* target.h (struct section_table): Rename to ...
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44
45 static void target_info (char *, int);
46
47 static void kill_or_be_killed (int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static int nosymbol (char *, CORE_ADDR *);
57
58 static void tcomplain (void) ATTR_NORETURN;
59
60 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
61
62 static int return_zero (void);
63
64 static int return_one (void);
65
66 static int return_minus_one (void);
67
68 void target_ignore (void);
69
70 static void target_command (char *, int);
71
72 static struct target_ops *find_default_run_target (char *);
73
74 static void nosupport_runtime (void);
75
76 static LONGEST default_xfer_partial (struct target_ops *ops,
77 enum target_object object,
78 const char *annex, gdb_byte *readbuf,
79 const gdb_byte *writebuf,
80 ULONGEST offset, LONGEST len);
81
82 static LONGEST current_xfer_partial (struct target_ops *ops,
83 enum target_object object,
84 const char *annex, gdb_byte *readbuf,
85 const gdb_byte *writebuf,
86 ULONGEST offset, LONGEST len);
87
88 static LONGEST target_xfer_partial (struct target_ops *ops,
89 enum target_object object,
90 const char *annex,
91 void *readbuf, const void *writebuf,
92 ULONGEST offset, LONGEST len);
93
94 static void init_dummy_target (void);
95
96 static struct target_ops debug_target;
97
98 static void debug_to_open (char *, int);
99
100 static void debug_to_prepare_to_store (struct regcache *);
101
102 static void debug_to_files_info (struct target_ops *);
103
104 static int debug_to_insert_breakpoint (struct bp_target_info *);
105
106 static int debug_to_remove_breakpoint (struct bp_target_info *);
107
108 static int debug_to_can_use_hw_breakpoint (int, int, int);
109
110 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
111
112 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
113
114 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
115
116 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
117
118 static int debug_to_stopped_by_watchpoint (void);
119
120 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
121
122 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
123 CORE_ADDR, CORE_ADDR, int);
124
125 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
126
127 static void debug_to_terminal_init (void);
128
129 static void debug_to_terminal_inferior (void);
130
131 static void debug_to_terminal_ours_for_output (void);
132
133 static void debug_to_terminal_save_ours (void);
134
135 static void debug_to_terminal_ours (void);
136
137 static void debug_to_terminal_info (char *, int);
138
139 static void debug_to_load (char *, int);
140
141 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
142
143 static int debug_to_can_run (void);
144
145 static void debug_to_notice_signals (ptid_t);
146
147 static void debug_to_stop (ptid_t);
148
149 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
150 wierd and mysterious ways. Putting the variable here lets those
151 wierd and mysterious ways keep building while they are being
152 converted to the inferior inheritance structure. */
153 struct target_ops deprecated_child_ops;
154
155 /* Pointer to array of target architecture structures; the size of the
156 array; the current index into the array; the allocated size of the
157 array. */
158 struct target_ops **target_structs;
159 unsigned target_struct_size;
160 unsigned target_struct_index;
161 unsigned target_struct_allocsize;
162 #define DEFAULT_ALLOCSIZE 10
163
164 /* The initial current target, so that there is always a semi-valid
165 current target. */
166
167 static struct target_ops dummy_target;
168
169 /* Top of target stack. */
170
171 static struct target_ops *target_stack;
172
173 /* The target structure we are currently using to talk to a process
174 or file or whatever "inferior" we have. */
175
176 struct target_ops current_target;
177
178 /* Command list for target. */
179
180 static struct cmd_list_element *targetlist = NULL;
181
182 /* Nonzero if we should trust readonly sections from the
183 executable when reading memory. */
184
185 static int trust_readonly = 0;
186
187 /* Nonzero if we should show true memory content including
188 memory breakpoint inserted by gdb. */
189
190 static int show_memory_breakpoints = 0;
191
192 /* Non-zero if we want to see trace of target level stuff. */
193
194 static int targetdebug = 0;
195 static void
196 show_targetdebug (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
200 }
201
202 static void setup_target_debug (void);
203
204 DCACHE *target_dcache;
205
206 /* The user just typed 'target' without the name of a target. */
207
208 static void
209 target_command (char *arg, int from_tty)
210 {
211 fputs_filtered ("Argument required (target name). Try `help target'\n",
212 gdb_stdout);
213 }
214
215 /* Add a possible target architecture to the list. */
216
217 void
218 add_target (struct target_ops *t)
219 {
220 /* Provide default values for all "must have" methods. */
221 if (t->to_xfer_partial == NULL)
222 t->to_xfer_partial = default_xfer_partial;
223
224 if (!target_structs)
225 {
226 target_struct_allocsize = DEFAULT_ALLOCSIZE;
227 target_structs = (struct target_ops **) xmalloc
228 (target_struct_allocsize * sizeof (*target_structs));
229 }
230 if (target_struct_size >= target_struct_allocsize)
231 {
232 target_struct_allocsize *= 2;
233 target_structs = (struct target_ops **)
234 xrealloc ((char *) target_structs,
235 target_struct_allocsize * sizeof (*target_structs));
236 }
237 target_structs[target_struct_size++] = t;
238
239 if (targetlist == NULL)
240 add_prefix_cmd ("target", class_run, target_command, _("\
241 Connect to a target machine or process.\n\
242 The first argument is the type or protocol of the target machine.\n\
243 Remaining arguments are interpreted by the target protocol. For more\n\
244 information on the arguments for a particular protocol, type\n\
245 `help target ' followed by the protocol name."),
246 &targetlist, "target ", 0, &cmdlist);
247 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
248 }
249
250 /* Stub functions */
251
252 void
253 target_ignore (void)
254 {
255 }
256
257 void
258 target_kill (void)
259 {
260 struct target_ops *t;
261
262 for (t = current_target.beneath; t != NULL; t = t->beneath)
263 if (t->to_kill != NULL)
264 {
265 if (targetdebug)
266 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
267
268 t->to_kill (t);
269 return;
270 }
271
272 noprocess ();
273 }
274
275 void
276 target_load (char *arg, int from_tty)
277 {
278 dcache_invalidate (target_dcache);
279 (*current_target.to_load) (arg, from_tty);
280 }
281
282 void
283 target_create_inferior (char *exec_file, char *args,
284 char **env, int from_tty)
285 {
286 struct target_ops *t;
287 for (t = current_target.beneath; t != NULL; t = t->beneath)
288 {
289 if (t->to_create_inferior != NULL)
290 {
291 t->to_create_inferior (t, exec_file, args, env, from_tty);
292 if (targetdebug)
293 fprintf_unfiltered (gdb_stdlog,
294 "target_create_inferior (%s, %s, xxx, %d)\n",
295 exec_file, args, from_tty);
296 return;
297 }
298 }
299
300 internal_error (__FILE__, __LINE__,
301 "could not find a target to create inferior");
302 }
303
304 void
305 target_terminal_inferior (void)
306 {
307 /* A background resume (``run&'') should leave GDB in control of the
308 terminal. */
309 if (target_is_async_p () && !sync_execution)
310 return;
311
312 /* If GDB is resuming the inferior in the foreground, install
313 inferior's terminal modes. */
314 (*current_target.to_terminal_inferior) ();
315 }
316
317 static int
318 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
319 struct target_ops *t)
320 {
321 errno = EIO; /* Can't read/write this location */
322 return 0; /* No bytes handled */
323 }
324
325 static void
326 tcomplain (void)
327 {
328 error (_("You can't do that when your target is `%s'"),
329 current_target.to_shortname);
330 }
331
332 void
333 noprocess (void)
334 {
335 error (_("You can't do that without a process to debug."));
336 }
337
338 static int
339 nosymbol (char *name, CORE_ADDR *addrp)
340 {
341 return 1; /* Symbol does not exist in target env */
342 }
343
344 static void
345 nosupport_runtime (void)
346 {
347 if (ptid_equal (inferior_ptid, null_ptid))
348 noprocess ();
349 else
350 error (_("No run-time support for this"));
351 }
352
353
354 static void
355 default_terminal_info (char *args, int from_tty)
356 {
357 printf_unfiltered (_("No saved terminal information.\n"));
358 }
359
360 /* This is the default target_create_inferior and target_attach function.
361 If the current target is executing, it asks whether to kill it off.
362 If this function returns without calling error(), it has killed off
363 the target, and the operation should be attempted. */
364
365 static void
366 kill_or_be_killed (int from_tty)
367 {
368 if (target_has_execution)
369 {
370 printf_unfiltered (_("You are already running a program:\n"));
371 target_files_info ();
372 if (query (_("Kill it? ")))
373 {
374 target_kill ();
375 if (target_has_execution)
376 error (_("Killing the program did not help."));
377 return;
378 }
379 else
380 {
381 error (_("Program not killed."));
382 }
383 }
384 tcomplain ();
385 }
386
387 /* A default implementation for the to_get_ada_task_ptid target method.
388
389 This function builds the PTID by using both LWP and TID as part of
390 the PTID lwp and tid elements. The pid used is the pid of the
391 inferior_ptid. */
392
393 static ptid_t
394 default_get_ada_task_ptid (long lwp, long tid)
395 {
396 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
397 }
398
399 /* Go through the target stack from top to bottom, copying over zero
400 entries in current_target, then filling in still empty entries. In
401 effect, we are doing class inheritance through the pushed target
402 vectors.
403
404 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
405 is currently implemented, is that it discards any knowledge of
406 which target an inherited method originally belonged to.
407 Consequently, new new target methods should instead explicitly and
408 locally search the target stack for the target that can handle the
409 request. */
410
411 static void
412 update_current_target (void)
413 {
414 struct target_ops *t;
415
416 /* First, reset current's contents. */
417 memset (&current_target, 0, sizeof (current_target));
418
419 #define INHERIT(FIELD, TARGET) \
420 if (!current_target.FIELD) \
421 current_target.FIELD = (TARGET)->FIELD
422
423 for (t = target_stack; t; t = t->beneath)
424 {
425 INHERIT (to_shortname, t);
426 INHERIT (to_longname, t);
427 INHERIT (to_doc, t);
428 /* Do not inherit to_open. */
429 /* Do not inherit to_close. */
430 /* Do not inherit to_attach. */
431 INHERIT (to_post_attach, t);
432 INHERIT (to_attach_no_wait, t);
433 /* Do not inherit to_detach. */
434 /* Do not inherit to_disconnect. */
435 /* Do not inherit to_resume. */
436 /* Do not inherit to_wait. */
437 /* Do not inherit to_fetch_registers. */
438 /* Do not inherit to_store_registers. */
439 INHERIT (to_prepare_to_store, t);
440 INHERIT (deprecated_xfer_memory, t);
441 INHERIT (to_files_info, t);
442 INHERIT (to_insert_breakpoint, t);
443 INHERIT (to_remove_breakpoint, t);
444 INHERIT (to_can_use_hw_breakpoint, t);
445 INHERIT (to_insert_hw_breakpoint, t);
446 INHERIT (to_remove_hw_breakpoint, t);
447 INHERIT (to_insert_watchpoint, t);
448 INHERIT (to_remove_watchpoint, t);
449 INHERIT (to_stopped_data_address, t);
450 INHERIT (to_have_steppable_watchpoint, t);
451 INHERIT (to_have_continuable_watchpoint, t);
452 INHERIT (to_stopped_by_watchpoint, t);
453 INHERIT (to_watchpoint_addr_within_range, t);
454 INHERIT (to_region_ok_for_hw_watchpoint, t);
455 INHERIT (to_terminal_init, t);
456 INHERIT (to_terminal_inferior, t);
457 INHERIT (to_terminal_ours_for_output, t);
458 INHERIT (to_terminal_ours, t);
459 INHERIT (to_terminal_save_ours, t);
460 INHERIT (to_terminal_info, t);
461 /* Do not inherit to_kill. */
462 INHERIT (to_load, t);
463 INHERIT (to_lookup_symbol, t);
464 /* Do no inherit to_create_inferior. */
465 INHERIT (to_post_startup_inferior, t);
466 INHERIT (to_acknowledge_created_inferior, t);
467 INHERIT (to_insert_fork_catchpoint, t);
468 INHERIT (to_remove_fork_catchpoint, t);
469 INHERIT (to_insert_vfork_catchpoint, t);
470 INHERIT (to_remove_vfork_catchpoint, t);
471 /* Do not inherit to_follow_fork. */
472 INHERIT (to_insert_exec_catchpoint, t);
473 INHERIT (to_remove_exec_catchpoint, t);
474 INHERIT (to_has_exited, t);
475 /* Do not inherit to_mourn_inferiour. */
476 INHERIT (to_can_run, t);
477 INHERIT (to_notice_signals, t);
478 /* Do not inherit to_thread_alive. */
479 /* Do not inherit to_find_new_threads. */
480 /* Do not inherit to_pid_to_str. */
481 INHERIT (to_extra_thread_info, t);
482 INHERIT (to_stop, t);
483 /* Do not inherit to_xfer_partial. */
484 INHERIT (to_rcmd, t);
485 INHERIT (to_pid_to_exec_file, t);
486 INHERIT (to_log_command, t);
487 INHERIT (to_stratum, t);
488 INHERIT (to_has_all_memory, t);
489 INHERIT (to_has_memory, t);
490 INHERIT (to_has_stack, t);
491 INHERIT (to_has_registers, t);
492 INHERIT (to_has_execution, t);
493 INHERIT (to_has_thread_control, t);
494 INHERIT (to_sections, t);
495 INHERIT (to_sections_end, t);
496 INHERIT (to_can_async_p, t);
497 INHERIT (to_is_async_p, t);
498 INHERIT (to_async, t);
499 INHERIT (to_async_mask, t);
500 INHERIT (to_find_memory_regions, t);
501 INHERIT (to_make_corefile_notes, t);
502 /* Do not inherit to_get_thread_local_address. */
503 INHERIT (to_can_execute_reverse, t);
504 /* Do not inherit to_read_description. */
505 INHERIT (to_get_ada_task_ptid, t);
506 /* Do not inherit to_search_memory. */
507 INHERIT (to_supports_multi_process, t);
508 INHERIT (to_magic, t);
509 /* Do not inherit to_memory_map. */
510 /* Do not inherit to_flash_erase. */
511 /* Do not inherit to_flash_done. */
512 }
513 #undef INHERIT
514
515 /* Clean up a target struct so it no longer has any zero pointers in
516 it. Some entries are defaulted to a method that print an error,
517 others are hard-wired to a standard recursive default. */
518
519 #define de_fault(field, value) \
520 if (!current_target.field) \
521 current_target.field = value
522
523 de_fault (to_open,
524 (void (*) (char *, int))
525 tcomplain);
526 de_fault (to_close,
527 (void (*) (int))
528 target_ignore);
529 de_fault (to_post_attach,
530 (void (*) (int))
531 target_ignore);
532 de_fault (to_prepare_to_store,
533 (void (*) (struct regcache *))
534 noprocess);
535 de_fault (deprecated_xfer_memory,
536 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
537 nomemory);
538 de_fault (to_files_info,
539 (void (*) (struct target_ops *))
540 target_ignore);
541 de_fault (to_insert_breakpoint,
542 memory_insert_breakpoint);
543 de_fault (to_remove_breakpoint,
544 memory_remove_breakpoint);
545 de_fault (to_can_use_hw_breakpoint,
546 (int (*) (int, int, int))
547 return_zero);
548 de_fault (to_insert_hw_breakpoint,
549 (int (*) (struct bp_target_info *))
550 return_minus_one);
551 de_fault (to_remove_hw_breakpoint,
552 (int (*) (struct bp_target_info *))
553 return_minus_one);
554 de_fault (to_insert_watchpoint,
555 (int (*) (CORE_ADDR, int, int))
556 return_minus_one);
557 de_fault (to_remove_watchpoint,
558 (int (*) (CORE_ADDR, int, int))
559 return_minus_one);
560 de_fault (to_stopped_by_watchpoint,
561 (int (*) (void))
562 return_zero);
563 de_fault (to_stopped_data_address,
564 (int (*) (struct target_ops *, CORE_ADDR *))
565 return_zero);
566 de_fault (to_watchpoint_addr_within_range,
567 default_watchpoint_addr_within_range);
568 de_fault (to_region_ok_for_hw_watchpoint,
569 default_region_ok_for_hw_watchpoint);
570 de_fault (to_terminal_init,
571 (void (*) (void))
572 target_ignore);
573 de_fault (to_terminal_inferior,
574 (void (*) (void))
575 target_ignore);
576 de_fault (to_terminal_ours_for_output,
577 (void (*) (void))
578 target_ignore);
579 de_fault (to_terminal_ours,
580 (void (*) (void))
581 target_ignore);
582 de_fault (to_terminal_save_ours,
583 (void (*) (void))
584 target_ignore);
585 de_fault (to_terminal_info,
586 default_terminal_info);
587 de_fault (to_load,
588 (void (*) (char *, int))
589 tcomplain);
590 de_fault (to_lookup_symbol,
591 (int (*) (char *, CORE_ADDR *))
592 nosymbol);
593 de_fault (to_post_startup_inferior,
594 (void (*) (ptid_t))
595 target_ignore);
596 de_fault (to_acknowledge_created_inferior,
597 (void (*) (int))
598 target_ignore);
599 de_fault (to_insert_fork_catchpoint,
600 (void (*) (int))
601 tcomplain);
602 de_fault (to_remove_fork_catchpoint,
603 (int (*) (int))
604 tcomplain);
605 de_fault (to_insert_vfork_catchpoint,
606 (void (*) (int))
607 tcomplain);
608 de_fault (to_remove_vfork_catchpoint,
609 (int (*) (int))
610 tcomplain);
611 de_fault (to_insert_exec_catchpoint,
612 (void (*) (int))
613 tcomplain);
614 de_fault (to_remove_exec_catchpoint,
615 (int (*) (int))
616 tcomplain);
617 de_fault (to_has_exited,
618 (int (*) (int, int, int *))
619 return_zero);
620 de_fault (to_can_run,
621 return_zero);
622 de_fault (to_notice_signals,
623 (void (*) (ptid_t))
624 target_ignore);
625 de_fault (to_extra_thread_info,
626 (char *(*) (struct thread_info *))
627 return_zero);
628 de_fault (to_stop,
629 (void (*) (ptid_t))
630 target_ignore);
631 current_target.to_xfer_partial = current_xfer_partial;
632 de_fault (to_rcmd,
633 (void (*) (char *, struct ui_file *))
634 tcomplain);
635 de_fault (to_pid_to_exec_file,
636 (char *(*) (int))
637 return_zero);
638 de_fault (to_async,
639 (void (*) (void (*) (enum inferior_event_type, void*), void*))
640 tcomplain);
641 de_fault (to_async_mask,
642 (int (*) (int))
643 return_one);
644 current_target.to_read_description = NULL;
645 de_fault (to_get_ada_task_ptid,
646 (ptid_t (*) (long, long))
647 default_get_ada_task_ptid);
648 de_fault (to_supports_multi_process,
649 (int (*) (void))
650 return_zero);
651 #undef de_fault
652
653 /* Finally, position the target-stack beneath the squashed
654 "current_target". That way code looking for a non-inherited
655 target method can quickly and simply find it. */
656 current_target.beneath = target_stack;
657
658 if (targetdebug)
659 setup_target_debug ();
660 }
661
662 /* Mark OPS as a running target. This reverses the effect
663 of target_mark_exited. */
664
665 void
666 target_mark_running (struct target_ops *ops)
667 {
668 struct target_ops *t;
669
670 for (t = target_stack; t != NULL; t = t->beneath)
671 if (t == ops)
672 break;
673 if (t == NULL)
674 internal_error (__FILE__, __LINE__,
675 "Attempted to mark unpushed target \"%s\" as running",
676 ops->to_shortname);
677
678 ops->to_has_execution = 1;
679 ops->to_has_all_memory = 1;
680 ops->to_has_memory = 1;
681 ops->to_has_stack = 1;
682 ops->to_has_registers = 1;
683
684 update_current_target ();
685 }
686
687 /* Mark OPS as a non-running target. This reverses the effect
688 of target_mark_running. */
689
690 void
691 target_mark_exited (struct target_ops *ops)
692 {
693 struct target_ops *t;
694
695 for (t = target_stack; t != NULL; t = t->beneath)
696 if (t == ops)
697 break;
698 if (t == NULL)
699 internal_error (__FILE__, __LINE__,
700 "Attempted to mark unpushed target \"%s\" as running",
701 ops->to_shortname);
702
703 ops->to_has_execution = 0;
704 ops->to_has_all_memory = 0;
705 ops->to_has_memory = 0;
706 ops->to_has_stack = 0;
707 ops->to_has_registers = 0;
708
709 update_current_target ();
710 }
711
712 /* Push a new target type into the stack of the existing target accessors,
713 possibly superseding some of the existing accessors.
714
715 Result is zero if the pushed target ended up on top of the stack,
716 nonzero if at least one target is on top of it.
717
718 Rather than allow an empty stack, we always have the dummy target at
719 the bottom stratum, so we can call the function vectors without
720 checking them. */
721
722 int
723 push_target (struct target_ops *t)
724 {
725 struct target_ops **cur;
726
727 /* Check magic number. If wrong, it probably means someone changed
728 the struct definition, but not all the places that initialize one. */
729 if (t->to_magic != OPS_MAGIC)
730 {
731 fprintf_unfiltered (gdb_stderr,
732 "Magic number of %s target struct wrong\n",
733 t->to_shortname);
734 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
735 }
736
737 /* Find the proper stratum to install this target in. */
738 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
739 {
740 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
741 break;
742 }
743
744 /* If there's already targets at this stratum, remove them. */
745 /* FIXME: cagney/2003-10-15: I think this should be popping all
746 targets to CUR, and not just those at this stratum level. */
747 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
748 {
749 /* There's already something at this stratum level. Close it,
750 and un-hook it from the stack. */
751 struct target_ops *tmp = (*cur);
752 (*cur) = (*cur)->beneath;
753 tmp->beneath = NULL;
754 target_close (tmp, 0);
755 }
756
757 /* We have removed all targets in our stratum, now add the new one. */
758 t->beneath = (*cur);
759 (*cur) = t;
760
761 update_current_target ();
762
763 /* Not on top? */
764 return (t != target_stack);
765 }
766
767 /* Remove a target_ops vector from the stack, wherever it may be.
768 Return how many times it was removed (0 or 1). */
769
770 int
771 unpush_target (struct target_ops *t)
772 {
773 struct target_ops **cur;
774 struct target_ops *tmp;
775
776 if (t->to_stratum == dummy_stratum)
777 internal_error (__FILE__, __LINE__,
778 "Attempt to unpush the dummy target");
779
780 /* Look for the specified target. Note that we assume that a target
781 can only occur once in the target stack. */
782
783 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
784 {
785 if ((*cur) == t)
786 break;
787 }
788
789 if ((*cur) == NULL)
790 return 0; /* Didn't find target_ops, quit now */
791
792 /* NOTE: cagney/2003-12-06: In '94 the close call was made
793 unconditional by moving it to before the above check that the
794 target was in the target stack (something about "Change the way
795 pushing and popping of targets work to support target overlays
796 and inheritance"). This doesn't make much sense - only open
797 targets should be closed. */
798 target_close (t, 0);
799
800 /* Unchain the target */
801 tmp = (*cur);
802 (*cur) = (*cur)->beneath;
803 tmp->beneath = NULL;
804
805 update_current_target ();
806
807 return 1;
808 }
809
810 void
811 pop_target (void)
812 {
813 target_close (target_stack, 0); /* Let it clean up */
814 if (unpush_target (target_stack) == 1)
815 return;
816
817 fprintf_unfiltered (gdb_stderr,
818 "pop_target couldn't find target %s\n",
819 current_target.to_shortname);
820 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
821 }
822
823 void
824 pop_all_targets_above (enum strata above_stratum, int quitting)
825 {
826 while ((int) (current_target.to_stratum) > (int) above_stratum)
827 {
828 target_close (target_stack, quitting);
829 if (!unpush_target (target_stack))
830 {
831 fprintf_unfiltered (gdb_stderr,
832 "pop_all_targets couldn't find target %s\n",
833 target_stack->to_shortname);
834 internal_error (__FILE__, __LINE__,
835 _("failed internal consistency check"));
836 break;
837 }
838 }
839 }
840
841 void
842 pop_all_targets (int quitting)
843 {
844 pop_all_targets_above (dummy_stratum, quitting);
845 }
846
847 /* Using the objfile specified in OBJFILE, find the address for the
848 current thread's thread-local storage with offset OFFSET. */
849 CORE_ADDR
850 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
851 {
852 volatile CORE_ADDR addr = 0;
853 struct target_ops *target;
854
855 for (target = current_target.beneath;
856 target != NULL;
857 target = target->beneath)
858 {
859 if (target->to_get_thread_local_address != NULL)
860 break;
861 }
862
863 if (target != NULL
864 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
865 {
866 ptid_t ptid = inferior_ptid;
867 volatile struct gdb_exception ex;
868
869 TRY_CATCH (ex, RETURN_MASK_ALL)
870 {
871 CORE_ADDR lm_addr;
872
873 /* Fetch the load module address for this objfile. */
874 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
875 objfile);
876 /* If it's 0, throw the appropriate exception. */
877 if (lm_addr == 0)
878 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
879 _("TLS load module not found"));
880
881 addr = target->to_get_thread_local_address (target, ptid, lm_addr, offset);
882 }
883 /* If an error occurred, print TLS related messages here. Otherwise,
884 throw the error to some higher catcher. */
885 if (ex.reason < 0)
886 {
887 int objfile_is_library = (objfile->flags & OBJF_SHARED);
888
889 switch (ex.error)
890 {
891 case TLS_NO_LIBRARY_SUPPORT_ERROR:
892 error (_("Cannot find thread-local variables in this thread library."));
893 break;
894 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
895 if (objfile_is_library)
896 error (_("Cannot find shared library `%s' in dynamic"
897 " linker's load module list"), objfile->name);
898 else
899 error (_("Cannot find executable file `%s' in dynamic"
900 " linker's load module list"), objfile->name);
901 break;
902 case TLS_NOT_ALLOCATED_YET_ERROR:
903 if (objfile_is_library)
904 error (_("The inferior has not yet allocated storage for"
905 " thread-local variables in\n"
906 "the shared library `%s'\n"
907 "for %s"),
908 objfile->name, target_pid_to_str (ptid));
909 else
910 error (_("The inferior has not yet allocated storage for"
911 " thread-local variables in\n"
912 "the executable `%s'\n"
913 "for %s"),
914 objfile->name, target_pid_to_str (ptid));
915 break;
916 case TLS_GENERIC_ERROR:
917 if (objfile_is_library)
918 error (_("Cannot find thread-local storage for %s, "
919 "shared library %s:\n%s"),
920 target_pid_to_str (ptid),
921 objfile->name, ex.message);
922 else
923 error (_("Cannot find thread-local storage for %s, "
924 "executable file %s:\n%s"),
925 target_pid_to_str (ptid),
926 objfile->name, ex.message);
927 break;
928 default:
929 throw_exception (ex);
930 break;
931 }
932 }
933 }
934 /* It wouldn't be wrong here to try a gdbarch method, too; finding
935 TLS is an ABI-specific thing. But we don't do that yet. */
936 else
937 error (_("Cannot find thread-local variables on this target"));
938
939 return addr;
940 }
941
942 #undef MIN
943 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
944
945 /* target_read_string -- read a null terminated string, up to LEN bytes,
946 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
947 Set *STRING to a pointer to malloc'd memory containing the data; the caller
948 is responsible for freeing it. Return the number of bytes successfully
949 read. */
950
951 int
952 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
953 {
954 int tlen, origlen, offset, i;
955 gdb_byte buf[4];
956 int errcode = 0;
957 char *buffer;
958 int buffer_allocated;
959 char *bufptr;
960 unsigned int nbytes_read = 0;
961
962 gdb_assert (string);
963
964 /* Small for testing. */
965 buffer_allocated = 4;
966 buffer = xmalloc (buffer_allocated);
967 bufptr = buffer;
968
969 origlen = len;
970
971 while (len > 0)
972 {
973 tlen = MIN (len, 4 - (memaddr & 3));
974 offset = memaddr & 3;
975
976 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
977 if (errcode != 0)
978 {
979 /* The transfer request might have crossed the boundary to an
980 unallocated region of memory. Retry the transfer, requesting
981 a single byte. */
982 tlen = 1;
983 offset = 0;
984 errcode = target_read_memory (memaddr, buf, 1);
985 if (errcode != 0)
986 goto done;
987 }
988
989 if (bufptr - buffer + tlen > buffer_allocated)
990 {
991 unsigned int bytes;
992 bytes = bufptr - buffer;
993 buffer_allocated *= 2;
994 buffer = xrealloc (buffer, buffer_allocated);
995 bufptr = buffer + bytes;
996 }
997
998 for (i = 0; i < tlen; i++)
999 {
1000 *bufptr++ = buf[i + offset];
1001 if (buf[i + offset] == '\000')
1002 {
1003 nbytes_read += i + 1;
1004 goto done;
1005 }
1006 }
1007
1008 memaddr += tlen;
1009 len -= tlen;
1010 nbytes_read += tlen;
1011 }
1012 done:
1013 *string = buffer;
1014 if (errnop != NULL)
1015 *errnop = errcode;
1016 return nbytes_read;
1017 }
1018
1019 /* Find a section containing ADDR. */
1020 struct target_section *
1021 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1022 {
1023 struct target_section *secp;
1024 for (secp = target->to_sections;
1025 secp < target->to_sections_end;
1026 secp++)
1027 {
1028 if (addr >= secp->addr && addr < secp->endaddr)
1029 return secp;
1030 }
1031 return NULL;
1032 }
1033
1034 /* Perform a partial memory transfer. The arguments and return
1035 value are just as for target_xfer_partial. */
1036
1037 static LONGEST
1038 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
1039 ULONGEST memaddr, LONGEST len)
1040 {
1041 LONGEST res;
1042 int reg_len;
1043 struct mem_region *region;
1044
1045 /* Zero length requests are ok and require no work. */
1046 if (len == 0)
1047 return 0;
1048
1049 /* Try the executable file, if "trust-readonly-sections" is set. */
1050 if (readbuf != NULL && trust_readonly)
1051 {
1052 struct target_section *secp;
1053
1054 secp = target_section_by_addr (ops, memaddr);
1055 if (secp != NULL
1056 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1057 & SEC_READONLY))
1058 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1059 }
1060
1061 /* Likewise for accesses to unmapped overlay sections. */
1062 if (readbuf != NULL && overlay_debugging)
1063 {
1064 struct obj_section *section = find_pc_overlay (memaddr);
1065 if (pc_in_unmapped_range (memaddr, section))
1066 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1067 }
1068
1069 /* Try GDB's internal data cache. */
1070 region = lookup_mem_region (memaddr);
1071 /* region->hi == 0 means there's no upper bound. */
1072 if (memaddr + len < region->hi || region->hi == 0)
1073 reg_len = len;
1074 else
1075 reg_len = region->hi - memaddr;
1076
1077 switch (region->attrib.mode)
1078 {
1079 case MEM_RO:
1080 if (writebuf != NULL)
1081 return -1;
1082 break;
1083
1084 case MEM_WO:
1085 if (readbuf != NULL)
1086 return -1;
1087 break;
1088
1089 case MEM_FLASH:
1090 /* We only support writing to flash during "load" for now. */
1091 if (writebuf != NULL)
1092 error (_("Writing to flash memory forbidden in this context"));
1093 break;
1094
1095 case MEM_NONE:
1096 return -1;
1097 }
1098
1099 if (region->attrib.cache)
1100 {
1101 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1102 memory request will start back at current_target. */
1103 if (readbuf != NULL)
1104 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1105 reg_len, 0);
1106 else
1107 /* FIXME drow/2006-08-09: If we're going to preserve const
1108 correctness dcache_xfer_memory should take readbuf and
1109 writebuf. */
1110 res = dcache_xfer_memory (target_dcache, memaddr,
1111 (void *) writebuf,
1112 reg_len, 1);
1113 if (res <= 0)
1114 return -1;
1115 else
1116 {
1117 if (readbuf && !show_memory_breakpoints)
1118 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1119 return res;
1120 }
1121 }
1122
1123 /* If none of those methods found the memory we wanted, fall back
1124 to a target partial transfer. Normally a single call to
1125 to_xfer_partial is enough; if it doesn't recognize an object
1126 it will call the to_xfer_partial of the next target down.
1127 But for memory this won't do. Memory is the only target
1128 object which can be read from more than one valid target.
1129 A core file, for instance, could have some of memory but
1130 delegate other bits to the target below it. So, we must
1131 manually try all targets. */
1132
1133 do
1134 {
1135 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1136 readbuf, writebuf, memaddr, reg_len);
1137 if (res > 0)
1138 break;
1139
1140 /* We want to continue past core files to executables, but not
1141 past a running target's memory. */
1142 if (ops->to_has_all_memory)
1143 break;
1144
1145 ops = ops->beneath;
1146 }
1147 while (ops != NULL);
1148
1149 if (readbuf && !show_memory_breakpoints)
1150 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1151
1152 /* If we still haven't got anything, return the last error. We
1153 give up. */
1154 return res;
1155 }
1156
1157 static void
1158 restore_show_memory_breakpoints (void *arg)
1159 {
1160 show_memory_breakpoints = (uintptr_t) arg;
1161 }
1162
1163 struct cleanup *
1164 make_show_memory_breakpoints_cleanup (int show)
1165 {
1166 int current = show_memory_breakpoints;
1167 show_memory_breakpoints = show;
1168
1169 return make_cleanup (restore_show_memory_breakpoints,
1170 (void *) (uintptr_t) current);
1171 }
1172
1173 static LONGEST
1174 target_xfer_partial (struct target_ops *ops,
1175 enum target_object object, const char *annex,
1176 void *readbuf, const void *writebuf,
1177 ULONGEST offset, LONGEST len)
1178 {
1179 LONGEST retval;
1180
1181 gdb_assert (ops->to_xfer_partial != NULL);
1182
1183 /* If this is a memory transfer, let the memory-specific code
1184 have a look at it instead. Memory transfers are more
1185 complicated. */
1186 if (object == TARGET_OBJECT_MEMORY)
1187 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1188 else
1189 {
1190 enum target_object raw_object = object;
1191
1192 /* If this is a raw memory transfer, request the normal
1193 memory object from other layers. */
1194 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1195 raw_object = TARGET_OBJECT_MEMORY;
1196
1197 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1198 writebuf, offset, len);
1199 }
1200
1201 if (targetdebug)
1202 {
1203 const unsigned char *myaddr = NULL;
1204
1205 fprintf_unfiltered (gdb_stdlog,
1206 "%s:target_xfer_partial (%d, %s, %s, %s, %s, %s) = %s",
1207 ops->to_shortname,
1208 (int) object,
1209 (annex ? annex : "(null)"),
1210 host_address_to_string (readbuf),
1211 host_address_to_string (writebuf),
1212 core_addr_to_string_nz (offset),
1213 plongest (len), plongest (retval));
1214
1215 if (readbuf)
1216 myaddr = readbuf;
1217 if (writebuf)
1218 myaddr = writebuf;
1219 if (retval > 0 && myaddr != NULL)
1220 {
1221 int i;
1222
1223 fputs_unfiltered (", bytes =", gdb_stdlog);
1224 for (i = 0; i < retval; i++)
1225 {
1226 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1227 {
1228 if (targetdebug < 2 && i > 0)
1229 {
1230 fprintf_unfiltered (gdb_stdlog, " ...");
1231 break;
1232 }
1233 fprintf_unfiltered (gdb_stdlog, "\n");
1234 }
1235
1236 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1237 }
1238 }
1239
1240 fputc_unfiltered ('\n', gdb_stdlog);
1241 }
1242 return retval;
1243 }
1244
1245 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1246 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1247 if any error occurs.
1248
1249 If an error occurs, no guarantee is made about the contents of the data at
1250 MYADDR. In particular, the caller should not depend upon partial reads
1251 filling the buffer with good data. There is no way for the caller to know
1252 how much good data might have been transfered anyway. Callers that can
1253 deal with partial reads should call target_read (which will retry until
1254 it makes no progress, and then return how much was transferred). */
1255
1256 int
1257 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1258 {
1259 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1260 myaddr, memaddr, len) == len)
1261 return 0;
1262 else
1263 return EIO;
1264 }
1265
1266 int
1267 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1268 {
1269 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1270 myaddr, memaddr, len) == len)
1271 return 0;
1272 else
1273 return EIO;
1274 }
1275
1276 /* Fetch the target's memory map. */
1277
1278 VEC(mem_region_s) *
1279 target_memory_map (void)
1280 {
1281 VEC(mem_region_s) *result;
1282 struct mem_region *last_one, *this_one;
1283 int ix;
1284 struct target_ops *t;
1285
1286 if (targetdebug)
1287 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1288
1289 for (t = current_target.beneath; t != NULL; t = t->beneath)
1290 if (t->to_memory_map != NULL)
1291 break;
1292
1293 if (t == NULL)
1294 return NULL;
1295
1296 result = t->to_memory_map (t);
1297 if (result == NULL)
1298 return NULL;
1299
1300 qsort (VEC_address (mem_region_s, result),
1301 VEC_length (mem_region_s, result),
1302 sizeof (struct mem_region), mem_region_cmp);
1303
1304 /* Check that regions do not overlap. Simultaneously assign
1305 a numbering for the "mem" commands to use to refer to
1306 each region. */
1307 last_one = NULL;
1308 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1309 {
1310 this_one->number = ix;
1311
1312 if (last_one && last_one->hi > this_one->lo)
1313 {
1314 warning (_("Overlapping regions in memory map: ignoring"));
1315 VEC_free (mem_region_s, result);
1316 return NULL;
1317 }
1318 last_one = this_one;
1319 }
1320
1321 return result;
1322 }
1323
1324 void
1325 target_flash_erase (ULONGEST address, LONGEST length)
1326 {
1327 struct target_ops *t;
1328
1329 for (t = current_target.beneath; t != NULL; t = t->beneath)
1330 if (t->to_flash_erase != NULL)
1331 {
1332 if (targetdebug)
1333 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1334 paddr (address), phex (length, 0));
1335 t->to_flash_erase (t, address, length);
1336 return;
1337 }
1338
1339 tcomplain ();
1340 }
1341
1342 void
1343 target_flash_done (void)
1344 {
1345 struct target_ops *t;
1346
1347 for (t = current_target.beneath; t != NULL; t = t->beneath)
1348 if (t->to_flash_done != NULL)
1349 {
1350 if (targetdebug)
1351 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1352 t->to_flash_done (t);
1353 return;
1354 }
1355
1356 tcomplain ();
1357 }
1358
1359 static void
1360 show_trust_readonly (struct ui_file *file, int from_tty,
1361 struct cmd_list_element *c, const char *value)
1362 {
1363 fprintf_filtered (file, _("\
1364 Mode for reading from readonly sections is %s.\n"),
1365 value);
1366 }
1367
1368 /* More generic transfers. */
1369
1370 static LONGEST
1371 default_xfer_partial (struct target_ops *ops, enum target_object object,
1372 const char *annex, gdb_byte *readbuf,
1373 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1374 {
1375 if (object == TARGET_OBJECT_MEMORY
1376 && ops->deprecated_xfer_memory != NULL)
1377 /* If available, fall back to the target's
1378 "deprecated_xfer_memory" method. */
1379 {
1380 int xfered = -1;
1381 errno = 0;
1382 if (writebuf != NULL)
1383 {
1384 void *buffer = xmalloc (len);
1385 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1386 memcpy (buffer, writebuf, len);
1387 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1388 1/*write*/, NULL, ops);
1389 do_cleanups (cleanup);
1390 }
1391 if (readbuf != NULL)
1392 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1393 0/*read*/, NULL, ops);
1394 if (xfered > 0)
1395 return xfered;
1396 else if (xfered == 0 && errno == 0)
1397 /* "deprecated_xfer_memory" uses 0, cross checked against
1398 ERRNO as one indication of an error. */
1399 return 0;
1400 else
1401 return -1;
1402 }
1403 else if (ops->beneath != NULL)
1404 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1405 readbuf, writebuf, offset, len);
1406 else
1407 return -1;
1408 }
1409
1410 /* The xfer_partial handler for the topmost target. Unlike the default,
1411 it does not need to handle memory specially; it just passes all
1412 requests down the stack. */
1413
1414 static LONGEST
1415 current_xfer_partial (struct target_ops *ops, enum target_object object,
1416 const char *annex, gdb_byte *readbuf,
1417 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1418 {
1419 if (ops->beneath != NULL)
1420 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1421 readbuf, writebuf, offset, len);
1422 else
1423 return -1;
1424 }
1425
1426 /* Target vector read/write partial wrapper functions.
1427
1428 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1429 (inbuf, outbuf)", instead of separate read/write methods, make life
1430 easier. */
1431
1432 static LONGEST
1433 target_read_partial (struct target_ops *ops,
1434 enum target_object object,
1435 const char *annex, gdb_byte *buf,
1436 ULONGEST offset, LONGEST len)
1437 {
1438 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1439 }
1440
1441 static LONGEST
1442 target_write_partial (struct target_ops *ops,
1443 enum target_object object,
1444 const char *annex, const gdb_byte *buf,
1445 ULONGEST offset, LONGEST len)
1446 {
1447 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1448 }
1449
1450 /* Wrappers to perform the full transfer. */
1451 LONGEST
1452 target_read (struct target_ops *ops,
1453 enum target_object object,
1454 const char *annex, gdb_byte *buf,
1455 ULONGEST offset, LONGEST len)
1456 {
1457 LONGEST xfered = 0;
1458 while (xfered < len)
1459 {
1460 LONGEST xfer = target_read_partial (ops, object, annex,
1461 (gdb_byte *) buf + xfered,
1462 offset + xfered, len - xfered);
1463 /* Call an observer, notifying them of the xfer progress? */
1464 if (xfer == 0)
1465 return xfered;
1466 if (xfer < 0)
1467 return -1;
1468 xfered += xfer;
1469 QUIT;
1470 }
1471 return len;
1472 }
1473
1474 LONGEST
1475 target_read_until_error (struct target_ops *ops,
1476 enum target_object object,
1477 const char *annex, gdb_byte *buf,
1478 ULONGEST offset, LONGEST len)
1479 {
1480 LONGEST xfered = 0;
1481 while (xfered < len)
1482 {
1483 LONGEST xfer = target_read_partial (ops, object, annex,
1484 (gdb_byte *) buf + xfered,
1485 offset + xfered, len - xfered);
1486 /* Call an observer, notifying them of the xfer progress? */
1487 if (xfer == 0)
1488 return xfered;
1489 if (xfer < 0)
1490 {
1491 /* We've got an error. Try to read in smaller blocks. */
1492 ULONGEST start = offset + xfered;
1493 ULONGEST remaining = len - xfered;
1494 ULONGEST half;
1495
1496 /* If an attempt was made to read a random memory address,
1497 it's likely that the very first byte is not accessible.
1498 Try reading the first byte, to avoid doing log N tries
1499 below. */
1500 xfer = target_read_partial (ops, object, annex,
1501 (gdb_byte *) buf + xfered, start, 1);
1502 if (xfer <= 0)
1503 return xfered;
1504 start += 1;
1505 remaining -= 1;
1506 half = remaining/2;
1507
1508 while (half > 0)
1509 {
1510 xfer = target_read_partial (ops, object, annex,
1511 (gdb_byte *) buf + xfered,
1512 start, half);
1513 if (xfer == 0)
1514 return xfered;
1515 if (xfer < 0)
1516 {
1517 remaining = half;
1518 }
1519 else
1520 {
1521 /* We have successfully read the first half. So, the
1522 error must be in the second half. Adjust start and
1523 remaining to point at the second half. */
1524 xfered += xfer;
1525 start += xfer;
1526 remaining -= xfer;
1527 }
1528 half = remaining/2;
1529 }
1530
1531 return xfered;
1532 }
1533 xfered += xfer;
1534 QUIT;
1535 }
1536 return len;
1537 }
1538
1539
1540 /* An alternative to target_write with progress callbacks. */
1541
1542 LONGEST
1543 target_write_with_progress (struct target_ops *ops,
1544 enum target_object object,
1545 const char *annex, const gdb_byte *buf,
1546 ULONGEST offset, LONGEST len,
1547 void (*progress) (ULONGEST, void *), void *baton)
1548 {
1549 LONGEST xfered = 0;
1550
1551 /* Give the progress callback a chance to set up. */
1552 if (progress)
1553 (*progress) (0, baton);
1554
1555 while (xfered < len)
1556 {
1557 LONGEST xfer = target_write_partial (ops, object, annex,
1558 (gdb_byte *) buf + xfered,
1559 offset + xfered, len - xfered);
1560
1561 if (xfer == 0)
1562 return xfered;
1563 if (xfer < 0)
1564 return -1;
1565
1566 if (progress)
1567 (*progress) (xfer, baton);
1568
1569 xfered += xfer;
1570 QUIT;
1571 }
1572 return len;
1573 }
1574
1575 LONGEST
1576 target_write (struct target_ops *ops,
1577 enum target_object object,
1578 const char *annex, const gdb_byte *buf,
1579 ULONGEST offset, LONGEST len)
1580 {
1581 return target_write_with_progress (ops, object, annex, buf, offset, len,
1582 NULL, NULL);
1583 }
1584
1585 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1586 the size of the transferred data. PADDING additional bytes are
1587 available in *BUF_P. This is a helper function for
1588 target_read_alloc; see the declaration of that function for more
1589 information. */
1590
1591 static LONGEST
1592 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1593 const char *annex, gdb_byte **buf_p, int padding)
1594 {
1595 size_t buf_alloc, buf_pos;
1596 gdb_byte *buf;
1597 LONGEST n;
1598
1599 /* This function does not have a length parameter; it reads the
1600 entire OBJECT). Also, it doesn't support objects fetched partly
1601 from one target and partly from another (in a different stratum,
1602 e.g. a core file and an executable). Both reasons make it
1603 unsuitable for reading memory. */
1604 gdb_assert (object != TARGET_OBJECT_MEMORY);
1605
1606 /* Start by reading up to 4K at a time. The target will throttle
1607 this number down if necessary. */
1608 buf_alloc = 4096;
1609 buf = xmalloc (buf_alloc);
1610 buf_pos = 0;
1611 while (1)
1612 {
1613 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1614 buf_pos, buf_alloc - buf_pos - padding);
1615 if (n < 0)
1616 {
1617 /* An error occurred. */
1618 xfree (buf);
1619 return -1;
1620 }
1621 else if (n == 0)
1622 {
1623 /* Read all there was. */
1624 if (buf_pos == 0)
1625 xfree (buf);
1626 else
1627 *buf_p = buf;
1628 return buf_pos;
1629 }
1630
1631 buf_pos += n;
1632
1633 /* If the buffer is filling up, expand it. */
1634 if (buf_alloc < buf_pos * 2)
1635 {
1636 buf_alloc *= 2;
1637 buf = xrealloc (buf, buf_alloc);
1638 }
1639
1640 QUIT;
1641 }
1642 }
1643
1644 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1645 the size of the transferred data. See the declaration in "target.h"
1646 function for more information about the return value. */
1647
1648 LONGEST
1649 target_read_alloc (struct target_ops *ops, enum target_object object,
1650 const char *annex, gdb_byte **buf_p)
1651 {
1652 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1653 }
1654
1655 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1656 returned as a string, allocated using xmalloc. If an error occurs
1657 or the transfer is unsupported, NULL is returned. Empty objects
1658 are returned as allocated but empty strings. A warning is issued
1659 if the result contains any embedded NUL bytes. */
1660
1661 char *
1662 target_read_stralloc (struct target_ops *ops, enum target_object object,
1663 const char *annex)
1664 {
1665 gdb_byte *buffer;
1666 LONGEST transferred;
1667
1668 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1669
1670 if (transferred < 0)
1671 return NULL;
1672
1673 if (transferred == 0)
1674 return xstrdup ("");
1675
1676 buffer[transferred] = 0;
1677 if (strlen (buffer) < transferred)
1678 warning (_("target object %d, annex %s, "
1679 "contained unexpected null characters"),
1680 (int) object, annex ? annex : "(none)");
1681
1682 return (char *) buffer;
1683 }
1684
1685 /* Memory transfer methods. */
1686
1687 void
1688 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1689 LONGEST len)
1690 {
1691 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1692 != len)
1693 memory_error (EIO, addr);
1694 }
1695
1696 ULONGEST
1697 get_target_memory_unsigned (struct target_ops *ops,
1698 CORE_ADDR addr, int len)
1699 {
1700 gdb_byte buf[sizeof (ULONGEST)];
1701
1702 gdb_assert (len <= sizeof (buf));
1703 get_target_memory (ops, addr, buf, len);
1704 return extract_unsigned_integer (buf, len);
1705 }
1706
1707 static void
1708 target_info (char *args, int from_tty)
1709 {
1710 struct target_ops *t;
1711 int has_all_mem = 0;
1712
1713 if (symfile_objfile != NULL)
1714 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1715
1716 for (t = target_stack; t != NULL; t = t->beneath)
1717 {
1718 if (!t->to_has_memory)
1719 continue;
1720
1721 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1722 continue;
1723 if (has_all_mem)
1724 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1725 printf_unfiltered ("%s:\n", t->to_longname);
1726 (t->to_files_info) (t);
1727 has_all_mem = t->to_has_all_memory;
1728 }
1729 }
1730
1731 /* This function is called before any new inferior is created, e.g.
1732 by running a program, attaching, or connecting to a target.
1733 It cleans up any state from previous invocations which might
1734 change between runs. This is a subset of what target_preopen
1735 resets (things which might change between targets). */
1736
1737 void
1738 target_pre_inferior (int from_tty)
1739 {
1740 /* Clear out solib state. Otherwise the solib state of the previous
1741 inferior might have survived and is entirely wrong for the new
1742 target. This has been observed on GNU/Linux using glibc 2.3. How
1743 to reproduce:
1744
1745 bash$ ./foo&
1746 [1] 4711
1747 bash$ ./foo&
1748 [1] 4712
1749 bash$ gdb ./foo
1750 [...]
1751 (gdb) attach 4711
1752 (gdb) detach
1753 (gdb) attach 4712
1754 Cannot access memory at address 0xdeadbeef
1755 */
1756
1757 /* In some OSs, the shared library list is the same/global/shared
1758 across inferiors. If code is shared between processes, so are
1759 memory regions and features. */
1760 if (!gdbarch_has_global_solist (target_gdbarch))
1761 {
1762 no_shared_libraries (NULL, from_tty);
1763
1764 invalidate_target_mem_regions ();
1765
1766 target_clear_description ();
1767 }
1768 }
1769
1770 /* This is to be called by the open routine before it does
1771 anything. */
1772
1773 void
1774 target_preopen (int from_tty)
1775 {
1776 dont_repeat ();
1777
1778 if (target_has_execution)
1779 {
1780 if (!from_tty
1781 || query (_("A program is being debugged already. Kill it? ")))
1782 target_kill ();
1783 else
1784 error (_("Program not killed."));
1785 }
1786
1787 /* Calling target_kill may remove the target from the stack. But if
1788 it doesn't (which seems like a win for UDI), remove it now. */
1789 /* Leave the exec target, though. The user may be switching from a
1790 live process to a core of the same program. */
1791 pop_all_targets_above (file_stratum, 0);
1792
1793 target_pre_inferior (from_tty);
1794 }
1795
1796 /* Detach a target after doing deferred register stores. */
1797
1798 void
1799 target_detach (char *args, int from_tty)
1800 {
1801 struct target_ops* t;
1802
1803 if (gdbarch_has_global_breakpoints (target_gdbarch))
1804 /* Don't remove global breakpoints here. They're removed on
1805 disconnection from the target. */
1806 ;
1807 else
1808 /* If we're in breakpoints-always-inserted mode, have to remove
1809 them before detaching. */
1810 remove_breakpoints ();
1811
1812 for (t = current_target.beneath; t != NULL; t = t->beneath)
1813 {
1814 if (t->to_detach != NULL)
1815 {
1816 t->to_detach (t, args, from_tty);
1817 if (targetdebug)
1818 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
1819 args, from_tty);
1820 return;
1821 }
1822 }
1823
1824 internal_error (__FILE__, __LINE__, "could not find a target to detach");
1825 }
1826
1827 void
1828 target_disconnect (char *args, int from_tty)
1829 {
1830 struct target_ops *t;
1831
1832 /* If we're in breakpoints-always-inserted mode or if breakpoints
1833 are global across processes, we have to remove them before
1834 disconnecting. */
1835 remove_breakpoints ();
1836
1837 for (t = current_target.beneath; t != NULL; t = t->beneath)
1838 if (t->to_disconnect != NULL)
1839 {
1840 if (targetdebug)
1841 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1842 args, from_tty);
1843 t->to_disconnect (t, args, from_tty);
1844 return;
1845 }
1846
1847 tcomplain ();
1848 }
1849
1850 ptid_t
1851 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
1852 {
1853 struct target_ops *t;
1854
1855 for (t = current_target.beneath; t != NULL; t = t->beneath)
1856 {
1857 if (t->to_wait != NULL)
1858 {
1859 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
1860
1861 if (targetdebug)
1862 {
1863 char *status_string;
1864
1865 status_string = target_waitstatus_to_string (status);
1866 fprintf_unfiltered (gdb_stdlog,
1867 "target_wait (%d, status) = %d, %s\n",
1868 PIDGET (ptid), PIDGET (retval),
1869 status_string);
1870 xfree (status_string);
1871 }
1872
1873 return retval;
1874 }
1875 }
1876
1877 noprocess ();
1878 }
1879
1880 char *
1881 target_pid_to_str (ptid_t ptid)
1882 {
1883 struct target_ops *t;
1884
1885 for (t = current_target.beneath; t != NULL; t = t->beneath)
1886 {
1887 if (t->to_pid_to_str != NULL)
1888 return (*t->to_pid_to_str) (t, ptid);
1889 }
1890
1891 return normal_pid_to_str (ptid);
1892 }
1893
1894 void
1895 target_resume (ptid_t ptid, int step, enum target_signal signal)
1896 {
1897 struct target_ops *t;
1898
1899 dcache_invalidate (target_dcache);
1900
1901 for (t = current_target.beneath; t != NULL; t = t->beneath)
1902 {
1903 if (t->to_resume != NULL)
1904 {
1905 t->to_resume (t, ptid, step, signal);
1906 if (targetdebug)
1907 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
1908 PIDGET (ptid),
1909 step ? "step" : "continue",
1910 target_signal_to_name (signal));
1911
1912 set_executing (ptid, 1);
1913 set_running (ptid, 1);
1914 return;
1915 }
1916 }
1917
1918 noprocess ();
1919 }
1920 /* Look through the list of possible targets for a target that can
1921 follow forks. */
1922
1923 int
1924 target_follow_fork (int follow_child)
1925 {
1926 struct target_ops *t;
1927
1928 for (t = current_target.beneath; t != NULL; t = t->beneath)
1929 {
1930 if (t->to_follow_fork != NULL)
1931 {
1932 int retval = t->to_follow_fork (t, follow_child);
1933 if (targetdebug)
1934 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1935 follow_child, retval);
1936 return retval;
1937 }
1938 }
1939
1940 /* Some target returned a fork event, but did not know how to follow it. */
1941 internal_error (__FILE__, __LINE__,
1942 "could not find a target to follow fork");
1943 }
1944
1945 void
1946 target_mourn_inferior (void)
1947 {
1948 struct target_ops *t;
1949 for (t = current_target.beneath; t != NULL; t = t->beneath)
1950 {
1951 if (t->to_mourn_inferior != NULL)
1952 {
1953 t->to_mourn_inferior (t);
1954 if (targetdebug)
1955 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
1956
1957 /* We no longer need to keep handles on any of the object files.
1958 Make sure to release them to avoid unnecessarily locking any
1959 of them while we're not actually debugging. */
1960 bfd_cache_close_all ();
1961
1962 return;
1963 }
1964 }
1965
1966 internal_error (__FILE__, __LINE__,
1967 "could not find a target to follow mourn inferiour");
1968 }
1969
1970 /* Look for a target which can describe architectural features, starting
1971 from TARGET. If we find one, return its description. */
1972
1973 const struct target_desc *
1974 target_read_description (struct target_ops *target)
1975 {
1976 struct target_ops *t;
1977
1978 for (t = target; t != NULL; t = t->beneath)
1979 if (t->to_read_description != NULL)
1980 {
1981 const struct target_desc *tdesc;
1982
1983 tdesc = t->to_read_description (t);
1984 if (tdesc)
1985 return tdesc;
1986 }
1987
1988 return NULL;
1989 }
1990
1991 /* The default implementation of to_search_memory.
1992 This implements a basic search of memory, reading target memory and
1993 performing the search here (as opposed to performing the search in on the
1994 target side with, for example, gdbserver). */
1995
1996 int
1997 simple_search_memory (struct target_ops *ops,
1998 CORE_ADDR start_addr, ULONGEST search_space_len,
1999 const gdb_byte *pattern, ULONGEST pattern_len,
2000 CORE_ADDR *found_addrp)
2001 {
2002 /* NOTE: also defined in find.c testcase. */
2003 #define SEARCH_CHUNK_SIZE 16000
2004 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2005 /* Buffer to hold memory contents for searching. */
2006 gdb_byte *search_buf;
2007 unsigned search_buf_size;
2008 struct cleanup *old_cleanups;
2009
2010 search_buf_size = chunk_size + pattern_len - 1;
2011
2012 /* No point in trying to allocate a buffer larger than the search space. */
2013 if (search_space_len < search_buf_size)
2014 search_buf_size = search_space_len;
2015
2016 search_buf = malloc (search_buf_size);
2017 if (search_buf == NULL)
2018 error (_("Unable to allocate memory to perform the search."));
2019 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2020
2021 /* Prime the search buffer. */
2022
2023 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2024 search_buf, start_addr, search_buf_size) != search_buf_size)
2025 {
2026 warning (_("Unable to access target memory at %s, halting search."),
2027 hex_string (start_addr));
2028 do_cleanups (old_cleanups);
2029 return -1;
2030 }
2031
2032 /* Perform the search.
2033
2034 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2035 When we've scanned N bytes we copy the trailing bytes to the start and
2036 read in another N bytes. */
2037
2038 while (search_space_len >= pattern_len)
2039 {
2040 gdb_byte *found_ptr;
2041 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2042
2043 found_ptr = memmem (search_buf, nr_search_bytes,
2044 pattern, pattern_len);
2045
2046 if (found_ptr != NULL)
2047 {
2048 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2049 *found_addrp = found_addr;
2050 do_cleanups (old_cleanups);
2051 return 1;
2052 }
2053
2054 /* Not found in this chunk, skip to next chunk. */
2055
2056 /* Don't let search_space_len wrap here, it's unsigned. */
2057 if (search_space_len >= chunk_size)
2058 search_space_len -= chunk_size;
2059 else
2060 search_space_len = 0;
2061
2062 if (search_space_len >= pattern_len)
2063 {
2064 unsigned keep_len = search_buf_size - chunk_size;
2065 CORE_ADDR read_addr = start_addr + keep_len;
2066 int nr_to_read;
2067
2068 /* Copy the trailing part of the previous iteration to the front
2069 of the buffer for the next iteration. */
2070 gdb_assert (keep_len == pattern_len - 1);
2071 memcpy (search_buf, search_buf + chunk_size, keep_len);
2072
2073 nr_to_read = min (search_space_len - keep_len, chunk_size);
2074
2075 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2076 search_buf + keep_len, read_addr,
2077 nr_to_read) != nr_to_read)
2078 {
2079 warning (_("Unable to access target memory at %s, halting search."),
2080 hex_string (read_addr));
2081 do_cleanups (old_cleanups);
2082 return -1;
2083 }
2084
2085 start_addr += chunk_size;
2086 }
2087 }
2088
2089 /* Not found. */
2090
2091 do_cleanups (old_cleanups);
2092 return 0;
2093 }
2094
2095 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2096 sequence of bytes in PATTERN with length PATTERN_LEN.
2097
2098 The result is 1 if found, 0 if not found, and -1 if there was an error
2099 requiring halting of the search (e.g. memory read error).
2100 If the pattern is found the address is recorded in FOUND_ADDRP. */
2101
2102 int
2103 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2104 const gdb_byte *pattern, ULONGEST pattern_len,
2105 CORE_ADDR *found_addrp)
2106 {
2107 struct target_ops *t;
2108 int found;
2109
2110 /* We don't use INHERIT to set current_target.to_search_memory,
2111 so we have to scan the target stack and handle targetdebug
2112 ourselves. */
2113
2114 if (targetdebug)
2115 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2116 hex_string (start_addr));
2117
2118 for (t = current_target.beneath; t != NULL; t = t->beneath)
2119 if (t->to_search_memory != NULL)
2120 break;
2121
2122 if (t != NULL)
2123 {
2124 found = t->to_search_memory (t, start_addr, search_space_len,
2125 pattern, pattern_len, found_addrp);
2126 }
2127 else
2128 {
2129 /* If a special version of to_search_memory isn't available, use the
2130 simple version. */
2131 found = simple_search_memory (&current_target,
2132 start_addr, search_space_len,
2133 pattern, pattern_len, found_addrp);
2134 }
2135
2136 if (targetdebug)
2137 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2138
2139 return found;
2140 }
2141
2142 /* Look through the currently pushed targets. If none of them will
2143 be able to restart the currently running process, issue an error
2144 message. */
2145
2146 void
2147 target_require_runnable (void)
2148 {
2149 struct target_ops *t;
2150
2151 for (t = target_stack; t != NULL; t = t->beneath)
2152 {
2153 /* If this target knows how to create a new program, then
2154 assume we will still be able to after killing the current
2155 one. Either killing and mourning will not pop T, or else
2156 find_default_run_target will find it again. */
2157 if (t->to_create_inferior != NULL)
2158 return;
2159
2160 /* Do not worry about thread_stratum targets that can not
2161 create inferiors. Assume they will be pushed again if
2162 necessary, and continue to the process_stratum. */
2163 if (t->to_stratum == thread_stratum)
2164 continue;
2165
2166 error (_("\
2167 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2168 t->to_shortname);
2169 }
2170
2171 /* This function is only called if the target is running. In that
2172 case there should have been a process_stratum target and it
2173 should either know how to create inferiors, or not... */
2174 internal_error (__FILE__, __LINE__, "No targets found");
2175 }
2176
2177 /* Look through the list of possible targets for a target that can
2178 execute a run or attach command without any other data. This is
2179 used to locate the default process stratum.
2180
2181 If DO_MESG is not NULL, the result is always valid (error() is
2182 called for errors); else, return NULL on error. */
2183
2184 static struct target_ops *
2185 find_default_run_target (char *do_mesg)
2186 {
2187 struct target_ops **t;
2188 struct target_ops *runable = NULL;
2189 int count;
2190
2191 count = 0;
2192
2193 for (t = target_structs; t < target_structs + target_struct_size;
2194 ++t)
2195 {
2196 if ((*t)->to_can_run && target_can_run (*t))
2197 {
2198 runable = *t;
2199 ++count;
2200 }
2201 }
2202
2203 if (count != 1)
2204 {
2205 if (do_mesg)
2206 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2207 else
2208 return NULL;
2209 }
2210
2211 return runable;
2212 }
2213
2214 void
2215 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2216 {
2217 struct target_ops *t;
2218
2219 t = find_default_run_target ("attach");
2220 (t->to_attach) (t, args, from_tty);
2221 return;
2222 }
2223
2224 void
2225 find_default_create_inferior (struct target_ops *ops,
2226 char *exec_file, char *allargs, char **env,
2227 int from_tty)
2228 {
2229 struct target_ops *t;
2230
2231 t = find_default_run_target ("run");
2232 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2233 return;
2234 }
2235
2236 static int
2237 find_default_can_async_p (void)
2238 {
2239 struct target_ops *t;
2240
2241 /* This may be called before the target is pushed on the stack;
2242 look for the default process stratum. If there's none, gdb isn't
2243 configured with a native debugger, and target remote isn't
2244 connected yet. */
2245 t = find_default_run_target (NULL);
2246 if (t && t->to_can_async_p)
2247 return (t->to_can_async_p) ();
2248 return 0;
2249 }
2250
2251 static int
2252 find_default_is_async_p (void)
2253 {
2254 struct target_ops *t;
2255
2256 /* This may be called before the target is pushed on the stack;
2257 look for the default process stratum. If there's none, gdb isn't
2258 configured with a native debugger, and target remote isn't
2259 connected yet. */
2260 t = find_default_run_target (NULL);
2261 if (t && t->to_is_async_p)
2262 return (t->to_is_async_p) ();
2263 return 0;
2264 }
2265
2266 static int
2267 find_default_supports_non_stop (void)
2268 {
2269 struct target_ops *t;
2270
2271 t = find_default_run_target (NULL);
2272 if (t && t->to_supports_non_stop)
2273 return (t->to_supports_non_stop) ();
2274 return 0;
2275 }
2276
2277 int
2278 target_supports_non_stop (void)
2279 {
2280 struct target_ops *t;
2281 for (t = &current_target; t != NULL; t = t->beneath)
2282 if (t->to_supports_non_stop)
2283 return t->to_supports_non_stop ();
2284
2285 return 0;
2286 }
2287
2288
2289 char *
2290 target_get_osdata (const char *type)
2291 {
2292 char *document;
2293 struct target_ops *t;
2294
2295 /* If we're already connected to something that can get us OS
2296 related data, use it. Otherwise, try using the native
2297 target. */
2298 if (current_target.to_stratum >= process_stratum)
2299 t = current_target.beneath;
2300 else
2301 t = find_default_run_target ("get OS data");
2302
2303 if (!t)
2304 return NULL;
2305
2306 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2307 }
2308
2309 static int
2310 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2311 {
2312 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
2313 }
2314
2315 static int
2316 default_watchpoint_addr_within_range (struct target_ops *target,
2317 CORE_ADDR addr,
2318 CORE_ADDR start, int length)
2319 {
2320 return addr >= start && addr < start + length;
2321 }
2322
2323 static int
2324 return_zero (void)
2325 {
2326 return 0;
2327 }
2328
2329 static int
2330 return_one (void)
2331 {
2332 return 1;
2333 }
2334
2335 static int
2336 return_minus_one (void)
2337 {
2338 return -1;
2339 }
2340
2341 /*
2342 * Resize the to_sections pointer. Also make sure that anyone that
2343 * was holding on to an old value of it gets updated.
2344 * Returns the old size.
2345 */
2346
2347 int
2348 target_resize_to_sections (struct target_ops *target, int num_added)
2349 {
2350 struct target_ops **t;
2351 struct target_section *old_value;
2352 int old_count;
2353
2354 old_value = target->to_sections;
2355
2356 if (target->to_sections)
2357 {
2358 old_count = target->to_sections_end - target->to_sections;
2359 target->to_sections = (struct target_section *)
2360 xrealloc ((char *) target->to_sections,
2361 (sizeof (struct target_section)) * (num_added + old_count));
2362 }
2363 else
2364 {
2365 old_count = 0;
2366 target->to_sections = (struct target_section *)
2367 xmalloc ((sizeof (struct target_section)) * num_added);
2368 }
2369 target->to_sections_end = target->to_sections + (num_added + old_count);
2370
2371 /* Check to see if anyone else was pointing to this structure.
2372 If old_value was null, then no one was. */
2373
2374 if (old_value)
2375 {
2376 for (t = target_structs; t < target_structs + target_struct_size;
2377 ++t)
2378 {
2379 if ((*t)->to_sections == old_value)
2380 {
2381 (*t)->to_sections = target->to_sections;
2382 (*t)->to_sections_end = target->to_sections_end;
2383 }
2384 }
2385 /* There is a flattened view of the target stack in current_target,
2386 so its to_sections pointer might also need updating. */
2387 if (current_target.to_sections == old_value)
2388 {
2389 current_target.to_sections = target->to_sections;
2390 current_target.to_sections_end = target->to_sections_end;
2391 }
2392 }
2393
2394 return old_count;
2395
2396 }
2397
2398 /* Remove all target sections taken from ABFD.
2399
2400 Scan the current target stack for targets whose section tables
2401 refer to sections from BFD, and remove those sections. We use this
2402 when we notice that the inferior has unloaded a shared object, for
2403 example. */
2404 void
2405 remove_target_sections (bfd *abfd)
2406 {
2407 struct target_ops **t;
2408
2409 for (t = target_structs; t < target_structs + target_struct_size; t++)
2410 {
2411 struct target_section *src, *dest;
2412
2413 dest = (*t)->to_sections;
2414 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
2415 if (src->bfd != abfd)
2416 {
2417 /* Keep this section. */
2418 if (dest < src) *dest = *src;
2419 dest++;
2420 }
2421
2422 /* If we've dropped any sections, resize the section table. */
2423 if (dest < src)
2424 target_resize_to_sections (*t, dest - src);
2425 }
2426 }
2427
2428
2429
2430
2431 /* Find a single runnable target in the stack and return it. If for
2432 some reason there is more than one, return NULL. */
2433
2434 struct target_ops *
2435 find_run_target (void)
2436 {
2437 struct target_ops **t;
2438 struct target_ops *runable = NULL;
2439 int count;
2440
2441 count = 0;
2442
2443 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2444 {
2445 if ((*t)->to_can_run && target_can_run (*t))
2446 {
2447 runable = *t;
2448 ++count;
2449 }
2450 }
2451
2452 return (count == 1 ? runable : NULL);
2453 }
2454
2455 /* Find a single core_stratum target in the list of targets and return it.
2456 If for some reason there is more than one, return NULL. */
2457
2458 struct target_ops *
2459 find_core_target (void)
2460 {
2461 struct target_ops **t;
2462 struct target_ops *runable = NULL;
2463 int count;
2464
2465 count = 0;
2466
2467 for (t = target_structs; t < target_structs + target_struct_size;
2468 ++t)
2469 {
2470 if ((*t)->to_stratum == core_stratum)
2471 {
2472 runable = *t;
2473 ++count;
2474 }
2475 }
2476
2477 return (count == 1 ? runable : NULL);
2478 }
2479
2480 /*
2481 * Find the next target down the stack from the specified target.
2482 */
2483
2484 struct target_ops *
2485 find_target_beneath (struct target_ops *t)
2486 {
2487 return t->beneath;
2488 }
2489
2490 \f
2491 /* The inferior process has died. Long live the inferior! */
2492
2493 void
2494 generic_mourn_inferior (void)
2495 {
2496 ptid_t ptid;
2497
2498 ptid = inferior_ptid;
2499 inferior_ptid = null_ptid;
2500
2501 if (!ptid_equal (ptid, null_ptid))
2502 {
2503 int pid = ptid_get_pid (ptid);
2504 delete_inferior (pid);
2505 }
2506
2507 breakpoint_init_inferior (inf_exited);
2508 registers_changed ();
2509
2510 reopen_exec_file ();
2511 reinit_frame_cache ();
2512
2513 if (deprecated_detach_hook)
2514 deprecated_detach_hook ();
2515 }
2516 \f
2517 /* Helper function for child_wait and the derivatives of child_wait.
2518 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2519 translation of that in OURSTATUS. */
2520 void
2521 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2522 {
2523 if (WIFEXITED (hoststatus))
2524 {
2525 ourstatus->kind = TARGET_WAITKIND_EXITED;
2526 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2527 }
2528 else if (!WIFSTOPPED (hoststatus))
2529 {
2530 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2531 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2532 }
2533 else
2534 {
2535 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2536 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2537 }
2538 }
2539 \f
2540 /* Convert a normal process ID to a string. Returns the string in a
2541 static buffer. */
2542
2543 char *
2544 normal_pid_to_str (ptid_t ptid)
2545 {
2546 static char buf[32];
2547
2548 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2549 return buf;
2550 }
2551
2552 static char *
2553 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
2554 {
2555 return normal_pid_to_str (ptid);
2556 }
2557
2558 /* Error-catcher for target_find_memory_regions */
2559 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2560 {
2561 error (_("No target."));
2562 return 0;
2563 }
2564
2565 /* Error-catcher for target_make_corefile_notes */
2566 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2567 {
2568 error (_("No target."));
2569 return NULL;
2570 }
2571
2572 /* Set up the handful of non-empty slots needed by the dummy target
2573 vector. */
2574
2575 static void
2576 init_dummy_target (void)
2577 {
2578 dummy_target.to_shortname = "None";
2579 dummy_target.to_longname = "None";
2580 dummy_target.to_doc = "";
2581 dummy_target.to_attach = find_default_attach;
2582 dummy_target.to_detach =
2583 (void (*)(struct target_ops *, char *, int))target_ignore;
2584 dummy_target.to_create_inferior = find_default_create_inferior;
2585 dummy_target.to_can_async_p = find_default_can_async_p;
2586 dummy_target.to_is_async_p = find_default_is_async_p;
2587 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
2588 dummy_target.to_pid_to_str = dummy_pid_to_str;
2589 dummy_target.to_stratum = dummy_stratum;
2590 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2591 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2592 dummy_target.to_xfer_partial = default_xfer_partial;
2593 dummy_target.to_magic = OPS_MAGIC;
2594 }
2595 \f
2596 static void
2597 debug_to_open (char *args, int from_tty)
2598 {
2599 debug_target.to_open (args, from_tty);
2600
2601 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2602 }
2603
2604 void
2605 target_close (struct target_ops *targ, int quitting)
2606 {
2607 if (targ->to_xclose != NULL)
2608 targ->to_xclose (targ, quitting);
2609 else if (targ->to_close != NULL)
2610 targ->to_close (quitting);
2611
2612 if (targetdebug)
2613 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2614 }
2615
2616 void
2617 target_attach (char *args, int from_tty)
2618 {
2619 struct target_ops *t;
2620 for (t = current_target.beneath; t != NULL; t = t->beneath)
2621 {
2622 if (t->to_attach != NULL)
2623 {
2624 t->to_attach (t, args, from_tty);
2625 if (targetdebug)
2626 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
2627 args, from_tty);
2628 return;
2629 }
2630 }
2631
2632 internal_error (__FILE__, __LINE__,
2633 "could not find a target to attach");
2634 }
2635
2636 int
2637 target_thread_alive (ptid_t ptid)
2638 {
2639 struct target_ops *t;
2640 for (t = current_target.beneath; t != NULL; t = t->beneath)
2641 {
2642 if (t->to_thread_alive != NULL)
2643 {
2644 int retval;
2645
2646 retval = t->to_thread_alive (t, ptid);
2647 if (targetdebug)
2648 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2649 PIDGET (ptid), retval);
2650
2651 return retval;
2652 }
2653 }
2654
2655 return 0;
2656 }
2657
2658 void
2659 target_find_new_threads (void)
2660 {
2661 struct target_ops *t;
2662 for (t = current_target.beneath; t != NULL; t = t->beneath)
2663 {
2664 if (t->to_find_new_threads != NULL)
2665 {
2666 t->to_find_new_threads (t);
2667 if (targetdebug)
2668 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
2669
2670 return;
2671 }
2672 }
2673 }
2674
2675 static void
2676 debug_to_post_attach (int pid)
2677 {
2678 debug_target.to_post_attach (pid);
2679
2680 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2681 }
2682
2683 /* Return a pretty printed form of target_waitstatus.
2684 Space for the result is malloc'd, caller must free. */
2685
2686 char *
2687 target_waitstatus_to_string (const struct target_waitstatus *ws)
2688 {
2689 const char *kind_str = "status->kind = ";
2690
2691 switch (ws->kind)
2692 {
2693 case TARGET_WAITKIND_EXITED:
2694 return xstrprintf ("%sexited, status = %d",
2695 kind_str, ws->value.integer);
2696 case TARGET_WAITKIND_STOPPED:
2697 return xstrprintf ("%sstopped, signal = %s",
2698 kind_str, target_signal_to_name (ws->value.sig));
2699 case TARGET_WAITKIND_SIGNALLED:
2700 return xstrprintf ("%ssignalled, signal = %s",
2701 kind_str, target_signal_to_name (ws->value.sig));
2702 case TARGET_WAITKIND_LOADED:
2703 return xstrprintf ("%sloaded", kind_str);
2704 case TARGET_WAITKIND_FORKED:
2705 return xstrprintf ("%sforked", kind_str);
2706 case TARGET_WAITKIND_VFORKED:
2707 return xstrprintf ("%svforked", kind_str);
2708 case TARGET_WAITKIND_EXECD:
2709 return xstrprintf ("%sexecd", kind_str);
2710 case TARGET_WAITKIND_SYSCALL_ENTRY:
2711 return xstrprintf ("%ssyscall-entry", kind_str);
2712 case TARGET_WAITKIND_SYSCALL_RETURN:
2713 return xstrprintf ("%ssyscall-return", kind_str);
2714 case TARGET_WAITKIND_SPURIOUS:
2715 return xstrprintf ("%sspurious", kind_str);
2716 case TARGET_WAITKIND_IGNORE:
2717 return xstrprintf ("%signore", kind_str);
2718 case TARGET_WAITKIND_NO_HISTORY:
2719 return xstrprintf ("%sno-history", kind_str);
2720 default:
2721 return xstrprintf ("%sunknown???", kind_str);
2722 }
2723 }
2724
2725 static void
2726 debug_print_register (const char * func,
2727 struct regcache *regcache, int regno)
2728 {
2729 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2730 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2731 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2732 && gdbarch_register_name (gdbarch, regno) != NULL
2733 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2734 fprintf_unfiltered (gdb_stdlog, "(%s)",
2735 gdbarch_register_name (gdbarch, regno));
2736 else
2737 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2738 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
2739 {
2740 int i, size = register_size (gdbarch, regno);
2741 unsigned char buf[MAX_REGISTER_SIZE];
2742 regcache_raw_collect (regcache, regno, buf);
2743 fprintf_unfiltered (gdb_stdlog, " = ");
2744 for (i = 0; i < size; i++)
2745 {
2746 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2747 }
2748 if (size <= sizeof (LONGEST))
2749 {
2750 ULONGEST val = extract_unsigned_integer (buf, size);
2751 fprintf_unfiltered (gdb_stdlog, " %s %s",
2752 core_addr_to_string_nz (val), plongest (val));
2753 }
2754 }
2755 fprintf_unfiltered (gdb_stdlog, "\n");
2756 }
2757
2758 void
2759 target_fetch_registers (struct regcache *regcache, int regno)
2760 {
2761 struct target_ops *t;
2762 for (t = current_target.beneath; t != NULL; t = t->beneath)
2763 {
2764 if (t->to_fetch_registers != NULL)
2765 {
2766 t->to_fetch_registers (t, regcache, regno);
2767 if (targetdebug)
2768 debug_print_register ("target_fetch_registers", regcache, regno);
2769 return;
2770 }
2771 }
2772 }
2773
2774 void
2775 target_store_registers (struct regcache *regcache, int regno)
2776 {
2777
2778 struct target_ops *t;
2779 for (t = current_target.beneath; t != NULL; t = t->beneath)
2780 {
2781 if (t->to_store_registers != NULL)
2782 {
2783 t->to_store_registers (t, regcache, regno);
2784 if (targetdebug)
2785 {
2786 debug_print_register ("target_store_registers", regcache, regno);
2787 }
2788 return;
2789 }
2790 }
2791
2792 noprocess ();
2793 }
2794
2795 static void
2796 debug_to_prepare_to_store (struct regcache *regcache)
2797 {
2798 debug_target.to_prepare_to_store (regcache);
2799
2800 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2801 }
2802
2803 static int
2804 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2805 int write, struct mem_attrib *attrib,
2806 struct target_ops *target)
2807 {
2808 int retval;
2809
2810 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2811 attrib, target);
2812
2813 fprintf_unfiltered (gdb_stdlog,
2814 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
2815 paddress (memaddr), len, write ? "write" : "read",
2816 retval);
2817
2818 if (retval > 0)
2819 {
2820 int i;
2821
2822 fputs_unfiltered (", bytes =", gdb_stdlog);
2823 for (i = 0; i < retval; i++)
2824 {
2825 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
2826 {
2827 if (targetdebug < 2 && i > 0)
2828 {
2829 fprintf_unfiltered (gdb_stdlog, " ...");
2830 break;
2831 }
2832 fprintf_unfiltered (gdb_stdlog, "\n");
2833 }
2834
2835 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2836 }
2837 }
2838
2839 fputc_unfiltered ('\n', gdb_stdlog);
2840
2841 return retval;
2842 }
2843
2844 static void
2845 debug_to_files_info (struct target_ops *target)
2846 {
2847 debug_target.to_files_info (target);
2848
2849 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2850 }
2851
2852 static int
2853 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2854 {
2855 int retval;
2856
2857 retval = debug_target.to_insert_breakpoint (bp_tgt);
2858
2859 fprintf_unfiltered (gdb_stdlog,
2860 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2861 (unsigned long) bp_tgt->placed_address,
2862 (unsigned long) retval);
2863 return retval;
2864 }
2865
2866 static int
2867 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2868 {
2869 int retval;
2870
2871 retval = debug_target.to_remove_breakpoint (bp_tgt);
2872
2873 fprintf_unfiltered (gdb_stdlog,
2874 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2875 (unsigned long) bp_tgt->placed_address,
2876 (unsigned long) retval);
2877 return retval;
2878 }
2879
2880 static int
2881 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2882 {
2883 int retval;
2884
2885 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2886
2887 fprintf_unfiltered (gdb_stdlog,
2888 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2889 (unsigned long) type,
2890 (unsigned long) cnt,
2891 (unsigned long) from_tty,
2892 (unsigned long) retval);
2893 return retval;
2894 }
2895
2896 static int
2897 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2898 {
2899 CORE_ADDR retval;
2900
2901 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2902
2903 fprintf_unfiltered (gdb_stdlog,
2904 "target_region_ok_for_hw_watchpoint (%ld, %ld) = 0x%lx\n",
2905 (unsigned long) addr,
2906 (unsigned long) len,
2907 (unsigned long) retval);
2908 return retval;
2909 }
2910
2911 static int
2912 debug_to_stopped_by_watchpoint (void)
2913 {
2914 int retval;
2915
2916 retval = debug_target.to_stopped_by_watchpoint ();
2917
2918 fprintf_unfiltered (gdb_stdlog,
2919 "target_stopped_by_watchpoint () = %ld\n",
2920 (unsigned long) retval);
2921 return retval;
2922 }
2923
2924 static int
2925 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2926 {
2927 int retval;
2928
2929 retval = debug_target.to_stopped_data_address (target, addr);
2930
2931 fprintf_unfiltered (gdb_stdlog,
2932 "target_stopped_data_address ([0x%lx]) = %ld\n",
2933 (unsigned long)*addr,
2934 (unsigned long)retval);
2935 return retval;
2936 }
2937
2938 static int
2939 debug_to_watchpoint_addr_within_range (struct target_ops *target,
2940 CORE_ADDR addr,
2941 CORE_ADDR start, int length)
2942 {
2943 int retval;
2944
2945 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
2946 start, length);
2947
2948 fprintf_filtered (gdb_stdlog,
2949 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
2950 (unsigned long) addr, (unsigned long) start, length,
2951 retval);
2952 return retval;
2953 }
2954
2955 static int
2956 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2957 {
2958 int retval;
2959
2960 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2961
2962 fprintf_unfiltered (gdb_stdlog,
2963 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2964 (unsigned long) bp_tgt->placed_address,
2965 (unsigned long) retval);
2966 return retval;
2967 }
2968
2969 static int
2970 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2971 {
2972 int retval;
2973
2974 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2975
2976 fprintf_unfiltered (gdb_stdlog,
2977 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2978 (unsigned long) bp_tgt->placed_address,
2979 (unsigned long) retval);
2980 return retval;
2981 }
2982
2983 static int
2984 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2985 {
2986 int retval;
2987
2988 retval = debug_target.to_insert_watchpoint (addr, len, type);
2989
2990 fprintf_unfiltered (gdb_stdlog,
2991 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2992 (unsigned long) addr, len, type, (unsigned long) retval);
2993 return retval;
2994 }
2995
2996 static int
2997 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2998 {
2999 int retval;
3000
3001 retval = debug_target.to_remove_watchpoint (addr, len, type);
3002
3003 fprintf_unfiltered (gdb_stdlog,
3004 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
3005 (unsigned long) addr, len, type, (unsigned long) retval);
3006 return retval;
3007 }
3008
3009 static void
3010 debug_to_terminal_init (void)
3011 {
3012 debug_target.to_terminal_init ();
3013
3014 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3015 }
3016
3017 static void
3018 debug_to_terminal_inferior (void)
3019 {
3020 debug_target.to_terminal_inferior ();
3021
3022 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3023 }
3024
3025 static void
3026 debug_to_terminal_ours_for_output (void)
3027 {
3028 debug_target.to_terminal_ours_for_output ();
3029
3030 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3031 }
3032
3033 static void
3034 debug_to_terminal_ours (void)
3035 {
3036 debug_target.to_terminal_ours ();
3037
3038 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3039 }
3040
3041 static void
3042 debug_to_terminal_save_ours (void)
3043 {
3044 debug_target.to_terminal_save_ours ();
3045
3046 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3047 }
3048
3049 static void
3050 debug_to_terminal_info (char *arg, int from_tty)
3051 {
3052 debug_target.to_terminal_info (arg, from_tty);
3053
3054 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3055 from_tty);
3056 }
3057
3058 static void
3059 debug_to_load (char *args, int from_tty)
3060 {
3061 debug_target.to_load (args, from_tty);
3062
3063 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3064 }
3065
3066 static int
3067 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
3068 {
3069 int retval;
3070
3071 retval = debug_target.to_lookup_symbol (name, addrp);
3072
3073 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
3074
3075 return retval;
3076 }
3077
3078 static void
3079 debug_to_post_startup_inferior (ptid_t ptid)
3080 {
3081 debug_target.to_post_startup_inferior (ptid);
3082
3083 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3084 PIDGET (ptid));
3085 }
3086
3087 static void
3088 debug_to_acknowledge_created_inferior (int pid)
3089 {
3090 debug_target.to_acknowledge_created_inferior (pid);
3091
3092 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
3093 pid);
3094 }
3095
3096 static void
3097 debug_to_insert_fork_catchpoint (int pid)
3098 {
3099 debug_target.to_insert_fork_catchpoint (pid);
3100
3101 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
3102 pid);
3103 }
3104
3105 static int
3106 debug_to_remove_fork_catchpoint (int pid)
3107 {
3108 int retval;
3109
3110 retval = debug_target.to_remove_fork_catchpoint (pid);
3111
3112 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3113 pid, retval);
3114
3115 return retval;
3116 }
3117
3118 static void
3119 debug_to_insert_vfork_catchpoint (int pid)
3120 {
3121 debug_target.to_insert_vfork_catchpoint (pid);
3122
3123 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
3124 pid);
3125 }
3126
3127 static int
3128 debug_to_remove_vfork_catchpoint (int pid)
3129 {
3130 int retval;
3131
3132 retval = debug_target.to_remove_vfork_catchpoint (pid);
3133
3134 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3135 pid, retval);
3136
3137 return retval;
3138 }
3139
3140 static void
3141 debug_to_insert_exec_catchpoint (int pid)
3142 {
3143 debug_target.to_insert_exec_catchpoint (pid);
3144
3145 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
3146 pid);
3147 }
3148
3149 static int
3150 debug_to_remove_exec_catchpoint (int pid)
3151 {
3152 int retval;
3153
3154 retval = debug_target.to_remove_exec_catchpoint (pid);
3155
3156 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3157 pid, retval);
3158
3159 return retval;
3160 }
3161
3162 static int
3163 debug_to_has_exited (int pid, int wait_status, int *exit_status)
3164 {
3165 int has_exited;
3166
3167 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
3168
3169 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3170 pid, wait_status, *exit_status, has_exited);
3171
3172 return has_exited;
3173 }
3174
3175 static int
3176 debug_to_can_run (void)
3177 {
3178 int retval;
3179
3180 retval = debug_target.to_can_run ();
3181
3182 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3183
3184 return retval;
3185 }
3186
3187 static void
3188 debug_to_notice_signals (ptid_t ptid)
3189 {
3190 debug_target.to_notice_signals (ptid);
3191
3192 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
3193 PIDGET (ptid));
3194 }
3195
3196 static void
3197 debug_to_stop (ptid_t ptid)
3198 {
3199 debug_target.to_stop (ptid);
3200
3201 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3202 target_pid_to_str (ptid));
3203 }
3204
3205 static void
3206 debug_to_rcmd (char *command,
3207 struct ui_file *outbuf)
3208 {
3209 debug_target.to_rcmd (command, outbuf);
3210 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3211 }
3212
3213 static char *
3214 debug_to_pid_to_exec_file (int pid)
3215 {
3216 char *exec_file;
3217
3218 exec_file = debug_target.to_pid_to_exec_file (pid);
3219
3220 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3221 pid, exec_file);
3222
3223 return exec_file;
3224 }
3225
3226 static void
3227 setup_target_debug (void)
3228 {
3229 memcpy (&debug_target, &current_target, sizeof debug_target);
3230
3231 current_target.to_open = debug_to_open;
3232 current_target.to_post_attach = debug_to_post_attach;
3233 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3234 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3235 current_target.to_files_info = debug_to_files_info;
3236 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3237 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3238 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3239 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3240 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3241 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3242 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3243 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3244 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3245 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3246 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3247 current_target.to_terminal_init = debug_to_terminal_init;
3248 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3249 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3250 current_target.to_terminal_ours = debug_to_terminal_ours;
3251 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3252 current_target.to_terminal_info = debug_to_terminal_info;
3253 current_target.to_load = debug_to_load;
3254 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3255 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3256 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3257 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3258 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3259 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3260 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3261 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3262 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3263 current_target.to_has_exited = debug_to_has_exited;
3264 current_target.to_can_run = debug_to_can_run;
3265 current_target.to_notice_signals = debug_to_notice_signals;
3266 current_target.to_stop = debug_to_stop;
3267 current_target.to_rcmd = debug_to_rcmd;
3268 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3269 }
3270 \f
3271
3272 static char targ_desc[] =
3273 "Names of targets and files being debugged.\n\
3274 Shows the entire stack of targets currently in use (including the exec-file,\n\
3275 core-file, and process, if any), as well as the symbol file name.";
3276
3277 static void
3278 do_monitor_command (char *cmd,
3279 int from_tty)
3280 {
3281 if ((current_target.to_rcmd
3282 == (void (*) (char *, struct ui_file *)) tcomplain)
3283 || (current_target.to_rcmd == debug_to_rcmd
3284 && (debug_target.to_rcmd
3285 == (void (*) (char *, struct ui_file *)) tcomplain)))
3286 error (_("\"monitor\" command not supported by this target."));
3287 target_rcmd (cmd, gdb_stdtarg);
3288 }
3289
3290 /* Print the name of each layers of our target stack. */
3291
3292 static void
3293 maintenance_print_target_stack (char *cmd, int from_tty)
3294 {
3295 struct target_ops *t;
3296
3297 printf_filtered (_("The current target stack is:\n"));
3298
3299 for (t = target_stack; t != NULL; t = t->beneath)
3300 {
3301 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3302 }
3303 }
3304
3305 /* Controls if async mode is permitted. */
3306 int target_async_permitted = 0;
3307
3308 /* The set command writes to this variable. If the inferior is
3309 executing, linux_nat_async_permitted is *not* updated. */
3310 static int target_async_permitted_1 = 0;
3311
3312 static void
3313 set_maintenance_target_async_permitted (char *args, int from_tty,
3314 struct cmd_list_element *c)
3315 {
3316 if (target_has_execution)
3317 {
3318 target_async_permitted_1 = target_async_permitted;
3319 error (_("Cannot change this setting while the inferior is running."));
3320 }
3321
3322 target_async_permitted = target_async_permitted_1;
3323 }
3324
3325 static void
3326 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3327 struct cmd_list_element *c,
3328 const char *value)
3329 {
3330 fprintf_filtered (file, _("\
3331 Controlling the inferior in asynchronous mode is %s.\n"), value);
3332 }
3333
3334 void
3335 initialize_targets (void)
3336 {
3337 init_dummy_target ();
3338 push_target (&dummy_target);
3339
3340 add_info ("target", target_info, targ_desc);
3341 add_info ("files", target_info, targ_desc);
3342
3343 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3344 Set target debugging."), _("\
3345 Show target debugging."), _("\
3346 When non-zero, target debugging is enabled. Higher numbers are more\n\
3347 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3348 command."),
3349 NULL,
3350 show_targetdebug,
3351 &setdebuglist, &showdebuglist);
3352
3353 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3354 &trust_readonly, _("\
3355 Set mode for reading from readonly sections."), _("\
3356 Show mode for reading from readonly sections."), _("\
3357 When this mode is on, memory reads from readonly sections (such as .text)\n\
3358 will be read from the object file instead of from the target. This will\n\
3359 result in significant performance improvement for remote targets."),
3360 NULL,
3361 show_trust_readonly,
3362 &setlist, &showlist);
3363
3364 add_com ("monitor", class_obscure, do_monitor_command,
3365 _("Send a command to the remote monitor (remote targets only)."));
3366
3367 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3368 _("Print the name of each layer of the internal target stack."),
3369 &maintenanceprintlist);
3370
3371 add_setshow_boolean_cmd ("target-async", no_class,
3372 &target_async_permitted_1, _("\
3373 Set whether gdb controls the inferior in asynchronous mode."), _("\
3374 Show whether gdb controls the inferior in asynchronous mode."), _("\
3375 Tells gdb whether to control the inferior in asynchronous mode."),
3376 set_maintenance_target_async_permitted,
3377 show_maintenance_target_async_permitted,
3378 &setlist,
3379 &showlist);
3380
3381 target_dcache = dcache_init ();
3382 }
This page took 0.094454 seconds and 5 git commands to generate.