* target.h (target_read_stralloc): New prototype.
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include <errno.h>
28 #include "gdb_string.h"
29 #include "target.h"
30 #include "gdbcmd.h"
31 #include "symtab.h"
32 #include "inferior.h"
33 #include "bfd.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "gdb_wait.h"
37 #include "dcache.h"
38 #include <signal.h>
39 #include "regcache.h"
40 #include "gdb_assert.h"
41 #include "gdbcore.h"
42
43 static void target_info (char *, int);
44
45 static void maybe_kill_then_attach (char *, int);
46
47 static void kill_or_be_killed (int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
52
53 static int nosymbol (char *, CORE_ADDR *);
54
55 static void tcomplain (void) ATTR_NORETURN;
56
57 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
58
59 static int return_zero (void);
60
61 static int return_one (void);
62
63 static int return_minus_one (void);
64
65 void target_ignore (void);
66
67 static void target_command (char *, int);
68
69 static struct target_ops *find_default_run_target (char *);
70
71 static void nosupport_runtime (void);
72
73 static LONGEST default_xfer_partial (struct target_ops *ops,
74 enum target_object object,
75 const char *annex, gdb_byte *readbuf,
76 const gdb_byte *writebuf,
77 ULONGEST offset, LONGEST len);
78
79 /* Transfer LEN bytes between target address MEMADDR and GDB address
80 MYADDR. Returns 0 for success, errno code for failure (which
81 includes partial transfers -- if you want a more useful response to
82 partial transfers, try either target_read_memory_partial or
83 target_write_memory_partial). */
84
85 static int target_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
86 int write);
87
88 static void init_dummy_target (void);
89
90 static struct target_ops debug_target;
91
92 static void debug_to_open (char *, int);
93
94 static void debug_to_close (int);
95
96 static void debug_to_attach (char *, int);
97
98 static void debug_to_detach (char *, int);
99
100 static void debug_to_resume (ptid_t, int, enum target_signal);
101
102 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
103
104 static void debug_to_fetch_registers (int);
105
106 static void debug_to_store_registers (int);
107
108 static void debug_to_prepare_to_store (void);
109
110 static void debug_to_files_info (struct target_ops *);
111
112 static int debug_to_insert_breakpoint (struct bp_target_info *);
113
114 static int debug_to_remove_breakpoint (struct bp_target_info *);
115
116 static int debug_to_can_use_hw_breakpoint (int, int, int);
117
118 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
119
120 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
121
122 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
123
124 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
125
126 static int debug_to_stopped_by_watchpoint (void);
127
128 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
129
130 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
131
132 static void debug_to_terminal_init (void);
133
134 static void debug_to_terminal_inferior (void);
135
136 static void debug_to_terminal_ours_for_output (void);
137
138 static void debug_to_terminal_save_ours (void);
139
140 static void debug_to_terminal_ours (void);
141
142 static void debug_to_terminal_info (char *, int);
143
144 static void debug_to_kill (void);
145
146 static void debug_to_load (char *, int);
147
148 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
149
150 static void debug_to_mourn_inferior (void);
151
152 static int debug_to_can_run (void);
153
154 static void debug_to_notice_signals (ptid_t);
155
156 static int debug_to_thread_alive (ptid_t);
157
158 static void debug_to_stop (void);
159
160 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
161 wierd and mysterious ways. Putting the variable here lets those
162 wierd and mysterious ways keep building while they are being
163 converted to the inferior inheritance structure. */
164 struct target_ops deprecated_child_ops;
165
166 /* Pointer to array of target architecture structures; the size of the
167 array; the current index into the array; the allocated size of the
168 array. */
169 struct target_ops **target_structs;
170 unsigned target_struct_size;
171 unsigned target_struct_index;
172 unsigned target_struct_allocsize;
173 #define DEFAULT_ALLOCSIZE 10
174
175 /* The initial current target, so that there is always a semi-valid
176 current target. */
177
178 static struct target_ops dummy_target;
179
180 /* Top of target stack. */
181
182 static struct target_ops *target_stack;
183
184 /* The target structure we are currently using to talk to a process
185 or file or whatever "inferior" we have. */
186
187 struct target_ops current_target;
188
189 /* Command list for target. */
190
191 static struct cmd_list_element *targetlist = NULL;
192
193 /* Nonzero if we are debugging an attached outside process
194 rather than an inferior. */
195
196 int attach_flag;
197
198 /* Non-zero if we want to see trace of target level stuff. */
199
200 static int targetdebug = 0;
201 static void
202 show_targetdebug (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
206 }
207
208 static void setup_target_debug (void);
209
210 DCACHE *target_dcache;
211
212 /* The user just typed 'target' without the name of a target. */
213
214 static void
215 target_command (char *arg, int from_tty)
216 {
217 fputs_filtered ("Argument required (target name). Try `help target'\n",
218 gdb_stdout);
219 }
220
221 /* Add a possible target architecture to the list. */
222
223 void
224 add_target (struct target_ops *t)
225 {
226 /* Provide default values for all "must have" methods. */
227 if (t->to_xfer_partial == NULL)
228 t->to_xfer_partial = default_xfer_partial;
229
230 if (!target_structs)
231 {
232 target_struct_allocsize = DEFAULT_ALLOCSIZE;
233 target_structs = (struct target_ops **) xmalloc
234 (target_struct_allocsize * sizeof (*target_structs));
235 }
236 if (target_struct_size >= target_struct_allocsize)
237 {
238 target_struct_allocsize *= 2;
239 target_structs = (struct target_ops **)
240 xrealloc ((char *) target_structs,
241 target_struct_allocsize * sizeof (*target_structs));
242 }
243 target_structs[target_struct_size++] = t;
244
245 if (targetlist == NULL)
246 add_prefix_cmd ("target", class_run, target_command, _("\
247 Connect to a target machine or process.\n\
248 The first argument is the type or protocol of the target machine.\n\
249 Remaining arguments are interpreted by the target protocol. For more\n\
250 information on the arguments for a particular protocol, type\n\
251 `help target ' followed by the protocol name."),
252 &targetlist, "target ", 0, &cmdlist);
253 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
254 }
255
256 /* Stub functions */
257
258 void
259 target_ignore (void)
260 {
261 }
262
263 void
264 target_load (char *arg, int from_tty)
265 {
266 dcache_invalidate (target_dcache);
267 (*current_target.to_load) (arg, from_tty);
268 }
269
270 static int
271 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
272 struct target_ops *t)
273 {
274 errno = EIO; /* Can't read/write this location */
275 return 0; /* No bytes handled */
276 }
277
278 static void
279 tcomplain (void)
280 {
281 error (_("You can't do that when your target is `%s'"),
282 current_target.to_shortname);
283 }
284
285 void
286 noprocess (void)
287 {
288 error (_("You can't do that without a process to debug."));
289 }
290
291 static int
292 nosymbol (char *name, CORE_ADDR *addrp)
293 {
294 return 1; /* Symbol does not exist in target env */
295 }
296
297 static void
298 nosupport_runtime (void)
299 {
300 if (ptid_equal (inferior_ptid, null_ptid))
301 noprocess ();
302 else
303 error (_("No run-time support for this"));
304 }
305
306
307 static void
308 default_terminal_info (char *args, int from_tty)
309 {
310 printf_unfiltered (_("No saved terminal information.\n"));
311 }
312
313 /* This is the default target_create_inferior and target_attach function.
314 If the current target is executing, it asks whether to kill it off.
315 If this function returns without calling error(), it has killed off
316 the target, and the operation should be attempted. */
317
318 static void
319 kill_or_be_killed (int from_tty)
320 {
321 if (target_has_execution)
322 {
323 printf_unfiltered (_("You are already running a program:\n"));
324 target_files_info ();
325 if (query ("Kill it? "))
326 {
327 target_kill ();
328 if (target_has_execution)
329 error (_("Killing the program did not help."));
330 return;
331 }
332 else
333 {
334 error (_("Program not killed."));
335 }
336 }
337 tcomplain ();
338 }
339
340 static void
341 maybe_kill_then_attach (char *args, int from_tty)
342 {
343 kill_or_be_killed (from_tty);
344 target_attach (args, from_tty);
345 }
346
347 static void
348 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
349 int from_tty)
350 {
351 kill_or_be_killed (0);
352 target_create_inferior (exec, args, env, from_tty);
353 }
354
355 /* Go through the target stack from top to bottom, copying over zero
356 entries in current_target, then filling in still empty entries. In
357 effect, we are doing class inheritance through the pushed target
358 vectors.
359
360 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
361 is currently implemented, is that it discards any knowledge of
362 which target an inherited method originally belonged to.
363 Consequently, new new target methods should instead explicitly and
364 locally search the target stack for the target that can handle the
365 request. */
366
367 static void
368 update_current_target (void)
369 {
370 struct target_ops *t;
371
372 /* First, reset curren'ts contents. */
373 memset (&current_target, 0, sizeof (current_target));
374
375 #define INHERIT(FIELD, TARGET) \
376 if (!current_target.FIELD) \
377 current_target.FIELD = (TARGET)->FIELD
378
379 for (t = target_stack; t; t = t->beneath)
380 {
381 INHERIT (to_shortname, t);
382 INHERIT (to_longname, t);
383 INHERIT (to_doc, t);
384 INHERIT (to_open, t);
385 INHERIT (to_close, t);
386 INHERIT (to_attach, t);
387 INHERIT (to_post_attach, t);
388 INHERIT (to_detach, t);
389 /* Do not inherit to_disconnect. */
390 INHERIT (to_resume, t);
391 INHERIT (to_wait, t);
392 INHERIT (to_fetch_registers, t);
393 INHERIT (to_store_registers, t);
394 INHERIT (to_prepare_to_store, t);
395 INHERIT (deprecated_xfer_memory, t);
396 INHERIT (to_files_info, t);
397 INHERIT (to_insert_breakpoint, t);
398 INHERIT (to_remove_breakpoint, t);
399 INHERIT (to_can_use_hw_breakpoint, t);
400 INHERIT (to_insert_hw_breakpoint, t);
401 INHERIT (to_remove_hw_breakpoint, t);
402 INHERIT (to_insert_watchpoint, t);
403 INHERIT (to_remove_watchpoint, t);
404 INHERIT (to_stopped_data_address, t);
405 INHERIT (to_stopped_by_watchpoint, t);
406 INHERIT (to_have_continuable_watchpoint, t);
407 INHERIT (to_region_ok_for_hw_watchpoint, t);
408 INHERIT (to_terminal_init, t);
409 INHERIT (to_terminal_inferior, t);
410 INHERIT (to_terminal_ours_for_output, t);
411 INHERIT (to_terminal_ours, t);
412 INHERIT (to_terminal_save_ours, t);
413 INHERIT (to_terminal_info, t);
414 INHERIT (to_kill, t);
415 INHERIT (to_load, t);
416 INHERIT (to_lookup_symbol, t);
417 INHERIT (to_create_inferior, t);
418 INHERIT (to_post_startup_inferior, t);
419 INHERIT (to_acknowledge_created_inferior, t);
420 INHERIT (to_insert_fork_catchpoint, t);
421 INHERIT (to_remove_fork_catchpoint, t);
422 INHERIT (to_insert_vfork_catchpoint, t);
423 INHERIT (to_remove_vfork_catchpoint, t);
424 /* Do not inherit to_follow_fork. */
425 INHERIT (to_insert_exec_catchpoint, t);
426 INHERIT (to_remove_exec_catchpoint, t);
427 INHERIT (to_reported_exec_events_per_exec_call, t);
428 INHERIT (to_has_exited, t);
429 INHERIT (to_mourn_inferior, t);
430 INHERIT (to_can_run, t);
431 INHERIT (to_notice_signals, t);
432 INHERIT (to_thread_alive, t);
433 INHERIT (to_find_new_threads, t);
434 INHERIT (to_pid_to_str, t);
435 INHERIT (to_extra_thread_info, t);
436 INHERIT (to_stop, t);
437 /* Do not inherit to_xfer_partial. */
438 INHERIT (to_rcmd, t);
439 INHERIT (to_enable_exception_callback, t);
440 INHERIT (to_get_current_exception_event, t);
441 INHERIT (to_pid_to_exec_file, t);
442 INHERIT (to_stratum, t);
443 INHERIT (to_has_all_memory, t);
444 INHERIT (to_has_memory, t);
445 INHERIT (to_has_stack, t);
446 INHERIT (to_has_registers, t);
447 INHERIT (to_has_execution, t);
448 INHERIT (to_has_thread_control, t);
449 INHERIT (to_sections, t);
450 INHERIT (to_sections_end, t);
451 INHERIT (to_can_async_p, t);
452 INHERIT (to_is_async_p, t);
453 INHERIT (to_async, t);
454 INHERIT (to_async_mask_value, t);
455 INHERIT (to_find_memory_regions, t);
456 INHERIT (to_make_corefile_notes, t);
457 INHERIT (to_get_thread_local_address, t);
458 INHERIT (to_magic, t);
459 }
460 #undef INHERIT
461
462 /* Clean up a target struct so it no longer has any zero pointers in
463 it. Some entries are defaulted to a method that print an error,
464 others are hard-wired to a standard recursive default. */
465
466 #define de_fault(field, value) \
467 if (!current_target.field) \
468 current_target.field = value
469
470 de_fault (to_open,
471 (void (*) (char *, int))
472 tcomplain);
473 de_fault (to_close,
474 (void (*) (int))
475 target_ignore);
476 de_fault (to_attach,
477 maybe_kill_then_attach);
478 de_fault (to_post_attach,
479 (void (*) (int))
480 target_ignore);
481 de_fault (to_detach,
482 (void (*) (char *, int))
483 target_ignore);
484 de_fault (to_resume,
485 (void (*) (ptid_t, int, enum target_signal))
486 noprocess);
487 de_fault (to_wait,
488 (ptid_t (*) (ptid_t, struct target_waitstatus *))
489 noprocess);
490 de_fault (to_fetch_registers,
491 (void (*) (int))
492 target_ignore);
493 de_fault (to_store_registers,
494 (void (*) (int))
495 noprocess);
496 de_fault (to_prepare_to_store,
497 (void (*) (void))
498 noprocess);
499 de_fault (deprecated_xfer_memory,
500 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
501 nomemory);
502 de_fault (to_files_info,
503 (void (*) (struct target_ops *))
504 target_ignore);
505 de_fault (to_insert_breakpoint,
506 memory_insert_breakpoint);
507 de_fault (to_remove_breakpoint,
508 memory_remove_breakpoint);
509 de_fault (to_can_use_hw_breakpoint,
510 (int (*) (int, int, int))
511 return_zero);
512 de_fault (to_insert_hw_breakpoint,
513 (int (*) (struct bp_target_info *))
514 return_minus_one);
515 de_fault (to_remove_hw_breakpoint,
516 (int (*) (struct bp_target_info *))
517 return_minus_one);
518 de_fault (to_insert_watchpoint,
519 (int (*) (CORE_ADDR, int, int))
520 return_minus_one);
521 de_fault (to_remove_watchpoint,
522 (int (*) (CORE_ADDR, int, int))
523 return_minus_one);
524 de_fault (to_stopped_by_watchpoint,
525 (int (*) (void))
526 return_zero);
527 de_fault (to_stopped_data_address,
528 (int (*) (struct target_ops *, CORE_ADDR *))
529 return_zero);
530 de_fault (to_region_ok_for_hw_watchpoint,
531 default_region_ok_for_hw_watchpoint);
532 de_fault (to_terminal_init,
533 (void (*) (void))
534 target_ignore);
535 de_fault (to_terminal_inferior,
536 (void (*) (void))
537 target_ignore);
538 de_fault (to_terminal_ours_for_output,
539 (void (*) (void))
540 target_ignore);
541 de_fault (to_terminal_ours,
542 (void (*) (void))
543 target_ignore);
544 de_fault (to_terminal_save_ours,
545 (void (*) (void))
546 target_ignore);
547 de_fault (to_terminal_info,
548 default_terminal_info);
549 de_fault (to_kill,
550 (void (*) (void))
551 noprocess);
552 de_fault (to_load,
553 (void (*) (char *, int))
554 tcomplain);
555 de_fault (to_lookup_symbol,
556 (int (*) (char *, CORE_ADDR *))
557 nosymbol);
558 de_fault (to_create_inferior,
559 maybe_kill_then_create_inferior);
560 de_fault (to_post_startup_inferior,
561 (void (*) (ptid_t))
562 target_ignore);
563 de_fault (to_acknowledge_created_inferior,
564 (void (*) (int))
565 target_ignore);
566 de_fault (to_insert_fork_catchpoint,
567 (void (*) (int))
568 tcomplain);
569 de_fault (to_remove_fork_catchpoint,
570 (int (*) (int))
571 tcomplain);
572 de_fault (to_insert_vfork_catchpoint,
573 (void (*) (int))
574 tcomplain);
575 de_fault (to_remove_vfork_catchpoint,
576 (int (*) (int))
577 tcomplain);
578 de_fault (to_insert_exec_catchpoint,
579 (void (*) (int))
580 tcomplain);
581 de_fault (to_remove_exec_catchpoint,
582 (int (*) (int))
583 tcomplain);
584 de_fault (to_reported_exec_events_per_exec_call,
585 (int (*) (void))
586 return_one);
587 de_fault (to_has_exited,
588 (int (*) (int, int, int *))
589 return_zero);
590 de_fault (to_mourn_inferior,
591 (void (*) (void))
592 noprocess);
593 de_fault (to_can_run,
594 return_zero);
595 de_fault (to_notice_signals,
596 (void (*) (ptid_t))
597 target_ignore);
598 de_fault (to_thread_alive,
599 (int (*) (ptid_t))
600 return_zero);
601 de_fault (to_find_new_threads,
602 (void (*) (void))
603 target_ignore);
604 de_fault (to_extra_thread_info,
605 (char *(*) (struct thread_info *))
606 return_zero);
607 de_fault (to_stop,
608 (void (*) (void))
609 target_ignore);
610 current_target.to_xfer_partial = default_xfer_partial;
611 de_fault (to_rcmd,
612 (void (*) (char *, struct ui_file *))
613 tcomplain);
614 de_fault (to_enable_exception_callback,
615 (struct symtab_and_line * (*) (enum exception_event_kind, int))
616 nosupport_runtime);
617 de_fault (to_get_current_exception_event,
618 (struct exception_event_record * (*) (void))
619 nosupport_runtime);
620 de_fault (to_pid_to_exec_file,
621 (char *(*) (int))
622 return_zero);
623 de_fault (to_can_async_p,
624 (int (*) (void))
625 return_zero);
626 de_fault (to_is_async_p,
627 (int (*) (void))
628 return_zero);
629 de_fault (to_async,
630 (void (*) (void (*) (enum inferior_event_type, void*), void*))
631 tcomplain);
632 #undef de_fault
633
634 /* Finally, position the target-stack beneath the squashed
635 "current_target". That way code looking for a non-inherited
636 target method can quickly and simply find it. */
637 current_target.beneath = target_stack;
638 }
639
640 /* Push a new target type into the stack of the existing target accessors,
641 possibly superseding some of the existing accessors.
642
643 Result is zero if the pushed target ended up on top of the stack,
644 nonzero if at least one target is on top of it.
645
646 Rather than allow an empty stack, we always have the dummy target at
647 the bottom stratum, so we can call the function vectors without
648 checking them. */
649
650 int
651 push_target (struct target_ops *t)
652 {
653 struct target_ops **cur;
654
655 /* Check magic number. If wrong, it probably means someone changed
656 the struct definition, but not all the places that initialize one. */
657 if (t->to_magic != OPS_MAGIC)
658 {
659 fprintf_unfiltered (gdb_stderr,
660 "Magic number of %s target struct wrong\n",
661 t->to_shortname);
662 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
663 }
664
665 /* Find the proper stratum to install this target in. */
666 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
667 {
668 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
669 break;
670 }
671
672 /* If there's already targets at this stratum, remove them. */
673 /* FIXME: cagney/2003-10-15: I think this should be popping all
674 targets to CUR, and not just those at this stratum level. */
675 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
676 {
677 /* There's already something at this stratum level. Close it,
678 and un-hook it from the stack. */
679 struct target_ops *tmp = (*cur);
680 (*cur) = (*cur)->beneath;
681 tmp->beneath = NULL;
682 target_close (tmp, 0);
683 }
684
685 /* We have removed all targets in our stratum, now add the new one. */
686 t->beneath = (*cur);
687 (*cur) = t;
688
689 update_current_target ();
690
691 if (targetdebug)
692 setup_target_debug ();
693
694 /* Not on top? */
695 return (t != target_stack);
696 }
697
698 /* Remove a target_ops vector from the stack, wherever it may be.
699 Return how many times it was removed (0 or 1). */
700
701 int
702 unpush_target (struct target_ops *t)
703 {
704 struct target_ops **cur;
705 struct target_ops *tmp;
706
707 /* Look for the specified target. Note that we assume that a target
708 can only occur once in the target stack. */
709
710 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
711 {
712 if ((*cur) == t)
713 break;
714 }
715
716 if ((*cur) == NULL)
717 return 0; /* Didn't find target_ops, quit now */
718
719 /* NOTE: cagney/2003-12-06: In '94 the close call was made
720 unconditional by moving it to before the above check that the
721 target was in the target stack (something about "Change the way
722 pushing and popping of targets work to support target overlays
723 and inheritance"). This doesn't make much sense - only open
724 targets should be closed. */
725 target_close (t, 0);
726
727 /* Unchain the target */
728 tmp = (*cur);
729 (*cur) = (*cur)->beneath;
730 tmp->beneath = NULL;
731
732 update_current_target ();
733
734 return 1;
735 }
736
737 void
738 pop_target (void)
739 {
740 target_close (&current_target, 0); /* Let it clean up */
741 if (unpush_target (target_stack) == 1)
742 return;
743
744 fprintf_unfiltered (gdb_stderr,
745 "pop_target couldn't find target %s\n",
746 current_target.to_shortname);
747 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
748 }
749
750 #undef MIN
751 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
752
753 /* target_read_string -- read a null terminated string, up to LEN bytes,
754 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
755 Set *STRING to a pointer to malloc'd memory containing the data; the caller
756 is responsible for freeing it. Return the number of bytes successfully
757 read. */
758
759 int
760 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
761 {
762 int tlen, origlen, offset, i;
763 gdb_byte buf[4];
764 int errcode = 0;
765 char *buffer;
766 int buffer_allocated;
767 char *bufptr;
768 unsigned int nbytes_read = 0;
769
770 /* Small for testing. */
771 buffer_allocated = 4;
772 buffer = xmalloc (buffer_allocated);
773 bufptr = buffer;
774
775 origlen = len;
776
777 while (len > 0)
778 {
779 tlen = MIN (len, 4 - (memaddr & 3));
780 offset = memaddr & 3;
781
782 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
783 if (errcode != 0)
784 {
785 /* The transfer request might have crossed the boundary to an
786 unallocated region of memory. Retry the transfer, requesting
787 a single byte. */
788 tlen = 1;
789 offset = 0;
790 errcode = target_read_memory (memaddr, buf, 1);
791 if (errcode != 0)
792 goto done;
793 }
794
795 if (bufptr - buffer + tlen > buffer_allocated)
796 {
797 unsigned int bytes;
798 bytes = bufptr - buffer;
799 buffer_allocated *= 2;
800 buffer = xrealloc (buffer, buffer_allocated);
801 bufptr = buffer + bytes;
802 }
803
804 for (i = 0; i < tlen; i++)
805 {
806 *bufptr++ = buf[i + offset];
807 if (buf[i + offset] == '\000')
808 {
809 nbytes_read += i + 1;
810 goto done;
811 }
812 }
813
814 memaddr += tlen;
815 len -= tlen;
816 nbytes_read += tlen;
817 }
818 done:
819 if (errnop != NULL)
820 *errnop = errcode;
821 if (string != NULL)
822 *string = buffer;
823 return nbytes_read;
824 }
825
826 /* Find a section containing ADDR. */
827 struct section_table *
828 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
829 {
830 struct section_table *secp;
831 for (secp = target->to_sections;
832 secp < target->to_sections_end;
833 secp++)
834 {
835 if (addr >= secp->addr && addr < secp->endaddr)
836 return secp;
837 }
838 return NULL;
839 }
840
841 /* Return non-zero when the target vector has supplied an xfer_partial
842 method and it, rather than xfer_memory, should be used. */
843 static int
844 target_xfer_partial_p (void)
845 {
846 return (target_stack != NULL
847 && target_stack->to_xfer_partial != default_xfer_partial);
848 }
849
850 static LONGEST
851 target_xfer_partial (struct target_ops *ops,
852 enum target_object object, const char *annex,
853 void *readbuf, const void *writebuf,
854 ULONGEST offset, LONGEST len)
855 {
856 LONGEST retval;
857
858 gdb_assert (ops->to_xfer_partial != NULL);
859 retval = ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
860 offset, len);
861 if (targetdebug)
862 {
863 const unsigned char *myaddr = NULL;
864
865 fprintf_unfiltered (gdb_stdlog,
866 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
867 ops->to_shortname,
868 (int) object,
869 (annex ? annex : "(null)"),
870 (long) readbuf, (long) writebuf,
871 paddr_nz (offset), paddr_d (len), paddr_d (retval));
872
873 if (readbuf)
874 myaddr = readbuf;
875 if (writebuf)
876 myaddr = writebuf;
877 if (retval > 0 && myaddr != NULL)
878 {
879 int i;
880
881 fputs_unfiltered (", bytes =", gdb_stdlog);
882 for (i = 0; i < retval; i++)
883 {
884 if ((((long) &(myaddr[i])) & 0xf) == 0)
885 {
886 if (targetdebug < 2 && i > 0)
887 {
888 fprintf_unfiltered (gdb_stdlog, " ...");
889 break;
890 }
891 fprintf_unfiltered (gdb_stdlog, "\n");
892 }
893
894 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
895 }
896 }
897
898 fputc_unfiltered ('\n', gdb_stdlog);
899 }
900 return retval;
901 }
902
903 /* Attempt a transfer all LEN bytes starting at OFFSET between the
904 inferior's KIND:ANNEX space and GDB's READBUF/WRITEBUF buffer. If
905 the transfer succeeds, return zero, otherwize the host ERRNO is
906 returned.
907
908 The inferior is formed from several layers. In the case of
909 corefiles, inf-corefile is layered above inf-exec and a request for
910 text (corefiles do not include text pages) will be first sent to
911 the core-stratum, fail, and then sent to the object-file where it
912 will succeed.
913
914 NOTE: cagney/2004-09-30:
915
916 The old code tried to use four separate mechanisms for mapping an
917 object:offset:len tuple onto an inferior and its address space: the
918 target stack; the inferior's TO_SECTIONS; solib's SO_LIST;
919 overlays.
920
921 This is stupid.
922
923 The code below is instead using a single mechanism (currently
924 strata). If that mechanism proves insufficient then re-factor it
925 implementing another singluar mechanism (for instance, a generic
926 object:annex onto inferior:object:annex say). */
927
928 static LONGEST
929 xfer_using_stratum (enum target_object object, const char *annex,
930 ULONGEST offset, LONGEST len, void *readbuf,
931 const void *writebuf)
932 {
933 LONGEST xfered;
934 struct target_ops *target;
935
936 /* Always successful. */
937 if (len == 0)
938 return 0;
939 /* Never successful. */
940 if (target_stack == NULL)
941 return EIO;
942
943 target = target_stack;
944 while (1)
945 {
946 xfered = target_xfer_partial (target, object, annex,
947 readbuf, writebuf, offset, len);
948 if (xfered > 0)
949 {
950 /* The partial xfer succeeded, update the counts, check that
951 the xfer hasn't finished and if it hasn't set things up
952 for the next round. */
953 len -= xfered;
954 if (len <= 0)
955 return 0;
956 offset += xfered;
957 if (readbuf != NULL)
958 readbuf = (gdb_byte *) readbuf + xfered;
959 if (writebuf != NULL)
960 writebuf = (gdb_byte *) writebuf + xfered;
961 target = target_stack;
962 }
963 else if (xfered < 0)
964 {
965 /* Something totally screwed up, abandon the attempt to
966 xfer. */
967 if (errno)
968 return errno;
969 else
970 return EIO;
971 }
972 else
973 {
974 /* This "stratum" didn't work, try the next one down. */
975 target = target->beneath;
976 if (target == NULL)
977 return EIO;
978 }
979 }
980 }
981
982 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
983 GDB's memory at MYADDR. Returns either 0 for success or an errno value
984 if any error occurs.
985
986 If an error occurs, no guarantee is made about the contents of the data at
987 MYADDR. In particular, the caller should not depend upon partial reads
988 filling the buffer with good data. There is no way for the caller to know
989 how much good data might have been transfered anyway. Callers that can
990 deal with partial reads should call target_read_memory_partial. */
991
992 int
993 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
994 {
995 if (target_xfer_partial_p ())
996 return xfer_using_stratum (TARGET_OBJECT_MEMORY, NULL,
997 memaddr, len, myaddr, NULL);
998 else
999 return target_xfer_memory (memaddr, myaddr, len, 0);
1000 }
1001
1002 int
1003 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1004 {
1005 gdb_byte *bytes = alloca (len);
1006 memcpy (bytes, myaddr, len);
1007 if (target_xfer_partial_p ())
1008 return xfer_using_stratum (TARGET_OBJECT_MEMORY, NULL,
1009 memaddr, len, NULL, bytes);
1010 else
1011 return target_xfer_memory (memaddr, bytes, len, 1);
1012 }
1013
1014 #ifndef target_stopped_data_address_p
1015 int
1016 target_stopped_data_address_p (struct target_ops *target)
1017 {
1018 if (target->to_stopped_data_address
1019 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1020 return 0;
1021 if (target->to_stopped_data_address == debug_to_stopped_data_address
1022 && (debug_target.to_stopped_data_address
1023 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1024 return 0;
1025 return 1;
1026 }
1027 #endif
1028
1029 static int trust_readonly = 0;
1030 static void
1031 show_trust_readonly (struct ui_file *file, int from_tty,
1032 struct cmd_list_element *c, const char *value)
1033 {
1034 fprintf_filtered (file, _("\
1035 Mode for reading from readonly sections is %s.\n"),
1036 value);
1037 }
1038
1039 /* Move memory to or from the targets. The top target gets priority;
1040 if it cannot handle it, it is offered to the next one down, etc.
1041
1042 Result is -1 on error, or the number of bytes transfered. */
1043
1044 int
1045 do_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
1046 struct mem_attrib *attrib)
1047 {
1048 int res;
1049 int done = 0;
1050 struct target_ops *t;
1051
1052 /* Zero length requests are ok and require no work. */
1053 if (len == 0)
1054 return 0;
1055
1056 /* deprecated_xfer_memory is not guaranteed to set errno, even when
1057 it returns 0. */
1058 errno = 0;
1059
1060 if (!write && trust_readonly)
1061 {
1062 struct section_table *secp;
1063 /* User-settable option, "trust-readonly-sections". If true,
1064 then memory from any SEC_READONLY bfd section may be read
1065 directly from the bfd file. */
1066 secp = target_section_by_addr (&current_target, memaddr);
1067 if (secp != NULL
1068 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1069 & SEC_READONLY))
1070 return xfer_memory (memaddr, myaddr, len, 0, attrib, &current_target);
1071 }
1072
1073 /* The quick case is that the top target can handle the transfer. */
1074 res = current_target.deprecated_xfer_memory
1075 (memaddr, myaddr, len, write, attrib, &current_target);
1076
1077 /* If res <= 0 then we call it again in the loop. Ah well. */
1078 if (res <= 0)
1079 {
1080 for (t = target_stack; t != NULL; t = t->beneath)
1081 {
1082 if (!t->to_has_memory)
1083 continue;
1084
1085 res = t->deprecated_xfer_memory (memaddr, myaddr, len, write, attrib, t);
1086 if (res > 0)
1087 break; /* Handled all or part of xfer */
1088 if (t->to_has_all_memory)
1089 break;
1090 }
1091
1092 if (res <= 0)
1093 return -1;
1094 }
1095
1096 return res;
1097 }
1098
1099
1100 /* Perform a memory transfer. Iterate until the entire region has
1101 been transfered.
1102
1103 Result is 0 or errno value. */
1104
1105 static int
1106 target_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write)
1107 {
1108 int res;
1109 int reg_len;
1110 struct mem_region *region;
1111
1112 /* Zero length requests are ok and require no work. */
1113 if (len == 0)
1114 {
1115 return 0;
1116 }
1117
1118 while (len > 0)
1119 {
1120 region = lookup_mem_region(memaddr);
1121 if (memaddr + len < region->hi)
1122 reg_len = len;
1123 else
1124 reg_len = region->hi - memaddr;
1125
1126 switch (region->attrib.mode)
1127 {
1128 case MEM_RO:
1129 if (write)
1130 return EIO;
1131 break;
1132
1133 case MEM_WO:
1134 if (!write)
1135 return EIO;
1136 break;
1137 }
1138
1139 while (reg_len > 0)
1140 {
1141 if (region->attrib.cache)
1142 res = dcache_xfer_memory (target_dcache, memaddr, myaddr,
1143 reg_len, write);
1144 else
1145 res = do_xfer_memory (memaddr, myaddr, reg_len, write,
1146 &region->attrib);
1147
1148 if (res <= 0)
1149 {
1150 /* If this address is for nonexistent memory, read zeros
1151 if reading, or do nothing if writing. Return
1152 error. */
1153 if (!write)
1154 memset (myaddr, 0, len);
1155 if (errno == 0)
1156 return EIO;
1157 else
1158 return errno;
1159 }
1160
1161 memaddr += res;
1162 myaddr += res;
1163 len -= res;
1164 reg_len -= res;
1165 }
1166 }
1167
1168 return 0; /* We managed to cover it all somehow. */
1169 }
1170
1171
1172 /* Perform a partial memory transfer.
1173
1174 If we succeed, set *ERR to zero and return the number of bytes transferred.
1175 If we fail, set *ERR to a non-zero errno value, and return -1. */
1176
1177 static int
1178 target_xfer_memory_partial (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
1179 int write_p, int *err)
1180 {
1181 int res;
1182 int reg_len;
1183 struct mem_region *region;
1184
1185 /* Zero length requests are ok and require no work. */
1186 if (len == 0)
1187 {
1188 *err = 0;
1189 return 0;
1190 }
1191
1192 region = lookup_mem_region(memaddr);
1193 if (memaddr + len < region->hi)
1194 reg_len = len;
1195 else
1196 reg_len = region->hi - memaddr;
1197
1198 switch (region->attrib.mode)
1199 {
1200 case MEM_RO:
1201 if (write_p)
1202 {
1203 *err = EIO;
1204 return -1;
1205 }
1206 break;
1207
1208 case MEM_WO:
1209 if (write_p)
1210 {
1211 *err = EIO;
1212 return -1;
1213 }
1214 break;
1215 }
1216
1217 if (region->attrib.cache)
1218 res = dcache_xfer_memory (target_dcache, memaddr, myaddr,
1219 reg_len, write_p);
1220 else
1221 res = do_xfer_memory (memaddr, myaddr, reg_len, write_p,
1222 &region->attrib);
1223
1224 if (res <= 0)
1225 {
1226 if (errno != 0)
1227 *err = errno;
1228 else
1229 *err = EIO;
1230
1231 return -1;
1232 }
1233
1234 *err = 0;
1235 return res;
1236 }
1237
1238 int
1239 target_read_memory_partial (CORE_ADDR memaddr, gdb_byte *buf,
1240 int len, int *err)
1241 {
1242 if (target_xfer_partial_p ())
1243 {
1244 int retval;
1245
1246 retval = target_xfer_partial (target_stack, TARGET_OBJECT_MEMORY,
1247 NULL, buf, NULL, memaddr, len);
1248
1249 if (retval <= 0)
1250 {
1251 if (errno)
1252 *err = errno;
1253 else
1254 *err = EIO;
1255 return -1;
1256 }
1257 else
1258 {
1259 *err = 0;
1260 return retval;
1261 }
1262 }
1263 else
1264 return target_xfer_memory_partial (memaddr, buf, len, 0, err);
1265 }
1266
1267 int
1268 target_write_memory_partial (CORE_ADDR memaddr, gdb_byte *buf,
1269 int len, int *err)
1270 {
1271 if (target_xfer_partial_p ())
1272 {
1273 int retval;
1274
1275 retval = target_xfer_partial (target_stack, TARGET_OBJECT_MEMORY,
1276 NULL, NULL, buf, memaddr, len);
1277
1278 if (retval <= 0)
1279 {
1280 if (errno)
1281 *err = errno;
1282 else
1283 *err = EIO;
1284 return -1;
1285 }
1286 else
1287 {
1288 *err = 0;
1289 return retval;
1290 }
1291 }
1292 else
1293 return target_xfer_memory_partial (memaddr, buf, len, 1, err);
1294 }
1295
1296 /* More generic transfers. */
1297
1298 static LONGEST
1299 default_xfer_partial (struct target_ops *ops, enum target_object object,
1300 const char *annex, gdb_byte *readbuf,
1301 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1302 {
1303 if (object == TARGET_OBJECT_MEMORY
1304 && ops->deprecated_xfer_memory != NULL)
1305 /* If available, fall back to the target's
1306 "deprecated_xfer_memory" method. */
1307 {
1308 int xfered = -1;
1309 errno = 0;
1310 if (writebuf != NULL)
1311 {
1312 void *buffer = xmalloc (len);
1313 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1314 memcpy (buffer, writebuf, len);
1315 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1316 1/*write*/, NULL, ops);
1317 do_cleanups (cleanup);
1318 }
1319 if (readbuf != NULL)
1320 xfered = ops->deprecated_xfer_memory (offset, readbuf, len, 0/*read*/,
1321 NULL, ops);
1322 if (xfered > 0)
1323 return xfered;
1324 else if (xfered == 0 && errno == 0)
1325 /* "deprecated_xfer_memory" uses 0, cross checked against
1326 ERRNO as one indication of an error. */
1327 return 0;
1328 else
1329 return -1;
1330 }
1331 else if (ops->beneath != NULL)
1332 return target_xfer_partial (ops->beneath, object, annex,
1333 readbuf, writebuf, offset, len);
1334 else
1335 return -1;
1336 }
1337
1338 /* Target vector read/write partial wrapper functions.
1339
1340 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1341 (inbuf, outbuf)", instead of separate read/write methods, make life
1342 easier. */
1343
1344 static LONGEST
1345 target_read_partial (struct target_ops *ops,
1346 enum target_object object,
1347 const char *annex, gdb_byte *buf,
1348 ULONGEST offset, LONGEST len)
1349 {
1350 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1351 }
1352
1353 static LONGEST
1354 target_write_partial (struct target_ops *ops,
1355 enum target_object object,
1356 const char *annex, const gdb_byte *buf,
1357 ULONGEST offset, LONGEST len)
1358 {
1359 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1360 }
1361
1362 /* Wrappers to perform the full transfer. */
1363 LONGEST
1364 target_read (struct target_ops *ops,
1365 enum target_object object,
1366 const char *annex, gdb_byte *buf,
1367 ULONGEST offset, LONGEST len)
1368 {
1369 LONGEST xfered = 0;
1370 while (xfered < len)
1371 {
1372 LONGEST xfer = target_read_partial (ops, object, annex,
1373 (gdb_byte *) buf + xfered,
1374 offset + xfered, len - xfered);
1375 /* Call an observer, notifying them of the xfer progress? */
1376 if (xfer == 0)
1377 return xfered;
1378 if (xfer < 0)
1379 return -1;
1380 xfered += xfer;
1381 QUIT;
1382 }
1383 return len;
1384 }
1385
1386 LONGEST
1387 target_write (struct target_ops *ops,
1388 enum target_object object,
1389 const char *annex, const gdb_byte *buf,
1390 ULONGEST offset, LONGEST len)
1391 {
1392 LONGEST xfered = 0;
1393 while (xfered < len)
1394 {
1395 LONGEST xfer = target_write_partial (ops, object, annex,
1396 (gdb_byte *) buf + xfered,
1397 offset + xfered, len - xfered);
1398 /* Call an observer, notifying them of the xfer progress? */
1399 if (xfer == 0)
1400 return xfered;
1401 if (xfer < 0)
1402 return -1;
1403 xfered += xfer;
1404 QUIT;
1405 }
1406 return len;
1407 }
1408
1409 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1410 the size of the transferred data. PADDING additional bytes are
1411 available in *BUF_P. This is a helper function for
1412 target_read_alloc; see the declaration of that function for more
1413 information. */
1414
1415 static LONGEST
1416 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1417 const char *annex, gdb_byte **buf_p, int padding)
1418 {
1419 size_t buf_alloc, buf_pos;
1420 gdb_byte *buf;
1421 LONGEST n;
1422
1423 /* This function does not have a length parameter; it reads the
1424 entire OBJECT). Also, it doesn't support objects fetched partly
1425 from one target and partly from another (in a different stratum,
1426 e.g. a core file and an executable). Both reasons make it
1427 unsuitable for reading memory. */
1428 gdb_assert (object != TARGET_OBJECT_MEMORY);
1429
1430 /* Start by reading up to 4K at a time. The target will throttle
1431 this number down if necessary. */
1432 buf_alloc = 4096;
1433 buf = xmalloc (buf_alloc);
1434 buf_pos = 0;
1435 while (1)
1436 {
1437 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1438 buf_pos, buf_alloc - buf_pos - padding);
1439 if (n < 0)
1440 {
1441 /* An error occurred. */
1442 xfree (buf);
1443 return -1;
1444 }
1445 else if (n == 0)
1446 {
1447 /* Read all there was. */
1448 if (buf_pos == 0)
1449 xfree (buf);
1450 else
1451 *buf_p = buf;
1452 return buf_pos;
1453 }
1454
1455 buf_pos += n;
1456
1457 /* If the buffer is filling up, expand it. */
1458 if (buf_alloc < buf_pos * 2)
1459 {
1460 buf_alloc *= 2;
1461 buf = xrealloc (buf, buf_alloc);
1462 }
1463
1464 QUIT;
1465 }
1466 }
1467
1468 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1469 the size of the transferred data. See the declaration in "target.h"
1470 function for more information about the return value. */
1471
1472 LONGEST
1473 target_read_alloc (struct target_ops *ops, enum target_object object,
1474 const char *annex, gdb_byte **buf_p)
1475 {
1476 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1477 }
1478
1479 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1480 returned as a string, allocated using xmalloc. If an error occurs
1481 or the transfer is unsupported, NULL is returned. Empty objects
1482 are returned as allocated but empty strings. A warning is issued
1483 if the result contains any embedded NUL bytes. */
1484
1485 char *
1486 target_read_stralloc (struct target_ops *ops, enum target_object object,
1487 const char *annex)
1488 {
1489 gdb_byte *buffer;
1490 LONGEST transferred;
1491
1492 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1493
1494 if (transferred < 0)
1495 return NULL;
1496
1497 if (transferred == 0)
1498 return xstrdup ("");
1499
1500 buffer[transferred] = 0;
1501 if (strlen (buffer) < transferred)
1502 warning (_("target object %d, annex %s, "
1503 "contained unexpected null characters"),
1504 (int) object, annex ? annex : "(none)");
1505
1506 return (char *) buffer;
1507 }
1508
1509 /* Memory transfer methods. */
1510
1511 void
1512 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1513 LONGEST len)
1514 {
1515 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1516 != len)
1517 memory_error (EIO, addr);
1518 }
1519
1520 ULONGEST
1521 get_target_memory_unsigned (struct target_ops *ops,
1522 CORE_ADDR addr, int len)
1523 {
1524 gdb_byte buf[sizeof (ULONGEST)];
1525
1526 gdb_assert (len <= sizeof (buf));
1527 get_target_memory (ops, addr, buf, len);
1528 return extract_unsigned_integer (buf, len);
1529 }
1530
1531 static void
1532 target_info (char *args, int from_tty)
1533 {
1534 struct target_ops *t;
1535 int has_all_mem = 0;
1536
1537 if (symfile_objfile != NULL)
1538 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1539
1540 for (t = target_stack; t != NULL; t = t->beneath)
1541 {
1542 if (!t->to_has_memory)
1543 continue;
1544
1545 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1546 continue;
1547 if (has_all_mem)
1548 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1549 printf_unfiltered ("%s:\n", t->to_longname);
1550 (t->to_files_info) (t);
1551 has_all_mem = t->to_has_all_memory;
1552 }
1553 }
1554
1555 /* This is to be called by the open routine before it does
1556 anything. */
1557
1558 void
1559 target_preopen (int from_tty)
1560 {
1561 dont_repeat ();
1562
1563 if (target_has_execution)
1564 {
1565 if (!from_tty
1566 || query (_("A program is being debugged already. Kill it? ")))
1567 target_kill ();
1568 else
1569 error (_("Program not killed."));
1570 }
1571
1572 /* Calling target_kill may remove the target from the stack. But if
1573 it doesn't (which seems like a win for UDI), remove it now. */
1574
1575 if (target_has_execution)
1576 pop_target ();
1577 }
1578
1579 /* Detach a target after doing deferred register stores. */
1580
1581 void
1582 target_detach (char *args, int from_tty)
1583 {
1584 (current_target.to_detach) (args, from_tty);
1585 }
1586
1587 void
1588 target_disconnect (char *args, int from_tty)
1589 {
1590 struct target_ops *t;
1591
1592 for (t = current_target.beneath; t != NULL; t = t->beneath)
1593 if (t->to_disconnect != NULL)
1594 {
1595 if (targetdebug)
1596 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1597 args, from_tty);
1598 t->to_disconnect (t, args, from_tty);
1599 return;
1600 }
1601
1602 tcomplain ();
1603 }
1604
1605 int
1606 target_async_mask (int mask)
1607 {
1608 int saved_async_masked_status = target_async_mask_value;
1609 target_async_mask_value = mask;
1610 return saved_async_masked_status;
1611 }
1612
1613 /* Look through the list of possible targets for a target that can
1614 follow forks. */
1615
1616 int
1617 target_follow_fork (int follow_child)
1618 {
1619 struct target_ops *t;
1620
1621 for (t = current_target.beneath; t != NULL; t = t->beneath)
1622 {
1623 if (t->to_follow_fork != NULL)
1624 {
1625 int retval = t->to_follow_fork (t, follow_child);
1626 if (targetdebug)
1627 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1628 follow_child, retval);
1629 return retval;
1630 }
1631 }
1632
1633 /* Some target returned a fork event, but did not know how to follow it. */
1634 internal_error (__FILE__, __LINE__,
1635 "could not find a target to follow fork");
1636 }
1637
1638 /* Look through the list of possible targets for a target that can
1639 execute a run or attach command without any other data. This is
1640 used to locate the default process stratum.
1641
1642 Result is always valid (error() is called for errors). */
1643
1644 static struct target_ops *
1645 find_default_run_target (char *do_mesg)
1646 {
1647 struct target_ops **t;
1648 struct target_ops *runable = NULL;
1649 int count;
1650
1651 count = 0;
1652
1653 for (t = target_structs; t < target_structs + target_struct_size;
1654 ++t)
1655 {
1656 if ((*t)->to_can_run && target_can_run (*t))
1657 {
1658 runable = *t;
1659 ++count;
1660 }
1661 }
1662
1663 if (count != 1)
1664 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
1665
1666 return runable;
1667 }
1668
1669 void
1670 find_default_attach (char *args, int from_tty)
1671 {
1672 struct target_ops *t;
1673
1674 t = find_default_run_target ("attach");
1675 (t->to_attach) (args, from_tty);
1676 return;
1677 }
1678
1679 void
1680 find_default_create_inferior (char *exec_file, char *allargs, char **env,
1681 int from_tty)
1682 {
1683 struct target_ops *t;
1684
1685 t = find_default_run_target ("run");
1686 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
1687 return;
1688 }
1689
1690 static int
1691 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1692 {
1693 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
1694 }
1695
1696 static int
1697 return_zero (void)
1698 {
1699 return 0;
1700 }
1701
1702 static int
1703 return_one (void)
1704 {
1705 return 1;
1706 }
1707
1708 static int
1709 return_minus_one (void)
1710 {
1711 return -1;
1712 }
1713
1714 /*
1715 * Resize the to_sections pointer. Also make sure that anyone that
1716 * was holding on to an old value of it gets updated.
1717 * Returns the old size.
1718 */
1719
1720 int
1721 target_resize_to_sections (struct target_ops *target, int num_added)
1722 {
1723 struct target_ops **t;
1724 struct section_table *old_value;
1725 int old_count;
1726
1727 old_value = target->to_sections;
1728
1729 if (target->to_sections)
1730 {
1731 old_count = target->to_sections_end - target->to_sections;
1732 target->to_sections = (struct section_table *)
1733 xrealloc ((char *) target->to_sections,
1734 (sizeof (struct section_table)) * (num_added + old_count));
1735 }
1736 else
1737 {
1738 old_count = 0;
1739 target->to_sections = (struct section_table *)
1740 xmalloc ((sizeof (struct section_table)) * num_added);
1741 }
1742 target->to_sections_end = target->to_sections + (num_added + old_count);
1743
1744 /* Check to see if anyone else was pointing to this structure.
1745 If old_value was null, then no one was. */
1746
1747 if (old_value)
1748 {
1749 for (t = target_structs; t < target_structs + target_struct_size;
1750 ++t)
1751 {
1752 if ((*t)->to_sections == old_value)
1753 {
1754 (*t)->to_sections = target->to_sections;
1755 (*t)->to_sections_end = target->to_sections_end;
1756 }
1757 }
1758 /* There is a flattened view of the target stack in current_target,
1759 so its to_sections pointer might also need updating. */
1760 if (current_target.to_sections == old_value)
1761 {
1762 current_target.to_sections = target->to_sections;
1763 current_target.to_sections_end = target->to_sections_end;
1764 }
1765 }
1766
1767 return old_count;
1768
1769 }
1770
1771 /* Remove all target sections taken from ABFD.
1772
1773 Scan the current target stack for targets whose section tables
1774 refer to sections from BFD, and remove those sections. We use this
1775 when we notice that the inferior has unloaded a shared object, for
1776 example. */
1777 void
1778 remove_target_sections (bfd *abfd)
1779 {
1780 struct target_ops **t;
1781
1782 for (t = target_structs; t < target_structs + target_struct_size; t++)
1783 {
1784 struct section_table *src, *dest;
1785
1786 dest = (*t)->to_sections;
1787 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1788 if (src->bfd != abfd)
1789 {
1790 /* Keep this section. */
1791 if (dest < src) *dest = *src;
1792 dest++;
1793 }
1794
1795 /* If we've dropped any sections, resize the section table. */
1796 if (dest < src)
1797 target_resize_to_sections (*t, dest - src);
1798 }
1799 }
1800
1801
1802
1803
1804 /* Find a single runnable target in the stack and return it. If for
1805 some reason there is more than one, return NULL. */
1806
1807 struct target_ops *
1808 find_run_target (void)
1809 {
1810 struct target_ops **t;
1811 struct target_ops *runable = NULL;
1812 int count;
1813
1814 count = 0;
1815
1816 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1817 {
1818 if ((*t)->to_can_run && target_can_run (*t))
1819 {
1820 runable = *t;
1821 ++count;
1822 }
1823 }
1824
1825 return (count == 1 ? runable : NULL);
1826 }
1827
1828 /* Find a single core_stratum target in the list of targets and return it.
1829 If for some reason there is more than one, return NULL. */
1830
1831 struct target_ops *
1832 find_core_target (void)
1833 {
1834 struct target_ops **t;
1835 struct target_ops *runable = NULL;
1836 int count;
1837
1838 count = 0;
1839
1840 for (t = target_structs; t < target_structs + target_struct_size;
1841 ++t)
1842 {
1843 if ((*t)->to_stratum == core_stratum)
1844 {
1845 runable = *t;
1846 ++count;
1847 }
1848 }
1849
1850 return (count == 1 ? runable : NULL);
1851 }
1852
1853 /*
1854 * Find the next target down the stack from the specified target.
1855 */
1856
1857 struct target_ops *
1858 find_target_beneath (struct target_ops *t)
1859 {
1860 return t->beneath;
1861 }
1862
1863 \f
1864 /* The inferior process has died. Long live the inferior! */
1865
1866 void
1867 generic_mourn_inferior (void)
1868 {
1869 extern int show_breakpoint_hit_counts;
1870
1871 inferior_ptid = null_ptid;
1872 attach_flag = 0;
1873 breakpoint_init_inferior (inf_exited);
1874 registers_changed ();
1875
1876 reopen_exec_file ();
1877 reinit_frame_cache ();
1878
1879 /* It is confusing to the user for ignore counts to stick around
1880 from previous runs of the inferior. So clear them. */
1881 /* However, it is more confusing for the ignore counts to disappear when
1882 using hit counts. So don't clear them if we're counting hits. */
1883 if (!show_breakpoint_hit_counts)
1884 breakpoint_clear_ignore_counts ();
1885
1886 if (deprecated_detach_hook)
1887 deprecated_detach_hook ();
1888 }
1889 \f
1890 /* Helper function for child_wait and the Lynx derivatives of child_wait.
1891 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
1892 translation of that in OURSTATUS. */
1893 void
1894 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
1895 {
1896 #ifdef CHILD_SPECIAL_WAITSTATUS
1897 /* CHILD_SPECIAL_WAITSTATUS should return nonzero and set *OURSTATUS
1898 if it wants to deal with hoststatus. */
1899 if (CHILD_SPECIAL_WAITSTATUS (ourstatus, hoststatus))
1900 return;
1901 #endif
1902
1903 if (WIFEXITED (hoststatus))
1904 {
1905 ourstatus->kind = TARGET_WAITKIND_EXITED;
1906 ourstatus->value.integer = WEXITSTATUS (hoststatus);
1907 }
1908 else if (!WIFSTOPPED (hoststatus))
1909 {
1910 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
1911 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
1912 }
1913 else
1914 {
1915 ourstatus->kind = TARGET_WAITKIND_STOPPED;
1916 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
1917 }
1918 }
1919 \f
1920 /* Returns zero to leave the inferior alone, one to interrupt it. */
1921 int (*target_activity_function) (void);
1922 int target_activity_fd;
1923 \f
1924 /* Convert a normal process ID to a string. Returns the string in a
1925 static buffer. */
1926
1927 char *
1928 normal_pid_to_str (ptid_t ptid)
1929 {
1930 static char buf[32];
1931
1932 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
1933 return buf;
1934 }
1935
1936 /* Error-catcher for target_find_memory_regions */
1937 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
1938 {
1939 error (_("No target."));
1940 return 0;
1941 }
1942
1943 /* Error-catcher for target_make_corefile_notes */
1944 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
1945 {
1946 error (_("No target."));
1947 return NULL;
1948 }
1949
1950 /* Set up the handful of non-empty slots needed by the dummy target
1951 vector. */
1952
1953 static void
1954 init_dummy_target (void)
1955 {
1956 dummy_target.to_shortname = "None";
1957 dummy_target.to_longname = "None";
1958 dummy_target.to_doc = "";
1959 dummy_target.to_attach = find_default_attach;
1960 dummy_target.to_create_inferior = find_default_create_inferior;
1961 dummy_target.to_pid_to_str = normal_pid_to_str;
1962 dummy_target.to_stratum = dummy_stratum;
1963 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
1964 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
1965 dummy_target.to_xfer_partial = default_xfer_partial;
1966 dummy_target.to_magic = OPS_MAGIC;
1967 }
1968 \f
1969 static void
1970 debug_to_open (char *args, int from_tty)
1971 {
1972 debug_target.to_open (args, from_tty);
1973
1974 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
1975 }
1976
1977 static void
1978 debug_to_close (int quitting)
1979 {
1980 target_close (&debug_target, quitting);
1981 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
1982 }
1983
1984 void
1985 target_close (struct target_ops *targ, int quitting)
1986 {
1987 if (targ->to_xclose != NULL)
1988 targ->to_xclose (targ, quitting);
1989 else if (targ->to_close != NULL)
1990 targ->to_close (quitting);
1991 }
1992
1993 static void
1994 debug_to_attach (char *args, int from_tty)
1995 {
1996 debug_target.to_attach (args, from_tty);
1997
1998 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
1999 }
2000
2001
2002 static void
2003 debug_to_post_attach (int pid)
2004 {
2005 debug_target.to_post_attach (pid);
2006
2007 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2008 }
2009
2010 static void
2011 debug_to_detach (char *args, int from_tty)
2012 {
2013 debug_target.to_detach (args, from_tty);
2014
2015 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2016 }
2017
2018 static void
2019 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2020 {
2021 debug_target.to_resume (ptid, step, siggnal);
2022
2023 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2024 step ? "step" : "continue",
2025 target_signal_to_name (siggnal));
2026 }
2027
2028 static ptid_t
2029 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2030 {
2031 ptid_t retval;
2032
2033 retval = debug_target.to_wait (ptid, status);
2034
2035 fprintf_unfiltered (gdb_stdlog,
2036 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2037 PIDGET (retval));
2038 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2039 switch (status->kind)
2040 {
2041 case TARGET_WAITKIND_EXITED:
2042 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2043 status->value.integer);
2044 break;
2045 case TARGET_WAITKIND_STOPPED:
2046 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2047 target_signal_to_name (status->value.sig));
2048 break;
2049 case TARGET_WAITKIND_SIGNALLED:
2050 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2051 target_signal_to_name (status->value.sig));
2052 break;
2053 case TARGET_WAITKIND_LOADED:
2054 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2055 break;
2056 case TARGET_WAITKIND_FORKED:
2057 fprintf_unfiltered (gdb_stdlog, "forked\n");
2058 break;
2059 case TARGET_WAITKIND_VFORKED:
2060 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2061 break;
2062 case TARGET_WAITKIND_EXECD:
2063 fprintf_unfiltered (gdb_stdlog, "execd\n");
2064 break;
2065 case TARGET_WAITKIND_SPURIOUS:
2066 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2067 break;
2068 default:
2069 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2070 break;
2071 }
2072
2073 return retval;
2074 }
2075
2076 static void
2077 debug_print_register (const char * func, int regno)
2078 {
2079 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2080 if (regno >= 0 && regno < NUM_REGS + NUM_PSEUDO_REGS
2081 && REGISTER_NAME (regno) != NULL && REGISTER_NAME (regno)[0] != '\0')
2082 fprintf_unfiltered (gdb_stdlog, "(%s)", REGISTER_NAME (regno));
2083 else
2084 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2085 if (regno >= 0)
2086 {
2087 int i;
2088 unsigned char buf[MAX_REGISTER_SIZE];
2089 deprecated_read_register_gen (regno, buf);
2090 fprintf_unfiltered (gdb_stdlog, " = ");
2091 for (i = 0; i < register_size (current_gdbarch, regno); i++)
2092 {
2093 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2094 }
2095 if (register_size (current_gdbarch, regno) <= sizeof (LONGEST))
2096 {
2097 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2098 paddr_nz (read_register (regno)),
2099 paddr_d (read_register (regno)));
2100 }
2101 }
2102 fprintf_unfiltered (gdb_stdlog, "\n");
2103 }
2104
2105 static void
2106 debug_to_fetch_registers (int regno)
2107 {
2108 debug_target.to_fetch_registers (regno);
2109 debug_print_register ("target_fetch_registers", regno);
2110 }
2111
2112 static void
2113 debug_to_store_registers (int regno)
2114 {
2115 debug_target.to_store_registers (regno);
2116 debug_print_register ("target_store_registers", regno);
2117 fprintf_unfiltered (gdb_stdlog, "\n");
2118 }
2119
2120 static void
2121 debug_to_prepare_to_store (void)
2122 {
2123 debug_target.to_prepare_to_store ();
2124
2125 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2126 }
2127
2128 static int
2129 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2130 int write, struct mem_attrib *attrib,
2131 struct target_ops *target)
2132 {
2133 int retval;
2134
2135 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2136 attrib, target);
2137
2138 fprintf_unfiltered (gdb_stdlog,
2139 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2140 (unsigned int) memaddr, /* possable truncate long long */
2141 len, write ? "write" : "read", retval);
2142
2143 if (retval > 0)
2144 {
2145 int i;
2146
2147 fputs_unfiltered (", bytes =", gdb_stdlog);
2148 for (i = 0; i < retval; i++)
2149 {
2150 if ((((long) &(myaddr[i])) & 0xf) == 0)
2151 {
2152 if (targetdebug < 2 && i > 0)
2153 {
2154 fprintf_unfiltered (gdb_stdlog, " ...");
2155 break;
2156 }
2157 fprintf_unfiltered (gdb_stdlog, "\n");
2158 }
2159
2160 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2161 }
2162 }
2163
2164 fputc_unfiltered ('\n', gdb_stdlog);
2165
2166 return retval;
2167 }
2168
2169 static void
2170 debug_to_files_info (struct target_ops *target)
2171 {
2172 debug_target.to_files_info (target);
2173
2174 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2175 }
2176
2177 static int
2178 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2179 {
2180 int retval;
2181
2182 retval = debug_target.to_insert_breakpoint (bp_tgt);
2183
2184 fprintf_unfiltered (gdb_stdlog,
2185 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2186 (unsigned long) bp_tgt->placed_address,
2187 (unsigned long) retval);
2188 return retval;
2189 }
2190
2191 static int
2192 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2193 {
2194 int retval;
2195
2196 retval = debug_target.to_remove_breakpoint (bp_tgt);
2197
2198 fprintf_unfiltered (gdb_stdlog,
2199 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2200 (unsigned long) bp_tgt->placed_address,
2201 (unsigned long) retval);
2202 return retval;
2203 }
2204
2205 static int
2206 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2207 {
2208 int retval;
2209
2210 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2211
2212 fprintf_unfiltered (gdb_stdlog,
2213 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2214 (unsigned long) type,
2215 (unsigned long) cnt,
2216 (unsigned long) from_tty,
2217 (unsigned long) retval);
2218 return retval;
2219 }
2220
2221 static int
2222 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2223 {
2224 CORE_ADDR retval;
2225
2226 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2227
2228 fprintf_unfiltered (gdb_stdlog,
2229 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2230 (unsigned long) addr,
2231 (unsigned long) len,
2232 (unsigned long) retval);
2233 return retval;
2234 }
2235
2236 static int
2237 debug_to_stopped_by_watchpoint (void)
2238 {
2239 int retval;
2240
2241 retval = debug_target.to_stopped_by_watchpoint ();
2242
2243 fprintf_unfiltered (gdb_stdlog,
2244 "STOPPED_BY_WATCHPOINT () = %ld\n",
2245 (unsigned long) retval);
2246 return retval;
2247 }
2248
2249 static int
2250 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2251 {
2252 int retval;
2253
2254 retval = debug_target.to_stopped_data_address (target, addr);
2255
2256 fprintf_unfiltered (gdb_stdlog,
2257 "target_stopped_data_address ([0x%lx]) = %ld\n",
2258 (unsigned long)*addr,
2259 (unsigned long)retval);
2260 return retval;
2261 }
2262
2263 static int
2264 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2265 {
2266 int retval;
2267
2268 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2269
2270 fprintf_unfiltered (gdb_stdlog,
2271 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2272 (unsigned long) bp_tgt->placed_address,
2273 (unsigned long) retval);
2274 return retval;
2275 }
2276
2277 static int
2278 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2279 {
2280 int retval;
2281
2282 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2283
2284 fprintf_unfiltered (gdb_stdlog,
2285 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2286 (unsigned long) bp_tgt->placed_address,
2287 (unsigned long) retval);
2288 return retval;
2289 }
2290
2291 static int
2292 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2293 {
2294 int retval;
2295
2296 retval = debug_target.to_insert_watchpoint (addr, len, type);
2297
2298 fprintf_unfiltered (gdb_stdlog,
2299 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2300 (unsigned long) addr, len, type, (unsigned long) retval);
2301 return retval;
2302 }
2303
2304 static int
2305 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2306 {
2307 int retval;
2308
2309 retval = debug_target.to_insert_watchpoint (addr, len, type);
2310
2311 fprintf_unfiltered (gdb_stdlog,
2312 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2313 (unsigned long) addr, len, type, (unsigned long) retval);
2314 return retval;
2315 }
2316
2317 static void
2318 debug_to_terminal_init (void)
2319 {
2320 debug_target.to_terminal_init ();
2321
2322 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2323 }
2324
2325 static void
2326 debug_to_terminal_inferior (void)
2327 {
2328 debug_target.to_terminal_inferior ();
2329
2330 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2331 }
2332
2333 static void
2334 debug_to_terminal_ours_for_output (void)
2335 {
2336 debug_target.to_terminal_ours_for_output ();
2337
2338 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2339 }
2340
2341 static void
2342 debug_to_terminal_ours (void)
2343 {
2344 debug_target.to_terminal_ours ();
2345
2346 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2347 }
2348
2349 static void
2350 debug_to_terminal_save_ours (void)
2351 {
2352 debug_target.to_terminal_save_ours ();
2353
2354 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2355 }
2356
2357 static void
2358 debug_to_terminal_info (char *arg, int from_tty)
2359 {
2360 debug_target.to_terminal_info (arg, from_tty);
2361
2362 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2363 from_tty);
2364 }
2365
2366 static void
2367 debug_to_kill (void)
2368 {
2369 debug_target.to_kill ();
2370
2371 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2372 }
2373
2374 static void
2375 debug_to_load (char *args, int from_tty)
2376 {
2377 debug_target.to_load (args, from_tty);
2378
2379 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2380 }
2381
2382 static int
2383 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2384 {
2385 int retval;
2386
2387 retval = debug_target.to_lookup_symbol (name, addrp);
2388
2389 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2390
2391 return retval;
2392 }
2393
2394 static void
2395 debug_to_create_inferior (char *exec_file, char *args, char **env,
2396 int from_tty)
2397 {
2398 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2399
2400 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2401 exec_file, args, from_tty);
2402 }
2403
2404 static void
2405 debug_to_post_startup_inferior (ptid_t ptid)
2406 {
2407 debug_target.to_post_startup_inferior (ptid);
2408
2409 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2410 PIDGET (ptid));
2411 }
2412
2413 static void
2414 debug_to_acknowledge_created_inferior (int pid)
2415 {
2416 debug_target.to_acknowledge_created_inferior (pid);
2417
2418 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2419 pid);
2420 }
2421
2422 static void
2423 debug_to_insert_fork_catchpoint (int pid)
2424 {
2425 debug_target.to_insert_fork_catchpoint (pid);
2426
2427 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2428 pid);
2429 }
2430
2431 static int
2432 debug_to_remove_fork_catchpoint (int pid)
2433 {
2434 int retval;
2435
2436 retval = debug_target.to_remove_fork_catchpoint (pid);
2437
2438 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2439 pid, retval);
2440
2441 return retval;
2442 }
2443
2444 static void
2445 debug_to_insert_vfork_catchpoint (int pid)
2446 {
2447 debug_target.to_insert_vfork_catchpoint (pid);
2448
2449 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2450 pid);
2451 }
2452
2453 static int
2454 debug_to_remove_vfork_catchpoint (int pid)
2455 {
2456 int retval;
2457
2458 retval = debug_target.to_remove_vfork_catchpoint (pid);
2459
2460 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2461 pid, retval);
2462
2463 return retval;
2464 }
2465
2466 static void
2467 debug_to_insert_exec_catchpoint (int pid)
2468 {
2469 debug_target.to_insert_exec_catchpoint (pid);
2470
2471 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2472 pid);
2473 }
2474
2475 static int
2476 debug_to_remove_exec_catchpoint (int pid)
2477 {
2478 int retval;
2479
2480 retval = debug_target.to_remove_exec_catchpoint (pid);
2481
2482 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2483 pid, retval);
2484
2485 return retval;
2486 }
2487
2488 static int
2489 debug_to_reported_exec_events_per_exec_call (void)
2490 {
2491 int reported_exec_events;
2492
2493 reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
2494
2495 fprintf_unfiltered (gdb_stdlog,
2496 "target_reported_exec_events_per_exec_call () = %d\n",
2497 reported_exec_events);
2498
2499 return reported_exec_events;
2500 }
2501
2502 static int
2503 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2504 {
2505 int has_exited;
2506
2507 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2508
2509 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2510 pid, wait_status, *exit_status, has_exited);
2511
2512 return has_exited;
2513 }
2514
2515 static void
2516 debug_to_mourn_inferior (void)
2517 {
2518 debug_target.to_mourn_inferior ();
2519
2520 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2521 }
2522
2523 static int
2524 debug_to_can_run (void)
2525 {
2526 int retval;
2527
2528 retval = debug_target.to_can_run ();
2529
2530 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2531
2532 return retval;
2533 }
2534
2535 static void
2536 debug_to_notice_signals (ptid_t ptid)
2537 {
2538 debug_target.to_notice_signals (ptid);
2539
2540 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2541 PIDGET (ptid));
2542 }
2543
2544 static int
2545 debug_to_thread_alive (ptid_t ptid)
2546 {
2547 int retval;
2548
2549 retval = debug_target.to_thread_alive (ptid);
2550
2551 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2552 PIDGET (ptid), retval);
2553
2554 return retval;
2555 }
2556
2557 static void
2558 debug_to_find_new_threads (void)
2559 {
2560 debug_target.to_find_new_threads ();
2561
2562 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2563 }
2564
2565 static void
2566 debug_to_stop (void)
2567 {
2568 debug_target.to_stop ();
2569
2570 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2571 }
2572
2573 static void
2574 debug_to_rcmd (char *command,
2575 struct ui_file *outbuf)
2576 {
2577 debug_target.to_rcmd (command, outbuf);
2578 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2579 }
2580
2581 static struct symtab_and_line *
2582 debug_to_enable_exception_callback (enum exception_event_kind kind, int enable)
2583 {
2584 struct symtab_and_line *result;
2585 result = debug_target.to_enable_exception_callback (kind, enable);
2586 fprintf_unfiltered (gdb_stdlog,
2587 "target get_exception_callback_sal (%d, %d)\n",
2588 kind, enable);
2589 return result;
2590 }
2591
2592 static struct exception_event_record *
2593 debug_to_get_current_exception_event (void)
2594 {
2595 struct exception_event_record *result;
2596 result = debug_target.to_get_current_exception_event ();
2597 fprintf_unfiltered (gdb_stdlog, "target get_current_exception_event ()\n");
2598 return result;
2599 }
2600
2601 static char *
2602 debug_to_pid_to_exec_file (int pid)
2603 {
2604 char *exec_file;
2605
2606 exec_file = debug_target.to_pid_to_exec_file (pid);
2607
2608 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2609 pid, exec_file);
2610
2611 return exec_file;
2612 }
2613
2614 static void
2615 setup_target_debug (void)
2616 {
2617 memcpy (&debug_target, &current_target, sizeof debug_target);
2618
2619 current_target.to_open = debug_to_open;
2620 current_target.to_close = debug_to_close;
2621 current_target.to_attach = debug_to_attach;
2622 current_target.to_post_attach = debug_to_post_attach;
2623 current_target.to_detach = debug_to_detach;
2624 current_target.to_resume = debug_to_resume;
2625 current_target.to_wait = debug_to_wait;
2626 current_target.to_fetch_registers = debug_to_fetch_registers;
2627 current_target.to_store_registers = debug_to_store_registers;
2628 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2629 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
2630 current_target.to_files_info = debug_to_files_info;
2631 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2632 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2633 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2634 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2635 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2636 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2637 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2638 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2639 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2640 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
2641 current_target.to_terminal_init = debug_to_terminal_init;
2642 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2643 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2644 current_target.to_terminal_ours = debug_to_terminal_ours;
2645 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2646 current_target.to_terminal_info = debug_to_terminal_info;
2647 current_target.to_kill = debug_to_kill;
2648 current_target.to_load = debug_to_load;
2649 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2650 current_target.to_create_inferior = debug_to_create_inferior;
2651 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2652 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2653 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2654 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2655 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2656 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2657 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2658 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2659 current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
2660 current_target.to_has_exited = debug_to_has_exited;
2661 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2662 current_target.to_can_run = debug_to_can_run;
2663 current_target.to_notice_signals = debug_to_notice_signals;
2664 current_target.to_thread_alive = debug_to_thread_alive;
2665 current_target.to_find_new_threads = debug_to_find_new_threads;
2666 current_target.to_stop = debug_to_stop;
2667 current_target.to_rcmd = debug_to_rcmd;
2668 current_target.to_enable_exception_callback = debug_to_enable_exception_callback;
2669 current_target.to_get_current_exception_event = debug_to_get_current_exception_event;
2670 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2671 }
2672 \f
2673
2674 static char targ_desc[] =
2675 "Names of targets and files being debugged.\n\
2676 Shows the entire stack of targets currently in use (including the exec-file,\n\
2677 core-file, and process, if any), as well as the symbol file name.";
2678
2679 static void
2680 do_monitor_command (char *cmd,
2681 int from_tty)
2682 {
2683 if ((current_target.to_rcmd
2684 == (void (*) (char *, struct ui_file *)) tcomplain)
2685 || (current_target.to_rcmd == debug_to_rcmd
2686 && (debug_target.to_rcmd
2687 == (void (*) (char *, struct ui_file *)) tcomplain)))
2688 error (_("\"monitor\" command not supported by this target."));
2689 target_rcmd (cmd, gdb_stdtarg);
2690 }
2691
2692 void
2693 initialize_targets (void)
2694 {
2695 init_dummy_target ();
2696 push_target (&dummy_target);
2697
2698 add_info ("target", target_info, targ_desc);
2699 add_info ("files", target_info, targ_desc);
2700
2701 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
2702 Set target debugging."), _("\
2703 Show target debugging."), _("\
2704 When non-zero, target debugging is enabled. Higher numbers are more\n\
2705 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
2706 command."),
2707 NULL,
2708 show_targetdebug,
2709 &setdebuglist, &showdebuglist);
2710
2711 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2712 &trust_readonly, _("\
2713 Set mode for reading from readonly sections."), _("\
2714 Show mode for reading from readonly sections."), _("\
2715 When this mode is on, memory reads from readonly sections (such as .text)\n\
2716 will be read from the object file instead of from the target. This will\n\
2717 result in significant performance improvement for remote targets."),
2718 NULL,
2719 show_trust_readonly,
2720 &setlist, &showlist);
2721
2722 add_com ("monitor", class_obscure, do_monitor_command,
2723 _("Send a command to the remote monitor (remote targets only)."));
2724
2725 target_dcache = dcache_init ();
2726 }
This page took 0.081844 seconds and 5 git commands to generate.