gdb: Use std::min and std::max throughout
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49
50 static void target_info (char *, int);
51
52 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
53
54 static void default_terminal_info (struct target_ops *, const char *, int);
55
56 static int default_watchpoint_addr_within_range (struct target_ops *,
57 CORE_ADDR, CORE_ADDR, int);
58
59 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
60 CORE_ADDR, int);
61
62 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
63
64 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
65 long lwp, long tid);
66
67 static int default_follow_fork (struct target_ops *self, int follow_child,
68 int detach_fork);
69
70 static void default_mourn_inferior (struct target_ops *self);
71
72 static int default_search_memory (struct target_ops *ops,
73 CORE_ADDR start_addr,
74 ULONGEST search_space_len,
75 const gdb_byte *pattern,
76 ULONGEST pattern_len,
77 CORE_ADDR *found_addrp);
78
79 static int default_verify_memory (struct target_ops *self,
80 const gdb_byte *data,
81 CORE_ADDR memaddr, ULONGEST size);
82
83 static struct address_space *default_thread_address_space
84 (struct target_ops *self, ptid_t ptid);
85
86 static void tcomplain (void) ATTRIBUTE_NORETURN;
87
88 static int return_zero (struct target_ops *);
89
90 static int return_zero_has_execution (struct target_ops *, ptid_t);
91
92 static void target_command (char *, int);
93
94 static struct target_ops *find_default_run_target (char *);
95
96 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
97 ptid_t ptid);
98
99 static int dummy_find_memory_regions (struct target_ops *self,
100 find_memory_region_ftype ignore1,
101 void *ignore2);
102
103 static char *dummy_make_corefile_notes (struct target_ops *self,
104 bfd *ignore1, int *ignore2);
105
106 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
107
108 static enum exec_direction_kind default_execution_direction
109 (struct target_ops *self);
110
111 static struct target_ops debug_target;
112
113 #include "target-delegates.c"
114
115 static void init_dummy_target (void);
116
117 static void update_current_target (void);
118
119 /* Vector of existing target structures. */
120 typedef struct target_ops *target_ops_p;
121 DEF_VEC_P (target_ops_p);
122 static VEC (target_ops_p) *target_structs;
123
124 /* The initial current target, so that there is always a semi-valid
125 current target. */
126
127 static struct target_ops dummy_target;
128
129 /* Top of target stack. */
130
131 static struct target_ops *target_stack;
132
133 /* The target structure we are currently using to talk to a process
134 or file or whatever "inferior" we have. */
135
136 struct target_ops current_target;
137
138 /* Command list for target. */
139
140 static struct cmd_list_element *targetlist = NULL;
141
142 /* Nonzero if we should trust readonly sections from the
143 executable when reading memory. */
144
145 static int trust_readonly = 0;
146
147 /* Nonzero if we should show true memory content including
148 memory breakpoint inserted by gdb. */
149
150 static int show_memory_breakpoints = 0;
151
152 /* These globals control whether GDB attempts to perform these
153 operations; they are useful for targets that need to prevent
154 inadvertant disruption, such as in non-stop mode. */
155
156 int may_write_registers = 1;
157
158 int may_write_memory = 1;
159
160 int may_insert_breakpoints = 1;
161
162 int may_insert_tracepoints = 1;
163
164 int may_insert_fast_tracepoints = 1;
165
166 int may_stop = 1;
167
168 /* Non-zero if we want to see trace of target level stuff. */
169
170 static unsigned int targetdebug = 0;
171
172 static void
173 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
174 {
175 update_current_target ();
176 }
177
178 static void
179 show_targetdebug (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
183 }
184
185 static void setup_target_debug (void);
186
187 /* The user just typed 'target' without the name of a target. */
188
189 static void
190 target_command (char *arg, int from_tty)
191 {
192 fputs_filtered ("Argument required (target name). Try `help target'\n",
193 gdb_stdout);
194 }
195
196 /* Default target_has_* methods for process_stratum targets. */
197
198 int
199 default_child_has_all_memory (struct target_ops *ops)
200 {
201 /* If no inferior selected, then we can't read memory here. */
202 if (ptid_equal (inferior_ptid, null_ptid))
203 return 0;
204
205 return 1;
206 }
207
208 int
209 default_child_has_memory (struct target_ops *ops)
210 {
211 /* If no inferior selected, then we can't read memory here. */
212 if (ptid_equal (inferior_ptid, null_ptid))
213 return 0;
214
215 return 1;
216 }
217
218 int
219 default_child_has_stack (struct target_ops *ops)
220 {
221 /* If no inferior selected, there's no stack. */
222 if (ptid_equal (inferior_ptid, null_ptid))
223 return 0;
224
225 return 1;
226 }
227
228 int
229 default_child_has_registers (struct target_ops *ops)
230 {
231 /* Can't read registers from no inferior. */
232 if (ptid_equal (inferior_ptid, null_ptid))
233 return 0;
234
235 return 1;
236 }
237
238 int
239 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
240 {
241 /* If there's no thread selected, then we can't make it run through
242 hoops. */
243 if (ptid_equal (the_ptid, null_ptid))
244 return 0;
245
246 return 1;
247 }
248
249
250 int
251 target_has_all_memory_1 (void)
252 {
253 struct target_ops *t;
254
255 for (t = current_target.beneath; t != NULL; t = t->beneath)
256 if (t->to_has_all_memory (t))
257 return 1;
258
259 return 0;
260 }
261
262 int
263 target_has_memory_1 (void)
264 {
265 struct target_ops *t;
266
267 for (t = current_target.beneath; t != NULL; t = t->beneath)
268 if (t->to_has_memory (t))
269 return 1;
270
271 return 0;
272 }
273
274 int
275 target_has_stack_1 (void)
276 {
277 struct target_ops *t;
278
279 for (t = current_target.beneath; t != NULL; t = t->beneath)
280 if (t->to_has_stack (t))
281 return 1;
282
283 return 0;
284 }
285
286 int
287 target_has_registers_1 (void)
288 {
289 struct target_ops *t;
290
291 for (t = current_target.beneath; t != NULL; t = t->beneath)
292 if (t->to_has_registers (t))
293 return 1;
294
295 return 0;
296 }
297
298 int
299 target_has_execution_1 (ptid_t the_ptid)
300 {
301 struct target_ops *t;
302
303 for (t = current_target.beneath; t != NULL; t = t->beneath)
304 if (t->to_has_execution (t, the_ptid))
305 return 1;
306
307 return 0;
308 }
309
310 int
311 target_has_execution_current (void)
312 {
313 return target_has_execution_1 (inferior_ptid);
314 }
315
316 /* Complete initialization of T. This ensures that various fields in
317 T are set, if needed by the target implementation. */
318
319 void
320 complete_target_initialization (struct target_ops *t)
321 {
322 /* Provide default values for all "must have" methods. */
323
324 if (t->to_has_all_memory == NULL)
325 t->to_has_all_memory = return_zero;
326
327 if (t->to_has_memory == NULL)
328 t->to_has_memory = return_zero;
329
330 if (t->to_has_stack == NULL)
331 t->to_has_stack = return_zero;
332
333 if (t->to_has_registers == NULL)
334 t->to_has_registers = return_zero;
335
336 if (t->to_has_execution == NULL)
337 t->to_has_execution = return_zero_has_execution;
338
339 /* These methods can be called on an unpushed target and so require
340 a default implementation if the target might plausibly be the
341 default run target. */
342 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
343 && t->to_supports_non_stop != NULL));
344
345 install_delegators (t);
346 }
347
348 /* This is used to implement the various target commands. */
349
350 static void
351 open_target (char *args, int from_tty, struct cmd_list_element *command)
352 {
353 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
354
355 if (targetdebug)
356 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
357 ops->to_shortname);
358
359 ops->to_open (args, from_tty);
360
361 if (targetdebug)
362 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
363 ops->to_shortname, args, from_tty);
364 }
365
366 /* Add possible target architecture T to the list and add a new
367 command 'target T->to_shortname'. Set COMPLETER as the command's
368 completer if not NULL. */
369
370 void
371 add_target_with_completer (struct target_ops *t,
372 completer_ftype *completer)
373 {
374 struct cmd_list_element *c;
375
376 complete_target_initialization (t);
377
378 VEC_safe_push (target_ops_p, target_structs, t);
379
380 if (targetlist == NULL)
381 add_prefix_cmd ("target", class_run, target_command, _("\
382 Connect to a target machine or process.\n\
383 The first argument is the type or protocol of the target machine.\n\
384 Remaining arguments are interpreted by the target protocol. For more\n\
385 information on the arguments for a particular protocol, type\n\
386 `help target ' followed by the protocol name."),
387 &targetlist, "target ", 0, &cmdlist);
388 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
389 set_cmd_sfunc (c, open_target);
390 set_cmd_context (c, t);
391 if (completer != NULL)
392 set_cmd_completer (c, completer);
393 }
394
395 /* Add a possible target architecture to the list. */
396
397 void
398 add_target (struct target_ops *t)
399 {
400 add_target_with_completer (t, NULL);
401 }
402
403 /* See target.h. */
404
405 void
406 add_deprecated_target_alias (struct target_ops *t, char *alias)
407 {
408 struct cmd_list_element *c;
409 char *alt;
410
411 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
412 see PR cli/15104. */
413 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
414 set_cmd_sfunc (c, open_target);
415 set_cmd_context (c, t);
416 alt = xstrprintf ("target %s", t->to_shortname);
417 deprecate_cmd (c, alt);
418 }
419
420 /* Stub functions */
421
422 void
423 target_kill (void)
424 {
425 current_target.to_kill (&current_target);
426 }
427
428 void
429 target_load (const char *arg, int from_tty)
430 {
431 target_dcache_invalidate ();
432 (*current_target.to_load) (&current_target, arg, from_tty);
433 }
434
435 /* Possible terminal states. */
436
437 enum terminal_state
438 {
439 /* The inferior's terminal settings are in effect. */
440 terminal_is_inferior = 0,
441
442 /* Some of our terminal settings are in effect, enough to get
443 proper output. */
444 terminal_is_ours_for_output = 1,
445
446 /* Our terminal settings are in effect, for output and input. */
447 terminal_is_ours = 2
448 };
449
450 static enum terminal_state terminal_state = terminal_is_ours;
451
452 /* See target.h. */
453
454 void
455 target_terminal_init (void)
456 {
457 (*current_target.to_terminal_init) (&current_target);
458
459 terminal_state = terminal_is_ours;
460 }
461
462 /* See target.h. */
463
464 int
465 target_terminal_is_inferior (void)
466 {
467 return (terminal_state == terminal_is_inferior);
468 }
469
470 /* See target.h. */
471
472 int
473 target_terminal_is_ours (void)
474 {
475 return (terminal_state == terminal_is_ours);
476 }
477
478 /* See target.h. */
479
480 void
481 target_terminal_inferior (void)
482 {
483 struct ui *ui = current_ui;
484
485 /* A background resume (``run&'') should leave GDB in control of the
486 terminal. */
487 if (ui->prompt_state != PROMPT_BLOCKED)
488 return;
489
490 /* Since we always run the inferior in the main console (unless "set
491 inferior-tty" is in effect), when some UI other than the main one
492 calls target_terminal_inferior/target_terminal_inferior, then we
493 leave the main UI's terminal settings as is. */
494 if (ui != main_ui)
495 return;
496
497 if (terminal_state == terminal_is_inferior)
498 return;
499
500 /* If GDB is resuming the inferior in the foreground, install
501 inferior's terminal modes. */
502 (*current_target.to_terminal_inferior) (&current_target);
503 terminal_state = terminal_is_inferior;
504
505 /* If the user hit C-c before, pretend that it was hit right
506 here. */
507 if (check_quit_flag ())
508 target_pass_ctrlc ();
509 }
510
511 /* See target.h. */
512
513 void
514 target_terminal_ours (void)
515 {
516 struct ui *ui = current_ui;
517
518 /* See target_terminal_inferior. */
519 if (ui != main_ui)
520 return;
521
522 if (terminal_state == terminal_is_ours)
523 return;
524
525 (*current_target.to_terminal_ours) (&current_target);
526 terminal_state = terminal_is_ours;
527 }
528
529 /* See target.h. */
530
531 void
532 target_terminal_ours_for_output (void)
533 {
534 struct ui *ui = current_ui;
535
536 /* See target_terminal_inferior. */
537 if (ui != main_ui)
538 return;
539
540 if (terminal_state != terminal_is_inferior)
541 return;
542 (*current_target.to_terminal_ours_for_output) (&current_target);
543 terminal_state = terminal_is_ours_for_output;
544 }
545
546 /* See target.h. */
547
548 int
549 target_supports_terminal_ours (void)
550 {
551 struct target_ops *t;
552
553 for (t = current_target.beneath; t != NULL; t = t->beneath)
554 {
555 if (t->to_terminal_ours != delegate_terminal_ours
556 && t->to_terminal_ours != tdefault_terminal_ours)
557 return 1;
558 }
559
560 return 0;
561 }
562
563 /* Restore the terminal to its previous state (helper for
564 make_cleanup_restore_target_terminal). */
565
566 static void
567 cleanup_restore_target_terminal (void *arg)
568 {
569 enum terminal_state *previous_state = (enum terminal_state *) arg;
570
571 switch (*previous_state)
572 {
573 case terminal_is_ours:
574 target_terminal_ours ();
575 break;
576 case terminal_is_ours_for_output:
577 target_terminal_ours_for_output ();
578 break;
579 case terminal_is_inferior:
580 target_terminal_inferior ();
581 break;
582 }
583 }
584
585 /* See target.h. */
586
587 struct cleanup *
588 make_cleanup_restore_target_terminal (void)
589 {
590 enum terminal_state *ts = XNEW (enum terminal_state);
591
592 *ts = terminal_state;
593
594 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
595 }
596
597 static void
598 tcomplain (void)
599 {
600 error (_("You can't do that when your target is `%s'"),
601 current_target.to_shortname);
602 }
603
604 void
605 noprocess (void)
606 {
607 error (_("You can't do that without a process to debug."));
608 }
609
610 static void
611 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
612 {
613 printf_unfiltered (_("No saved terminal information.\n"));
614 }
615
616 /* A default implementation for the to_get_ada_task_ptid target method.
617
618 This function builds the PTID by using both LWP and TID as part of
619 the PTID lwp and tid elements. The pid used is the pid of the
620 inferior_ptid. */
621
622 static ptid_t
623 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
624 {
625 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
626 }
627
628 static enum exec_direction_kind
629 default_execution_direction (struct target_ops *self)
630 {
631 if (!target_can_execute_reverse)
632 return EXEC_FORWARD;
633 else if (!target_can_async_p ())
634 return EXEC_FORWARD;
635 else
636 gdb_assert_not_reached ("\
637 to_execution_direction must be implemented for reverse async");
638 }
639
640 /* Go through the target stack from top to bottom, copying over zero
641 entries in current_target, then filling in still empty entries. In
642 effect, we are doing class inheritance through the pushed target
643 vectors.
644
645 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
646 is currently implemented, is that it discards any knowledge of
647 which target an inherited method originally belonged to.
648 Consequently, new new target methods should instead explicitly and
649 locally search the target stack for the target that can handle the
650 request. */
651
652 static void
653 update_current_target (void)
654 {
655 struct target_ops *t;
656
657 /* First, reset current's contents. */
658 memset (&current_target, 0, sizeof (current_target));
659
660 /* Install the delegators. */
661 install_delegators (&current_target);
662
663 current_target.to_stratum = target_stack->to_stratum;
664
665 #define INHERIT(FIELD, TARGET) \
666 if (!current_target.FIELD) \
667 current_target.FIELD = (TARGET)->FIELD
668
669 /* Do not add any new INHERITs here. Instead, use the delegation
670 mechanism provided by make-target-delegates. */
671 for (t = target_stack; t; t = t->beneath)
672 {
673 INHERIT (to_shortname, t);
674 INHERIT (to_longname, t);
675 INHERIT (to_attach_no_wait, t);
676 INHERIT (to_have_steppable_watchpoint, t);
677 INHERIT (to_have_continuable_watchpoint, t);
678 INHERIT (to_has_thread_control, t);
679 }
680 #undef INHERIT
681
682 /* Finally, position the target-stack beneath the squashed
683 "current_target". That way code looking for a non-inherited
684 target method can quickly and simply find it. */
685 current_target.beneath = target_stack;
686
687 if (targetdebug)
688 setup_target_debug ();
689 }
690
691 /* Push a new target type into the stack of the existing target accessors,
692 possibly superseding some of the existing accessors.
693
694 Rather than allow an empty stack, we always have the dummy target at
695 the bottom stratum, so we can call the function vectors without
696 checking them. */
697
698 void
699 push_target (struct target_ops *t)
700 {
701 struct target_ops **cur;
702
703 /* Check magic number. If wrong, it probably means someone changed
704 the struct definition, but not all the places that initialize one. */
705 if (t->to_magic != OPS_MAGIC)
706 {
707 fprintf_unfiltered (gdb_stderr,
708 "Magic number of %s target struct wrong\n",
709 t->to_shortname);
710 internal_error (__FILE__, __LINE__,
711 _("failed internal consistency check"));
712 }
713
714 /* Find the proper stratum to install this target in. */
715 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
716 {
717 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
718 break;
719 }
720
721 /* If there's already targets at this stratum, remove them. */
722 /* FIXME: cagney/2003-10-15: I think this should be popping all
723 targets to CUR, and not just those at this stratum level. */
724 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
725 {
726 /* There's already something at this stratum level. Close it,
727 and un-hook it from the stack. */
728 struct target_ops *tmp = (*cur);
729
730 (*cur) = (*cur)->beneath;
731 tmp->beneath = NULL;
732 target_close (tmp);
733 }
734
735 /* We have removed all targets in our stratum, now add the new one. */
736 t->beneath = (*cur);
737 (*cur) = t;
738
739 update_current_target ();
740 }
741
742 /* Remove a target_ops vector from the stack, wherever it may be.
743 Return how many times it was removed (0 or 1). */
744
745 int
746 unpush_target (struct target_ops *t)
747 {
748 struct target_ops **cur;
749 struct target_ops *tmp;
750
751 if (t->to_stratum == dummy_stratum)
752 internal_error (__FILE__, __LINE__,
753 _("Attempt to unpush the dummy target"));
754
755 /* Look for the specified target. Note that we assume that a target
756 can only occur once in the target stack. */
757
758 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
759 {
760 if ((*cur) == t)
761 break;
762 }
763
764 /* If we don't find target_ops, quit. Only open targets should be
765 closed. */
766 if ((*cur) == NULL)
767 return 0;
768
769 /* Unchain the target. */
770 tmp = (*cur);
771 (*cur) = (*cur)->beneath;
772 tmp->beneath = NULL;
773
774 update_current_target ();
775
776 /* Finally close the target. Note we do this after unchaining, so
777 any target method calls from within the target_close
778 implementation don't end up in T anymore. */
779 target_close (t);
780
781 return 1;
782 }
783
784 /* Unpush TARGET and assert that it worked. */
785
786 static void
787 unpush_target_and_assert (struct target_ops *target)
788 {
789 if (!unpush_target (target))
790 {
791 fprintf_unfiltered (gdb_stderr,
792 "pop_all_targets couldn't find target %s\n",
793 target->to_shortname);
794 internal_error (__FILE__, __LINE__,
795 _("failed internal consistency check"));
796 }
797 }
798
799 void
800 pop_all_targets_above (enum strata above_stratum)
801 {
802 while ((int) (current_target.to_stratum) > (int) above_stratum)
803 unpush_target_and_assert (target_stack);
804 }
805
806 /* See target.h. */
807
808 void
809 pop_all_targets_at_and_above (enum strata stratum)
810 {
811 while ((int) (current_target.to_stratum) >= (int) stratum)
812 unpush_target_and_assert (target_stack);
813 }
814
815 void
816 pop_all_targets (void)
817 {
818 pop_all_targets_above (dummy_stratum);
819 }
820
821 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
822
823 int
824 target_is_pushed (struct target_ops *t)
825 {
826 struct target_ops *cur;
827
828 /* Check magic number. If wrong, it probably means someone changed
829 the struct definition, but not all the places that initialize one. */
830 if (t->to_magic != OPS_MAGIC)
831 {
832 fprintf_unfiltered (gdb_stderr,
833 "Magic number of %s target struct wrong\n",
834 t->to_shortname);
835 internal_error (__FILE__, __LINE__,
836 _("failed internal consistency check"));
837 }
838
839 for (cur = target_stack; cur != NULL; cur = cur->beneath)
840 if (cur == t)
841 return 1;
842
843 return 0;
844 }
845
846 /* Default implementation of to_get_thread_local_address. */
847
848 static void
849 generic_tls_error (void)
850 {
851 throw_error (TLS_GENERIC_ERROR,
852 _("Cannot find thread-local variables on this target"));
853 }
854
855 /* Using the objfile specified in OBJFILE, find the address for the
856 current thread's thread-local storage with offset OFFSET. */
857 CORE_ADDR
858 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
859 {
860 volatile CORE_ADDR addr = 0;
861 struct target_ops *target = &current_target;
862
863 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
864 {
865 ptid_t ptid = inferior_ptid;
866
867 TRY
868 {
869 CORE_ADDR lm_addr;
870
871 /* Fetch the load module address for this objfile. */
872 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
873 objfile);
874
875 addr = target->to_get_thread_local_address (target, ptid,
876 lm_addr, offset);
877 }
878 /* If an error occurred, print TLS related messages here. Otherwise,
879 throw the error to some higher catcher. */
880 CATCH (ex, RETURN_MASK_ALL)
881 {
882 int objfile_is_library = (objfile->flags & OBJF_SHARED);
883
884 switch (ex.error)
885 {
886 case TLS_NO_LIBRARY_SUPPORT_ERROR:
887 error (_("Cannot find thread-local variables "
888 "in this thread library."));
889 break;
890 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
891 if (objfile_is_library)
892 error (_("Cannot find shared library `%s' in dynamic"
893 " linker's load module list"), objfile_name (objfile));
894 else
895 error (_("Cannot find executable file `%s' in dynamic"
896 " linker's load module list"), objfile_name (objfile));
897 break;
898 case TLS_NOT_ALLOCATED_YET_ERROR:
899 if (objfile_is_library)
900 error (_("The inferior has not yet allocated storage for"
901 " thread-local variables in\n"
902 "the shared library `%s'\n"
903 "for %s"),
904 objfile_name (objfile), target_pid_to_str (ptid));
905 else
906 error (_("The inferior has not yet allocated storage for"
907 " thread-local variables in\n"
908 "the executable `%s'\n"
909 "for %s"),
910 objfile_name (objfile), target_pid_to_str (ptid));
911 break;
912 case TLS_GENERIC_ERROR:
913 if (objfile_is_library)
914 error (_("Cannot find thread-local storage for %s, "
915 "shared library %s:\n%s"),
916 target_pid_to_str (ptid),
917 objfile_name (objfile), ex.message);
918 else
919 error (_("Cannot find thread-local storage for %s, "
920 "executable file %s:\n%s"),
921 target_pid_to_str (ptid),
922 objfile_name (objfile), ex.message);
923 break;
924 default:
925 throw_exception (ex);
926 break;
927 }
928 }
929 END_CATCH
930 }
931 /* It wouldn't be wrong here to try a gdbarch method, too; finding
932 TLS is an ABI-specific thing. But we don't do that yet. */
933 else
934 error (_("Cannot find thread-local variables on this target"));
935
936 return addr;
937 }
938
939 const char *
940 target_xfer_status_to_string (enum target_xfer_status status)
941 {
942 #define CASE(X) case X: return #X
943 switch (status)
944 {
945 CASE(TARGET_XFER_E_IO);
946 CASE(TARGET_XFER_UNAVAILABLE);
947 default:
948 return "<unknown>";
949 }
950 #undef CASE
951 };
952
953
954 #undef MIN
955 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
956
957 /* target_read_string -- read a null terminated string, up to LEN bytes,
958 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
959 Set *STRING to a pointer to malloc'd memory containing the data; the caller
960 is responsible for freeing it. Return the number of bytes successfully
961 read. */
962
963 int
964 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
965 {
966 int tlen, offset, i;
967 gdb_byte buf[4];
968 int errcode = 0;
969 char *buffer;
970 int buffer_allocated;
971 char *bufptr;
972 unsigned int nbytes_read = 0;
973
974 gdb_assert (string);
975
976 /* Small for testing. */
977 buffer_allocated = 4;
978 buffer = (char *) xmalloc (buffer_allocated);
979 bufptr = buffer;
980
981 while (len > 0)
982 {
983 tlen = MIN (len, 4 - (memaddr & 3));
984 offset = memaddr & 3;
985
986 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
987 if (errcode != 0)
988 {
989 /* The transfer request might have crossed the boundary to an
990 unallocated region of memory. Retry the transfer, requesting
991 a single byte. */
992 tlen = 1;
993 offset = 0;
994 errcode = target_read_memory (memaddr, buf, 1);
995 if (errcode != 0)
996 goto done;
997 }
998
999 if (bufptr - buffer + tlen > buffer_allocated)
1000 {
1001 unsigned int bytes;
1002
1003 bytes = bufptr - buffer;
1004 buffer_allocated *= 2;
1005 buffer = (char *) xrealloc (buffer, buffer_allocated);
1006 bufptr = buffer + bytes;
1007 }
1008
1009 for (i = 0; i < tlen; i++)
1010 {
1011 *bufptr++ = buf[i + offset];
1012 if (buf[i + offset] == '\000')
1013 {
1014 nbytes_read += i + 1;
1015 goto done;
1016 }
1017 }
1018
1019 memaddr += tlen;
1020 len -= tlen;
1021 nbytes_read += tlen;
1022 }
1023 done:
1024 *string = buffer;
1025 if (errnop != NULL)
1026 *errnop = errcode;
1027 return nbytes_read;
1028 }
1029
1030 struct target_section_table *
1031 target_get_section_table (struct target_ops *target)
1032 {
1033 return (*target->to_get_section_table) (target);
1034 }
1035
1036 /* Find a section containing ADDR. */
1037
1038 struct target_section *
1039 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1040 {
1041 struct target_section_table *table = target_get_section_table (target);
1042 struct target_section *secp;
1043
1044 if (table == NULL)
1045 return NULL;
1046
1047 for (secp = table->sections; secp < table->sections_end; secp++)
1048 {
1049 if (addr >= secp->addr && addr < secp->endaddr)
1050 return secp;
1051 }
1052 return NULL;
1053 }
1054
1055
1056 /* Helper for the memory xfer routines. Checks the attributes of the
1057 memory region of MEMADDR against the read or write being attempted.
1058 If the access is permitted returns true, otherwise returns false.
1059 REGION_P is an optional output parameter. If not-NULL, it is
1060 filled with a pointer to the memory region of MEMADDR. REG_LEN
1061 returns LEN trimmed to the end of the region. This is how much the
1062 caller can continue requesting, if the access is permitted. A
1063 single xfer request must not straddle memory region boundaries. */
1064
1065 static int
1066 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1067 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1068 struct mem_region **region_p)
1069 {
1070 struct mem_region *region;
1071
1072 region = lookup_mem_region (memaddr);
1073
1074 if (region_p != NULL)
1075 *region_p = region;
1076
1077 switch (region->attrib.mode)
1078 {
1079 case MEM_RO:
1080 if (writebuf != NULL)
1081 return 0;
1082 break;
1083
1084 case MEM_WO:
1085 if (readbuf != NULL)
1086 return 0;
1087 break;
1088
1089 case MEM_FLASH:
1090 /* We only support writing to flash during "load" for now. */
1091 if (writebuf != NULL)
1092 error (_("Writing to flash memory forbidden in this context"));
1093 break;
1094
1095 case MEM_NONE:
1096 return 0;
1097 }
1098
1099 /* region->hi == 0 means there's no upper bound. */
1100 if (memaddr + len < region->hi || region->hi == 0)
1101 *reg_len = len;
1102 else
1103 *reg_len = region->hi - memaddr;
1104
1105 return 1;
1106 }
1107
1108 /* Read memory from more than one valid target. A core file, for
1109 instance, could have some of memory but delegate other bits to
1110 the target below it. So, we must manually try all targets. */
1111
1112 enum target_xfer_status
1113 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1114 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1115 ULONGEST *xfered_len)
1116 {
1117 enum target_xfer_status res;
1118
1119 do
1120 {
1121 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1122 readbuf, writebuf, memaddr, len,
1123 xfered_len);
1124 if (res == TARGET_XFER_OK)
1125 break;
1126
1127 /* Stop if the target reports that the memory is not available. */
1128 if (res == TARGET_XFER_UNAVAILABLE)
1129 break;
1130
1131 /* We want to continue past core files to executables, but not
1132 past a running target's memory. */
1133 if (ops->to_has_all_memory (ops))
1134 break;
1135
1136 ops = ops->beneath;
1137 }
1138 while (ops != NULL);
1139
1140 /* The cache works at the raw memory level. Make sure the cache
1141 gets updated with raw contents no matter what kind of memory
1142 object was originally being written. Note we do write-through
1143 first, so that if it fails, we don't write to the cache contents
1144 that never made it to the target. */
1145 if (writebuf != NULL
1146 && !ptid_equal (inferior_ptid, null_ptid)
1147 && target_dcache_init_p ()
1148 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1149 {
1150 DCACHE *dcache = target_dcache_get ();
1151
1152 /* Note that writing to an area of memory which wasn't present
1153 in the cache doesn't cause it to be loaded in. */
1154 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1155 }
1156
1157 return res;
1158 }
1159
1160 /* Perform a partial memory transfer.
1161 For docs see target.h, to_xfer_partial. */
1162
1163 static enum target_xfer_status
1164 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1165 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1166 ULONGEST len, ULONGEST *xfered_len)
1167 {
1168 enum target_xfer_status res;
1169 ULONGEST reg_len;
1170 struct mem_region *region;
1171 struct inferior *inf;
1172
1173 /* For accesses to unmapped overlay sections, read directly from
1174 files. Must do this first, as MEMADDR may need adjustment. */
1175 if (readbuf != NULL && overlay_debugging)
1176 {
1177 struct obj_section *section = find_pc_overlay (memaddr);
1178
1179 if (pc_in_unmapped_range (memaddr, section))
1180 {
1181 struct target_section_table *table
1182 = target_get_section_table (ops);
1183 const char *section_name = section->the_bfd_section->name;
1184
1185 memaddr = overlay_mapped_address (memaddr, section);
1186 return section_table_xfer_memory_partial (readbuf, writebuf,
1187 memaddr, len, xfered_len,
1188 table->sections,
1189 table->sections_end,
1190 section_name);
1191 }
1192 }
1193
1194 /* Try the executable files, if "trust-readonly-sections" is set. */
1195 if (readbuf != NULL && trust_readonly)
1196 {
1197 struct target_section *secp;
1198 struct target_section_table *table;
1199
1200 secp = target_section_by_addr (ops, memaddr);
1201 if (secp != NULL
1202 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1203 secp->the_bfd_section)
1204 & SEC_READONLY))
1205 {
1206 table = target_get_section_table (ops);
1207 return section_table_xfer_memory_partial (readbuf, writebuf,
1208 memaddr, len, xfered_len,
1209 table->sections,
1210 table->sections_end,
1211 NULL);
1212 }
1213 }
1214
1215 /* Try GDB's internal data cache. */
1216
1217 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1218 &region))
1219 return TARGET_XFER_E_IO;
1220
1221 if (!ptid_equal (inferior_ptid, null_ptid))
1222 inf = find_inferior_ptid (inferior_ptid);
1223 else
1224 inf = NULL;
1225
1226 if (inf != NULL
1227 && readbuf != NULL
1228 /* The dcache reads whole cache lines; that doesn't play well
1229 with reading from a trace buffer, because reading outside of
1230 the collected memory range fails. */
1231 && get_traceframe_number () == -1
1232 && (region->attrib.cache
1233 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1234 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1235 {
1236 DCACHE *dcache = target_dcache_get_or_init ();
1237
1238 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1239 reg_len, xfered_len);
1240 }
1241
1242 /* If none of those methods found the memory we wanted, fall back
1243 to a target partial transfer. Normally a single call to
1244 to_xfer_partial is enough; if it doesn't recognize an object
1245 it will call the to_xfer_partial of the next target down.
1246 But for memory this won't do. Memory is the only target
1247 object which can be read from more than one valid target.
1248 A core file, for instance, could have some of memory but
1249 delegate other bits to the target below it. So, we must
1250 manually try all targets. */
1251
1252 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1253 xfered_len);
1254
1255 /* If we still haven't got anything, return the last error. We
1256 give up. */
1257 return res;
1258 }
1259
1260 /* Perform a partial memory transfer. For docs see target.h,
1261 to_xfer_partial. */
1262
1263 static enum target_xfer_status
1264 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1265 gdb_byte *readbuf, const gdb_byte *writebuf,
1266 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1267 {
1268 enum target_xfer_status res;
1269
1270 /* Zero length requests are ok and require no work. */
1271 if (len == 0)
1272 return TARGET_XFER_EOF;
1273
1274 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1275 breakpoint insns, thus hiding out from higher layers whether
1276 there are software breakpoints inserted in the code stream. */
1277 if (readbuf != NULL)
1278 {
1279 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1280 xfered_len);
1281
1282 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1283 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1284 }
1285 else
1286 {
1287 gdb_byte *buf;
1288 struct cleanup *old_chain;
1289
1290 /* A large write request is likely to be partially satisfied
1291 by memory_xfer_partial_1. We will continually malloc
1292 and free a copy of the entire write request for breakpoint
1293 shadow handling even though we only end up writing a small
1294 subset of it. Cap writes to a limit specified by the target
1295 to mitigate this. */
1296 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1297
1298 buf = (gdb_byte *) xmalloc (len);
1299 old_chain = make_cleanup (xfree, buf);
1300 memcpy (buf, writebuf, len);
1301
1302 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1303 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1304 xfered_len);
1305
1306 do_cleanups (old_chain);
1307 }
1308
1309 return res;
1310 }
1311
1312 static void
1313 restore_show_memory_breakpoints (void *arg)
1314 {
1315 show_memory_breakpoints = (uintptr_t) arg;
1316 }
1317
1318 struct cleanup *
1319 make_show_memory_breakpoints_cleanup (int show)
1320 {
1321 int current = show_memory_breakpoints;
1322
1323 show_memory_breakpoints = show;
1324 return make_cleanup (restore_show_memory_breakpoints,
1325 (void *) (uintptr_t) current);
1326 }
1327
1328 /* For docs see target.h, to_xfer_partial. */
1329
1330 enum target_xfer_status
1331 target_xfer_partial (struct target_ops *ops,
1332 enum target_object object, const char *annex,
1333 gdb_byte *readbuf, const gdb_byte *writebuf,
1334 ULONGEST offset, ULONGEST len,
1335 ULONGEST *xfered_len)
1336 {
1337 enum target_xfer_status retval;
1338
1339 gdb_assert (ops->to_xfer_partial != NULL);
1340
1341 /* Transfer is done when LEN is zero. */
1342 if (len == 0)
1343 return TARGET_XFER_EOF;
1344
1345 if (writebuf && !may_write_memory)
1346 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1347 core_addr_to_string_nz (offset), plongest (len));
1348
1349 *xfered_len = 0;
1350
1351 /* If this is a memory transfer, let the memory-specific code
1352 have a look at it instead. Memory transfers are more
1353 complicated. */
1354 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1355 || object == TARGET_OBJECT_CODE_MEMORY)
1356 retval = memory_xfer_partial (ops, object, readbuf,
1357 writebuf, offset, len, xfered_len);
1358 else if (object == TARGET_OBJECT_RAW_MEMORY)
1359 {
1360 /* Skip/avoid accessing the target if the memory region
1361 attributes block the access. Check this here instead of in
1362 raw_memory_xfer_partial as otherwise we'd end up checking
1363 this twice in the case of the memory_xfer_partial path is
1364 taken; once before checking the dcache, and another in the
1365 tail call to raw_memory_xfer_partial. */
1366 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1367 NULL))
1368 return TARGET_XFER_E_IO;
1369
1370 /* Request the normal memory object from other layers. */
1371 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1372 xfered_len);
1373 }
1374 else
1375 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1376 writebuf, offset, len, xfered_len);
1377
1378 if (targetdebug)
1379 {
1380 const unsigned char *myaddr = NULL;
1381
1382 fprintf_unfiltered (gdb_stdlog,
1383 "%s:target_xfer_partial "
1384 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1385 ops->to_shortname,
1386 (int) object,
1387 (annex ? annex : "(null)"),
1388 host_address_to_string (readbuf),
1389 host_address_to_string (writebuf),
1390 core_addr_to_string_nz (offset),
1391 pulongest (len), retval,
1392 pulongest (*xfered_len));
1393
1394 if (readbuf)
1395 myaddr = readbuf;
1396 if (writebuf)
1397 myaddr = writebuf;
1398 if (retval == TARGET_XFER_OK && myaddr != NULL)
1399 {
1400 int i;
1401
1402 fputs_unfiltered (", bytes =", gdb_stdlog);
1403 for (i = 0; i < *xfered_len; i++)
1404 {
1405 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1406 {
1407 if (targetdebug < 2 && i > 0)
1408 {
1409 fprintf_unfiltered (gdb_stdlog, " ...");
1410 break;
1411 }
1412 fprintf_unfiltered (gdb_stdlog, "\n");
1413 }
1414
1415 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1416 }
1417 }
1418
1419 fputc_unfiltered ('\n', gdb_stdlog);
1420 }
1421
1422 /* Check implementations of to_xfer_partial update *XFERED_LEN
1423 properly. Do assertion after printing debug messages, so that we
1424 can find more clues on assertion failure from debugging messages. */
1425 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1426 gdb_assert (*xfered_len > 0);
1427
1428 return retval;
1429 }
1430
1431 /* Read LEN bytes of target memory at address MEMADDR, placing the
1432 results in GDB's memory at MYADDR. Returns either 0 for success or
1433 -1 if any error occurs.
1434
1435 If an error occurs, no guarantee is made about the contents of the data at
1436 MYADDR. In particular, the caller should not depend upon partial reads
1437 filling the buffer with good data. There is no way for the caller to know
1438 how much good data might have been transfered anyway. Callers that can
1439 deal with partial reads should call target_read (which will retry until
1440 it makes no progress, and then return how much was transferred). */
1441
1442 int
1443 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1444 {
1445 /* Dispatch to the topmost target, not the flattened current_target.
1446 Memory accesses check target->to_has_(all_)memory, and the
1447 flattened target doesn't inherit those. */
1448 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1449 myaddr, memaddr, len) == len)
1450 return 0;
1451 else
1452 return -1;
1453 }
1454
1455 /* See target/target.h. */
1456
1457 int
1458 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1459 {
1460 gdb_byte buf[4];
1461 int r;
1462
1463 r = target_read_memory (memaddr, buf, sizeof buf);
1464 if (r != 0)
1465 return r;
1466 *result = extract_unsigned_integer (buf, sizeof buf,
1467 gdbarch_byte_order (target_gdbarch ()));
1468 return 0;
1469 }
1470
1471 /* Like target_read_memory, but specify explicitly that this is a read
1472 from the target's raw memory. That is, this read bypasses the
1473 dcache, breakpoint shadowing, etc. */
1474
1475 int
1476 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1477 {
1478 /* See comment in target_read_memory about why the request starts at
1479 current_target.beneath. */
1480 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1481 myaddr, memaddr, len) == len)
1482 return 0;
1483 else
1484 return -1;
1485 }
1486
1487 /* Like target_read_memory, but specify explicitly that this is a read from
1488 the target's stack. This may trigger different cache behavior. */
1489
1490 int
1491 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1492 {
1493 /* See comment in target_read_memory about why the request starts at
1494 current_target.beneath. */
1495 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1496 myaddr, memaddr, len) == len)
1497 return 0;
1498 else
1499 return -1;
1500 }
1501
1502 /* Like target_read_memory, but specify explicitly that this is a read from
1503 the target's code. This may trigger different cache behavior. */
1504
1505 int
1506 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1507 {
1508 /* See comment in target_read_memory about why the request starts at
1509 current_target.beneath. */
1510 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1511 myaddr, memaddr, len) == len)
1512 return 0;
1513 else
1514 return -1;
1515 }
1516
1517 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1518 Returns either 0 for success or -1 if any error occurs. If an
1519 error occurs, no guarantee is made about how much data got written.
1520 Callers that can deal with partial writes should call
1521 target_write. */
1522
1523 int
1524 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1525 {
1526 /* See comment in target_read_memory about why the request starts at
1527 current_target.beneath. */
1528 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1529 myaddr, memaddr, len) == len)
1530 return 0;
1531 else
1532 return -1;
1533 }
1534
1535 /* Write LEN bytes from MYADDR to target raw memory at address
1536 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1537 If an error occurs, no guarantee is made about how much data got
1538 written. Callers that can deal with partial writes should call
1539 target_write. */
1540
1541 int
1542 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1543 {
1544 /* See comment in target_read_memory about why the request starts at
1545 current_target.beneath. */
1546 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1547 myaddr, memaddr, len) == len)
1548 return 0;
1549 else
1550 return -1;
1551 }
1552
1553 /* Fetch the target's memory map. */
1554
1555 VEC(mem_region_s) *
1556 target_memory_map (void)
1557 {
1558 VEC(mem_region_s) *result;
1559 struct mem_region *last_one, *this_one;
1560 int ix;
1561 result = current_target.to_memory_map (&current_target);
1562 if (result == NULL)
1563 return NULL;
1564
1565 qsort (VEC_address (mem_region_s, result),
1566 VEC_length (mem_region_s, result),
1567 sizeof (struct mem_region), mem_region_cmp);
1568
1569 /* Check that regions do not overlap. Simultaneously assign
1570 a numbering for the "mem" commands to use to refer to
1571 each region. */
1572 last_one = NULL;
1573 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1574 {
1575 this_one->number = ix;
1576
1577 if (last_one && last_one->hi > this_one->lo)
1578 {
1579 warning (_("Overlapping regions in memory map: ignoring"));
1580 VEC_free (mem_region_s, result);
1581 return NULL;
1582 }
1583 last_one = this_one;
1584 }
1585
1586 return result;
1587 }
1588
1589 void
1590 target_flash_erase (ULONGEST address, LONGEST length)
1591 {
1592 current_target.to_flash_erase (&current_target, address, length);
1593 }
1594
1595 void
1596 target_flash_done (void)
1597 {
1598 current_target.to_flash_done (&current_target);
1599 }
1600
1601 static void
1602 show_trust_readonly (struct ui_file *file, int from_tty,
1603 struct cmd_list_element *c, const char *value)
1604 {
1605 fprintf_filtered (file,
1606 _("Mode for reading from readonly sections is %s.\n"),
1607 value);
1608 }
1609
1610 /* Target vector read/write partial wrapper functions. */
1611
1612 static enum target_xfer_status
1613 target_read_partial (struct target_ops *ops,
1614 enum target_object object,
1615 const char *annex, gdb_byte *buf,
1616 ULONGEST offset, ULONGEST len,
1617 ULONGEST *xfered_len)
1618 {
1619 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1620 xfered_len);
1621 }
1622
1623 static enum target_xfer_status
1624 target_write_partial (struct target_ops *ops,
1625 enum target_object object,
1626 const char *annex, const gdb_byte *buf,
1627 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1628 {
1629 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1630 xfered_len);
1631 }
1632
1633 /* Wrappers to perform the full transfer. */
1634
1635 /* For docs on target_read see target.h. */
1636
1637 LONGEST
1638 target_read (struct target_ops *ops,
1639 enum target_object object,
1640 const char *annex, gdb_byte *buf,
1641 ULONGEST offset, LONGEST len)
1642 {
1643 LONGEST xfered_total = 0;
1644 int unit_size = 1;
1645
1646 /* If we are reading from a memory object, find the length of an addressable
1647 unit for that architecture. */
1648 if (object == TARGET_OBJECT_MEMORY
1649 || object == TARGET_OBJECT_STACK_MEMORY
1650 || object == TARGET_OBJECT_CODE_MEMORY
1651 || object == TARGET_OBJECT_RAW_MEMORY)
1652 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1653
1654 while (xfered_total < len)
1655 {
1656 ULONGEST xfered_partial;
1657 enum target_xfer_status status;
1658
1659 status = target_read_partial (ops, object, annex,
1660 buf + xfered_total * unit_size,
1661 offset + xfered_total, len - xfered_total,
1662 &xfered_partial);
1663
1664 /* Call an observer, notifying them of the xfer progress? */
1665 if (status == TARGET_XFER_EOF)
1666 return xfered_total;
1667 else if (status == TARGET_XFER_OK)
1668 {
1669 xfered_total += xfered_partial;
1670 QUIT;
1671 }
1672 else
1673 return TARGET_XFER_E_IO;
1674
1675 }
1676 return len;
1677 }
1678
1679 /* Assuming that the entire [begin, end) range of memory cannot be
1680 read, try to read whatever subrange is possible to read.
1681
1682 The function returns, in RESULT, either zero or one memory block.
1683 If there's a readable subrange at the beginning, it is completely
1684 read and returned. Any further readable subrange will not be read.
1685 Otherwise, if there's a readable subrange at the end, it will be
1686 completely read and returned. Any readable subranges before it
1687 (obviously, not starting at the beginning), will be ignored. In
1688 other cases -- either no readable subrange, or readable subrange(s)
1689 that is neither at the beginning, or end, nothing is returned.
1690
1691 The purpose of this function is to handle a read across a boundary
1692 of accessible memory in a case when memory map is not available.
1693 The above restrictions are fine for this case, but will give
1694 incorrect results if the memory is 'patchy'. However, supporting
1695 'patchy' memory would require trying to read every single byte,
1696 and it seems unacceptable solution. Explicit memory map is
1697 recommended for this case -- and target_read_memory_robust will
1698 take care of reading multiple ranges then. */
1699
1700 static void
1701 read_whatever_is_readable (struct target_ops *ops,
1702 const ULONGEST begin, const ULONGEST end,
1703 int unit_size,
1704 VEC(memory_read_result_s) **result)
1705 {
1706 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1707 ULONGEST current_begin = begin;
1708 ULONGEST current_end = end;
1709 int forward;
1710 memory_read_result_s r;
1711 ULONGEST xfered_len;
1712
1713 /* If we previously failed to read 1 byte, nothing can be done here. */
1714 if (end - begin <= 1)
1715 {
1716 xfree (buf);
1717 return;
1718 }
1719
1720 /* Check that either first or the last byte is readable, and give up
1721 if not. This heuristic is meant to permit reading accessible memory
1722 at the boundary of accessible region. */
1723 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1724 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1725 {
1726 forward = 1;
1727 ++current_begin;
1728 }
1729 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1730 buf + (end - begin) - 1, end - 1, 1,
1731 &xfered_len) == TARGET_XFER_OK)
1732 {
1733 forward = 0;
1734 --current_end;
1735 }
1736 else
1737 {
1738 xfree (buf);
1739 return;
1740 }
1741
1742 /* Loop invariant is that the [current_begin, current_end) was previously
1743 found to be not readable as a whole.
1744
1745 Note loop condition -- if the range has 1 byte, we can't divide the range
1746 so there's no point trying further. */
1747 while (current_end - current_begin > 1)
1748 {
1749 ULONGEST first_half_begin, first_half_end;
1750 ULONGEST second_half_begin, second_half_end;
1751 LONGEST xfer;
1752 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1753
1754 if (forward)
1755 {
1756 first_half_begin = current_begin;
1757 first_half_end = middle;
1758 second_half_begin = middle;
1759 second_half_end = current_end;
1760 }
1761 else
1762 {
1763 first_half_begin = middle;
1764 first_half_end = current_end;
1765 second_half_begin = current_begin;
1766 second_half_end = middle;
1767 }
1768
1769 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1770 buf + (first_half_begin - begin) * unit_size,
1771 first_half_begin,
1772 first_half_end - first_half_begin);
1773
1774 if (xfer == first_half_end - first_half_begin)
1775 {
1776 /* This half reads up fine. So, the error must be in the
1777 other half. */
1778 current_begin = second_half_begin;
1779 current_end = second_half_end;
1780 }
1781 else
1782 {
1783 /* This half is not readable. Because we've tried one byte, we
1784 know some part of this half if actually readable. Go to the next
1785 iteration to divide again and try to read.
1786
1787 We don't handle the other half, because this function only tries
1788 to read a single readable subrange. */
1789 current_begin = first_half_begin;
1790 current_end = first_half_end;
1791 }
1792 }
1793
1794 if (forward)
1795 {
1796 /* The [begin, current_begin) range has been read. */
1797 r.begin = begin;
1798 r.end = current_begin;
1799 r.data = buf;
1800 }
1801 else
1802 {
1803 /* The [current_end, end) range has been read. */
1804 LONGEST region_len = end - current_end;
1805
1806 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1807 memcpy (r.data, buf + (current_end - begin) * unit_size,
1808 region_len * unit_size);
1809 r.begin = current_end;
1810 r.end = end;
1811 xfree (buf);
1812 }
1813 VEC_safe_push(memory_read_result_s, (*result), &r);
1814 }
1815
1816 void
1817 free_memory_read_result_vector (void *x)
1818 {
1819 VEC(memory_read_result_s) **v = (VEC(memory_read_result_s) **) x;
1820 memory_read_result_s *current;
1821 int ix;
1822
1823 for (ix = 0; VEC_iterate (memory_read_result_s, *v, ix, current); ++ix)
1824 {
1825 xfree (current->data);
1826 }
1827 VEC_free (memory_read_result_s, *v);
1828 }
1829
1830 VEC(memory_read_result_s) *
1831 read_memory_robust (struct target_ops *ops,
1832 const ULONGEST offset, const LONGEST len)
1833 {
1834 VEC(memory_read_result_s) *result = 0;
1835 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1836 struct cleanup *cleanup = make_cleanup (free_memory_read_result_vector,
1837 &result);
1838
1839 LONGEST xfered_total = 0;
1840 while (xfered_total < len)
1841 {
1842 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1843 LONGEST region_len;
1844
1845 /* If there is no explicit region, a fake one should be created. */
1846 gdb_assert (region);
1847
1848 if (region->hi == 0)
1849 region_len = len - xfered_total;
1850 else
1851 region_len = region->hi - offset;
1852
1853 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1854 {
1855 /* Cannot read this region. Note that we can end up here only
1856 if the region is explicitly marked inaccessible, or
1857 'inaccessible-by-default' is in effect. */
1858 xfered_total += region_len;
1859 }
1860 else
1861 {
1862 LONGEST to_read = std::min (len - xfered_total, region_len);
1863 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1864 struct cleanup *inner_cleanup = make_cleanup (xfree, buffer);
1865
1866 LONGEST xfered_partial =
1867 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1868 (gdb_byte *) buffer,
1869 offset + xfered_total, to_read);
1870 /* Call an observer, notifying them of the xfer progress? */
1871 if (xfered_partial <= 0)
1872 {
1873 /* Got an error reading full chunk. See if maybe we can read
1874 some subrange. */
1875 do_cleanups (inner_cleanup);
1876 read_whatever_is_readable (ops, offset + xfered_total,
1877 offset + xfered_total + to_read,
1878 unit_size, &result);
1879 xfered_total += to_read;
1880 }
1881 else
1882 {
1883 struct memory_read_result r;
1884
1885 discard_cleanups (inner_cleanup);
1886 r.data = buffer;
1887 r.begin = offset + xfered_total;
1888 r.end = r.begin + xfered_partial;
1889 VEC_safe_push (memory_read_result_s, result, &r);
1890 xfered_total += xfered_partial;
1891 }
1892 QUIT;
1893 }
1894 }
1895
1896 discard_cleanups (cleanup);
1897 return result;
1898 }
1899
1900
1901 /* An alternative to target_write with progress callbacks. */
1902
1903 LONGEST
1904 target_write_with_progress (struct target_ops *ops,
1905 enum target_object object,
1906 const char *annex, const gdb_byte *buf,
1907 ULONGEST offset, LONGEST len,
1908 void (*progress) (ULONGEST, void *), void *baton)
1909 {
1910 LONGEST xfered_total = 0;
1911 int unit_size = 1;
1912
1913 /* If we are writing to a memory object, find the length of an addressable
1914 unit for that architecture. */
1915 if (object == TARGET_OBJECT_MEMORY
1916 || object == TARGET_OBJECT_STACK_MEMORY
1917 || object == TARGET_OBJECT_CODE_MEMORY
1918 || object == TARGET_OBJECT_RAW_MEMORY)
1919 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1920
1921 /* Give the progress callback a chance to set up. */
1922 if (progress)
1923 (*progress) (0, baton);
1924
1925 while (xfered_total < len)
1926 {
1927 ULONGEST xfered_partial;
1928 enum target_xfer_status status;
1929
1930 status = target_write_partial (ops, object, annex,
1931 buf + xfered_total * unit_size,
1932 offset + xfered_total, len - xfered_total,
1933 &xfered_partial);
1934
1935 if (status != TARGET_XFER_OK)
1936 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1937
1938 if (progress)
1939 (*progress) (xfered_partial, baton);
1940
1941 xfered_total += xfered_partial;
1942 QUIT;
1943 }
1944 return len;
1945 }
1946
1947 /* For docs on target_write see target.h. */
1948
1949 LONGEST
1950 target_write (struct target_ops *ops,
1951 enum target_object object,
1952 const char *annex, const gdb_byte *buf,
1953 ULONGEST offset, LONGEST len)
1954 {
1955 return target_write_with_progress (ops, object, annex, buf, offset, len,
1956 NULL, NULL);
1957 }
1958
1959 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1960 the size of the transferred data. PADDING additional bytes are
1961 available in *BUF_P. This is a helper function for
1962 target_read_alloc; see the declaration of that function for more
1963 information. */
1964
1965 static LONGEST
1966 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1967 const char *annex, gdb_byte **buf_p, int padding)
1968 {
1969 size_t buf_alloc, buf_pos;
1970 gdb_byte *buf;
1971
1972 /* This function does not have a length parameter; it reads the
1973 entire OBJECT). Also, it doesn't support objects fetched partly
1974 from one target and partly from another (in a different stratum,
1975 e.g. a core file and an executable). Both reasons make it
1976 unsuitable for reading memory. */
1977 gdb_assert (object != TARGET_OBJECT_MEMORY);
1978
1979 /* Start by reading up to 4K at a time. The target will throttle
1980 this number down if necessary. */
1981 buf_alloc = 4096;
1982 buf = (gdb_byte *) xmalloc (buf_alloc);
1983 buf_pos = 0;
1984 while (1)
1985 {
1986 ULONGEST xfered_len;
1987 enum target_xfer_status status;
1988
1989 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1990 buf_pos, buf_alloc - buf_pos - padding,
1991 &xfered_len);
1992
1993 if (status == TARGET_XFER_EOF)
1994 {
1995 /* Read all there was. */
1996 if (buf_pos == 0)
1997 xfree (buf);
1998 else
1999 *buf_p = buf;
2000 return buf_pos;
2001 }
2002 else if (status != TARGET_XFER_OK)
2003 {
2004 /* An error occurred. */
2005 xfree (buf);
2006 return TARGET_XFER_E_IO;
2007 }
2008
2009 buf_pos += xfered_len;
2010
2011 /* If the buffer is filling up, expand it. */
2012 if (buf_alloc < buf_pos * 2)
2013 {
2014 buf_alloc *= 2;
2015 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2016 }
2017
2018 QUIT;
2019 }
2020 }
2021
2022 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2023 the size of the transferred data. See the declaration in "target.h"
2024 function for more information about the return value. */
2025
2026 LONGEST
2027 target_read_alloc (struct target_ops *ops, enum target_object object,
2028 const char *annex, gdb_byte **buf_p)
2029 {
2030 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2031 }
2032
2033 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2034 returned as a string, allocated using xmalloc. If an error occurs
2035 or the transfer is unsupported, NULL is returned. Empty objects
2036 are returned as allocated but empty strings. A warning is issued
2037 if the result contains any embedded NUL bytes. */
2038
2039 char *
2040 target_read_stralloc (struct target_ops *ops, enum target_object object,
2041 const char *annex)
2042 {
2043 gdb_byte *buffer;
2044 char *bufstr;
2045 LONGEST i, transferred;
2046
2047 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2048 bufstr = (char *) buffer;
2049
2050 if (transferred < 0)
2051 return NULL;
2052
2053 if (transferred == 0)
2054 return xstrdup ("");
2055
2056 bufstr[transferred] = 0;
2057
2058 /* Check for embedded NUL bytes; but allow trailing NULs. */
2059 for (i = strlen (bufstr); i < transferred; i++)
2060 if (bufstr[i] != 0)
2061 {
2062 warning (_("target object %d, annex %s, "
2063 "contained unexpected null characters"),
2064 (int) object, annex ? annex : "(none)");
2065 break;
2066 }
2067
2068 return bufstr;
2069 }
2070
2071 /* Memory transfer methods. */
2072
2073 void
2074 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2075 LONGEST len)
2076 {
2077 /* This method is used to read from an alternate, non-current
2078 target. This read must bypass the overlay support (as symbols
2079 don't match this target), and GDB's internal cache (wrong cache
2080 for this target). */
2081 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2082 != len)
2083 memory_error (TARGET_XFER_E_IO, addr);
2084 }
2085
2086 ULONGEST
2087 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2088 int len, enum bfd_endian byte_order)
2089 {
2090 gdb_byte buf[sizeof (ULONGEST)];
2091
2092 gdb_assert (len <= sizeof (buf));
2093 get_target_memory (ops, addr, buf, len);
2094 return extract_unsigned_integer (buf, len, byte_order);
2095 }
2096
2097 /* See target.h. */
2098
2099 int
2100 target_insert_breakpoint (struct gdbarch *gdbarch,
2101 struct bp_target_info *bp_tgt)
2102 {
2103 if (!may_insert_breakpoints)
2104 {
2105 warning (_("May not insert breakpoints"));
2106 return 1;
2107 }
2108
2109 return current_target.to_insert_breakpoint (&current_target,
2110 gdbarch, bp_tgt);
2111 }
2112
2113 /* See target.h. */
2114
2115 int
2116 target_remove_breakpoint (struct gdbarch *gdbarch,
2117 struct bp_target_info *bp_tgt,
2118 enum remove_bp_reason reason)
2119 {
2120 /* This is kind of a weird case to handle, but the permission might
2121 have been changed after breakpoints were inserted - in which case
2122 we should just take the user literally and assume that any
2123 breakpoints should be left in place. */
2124 if (!may_insert_breakpoints)
2125 {
2126 warning (_("May not remove breakpoints"));
2127 return 1;
2128 }
2129
2130 return current_target.to_remove_breakpoint (&current_target,
2131 gdbarch, bp_tgt, reason);
2132 }
2133
2134 static void
2135 target_info (char *args, int from_tty)
2136 {
2137 struct target_ops *t;
2138 int has_all_mem = 0;
2139
2140 if (symfile_objfile != NULL)
2141 printf_unfiltered (_("Symbols from \"%s\".\n"),
2142 objfile_name (symfile_objfile));
2143
2144 for (t = target_stack; t != NULL; t = t->beneath)
2145 {
2146 if (!(*t->to_has_memory) (t))
2147 continue;
2148
2149 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2150 continue;
2151 if (has_all_mem)
2152 printf_unfiltered (_("\tWhile running this, "
2153 "GDB does not access memory from...\n"));
2154 printf_unfiltered ("%s:\n", t->to_longname);
2155 (t->to_files_info) (t);
2156 has_all_mem = (*t->to_has_all_memory) (t);
2157 }
2158 }
2159
2160 /* This function is called before any new inferior is created, e.g.
2161 by running a program, attaching, or connecting to a target.
2162 It cleans up any state from previous invocations which might
2163 change between runs. This is a subset of what target_preopen
2164 resets (things which might change between targets). */
2165
2166 void
2167 target_pre_inferior (int from_tty)
2168 {
2169 /* Clear out solib state. Otherwise the solib state of the previous
2170 inferior might have survived and is entirely wrong for the new
2171 target. This has been observed on GNU/Linux using glibc 2.3. How
2172 to reproduce:
2173
2174 bash$ ./foo&
2175 [1] 4711
2176 bash$ ./foo&
2177 [1] 4712
2178 bash$ gdb ./foo
2179 [...]
2180 (gdb) attach 4711
2181 (gdb) detach
2182 (gdb) attach 4712
2183 Cannot access memory at address 0xdeadbeef
2184 */
2185
2186 /* In some OSs, the shared library list is the same/global/shared
2187 across inferiors. If code is shared between processes, so are
2188 memory regions and features. */
2189 if (!gdbarch_has_global_solist (target_gdbarch ()))
2190 {
2191 no_shared_libraries (NULL, from_tty);
2192
2193 invalidate_target_mem_regions ();
2194
2195 target_clear_description ();
2196 }
2197
2198 /* attach_flag may be set if the previous process associated with
2199 the inferior was attached to. */
2200 current_inferior ()->attach_flag = 0;
2201
2202 current_inferior ()->highest_thread_num = 0;
2203
2204 agent_capability_invalidate ();
2205 }
2206
2207 /* Callback for iterate_over_inferiors. Gets rid of the given
2208 inferior. */
2209
2210 static int
2211 dispose_inferior (struct inferior *inf, void *args)
2212 {
2213 struct thread_info *thread;
2214
2215 thread = any_thread_of_process (inf->pid);
2216 if (thread)
2217 {
2218 switch_to_thread (thread->ptid);
2219
2220 /* Core inferiors actually should be detached, not killed. */
2221 if (target_has_execution)
2222 target_kill ();
2223 else
2224 target_detach (NULL, 0);
2225 }
2226
2227 return 0;
2228 }
2229
2230 /* This is to be called by the open routine before it does
2231 anything. */
2232
2233 void
2234 target_preopen (int from_tty)
2235 {
2236 dont_repeat ();
2237
2238 if (have_inferiors ())
2239 {
2240 if (!from_tty
2241 || !have_live_inferiors ()
2242 || query (_("A program is being debugged already. Kill it? ")))
2243 iterate_over_inferiors (dispose_inferior, NULL);
2244 else
2245 error (_("Program not killed."));
2246 }
2247
2248 /* Calling target_kill may remove the target from the stack. But if
2249 it doesn't (which seems like a win for UDI), remove it now. */
2250 /* Leave the exec target, though. The user may be switching from a
2251 live process to a core of the same program. */
2252 pop_all_targets_above (file_stratum);
2253
2254 target_pre_inferior (from_tty);
2255 }
2256
2257 /* Detach a target after doing deferred register stores. */
2258
2259 void
2260 target_detach (const char *args, int from_tty)
2261 {
2262 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2263 /* Don't remove global breakpoints here. They're removed on
2264 disconnection from the target. */
2265 ;
2266 else
2267 /* If we're in breakpoints-always-inserted mode, have to remove
2268 them before detaching. */
2269 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2270
2271 prepare_for_detach ();
2272
2273 current_target.to_detach (&current_target, args, from_tty);
2274 }
2275
2276 void
2277 target_disconnect (const char *args, int from_tty)
2278 {
2279 /* If we're in breakpoints-always-inserted mode or if breakpoints
2280 are global across processes, we have to remove them before
2281 disconnecting. */
2282 remove_breakpoints ();
2283
2284 current_target.to_disconnect (&current_target, args, from_tty);
2285 }
2286
2287 /* See target/target.h. */
2288
2289 ptid_t
2290 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2291 {
2292 return (current_target.to_wait) (&current_target, ptid, status, options);
2293 }
2294
2295 /* See target.h. */
2296
2297 ptid_t
2298 default_target_wait (struct target_ops *ops,
2299 ptid_t ptid, struct target_waitstatus *status,
2300 int options)
2301 {
2302 status->kind = TARGET_WAITKIND_IGNORE;
2303 return minus_one_ptid;
2304 }
2305
2306 char *
2307 target_pid_to_str (ptid_t ptid)
2308 {
2309 return (*current_target.to_pid_to_str) (&current_target, ptid);
2310 }
2311
2312 const char *
2313 target_thread_name (struct thread_info *info)
2314 {
2315 return current_target.to_thread_name (&current_target, info);
2316 }
2317
2318 void
2319 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2320 {
2321 target_dcache_invalidate ();
2322
2323 current_target.to_resume (&current_target, ptid, step, signal);
2324
2325 registers_changed_ptid (ptid);
2326 /* We only set the internal executing state here. The user/frontend
2327 running state is set at a higher level. */
2328 set_executing (ptid, 1);
2329 clear_inline_frame_state (ptid);
2330 }
2331
2332 void
2333 target_pass_signals (int numsigs, unsigned char *pass_signals)
2334 {
2335 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2336 }
2337
2338 void
2339 target_program_signals (int numsigs, unsigned char *program_signals)
2340 {
2341 (*current_target.to_program_signals) (&current_target,
2342 numsigs, program_signals);
2343 }
2344
2345 static int
2346 default_follow_fork (struct target_ops *self, int follow_child,
2347 int detach_fork)
2348 {
2349 /* Some target returned a fork event, but did not know how to follow it. */
2350 internal_error (__FILE__, __LINE__,
2351 _("could not find a target to follow fork"));
2352 }
2353
2354 /* Look through the list of possible targets for a target that can
2355 follow forks. */
2356
2357 int
2358 target_follow_fork (int follow_child, int detach_fork)
2359 {
2360 return current_target.to_follow_fork (&current_target,
2361 follow_child, detach_fork);
2362 }
2363
2364 /* Target wrapper for follow exec hook. */
2365
2366 void
2367 target_follow_exec (struct inferior *inf, char *execd_pathname)
2368 {
2369 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2370 }
2371
2372 static void
2373 default_mourn_inferior (struct target_ops *self)
2374 {
2375 internal_error (__FILE__, __LINE__,
2376 _("could not find a target to follow mourn inferior"));
2377 }
2378
2379 void
2380 target_mourn_inferior (void)
2381 {
2382 current_target.to_mourn_inferior (&current_target);
2383
2384 /* We no longer need to keep handles on any of the object files.
2385 Make sure to release them to avoid unnecessarily locking any
2386 of them while we're not actually debugging. */
2387 bfd_cache_close_all ();
2388 }
2389
2390 /* Look for a target which can describe architectural features, starting
2391 from TARGET. If we find one, return its description. */
2392
2393 const struct target_desc *
2394 target_read_description (struct target_ops *target)
2395 {
2396 return target->to_read_description (target);
2397 }
2398
2399 /* This implements a basic search of memory, reading target memory and
2400 performing the search here (as opposed to performing the search in on the
2401 target side with, for example, gdbserver). */
2402
2403 int
2404 simple_search_memory (struct target_ops *ops,
2405 CORE_ADDR start_addr, ULONGEST search_space_len,
2406 const gdb_byte *pattern, ULONGEST pattern_len,
2407 CORE_ADDR *found_addrp)
2408 {
2409 /* NOTE: also defined in find.c testcase. */
2410 #define SEARCH_CHUNK_SIZE 16000
2411 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2412 /* Buffer to hold memory contents for searching. */
2413 gdb_byte *search_buf;
2414 unsigned search_buf_size;
2415 struct cleanup *old_cleanups;
2416
2417 search_buf_size = chunk_size + pattern_len - 1;
2418
2419 /* No point in trying to allocate a buffer larger than the search space. */
2420 if (search_space_len < search_buf_size)
2421 search_buf_size = search_space_len;
2422
2423 search_buf = (gdb_byte *) malloc (search_buf_size);
2424 if (search_buf == NULL)
2425 error (_("Unable to allocate memory to perform the search."));
2426 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2427
2428 /* Prime the search buffer. */
2429
2430 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2431 search_buf, start_addr, search_buf_size) != search_buf_size)
2432 {
2433 warning (_("Unable to access %s bytes of target "
2434 "memory at %s, halting search."),
2435 pulongest (search_buf_size), hex_string (start_addr));
2436 do_cleanups (old_cleanups);
2437 return -1;
2438 }
2439
2440 /* Perform the search.
2441
2442 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2443 When we've scanned N bytes we copy the trailing bytes to the start and
2444 read in another N bytes. */
2445
2446 while (search_space_len >= pattern_len)
2447 {
2448 gdb_byte *found_ptr;
2449 unsigned nr_search_bytes
2450 = std::min (search_space_len, (ULONGEST) search_buf_size);
2451
2452 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2453 pattern, pattern_len);
2454
2455 if (found_ptr != NULL)
2456 {
2457 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2458
2459 *found_addrp = found_addr;
2460 do_cleanups (old_cleanups);
2461 return 1;
2462 }
2463
2464 /* Not found in this chunk, skip to next chunk. */
2465
2466 /* Don't let search_space_len wrap here, it's unsigned. */
2467 if (search_space_len >= chunk_size)
2468 search_space_len -= chunk_size;
2469 else
2470 search_space_len = 0;
2471
2472 if (search_space_len >= pattern_len)
2473 {
2474 unsigned keep_len = search_buf_size - chunk_size;
2475 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2476 int nr_to_read;
2477
2478 /* Copy the trailing part of the previous iteration to the front
2479 of the buffer for the next iteration. */
2480 gdb_assert (keep_len == pattern_len - 1);
2481 memcpy (search_buf, search_buf + chunk_size, keep_len);
2482
2483 nr_to_read = std::min (search_space_len - keep_len,
2484 (ULONGEST) chunk_size);
2485
2486 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2487 search_buf + keep_len, read_addr,
2488 nr_to_read) != nr_to_read)
2489 {
2490 warning (_("Unable to access %s bytes of target "
2491 "memory at %s, halting search."),
2492 plongest (nr_to_read),
2493 hex_string (read_addr));
2494 do_cleanups (old_cleanups);
2495 return -1;
2496 }
2497
2498 start_addr += chunk_size;
2499 }
2500 }
2501
2502 /* Not found. */
2503
2504 do_cleanups (old_cleanups);
2505 return 0;
2506 }
2507
2508 /* Default implementation of memory-searching. */
2509
2510 static int
2511 default_search_memory (struct target_ops *self,
2512 CORE_ADDR start_addr, ULONGEST search_space_len,
2513 const gdb_byte *pattern, ULONGEST pattern_len,
2514 CORE_ADDR *found_addrp)
2515 {
2516 /* Start over from the top of the target stack. */
2517 return simple_search_memory (current_target.beneath,
2518 start_addr, search_space_len,
2519 pattern, pattern_len, found_addrp);
2520 }
2521
2522 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2523 sequence of bytes in PATTERN with length PATTERN_LEN.
2524
2525 The result is 1 if found, 0 if not found, and -1 if there was an error
2526 requiring halting of the search (e.g. memory read error).
2527 If the pattern is found the address is recorded in FOUND_ADDRP. */
2528
2529 int
2530 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2531 const gdb_byte *pattern, ULONGEST pattern_len,
2532 CORE_ADDR *found_addrp)
2533 {
2534 return current_target.to_search_memory (&current_target, start_addr,
2535 search_space_len,
2536 pattern, pattern_len, found_addrp);
2537 }
2538
2539 /* Look through the currently pushed targets. If none of them will
2540 be able to restart the currently running process, issue an error
2541 message. */
2542
2543 void
2544 target_require_runnable (void)
2545 {
2546 struct target_ops *t;
2547
2548 for (t = target_stack; t != NULL; t = t->beneath)
2549 {
2550 /* If this target knows how to create a new program, then
2551 assume we will still be able to after killing the current
2552 one. Either killing and mourning will not pop T, or else
2553 find_default_run_target will find it again. */
2554 if (t->to_create_inferior != NULL)
2555 return;
2556
2557 /* Do not worry about targets at certain strata that can not
2558 create inferiors. Assume they will be pushed again if
2559 necessary, and continue to the process_stratum. */
2560 if (t->to_stratum == thread_stratum
2561 || t->to_stratum == record_stratum
2562 || t->to_stratum == arch_stratum)
2563 continue;
2564
2565 error (_("The \"%s\" target does not support \"run\". "
2566 "Try \"help target\" or \"continue\"."),
2567 t->to_shortname);
2568 }
2569
2570 /* This function is only called if the target is running. In that
2571 case there should have been a process_stratum target and it
2572 should either know how to create inferiors, or not... */
2573 internal_error (__FILE__, __LINE__, _("No targets found"));
2574 }
2575
2576 /* Whether GDB is allowed to fall back to the default run target for
2577 "run", "attach", etc. when no target is connected yet. */
2578 static int auto_connect_native_target = 1;
2579
2580 static void
2581 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2582 struct cmd_list_element *c, const char *value)
2583 {
2584 fprintf_filtered (file,
2585 _("Whether GDB may automatically connect to the "
2586 "native target is %s.\n"),
2587 value);
2588 }
2589
2590 /* Look through the list of possible targets for a target that can
2591 execute a run or attach command without any other data. This is
2592 used to locate the default process stratum.
2593
2594 If DO_MESG is not NULL, the result is always valid (error() is
2595 called for errors); else, return NULL on error. */
2596
2597 static struct target_ops *
2598 find_default_run_target (char *do_mesg)
2599 {
2600 struct target_ops *runable = NULL;
2601
2602 if (auto_connect_native_target)
2603 {
2604 struct target_ops *t;
2605 int count = 0;
2606 int i;
2607
2608 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2609 {
2610 if (t->to_can_run != delegate_can_run && target_can_run (t))
2611 {
2612 runable = t;
2613 ++count;
2614 }
2615 }
2616
2617 if (count != 1)
2618 runable = NULL;
2619 }
2620
2621 if (runable == NULL)
2622 {
2623 if (do_mesg)
2624 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2625 else
2626 return NULL;
2627 }
2628
2629 return runable;
2630 }
2631
2632 /* See target.h. */
2633
2634 struct target_ops *
2635 find_attach_target (void)
2636 {
2637 struct target_ops *t;
2638
2639 /* If a target on the current stack can attach, use it. */
2640 for (t = current_target.beneath; t != NULL; t = t->beneath)
2641 {
2642 if (t->to_attach != NULL)
2643 break;
2644 }
2645
2646 /* Otherwise, use the default run target for attaching. */
2647 if (t == NULL)
2648 t = find_default_run_target ("attach");
2649
2650 return t;
2651 }
2652
2653 /* See target.h. */
2654
2655 struct target_ops *
2656 find_run_target (void)
2657 {
2658 struct target_ops *t;
2659
2660 /* If a target on the current stack can attach, use it. */
2661 for (t = current_target.beneath; t != NULL; t = t->beneath)
2662 {
2663 if (t->to_create_inferior != NULL)
2664 break;
2665 }
2666
2667 /* Otherwise, use the default run target. */
2668 if (t == NULL)
2669 t = find_default_run_target ("run");
2670
2671 return t;
2672 }
2673
2674 /* Implement the "info proc" command. */
2675
2676 int
2677 target_info_proc (const char *args, enum info_proc_what what)
2678 {
2679 struct target_ops *t;
2680
2681 /* If we're already connected to something that can get us OS
2682 related data, use it. Otherwise, try using the native
2683 target. */
2684 if (current_target.to_stratum >= process_stratum)
2685 t = current_target.beneath;
2686 else
2687 t = find_default_run_target (NULL);
2688
2689 for (; t != NULL; t = t->beneath)
2690 {
2691 if (t->to_info_proc != NULL)
2692 {
2693 t->to_info_proc (t, args, what);
2694
2695 if (targetdebug)
2696 fprintf_unfiltered (gdb_stdlog,
2697 "target_info_proc (\"%s\", %d)\n", args, what);
2698
2699 return 1;
2700 }
2701 }
2702
2703 return 0;
2704 }
2705
2706 static int
2707 find_default_supports_disable_randomization (struct target_ops *self)
2708 {
2709 struct target_ops *t;
2710
2711 t = find_default_run_target (NULL);
2712 if (t && t->to_supports_disable_randomization)
2713 return (t->to_supports_disable_randomization) (t);
2714 return 0;
2715 }
2716
2717 int
2718 target_supports_disable_randomization (void)
2719 {
2720 struct target_ops *t;
2721
2722 for (t = &current_target; t != NULL; t = t->beneath)
2723 if (t->to_supports_disable_randomization)
2724 return t->to_supports_disable_randomization (t);
2725
2726 return 0;
2727 }
2728
2729 char *
2730 target_get_osdata (const char *type)
2731 {
2732 struct target_ops *t;
2733
2734 /* If we're already connected to something that can get us OS
2735 related data, use it. Otherwise, try using the native
2736 target. */
2737 if (current_target.to_stratum >= process_stratum)
2738 t = current_target.beneath;
2739 else
2740 t = find_default_run_target ("get OS data");
2741
2742 if (!t)
2743 return NULL;
2744
2745 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2746 }
2747
2748 static struct address_space *
2749 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2750 {
2751 struct inferior *inf;
2752
2753 /* Fall-back to the "main" address space of the inferior. */
2754 inf = find_inferior_ptid (ptid);
2755
2756 if (inf == NULL || inf->aspace == NULL)
2757 internal_error (__FILE__, __LINE__,
2758 _("Can't determine the current "
2759 "address space of thread %s\n"),
2760 target_pid_to_str (ptid));
2761
2762 return inf->aspace;
2763 }
2764
2765 /* Determine the current address space of thread PTID. */
2766
2767 struct address_space *
2768 target_thread_address_space (ptid_t ptid)
2769 {
2770 struct address_space *aspace;
2771
2772 aspace = current_target.to_thread_address_space (&current_target, ptid);
2773 gdb_assert (aspace != NULL);
2774
2775 return aspace;
2776 }
2777
2778
2779 /* Target file operations. */
2780
2781 static struct target_ops *
2782 default_fileio_target (void)
2783 {
2784 /* If we're already connected to something that can perform
2785 file I/O, use it. Otherwise, try using the native target. */
2786 if (current_target.to_stratum >= process_stratum)
2787 return current_target.beneath;
2788 else
2789 return find_default_run_target ("file I/O");
2790 }
2791
2792 /* File handle for target file operations. */
2793
2794 typedef struct
2795 {
2796 /* The target on which this file is open. */
2797 struct target_ops *t;
2798
2799 /* The file descriptor on the target. */
2800 int fd;
2801 } fileio_fh_t;
2802
2803 DEF_VEC_O (fileio_fh_t);
2804
2805 /* Vector of currently open file handles. The value returned by
2806 target_fileio_open and passed as the FD argument to other
2807 target_fileio_* functions is an index into this vector. This
2808 vector's entries are never freed; instead, files are marked as
2809 closed, and the handle becomes available for reuse. */
2810 static VEC (fileio_fh_t) *fileio_fhandles;
2811
2812 /* Macro to check whether a fileio_fh_t represents a closed file. */
2813 #define is_closed_fileio_fh(fd) ((fd) < 0)
2814
2815 /* Index into fileio_fhandles of the lowest handle that might be
2816 closed. This permits handle reuse without searching the whole
2817 list each time a new file is opened. */
2818 static int lowest_closed_fd;
2819
2820 /* Acquire a target fileio file descriptor. */
2821
2822 static int
2823 acquire_fileio_fd (struct target_ops *t, int fd)
2824 {
2825 fileio_fh_t *fh;
2826
2827 gdb_assert (!is_closed_fileio_fh (fd));
2828
2829 /* Search for closed handles to reuse. */
2830 for (;
2831 VEC_iterate (fileio_fh_t, fileio_fhandles,
2832 lowest_closed_fd, fh);
2833 lowest_closed_fd++)
2834 if (is_closed_fileio_fh (fh->fd))
2835 break;
2836
2837 /* Push a new handle if no closed handles were found. */
2838 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2839 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2840
2841 /* Fill in the handle. */
2842 fh->t = t;
2843 fh->fd = fd;
2844
2845 /* Return its index, and start the next lookup at
2846 the next index. */
2847 return lowest_closed_fd++;
2848 }
2849
2850 /* Release a target fileio file descriptor. */
2851
2852 static void
2853 release_fileio_fd (int fd, fileio_fh_t *fh)
2854 {
2855 fh->fd = -1;
2856 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2857 }
2858
2859 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2860
2861 #define fileio_fd_to_fh(fd) \
2862 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2863
2864 /* Helper for target_fileio_open and
2865 target_fileio_open_warn_if_slow. */
2866
2867 static int
2868 target_fileio_open_1 (struct inferior *inf, const char *filename,
2869 int flags, int mode, int warn_if_slow,
2870 int *target_errno)
2871 {
2872 struct target_ops *t;
2873
2874 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2875 {
2876 if (t->to_fileio_open != NULL)
2877 {
2878 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2879 warn_if_slow, target_errno);
2880
2881 if (fd < 0)
2882 fd = -1;
2883 else
2884 fd = acquire_fileio_fd (t, fd);
2885
2886 if (targetdebug)
2887 fprintf_unfiltered (gdb_stdlog,
2888 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2889 " = %d (%d)\n",
2890 inf == NULL ? 0 : inf->num,
2891 filename, flags, mode,
2892 warn_if_slow, fd,
2893 fd != -1 ? 0 : *target_errno);
2894 return fd;
2895 }
2896 }
2897
2898 *target_errno = FILEIO_ENOSYS;
2899 return -1;
2900 }
2901
2902 /* See target.h. */
2903
2904 int
2905 target_fileio_open (struct inferior *inf, const char *filename,
2906 int flags, int mode, int *target_errno)
2907 {
2908 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2909 target_errno);
2910 }
2911
2912 /* See target.h. */
2913
2914 int
2915 target_fileio_open_warn_if_slow (struct inferior *inf,
2916 const char *filename,
2917 int flags, int mode, int *target_errno)
2918 {
2919 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2920 target_errno);
2921 }
2922
2923 /* See target.h. */
2924
2925 int
2926 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2927 ULONGEST offset, int *target_errno)
2928 {
2929 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2930 int ret = -1;
2931
2932 if (is_closed_fileio_fh (fh->fd))
2933 *target_errno = EBADF;
2934 else
2935 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2936 len, offset, target_errno);
2937
2938 if (targetdebug)
2939 fprintf_unfiltered (gdb_stdlog,
2940 "target_fileio_pwrite (%d,...,%d,%s) "
2941 "= %d (%d)\n",
2942 fd, len, pulongest (offset),
2943 ret, ret != -1 ? 0 : *target_errno);
2944 return ret;
2945 }
2946
2947 /* See target.h. */
2948
2949 int
2950 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2951 ULONGEST offset, int *target_errno)
2952 {
2953 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2954 int ret = -1;
2955
2956 if (is_closed_fileio_fh (fh->fd))
2957 *target_errno = EBADF;
2958 else
2959 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2960 len, offset, target_errno);
2961
2962 if (targetdebug)
2963 fprintf_unfiltered (gdb_stdlog,
2964 "target_fileio_pread (%d,...,%d,%s) "
2965 "= %d (%d)\n",
2966 fd, len, pulongest (offset),
2967 ret, ret != -1 ? 0 : *target_errno);
2968 return ret;
2969 }
2970
2971 /* See target.h. */
2972
2973 int
2974 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2975 {
2976 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2977 int ret = -1;
2978
2979 if (is_closed_fileio_fh (fh->fd))
2980 *target_errno = EBADF;
2981 else
2982 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2983
2984 if (targetdebug)
2985 fprintf_unfiltered (gdb_stdlog,
2986 "target_fileio_fstat (%d) = %d (%d)\n",
2987 fd, ret, ret != -1 ? 0 : *target_errno);
2988 return ret;
2989 }
2990
2991 /* See target.h. */
2992
2993 int
2994 target_fileio_close (int fd, int *target_errno)
2995 {
2996 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2997 int ret = -1;
2998
2999 if (is_closed_fileio_fh (fh->fd))
3000 *target_errno = EBADF;
3001 else
3002 {
3003 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
3004 release_fileio_fd (fd, fh);
3005 }
3006
3007 if (targetdebug)
3008 fprintf_unfiltered (gdb_stdlog,
3009 "target_fileio_close (%d) = %d (%d)\n",
3010 fd, ret, ret != -1 ? 0 : *target_errno);
3011 return ret;
3012 }
3013
3014 /* See target.h. */
3015
3016 int
3017 target_fileio_unlink (struct inferior *inf, const char *filename,
3018 int *target_errno)
3019 {
3020 struct target_ops *t;
3021
3022 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3023 {
3024 if (t->to_fileio_unlink != NULL)
3025 {
3026 int ret = t->to_fileio_unlink (t, inf, filename,
3027 target_errno);
3028
3029 if (targetdebug)
3030 fprintf_unfiltered (gdb_stdlog,
3031 "target_fileio_unlink (%d,%s)"
3032 " = %d (%d)\n",
3033 inf == NULL ? 0 : inf->num, filename,
3034 ret, ret != -1 ? 0 : *target_errno);
3035 return ret;
3036 }
3037 }
3038
3039 *target_errno = FILEIO_ENOSYS;
3040 return -1;
3041 }
3042
3043 /* See target.h. */
3044
3045 char *
3046 target_fileio_readlink (struct inferior *inf, const char *filename,
3047 int *target_errno)
3048 {
3049 struct target_ops *t;
3050
3051 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3052 {
3053 if (t->to_fileio_readlink != NULL)
3054 {
3055 char *ret = t->to_fileio_readlink (t, inf, filename,
3056 target_errno);
3057
3058 if (targetdebug)
3059 fprintf_unfiltered (gdb_stdlog,
3060 "target_fileio_readlink (%d,%s)"
3061 " = %s (%d)\n",
3062 inf == NULL ? 0 : inf->num,
3063 filename, ret? ret : "(nil)",
3064 ret? 0 : *target_errno);
3065 return ret;
3066 }
3067 }
3068
3069 *target_errno = FILEIO_ENOSYS;
3070 return NULL;
3071 }
3072
3073 static void
3074 target_fileio_close_cleanup (void *opaque)
3075 {
3076 int fd = *(int *) opaque;
3077 int target_errno;
3078
3079 target_fileio_close (fd, &target_errno);
3080 }
3081
3082 /* Read target file FILENAME, in the filesystem as seen by INF. If
3083 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3084 remote targets, the remote stub). Store the result in *BUF_P and
3085 return the size of the transferred data. PADDING additional bytes
3086 are available in *BUF_P. This is a helper function for
3087 target_fileio_read_alloc; see the declaration of that function for
3088 more information. */
3089
3090 static LONGEST
3091 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3092 gdb_byte **buf_p, int padding)
3093 {
3094 struct cleanup *close_cleanup;
3095 size_t buf_alloc, buf_pos;
3096 gdb_byte *buf;
3097 LONGEST n;
3098 int fd;
3099 int target_errno;
3100
3101 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3102 &target_errno);
3103 if (fd == -1)
3104 return -1;
3105
3106 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3107
3108 /* Start by reading up to 4K at a time. The target will throttle
3109 this number down if necessary. */
3110 buf_alloc = 4096;
3111 buf = (gdb_byte *) xmalloc (buf_alloc);
3112 buf_pos = 0;
3113 while (1)
3114 {
3115 n = target_fileio_pread (fd, &buf[buf_pos],
3116 buf_alloc - buf_pos - padding, buf_pos,
3117 &target_errno);
3118 if (n < 0)
3119 {
3120 /* An error occurred. */
3121 do_cleanups (close_cleanup);
3122 xfree (buf);
3123 return -1;
3124 }
3125 else if (n == 0)
3126 {
3127 /* Read all there was. */
3128 do_cleanups (close_cleanup);
3129 if (buf_pos == 0)
3130 xfree (buf);
3131 else
3132 *buf_p = buf;
3133 return buf_pos;
3134 }
3135
3136 buf_pos += n;
3137
3138 /* If the buffer is filling up, expand it. */
3139 if (buf_alloc < buf_pos * 2)
3140 {
3141 buf_alloc *= 2;
3142 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3143 }
3144
3145 QUIT;
3146 }
3147 }
3148
3149 /* See target.h. */
3150
3151 LONGEST
3152 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3153 gdb_byte **buf_p)
3154 {
3155 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3156 }
3157
3158 /* See target.h. */
3159
3160 char *
3161 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3162 {
3163 gdb_byte *buffer;
3164 char *bufstr;
3165 LONGEST i, transferred;
3166
3167 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3168 bufstr = (char *) buffer;
3169
3170 if (transferred < 0)
3171 return NULL;
3172
3173 if (transferred == 0)
3174 return xstrdup ("");
3175
3176 bufstr[transferred] = 0;
3177
3178 /* Check for embedded NUL bytes; but allow trailing NULs. */
3179 for (i = strlen (bufstr); i < transferred; i++)
3180 if (bufstr[i] != 0)
3181 {
3182 warning (_("target file %s "
3183 "contained unexpected null characters"),
3184 filename);
3185 break;
3186 }
3187
3188 return bufstr;
3189 }
3190
3191
3192 static int
3193 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3194 CORE_ADDR addr, int len)
3195 {
3196 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3197 }
3198
3199 static int
3200 default_watchpoint_addr_within_range (struct target_ops *target,
3201 CORE_ADDR addr,
3202 CORE_ADDR start, int length)
3203 {
3204 return addr >= start && addr < start + length;
3205 }
3206
3207 static struct gdbarch *
3208 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3209 {
3210 return target_gdbarch ();
3211 }
3212
3213 static int
3214 return_zero (struct target_ops *ignore)
3215 {
3216 return 0;
3217 }
3218
3219 static int
3220 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3221 {
3222 return 0;
3223 }
3224
3225 /*
3226 * Find the next target down the stack from the specified target.
3227 */
3228
3229 struct target_ops *
3230 find_target_beneath (struct target_ops *t)
3231 {
3232 return t->beneath;
3233 }
3234
3235 /* See target.h. */
3236
3237 struct target_ops *
3238 find_target_at (enum strata stratum)
3239 {
3240 struct target_ops *t;
3241
3242 for (t = current_target.beneath; t != NULL; t = t->beneath)
3243 if (t->to_stratum == stratum)
3244 return t;
3245
3246 return NULL;
3247 }
3248
3249 \f
3250
3251 /* See target.h */
3252
3253 void
3254 target_announce_detach (int from_tty)
3255 {
3256 pid_t pid;
3257 char *exec_file;
3258
3259 if (!from_tty)
3260 return;
3261
3262 exec_file = get_exec_file (0);
3263 if (exec_file == NULL)
3264 exec_file = "";
3265
3266 pid = ptid_get_pid (inferior_ptid);
3267 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3268 target_pid_to_str (pid_to_ptid (pid)));
3269 gdb_flush (gdb_stdout);
3270 }
3271
3272 /* The inferior process has died. Long live the inferior! */
3273
3274 void
3275 generic_mourn_inferior (void)
3276 {
3277 ptid_t ptid;
3278
3279 ptid = inferior_ptid;
3280 inferior_ptid = null_ptid;
3281
3282 /* Mark breakpoints uninserted in case something tries to delete a
3283 breakpoint while we delete the inferior's threads (which would
3284 fail, since the inferior is long gone). */
3285 mark_breakpoints_out ();
3286
3287 if (!ptid_equal (ptid, null_ptid))
3288 {
3289 int pid = ptid_get_pid (ptid);
3290 exit_inferior (pid);
3291 }
3292
3293 /* Note this wipes step-resume breakpoints, so needs to be done
3294 after exit_inferior, which ends up referencing the step-resume
3295 breakpoints through clear_thread_inferior_resources. */
3296 breakpoint_init_inferior (inf_exited);
3297
3298 registers_changed ();
3299
3300 reopen_exec_file ();
3301 reinit_frame_cache ();
3302
3303 if (deprecated_detach_hook)
3304 deprecated_detach_hook ();
3305 }
3306 \f
3307 /* Convert a normal process ID to a string. Returns the string in a
3308 static buffer. */
3309
3310 char *
3311 normal_pid_to_str (ptid_t ptid)
3312 {
3313 static char buf[32];
3314
3315 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3316 return buf;
3317 }
3318
3319 static char *
3320 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3321 {
3322 return normal_pid_to_str (ptid);
3323 }
3324
3325 /* Error-catcher for target_find_memory_regions. */
3326 static int
3327 dummy_find_memory_regions (struct target_ops *self,
3328 find_memory_region_ftype ignore1, void *ignore2)
3329 {
3330 error (_("Command not implemented for this target."));
3331 return 0;
3332 }
3333
3334 /* Error-catcher for target_make_corefile_notes. */
3335 static char *
3336 dummy_make_corefile_notes (struct target_ops *self,
3337 bfd *ignore1, int *ignore2)
3338 {
3339 error (_("Command not implemented for this target."));
3340 return NULL;
3341 }
3342
3343 /* Set up the handful of non-empty slots needed by the dummy target
3344 vector. */
3345
3346 static void
3347 init_dummy_target (void)
3348 {
3349 dummy_target.to_shortname = "None";
3350 dummy_target.to_longname = "None";
3351 dummy_target.to_doc = "";
3352 dummy_target.to_supports_disable_randomization
3353 = find_default_supports_disable_randomization;
3354 dummy_target.to_stratum = dummy_stratum;
3355 dummy_target.to_has_all_memory = return_zero;
3356 dummy_target.to_has_memory = return_zero;
3357 dummy_target.to_has_stack = return_zero;
3358 dummy_target.to_has_registers = return_zero;
3359 dummy_target.to_has_execution = return_zero_has_execution;
3360 dummy_target.to_magic = OPS_MAGIC;
3361
3362 install_dummy_methods (&dummy_target);
3363 }
3364 \f
3365
3366 void
3367 target_close (struct target_ops *targ)
3368 {
3369 gdb_assert (!target_is_pushed (targ));
3370
3371 if (targ->to_xclose != NULL)
3372 targ->to_xclose (targ);
3373 else if (targ->to_close != NULL)
3374 targ->to_close (targ);
3375
3376 if (targetdebug)
3377 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3378 }
3379
3380 int
3381 target_thread_alive (ptid_t ptid)
3382 {
3383 return current_target.to_thread_alive (&current_target, ptid);
3384 }
3385
3386 void
3387 target_update_thread_list (void)
3388 {
3389 current_target.to_update_thread_list (&current_target);
3390 }
3391
3392 void
3393 target_stop (ptid_t ptid)
3394 {
3395 if (!may_stop)
3396 {
3397 warning (_("May not interrupt or stop the target, ignoring attempt"));
3398 return;
3399 }
3400
3401 (*current_target.to_stop) (&current_target, ptid);
3402 }
3403
3404 void
3405 target_interrupt (ptid_t ptid)
3406 {
3407 if (!may_stop)
3408 {
3409 warning (_("May not interrupt or stop the target, ignoring attempt"));
3410 return;
3411 }
3412
3413 (*current_target.to_interrupt) (&current_target, ptid);
3414 }
3415
3416 /* See target.h. */
3417
3418 void
3419 target_pass_ctrlc (void)
3420 {
3421 (*current_target.to_pass_ctrlc) (&current_target);
3422 }
3423
3424 /* See target.h. */
3425
3426 void
3427 default_target_pass_ctrlc (struct target_ops *ops)
3428 {
3429 target_interrupt (inferior_ptid);
3430 }
3431
3432 /* See target/target.h. */
3433
3434 void
3435 target_stop_and_wait (ptid_t ptid)
3436 {
3437 struct target_waitstatus status;
3438 int was_non_stop = non_stop;
3439
3440 non_stop = 1;
3441 target_stop (ptid);
3442
3443 memset (&status, 0, sizeof (status));
3444 target_wait (ptid, &status, 0);
3445
3446 non_stop = was_non_stop;
3447 }
3448
3449 /* See target/target.h. */
3450
3451 void
3452 target_continue_no_signal (ptid_t ptid)
3453 {
3454 target_resume (ptid, 0, GDB_SIGNAL_0);
3455 }
3456
3457 /* See target/target.h. */
3458
3459 void
3460 target_continue (ptid_t ptid, enum gdb_signal signal)
3461 {
3462 target_resume (ptid, 0, signal);
3463 }
3464
3465 /* Concatenate ELEM to LIST, a comma separate list, and return the
3466 result. The LIST incoming argument is released. */
3467
3468 static char *
3469 str_comma_list_concat_elem (char *list, const char *elem)
3470 {
3471 if (list == NULL)
3472 return xstrdup (elem);
3473 else
3474 return reconcat (list, list, ", ", elem, (char *) NULL);
3475 }
3476
3477 /* Helper for target_options_to_string. If OPT is present in
3478 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3479 Returns the new resulting string. OPT is removed from
3480 TARGET_OPTIONS. */
3481
3482 static char *
3483 do_option (int *target_options, char *ret,
3484 int opt, char *opt_str)
3485 {
3486 if ((*target_options & opt) != 0)
3487 {
3488 ret = str_comma_list_concat_elem (ret, opt_str);
3489 *target_options &= ~opt;
3490 }
3491
3492 return ret;
3493 }
3494
3495 char *
3496 target_options_to_string (int target_options)
3497 {
3498 char *ret = NULL;
3499
3500 #define DO_TARG_OPTION(OPT) \
3501 ret = do_option (&target_options, ret, OPT, #OPT)
3502
3503 DO_TARG_OPTION (TARGET_WNOHANG);
3504
3505 if (target_options != 0)
3506 ret = str_comma_list_concat_elem (ret, "unknown???");
3507
3508 if (ret == NULL)
3509 ret = xstrdup ("");
3510 return ret;
3511 }
3512
3513 static void
3514 debug_print_register (const char * func,
3515 struct regcache *regcache, int regno)
3516 {
3517 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3518
3519 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3520 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3521 && gdbarch_register_name (gdbarch, regno) != NULL
3522 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3523 fprintf_unfiltered (gdb_stdlog, "(%s)",
3524 gdbarch_register_name (gdbarch, regno));
3525 else
3526 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3527 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3528 {
3529 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3530 int i, size = register_size (gdbarch, regno);
3531 gdb_byte buf[MAX_REGISTER_SIZE];
3532
3533 regcache_raw_collect (regcache, regno, buf);
3534 fprintf_unfiltered (gdb_stdlog, " = ");
3535 for (i = 0; i < size; i++)
3536 {
3537 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3538 }
3539 if (size <= sizeof (LONGEST))
3540 {
3541 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3542
3543 fprintf_unfiltered (gdb_stdlog, " %s %s",
3544 core_addr_to_string_nz (val), plongest (val));
3545 }
3546 }
3547 fprintf_unfiltered (gdb_stdlog, "\n");
3548 }
3549
3550 void
3551 target_fetch_registers (struct regcache *regcache, int regno)
3552 {
3553 current_target.to_fetch_registers (&current_target, regcache, regno);
3554 if (targetdebug)
3555 debug_print_register ("target_fetch_registers", regcache, regno);
3556 }
3557
3558 void
3559 target_store_registers (struct regcache *regcache, int regno)
3560 {
3561 if (!may_write_registers)
3562 error (_("Writing to registers is not allowed (regno %d)"), regno);
3563
3564 current_target.to_store_registers (&current_target, regcache, regno);
3565 if (targetdebug)
3566 {
3567 debug_print_register ("target_store_registers", regcache, regno);
3568 }
3569 }
3570
3571 int
3572 target_core_of_thread (ptid_t ptid)
3573 {
3574 return current_target.to_core_of_thread (&current_target, ptid);
3575 }
3576
3577 int
3578 simple_verify_memory (struct target_ops *ops,
3579 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3580 {
3581 LONGEST total_xfered = 0;
3582
3583 while (total_xfered < size)
3584 {
3585 ULONGEST xfered_len;
3586 enum target_xfer_status status;
3587 gdb_byte buf[1024];
3588 ULONGEST howmuch = std::min (sizeof (buf), size - total_xfered);
3589
3590 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3591 buf, NULL, lma + total_xfered, howmuch,
3592 &xfered_len);
3593 if (status == TARGET_XFER_OK
3594 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3595 {
3596 total_xfered += xfered_len;
3597 QUIT;
3598 }
3599 else
3600 return 0;
3601 }
3602 return 1;
3603 }
3604
3605 /* Default implementation of memory verification. */
3606
3607 static int
3608 default_verify_memory (struct target_ops *self,
3609 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3610 {
3611 /* Start over from the top of the target stack. */
3612 return simple_verify_memory (current_target.beneath,
3613 data, memaddr, size);
3614 }
3615
3616 int
3617 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3618 {
3619 return current_target.to_verify_memory (&current_target,
3620 data, memaddr, size);
3621 }
3622
3623 /* The documentation for this function is in its prototype declaration in
3624 target.h. */
3625
3626 int
3627 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3628 enum target_hw_bp_type rw)
3629 {
3630 return current_target.to_insert_mask_watchpoint (&current_target,
3631 addr, mask, rw);
3632 }
3633
3634 /* The documentation for this function is in its prototype declaration in
3635 target.h. */
3636
3637 int
3638 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3639 enum target_hw_bp_type rw)
3640 {
3641 return current_target.to_remove_mask_watchpoint (&current_target,
3642 addr, mask, rw);
3643 }
3644
3645 /* The documentation for this function is in its prototype declaration
3646 in target.h. */
3647
3648 int
3649 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3650 {
3651 return current_target.to_masked_watch_num_registers (&current_target,
3652 addr, mask);
3653 }
3654
3655 /* The documentation for this function is in its prototype declaration
3656 in target.h. */
3657
3658 int
3659 target_ranged_break_num_registers (void)
3660 {
3661 return current_target.to_ranged_break_num_registers (&current_target);
3662 }
3663
3664 /* See target.h. */
3665
3666 int
3667 target_supports_btrace (enum btrace_format format)
3668 {
3669 return current_target.to_supports_btrace (&current_target, format);
3670 }
3671
3672 /* See target.h. */
3673
3674 struct btrace_target_info *
3675 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3676 {
3677 return current_target.to_enable_btrace (&current_target, ptid, conf);
3678 }
3679
3680 /* See target.h. */
3681
3682 void
3683 target_disable_btrace (struct btrace_target_info *btinfo)
3684 {
3685 current_target.to_disable_btrace (&current_target, btinfo);
3686 }
3687
3688 /* See target.h. */
3689
3690 void
3691 target_teardown_btrace (struct btrace_target_info *btinfo)
3692 {
3693 current_target.to_teardown_btrace (&current_target, btinfo);
3694 }
3695
3696 /* See target.h. */
3697
3698 enum btrace_error
3699 target_read_btrace (struct btrace_data *btrace,
3700 struct btrace_target_info *btinfo,
3701 enum btrace_read_type type)
3702 {
3703 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3704 }
3705
3706 /* See target.h. */
3707
3708 const struct btrace_config *
3709 target_btrace_conf (const struct btrace_target_info *btinfo)
3710 {
3711 return current_target.to_btrace_conf (&current_target, btinfo);
3712 }
3713
3714 /* See target.h. */
3715
3716 void
3717 target_stop_recording (void)
3718 {
3719 current_target.to_stop_recording (&current_target);
3720 }
3721
3722 /* See target.h. */
3723
3724 void
3725 target_save_record (const char *filename)
3726 {
3727 current_target.to_save_record (&current_target, filename);
3728 }
3729
3730 /* See target.h. */
3731
3732 int
3733 target_supports_delete_record (void)
3734 {
3735 struct target_ops *t;
3736
3737 for (t = current_target.beneath; t != NULL; t = t->beneath)
3738 if (t->to_delete_record != delegate_delete_record
3739 && t->to_delete_record != tdefault_delete_record)
3740 return 1;
3741
3742 return 0;
3743 }
3744
3745 /* See target.h. */
3746
3747 void
3748 target_delete_record (void)
3749 {
3750 current_target.to_delete_record (&current_target);
3751 }
3752
3753 /* See target.h. */
3754
3755 int
3756 target_record_is_replaying (ptid_t ptid)
3757 {
3758 return current_target.to_record_is_replaying (&current_target, ptid);
3759 }
3760
3761 /* See target.h. */
3762
3763 int
3764 target_record_will_replay (ptid_t ptid, int dir)
3765 {
3766 return current_target.to_record_will_replay (&current_target, ptid, dir);
3767 }
3768
3769 /* See target.h. */
3770
3771 void
3772 target_record_stop_replaying (void)
3773 {
3774 current_target.to_record_stop_replaying (&current_target);
3775 }
3776
3777 /* See target.h. */
3778
3779 void
3780 target_goto_record_begin (void)
3781 {
3782 current_target.to_goto_record_begin (&current_target);
3783 }
3784
3785 /* See target.h. */
3786
3787 void
3788 target_goto_record_end (void)
3789 {
3790 current_target.to_goto_record_end (&current_target);
3791 }
3792
3793 /* See target.h. */
3794
3795 void
3796 target_goto_record (ULONGEST insn)
3797 {
3798 current_target.to_goto_record (&current_target, insn);
3799 }
3800
3801 /* See target.h. */
3802
3803 void
3804 target_insn_history (int size, int flags)
3805 {
3806 current_target.to_insn_history (&current_target, size, flags);
3807 }
3808
3809 /* See target.h. */
3810
3811 void
3812 target_insn_history_from (ULONGEST from, int size, int flags)
3813 {
3814 current_target.to_insn_history_from (&current_target, from, size, flags);
3815 }
3816
3817 /* See target.h. */
3818
3819 void
3820 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3821 {
3822 current_target.to_insn_history_range (&current_target, begin, end, flags);
3823 }
3824
3825 /* See target.h. */
3826
3827 void
3828 target_call_history (int size, int flags)
3829 {
3830 current_target.to_call_history (&current_target, size, flags);
3831 }
3832
3833 /* See target.h. */
3834
3835 void
3836 target_call_history_from (ULONGEST begin, int size, int flags)
3837 {
3838 current_target.to_call_history_from (&current_target, begin, size, flags);
3839 }
3840
3841 /* See target.h. */
3842
3843 void
3844 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3845 {
3846 current_target.to_call_history_range (&current_target, begin, end, flags);
3847 }
3848
3849 /* See target.h. */
3850
3851 const struct frame_unwind *
3852 target_get_unwinder (void)
3853 {
3854 return current_target.to_get_unwinder (&current_target);
3855 }
3856
3857 /* See target.h. */
3858
3859 const struct frame_unwind *
3860 target_get_tailcall_unwinder (void)
3861 {
3862 return current_target.to_get_tailcall_unwinder (&current_target);
3863 }
3864
3865 /* See target.h. */
3866
3867 void
3868 target_prepare_to_generate_core (void)
3869 {
3870 current_target.to_prepare_to_generate_core (&current_target);
3871 }
3872
3873 /* See target.h. */
3874
3875 void
3876 target_done_generating_core (void)
3877 {
3878 current_target.to_done_generating_core (&current_target);
3879 }
3880
3881 static void
3882 setup_target_debug (void)
3883 {
3884 memcpy (&debug_target, &current_target, sizeof debug_target);
3885
3886 init_debug_target (&current_target);
3887 }
3888 \f
3889
3890 static char targ_desc[] =
3891 "Names of targets and files being debugged.\nShows the entire \
3892 stack of targets currently in use (including the exec-file,\n\
3893 core-file, and process, if any), as well as the symbol file name.";
3894
3895 static void
3896 default_rcmd (struct target_ops *self, const char *command,
3897 struct ui_file *output)
3898 {
3899 error (_("\"monitor\" command not supported by this target."));
3900 }
3901
3902 static void
3903 do_monitor_command (char *cmd,
3904 int from_tty)
3905 {
3906 target_rcmd (cmd, gdb_stdtarg);
3907 }
3908
3909 /* Print the name of each layers of our target stack. */
3910
3911 static void
3912 maintenance_print_target_stack (char *cmd, int from_tty)
3913 {
3914 struct target_ops *t;
3915
3916 printf_filtered (_("The current target stack is:\n"));
3917
3918 for (t = target_stack; t != NULL; t = t->beneath)
3919 {
3920 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3921 }
3922 }
3923
3924 /* See target.h. */
3925
3926 void
3927 target_async (int enable)
3928 {
3929 infrun_async (enable);
3930 current_target.to_async (&current_target, enable);
3931 }
3932
3933 /* See target.h. */
3934
3935 void
3936 target_thread_events (int enable)
3937 {
3938 current_target.to_thread_events (&current_target, enable);
3939 }
3940
3941 /* Controls if targets can report that they can/are async. This is
3942 just for maintainers to use when debugging gdb. */
3943 int target_async_permitted = 1;
3944
3945 /* The set command writes to this variable. If the inferior is
3946 executing, target_async_permitted is *not* updated. */
3947 static int target_async_permitted_1 = 1;
3948
3949 static void
3950 maint_set_target_async_command (char *args, int from_tty,
3951 struct cmd_list_element *c)
3952 {
3953 if (have_live_inferiors ())
3954 {
3955 target_async_permitted_1 = target_async_permitted;
3956 error (_("Cannot change this setting while the inferior is running."));
3957 }
3958
3959 target_async_permitted = target_async_permitted_1;
3960 }
3961
3962 static void
3963 maint_show_target_async_command (struct ui_file *file, int from_tty,
3964 struct cmd_list_element *c,
3965 const char *value)
3966 {
3967 fprintf_filtered (file,
3968 _("Controlling the inferior in "
3969 "asynchronous mode is %s.\n"), value);
3970 }
3971
3972 /* Return true if the target operates in non-stop mode even with "set
3973 non-stop off". */
3974
3975 static int
3976 target_always_non_stop_p (void)
3977 {
3978 return current_target.to_always_non_stop_p (&current_target);
3979 }
3980
3981 /* See target.h. */
3982
3983 int
3984 target_is_non_stop_p (void)
3985 {
3986 return (non_stop
3987 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3988 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3989 && target_always_non_stop_p ()));
3990 }
3991
3992 /* Controls if targets can report that they always run in non-stop
3993 mode. This is just for maintainers to use when debugging gdb. */
3994 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3995
3996 /* The set command writes to this variable. If the inferior is
3997 executing, target_non_stop_enabled is *not* updated. */
3998 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3999
4000 /* Implementation of "maint set target-non-stop". */
4001
4002 static void
4003 maint_set_target_non_stop_command (char *args, int from_tty,
4004 struct cmd_list_element *c)
4005 {
4006 if (have_live_inferiors ())
4007 {
4008 target_non_stop_enabled_1 = target_non_stop_enabled;
4009 error (_("Cannot change this setting while the inferior is running."));
4010 }
4011
4012 target_non_stop_enabled = target_non_stop_enabled_1;
4013 }
4014
4015 /* Implementation of "maint show target-non-stop". */
4016
4017 static void
4018 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4019 struct cmd_list_element *c,
4020 const char *value)
4021 {
4022 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4023 fprintf_filtered (file,
4024 _("Whether the target is always in non-stop mode "
4025 "is %s (currently %s).\n"), value,
4026 target_always_non_stop_p () ? "on" : "off");
4027 else
4028 fprintf_filtered (file,
4029 _("Whether the target is always in non-stop mode "
4030 "is %s.\n"), value);
4031 }
4032
4033 /* Temporary copies of permission settings. */
4034
4035 static int may_write_registers_1 = 1;
4036 static int may_write_memory_1 = 1;
4037 static int may_insert_breakpoints_1 = 1;
4038 static int may_insert_tracepoints_1 = 1;
4039 static int may_insert_fast_tracepoints_1 = 1;
4040 static int may_stop_1 = 1;
4041
4042 /* Make the user-set values match the real values again. */
4043
4044 void
4045 update_target_permissions (void)
4046 {
4047 may_write_registers_1 = may_write_registers;
4048 may_write_memory_1 = may_write_memory;
4049 may_insert_breakpoints_1 = may_insert_breakpoints;
4050 may_insert_tracepoints_1 = may_insert_tracepoints;
4051 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4052 may_stop_1 = may_stop;
4053 }
4054
4055 /* The one function handles (most of) the permission flags in the same
4056 way. */
4057
4058 static void
4059 set_target_permissions (char *args, int from_tty,
4060 struct cmd_list_element *c)
4061 {
4062 if (target_has_execution)
4063 {
4064 update_target_permissions ();
4065 error (_("Cannot change this setting while the inferior is running."));
4066 }
4067
4068 /* Make the real values match the user-changed values. */
4069 may_write_registers = may_write_registers_1;
4070 may_insert_breakpoints = may_insert_breakpoints_1;
4071 may_insert_tracepoints = may_insert_tracepoints_1;
4072 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4073 may_stop = may_stop_1;
4074 update_observer_mode ();
4075 }
4076
4077 /* Set memory write permission independently of observer mode. */
4078
4079 static void
4080 set_write_memory_permission (char *args, int from_tty,
4081 struct cmd_list_element *c)
4082 {
4083 /* Make the real values match the user-changed values. */
4084 may_write_memory = may_write_memory_1;
4085 update_observer_mode ();
4086 }
4087
4088
4089 void
4090 initialize_targets (void)
4091 {
4092 init_dummy_target ();
4093 push_target (&dummy_target);
4094
4095 add_info ("target", target_info, targ_desc);
4096 add_info ("files", target_info, targ_desc);
4097
4098 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4099 Set target debugging."), _("\
4100 Show target debugging."), _("\
4101 When non-zero, target debugging is enabled. Higher numbers are more\n\
4102 verbose."),
4103 set_targetdebug,
4104 show_targetdebug,
4105 &setdebuglist, &showdebuglist);
4106
4107 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4108 &trust_readonly, _("\
4109 Set mode for reading from readonly sections."), _("\
4110 Show mode for reading from readonly sections."), _("\
4111 When this mode is on, memory reads from readonly sections (such as .text)\n\
4112 will be read from the object file instead of from the target. This will\n\
4113 result in significant performance improvement for remote targets."),
4114 NULL,
4115 show_trust_readonly,
4116 &setlist, &showlist);
4117
4118 add_com ("monitor", class_obscure, do_monitor_command,
4119 _("Send a command to the remote monitor (remote targets only)."));
4120
4121 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4122 _("Print the name of each layer of the internal target stack."),
4123 &maintenanceprintlist);
4124
4125 add_setshow_boolean_cmd ("target-async", no_class,
4126 &target_async_permitted_1, _("\
4127 Set whether gdb controls the inferior in asynchronous mode."), _("\
4128 Show whether gdb controls the inferior in asynchronous mode."), _("\
4129 Tells gdb whether to control the inferior in asynchronous mode."),
4130 maint_set_target_async_command,
4131 maint_show_target_async_command,
4132 &maintenance_set_cmdlist,
4133 &maintenance_show_cmdlist);
4134
4135 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4136 &target_non_stop_enabled_1, _("\
4137 Set whether gdb always controls the inferior in non-stop mode."), _("\
4138 Show whether gdb always controls the inferior in non-stop mode."), _("\
4139 Tells gdb whether to control the inferior in non-stop mode."),
4140 maint_set_target_non_stop_command,
4141 maint_show_target_non_stop_command,
4142 &maintenance_set_cmdlist,
4143 &maintenance_show_cmdlist);
4144
4145 add_setshow_boolean_cmd ("may-write-registers", class_support,
4146 &may_write_registers_1, _("\
4147 Set permission to write into registers."), _("\
4148 Show permission to write into registers."), _("\
4149 When this permission is on, GDB may write into the target's registers.\n\
4150 Otherwise, any sort of write attempt will result in an error."),
4151 set_target_permissions, NULL,
4152 &setlist, &showlist);
4153
4154 add_setshow_boolean_cmd ("may-write-memory", class_support,
4155 &may_write_memory_1, _("\
4156 Set permission to write into target memory."), _("\
4157 Show permission to write into target memory."), _("\
4158 When this permission is on, GDB may write into the target's memory.\n\
4159 Otherwise, any sort of write attempt will result in an error."),
4160 set_write_memory_permission, NULL,
4161 &setlist, &showlist);
4162
4163 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4164 &may_insert_breakpoints_1, _("\
4165 Set permission to insert breakpoints in the target."), _("\
4166 Show permission to insert breakpoints in the target."), _("\
4167 When this permission is on, GDB may insert breakpoints in the program.\n\
4168 Otherwise, any sort of insertion attempt will result in an error."),
4169 set_target_permissions, NULL,
4170 &setlist, &showlist);
4171
4172 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4173 &may_insert_tracepoints_1, _("\
4174 Set permission to insert tracepoints in the target."), _("\
4175 Show permission to insert tracepoints in the target."), _("\
4176 When this permission is on, GDB may insert tracepoints in the program.\n\
4177 Otherwise, any sort of insertion attempt will result in an error."),
4178 set_target_permissions, NULL,
4179 &setlist, &showlist);
4180
4181 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4182 &may_insert_fast_tracepoints_1, _("\
4183 Set permission to insert fast tracepoints in the target."), _("\
4184 Show permission to insert fast tracepoints in the target."), _("\
4185 When this permission is on, GDB may insert fast tracepoints.\n\
4186 Otherwise, any sort of insertion attempt will result in an error."),
4187 set_target_permissions, NULL,
4188 &setlist, &showlist);
4189
4190 add_setshow_boolean_cmd ("may-interrupt", class_support,
4191 &may_stop_1, _("\
4192 Set permission to interrupt or signal the target."), _("\
4193 Show permission to interrupt or signal the target."), _("\
4194 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4195 Otherwise, any attempt to interrupt or stop will be ignored."),
4196 set_target_permissions, NULL,
4197 &setlist, &showlist);
4198
4199 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4200 &auto_connect_native_target, _("\
4201 Set whether GDB may automatically connect to the native target."), _("\
4202 Show whether GDB may automatically connect to the native target."), _("\
4203 When on, and GDB is not connected to a target yet, GDB\n\
4204 attempts \"run\" and other commands with the native target."),
4205 NULL, show_auto_connect_native_target,
4206 &setlist, &showlist);
4207 }
This page took 0.117909 seconds and 5 git commands to generate.