Make target_terminal_inferior/ours almost nops on non-main UIs
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48
49 static void target_info (char *, int);
50
51 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
52
53 static void default_terminal_info (struct target_ops *, const char *, int);
54
55 static int default_watchpoint_addr_within_range (struct target_ops *,
56 CORE_ADDR, CORE_ADDR, int);
57
58 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
59 CORE_ADDR, int);
60
61 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
62
63 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
64 long lwp, long tid);
65
66 static int default_follow_fork (struct target_ops *self, int follow_child,
67 int detach_fork);
68
69 static void default_mourn_inferior (struct target_ops *self);
70
71 static int default_search_memory (struct target_ops *ops,
72 CORE_ADDR start_addr,
73 ULONGEST search_space_len,
74 const gdb_byte *pattern,
75 ULONGEST pattern_len,
76 CORE_ADDR *found_addrp);
77
78 static int default_verify_memory (struct target_ops *self,
79 const gdb_byte *data,
80 CORE_ADDR memaddr, ULONGEST size);
81
82 static struct address_space *default_thread_address_space
83 (struct target_ops *self, ptid_t ptid);
84
85 static void tcomplain (void) ATTRIBUTE_NORETURN;
86
87 static int return_zero (struct target_ops *);
88
89 static int return_zero_has_execution (struct target_ops *, ptid_t);
90
91 static void target_command (char *, int);
92
93 static struct target_ops *find_default_run_target (char *);
94
95 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
96 ptid_t ptid);
97
98 static int dummy_find_memory_regions (struct target_ops *self,
99 find_memory_region_ftype ignore1,
100 void *ignore2);
101
102 static char *dummy_make_corefile_notes (struct target_ops *self,
103 bfd *ignore1, int *ignore2);
104
105 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
106
107 static enum exec_direction_kind default_execution_direction
108 (struct target_ops *self);
109
110 static struct target_ops debug_target;
111
112 #include "target-delegates.c"
113
114 static void init_dummy_target (void);
115
116 static void update_current_target (void);
117
118 /* Vector of existing target structures. */
119 typedef struct target_ops *target_ops_p;
120 DEF_VEC_P (target_ops_p);
121 static VEC (target_ops_p) *target_structs;
122
123 /* The initial current target, so that there is always a semi-valid
124 current target. */
125
126 static struct target_ops dummy_target;
127
128 /* Top of target stack. */
129
130 static struct target_ops *target_stack;
131
132 /* The target structure we are currently using to talk to a process
133 or file or whatever "inferior" we have. */
134
135 struct target_ops current_target;
136
137 /* Command list for target. */
138
139 static struct cmd_list_element *targetlist = NULL;
140
141 /* Nonzero if we should trust readonly sections from the
142 executable when reading memory. */
143
144 static int trust_readonly = 0;
145
146 /* Nonzero if we should show true memory content including
147 memory breakpoint inserted by gdb. */
148
149 static int show_memory_breakpoints = 0;
150
151 /* These globals control whether GDB attempts to perform these
152 operations; they are useful for targets that need to prevent
153 inadvertant disruption, such as in non-stop mode. */
154
155 int may_write_registers = 1;
156
157 int may_write_memory = 1;
158
159 int may_insert_breakpoints = 1;
160
161 int may_insert_tracepoints = 1;
162
163 int may_insert_fast_tracepoints = 1;
164
165 int may_stop = 1;
166
167 /* Non-zero if we want to see trace of target level stuff. */
168
169 static unsigned int targetdebug = 0;
170
171 static void
172 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
173 {
174 update_current_target ();
175 }
176
177 static void
178 show_targetdebug (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
182 }
183
184 static void setup_target_debug (void);
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 /* Default target_has_* methods for process_stratum targets. */
196
197 int
198 default_child_has_all_memory (struct target_ops *ops)
199 {
200 /* If no inferior selected, then we can't read memory here. */
201 if (ptid_equal (inferior_ptid, null_ptid))
202 return 0;
203
204 return 1;
205 }
206
207 int
208 default_child_has_memory (struct target_ops *ops)
209 {
210 /* If no inferior selected, then we can't read memory here. */
211 if (ptid_equal (inferior_ptid, null_ptid))
212 return 0;
213
214 return 1;
215 }
216
217 int
218 default_child_has_stack (struct target_ops *ops)
219 {
220 /* If no inferior selected, there's no stack. */
221 if (ptid_equal (inferior_ptid, null_ptid))
222 return 0;
223
224 return 1;
225 }
226
227 int
228 default_child_has_registers (struct target_ops *ops)
229 {
230 /* Can't read registers from no inferior. */
231 if (ptid_equal (inferior_ptid, null_ptid))
232 return 0;
233
234 return 1;
235 }
236
237 int
238 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
239 {
240 /* If there's no thread selected, then we can't make it run through
241 hoops. */
242 if (ptid_equal (the_ptid, null_ptid))
243 return 0;
244
245 return 1;
246 }
247
248
249 int
250 target_has_all_memory_1 (void)
251 {
252 struct target_ops *t;
253
254 for (t = current_target.beneath; t != NULL; t = t->beneath)
255 if (t->to_has_all_memory (t))
256 return 1;
257
258 return 0;
259 }
260
261 int
262 target_has_memory_1 (void)
263 {
264 struct target_ops *t;
265
266 for (t = current_target.beneath; t != NULL; t = t->beneath)
267 if (t->to_has_memory (t))
268 return 1;
269
270 return 0;
271 }
272
273 int
274 target_has_stack_1 (void)
275 {
276 struct target_ops *t;
277
278 for (t = current_target.beneath; t != NULL; t = t->beneath)
279 if (t->to_has_stack (t))
280 return 1;
281
282 return 0;
283 }
284
285 int
286 target_has_registers_1 (void)
287 {
288 struct target_ops *t;
289
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_registers (t))
292 return 1;
293
294 return 0;
295 }
296
297 int
298 target_has_execution_1 (ptid_t the_ptid)
299 {
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_execution (t, the_ptid))
304 return 1;
305
306 return 0;
307 }
308
309 int
310 target_has_execution_current (void)
311 {
312 return target_has_execution_1 (inferior_ptid);
313 }
314
315 /* Complete initialization of T. This ensures that various fields in
316 T are set, if needed by the target implementation. */
317
318 void
319 complete_target_initialization (struct target_ops *t)
320 {
321 /* Provide default values for all "must have" methods. */
322
323 if (t->to_has_all_memory == NULL)
324 t->to_has_all_memory = return_zero;
325
326 if (t->to_has_memory == NULL)
327 t->to_has_memory = return_zero;
328
329 if (t->to_has_stack == NULL)
330 t->to_has_stack = return_zero;
331
332 if (t->to_has_registers == NULL)
333 t->to_has_registers = return_zero;
334
335 if (t->to_has_execution == NULL)
336 t->to_has_execution = return_zero_has_execution;
337
338 /* These methods can be called on an unpushed target and so require
339 a default implementation if the target might plausibly be the
340 default run target. */
341 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
342 && t->to_supports_non_stop != NULL));
343
344 install_delegators (t);
345 }
346
347 /* This is used to implement the various target commands. */
348
349 static void
350 open_target (char *args, int from_tty, struct cmd_list_element *command)
351 {
352 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
353
354 if (targetdebug)
355 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
356 ops->to_shortname);
357
358 ops->to_open (args, from_tty);
359
360 if (targetdebug)
361 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
362 ops->to_shortname, args, from_tty);
363 }
364
365 /* Add possible target architecture T to the list and add a new
366 command 'target T->to_shortname'. Set COMPLETER as the command's
367 completer if not NULL. */
368
369 void
370 add_target_with_completer (struct target_ops *t,
371 completer_ftype *completer)
372 {
373 struct cmd_list_element *c;
374
375 complete_target_initialization (t);
376
377 VEC_safe_push (target_ops_p, target_structs, t);
378
379 if (targetlist == NULL)
380 add_prefix_cmd ("target", class_run, target_command, _("\
381 Connect to a target machine or process.\n\
382 The first argument is the type or protocol of the target machine.\n\
383 Remaining arguments are interpreted by the target protocol. For more\n\
384 information on the arguments for a particular protocol, type\n\
385 `help target ' followed by the protocol name."),
386 &targetlist, "target ", 0, &cmdlist);
387 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
388 set_cmd_sfunc (c, open_target);
389 set_cmd_context (c, t);
390 if (completer != NULL)
391 set_cmd_completer (c, completer);
392 }
393
394 /* Add a possible target architecture to the list. */
395
396 void
397 add_target (struct target_ops *t)
398 {
399 add_target_with_completer (t, NULL);
400 }
401
402 /* See target.h. */
403
404 void
405 add_deprecated_target_alias (struct target_ops *t, char *alias)
406 {
407 struct cmd_list_element *c;
408 char *alt;
409
410 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
411 see PR cli/15104. */
412 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
413 set_cmd_sfunc (c, open_target);
414 set_cmd_context (c, t);
415 alt = xstrprintf ("target %s", t->to_shortname);
416 deprecate_cmd (c, alt);
417 }
418
419 /* Stub functions */
420
421 void
422 target_kill (void)
423 {
424 current_target.to_kill (&current_target);
425 }
426
427 void
428 target_load (const char *arg, int from_tty)
429 {
430 target_dcache_invalidate ();
431 (*current_target.to_load) (&current_target, arg, from_tty);
432 }
433
434 /* Possible terminal states. */
435
436 enum terminal_state
437 {
438 /* The inferior's terminal settings are in effect. */
439 terminal_is_inferior = 0,
440
441 /* Some of our terminal settings are in effect, enough to get
442 proper output. */
443 terminal_is_ours_for_output = 1,
444
445 /* Our terminal settings are in effect, for output and input. */
446 terminal_is_ours = 2
447 };
448
449 static enum terminal_state terminal_state = terminal_is_ours;
450
451 /* See target.h. */
452
453 void
454 target_terminal_init (void)
455 {
456 (*current_target.to_terminal_init) (&current_target);
457
458 terminal_state = terminal_is_ours;
459 }
460
461 /* See target.h. */
462
463 int
464 target_terminal_is_inferior (void)
465 {
466 return (terminal_state == terminal_is_inferior);
467 }
468
469 /* See target.h. */
470
471 int
472 target_terminal_is_ours (void)
473 {
474 return (terminal_state == terminal_is_ours);
475 }
476
477 /* See target.h. */
478
479 void
480 target_terminal_inferior (void)
481 {
482 struct ui *ui = current_ui;
483
484 /* A background resume (``run&'') should leave GDB in control of the
485 terminal. Use target_can_async_p, not target_is_async_p, since at
486 this point the target is not async yet. However, if sync_execution
487 is not set, we know it will become async prior to resume. */
488 if (target_can_async_p () && !sync_execution)
489 return;
490
491 /* Always delete the current UI's input file handler, regardless of
492 terminal_state, because terminal_state is only valid for the main
493 UI. */
494 delete_file_handler (ui->input_fd);
495
496 /* Since we always run the inferior in the main console (unless "set
497 inferior-tty" is in effect), when some UI other than the main one
498 calls target_terminal_inferior/target_terminal_inferior, then we
499 only register/unregister the UI's input from the event loop, but
500 leave the main UI's terminal settings as is. */
501 if (ui != main_ui)
502 return;
503
504 if (terminal_state == terminal_is_inferior)
505 return;
506
507 /* If GDB is resuming the inferior in the foreground, install
508 inferior's terminal modes. */
509 (*current_target.to_terminal_inferior) (&current_target);
510 terminal_state = terminal_is_inferior;
511
512 /* If the user hit C-c before, pretend that it was hit right
513 here. */
514 if (check_quit_flag ())
515 target_pass_ctrlc ();
516 }
517
518 /* See target.h. */
519
520 void
521 target_terminal_ours (void)
522 {
523 struct ui *ui = current_ui;
524
525 /* Always add the current UI's input file handler, regardless of
526 terminal_state, because terminal_state is only valid for the main
527 UI. */
528 add_file_handler (ui->input_fd, stdin_event_handler, ui);
529
530 /* See target_terminal_inferior. */
531 if (ui != main_ui)
532 return;
533
534 if (terminal_state == terminal_is_ours)
535 return;
536
537 (*current_target.to_terminal_ours) (&current_target);
538 terminal_state = terminal_is_ours;
539 }
540
541 /* See target.h. */
542
543 void
544 target_terminal_ours_for_output (void)
545 {
546 struct ui *ui = current_ui;
547
548 /* See target_terminal_inferior. */
549 if (ui != main_ui)
550 return;
551
552 if (terminal_state != terminal_is_inferior)
553 return;
554 (*current_target.to_terminal_ours_for_output) (&current_target);
555 terminal_state = terminal_is_ours_for_output;
556 }
557
558 /* See target.h. */
559
560 int
561 target_supports_terminal_ours (void)
562 {
563 struct target_ops *t;
564
565 for (t = current_target.beneath; t != NULL; t = t->beneath)
566 {
567 if (t->to_terminal_ours != delegate_terminal_ours
568 && t->to_terminal_ours != tdefault_terminal_ours)
569 return 1;
570 }
571
572 return 0;
573 }
574
575 /* Restore the terminal to its previous state (helper for
576 make_cleanup_restore_target_terminal). */
577
578 static void
579 cleanup_restore_target_terminal (void *arg)
580 {
581 enum terminal_state *previous_state = (enum terminal_state *) arg;
582
583 switch (*previous_state)
584 {
585 case terminal_is_ours:
586 target_terminal_ours ();
587 break;
588 case terminal_is_ours_for_output:
589 target_terminal_ours_for_output ();
590 break;
591 case terminal_is_inferior:
592 target_terminal_inferior ();
593 break;
594 }
595 }
596
597 /* See target.h. */
598
599 struct cleanup *
600 make_cleanup_restore_target_terminal (void)
601 {
602 enum terminal_state *ts = XNEW (enum terminal_state);
603
604 *ts = terminal_state;
605
606 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
607 }
608
609 static void
610 tcomplain (void)
611 {
612 error (_("You can't do that when your target is `%s'"),
613 current_target.to_shortname);
614 }
615
616 void
617 noprocess (void)
618 {
619 error (_("You can't do that without a process to debug."));
620 }
621
622 static void
623 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
624 {
625 printf_unfiltered (_("No saved terminal information.\n"));
626 }
627
628 /* A default implementation for the to_get_ada_task_ptid target method.
629
630 This function builds the PTID by using both LWP and TID as part of
631 the PTID lwp and tid elements. The pid used is the pid of the
632 inferior_ptid. */
633
634 static ptid_t
635 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
636 {
637 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
638 }
639
640 static enum exec_direction_kind
641 default_execution_direction (struct target_ops *self)
642 {
643 if (!target_can_execute_reverse)
644 return EXEC_FORWARD;
645 else if (!target_can_async_p ())
646 return EXEC_FORWARD;
647 else
648 gdb_assert_not_reached ("\
649 to_execution_direction must be implemented for reverse async");
650 }
651
652 /* Go through the target stack from top to bottom, copying over zero
653 entries in current_target, then filling in still empty entries. In
654 effect, we are doing class inheritance through the pushed target
655 vectors.
656
657 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
658 is currently implemented, is that it discards any knowledge of
659 which target an inherited method originally belonged to.
660 Consequently, new new target methods should instead explicitly and
661 locally search the target stack for the target that can handle the
662 request. */
663
664 static void
665 update_current_target (void)
666 {
667 struct target_ops *t;
668
669 /* First, reset current's contents. */
670 memset (&current_target, 0, sizeof (current_target));
671
672 /* Install the delegators. */
673 install_delegators (&current_target);
674
675 current_target.to_stratum = target_stack->to_stratum;
676
677 #define INHERIT(FIELD, TARGET) \
678 if (!current_target.FIELD) \
679 current_target.FIELD = (TARGET)->FIELD
680
681 /* Do not add any new INHERITs here. Instead, use the delegation
682 mechanism provided by make-target-delegates. */
683 for (t = target_stack; t; t = t->beneath)
684 {
685 INHERIT (to_shortname, t);
686 INHERIT (to_longname, t);
687 INHERIT (to_attach_no_wait, t);
688 INHERIT (to_have_steppable_watchpoint, t);
689 INHERIT (to_have_continuable_watchpoint, t);
690 INHERIT (to_has_thread_control, t);
691 }
692 #undef INHERIT
693
694 /* Finally, position the target-stack beneath the squashed
695 "current_target". That way code looking for a non-inherited
696 target method can quickly and simply find it. */
697 current_target.beneath = target_stack;
698
699 if (targetdebug)
700 setup_target_debug ();
701 }
702
703 /* Push a new target type into the stack of the existing target accessors,
704 possibly superseding some of the existing accessors.
705
706 Rather than allow an empty stack, we always have the dummy target at
707 the bottom stratum, so we can call the function vectors without
708 checking them. */
709
710 void
711 push_target (struct target_ops *t)
712 {
713 struct target_ops **cur;
714
715 /* Check magic number. If wrong, it probably means someone changed
716 the struct definition, but not all the places that initialize one. */
717 if (t->to_magic != OPS_MAGIC)
718 {
719 fprintf_unfiltered (gdb_stderr,
720 "Magic number of %s target struct wrong\n",
721 t->to_shortname);
722 internal_error (__FILE__, __LINE__,
723 _("failed internal consistency check"));
724 }
725
726 /* Find the proper stratum to install this target in. */
727 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
728 {
729 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
730 break;
731 }
732
733 /* If there's already targets at this stratum, remove them. */
734 /* FIXME: cagney/2003-10-15: I think this should be popping all
735 targets to CUR, and not just those at this stratum level. */
736 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
737 {
738 /* There's already something at this stratum level. Close it,
739 and un-hook it from the stack. */
740 struct target_ops *tmp = (*cur);
741
742 (*cur) = (*cur)->beneath;
743 tmp->beneath = NULL;
744 target_close (tmp);
745 }
746
747 /* We have removed all targets in our stratum, now add the new one. */
748 t->beneath = (*cur);
749 (*cur) = t;
750
751 update_current_target ();
752 }
753
754 /* Remove a target_ops vector from the stack, wherever it may be.
755 Return how many times it was removed (0 or 1). */
756
757 int
758 unpush_target (struct target_ops *t)
759 {
760 struct target_ops **cur;
761 struct target_ops *tmp;
762
763 if (t->to_stratum == dummy_stratum)
764 internal_error (__FILE__, __LINE__,
765 _("Attempt to unpush the dummy target"));
766
767 /* Look for the specified target. Note that we assume that a target
768 can only occur once in the target stack. */
769
770 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
771 {
772 if ((*cur) == t)
773 break;
774 }
775
776 /* If we don't find target_ops, quit. Only open targets should be
777 closed. */
778 if ((*cur) == NULL)
779 return 0;
780
781 /* Unchain the target. */
782 tmp = (*cur);
783 (*cur) = (*cur)->beneath;
784 tmp->beneath = NULL;
785
786 update_current_target ();
787
788 /* Finally close the target. Note we do this after unchaining, so
789 any target method calls from within the target_close
790 implementation don't end up in T anymore. */
791 target_close (t);
792
793 return 1;
794 }
795
796 /* Unpush TARGET and assert that it worked. */
797
798 static void
799 unpush_target_and_assert (struct target_ops *target)
800 {
801 if (!unpush_target (target))
802 {
803 fprintf_unfiltered (gdb_stderr,
804 "pop_all_targets couldn't find target %s\n",
805 target->to_shortname);
806 internal_error (__FILE__, __LINE__,
807 _("failed internal consistency check"));
808 }
809 }
810
811 void
812 pop_all_targets_above (enum strata above_stratum)
813 {
814 while ((int) (current_target.to_stratum) > (int) above_stratum)
815 unpush_target_and_assert (target_stack);
816 }
817
818 /* See target.h. */
819
820 void
821 pop_all_targets_at_and_above (enum strata stratum)
822 {
823 while ((int) (current_target.to_stratum) >= (int) stratum)
824 unpush_target_and_assert (target_stack);
825 }
826
827 void
828 pop_all_targets (void)
829 {
830 pop_all_targets_above (dummy_stratum);
831 }
832
833 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
834
835 int
836 target_is_pushed (struct target_ops *t)
837 {
838 struct target_ops *cur;
839
840 /* Check magic number. If wrong, it probably means someone changed
841 the struct definition, but not all the places that initialize one. */
842 if (t->to_magic != OPS_MAGIC)
843 {
844 fprintf_unfiltered (gdb_stderr,
845 "Magic number of %s target struct wrong\n",
846 t->to_shortname);
847 internal_error (__FILE__, __LINE__,
848 _("failed internal consistency check"));
849 }
850
851 for (cur = target_stack; cur != NULL; cur = cur->beneath)
852 if (cur == t)
853 return 1;
854
855 return 0;
856 }
857
858 /* Default implementation of to_get_thread_local_address. */
859
860 static void
861 generic_tls_error (void)
862 {
863 throw_error (TLS_GENERIC_ERROR,
864 _("Cannot find thread-local variables on this target"));
865 }
866
867 /* Using the objfile specified in OBJFILE, find the address for the
868 current thread's thread-local storage with offset OFFSET. */
869 CORE_ADDR
870 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
871 {
872 volatile CORE_ADDR addr = 0;
873 struct target_ops *target = &current_target;
874
875 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
876 {
877 ptid_t ptid = inferior_ptid;
878
879 TRY
880 {
881 CORE_ADDR lm_addr;
882
883 /* Fetch the load module address for this objfile. */
884 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
885 objfile);
886
887 addr = target->to_get_thread_local_address (target, ptid,
888 lm_addr, offset);
889 }
890 /* If an error occurred, print TLS related messages here. Otherwise,
891 throw the error to some higher catcher. */
892 CATCH (ex, RETURN_MASK_ALL)
893 {
894 int objfile_is_library = (objfile->flags & OBJF_SHARED);
895
896 switch (ex.error)
897 {
898 case TLS_NO_LIBRARY_SUPPORT_ERROR:
899 error (_("Cannot find thread-local variables "
900 "in this thread library."));
901 break;
902 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
903 if (objfile_is_library)
904 error (_("Cannot find shared library `%s' in dynamic"
905 " linker's load module list"), objfile_name (objfile));
906 else
907 error (_("Cannot find executable file `%s' in dynamic"
908 " linker's load module list"), objfile_name (objfile));
909 break;
910 case TLS_NOT_ALLOCATED_YET_ERROR:
911 if (objfile_is_library)
912 error (_("The inferior has not yet allocated storage for"
913 " thread-local variables in\n"
914 "the shared library `%s'\n"
915 "for %s"),
916 objfile_name (objfile), target_pid_to_str (ptid));
917 else
918 error (_("The inferior has not yet allocated storage for"
919 " thread-local variables in\n"
920 "the executable `%s'\n"
921 "for %s"),
922 objfile_name (objfile), target_pid_to_str (ptid));
923 break;
924 case TLS_GENERIC_ERROR:
925 if (objfile_is_library)
926 error (_("Cannot find thread-local storage for %s, "
927 "shared library %s:\n%s"),
928 target_pid_to_str (ptid),
929 objfile_name (objfile), ex.message);
930 else
931 error (_("Cannot find thread-local storage for %s, "
932 "executable file %s:\n%s"),
933 target_pid_to_str (ptid),
934 objfile_name (objfile), ex.message);
935 break;
936 default:
937 throw_exception (ex);
938 break;
939 }
940 }
941 END_CATCH
942 }
943 /* It wouldn't be wrong here to try a gdbarch method, too; finding
944 TLS is an ABI-specific thing. But we don't do that yet. */
945 else
946 error (_("Cannot find thread-local variables on this target"));
947
948 return addr;
949 }
950
951 const char *
952 target_xfer_status_to_string (enum target_xfer_status status)
953 {
954 #define CASE(X) case X: return #X
955 switch (status)
956 {
957 CASE(TARGET_XFER_E_IO);
958 CASE(TARGET_XFER_UNAVAILABLE);
959 default:
960 return "<unknown>";
961 }
962 #undef CASE
963 };
964
965
966 #undef MIN
967 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
968
969 /* target_read_string -- read a null terminated string, up to LEN bytes,
970 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
971 Set *STRING to a pointer to malloc'd memory containing the data; the caller
972 is responsible for freeing it. Return the number of bytes successfully
973 read. */
974
975 int
976 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
977 {
978 int tlen, offset, i;
979 gdb_byte buf[4];
980 int errcode = 0;
981 char *buffer;
982 int buffer_allocated;
983 char *bufptr;
984 unsigned int nbytes_read = 0;
985
986 gdb_assert (string);
987
988 /* Small for testing. */
989 buffer_allocated = 4;
990 buffer = (char *) xmalloc (buffer_allocated);
991 bufptr = buffer;
992
993 while (len > 0)
994 {
995 tlen = MIN (len, 4 - (memaddr & 3));
996 offset = memaddr & 3;
997
998 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
999 if (errcode != 0)
1000 {
1001 /* The transfer request might have crossed the boundary to an
1002 unallocated region of memory. Retry the transfer, requesting
1003 a single byte. */
1004 tlen = 1;
1005 offset = 0;
1006 errcode = target_read_memory (memaddr, buf, 1);
1007 if (errcode != 0)
1008 goto done;
1009 }
1010
1011 if (bufptr - buffer + tlen > buffer_allocated)
1012 {
1013 unsigned int bytes;
1014
1015 bytes = bufptr - buffer;
1016 buffer_allocated *= 2;
1017 buffer = (char *) xrealloc (buffer, buffer_allocated);
1018 bufptr = buffer + bytes;
1019 }
1020
1021 for (i = 0; i < tlen; i++)
1022 {
1023 *bufptr++ = buf[i + offset];
1024 if (buf[i + offset] == '\000')
1025 {
1026 nbytes_read += i + 1;
1027 goto done;
1028 }
1029 }
1030
1031 memaddr += tlen;
1032 len -= tlen;
1033 nbytes_read += tlen;
1034 }
1035 done:
1036 *string = buffer;
1037 if (errnop != NULL)
1038 *errnop = errcode;
1039 return nbytes_read;
1040 }
1041
1042 struct target_section_table *
1043 target_get_section_table (struct target_ops *target)
1044 {
1045 return (*target->to_get_section_table) (target);
1046 }
1047
1048 /* Find a section containing ADDR. */
1049
1050 struct target_section *
1051 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1052 {
1053 struct target_section_table *table = target_get_section_table (target);
1054 struct target_section *secp;
1055
1056 if (table == NULL)
1057 return NULL;
1058
1059 for (secp = table->sections; secp < table->sections_end; secp++)
1060 {
1061 if (addr >= secp->addr && addr < secp->endaddr)
1062 return secp;
1063 }
1064 return NULL;
1065 }
1066
1067
1068 /* Helper for the memory xfer routines. Checks the attributes of the
1069 memory region of MEMADDR against the read or write being attempted.
1070 If the access is permitted returns true, otherwise returns false.
1071 REGION_P is an optional output parameter. If not-NULL, it is
1072 filled with a pointer to the memory region of MEMADDR. REG_LEN
1073 returns LEN trimmed to the end of the region. This is how much the
1074 caller can continue requesting, if the access is permitted. A
1075 single xfer request must not straddle memory region boundaries. */
1076
1077 static int
1078 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1079 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1080 struct mem_region **region_p)
1081 {
1082 struct mem_region *region;
1083
1084 region = lookup_mem_region (memaddr);
1085
1086 if (region_p != NULL)
1087 *region_p = region;
1088
1089 switch (region->attrib.mode)
1090 {
1091 case MEM_RO:
1092 if (writebuf != NULL)
1093 return 0;
1094 break;
1095
1096 case MEM_WO:
1097 if (readbuf != NULL)
1098 return 0;
1099 break;
1100
1101 case MEM_FLASH:
1102 /* We only support writing to flash during "load" for now. */
1103 if (writebuf != NULL)
1104 error (_("Writing to flash memory forbidden in this context"));
1105 break;
1106
1107 case MEM_NONE:
1108 return 0;
1109 }
1110
1111 /* region->hi == 0 means there's no upper bound. */
1112 if (memaddr + len < region->hi || region->hi == 0)
1113 *reg_len = len;
1114 else
1115 *reg_len = region->hi - memaddr;
1116
1117 return 1;
1118 }
1119
1120 /* Read memory from more than one valid target. A core file, for
1121 instance, could have some of memory but delegate other bits to
1122 the target below it. So, we must manually try all targets. */
1123
1124 enum target_xfer_status
1125 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1126 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1127 ULONGEST *xfered_len)
1128 {
1129 enum target_xfer_status res;
1130
1131 do
1132 {
1133 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1134 readbuf, writebuf, memaddr, len,
1135 xfered_len);
1136 if (res == TARGET_XFER_OK)
1137 break;
1138
1139 /* Stop if the target reports that the memory is not available. */
1140 if (res == TARGET_XFER_UNAVAILABLE)
1141 break;
1142
1143 /* We want to continue past core files to executables, but not
1144 past a running target's memory. */
1145 if (ops->to_has_all_memory (ops))
1146 break;
1147
1148 ops = ops->beneath;
1149 }
1150 while (ops != NULL);
1151
1152 /* The cache works at the raw memory level. Make sure the cache
1153 gets updated with raw contents no matter what kind of memory
1154 object was originally being written. Note we do write-through
1155 first, so that if it fails, we don't write to the cache contents
1156 that never made it to the target. */
1157 if (writebuf != NULL
1158 && !ptid_equal (inferior_ptid, null_ptid)
1159 && target_dcache_init_p ()
1160 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1161 {
1162 DCACHE *dcache = target_dcache_get ();
1163
1164 /* Note that writing to an area of memory which wasn't present
1165 in the cache doesn't cause it to be loaded in. */
1166 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1167 }
1168
1169 return res;
1170 }
1171
1172 /* Perform a partial memory transfer.
1173 For docs see target.h, to_xfer_partial. */
1174
1175 static enum target_xfer_status
1176 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1177 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1178 ULONGEST len, ULONGEST *xfered_len)
1179 {
1180 enum target_xfer_status res;
1181 ULONGEST reg_len;
1182 struct mem_region *region;
1183 struct inferior *inf;
1184
1185 /* For accesses to unmapped overlay sections, read directly from
1186 files. Must do this first, as MEMADDR may need adjustment. */
1187 if (readbuf != NULL && overlay_debugging)
1188 {
1189 struct obj_section *section = find_pc_overlay (memaddr);
1190
1191 if (pc_in_unmapped_range (memaddr, section))
1192 {
1193 struct target_section_table *table
1194 = target_get_section_table (ops);
1195 const char *section_name = section->the_bfd_section->name;
1196
1197 memaddr = overlay_mapped_address (memaddr, section);
1198 return section_table_xfer_memory_partial (readbuf, writebuf,
1199 memaddr, len, xfered_len,
1200 table->sections,
1201 table->sections_end,
1202 section_name);
1203 }
1204 }
1205
1206 /* Try the executable files, if "trust-readonly-sections" is set. */
1207 if (readbuf != NULL && trust_readonly)
1208 {
1209 struct target_section *secp;
1210 struct target_section_table *table;
1211
1212 secp = target_section_by_addr (ops, memaddr);
1213 if (secp != NULL
1214 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1215 secp->the_bfd_section)
1216 & SEC_READONLY))
1217 {
1218 table = target_get_section_table (ops);
1219 return section_table_xfer_memory_partial (readbuf, writebuf,
1220 memaddr, len, xfered_len,
1221 table->sections,
1222 table->sections_end,
1223 NULL);
1224 }
1225 }
1226
1227 /* Try GDB's internal data cache. */
1228
1229 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1230 &region))
1231 return TARGET_XFER_E_IO;
1232
1233 if (!ptid_equal (inferior_ptid, null_ptid))
1234 inf = find_inferior_ptid (inferior_ptid);
1235 else
1236 inf = NULL;
1237
1238 if (inf != NULL
1239 && readbuf != NULL
1240 /* The dcache reads whole cache lines; that doesn't play well
1241 with reading from a trace buffer, because reading outside of
1242 the collected memory range fails. */
1243 && get_traceframe_number () == -1
1244 && (region->attrib.cache
1245 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1246 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1247 {
1248 DCACHE *dcache = target_dcache_get_or_init ();
1249
1250 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1251 reg_len, xfered_len);
1252 }
1253
1254 /* If none of those methods found the memory we wanted, fall back
1255 to a target partial transfer. Normally a single call to
1256 to_xfer_partial is enough; if it doesn't recognize an object
1257 it will call the to_xfer_partial of the next target down.
1258 But for memory this won't do. Memory is the only target
1259 object which can be read from more than one valid target.
1260 A core file, for instance, could have some of memory but
1261 delegate other bits to the target below it. So, we must
1262 manually try all targets. */
1263
1264 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1265 xfered_len);
1266
1267 /* If we still haven't got anything, return the last error. We
1268 give up. */
1269 return res;
1270 }
1271
1272 /* Perform a partial memory transfer. For docs see target.h,
1273 to_xfer_partial. */
1274
1275 static enum target_xfer_status
1276 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1277 gdb_byte *readbuf, const gdb_byte *writebuf,
1278 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1279 {
1280 enum target_xfer_status res;
1281
1282 /* Zero length requests are ok and require no work. */
1283 if (len == 0)
1284 return TARGET_XFER_EOF;
1285
1286 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1287 breakpoint insns, thus hiding out from higher layers whether
1288 there are software breakpoints inserted in the code stream. */
1289 if (readbuf != NULL)
1290 {
1291 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1292 xfered_len);
1293
1294 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1295 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1296 }
1297 else
1298 {
1299 gdb_byte *buf;
1300 struct cleanup *old_chain;
1301
1302 /* A large write request is likely to be partially satisfied
1303 by memory_xfer_partial_1. We will continually malloc
1304 and free a copy of the entire write request for breakpoint
1305 shadow handling even though we only end up writing a small
1306 subset of it. Cap writes to 4KB to mitigate this. */
1307 len = min (4096, len);
1308
1309 buf = (gdb_byte *) xmalloc (len);
1310 old_chain = make_cleanup (xfree, buf);
1311 memcpy (buf, writebuf, len);
1312
1313 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1314 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1315 xfered_len);
1316
1317 do_cleanups (old_chain);
1318 }
1319
1320 return res;
1321 }
1322
1323 static void
1324 restore_show_memory_breakpoints (void *arg)
1325 {
1326 show_memory_breakpoints = (uintptr_t) arg;
1327 }
1328
1329 struct cleanup *
1330 make_show_memory_breakpoints_cleanup (int show)
1331 {
1332 int current = show_memory_breakpoints;
1333
1334 show_memory_breakpoints = show;
1335 return make_cleanup (restore_show_memory_breakpoints,
1336 (void *) (uintptr_t) current);
1337 }
1338
1339 /* For docs see target.h, to_xfer_partial. */
1340
1341 enum target_xfer_status
1342 target_xfer_partial (struct target_ops *ops,
1343 enum target_object object, const char *annex,
1344 gdb_byte *readbuf, const gdb_byte *writebuf,
1345 ULONGEST offset, ULONGEST len,
1346 ULONGEST *xfered_len)
1347 {
1348 enum target_xfer_status retval;
1349
1350 gdb_assert (ops->to_xfer_partial != NULL);
1351
1352 /* Transfer is done when LEN is zero. */
1353 if (len == 0)
1354 return TARGET_XFER_EOF;
1355
1356 if (writebuf && !may_write_memory)
1357 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1358 core_addr_to_string_nz (offset), plongest (len));
1359
1360 *xfered_len = 0;
1361
1362 /* If this is a memory transfer, let the memory-specific code
1363 have a look at it instead. Memory transfers are more
1364 complicated. */
1365 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1366 || object == TARGET_OBJECT_CODE_MEMORY)
1367 retval = memory_xfer_partial (ops, object, readbuf,
1368 writebuf, offset, len, xfered_len);
1369 else if (object == TARGET_OBJECT_RAW_MEMORY)
1370 {
1371 /* Skip/avoid accessing the target if the memory region
1372 attributes block the access. Check this here instead of in
1373 raw_memory_xfer_partial as otherwise we'd end up checking
1374 this twice in the case of the memory_xfer_partial path is
1375 taken; once before checking the dcache, and another in the
1376 tail call to raw_memory_xfer_partial. */
1377 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1378 NULL))
1379 return TARGET_XFER_E_IO;
1380
1381 /* Request the normal memory object from other layers. */
1382 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1383 xfered_len);
1384 }
1385 else
1386 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1387 writebuf, offset, len, xfered_len);
1388
1389 if (targetdebug)
1390 {
1391 const unsigned char *myaddr = NULL;
1392
1393 fprintf_unfiltered (gdb_stdlog,
1394 "%s:target_xfer_partial "
1395 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1396 ops->to_shortname,
1397 (int) object,
1398 (annex ? annex : "(null)"),
1399 host_address_to_string (readbuf),
1400 host_address_to_string (writebuf),
1401 core_addr_to_string_nz (offset),
1402 pulongest (len), retval,
1403 pulongest (*xfered_len));
1404
1405 if (readbuf)
1406 myaddr = readbuf;
1407 if (writebuf)
1408 myaddr = writebuf;
1409 if (retval == TARGET_XFER_OK && myaddr != NULL)
1410 {
1411 int i;
1412
1413 fputs_unfiltered (", bytes =", gdb_stdlog);
1414 for (i = 0; i < *xfered_len; i++)
1415 {
1416 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1417 {
1418 if (targetdebug < 2 && i > 0)
1419 {
1420 fprintf_unfiltered (gdb_stdlog, " ...");
1421 break;
1422 }
1423 fprintf_unfiltered (gdb_stdlog, "\n");
1424 }
1425
1426 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1427 }
1428 }
1429
1430 fputc_unfiltered ('\n', gdb_stdlog);
1431 }
1432
1433 /* Check implementations of to_xfer_partial update *XFERED_LEN
1434 properly. Do assertion after printing debug messages, so that we
1435 can find more clues on assertion failure from debugging messages. */
1436 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1437 gdb_assert (*xfered_len > 0);
1438
1439 return retval;
1440 }
1441
1442 /* Read LEN bytes of target memory at address MEMADDR, placing the
1443 results in GDB's memory at MYADDR. Returns either 0 for success or
1444 -1 if any error occurs.
1445
1446 If an error occurs, no guarantee is made about the contents of the data at
1447 MYADDR. In particular, the caller should not depend upon partial reads
1448 filling the buffer with good data. There is no way for the caller to know
1449 how much good data might have been transfered anyway. Callers that can
1450 deal with partial reads should call target_read (which will retry until
1451 it makes no progress, and then return how much was transferred). */
1452
1453 int
1454 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1455 {
1456 /* Dispatch to the topmost target, not the flattened current_target.
1457 Memory accesses check target->to_has_(all_)memory, and the
1458 flattened target doesn't inherit those. */
1459 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1460 myaddr, memaddr, len) == len)
1461 return 0;
1462 else
1463 return -1;
1464 }
1465
1466 /* See target/target.h. */
1467
1468 int
1469 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1470 {
1471 gdb_byte buf[4];
1472 int r;
1473
1474 r = target_read_memory (memaddr, buf, sizeof buf);
1475 if (r != 0)
1476 return r;
1477 *result = extract_unsigned_integer (buf, sizeof buf,
1478 gdbarch_byte_order (target_gdbarch ()));
1479 return 0;
1480 }
1481
1482 /* Like target_read_memory, but specify explicitly that this is a read
1483 from the target's raw memory. That is, this read bypasses the
1484 dcache, breakpoint shadowing, etc. */
1485
1486 int
1487 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1488 {
1489 /* See comment in target_read_memory about why the request starts at
1490 current_target.beneath. */
1491 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1492 myaddr, memaddr, len) == len)
1493 return 0;
1494 else
1495 return -1;
1496 }
1497
1498 /* Like target_read_memory, but specify explicitly that this is a read from
1499 the target's stack. This may trigger different cache behavior. */
1500
1501 int
1502 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1503 {
1504 /* See comment in target_read_memory about why the request starts at
1505 current_target.beneath. */
1506 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1507 myaddr, memaddr, len) == len)
1508 return 0;
1509 else
1510 return -1;
1511 }
1512
1513 /* Like target_read_memory, but specify explicitly that this is a read from
1514 the target's code. This may trigger different cache behavior. */
1515
1516 int
1517 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1518 {
1519 /* See comment in target_read_memory about why the request starts at
1520 current_target.beneath. */
1521 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1522 myaddr, memaddr, len) == len)
1523 return 0;
1524 else
1525 return -1;
1526 }
1527
1528 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1529 Returns either 0 for success or -1 if any error occurs. If an
1530 error occurs, no guarantee is made about how much data got written.
1531 Callers that can deal with partial writes should call
1532 target_write. */
1533
1534 int
1535 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1536 {
1537 /* See comment in target_read_memory about why the request starts at
1538 current_target.beneath. */
1539 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1540 myaddr, memaddr, len) == len)
1541 return 0;
1542 else
1543 return -1;
1544 }
1545
1546 /* Write LEN bytes from MYADDR to target raw memory at address
1547 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1548 If an error occurs, no guarantee is made about how much data got
1549 written. Callers that can deal with partial writes should call
1550 target_write. */
1551
1552 int
1553 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1554 {
1555 /* See comment in target_read_memory about why the request starts at
1556 current_target.beneath. */
1557 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1558 myaddr, memaddr, len) == len)
1559 return 0;
1560 else
1561 return -1;
1562 }
1563
1564 /* Fetch the target's memory map. */
1565
1566 VEC(mem_region_s) *
1567 target_memory_map (void)
1568 {
1569 VEC(mem_region_s) *result;
1570 struct mem_region *last_one, *this_one;
1571 int ix;
1572 result = current_target.to_memory_map (&current_target);
1573 if (result == NULL)
1574 return NULL;
1575
1576 qsort (VEC_address (mem_region_s, result),
1577 VEC_length (mem_region_s, result),
1578 sizeof (struct mem_region), mem_region_cmp);
1579
1580 /* Check that regions do not overlap. Simultaneously assign
1581 a numbering for the "mem" commands to use to refer to
1582 each region. */
1583 last_one = NULL;
1584 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1585 {
1586 this_one->number = ix;
1587
1588 if (last_one && last_one->hi > this_one->lo)
1589 {
1590 warning (_("Overlapping regions in memory map: ignoring"));
1591 VEC_free (mem_region_s, result);
1592 return NULL;
1593 }
1594 last_one = this_one;
1595 }
1596
1597 return result;
1598 }
1599
1600 void
1601 target_flash_erase (ULONGEST address, LONGEST length)
1602 {
1603 current_target.to_flash_erase (&current_target, address, length);
1604 }
1605
1606 void
1607 target_flash_done (void)
1608 {
1609 current_target.to_flash_done (&current_target);
1610 }
1611
1612 static void
1613 show_trust_readonly (struct ui_file *file, int from_tty,
1614 struct cmd_list_element *c, const char *value)
1615 {
1616 fprintf_filtered (file,
1617 _("Mode for reading from readonly sections is %s.\n"),
1618 value);
1619 }
1620
1621 /* Target vector read/write partial wrapper functions. */
1622
1623 static enum target_xfer_status
1624 target_read_partial (struct target_ops *ops,
1625 enum target_object object,
1626 const char *annex, gdb_byte *buf,
1627 ULONGEST offset, ULONGEST len,
1628 ULONGEST *xfered_len)
1629 {
1630 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1631 xfered_len);
1632 }
1633
1634 static enum target_xfer_status
1635 target_write_partial (struct target_ops *ops,
1636 enum target_object object,
1637 const char *annex, const gdb_byte *buf,
1638 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1639 {
1640 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1641 xfered_len);
1642 }
1643
1644 /* Wrappers to perform the full transfer. */
1645
1646 /* For docs on target_read see target.h. */
1647
1648 LONGEST
1649 target_read (struct target_ops *ops,
1650 enum target_object object,
1651 const char *annex, gdb_byte *buf,
1652 ULONGEST offset, LONGEST len)
1653 {
1654 LONGEST xfered_total = 0;
1655 int unit_size = 1;
1656
1657 /* If we are reading from a memory object, find the length of an addressable
1658 unit for that architecture. */
1659 if (object == TARGET_OBJECT_MEMORY
1660 || object == TARGET_OBJECT_STACK_MEMORY
1661 || object == TARGET_OBJECT_CODE_MEMORY
1662 || object == TARGET_OBJECT_RAW_MEMORY)
1663 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1664
1665 while (xfered_total < len)
1666 {
1667 ULONGEST xfered_partial;
1668 enum target_xfer_status status;
1669
1670 status = target_read_partial (ops, object, annex,
1671 buf + xfered_total * unit_size,
1672 offset + xfered_total, len - xfered_total,
1673 &xfered_partial);
1674
1675 /* Call an observer, notifying them of the xfer progress? */
1676 if (status == TARGET_XFER_EOF)
1677 return xfered_total;
1678 else if (status == TARGET_XFER_OK)
1679 {
1680 xfered_total += xfered_partial;
1681 QUIT;
1682 }
1683 else
1684 return TARGET_XFER_E_IO;
1685
1686 }
1687 return len;
1688 }
1689
1690 /* Assuming that the entire [begin, end) range of memory cannot be
1691 read, try to read whatever subrange is possible to read.
1692
1693 The function returns, in RESULT, either zero or one memory block.
1694 If there's a readable subrange at the beginning, it is completely
1695 read and returned. Any further readable subrange will not be read.
1696 Otherwise, if there's a readable subrange at the end, it will be
1697 completely read and returned. Any readable subranges before it
1698 (obviously, not starting at the beginning), will be ignored. In
1699 other cases -- either no readable subrange, or readable subrange(s)
1700 that is neither at the beginning, or end, nothing is returned.
1701
1702 The purpose of this function is to handle a read across a boundary
1703 of accessible memory in a case when memory map is not available.
1704 The above restrictions are fine for this case, but will give
1705 incorrect results if the memory is 'patchy'. However, supporting
1706 'patchy' memory would require trying to read every single byte,
1707 and it seems unacceptable solution. Explicit memory map is
1708 recommended for this case -- and target_read_memory_robust will
1709 take care of reading multiple ranges then. */
1710
1711 static void
1712 read_whatever_is_readable (struct target_ops *ops,
1713 const ULONGEST begin, const ULONGEST end,
1714 int unit_size,
1715 VEC(memory_read_result_s) **result)
1716 {
1717 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1718 ULONGEST current_begin = begin;
1719 ULONGEST current_end = end;
1720 int forward;
1721 memory_read_result_s r;
1722 ULONGEST xfered_len;
1723
1724 /* If we previously failed to read 1 byte, nothing can be done here. */
1725 if (end - begin <= 1)
1726 {
1727 xfree (buf);
1728 return;
1729 }
1730
1731 /* Check that either first or the last byte is readable, and give up
1732 if not. This heuristic is meant to permit reading accessible memory
1733 at the boundary of accessible region. */
1734 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1735 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1736 {
1737 forward = 1;
1738 ++current_begin;
1739 }
1740 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1741 buf + (end - begin) - 1, end - 1, 1,
1742 &xfered_len) == TARGET_XFER_OK)
1743 {
1744 forward = 0;
1745 --current_end;
1746 }
1747 else
1748 {
1749 xfree (buf);
1750 return;
1751 }
1752
1753 /* Loop invariant is that the [current_begin, current_end) was previously
1754 found to be not readable as a whole.
1755
1756 Note loop condition -- if the range has 1 byte, we can't divide the range
1757 so there's no point trying further. */
1758 while (current_end - current_begin > 1)
1759 {
1760 ULONGEST first_half_begin, first_half_end;
1761 ULONGEST second_half_begin, second_half_end;
1762 LONGEST xfer;
1763 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1764
1765 if (forward)
1766 {
1767 first_half_begin = current_begin;
1768 first_half_end = middle;
1769 second_half_begin = middle;
1770 second_half_end = current_end;
1771 }
1772 else
1773 {
1774 first_half_begin = middle;
1775 first_half_end = current_end;
1776 second_half_begin = current_begin;
1777 second_half_end = middle;
1778 }
1779
1780 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1781 buf + (first_half_begin - begin) * unit_size,
1782 first_half_begin,
1783 first_half_end - first_half_begin);
1784
1785 if (xfer == first_half_end - first_half_begin)
1786 {
1787 /* This half reads up fine. So, the error must be in the
1788 other half. */
1789 current_begin = second_half_begin;
1790 current_end = second_half_end;
1791 }
1792 else
1793 {
1794 /* This half is not readable. Because we've tried one byte, we
1795 know some part of this half if actually readable. Go to the next
1796 iteration to divide again and try to read.
1797
1798 We don't handle the other half, because this function only tries
1799 to read a single readable subrange. */
1800 current_begin = first_half_begin;
1801 current_end = first_half_end;
1802 }
1803 }
1804
1805 if (forward)
1806 {
1807 /* The [begin, current_begin) range has been read. */
1808 r.begin = begin;
1809 r.end = current_begin;
1810 r.data = buf;
1811 }
1812 else
1813 {
1814 /* The [current_end, end) range has been read. */
1815 LONGEST region_len = end - current_end;
1816
1817 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1818 memcpy (r.data, buf + (current_end - begin) * unit_size,
1819 region_len * unit_size);
1820 r.begin = current_end;
1821 r.end = end;
1822 xfree (buf);
1823 }
1824 VEC_safe_push(memory_read_result_s, (*result), &r);
1825 }
1826
1827 void
1828 free_memory_read_result_vector (void *x)
1829 {
1830 VEC(memory_read_result_s) *v = (VEC(memory_read_result_s) *) x;
1831 memory_read_result_s *current;
1832 int ix;
1833
1834 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1835 {
1836 xfree (current->data);
1837 }
1838 VEC_free (memory_read_result_s, v);
1839 }
1840
1841 VEC(memory_read_result_s) *
1842 read_memory_robust (struct target_ops *ops,
1843 const ULONGEST offset, const LONGEST len)
1844 {
1845 VEC(memory_read_result_s) *result = 0;
1846 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1847
1848 LONGEST xfered_total = 0;
1849 while (xfered_total < len)
1850 {
1851 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1852 LONGEST region_len;
1853
1854 /* If there is no explicit region, a fake one should be created. */
1855 gdb_assert (region);
1856
1857 if (region->hi == 0)
1858 region_len = len - xfered_total;
1859 else
1860 region_len = region->hi - offset;
1861
1862 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1863 {
1864 /* Cannot read this region. Note that we can end up here only
1865 if the region is explicitly marked inaccessible, or
1866 'inaccessible-by-default' is in effect. */
1867 xfered_total += region_len;
1868 }
1869 else
1870 {
1871 LONGEST to_read = min (len - xfered_total, region_len);
1872 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1873
1874 LONGEST xfered_partial =
1875 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1876 (gdb_byte *) buffer,
1877 offset + xfered_total, to_read);
1878 /* Call an observer, notifying them of the xfer progress? */
1879 if (xfered_partial <= 0)
1880 {
1881 /* Got an error reading full chunk. See if maybe we can read
1882 some subrange. */
1883 xfree (buffer);
1884 read_whatever_is_readable (ops, offset + xfered_total,
1885 offset + xfered_total + to_read,
1886 unit_size, &result);
1887 xfered_total += to_read;
1888 }
1889 else
1890 {
1891 struct memory_read_result r;
1892 r.data = buffer;
1893 r.begin = offset + xfered_total;
1894 r.end = r.begin + xfered_partial;
1895 VEC_safe_push (memory_read_result_s, result, &r);
1896 xfered_total += xfered_partial;
1897 }
1898 QUIT;
1899 }
1900 }
1901 return result;
1902 }
1903
1904
1905 /* An alternative to target_write with progress callbacks. */
1906
1907 LONGEST
1908 target_write_with_progress (struct target_ops *ops,
1909 enum target_object object,
1910 const char *annex, const gdb_byte *buf,
1911 ULONGEST offset, LONGEST len,
1912 void (*progress) (ULONGEST, void *), void *baton)
1913 {
1914 LONGEST xfered_total = 0;
1915 int unit_size = 1;
1916
1917 /* If we are writing to a memory object, find the length of an addressable
1918 unit for that architecture. */
1919 if (object == TARGET_OBJECT_MEMORY
1920 || object == TARGET_OBJECT_STACK_MEMORY
1921 || object == TARGET_OBJECT_CODE_MEMORY
1922 || object == TARGET_OBJECT_RAW_MEMORY)
1923 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1924
1925 /* Give the progress callback a chance to set up. */
1926 if (progress)
1927 (*progress) (0, baton);
1928
1929 while (xfered_total < len)
1930 {
1931 ULONGEST xfered_partial;
1932 enum target_xfer_status status;
1933
1934 status = target_write_partial (ops, object, annex,
1935 buf + xfered_total * unit_size,
1936 offset + xfered_total, len - xfered_total,
1937 &xfered_partial);
1938
1939 if (status != TARGET_XFER_OK)
1940 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1941
1942 if (progress)
1943 (*progress) (xfered_partial, baton);
1944
1945 xfered_total += xfered_partial;
1946 QUIT;
1947 }
1948 return len;
1949 }
1950
1951 /* For docs on target_write see target.h. */
1952
1953 LONGEST
1954 target_write (struct target_ops *ops,
1955 enum target_object object,
1956 const char *annex, const gdb_byte *buf,
1957 ULONGEST offset, LONGEST len)
1958 {
1959 return target_write_with_progress (ops, object, annex, buf, offset, len,
1960 NULL, NULL);
1961 }
1962
1963 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1964 the size of the transferred data. PADDING additional bytes are
1965 available in *BUF_P. This is a helper function for
1966 target_read_alloc; see the declaration of that function for more
1967 information. */
1968
1969 static LONGEST
1970 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1971 const char *annex, gdb_byte **buf_p, int padding)
1972 {
1973 size_t buf_alloc, buf_pos;
1974 gdb_byte *buf;
1975
1976 /* This function does not have a length parameter; it reads the
1977 entire OBJECT). Also, it doesn't support objects fetched partly
1978 from one target and partly from another (in a different stratum,
1979 e.g. a core file and an executable). Both reasons make it
1980 unsuitable for reading memory. */
1981 gdb_assert (object != TARGET_OBJECT_MEMORY);
1982
1983 /* Start by reading up to 4K at a time. The target will throttle
1984 this number down if necessary. */
1985 buf_alloc = 4096;
1986 buf = (gdb_byte *) xmalloc (buf_alloc);
1987 buf_pos = 0;
1988 while (1)
1989 {
1990 ULONGEST xfered_len;
1991 enum target_xfer_status status;
1992
1993 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1994 buf_pos, buf_alloc - buf_pos - padding,
1995 &xfered_len);
1996
1997 if (status == TARGET_XFER_EOF)
1998 {
1999 /* Read all there was. */
2000 if (buf_pos == 0)
2001 xfree (buf);
2002 else
2003 *buf_p = buf;
2004 return buf_pos;
2005 }
2006 else if (status != TARGET_XFER_OK)
2007 {
2008 /* An error occurred. */
2009 xfree (buf);
2010 return TARGET_XFER_E_IO;
2011 }
2012
2013 buf_pos += xfered_len;
2014
2015 /* If the buffer is filling up, expand it. */
2016 if (buf_alloc < buf_pos * 2)
2017 {
2018 buf_alloc *= 2;
2019 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2020 }
2021
2022 QUIT;
2023 }
2024 }
2025
2026 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2027 the size of the transferred data. See the declaration in "target.h"
2028 function for more information about the return value. */
2029
2030 LONGEST
2031 target_read_alloc (struct target_ops *ops, enum target_object object,
2032 const char *annex, gdb_byte **buf_p)
2033 {
2034 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2035 }
2036
2037 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2038 returned as a string, allocated using xmalloc. If an error occurs
2039 or the transfer is unsupported, NULL is returned. Empty objects
2040 are returned as allocated but empty strings. A warning is issued
2041 if the result contains any embedded NUL bytes. */
2042
2043 char *
2044 target_read_stralloc (struct target_ops *ops, enum target_object object,
2045 const char *annex)
2046 {
2047 gdb_byte *buffer;
2048 char *bufstr;
2049 LONGEST i, transferred;
2050
2051 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2052 bufstr = (char *) buffer;
2053
2054 if (transferred < 0)
2055 return NULL;
2056
2057 if (transferred == 0)
2058 return xstrdup ("");
2059
2060 bufstr[transferred] = 0;
2061
2062 /* Check for embedded NUL bytes; but allow trailing NULs. */
2063 for (i = strlen (bufstr); i < transferred; i++)
2064 if (bufstr[i] != 0)
2065 {
2066 warning (_("target object %d, annex %s, "
2067 "contained unexpected null characters"),
2068 (int) object, annex ? annex : "(none)");
2069 break;
2070 }
2071
2072 return bufstr;
2073 }
2074
2075 /* Memory transfer methods. */
2076
2077 void
2078 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2079 LONGEST len)
2080 {
2081 /* This method is used to read from an alternate, non-current
2082 target. This read must bypass the overlay support (as symbols
2083 don't match this target), and GDB's internal cache (wrong cache
2084 for this target). */
2085 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2086 != len)
2087 memory_error (TARGET_XFER_E_IO, addr);
2088 }
2089
2090 ULONGEST
2091 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2092 int len, enum bfd_endian byte_order)
2093 {
2094 gdb_byte buf[sizeof (ULONGEST)];
2095
2096 gdb_assert (len <= sizeof (buf));
2097 get_target_memory (ops, addr, buf, len);
2098 return extract_unsigned_integer (buf, len, byte_order);
2099 }
2100
2101 /* See target.h. */
2102
2103 int
2104 target_insert_breakpoint (struct gdbarch *gdbarch,
2105 struct bp_target_info *bp_tgt)
2106 {
2107 if (!may_insert_breakpoints)
2108 {
2109 warning (_("May not insert breakpoints"));
2110 return 1;
2111 }
2112
2113 return current_target.to_insert_breakpoint (&current_target,
2114 gdbarch, bp_tgt);
2115 }
2116
2117 /* See target.h. */
2118
2119 int
2120 target_remove_breakpoint (struct gdbarch *gdbarch,
2121 struct bp_target_info *bp_tgt)
2122 {
2123 /* This is kind of a weird case to handle, but the permission might
2124 have been changed after breakpoints were inserted - in which case
2125 we should just take the user literally and assume that any
2126 breakpoints should be left in place. */
2127 if (!may_insert_breakpoints)
2128 {
2129 warning (_("May not remove breakpoints"));
2130 return 1;
2131 }
2132
2133 return current_target.to_remove_breakpoint (&current_target,
2134 gdbarch, bp_tgt);
2135 }
2136
2137 static void
2138 target_info (char *args, int from_tty)
2139 {
2140 struct target_ops *t;
2141 int has_all_mem = 0;
2142
2143 if (symfile_objfile != NULL)
2144 printf_unfiltered (_("Symbols from \"%s\".\n"),
2145 objfile_name (symfile_objfile));
2146
2147 for (t = target_stack; t != NULL; t = t->beneath)
2148 {
2149 if (!(*t->to_has_memory) (t))
2150 continue;
2151
2152 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2153 continue;
2154 if (has_all_mem)
2155 printf_unfiltered (_("\tWhile running this, "
2156 "GDB does not access memory from...\n"));
2157 printf_unfiltered ("%s:\n", t->to_longname);
2158 (t->to_files_info) (t);
2159 has_all_mem = (*t->to_has_all_memory) (t);
2160 }
2161 }
2162
2163 /* This function is called before any new inferior is created, e.g.
2164 by running a program, attaching, or connecting to a target.
2165 It cleans up any state from previous invocations which might
2166 change between runs. This is a subset of what target_preopen
2167 resets (things which might change between targets). */
2168
2169 void
2170 target_pre_inferior (int from_tty)
2171 {
2172 /* Clear out solib state. Otherwise the solib state of the previous
2173 inferior might have survived and is entirely wrong for the new
2174 target. This has been observed on GNU/Linux using glibc 2.3. How
2175 to reproduce:
2176
2177 bash$ ./foo&
2178 [1] 4711
2179 bash$ ./foo&
2180 [1] 4712
2181 bash$ gdb ./foo
2182 [...]
2183 (gdb) attach 4711
2184 (gdb) detach
2185 (gdb) attach 4712
2186 Cannot access memory at address 0xdeadbeef
2187 */
2188
2189 /* In some OSs, the shared library list is the same/global/shared
2190 across inferiors. If code is shared between processes, so are
2191 memory regions and features. */
2192 if (!gdbarch_has_global_solist (target_gdbarch ()))
2193 {
2194 no_shared_libraries (NULL, from_tty);
2195
2196 invalidate_target_mem_regions ();
2197
2198 target_clear_description ();
2199 }
2200
2201 /* attach_flag may be set if the previous process associated with
2202 the inferior was attached to. */
2203 current_inferior ()->attach_flag = 0;
2204
2205 current_inferior ()->highest_thread_num = 0;
2206
2207 agent_capability_invalidate ();
2208 }
2209
2210 /* Callback for iterate_over_inferiors. Gets rid of the given
2211 inferior. */
2212
2213 static int
2214 dispose_inferior (struct inferior *inf, void *args)
2215 {
2216 struct thread_info *thread;
2217
2218 thread = any_thread_of_process (inf->pid);
2219 if (thread)
2220 {
2221 switch_to_thread (thread->ptid);
2222
2223 /* Core inferiors actually should be detached, not killed. */
2224 if (target_has_execution)
2225 target_kill ();
2226 else
2227 target_detach (NULL, 0);
2228 }
2229
2230 return 0;
2231 }
2232
2233 /* This is to be called by the open routine before it does
2234 anything. */
2235
2236 void
2237 target_preopen (int from_tty)
2238 {
2239 dont_repeat ();
2240
2241 if (have_inferiors ())
2242 {
2243 if (!from_tty
2244 || !have_live_inferiors ()
2245 || query (_("A program is being debugged already. Kill it? ")))
2246 iterate_over_inferiors (dispose_inferior, NULL);
2247 else
2248 error (_("Program not killed."));
2249 }
2250
2251 /* Calling target_kill may remove the target from the stack. But if
2252 it doesn't (which seems like a win for UDI), remove it now. */
2253 /* Leave the exec target, though. The user may be switching from a
2254 live process to a core of the same program. */
2255 pop_all_targets_above (file_stratum);
2256
2257 target_pre_inferior (from_tty);
2258 }
2259
2260 /* Detach a target after doing deferred register stores. */
2261
2262 void
2263 target_detach (const char *args, int from_tty)
2264 {
2265 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2266 /* Don't remove global breakpoints here. They're removed on
2267 disconnection from the target. */
2268 ;
2269 else
2270 /* If we're in breakpoints-always-inserted mode, have to remove
2271 them before detaching. */
2272 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2273
2274 prepare_for_detach ();
2275
2276 current_target.to_detach (&current_target, args, from_tty);
2277 }
2278
2279 void
2280 target_disconnect (const char *args, int from_tty)
2281 {
2282 /* If we're in breakpoints-always-inserted mode or if breakpoints
2283 are global across processes, we have to remove them before
2284 disconnecting. */
2285 remove_breakpoints ();
2286
2287 current_target.to_disconnect (&current_target, args, from_tty);
2288 }
2289
2290 ptid_t
2291 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2292 {
2293 return (current_target.to_wait) (&current_target, ptid, status, options);
2294 }
2295
2296 /* See target.h. */
2297
2298 ptid_t
2299 default_target_wait (struct target_ops *ops,
2300 ptid_t ptid, struct target_waitstatus *status,
2301 int options)
2302 {
2303 status->kind = TARGET_WAITKIND_IGNORE;
2304 return minus_one_ptid;
2305 }
2306
2307 char *
2308 target_pid_to_str (ptid_t ptid)
2309 {
2310 return (*current_target.to_pid_to_str) (&current_target, ptid);
2311 }
2312
2313 const char *
2314 target_thread_name (struct thread_info *info)
2315 {
2316 return current_target.to_thread_name (&current_target, info);
2317 }
2318
2319 void
2320 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2321 {
2322 target_dcache_invalidate ();
2323
2324 current_target.to_resume (&current_target, ptid, step, signal);
2325
2326 registers_changed_ptid (ptid);
2327 /* We only set the internal executing state here. The user/frontend
2328 running state is set at a higher level. */
2329 set_executing (ptid, 1);
2330 clear_inline_frame_state (ptid);
2331 }
2332
2333 void
2334 target_pass_signals (int numsigs, unsigned char *pass_signals)
2335 {
2336 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2337 }
2338
2339 void
2340 target_program_signals (int numsigs, unsigned char *program_signals)
2341 {
2342 (*current_target.to_program_signals) (&current_target,
2343 numsigs, program_signals);
2344 }
2345
2346 static int
2347 default_follow_fork (struct target_ops *self, int follow_child,
2348 int detach_fork)
2349 {
2350 /* Some target returned a fork event, but did not know how to follow it. */
2351 internal_error (__FILE__, __LINE__,
2352 _("could not find a target to follow fork"));
2353 }
2354
2355 /* Look through the list of possible targets for a target that can
2356 follow forks. */
2357
2358 int
2359 target_follow_fork (int follow_child, int detach_fork)
2360 {
2361 return current_target.to_follow_fork (&current_target,
2362 follow_child, detach_fork);
2363 }
2364
2365 /* Target wrapper for follow exec hook. */
2366
2367 void
2368 target_follow_exec (struct inferior *inf, char *execd_pathname)
2369 {
2370 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2371 }
2372
2373 static void
2374 default_mourn_inferior (struct target_ops *self)
2375 {
2376 internal_error (__FILE__, __LINE__,
2377 _("could not find a target to follow mourn inferior"));
2378 }
2379
2380 void
2381 target_mourn_inferior (void)
2382 {
2383 current_target.to_mourn_inferior (&current_target);
2384
2385 /* We no longer need to keep handles on any of the object files.
2386 Make sure to release them to avoid unnecessarily locking any
2387 of them while we're not actually debugging. */
2388 bfd_cache_close_all ();
2389 }
2390
2391 /* Look for a target which can describe architectural features, starting
2392 from TARGET. If we find one, return its description. */
2393
2394 const struct target_desc *
2395 target_read_description (struct target_ops *target)
2396 {
2397 return target->to_read_description (target);
2398 }
2399
2400 /* This implements a basic search of memory, reading target memory and
2401 performing the search here (as opposed to performing the search in on the
2402 target side with, for example, gdbserver). */
2403
2404 int
2405 simple_search_memory (struct target_ops *ops,
2406 CORE_ADDR start_addr, ULONGEST search_space_len,
2407 const gdb_byte *pattern, ULONGEST pattern_len,
2408 CORE_ADDR *found_addrp)
2409 {
2410 /* NOTE: also defined in find.c testcase. */
2411 #define SEARCH_CHUNK_SIZE 16000
2412 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2413 /* Buffer to hold memory contents for searching. */
2414 gdb_byte *search_buf;
2415 unsigned search_buf_size;
2416 struct cleanup *old_cleanups;
2417
2418 search_buf_size = chunk_size + pattern_len - 1;
2419
2420 /* No point in trying to allocate a buffer larger than the search space. */
2421 if (search_space_len < search_buf_size)
2422 search_buf_size = search_space_len;
2423
2424 search_buf = (gdb_byte *) malloc (search_buf_size);
2425 if (search_buf == NULL)
2426 error (_("Unable to allocate memory to perform the search."));
2427 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2428
2429 /* Prime the search buffer. */
2430
2431 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2432 search_buf, start_addr, search_buf_size) != search_buf_size)
2433 {
2434 warning (_("Unable to access %s bytes of target "
2435 "memory at %s, halting search."),
2436 pulongest (search_buf_size), hex_string (start_addr));
2437 do_cleanups (old_cleanups);
2438 return -1;
2439 }
2440
2441 /* Perform the search.
2442
2443 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2444 When we've scanned N bytes we copy the trailing bytes to the start and
2445 read in another N bytes. */
2446
2447 while (search_space_len >= pattern_len)
2448 {
2449 gdb_byte *found_ptr;
2450 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2451
2452 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2453 pattern, pattern_len);
2454
2455 if (found_ptr != NULL)
2456 {
2457 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2458
2459 *found_addrp = found_addr;
2460 do_cleanups (old_cleanups);
2461 return 1;
2462 }
2463
2464 /* Not found in this chunk, skip to next chunk. */
2465
2466 /* Don't let search_space_len wrap here, it's unsigned. */
2467 if (search_space_len >= chunk_size)
2468 search_space_len -= chunk_size;
2469 else
2470 search_space_len = 0;
2471
2472 if (search_space_len >= pattern_len)
2473 {
2474 unsigned keep_len = search_buf_size - chunk_size;
2475 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2476 int nr_to_read;
2477
2478 /* Copy the trailing part of the previous iteration to the front
2479 of the buffer for the next iteration. */
2480 gdb_assert (keep_len == pattern_len - 1);
2481 memcpy (search_buf, search_buf + chunk_size, keep_len);
2482
2483 nr_to_read = min (search_space_len - keep_len, chunk_size);
2484
2485 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2486 search_buf + keep_len, read_addr,
2487 nr_to_read) != nr_to_read)
2488 {
2489 warning (_("Unable to access %s bytes of target "
2490 "memory at %s, halting search."),
2491 plongest (nr_to_read),
2492 hex_string (read_addr));
2493 do_cleanups (old_cleanups);
2494 return -1;
2495 }
2496
2497 start_addr += chunk_size;
2498 }
2499 }
2500
2501 /* Not found. */
2502
2503 do_cleanups (old_cleanups);
2504 return 0;
2505 }
2506
2507 /* Default implementation of memory-searching. */
2508
2509 static int
2510 default_search_memory (struct target_ops *self,
2511 CORE_ADDR start_addr, ULONGEST search_space_len,
2512 const gdb_byte *pattern, ULONGEST pattern_len,
2513 CORE_ADDR *found_addrp)
2514 {
2515 /* Start over from the top of the target stack. */
2516 return simple_search_memory (current_target.beneath,
2517 start_addr, search_space_len,
2518 pattern, pattern_len, found_addrp);
2519 }
2520
2521 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2522 sequence of bytes in PATTERN with length PATTERN_LEN.
2523
2524 The result is 1 if found, 0 if not found, and -1 if there was an error
2525 requiring halting of the search (e.g. memory read error).
2526 If the pattern is found the address is recorded in FOUND_ADDRP. */
2527
2528 int
2529 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2530 const gdb_byte *pattern, ULONGEST pattern_len,
2531 CORE_ADDR *found_addrp)
2532 {
2533 return current_target.to_search_memory (&current_target, start_addr,
2534 search_space_len,
2535 pattern, pattern_len, found_addrp);
2536 }
2537
2538 /* Look through the currently pushed targets. If none of them will
2539 be able to restart the currently running process, issue an error
2540 message. */
2541
2542 void
2543 target_require_runnable (void)
2544 {
2545 struct target_ops *t;
2546
2547 for (t = target_stack; t != NULL; t = t->beneath)
2548 {
2549 /* If this target knows how to create a new program, then
2550 assume we will still be able to after killing the current
2551 one. Either killing and mourning will not pop T, or else
2552 find_default_run_target will find it again. */
2553 if (t->to_create_inferior != NULL)
2554 return;
2555
2556 /* Do not worry about targets at certain strata that can not
2557 create inferiors. Assume they will be pushed again if
2558 necessary, and continue to the process_stratum. */
2559 if (t->to_stratum == thread_stratum
2560 || t->to_stratum == record_stratum
2561 || t->to_stratum == arch_stratum)
2562 continue;
2563
2564 error (_("The \"%s\" target does not support \"run\". "
2565 "Try \"help target\" or \"continue\"."),
2566 t->to_shortname);
2567 }
2568
2569 /* This function is only called if the target is running. In that
2570 case there should have been a process_stratum target and it
2571 should either know how to create inferiors, or not... */
2572 internal_error (__FILE__, __LINE__, _("No targets found"));
2573 }
2574
2575 /* Whether GDB is allowed to fall back to the default run target for
2576 "run", "attach", etc. when no target is connected yet. */
2577 static int auto_connect_native_target = 1;
2578
2579 static void
2580 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2581 struct cmd_list_element *c, const char *value)
2582 {
2583 fprintf_filtered (file,
2584 _("Whether GDB may automatically connect to the "
2585 "native target is %s.\n"),
2586 value);
2587 }
2588
2589 /* Look through the list of possible targets for a target that can
2590 execute a run or attach command without any other data. This is
2591 used to locate the default process stratum.
2592
2593 If DO_MESG is not NULL, the result is always valid (error() is
2594 called for errors); else, return NULL on error. */
2595
2596 static struct target_ops *
2597 find_default_run_target (char *do_mesg)
2598 {
2599 struct target_ops *runable = NULL;
2600
2601 if (auto_connect_native_target)
2602 {
2603 struct target_ops *t;
2604 int count = 0;
2605 int i;
2606
2607 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2608 {
2609 if (t->to_can_run != delegate_can_run && target_can_run (t))
2610 {
2611 runable = t;
2612 ++count;
2613 }
2614 }
2615
2616 if (count != 1)
2617 runable = NULL;
2618 }
2619
2620 if (runable == NULL)
2621 {
2622 if (do_mesg)
2623 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2624 else
2625 return NULL;
2626 }
2627
2628 return runable;
2629 }
2630
2631 /* See target.h. */
2632
2633 struct target_ops *
2634 find_attach_target (void)
2635 {
2636 struct target_ops *t;
2637
2638 /* If a target on the current stack can attach, use it. */
2639 for (t = current_target.beneath; t != NULL; t = t->beneath)
2640 {
2641 if (t->to_attach != NULL)
2642 break;
2643 }
2644
2645 /* Otherwise, use the default run target for attaching. */
2646 if (t == NULL)
2647 t = find_default_run_target ("attach");
2648
2649 return t;
2650 }
2651
2652 /* See target.h. */
2653
2654 struct target_ops *
2655 find_run_target (void)
2656 {
2657 struct target_ops *t;
2658
2659 /* If a target on the current stack can attach, use it. */
2660 for (t = current_target.beneath; t != NULL; t = t->beneath)
2661 {
2662 if (t->to_create_inferior != NULL)
2663 break;
2664 }
2665
2666 /* Otherwise, use the default run target. */
2667 if (t == NULL)
2668 t = find_default_run_target ("run");
2669
2670 return t;
2671 }
2672
2673 /* Implement the "info proc" command. */
2674
2675 int
2676 target_info_proc (const char *args, enum info_proc_what what)
2677 {
2678 struct target_ops *t;
2679
2680 /* If we're already connected to something that can get us OS
2681 related data, use it. Otherwise, try using the native
2682 target. */
2683 if (current_target.to_stratum >= process_stratum)
2684 t = current_target.beneath;
2685 else
2686 t = find_default_run_target (NULL);
2687
2688 for (; t != NULL; t = t->beneath)
2689 {
2690 if (t->to_info_proc != NULL)
2691 {
2692 t->to_info_proc (t, args, what);
2693
2694 if (targetdebug)
2695 fprintf_unfiltered (gdb_stdlog,
2696 "target_info_proc (\"%s\", %d)\n", args, what);
2697
2698 return 1;
2699 }
2700 }
2701
2702 return 0;
2703 }
2704
2705 static int
2706 find_default_supports_disable_randomization (struct target_ops *self)
2707 {
2708 struct target_ops *t;
2709
2710 t = find_default_run_target (NULL);
2711 if (t && t->to_supports_disable_randomization)
2712 return (t->to_supports_disable_randomization) (t);
2713 return 0;
2714 }
2715
2716 int
2717 target_supports_disable_randomization (void)
2718 {
2719 struct target_ops *t;
2720
2721 for (t = &current_target; t != NULL; t = t->beneath)
2722 if (t->to_supports_disable_randomization)
2723 return t->to_supports_disable_randomization (t);
2724
2725 return 0;
2726 }
2727
2728 char *
2729 target_get_osdata (const char *type)
2730 {
2731 struct target_ops *t;
2732
2733 /* If we're already connected to something that can get us OS
2734 related data, use it. Otherwise, try using the native
2735 target. */
2736 if (current_target.to_stratum >= process_stratum)
2737 t = current_target.beneath;
2738 else
2739 t = find_default_run_target ("get OS data");
2740
2741 if (!t)
2742 return NULL;
2743
2744 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2745 }
2746
2747 static struct address_space *
2748 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2749 {
2750 struct inferior *inf;
2751
2752 /* Fall-back to the "main" address space of the inferior. */
2753 inf = find_inferior_ptid (ptid);
2754
2755 if (inf == NULL || inf->aspace == NULL)
2756 internal_error (__FILE__, __LINE__,
2757 _("Can't determine the current "
2758 "address space of thread %s\n"),
2759 target_pid_to_str (ptid));
2760
2761 return inf->aspace;
2762 }
2763
2764 /* Determine the current address space of thread PTID. */
2765
2766 struct address_space *
2767 target_thread_address_space (ptid_t ptid)
2768 {
2769 struct address_space *aspace;
2770
2771 aspace = current_target.to_thread_address_space (&current_target, ptid);
2772 gdb_assert (aspace != NULL);
2773
2774 return aspace;
2775 }
2776
2777
2778 /* Target file operations. */
2779
2780 static struct target_ops *
2781 default_fileio_target (void)
2782 {
2783 /* If we're already connected to something that can perform
2784 file I/O, use it. Otherwise, try using the native target. */
2785 if (current_target.to_stratum >= process_stratum)
2786 return current_target.beneath;
2787 else
2788 return find_default_run_target ("file I/O");
2789 }
2790
2791 /* File handle for target file operations. */
2792
2793 typedef struct
2794 {
2795 /* The target on which this file is open. */
2796 struct target_ops *t;
2797
2798 /* The file descriptor on the target. */
2799 int fd;
2800 } fileio_fh_t;
2801
2802 DEF_VEC_O (fileio_fh_t);
2803
2804 /* Vector of currently open file handles. The value returned by
2805 target_fileio_open and passed as the FD argument to other
2806 target_fileio_* functions is an index into this vector. This
2807 vector's entries are never freed; instead, files are marked as
2808 closed, and the handle becomes available for reuse. */
2809 static VEC (fileio_fh_t) *fileio_fhandles;
2810
2811 /* Macro to check whether a fileio_fh_t represents a closed file. */
2812 #define is_closed_fileio_fh(fd) ((fd) < 0)
2813
2814 /* Index into fileio_fhandles of the lowest handle that might be
2815 closed. This permits handle reuse without searching the whole
2816 list each time a new file is opened. */
2817 static int lowest_closed_fd;
2818
2819 /* Acquire a target fileio file descriptor. */
2820
2821 static int
2822 acquire_fileio_fd (struct target_ops *t, int fd)
2823 {
2824 fileio_fh_t *fh;
2825
2826 gdb_assert (!is_closed_fileio_fh (fd));
2827
2828 /* Search for closed handles to reuse. */
2829 for (;
2830 VEC_iterate (fileio_fh_t, fileio_fhandles,
2831 lowest_closed_fd, fh);
2832 lowest_closed_fd++)
2833 if (is_closed_fileio_fh (fh->fd))
2834 break;
2835
2836 /* Push a new handle if no closed handles were found. */
2837 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2838 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2839
2840 /* Fill in the handle. */
2841 fh->t = t;
2842 fh->fd = fd;
2843
2844 /* Return its index, and start the next lookup at
2845 the next index. */
2846 return lowest_closed_fd++;
2847 }
2848
2849 /* Release a target fileio file descriptor. */
2850
2851 static void
2852 release_fileio_fd (int fd, fileio_fh_t *fh)
2853 {
2854 fh->fd = -1;
2855 lowest_closed_fd = min (lowest_closed_fd, fd);
2856 }
2857
2858 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2859
2860 #define fileio_fd_to_fh(fd) \
2861 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2862
2863 /* Helper for target_fileio_open and
2864 target_fileio_open_warn_if_slow. */
2865
2866 static int
2867 target_fileio_open_1 (struct inferior *inf, const char *filename,
2868 int flags, int mode, int warn_if_slow,
2869 int *target_errno)
2870 {
2871 struct target_ops *t;
2872
2873 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2874 {
2875 if (t->to_fileio_open != NULL)
2876 {
2877 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2878 warn_if_slow, target_errno);
2879
2880 if (fd < 0)
2881 fd = -1;
2882 else
2883 fd = acquire_fileio_fd (t, fd);
2884
2885 if (targetdebug)
2886 fprintf_unfiltered (gdb_stdlog,
2887 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2888 " = %d (%d)\n",
2889 inf == NULL ? 0 : inf->num,
2890 filename, flags, mode,
2891 warn_if_slow, fd,
2892 fd != -1 ? 0 : *target_errno);
2893 return fd;
2894 }
2895 }
2896
2897 *target_errno = FILEIO_ENOSYS;
2898 return -1;
2899 }
2900
2901 /* See target.h. */
2902
2903 int
2904 target_fileio_open (struct inferior *inf, const char *filename,
2905 int flags, int mode, int *target_errno)
2906 {
2907 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2908 target_errno);
2909 }
2910
2911 /* See target.h. */
2912
2913 int
2914 target_fileio_open_warn_if_slow (struct inferior *inf,
2915 const char *filename,
2916 int flags, int mode, int *target_errno)
2917 {
2918 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2919 target_errno);
2920 }
2921
2922 /* See target.h. */
2923
2924 int
2925 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2926 ULONGEST offset, int *target_errno)
2927 {
2928 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2929 int ret = -1;
2930
2931 if (is_closed_fileio_fh (fh->fd))
2932 *target_errno = EBADF;
2933 else
2934 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2935 len, offset, target_errno);
2936
2937 if (targetdebug)
2938 fprintf_unfiltered (gdb_stdlog,
2939 "target_fileio_pwrite (%d,...,%d,%s) "
2940 "= %d (%d)\n",
2941 fd, len, pulongest (offset),
2942 ret, ret != -1 ? 0 : *target_errno);
2943 return ret;
2944 }
2945
2946 /* See target.h. */
2947
2948 int
2949 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2950 ULONGEST offset, int *target_errno)
2951 {
2952 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2953 int ret = -1;
2954
2955 if (is_closed_fileio_fh (fh->fd))
2956 *target_errno = EBADF;
2957 else
2958 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2959 len, offset, target_errno);
2960
2961 if (targetdebug)
2962 fprintf_unfiltered (gdb_stdlog,
2963 "target_fileio_pread (%d,...,%d,%s) "
2964 "= %d (%d)\n",
2965 fd, len, pulongest (offset),
2966 ret, ret != -1 ? 0 : *target_errno);
2967 return ret;
2968 }
2969
2970 /* See target.h. */
2971
2972 int
2973 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2974 {
2975 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2976 int ret = -1;
2977
2978 if (is_closed_fileio_fh (fh->fd))
2979 *target_errno = EBADF;
2980 else
2981 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2982
2983 if (targetdebug)
2984 fprintf_unfiltered (gdb_stdlog,
2985 "target_fileio_fstat (%d) = %d (%d)\n",
2986 fd, ret, ret != -1 ? 0 : *target_errno);
2987 return ret;
2988 }
2989
2990 /* See target.h. */
2991
2992 int
2993 target_fileio_close (int fd, int *target_errno)
2994 {
2995 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2996 int ret = -1;
2997
2998 if (is_closed_fileio_fh (fh->fd))
2999 *target_errno = EBADF;
3000 else
3001 {
3002 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
3003 release_fileio_fd (fd, fh);
3004 }
3005
3006 if (targetdebug)
3007 fprintf_unfiltered (gdb_stdlog,
3008 "target_fileio_close (%d) = %d (%d)\n",
3009 fd, ret, ret != -1 ? 0 : *target_errno);
3010 return ret;
3011 }
3012
3013 /* See target.h. */
3014
3015 int
3016 target_fileio_unlink (struct inferior *inf, const char *filename,
3017 int *target_errno)
3018 {
3019 struct target_ops *t;
3020
3021 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3022 {
3023 if (t->to_fileio_unlink != NULL)
3024 {
3025 int ret = t->to_fileio_unlink (t, inf, filename,
3026 target_errno);
3027
3028 if (targetdebug)
3029 fprintf_unfiltered (gdb_stdlog,
3030 "target_fileio_unlink (%d,%s)"
3031 " = %d (%d)\n",
3032 inf == NULL ? 0 : inf->num, filename,
3033 ret, ret != -1 ? 0 : *target_errno);
3034 return ret;
3035 }
3036 }
3037
3038 *target_errno = FILEIO_ENOSYS;
3039 return -1;
3040 }
3041
3042 /* See target.h. */
3043
3044 char *
3045 target_fileio_readlink (struct inferior *inf, const char *filename,
3046 int *target_errno)
3047 {
3048 struct target_ops *t;
3049
3050 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3051 {
3052 if (t->to_fileio_readlink != NULL)
3053 {
3054 char *ret = t->to_fileio_readlink (t, inf, filename,
3055 target_errno);
3056
3057 if (targetdebug)
3058 fprintf_unfiltered (gdb_stdlog,
3059 "target_fileio_readlink (%d,%s)"
3060 " = %s (%d)\n",
3061 inf == NULL ? 0 : inf->num,
3062 filename, ret? ret : "(nil)",
3063 ret? 0 : *target_errno);
3064 return ret;
3065 }
3066 }
3067
3068 *target_errno = FILEIO_ENOSYS;
3069 return NULL;
3070 }
3071
3072 static void
3073 target_fileio_close_cleanup (void *opaque)
3074 {
3075 int fd = *(int *) opaque;
3076 int target_errno;
3077
3078 target_fileio_close (fd, &target_errno);
3079 }
3080
3081 /* Read target file FILENAME, in the filesystem as seen by INF. If
3082 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3083 remote targets, the remote stub). Store the result in *BUF_P and
3084 return the size of the transferred data. PADDING additional bytes
3085 are available in *BUF_P. This is a helper function for
3086 target_fileio_read_alloc; see the declaration of that function for
3087 more information. */
3088
3089 static LONGEST
3090 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3091 gdb_byte **buf_p, int padding)
3092 {
3093 struct cleanup *close_cleanup;
3094 size_t buf_alloc, buf_pos;
3095 gdb_byte *buf;
3096 LONGEST n;
3097 int fd;
3098 int target_errno;
3099
3100 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3101 &target_errno);
3102 if (fd == -1)
3103 return -1;
3104
3105 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3106
3107 /* Start by reading up to 4K at a time. The target will throttle
3108 this number down if necessary. */
3109 buf_alloc = 4096;
3110 buf = (gdb_byte *) xmalloc (buf_alloc);
3111 buf_pos = 0;
3112 while (1)
3113 {
3114 n = target_fileio_pread (fd, &buf[buf_pos],
3115 buf_alloc - buf_pos - padding, buf_pos,
3116 &target_errno);
3117 if (n < 0)
3118 {
3119 /* An error occurred. */
3120 do_cleanups (close_cleanup);
3121 xfree (buf);
3122 return -1;
3123 }
3124 else if (n == 0)
3125 {
3126 /* Read all there was. */
3127 do_cleanups (close_cleanup);
3128 if (buf_pos == 0)
3129 xfree (buf);
3130 else
3131 *buf_p = buf;
3132 return buf_pos;
3133 }
3134
3135 buf_pos += n;
3136
3137 /* If the buffer is filling up, expand it. */
3138 if (buf_alloc < buf_pos * 2)
3139 {
3140 buf_alloc *= 2;
3141 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3142 }
3143
3144 QUIT;
3145 }
3146 }
3147
3148 /* See target.h. */
3149
3150 LONGEST
3151 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3152 gdb_byte **buf_p)
3153 {
3154 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3155 }
3156
3157 /* See target.h. */
3158
3159 char *
3160 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3161 {
3162 gdb_byte *buffer;
3163 char *bufstr;
3164 LONGEST i, transferred;
3165
3166 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3167 bufstr = (char *) buffer;
3168
3169 if (transferred < 0)
3170 return NULL;
3171
3172 if (transferred == 0)
3173 return xstrdup ("");
3174
3175 bufstr[transferred] = 0;
3176
3177 /* Check for embedded NUL bytes; but allow trailing NULs. */
3178 for (i = strlen (bufstr); i < transferred; i++)
3179 if (bufstr[i] != 0)
3180 {
3181 warning (_("target file %s "
3182 "contained unexpected null characters"),
3183 filename);
3184 break;
3185 }
3186
3187 return bufstr;
3188 }
3189
3190
3191 static int
3192 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3193 CORE_ADDR addr, int len)
3194 {
3195 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3196 }
3197
3198 static int
3199 default_watchpoint_addr_within_range (struct target_ops *target,
3200 CORE_ADDR addr,
3201 CORE_ADDR start, int length)
3202 {
3203 return addr >= start && addr < start + length;
3204 }
3205
3206 static struct gdbarch *
3207 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3208 {
3209 return target_gdbarch ();
3210 }
3211
3212 static int
3213 return_zero (struct target_ops *ignore)
3214 {
3215 return 0;
3216 }
3217
3218 static int
3219 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3220 {
3221 return 0;
3222 }
3223
3224 /*
3225 * Find the next target down the stack from the specified target.
3226 */
3227
3228 struct target_ops *
3229 find_target_beneath (struct target_ops *t)
3230 {
3231 return t->beneath;
3232 }
3233
3234 /* See target.h. */
3235
3236 struct target_ops *
3237 find_target_at (enum strata stratum)
3238 {
3239 struct target_ops *t;
3240
3241 for (t = current_target.beneath; t != NULL; t = t->beneath)
3242 if (t->to_stratum == stratum)
3243 return t;
3244
3245 return NULL;
3246 }
3247
3248 \f
3249 /* The inferior process has died. Long live the inferior! */
3250
3251 void
3252 generic_mourn_inferior (void)
3253 {
3254 ptid_t ptid;
3255
3256 ptid = inferior_ptid;
3257 inferior_ptid = null_ptid;
3258
3259 /* Mark breakpoints uninserted in case something tries to delete a
3260 breakpoint while we delete the inferior's threads (which would
3261 fail, since the inferior is long gone). */
3262 mark_breakpoints_out ();
3263
3264 if (!ptid_equal (ptid, null_ptid))
3265 {
3266 int pid = ptid_get_pid (ptid);
3267 exit_inferior (pid);
3268 }
3269
3270 /* Note this wipes step-resume breakpoints, so needs to be done
3271 after exit_inferior, which ends up referencing the step-resume
3272 breakpoints through clear_thread_inferior_resources. */
3273 breakpoint_init_inferior (inf_exited);
3274
3275 registers_changed ();
3276
3277 reopen_exec_file ();
3278 reinit_frame_cache ();
3279
3280 if (deprecated_detach_hook)
3281 deprecated_detach_hook ();
3282 }
3283 \f
3284 /* Convert a normal process ID to a string. Returns the string in a
3285 static buffer. */
3286
3287 char *
3288 normal_pid_to_str (ptid_t ptid)
3289 {
3290 static char buf[32];
3291
3292 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3293 return buf;
3294 }
3295
3296 static char *
3297 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3298 {
3299 return normal_pid_to_str (ptid);
3300 }
3301
3302 /* Error-catcher for target_find_memory_regions. */
3303 static int
3304 dummy_find_memory_regions (struct target_ops *self,
3305 find_memory_region_ftype ignore1, void *ignore2)
3306 {
3307 error (_("Command not implemented for this target."));
3308 return 0;
3309 }
3310
3311 /* Error-catcher for target_make_corefile_notes. */
3312 static char *
3313 dummy_make_corefile_notes (struct target_ops *self,
3314 bfd *ignore1, int *ignore2)
3315 {
3316 error (_("Command not implemented for this target."));
3317 return NULL;
3318 }
3319
3320 /* Set up the handful of non-empty slots needed by the dummy target
3321 vector. */
3322
3323 static void
3324 init_dummy_target (void)
3325 {
3326 dummy_target.to_shortname = "None";
3327 dummy_target.to_longname = "None";
3328 dummy_target.to_doc = "";
3329 dummy_target.to_supports_disable_randomization
3330 = find_default_supports_disable_randomization;
3331 dummy_target.to_stratum = dummy_stratum;
3332 dummy_target.to_has_all_memory = return_zero;
3333 dummy_target.to_has_memory = return_zero;
3334 dummy_target.to_has_stack = return_zero;
3335 dummy_target.to_has_registers = return_zero;
3336 dummy_target.to_has_execution = return_zero_has_execution;
3337 dummy_target.to_magic = OPS_MAGIC;
3338
3339 install_dummy_methods (&dummy_target);
3340 }
3341 \f
3342
3343 void
3344 target_close (struct target_ops *targ)
3345 {
3346 gdb_assert (!target_is_pushed (targ));
3347
3348 if (targ->to_xclose != NULL)
3349 targ->to_xclose (targ);
3350 else if (targ->to_close != NULL)
3351 targ->to_close (targ);
3352
3353 if (targetdebug)
3354 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3355 }
3356
3357 int
3358 target_thread_alive (ptid_t ptid)
3359 {
3360 return current_target.to_thread_alive (&current_target, ptid);
3361 }
3362
3363 void
3364 target_update_thread_list (void)
3365 {
3366 current_target.to_update_thread_list (&current_target);
3367 }
3368
3369 void
3370 target_stop (ptid_t ptid)
3371 {
3372 if (!may_stop)
3373 {
3374 warning (_("May not interrupt or stop the target, ignoring attempt"));
3375 return;
3376 }
3377
3378 (*current_target.to_stop) (&current_target, ptid);
3379 }
3380
3381 void
3382 target_interrupt (ptid_t ptid)
3383 {
3384 if (!may_stop)
3385 {
3386 warning (_("May not interrupt or stop the target, ignoring attempt"));
3387 return;
3388 }
3389
3390 (*current_target.to_interrupt) (&current_target, ptid);
3391 }
3392
3393 /* See target.h. */
3394
3395 void
3396 target_pass_ctrlc (void)
3397 {
3398 (*current_target.to_pass_ctrlc) (&current_target);
3399 }
3400
3401 /* See target.h. */
3402
3403 void
3404 default_target_pass_ctrlc (struct target_ops *ops)
3405 {
3406 target_interrupt (inferior_ptid);
3407 }
3408
3409 /* See target/target.h. */
3410
3411 void
3412 target_stop_and_wait (ptid_t ptid)
3413 {
3414 struct target_waitstatus status;
3415 int was_non_stop = non_stop;
3416
3417 non_stop = 1;
3418 target_stop (ptid);
3419
3420 memset (&status, 0, sizeof (status));
3421 target_wait (ptid, &status, 0);
3422
3423 non_stop = was_non_stop;
3424 }
3425
3426 /* See target/target.h. */
3427
3428 void
3429 target_continue_no_signal (ptid_t ptid)
3430 {
3431 target_resume (ptid, 0, GDB_SIGNAL_0);
3432 }
3433
3434 /* Concatenate ELEM to LIST, a comma separate list, and return the
3435 result. The LIST incoming argument is released. */
3436
3437 static char *
3438 str_comma_list_concat_elem (char *list, const char *elem)
3439 {
3440 if (list == NULL)
3441 return xstrdup (elem);
3442 else
3443 return reconcat (list, list, ", ", elem, (char *) NULL);
3444 }
3445
3446 /* Helper for target_options_to_string. If OPT is present in
3447 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3448 Returns the new resulting string. OPT is removed from
3449 TARGET_OPTIONS. */
3450
3451 static char *
3452 do_option (int *target_options, char *ret,
3453 int opt, char *opt_str)
3454 {
3455 if ((*target_options & opt) != 0)
3456 {
3457 ret = str_comma_list_concat_elem (ret, opt_str);
3458 *target_options &= ~opt;
3459 }
3460
3461 return ret;
3462 }
3463
3464 char *
3465 target_options_to_string (int target_options)
3466 {
3467 char *ret = NULL;
3468
3469 #define DO_TARG_OPTION(OPT) \
3470 ret = do_option (&target_options, ret, OPT, #OPT)
3471
3472 DO_TARG_OPTION (TARGET_WNOHANG);
3473
3474 if (target_options != 0)
3475 ret = str_comma_list_concat_elem (ret, "unknown???");
3476
3477 if (ret == NULL)
3478 ret = xstrdup ("");
3479 return ret;
3480 }
3481
3482 static void
3483 debug_print_register (const char * func,
3484 struct regcache *regcache, int regno)
3485 {
3486 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3487
3488 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3489 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3490 && gdbarch_register_name (gdbarch, regno) != NULL
3491 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3492 fprintf_unfiltered (gdb_stdlog, "(%s)",
3493 gdbarch_register_name (gdbarch, regno));
3494 else
3495 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3496 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3497 {
3498 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3499 int i, size = register_size (gdbarch, regno);
3500 gdb_byte buf[MAX_REGISTER_SIZE];
3501
3502 regcache_raw_collect (regcache, regno, buf);
3503 fprintf_unfiltered (gdb_stdlog, " = ");
3504 for (i = 0; i < size; i++)
3505 {
3506 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3507 }
3508 if (size <= sizeof (LONGEST))
3509 {
3510 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3511
3512 fprintf_unfiltered (gdb_stdlog, " %s %s",
3513 core_addr_to_string_nz (val), plongest (val));
3514 }
3515 }
3516 fprintf_unfiltered (gdb_stdlog, "\n");
3517 }
3518
3519 void
3520 target_fetch_registers (struct regcache *regcache, int regno)
3521 {
3522 current_target.to_fetch_registers (&current_target, regcache, regno);
3523 if (targetdebug)
3524 debug_print_register ("target_fetch_registers", regcache, regno);
3525 }
3526
3527 void
3528 target_store_registers (struct regcache *regcache, int regno)
3529 {
3530 if (!may_write_registers)
3531 error (_("Writing to registers is not allowed (regno %d)"), regno);
3532
3533 current_target.to_store_registers (&current_target, regcache, regno);
3534 if (targetdebug)
3535 {
3536 debug_print_register ("target_store_registers", regcache, regno);
3537 }
3538 }
3539
3540 int
3541 target_core_of_thread (ptid_t ptid)
3542 {
3543 return current_target.to_core_of_thread (&current_target, ptid);
3544 }
3545
3546 int
3547 simple_verify_memory (struct target_ops *ops,
3548 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3549 {
3550 LONGEST total_xfered = 0;
3551
3552 while (total_xfered < size)
3553 {
3554 ULONGEST xfered_len;
3555 enum target_xfer_status status;
3556 gdb_byte buf[1024];
3557 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3558
3559 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3560 buf, NULL, lma + total_xfered, howmuch,
3561 &xfered_len);
3562 if (status == TARGET_XFER_OK
3563 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3564 {
3565 total_xfered += xfered_len;
3566 QUIT;
3567 }
3568 else
3569 return 0;
3570 }
3571 return 1;
3572 }
3573
3574 /* Default implementation of memory verification. */
3575
3576 static int
3577 default_verify_memory (struct target_ops *self,
3578 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3579 {
3580 /* Start over from the top of the target stack. */
3581 return simple_verify_memory (current_target.beneath,
3582 data, memaddr, size);
3583 }
3584
3585 int
3586 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3587 {
3588 return current_target.to_verify_memory (&current_target,
3589 data, memaddr, size);
3590 }
3591
3592 /* The documentation for this function is in its prototype declaration in
3593 target.h. */
3594
3595 int
3596 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3597 enum target_hw_bp_type rw)
3598 {
3599 return current_target.to_insert_mask_watchpoint (&current_target,
3600 addr, mask, rw);
3601 }
3602
3603 /* The documentation for this function is in its prototype declaration in
3604 target.h. */
3605
3606 int
3607 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3608 enum target_hw_bp_type rw)
3609 {
3610 return current_target.to_remove_mask_watchpoint (&current_target,
3611 addr, mask, rw);
3612 }
3613
3614 /* The documentation for this function is in its prototype declaration
3615 in target.h. */
3616
3617 int
3618 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3619 {
3620 return current_target.to_masked_watch_num_registers (&current_target,
3621 addr, mask);
3622 }
3623
3624 /* The documentation for this function is in its prototype declaration
3625 in target.h. */
3626
3627 int
3628 target_ranged_break_num_registers (void)
3629 {
3630 return current_target.to_ranged_break_num_registers (&current_target);
3631 }
3632
3633 /* See target.h. */
3634
3635 int
3636 target_supports_btrace (enum btrace_format format)
3637 {
3638 return current_target.to_supports_btrace (&current_target, format);
3639 }
3640
3641 /* See target.h. */
3642
3643 struct btrace_target_info *
3644 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3645 {
3646 return current_target.to_enable_btrace (&current_target, ptid, conf);
3647 }
3648
3649 /* See target.h. */
3650
3651 void
3652 target_disable_btrace (struct btrace_target_info *btinfo)
3653 {
3654 current_target.to_disable_btrace (&current_target, btinfo);
3655 }
3656
3657 /* See target.h. */
3658
3659 void
3660 target_teardown_btrace (struct btrace_target_info *btinfo)
3661 {
3662 current_target.to_teardown_btrace (&current_target, btinfo);
3663 }
3664
3665 /* See target.h. */
3666
3667 enum btrace_error
3668 target_read_btrace (struct btrace_data *btrace,
3669 struct btrace_target_info *btinfo,
3670 enum btrace_read_type type)
3671 {
3672 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3673 }
3674
3675 /* See target.h. */
3676
3677 const struct btrace_config *
3678 target_btrace_conf (const struct btrace_target_info *btinfo)
3679 {
3680 return current_target.to_btrace_conf (&current_target, btinfo);
3681 }
3682
3683 /* See target.h. */
3684
3685 void
3686 target_stop_recording (void)
3687 {
3688 current_target.to_stop_recording (&current_target);
3689 }
3690
3691 /* See target.h. */
3692
3693 void
3694 target_save_record (const char *filename)
3695 {
3696 current_target.to_save_record (&current_target, filename);
3697 }
3698
3699 /* See target.h. */
3700
3701 int
3702 target_supports_delete_record (void)
3703 {
3704 struct target_ops *t;
3705
3706 for (t = current_target.beneath; t != NULL; t = t->beneath)
3707 if (t->to_delete_record != delegate_delete_record
3708 && t->to_delete_record != tdefault_delete_record)
3709 return 1;
3710
3711 return 0;
3712 }
3713
3714 /* See target.h. */
3715
3716 void
3717 target_delete_record (void)
3718 {
3719 current_target.to_delete_record (&current_target);
3720 }
3721
3722 /* See target.h. */
3723
3724 int
3725 target_record_is_replaying (ptid_t ptid)
3726 {
3727 return current_target.to_record_is_replaying (&current_target, ptid);
3728 }
3729
3730 /* See target.h. */
3731
3732 int
3733 target_record_will_replay (ptid_t ptid, int dir)
3734 {
3735 return current_target.to_record_will_replay (&current_target, ptid, dir);
3736 }
3737
3738 /* See target.h. */
3739
3740 void
3741 target_record_stop_replaying (void)
3742 {
3743 current_target.to_record_stop_replaying (&current_target);
3744 }
3745
3746 /* See target.h. */
3747
3748 void
3749 target_goto_record_begin (void)
3750 {
3751 current_target.to_goto_record_begin (&current_target);
3752 }
3753
3754 /* See target.h. */
3755
3756 void
3757 target_goto_record_end (void)
3758 {
3759 current_target.to_goto_record_end (&current_target);
3760 }
3761
3762 /* See target.h. */
3763
3764 void
3765 target_goto_record (ULONGEST insn)
3766 {
3767 current_target.to_goto_record (&current_target, insn);
3768 }
3769
3770 /* See target.h. */
3771
3772 void
3773 target_insn_history (int size, int flags)
3774 {
3775 current_target.to_insn_history (&current_target, size, flags);
3776 }
3777
3778 /* See target.h. */
3779
3780 void
3781 target_insn_history_from (ULONGEST from, int size, int flags)
3782 {
3783 current_target.to_insn_history_from (&current_target, from, size, flags);
3784 }
3785
3786 /* See target.h. */
3787
3788 void
3789 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3790 {
3791 current_target.to_insn_history_range (&current_target, begin, end, flags);
3792 }
3793
3794 /* See target.h. */
3795
3796 void
3797 target_call_history (int size, int flags)
3798 {
3799 current_target.to_call_history (&current_target, size, flags);
3800 }
3801
3802 /* See target.h. */
3803
3804 void
3805 target_call_history_from (ULONGEST begin, int size, int flags)
3806 {
3807 current_target.to_call_history_from (&current_target, begin, size, flags);
3808 }
3809
3810 /* See target.h. */
3811
3812 void
3813 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3814 {
3815 current_target.to_call_history_range (&current_target, begin, end, flags);
3816 }
3817
3818 /* See target.h. */
3819
3820 const struct frame_unwind *
3821 target_get_unwinder (void)
3822 {
3823 return current_target.to_get_unwinder (&current_target);
3824 }
3825
3826 /* See target.h. */
3827
3828 const struct frame_unwind *
3829 target_get_tailcall_unwinder (void)
3830 {
3831 return current_target.to_get_tailcall_unwinder (&current_target);
3832 }
3833
3834 /* See target.h. */
3835
3836 void
3837 target_prepare_to_generate_core (void)
3838 {
3839 current_target.to_prepare_to_generate_core (&current_target);
3840 }
3841
3842 /* See target.h. */
3843
3844 void
3845 target_done_generating_core (void)
3846 {
3847 current_target.to_done_generating_core (&current_target);
3848 }
3849
3850 static void
3851 setup_target_debug (void)
3852 {
3853 memcpy (&debug_target, &current_target, sizeof debug_target);
3854
3855 init_debug_target (&current_target);
3856 }
3857 \f
3858
3859 static char targ_desc[] =
3860 "Names of targets and files being debugged.\nShows the entire \
3861 stack of targets currently in use (including the exec-file,\n\
3862 core-file, and process, if any), as well as the symbol file name.";
3863
3864 static void
3865 default_rcmd (struct target_ops *self, const char *command,
3866 struct ui_file *output)
3867 {
3868 error (_("\"monitor\" command not supported by this target."));
3869 }
3870
3871 static void
3872 do_monitor_command (char *cmd,
3873 int from_tty)
3874 {
3875 target_rcmd (cmd, gdb_stdtarg);
3876 }
3877
3878 /* Print the name of each layers of our target stack. */
3879
3880 static void
3881 maintenance_print_target_stack (char *cmd, int from_tty)
3882 {
3883 struct target_ops *t;
3884
3885 printf_filtered (_("The current target stack is:\n"));
3886
3887 for (t = target_stack; t != NULL; t = t->beneath)
3888 {
3889 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3890 }
3891 }
3892
3893 /* See target.h. */
3894
3895 void
3896 target_async (int enable)
3897 {
3898 infrun_async (enable);
3899 current_target.to_async (&current_target, enable);
3900 }
3901
3902 /* See target.h. */
3903
3904 void
3905 target_thread_events (int enable)
3906 {
3907 current_target.to_thread_events (&current_target, enable);
3908 }
3909
3910 /* Controls if targets can report that they can/are async. This is
3911 just for maintainers to use when debugging gdb. */
3912 int target_async_permitted = 1;
3913
3914 /* The set command writes to this variable. If the inferior is
3915 executing, target_async_permitted is *not* updated. */
3916 static int target_async_permitted_1 = 1;
3917
3918 static void
3919 maint_set_target_async_command (char *args, int from_tty,
3920 struct cmd_list_element *c)
3921 {
3922 if (have_live_inferiors ())
3923 {
3924 target_async_permitted_1 = target_async_permitted;
3925 error (_("Cannot change this setting while the inferior is running."));
3926 }
3927
3928 target_async_permitted = target_async_permitted_1;
3929 }
3930
3931 static void
3932 maint_show_target_async_command (struct ui_file *file, int from_tty,
3933 struct cmd_list_element *c,
3934 const char *value)
3935 {
3936 fprintf_filtered (file,
3937 _("Controlling the inferior in "
3938 "asynchronous mode is %s.\n"), value);
3939 }
3940
3941 /* Return true if the target operates in non-stop mode even with "set
3942 non-stop off". */
3943
3944 static int
3945 target_always_non_stop_p (void)
3946 {
3947 return current_target.to_always_non_stop_p (&current_target);
3948 }
3949
3950 /* See target.h. */
3951
3952 int
3953 target_is_non_stop_p (void)
3954 {
3955 return (non_stop
3956 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3957 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3958 && target_always_non_stop_p ()));
3959 }
3960
3961 /* Controls if targets can report that they always run in non-stop
3962 mode. This is just for maintainers to use when debugging gdb. */
3963 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3964
3965 /* The set command writes to this variable. If the inferior is
3966 executing, target_non_stop_enabled is *not* updated. */
3967 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3968
3969 /* Implementation of "maint set target-non-stop". */
3970
3971 static void
3972 maint_set_target_non_stop_command (char *args, int from_tty,
3973 struct cmd_list_element *c)
3974 {
3975 if (have_live_inferiors ())
3976 {
3977 target_non_stop_enabled_1 = target_non_stop_enabled;
3978 error (_("Cannot change this setting while the inferior is running."));
3979 }
3980
3981 target_non_stop_enabled = target_non_stop_enabled_1;
3982 }
3983
3984 /* Implementation of "maint show target-non-stop". */
3985
3986 static void
3987 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3988 struct cmd_list_element *c,
3989 const char *value)
3990 {
3991 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3992 fprintf_filtered (file,
3993 _("Whether the target is always in non-stop mode "
3994 "is %s (currently %s).\n"), value,
3995 target_always_non_stop_p () ? "on" : "off");
3996 else
3997 fprintf_filtered (file,
3998 _("Whether the target is always in non-stop mode "
3999 "is %s.\n"), value);
4000 }
4001
4002 /* Temporary copies of permission settings. */
4003
4004 static int may_write_registers_1 = 1;
4005 static int may_write_memory_1 = 1;
4006 static int may_insert_breakpoints_1 = 1;
4007 static int may_insert_tracepoints_1 = 1;
4008 static int may_insert_fast_tracepoints_1 = 1;
4009 static int may_stop_1 = 1;
4010
4011 /* Make the user-set values match the real values again. */
4012
4013 void
4014 update_target_permissions (void)
4015 {
4016 may_write_registers_1 = may_write_registers;
4017 may_write_memory_1 = may_write_memory;
4018 may_insert_breakpoints_1 = may_insert_breakpoints;
4019 may_insert_tracepoints_1 = may_insert_tracepoints;
4020 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4021 may_stop_1 = may_stop;
4022 }
4023
4024 /* The one function handles (most of) the permission flags in the same
4025 way. */
4026
4027 static void
4028 set_target_permissions (char *args, int from_tty,
4029 struct cmd_list_element *c)
4030 {
4031 if (target_has_execution)
4032 {
4033 update_target_permissions ();
4034 error (_("Cannot change this setting while the inferior is running."));
4035 }
4036
4037 /* Make the real values match the user-changed values. */
4038 may_write_registers = may_write_registers_1;
4039 may_insert_breakpoints = may_insert_breakpoints_1;
4040 may_insert_tracepoints = may_insert_tracepoints_1;
4041 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4042 may_stop = may_stop_1;
4043 update_observer_mode ();
4044 }
4045
4046 /* Set memory write permission independently of observer mode. */
4047
4048 static void
4049 set_write_memory_permission (char *args, int from_tty,
4050 struct cmd_list_element *c)
4051 {
4052 /* Make the real values match the user-changed values. */
4053 may_write_memory = may_write_memory_1;
4054 update_observer_mode ();
4055 }
4056
4057
4058 void
4059 initialize_targets (void)
4060 {
4061 init_dummy_target ();
4062 push_target (&dummy_target);
4063
4064 add_info ("target", target_info, targ_desc);
4065 add_info ("files", target_info, targ_desc);
4066
4067 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4068 Set target debugging."), _("\
4069 Show target debugging."), _("\
4070 When non-zero, target debugging is enabled. Higher numbers are more\n\
4071 verbose."),
4072 set_targetdebug,
4073 show_targetdebug,
4074 &setdebuglist, &showdebuglist);
4075
4076 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4077 &trust_readonly, _("\
4078 Set mode for reading from readonly sections."), _("\
4079 Show mode for reading from readonly sections."), _("\
4080 When this mode is on, memory reads from readonly sections (such as .text)\n\
4081 will be read from the object file instead of from the target. This will\n\
4082 result in significant performance improvement for remote targets."),
4083 NULL,
4084 show_trust_readonly,
4085 &setlist, &showlist);
4086
4087 add_com ("monitor", class_obscure, do_monitor_command,
4088 _("Send a command to the remote monitor (remote targets only)."));
4089
4090 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4091 _("Print the name of each layer of the internal target stack."),
4092 &maintenanceprintlist);
4093
4094 add_setshow_boolean_cmd ("target-async", no_class,
4095 &target_async_permitted_1, _("\
4096 Set whether gdb controls the inferior in asynchronous mode."), _("\
4097 Show whether gdb controls the inferior in asynchronous mode."), _("\
4098 Tells gdb whether to control the inferior in asynchronous mode."),
4099 maint_set_target_async_command,
4100 maint_show_target_async_command,
4101 &maintenance_set_cmdlist,
4102 &maintenance_show_cmdlist);
4103
4104 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4105 &target_non_stop_enabled_1, _("\
4106 Set whether gdb always controls the inferior in non-stop mode."), _("\
4107 Show whether gdb always controls the inferior in non-stop mode."), _("\
4108 Tells gdb whether to control the inferior in non-stop mode."),
4109 maint_set_target_non_stop_command,
4110 maint_show_target_non_stop_command,
4111 &maintenance_set_cmdlist,
4112 &maintenance_show_cmdlist);
4113
4114 add_setshow_boolean_cmd ("may-write-registers", class_support,
4115 &may_write_registers_1, _("\
4116 Set permission to write into registers."), _("\
4117 Show permission to write into registers."), _("\
4118 When this permission is on, GDB may write into the target's registers.\n\
4119 Otherwise, any sort of write attempt will result in an error."),
4120 set_target_permissions, NULL,
4121 &setlist, &showlist);
4122
4123 add_setshow_boolean_cmd ("may-write-memory", class_support,
4124 &may_write_memory_1, _("\
4125 Set permission to write into target memory."), _("\
4126 Show permission to write into target memory."), _("\
4127 When this permission is on, GDB may write into the target's memory.\n\
4128 Otherwise, any sort of write attempt will result in an error."),
4129 set_write_memory_permission, NULL,
4130 &setlist, &showlist);
4131
4132 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4133 &may_insert_breakpoints_1, _("\
4134 Set permission to insert breakpoints in the target."), _("\
4135 Show permission to insert breakpoints in the target."), _("\
4136 When this permission is on, GDB may insert breakpoints in the program.\n\
4137 Otherwise, any sort of insertion attempt will result in an error."),
4138 set_target_permissions, NULL,
4139 &setlist, &showlist);
4140
4141 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4142 &may_insert_tracepoints_1, _("\
4143 Set permission to insert tracepoints in the target."), _("\
4144 Show permission to insert tracepoints in the target."), _("\
4145 When this permission is on, GDB may insert tracepoints in the program.\n\
4146 Otherwise, any sort of insertion attempt will result in an error."),
4147 set_target_permissions, NULL,
4148 &setlist, &showlist);
4149
4150 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4151 &may_insert_fast_tracepoints_1, _("\
4152 Set permission to insert fast tracepoints in the target."), _("\
4153 Show permission to insert fast tracepoints in the target."), _("\
4154 When this permission is on, GDB may insert fast tracepoints.\n\
4155 Otherwise, any sort of insertion attempt will result in an error."),
4156 set_target_permissions, NULL,
4157 &setlist, &showlist);
4158
4159 add_setshow_boolean_cmd ("may-interrupt", class_support,
4160 &may_stop_1, _("\
4161 Set permission to interrupt or signal the target."), _("\
4162 Show permission to interrupt or signal the target."), _("\
4163 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4164 Otherwise, any attempt to interrupt or stop will be ignored."),
4165 set_target_permissions, NULL,
4166 &setlist, &showlist);
4167
4168 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4169 &auto_connect_native_target, _("\
4170 Set whether GDB may automatically connect to the native target."), _("\
4171 Show whether GDB may automatically connect to the native target."), _("\
4172 When on, and GDB is not connected to a target yet, GDB\n\
4173 attempts \"run\" and other commands with the native target."),
4174 NULL, show_auto_connect_native_target,
4175 &setlist, &showlist);
4176 }
This page took 0.137953 seconds and 5 git commands to generate.