that
2333 case there should have been a process_stratum target and it
2334 should either know how to create inferiors, or not... */
2335 internal_error (__FILE__, __LINE__, _("No targets found"));
2336 }
2337
2338 /* Whether GDB is allowed to fall back to the default run target for
2339 "run", "attach", etc. when no target is connected yet. */
2340 static int auto_connect_native_target = 1;
2341
2342 static void
2343 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2344 struct cmd_list_element *c, const char *value)
2345 {
2346 fprintf_filtered (file,
2347 _("Whether GDB may automatically connect to the "
2348 "native target is %s.\n"),
2349 value);
2350 }
2351
2352 /* Look through the list of possible targets for a target that can
2353 execute a run or attach command without any other data. This is
2354 used to locate the default process stratum.
2355
2356 If DO_MESG is not NULL, the result is always valid (error() is
2357 called for errors); else, return NULL on error. */
2358
2359 static struct target_ops *
2360 find_default_run_target (char *do_mesg)
2361 {
2362 struct target_ops *runable = NULL;
2363
2364 if (auto_connect_native_target)
2365 {
2366 struct target_ops *t;
2367 int count = 0;
2368 int i;
2369
2370 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2371 {
2372 if (t->to_can_run != delegate_can_run && target_can_run (t))
2373 {
2374 runable = t;
2375 ++count;
2376 }
2377 }
2378
2379 if (count != 1)
2380 runable = NULL;
2381 }
2382
2383 if (runable == NULL)
2384 {
2385 if (do_mesg)
2386 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2387 else
2388 return NULL;
2389 }
2390
2391 return runable;
2392 }
2393
2394 /* See target.h. */
2395
2396 struct target_ops *
2397 find_attach_target (void)
2398 {
2399 struct target_ops *t;
2400
2401 /* If a target on the current stack can attach, use it. */
2402 for (t = current_target.beneath; t != NULL; t = t->beneath)
2403 {
2404 if (t->to_attach != NULL)
2405 break;
2406 }
2407
2408 /* Otherwise, use the default run target for attaching. */
2409 if (t == NULL)
2410 t = find_default_run_target ("attach");
2411
2412 return t;
2413 }
2414
2415 /* See target.h. */
2416
2417 struct target_ops *
2418 find_run_target (void)
2419 {
2420 struct target_ops *t;
2421
2422 /* If a target on the current stack can attach, use it. */
2423 for (t = current_target.beneath; t != NULL; t = t->beneath)
2424 {
2425 if (t->to_create_inferior != NULL)
2426 break;
2427 }
2428
2429 /* Otherwise, use the default run target. */
2430 if (t == NULL)
2431 t = find_default_run_target ("run");
2432
2433 return t;
2434 }
2435
2436 /* Implement the "info proc" command. */
2437
2438 int
2439 target_info_proc (const char *args, enum info_proc_what what)
2440 {
2441 struct target_ops *t;
2442
2443 /* If we're already connected to something that can get us OS
2444 related data, use it. Otherwise, try using the native
2445 target. */
2446 if (current_target.to_stratum >= process_stratum)
2447 t = current_target.beneath;
2448 else
2449 t = find_default_run_target (NULL);
2450
2451 for (; t != NULL; t = t->beneath)
2452 {
2453 if (t->to_info_proc != NULL)
2454 {
2455 t->to_info_proc (t, args, what);
2456
2457 if (targetdebug)
2458 fprintf_unfiltered (gdb_stdlog,
2459 "target_info_proc (\"%s\", %d)\n", args, what);
2460
2461 return 1;
2462 }
2463 }
2464
2465 return 0;
2466 }
2467
2468 static int
2469 find_default_supports_disable_randomization (struct target_ops *self)
2470 {
2471 struct target_ops *t;
2472
2473 t = find_default_run_target (NULL);
2474 if (t && t->to_supports_disable_randomization)
2475 return (t->to_supports_disable_randomization) (t);
2476 return 0;
2477 }
2478
2479 int
2480 target_supports_disable_randomization (void)
2481 {
2482 struct target_ops *t;
2483
2484 for (t = &current_target; t != NULL; t = t->beneath)
2485 if (t->to_supports_disable_randomization)
2486 return t->to_supports_disable_randomization (t);
2487
2488 return 0;
2489 }
2490
2491 char *
2492 target_get_osdata (const char *type)
2493 {
2494 struct target_ops *t;
2495
2496 /* If we're already connected to something that can get us OS
2497 related data, use it. Otherwise, try using the native
2498 target. */
2499 if (current_target.to_stratum >= process_stratum)
2500 t = current_target.beneath;
2501 else
2502 t = find_default_run_target ("get OS data");
2503
2504 if (!t)
2505 return NULL;
2506
2507 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2508 }
2509
2510 static struct address_space *
2511 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2512 {
2513 struct inferior *inf;
2514
2515 /* Fall-back to the "main" address space of the inferior. */
2516 inf = find_inferior_pid (ptid_get_pid (ptid));
2517
2518 if (inf == NULL || inf->aspace == NULL)
2519 internal_error (__FILE__, __LINE__,
2520 _("Can't determine the current "
2521 "address space of thread %s\n"),
2522 target_pid_to_str (ptid));
2523
2524 return inf->aspace;
2525 }
2526
2527 /* Determine the current address space of thread PTID. */
2528
2529 struct address_space *
2530 target_thread_address_space (ptid_t ptid)
2531 {
2532 struct address_space *aspace;
2533
2534 aspace = current_target.to_thread_address_space (&current_target, ptid);
2535 gdb_assert (aspace != NULL);
2536
2537 return aspace;
2538 }
2539
2540
2541 /* Target file operations. */
2542
2543 static struct target_ops *
2544 default_fileio_target (void)
2545 {
2546 /* If we're already connected to something that can perform
2547 file I/O, use it. Otherwise, try using the native target. */
2548 if (current_target.to_stratum >= process_stratum)
2549 return current_target.beneath;
2550 else
2551 return find_default_run_target ("file I/O");
2552 }
2553
2554 /* Open FILENAME on the target, using FLAGS and MODE. Return a
2555 target file descriptor, or -1 if an error occurs (and set
2556 *TARGET_ERRNO). */
2557 int
2558 target_fileio_open (const char *filename, int flags, int mode,
2559 int *target_errno)
2560 {
2561 struct target_ops *t;
2562
2563 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2564 {
2565 if (t->to_fileio_open != NULL)
2566 {
2567 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
2568
2569 if (targetdebug)
2570 fprintf_unfiltered (gdb_stdlog,
2571 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2572 filename, flags, mode,
2573 fd, fd != -1 ? 0 : *target_errno);
2574 return fd;
2575 }
2576 }
2577
2578 *target_errno = FILEIO_ENOSYS;
2579 return -1;
2580 }
2581
2582 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2583 Return the number of bytes written, or -1 if an error occurs
2584 (and set *TARGET_ERRNO). */
2585 int
2586 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2587 ULONGEST offset, int *target_errno)
2588 {
2589 struct target_ops *t;
2590
2591 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2592 {
2593 if (t->to_fileio_pwrite != NULL)
2594 {
2595 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
2596 target_errno);
2597
2598 if (targetdebug)
2599 fprintf_unfiltered (gdb_stdlog,
2600 "target_fileio_pwrite (%d,...,%d,%s) "
2601 "= %d (%d)\n",
2602 fd, len, pulongest (offset),
2603 ret, ret != -1 ? 0 : *target_errno);
2604 return ret;
2605 }
2606 }
2607
2608 *target_errno = FILEIO_ENOSYS;
2609 return -1;
2610 }
2611
2612 /* Read up to LEN bytes FD on the target into READ_BUF.
2613 Return the number of bytes read, or -1 if an error occurs
2614 (and set *TARGET_ERRNO). */
2615 int
2616 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2617 ULONGEST offset, int *target_errno)
2618 {
2619 struct target_ops *t;
2620
2621 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2622 {
2623 if (t->to_fileio_pread != NULL)
2624 {
2625 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
2626 target_errno);
2627
2628 if (targetdebug)
2629 fprintf_unfiltered (gdb_stdlog,
2630 "target_fileio_pread (%d,...,%d,%s) "
2631 "= %d (%d)\n",
2632 fd, len, pulongest (offset),
2633 ret, ret != -1 ? 0 : *target_errno);
2634 return ret;
2635 }
2636 }
2637
2638 *target_errno = FILEIO_ENOSYS;
2639 return -1;
2640 }
2641
2642 /* Close FD on the target. Return 0, or -1 if an error occurs
2643 (and set *TARGET_ERRNO). */
2644 int
2645 target_fileio_close (int fd, int *target_errno)
2646 {
2647 struct target_ops *t;
2648
2649 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2650 {
2651 if (t->to_fileio_close != NULL)
2652 {
2653 int ret = t->to_fileio_close (t, fd, target_errno);
2654
2655 if (targetdebug)
2656 fprintf_unfiltered (gdb_stdlog,
2657 "target_fileio_close (%d) = %d (%d)\n",
2658 fd, ret, ret != -1 ? 0 : *target_errno);
2659 return ret;
2660 }
2661 }
2662
2663 *target_errno = FILEIO_ENOSYS;
2664 return -1;
2665 }
2666
2667 /* Unlink FILENAME on the target. Return 0, or -1 if an error
2668 occurs (and set *TARGET_ERRNO). */
2669 int
2670 target_fileio_unlink (const char *filename, int *target_errno)
2671 {
2672 struct target_ops *t;
2673
2674 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2675 {
2676 if (t->to_fileio_unlink != NULL)
2677 {
2678 int ret = t->to_fileio_unlink (t, filename, target_errno);
2679
2680 if (targetdebug)
2681 fprintf_unfiltered (gdb_stdlog,
2682 "target_fileio_unlink (%s) = %d (%d)\n",
2683 filename, ret, ret != -1 ? 0 : *target_errno);
2684 return ret;
2685 }
2686 }
2687
2688 *target_errno = FILEIO_ENOSYS;
2689 return -1;
2690 }
2691
2692 /* Read value of symbolic link FILENAME on the target. Return a
2693 null-terminated string allocated via xmalloc, or NULL if an error
2694 occurs (and set *TARGET_ERRNO). */
2695 char *
2696 target_fileio_readlink (const char *filename, int *target_errno)
2697 {
2698 struct target_ops *t;
2699
2700 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2701 {
2702 if (t->to_fileio_readlink != NULL)
2703 {
2704 char *ret = t->to_fileio_readlink (t, filename, target_errno);
2705
2706 if (targetdebug)
2707 fprintf_unfiltered (gdb_stdlog,
2708 "target_fileio_readlink (%s) = %s (%d)\n",
2709 filename, ret? ret : "(nil)",
2710 ret? 0 : *target_errno);
2711 return ret;
2712 }
2713 }
2714
2715 *target_errno = FILEIO_ENOSYS;
2716 return NULL;
2717 }
2718
2719 static void
2720 target_fileio_close_cleanup (void *opaque)
2721 {
2722 int fd = *(int *) opaque;
2723 int target_errno;
2724
2725 target_fileio_close (fd, &target_errno);
2726 }
2727
2728 /* Read target file FILENAME. Store the result in *BUF_P and
2729 return the size of the transferred data. PADDING additional bytes are
2730 available in *BUF_P. This is a helper function for
2731 target_fileio_read_alloc; see the declaration of that function for more
2732 information. */
2733
2734 static LONGEST
2735 target_fileio_read_alloc_1 (const char *filename,
2736 gdb_byte **buf_p, int padding)
2737 {
2738 struct cleanup *close_cleanup;
2739 size_t buf_alloc, buf_pos;
2740 gdb_byte *buf;
2741 LONGEST n;
2742 int fd;
2743 int target_errno;
2744
2745 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2746 if (fd == -1)
2747 return -1;
2748
2749 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2750
2751 /* Start by reading up to 4K at a time. The target will throttle
2752 this number down if necessary. */
2753 buf_alloc = 4096;
2754 buf = xmalloc (buf_alloc);
2755 buf_pos = 0;
2756 while (1)
2757 {
2758 n = target_fileio_pread (fd, &buf[buf_pos],
2759 buf_alloc - buf_pos - padding, buf_pos,
2760 &target_errno);
2761 if (n < 0)
2762 {
2763 /* An error occurred. */
2764 do_cleanups (close_cleanup);
2765 xfree (buf);
2766 return -1;
2767 }
2768 else if (n == 0)
2769 {
2770 /* Read all there was. */
2771 do_cleanups (close_cleanup);
2772 if (buf_pos == 0)
2773 xfree (buf);
2774 else
2775 *buf_p = buf;
2776 return buf_pos;
2777 }
2778
2779 buf_pos += n;
2780
2781 /* If the buffer is filling up, expand it. */
2782 if (buf_alloc < buf_pos * 2)
2783 {
2784 buf_alloc *= 2;
2785 buf = xrealloc (buf, buf_alloc);
2786 }
2787
2788 QUIT;
2789 }
2790 }
2791
2792 /* Read target file FILENAME. Store the result in *BUF_P and return
2793 the size of the transferred data. See the declaration in "target.h"
2794 function for more information about the return value. */
2795
2796 LONGEST
2797 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2798 {
2799 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2800 }
2801
2802 /* Read target file FILENAME. The result is NUL-terminated and
2803 returned as a string, allocated using xmalloc. If an error occurs
2804 or the transfer is unsupported, NULL is returned. Empty objects
2805 are returned as allocated but empty strings. A warning is issued
2806 if the result contains any embedded NUL bytes. */
2807
2808 char *
2809 target_fileio_read_stralloc (const char *filename)
2810 {
2811 gdb_byte *buffer;
2812 char *bufstr;
2813 LONGEST i, transferred;
2814
2815 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2816 bufstr = (char *) buffer;
2817
2818 if (transferred < 0)
2819 return NULL;
2820
2821 if (transferred == 0)
2822 return xstrdup ("");
2823
2824 bufstr[transferred] = 0;
2825
2826 /* Check for embedded NUL bytes; but allow trailing NULs. */
2827 for (i = strlen (bufstr); i < transferred; i++)
2828 if (bufstr[i] != 0)
2829 {
2830 warning (_("target file %s "
2831 "contained unexpected null characters"),
2832 filename);
2833 break;
2834 }
2835
2836 return bufstr;
2837 }
2838
2839
2840 static int
2841 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2842 CORE_ADDR addr, int len)
2843 {
2844 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2845 }
2846
2847 static int
2848 default_watchpoint_addr_within_range (struct target_ops *target,
2849 CORE_ADDR addr,
2850 CORE_ADDR start, int length)
2851 {
2852 return addr >= start && addr < start + length;
2853 }
2854
2855 static struct gdbarch *
2856 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2857 {
2858 return target_gdbarch ();
2859 }
2860
2861 static int
2862 return_zero (struct target_ops *ignore)
2863 {
2864 return 0;
2865 }
2866
2867 static int
2868 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
2869 {
2870 return 0;
2871 }
2872
2873 /*
2874 * Find the next target down the stack from the specified target.
2875 */
2876
2877 struct target_ops *
2878 find_target_beneath (struct target_ops *t)
2879 {
2880 return t->beneath;
2881 }
2882
2883 /* See target.h. */
2884
2885 struct target_ops *
2886 find_target_at (enum strata stratum)
2887 {
2888 struct target_ops *t;
2889
2890 for (t = current_target.beneath; t != NULL; t = t->beneath)
2891 if (t->to_stratum == stratum)
2892 return t;
2893
2894 return NULL;
2895 }
2896
2897 \f
2898 /* The inferior process has died. Long live the inferior! */
2899
2900 void
2901 generic_mourn_inferior (void)
2902 {
2903 ptid_t ptid;
2904
2905 ptid = inferior_ptid;
2906 inferior_ptid = null_ptid;
2907
2908 /* Mark breakpoints uninserted in case something tries to delete a
2909 breakpoint while we delete the inferior's threads (which would
2910 fail, since the inferior is long gone). */
2911 mark_breakpoints_out ();
2912
2913 if (!ptid_equal (ptid, null_ptid))
2914 {
2915 int pid = ptid_get_pid (ptid);
2916 exit_inferior (pid);
2917 }
2918
2919 /* Note this wipes step-resume breakpoints, so needs to be done
2920 after exit_inferior, which ends up referencing the step-resume
2921 breakpoints through clear_thread_inferior_resources. */
2922 breakpoint_init_inferior (inf_exited);
2923
2924 registers_changed ();
2925
2926 reopen_exec_file ();
2927 reinit_frame_cache ();
2928
2929 if (deprecated_detach_hook)
2930 deprecated_detach_hook ();
2931 }
2932 \f
2933 /* Convert a normal process ID to a string. Returns the string in a
2934 static buffer. */
2935
2936 char *
2937 normal_pid_to_str (ptid_t ptid)
2938 {
2939 static char buf[32];
2940
2941 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2942 return buf;
2943 }
2944
2945 static char *
2946 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
2947 {
2948 return normal_pid_to_str (ptid);
2949 }
2950
2951 /* Error-catcher for target_find_memory_regions. */
2952 static int
2953 dummy_find_memory_regions (struct target_ops *self,
2954 find_memory_region_ftype ignore1, void *ignore2)
2955 {
2956 error (_("Command not implemented for this target."));
2957 return 0;
2958 }
2959
2960 /* Error-catcher for target_make_corefile_notes. */
2961 static char *
2962 dummy_make_corefile_notes (struct target_ops *self,
2963 bfd *ignore1, int *ignore2)
2964 {
2965 error (_("Command not implemented for this target."));
2966 return NULL;
2967 }
2968
2969 /* Set up the handful of non-empty slots needed by the dummy target
2970 vector. */
2971
2972 static void
2973 init_dummy_target (void)
2974 {
2975 dummy_target.to_shortname = "None";
2976 dummy_target.to_longname = "None";
2977 dummy_target.to_doc = "";
2978 dummy_target.to_supports_disable_randomization
2979 = find_default_supports_disable_randomization;
2980 dummy_target.to_stratum = dummy_stratum;
2981 dummy_target.to_has_all_memory = return_zero;
2982 dummy_target.to_has_memory = return_zero;
2983 dummy_target.to_has_stack = return_zero;
2984 dummy_target.to_has_registers = return_zero;
2985 dummy_target.to_has_execution = return_zero_has_execution;
2986 dummy_target.to_magic = OPS_MAGIC;
2987
2988 install_dummy_methods (&dummy_target);
2989 }
2990 \f
2991
2992 void
2993 target_close (struct target_ops *targ)
2994 {
2995 gdb_assert (!target_is_pushed (targ));
2996
2997 if (targ->to_xclose != NULL)
2998 targ->to_xclose (targ);
2999 else if (targ->to_close != NULL)
3000 targ->to_close (targ);
3001
3002 if (targetdebug)
3003 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3004 }
3005
3006 int
3007 target_thread_alive (ptid_t ptid)
3008 {
3009 return current_target.to_thread_alive (&current_target, ptid);
3010 }
3011
3012 void
3013 target_find_new_threads (void)
3014 {
3015 current_target.to_find_new_threads (&current_target);
3016 }
3017
3018 void
3019 target_stop (ptid_t ptid)
3020 {
3021 if (!may_stop)
3022 {
3023 warning (_("May not interrupt or stop the target, ignoring attempt"));
3024 return;
3025 }
3026
3027 (*current_target.to_stop) (&current_target, ptid);
3028 }
3029
3030 /* See target/target.h. */
3031
3032 void
3033 target_stop_and_wait (ptid_t ptid)
3034 {
3035 struct target_waitstatus status;
3036 int was_non_stop = non_stop;
3037
3038 non_stop = 1;
3039 target_stop (ptid);
3040
3041 memset (&status, 0, sizeof (status));
3042 target_wait (ptid, &status, 0);
3043
3044 non_stop = was_non_stop;
3045 }
3046
3047 /* See target/target.h. */
3048
3049 void
3050 target_continue_no_signal (ptid_t ptid)
3051 {
3052 target_resume (ptid, 0, GDB_SIGNAL_0);
3053 }
3054
3055 /* Concatenate ELEM to LIST, a comma separate list, and return the
3056 result. The LIST incoming argument is released. */
3057
3058 static char *
3059 str_comma_list_concat_elem (char *list, const char *elem)
3060 {
3061 if (list == NULL)
3062 return xstrdup (elem);
3063 else
3064 return reconcat (list, list, ", ", elem, (char *) NULL);
3065 }
3066
3067 /* Helper for target_options_to_string. If OPT is present in
3068 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3069 Returns the new resulting string. OPT is removed from
3070 TARGET_OPTIONS. */
3071
3072 static char *
3073 do_option (int *target_options, char *ret,
3074 int opt, char *opt_str)
3075 {
3076 if ((*target_options & opt) != 0)
3077 {
3078 ret = str_comma_list_concat_elem (ret, opt_str);
3079 *target_options &= ~opt;
3080 }
3081
3082 return ret;
3083 }
3084
3085 char *
3086 target_options_to_string (int target_options)
3087 {
3088 char *ret = NULL;
3089
3090 #define DO_TARG_OPTION(OPT) \
3091 ret = do_option (&target_options, ret, OPT, #OPT)
3092
3093 DO_TARG_OPTION (TARGET_WNOHANG);
3094
3095 if (target_options != 0)
3096 ret = str_comma_list_concat_elem (ret, "unknown???");
3097
3098 if (ret == NULL)
3099 ret = xstrdup ("");
3100 return ret;
3101 }
3102
3103 static void
3104 debug_print_register (const char * func,
3105 struct regcache *regcache, int regno)
3106 {
3107 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3108
3109 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3110 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3111 && gdbarch_register_name (gdbarch, regno) != NULL
3112 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3113 fprintf_unfiltered (gdb_stdlog, "(%s)",
3114 gdbarch_register_name (gdbarch, regno));
3115 else
3116 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3117 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3118 {
3119 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3120 int i, size = register_size (gdbarch, regno);
3121 gdb_byte buf[MAX_REGISTER_SIZE];
3122
3123 regcache_raw_collect (regcache, regno, buf);
3124 fprintf_unfiltered (gdb_stdlog, " = ");
3125 for (i = 0; i < size; i++)
3126 {
3127 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3128 }
3129 if (size <= sizeof (LONGEST))
3130 {
3131 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3132
3133 fprintf_unfiltered (gdb_stdlog, " %s %s",
3134 core_addr_to_string_nz (val), plongest (val));
3135 }
3136 }
3137 fprintf_unfiltered (gdb_stdlog, "\n");
3138 }
3139
3140 void
3141 target_fetch_registers (struct regcache *regcache, int regno)
3142 {
3143 current_target.to_fetch_registers (&current_target, regcache, regno);
3144 if (targetdebug)
3145 debug_print_register ("target_fetch_registers", regcache, regno);
3146 }
3147
3148 void
3149 target_store_registers (struct regcache *regcache, int regno)
3150 {
3151 struct target_ops *t;
3152
3153 if (!may_write_registers)
3154 error (_("Writing to registers is not allowed (regno %d)"), regno);
3155
3156 current_target.to_store_registers (&current_target, regcache, regno);
3157 if (targetdebug)
3158 {
3159 debug_print_register ("target_store_registers", regcache, regno);
3160 }
3161 }
3162
3163 int
3164 target_core_of_thread (ptid_t ptid)
3165 {
3166 return current_target.to_core_of_thread (&current_target, ptid);
3167 }
3168
3169 int
3170 simple_verify_memory (struct target_ops *ops,
3171 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3172 {
3173 LONGEST total_xfered = 0;
3174
3175 while (total_xfered < size)
3176 {
3177 ULONGEST xfered_len;
3178 enum target_xfer_status status;
3179 gdb_byte buf[1024];
3180 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3181
3182 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3183 buf, NULL, lma + total_xfered, howmuch,
3184 &xfered_len);
3185 if (status == TARGET_XFER_OK
3186 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3187 {
3188 total_xfered += xfered_len;
3189 QUIT;
3190 }
3191 else
3192 return 0;
3193 }
3194 return 1;
3195 }
3196
3197 /* Default implementation of memory verification. */
3198
3199 static int
3200 default_verify_memory (struct target_ops *self,
3201 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3202 {
3203 /* Start over from the top of the target stack. */
3204 return simple_verify_memory (current_target.beneath,
3205 data, memaddr, size);
3206 }
3207
3208 int
3209 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3210 {
3211 return current_target.to_verify_memory (&current_target,
3212 data, memaddr, size);
3213 }
3214
3215 /* The documentation for this function is in its prototype declaration in
3216 target.h. */
3217
3218 int
3219 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3220 {
3221 return current_target.to_insert_mask_watchpoint (&current_target,
3222 addr, mask, rw);
3223 }
3224
3225 /* The documentation for this function is in its prototype declaration in
3226 target.h. */
3227
3228 int
3229 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3230 {
3231 return current_target.to_remove_mask_watchpoint (&current_target,
3232 addr, mask, rw);
3233 }
3234
3235 /* The documentation for this function is in its prototype declaration
3236 in target.h. */
3237
3238 int
3239 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3240 {
3241 return current_target.to_masked_watch_num_registers (&current_target,
3242 addr, mask);
3243 }
3244
3245 /* The documentation for this function is in its prototype declaration
3246 in target.h. */
3247
3248 int
3249 target_ranged_break_num_registers (void)
3250 {
3251 return current_target.to_ranged_break_num_registers (&current_target);
3252 }
3253
3254 /* See target.h. */
3255
3256 struct btrace_target_info *
3257 target_enable_btrace (ptid_t ptid)
3258 {
3259 return current_target.to_enable_btrace (&current_target, ptid);
3260 }
3261
3262 /* See target.h. */
3263
3264 void
3265 target_disable_btrace (struct btrace_target_info *btinfo)
3266 {
3267 current_target.to_disable_btrace (&current_target, btinfo);
3268 }
3269
3270 /* See target.h. */
3271
3272 void
3273 target_teardown_btrace (struct btrace_target_info *btinfo)
3274 {
3275 current_target.to_teardown_btrace (&current_target, btinfo);
3276 }
3277
3278 /* See target.h. */
3279
3280 enum btrace_error
3281 target_read_btrace (VEC (btrace_block_s) **btrace,
3282 struct btrace_target_info *btinfo,
3283 enum btrace_read_type type)
3284 {
3285 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3286 }
3287
3288 /* See target.h. */
3289
3290 void
3291 target_stop_recording (void)
3292 {
3293 current_target.to_stop_recording (&current_target);
3294 }
3295
3296 /* See target.h. */
3297
3298 void
3299 target_save_record (const char *filename)
3300 {
3301 current_target.to_save_record (&current_target, filename);
3302 }
3303
3304 /* See target.h. */
3305
3306 int
3307 target_supports_delete_record (void)
3308 {
3309 struct target_ops *t;
3310
3311 for (t = current_target.beneath; t != NULL; t = t->beneath)
3312 if (t->to_delete_record != delegate_delete_record
3313 && t->to_delete_record != tdefault_delete_record)
3314 return 1;
3315
3316 return 0;
3317 }
3318
3319 /* See target.h. */
3320
3321 void
3322 target_delete_record (void)
3323 {
3324 current_target.to_delete_record (&current_target);
3325 }
3326
3327 /* See target.h. */
3328
3329 int
3330 target_record_is_replaying (void)
3331 {
3332 return current_target.to_record_is_replaying (&current_target);
3333 }
3334
3335 /* See target.h. */
3336
3337 void
3338 target_goto_record_begin (void)
3339 {
3340 current_target.to_goto_record_begin (&current_target);
3341 }
3342
3343 /* See target.h. */
3344
3345 void
3346 target_goto_record_end (void)
3347 {
3348 current_target.to_goto_record_end (&current_target);
3349 }
3350
3351 /* See target.h. */
3352
3353 void
3354 target_goto_record (ULONGEST insn)
3355 {
3356 current_target.to_goto_record (&current_target, insn);
3357 }
3358
3359 /* See target.h. */
3360
3361 void
3362 target_insn_history (int size, int flags)
3363 {
3364 current_target.to_insn_history (&current_target, size, flags);
3365 }
3366
3367 /* See target.h. */
3368
3369 void
3370 target_insn_history_from (ULONGEST from, int size, int flags)
3371 {
3372 current_target.to_insn_history_from (&current_target, from, size, flags);
3373 }
3374
3375 /* See target.h. */
3376
3377 void
3378 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3379 {
3380 current_target.to_insn_history_range (&current_target, begin, end, flags);
3381 }
3382
3383 /* See target.h. */
3384
3385 void
3386 target_call_history (int size, int flags)
3387 {
3388 current_target.to_call_history (&current_target, size, flags);
3389 }
3390
3391 /* See target.h. */
3392
3393 void
3394 target_call_history_from (ULONGEST begin, int size, int flags)
3395 {
3396 current_target.to_call_history_from (&current_target, begin, size, flags);
3397 }
3398
3399 /* See target.h. */
3400
3401 void
3402 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3403 {
3404 current_target.to_call_history_range (&current_target, begin, end, flags);
3405 }
3406
3407 /* See target.h. */
3408
3409 const struct frame_unwind *
3410 target_get_unwinder (void)
3411 {
3412 return current_target.to_get_unwinder (&current_target);
3413 }
3414
3415 /* See target.h. */
3416
3417 const struct frame_unwind *
3418 target_get_tailcall_unwinder (void)
3419 {
3420 return current_target.to_get_tailcall_unwinder (&current_target);
3421 }
3422
3423 /* Default implementation of to_decr_pc_after_break. */
3424
3425 static CORE_ADDR
3426 default_target_decr_pc_after_break (struct target_ops *ops,
3427 struct gdbarch *gdbarch)
3428 {
3429 return gdbarch_decr_pc_after_break (gdbarch);
3430 }
3431
3432 /* See target.h. */
3433
3434 CORE_ADDR
3435 target_decr_pc_after_break (struct gdbarch *gdbarch)
3436 {
3437 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
3438 }
3439
3440 /* See target.h. */
3441
3442 void
3443 target_prepare_to_generate_core (void)
3444 {
3445 current_target.to_prepare_to_generate_core (&current_target);
3446 }
3447
3448 /* See target.h. */
3449
3450 void
3451 target_done_generating_core (void)
3452 {
3453 current_target.to_done_generating_core (&current_target);
3454 }
3455
3456 static void
3457 setup_target_debug (void)
3458 {
3459 memcpy (&debug_target, &current_target, sizeof debug_target);
3460
3461 init_debug_target (&current_target);
3462 }
3463 \f
3464
3465 static char targ_desc[] =
3466 "Names of targets and files being debugged.\nShows the entire \
3467 stack of targets currently in use (including the exec-file,\n\
3468 core-file, and process, if any), as well as the symbol file name.";
3469
3470 static void
3471 default_rcmd (struct target_ops *self, const char *command,
3472 struct ui_file *output)
3473 {
3474 error (_("\"monitor\" command not supported by this target."));
3475 }
3476
3477 static void
3478 do_monitor_command (char *cmd,
3479 int from_tty)
3480 {
3481 target_rcmd (cmd, gdb_stdtarg);
3482 }
3483
3484 /* Print the name of each layers of our target stack. */
3485
3486 static void
3487 maintenance_print_target_stack (char *cmd, int from_tty)
3488 {
3489 struct target_ops *t;
3490
3491 printf_filtered (_("The current target stack is:\n"));
3492
3493 for (t = target_stack; t != NULL; t = t->beneath)
3494 {
3495 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3496 }
3497 }
3498
3499 /* Controls if targets can report that they can/are async. This is
3500 just for maintainers to use when debugging gdb. */
3501 int target_async_permitted = 1;
3502
3503 /* The set command writes to this variable. If the inferior is
3504 executing, target_async_permitted is *not* updated. */
3505 static int target_async_permitted_1 = 1;
3506
3507 static void
3508 maint_set_target_async_command (char *args, int from_tty,
3509 struct cmd_list_element *c)
3510 {
3511 if (have_live_inferiors ())
3512 {
3513 target_async_permitted_1 = target_async_permitted;
3514 error (_("Cannot change this setting while the inferior is running."));
3515 }
3516
3517 target_async_permitted = target_async_permitted_1;
3518 }
3519
3520 static void
3521 maint_show_target_async_command (struct ui_file *file, int from_tty,
3522 struct cmd_list_element *c,
3523 const char *value)
3524 {
3525 fprintf_filtered (file,
3526 _("Controlling the inferior in "
3527 "asynchronous mode is %s.\n"), value);
3528 }
3529
3530 /* Temporary copies of permission settings. */
3531
3532 static int may_write_registers_1 = 1;
3533 static int may_write_memory_1 = 1;
3534 static int may_insert_breakpoints_1 = 1;
3535 static int may_insert_tracepoints_1 = 1;
3536 static int may_insert_fast_tracepoints_1 = 1;
3537 static int may_stop_1 = 1;
3538
3539 /* Make the user-set values match the real values again. */
3540
3541 void
3542 update_target_permissions (void)
3543 {
3544 may_write_registers_1 = may_write_registers;
3545 may_write_memory_1 = may_write_memory;
3546 may_insert_breakpoints_1 = may_insert_breakpoints;
3547 may_insert_tracepoints_1 = may_insert_tracepoints;
3548 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3549 may_stop_1 = may_stop;
3550 }
3551
3552 /* The one function handles (most of) the permission flags in the same
3553 way. */
3554
3555 static void
3556 set_target_permissions (char *args, int from_tty,
3557 struct cmd_list_element *c)
3558 {
3559 if (target_has_execution)
3560 {
3561 update_target_permissions ();
3562 error (_("Cannot change this setting while the inferior is running."));
3563 }
3564
3565 /* Make the real values match the user-changed values. */
3566 may_write_registers = may_write_registers_1;
3567 may_insert_breakpoints = may_insert_breakpoints_1;
3568 may_insert_tracepoints = may_insert_tracepoints_1;
3569 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3570 may_stop = may_stop_1;
3571 update_observer_mode ();
3572 }
3573
3574 /* Set memory write permission independently of observer mode. */
3575
3576 static void
3577 set_write_memory_permission (char *args, int from_tty,
3578 struct cmd_list_element *c)
3579 {
3580 /* Make the real values match the user-changed values. */
3581 may_write_memory = may_write_memory_1;
3582 update_observer_mode ();
3583 }
3584
3585
3586 void
3587 initialize_targets (void)
3588 {
3589 init_dummy_target ();
3590 push_target (&dummy_target);
3591
3592 add_info ("target", target_info, targ_desc);
3593 add_info ("files", target_info, targ_desc);
3594
3595 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3596 Set target debugging."), _("\
3597 Show target debugging."), _("\
3598 When non-zero, target debugging is enabled. Higher numbers are more\n\
3599 verbose."),
3600 set_targetdebug,
3601 show_targetdebug,
3602 &setdebuglist, &showdebuglist);
3603
3604 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3605 &trust_readonly, _("\
3606 Set mode for reading from readonly sections."), _("\
3607 Show mode for reading from readonly sections."), _("\
3608 When this mode is on, memory reads from readonly sections (such as .text)\n\
3609 will be read from the object file instead of from the target. This will\n\
3610 result in significant performance improvement for remote targets."),
3611 NULL,
3612 show_trust_readonly,
3613 &setlist, &showlist);
3614
3615 add_com ("monitor", class_obscure, do_monitor_command,
3616 _("Send a command to the remote monitor (remote targets only)."));
3617
3618 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3619 _("Print the name of each layer of the internal target stack."),
3620 &maintenanceprintlist);
3621
3622 add_setshow_boolean_cmd ("target-async", no_class,
3623 &target_async_permitted_1, _("\
3624 Set whether gdb controls the inferior in asynchronous mode."), _("\
3625 Show whether gdb controls the inferior in asynchronous mode."), _("\
3626 Tells gdb whether to control the inferior in asynchronous mode."),
3627 maint_set_target_async_command,
3628 maint_show_target_async_command,
3629 &maintenance_set_cmdlist,
3630 &maintenance_show_cmdlist);
3631
3632 add_setshow_boolean_cmd ("may-write-registers", class_support,
3633 &may_write_registers_1, _("\
3634 Set permission to write into registers."), _("\
3635 Show permission to write into registers."), _("\
3636 When this permission is on, GDB may write into the target's registers.\n\
3637 Otherwise, any sort of write attempt will result in an error."),
3638 set_target_permissions, NULL,
3639 &setlist, &showlist);
3640
3641 add_setshow_boolean_cmd ("may-write-memory", class_support,
3642 &may_write_memory_1, _("\
3643 Set permission to write into target memory."), _("\
3644 Show permission to write into target memory."), _("\
3645 When this permission is on, GDB may write into the target's memory.\n\
3646 Otherwise, any sort of write attempt will result in an error."),
3647 set_write_memory_permission, NULL,
3648 &setlist, &showlist);
3649
3650 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3651 &may_insert_breakpoints_1, _("\
3652 Set permission to insert breakpoints in the target."), _("\
3653 Show permission to insert breakpoints in the target."), _("\
3654 When this permission is on, GDB may insert breakpoints in the program.\n\
3655 Otherwise, any sort of insertion attempt will result in an error."),
3656 set_target_permissions, NULL,
3657 &setlist, &showlist);
3658
3659 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3660 &may_insert_tracepoints_1, _("\
3661 Set permission to insert tracepoints in the target."), _("\
3662 Show permission to insert tracepoints in the target."), _("\
3663 When this permission is on, GDB may insert tracepoints in the program.\n\
3664 Otherwise, any sort of insertion attempt will result in an error."),
3665 set_target_permissions, NULL,
3666 &setlist, &showlist);
3667
3668 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3669 &may_insert_fast_tracepoints_1, _("\
3670 Set permission to insert fast tracepoints in the target."), _("\
3671 Show permission to insert fast tracepoints in the target."), _("\
3672 When this permission is on, GDB may insert fast tracepoints.\n\
3673 Otherwise, any sort of insertion attempt will result in an error."),
3674 set_target_permissions, NULL,
3675 &setlist, &showlist);
3676
3677 add_setshow_boolean_cmd ("may-interrupt", class_support,
3678 &may_stop_1, _("\
3679 Set permission to interrupt or signal the target."), _("\
3680 Show permission to interrupt or signal the target."), _("\
3681 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3682 Otherwise, any attempt to interrupt or stop will be ignored."),
3683 set_target_permissions, NULL,
3684 &setlist, &showlist);
3685
3686 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3687 &auto_connect_native_target, _("\
3688 Set whether GDB may automatically connect to the native target."), _("\
3689 Show whether GDB may automatically connect to the native target."), _("\
3690 When on, and GDB is not connected to a target yet, GDB\n\
3691 attempts \"run\" and other commands with the native target."),
3692 NULL, show_auto_connect_native_target,
3693 &setlist, &showlist);
3694 }
This page took 0.102626 seconds and 5 git commands to generate.