Further improve warnings for relocations referring to discarded sections.
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50 #include "terminal.h"
51
52 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
53
54 static void default_terminal_info (struct target_ops *, const char *, int);
55
56 static int default_watchpoint_addr_within_range (struct target_ops *,
57 CORE_ADDR, CORE_ADDR, int);
58
59 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
60 CORE_ADDR, int);
61
62 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
63
64 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
65 long lwp, long tid);
66
67 static int default_follow_fork (struct target_ops *self, int follow_child,
68 int detach_fork);
69
70 static void default_mourn_inferior (struct target_ops *self);
71
72 static int default_search_memory (struct target_ops *ops,
73 CORE_ADDR start_addr,
74 ULONGEST search_space_len,
75 const gdb_byte *pattern,
76 ULONGEST pattern_len,
77 CORE_ADDR *found_addrp);
78
79 static int default_verify_memory (struct target_ops *self,
80 const gdb_byte *data,
81 CORE_ADDR memaddr, ULONGEST size);
82
83 static struct address_space *default_thread_address_space
84 (struct target_ops *self, ptid_t ptid);
85
86 static void tcomplain (void) ATTRIBUTE_NORETURN;
87
88 static int return_zero (struct target_ops *);
89
90 static int return_zero_has_execution (struct target_ops *, ptid_t);
91
92 static struct target_ops *find_default_run_target (const char *);
93
94 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
95 ptid_t ptid);
96
97 static int dummy_find_memory_regions (struct target_ops *self,
98 find_memory_region_ftype ignore1,
99 void *ignore2);
100
101 static char *dummy_make_corefile_notes (struct target_ops *self,
102 bfd *ignore1, int *ignore2);
103
104 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
105
106 static enum exec_direction_kind default_execution_direction
107 (struct target_ops *self);
108
109 static struct target_ops debug_target;
110
111 #include "target-delegates.c"
112
113 static void init_dummy_target (void);
114
115 static void update_current_target (void);
116
117 /* Vector of existing target structures. */
118 typedef struct target_ops *target_ops_p;
119 DEF_VEC_P (target_ops_p);
120 static VEC (target_ops_p) *target_structs;
121
122 /* The initial current target, so that there is always a semi-valid
123 current target. */
124
125 static struct target_ops dummy_target;
126
127 /* Top of target stack. */
128
129 static struct target_ops *target_stack;
130
131 /* The target structure we are currently using to talk to a process
132 or file or whatever "inferior" we have. */
133
134 struct target_ops current_target;
135
136 /* Command list for target. */
137
138 static struct cmd_list_element *targetlist = NULL;
139
140 /* Nonzero if we should trust readonly sections from the
141 executable when reading memory. */
142
143 static int trust_readonly = 0;
144
145 /* Nonzero if we should show true memory content including
146 memory breakpoint inserted by gdb. */
147
148 static int show_memory_breakpoints = 0;
149
150 /* These globals control whether GDB attempts to perform these
151 operations; they are useful for targets that need to prevent
152 inadvertant disruption, such as in non-stop mode. */
153
154 int may_write_registers = 1;
155
156 int may_write_memory = 1;
157
158 int may_insert_breakpoints = 1;
159
160 int may_insert_tracepoints = 1;
161
162 int may_insert_fast_tracepoints = 1;
163
164 int may_stop = 1;
165
166 /* Non-zero if we want to see trace of target level stuff. */
167
168 static unsigned int targetdebug = 0;
169
170 static void
171 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
172 {
173 update_current_target ();
174 }
175
176 static void
177 show_targetdebug (struct ui_file *file, int from_tty,
178 struct cmd_list_element *c, const char *value)
179 {
180 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
181 }
182
183 static void setup_target_debug (void);
184
185 /* The user just typed 'target' without the name of a target. */
186
187 static void
188 target_command (const char *arg, int from_tty)
189 {
190 fputs_filtered ("Argument required (target name). Try `help target'\n",
191 gdb_stdout);
192 }
193
194 /* Default target_has_* methods for process_stratum targets. */
195
196 int
197 default_child_has_all_memory (struct target_ops *ops)
198 {
199 /* If no inferior selected, then we can't read memory here. */
200 if (ptid_equal (inferior_ptid, null_ptid))
201 return 0;
202
203 return 1;
204 }
205
206 int
207 default_child_has_memory (struct target_ops *ops)
208 {
209 /* If no inferior selected, then we can't read memory here. */
210 if (ptid_equal (inferior_ptid, null_ptid))
211 return 0;
212
213 return 1;
214 }
215
216 int
217 default_child_has_stack (struct target_ops *ops)
218 {
219 /* If no inferior selected, there's no stack. */
220 if (ptid_equal (inferior_ptid, null_ptid))
221 return 0;
222
223 return 1;
224 }
225
226 int
227 default_child_has_registers (struct target_ops *ops)
228 {
229 /* Can't read registers from no inferior. */
230 if (ptid_equal (inferior_ptid, null_ptid))
231 return 0;
232
233 return 1;
234 }
235
236 int
237 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
238 {
239 /* If there's no thread selected, then we can't make it run through
240 hoops. */
241 if (ptid_equal (the_ptid, null_ptid))
242 return 0;
243
244 return 1;
245 }
246
247
248 int
249 target_has_all_memory_1 (void)
250 {
251 struct target_ops *t;
252
253 for (t = current_target.beneath; t != NULL; t = t->beneath)
254 if (t->to_has_all_memory (t))
255 return 1;
256
257 return 0;
258 }
259
260 int
261 target_has_memory_1 (void)
262 {
263 struct target_ops *t;
264
265 for (t = current_target.beneath; t != NULL; t = t->beneath)
266 if (t->to_has_memory (t))
267 return 1;
268
269 return 0;
270 }
271
272 int
273 target_has_stack_1 (void)
274 {
275 struct target_ops *t;
276
277 for (t = current_target.beneath; t != NULL; t = t->beneath)
278 if (t->to_has_stack (t))
279 return 1;
280
281 return 0;
282 }
283
284 int
285 target_has_registers_1 (void)
286 {
287 struct target_ops *t;
288
289 for (t = current_target.beneath; t != NULL; t = t->beneath)
290 if (t->to_has_registers (t))
291 return 1;
292
293 return 0;
294 }
295
296 int
297 target_has_execution_1 (ptid_t the_ptid)
298 {
299 struct target_ops *t;
300
301 for (t = current_target.beneath; t != NULL; t = t->beneath)
302 if (t->to_has_execution (t, the_ptid))
303 return 1;
304
305 return 0;
306 }
307
308 int
309 target_has_execution_current (void)
310 {
311 return target_has_execution_1 (inferior_ptid);
312 }
313
314 /* Complete initialization of T. This ensures that various fields in
315 T are set, if needed by the target implementation. */
316
317 void
318 complete_target_initialization (struct target_ops *t)
319 {
320 /* Provide default values for all "must have" methods. */
321
322 if (t->to_has_all_memory == NULL)
323 t->to_has_all_memory = return_zero;
324
325 if (t->to_has_memory == NULL)
326 t->to_has_memory = return_zero;
327
328 if (t->to_has_stack == NULL)
329 t->to_has_stack = return_zero;
330
331 if (t->to_has_registers == NULL)
332 t->to_has_registers = return_zero;
333
334 if (t->to_has_execution == NULL)
335 t->to_has_execution = return_zero_has_execution;
336
337 /* These methods can be called on an unpushed target and so require
338 a default implementation if the target might plausibly be the
339 default run target. */
340 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
341 && t->to_supports_non_stop != NULL));
342
343 install_delegators (t);
344 }
345
346 /* This is used to implement the various target commands. */
347
348 static void
349 open_target (const char *args, int from_tty, struct cmd_list_element *command)
350 {
351 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
352
353 if (targetdebug)
354 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
355 ops->to_shortname);
356
357 ops->to_open (args, from_tty);
358
359 if (targetdebug)
360 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
361 ops->to_shortname, args, from_tty);
362 }
363
364 /* Add possible target architecture T to the list and add a new
365 command 'target T->to_shortname'. Set COMPLETER as the command's
366 completer if not NULL. */
367
368 void
369 add_target_with_completer (struct target_ops *t,
370 completer_ftype *completer)
371 {
372 struct cmd_list_element *c;
373
374 complete_target_initialization (t);
375
376 VEC_safe_push (target_ops_p, target_structs, t);
377
378 if (targetlist == NULL)
379 add_prefix_cmd ("target", class_run, target_command, _("\
380 Connect to a target machine or process.\n\
381 The first argument is the type or protocol of the target machine.\n\
382 Remaining arguments are interpreted by the target protocol. For more\n\
383 information on the arguments for a particular protocol, type\n\
384 `help target ' followed by the protocol name."),
385 &targetlist, "target ", 0, &cmdlist);
386 c = add_cmd (t->to_shortname, no_class, t->to_doc, &targetlist);
387 set_cmd_sfunc (c, open_target);
388 set_cmd_context (c, t);
389 if (completer != NULL)
390 set_cmd_completer (c, completer);
391 }
392
393 /* Add a possible target architecture to the list. */
394
395 void
396 add_target (struct target_ops *t)
397 {
398 add_target_with_completer (t, NULL);
399 }
400
401 /* See target.h. */
402
403 void
404 add_deprecated_target_alias (struct target_ops *t, const char *alias)
405 {
406 struct cmd_list_element *c;
407 char *alt;
408
409 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
410 see PR cli/15104. */
411 c = add_cmd (alias, no_class, t->to_doc, &targetlist);
412 set_cmd_sfunc (c, open_target);
413 set_cmd_context (c, t);
414 alt = xstrprintf ("target %s", t->to_shortname);
415 deprecate_cmd (c, alt);
416 }
417
418 /* Stub functions */
419
420 void
421 target_kill (void)
422 {
423 current_target.to_kill (&current_target);
424 }
425
426 void
427 target_load (const char *arg, int from_tty)
428 {
429 target_dcache_invalidate ();
430 (*current_target.to_load) (&current_target, arg, from_tty);
431 }
432
433 /* Define it. */
434
435 target_terminal_state target_terminal::m_terminal_state
436 = target_terminal_state::is_ours;
437
438 /* See target/target.h. */
439
440 void
441 target_terminal::init (void)
442 {
443 (*current_target.to_terminal_init) (&current_target);
444
445 m_terminal_state = target_terminal_state::is_ours;
446 }
447
448 /* See target/target.h. */
449
450 void
451 target_terminal::inferior (void)
452 {
453 struct ui *ui = current_ui;
454
455 /* A background resume (``run&'') should leave GDB in control of the
456 terminal. */
457 if (ui->prompt_state != PROMPT_BLOCKED)
458 return;
459
460 /* Since we always run the inferior in the main console (unless "set
461 inferior-tty" is in effect), when some UI other than the main one
462 calls target_terminal::inferior, then we leave the main UI's
463 terminal settings as is. */
464 if (ui != main_ui)
465 return;
466
467 /* If GDB is resuming the inferior in the foreground, install
468 inferior's terminal modes. */
469
470 struct inferior *inf = current_inferior ();
471
472 if (inf->terminal_state != target_terminal_state::is_inferior)
473 {
474 (*current_target.to_terminal_inferior) (&current_target);
475 inf->terminal_state = target_terminal_state::is_inferior;
476 }
477
478 m_terminal_state = target_terminal_state::is_inferior;
479
480 /* If the user hit C-c before, pretend that it was hit right
481 here. */
482 if (check_quit_flag ())
483 target_pass_ctrlc ();
484 }
485
486 /* See target/target.h. */
487
488 void
489 target_terminal::restore_inferior (void)
490 {
491 struct ui *ui = current_ui;
492
493 /* See target_terminal::inferior(). */
494 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
495 return;
496
497 /* Restore the terminal settings of inferiors that were in the
498 foreground but are now ours_for_output due to a temporary
499 target_target::ours_for_output() call. */
500
501 {
502 scoped_restore_current_inferior restore_inferior;
503 struct inferior *inf;
504
505 ALL_INFERIORS (inf)
506 {
507 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
508 {
509 set_current_inferior (inf);
510 (*current_target.to_terminal_inferior) (&current_target);
511 inf->terminal_state = target_terminal_state::is_inferior;
512 }
513 }
514 }
515
516 m_terminal_state = target_terminal_state::is_inferior;
517
518 /* If the user hit C-c before, pretend that it was hit right
519 here. */
520 if (check_quit_flag ())
521 target_pass_ctrlc ();
522 }
523
524 /* Switch terminal state to DESIRED_STATE, either is_ours, or
525 is_ours_for_output. */
526
527 static void
528 target_terminal_is_ours_kind (target_terminal_state desired_state)
529 {
530 scoped_restore_current_inferior restore_inferior;
531 struct inferior *inf;
532
533 /* Must do this in two passes. First, have all inferiors save the
534 current terminal settings. Then, after all inferiors have add a
535 chance to safely save the terminal settings, restore GDB's
536 terminal settings. */
537
538 ALL_INFERIORS (inf)
539 {
540 if (inf->terminal_state == target_terminal_state::is_inferior)
541 {
542 set_current_inferior (inf);
543 (*current_target.to_terminal_save_inferior) (&current_target);
544 }
545 }
546
547 ALL_INFERIORS (inf)
548 {
549 /* Note we don't check is_inferior here like above because we
550 need to handle 'is_ours_for_output -> is_ours' too. Careful
551 to never transition from 'is_ours' to 'is_ours_for_output',
552 though. */
553 if (inf->terminal_state != target_terminal_state::is_ours
554 && inf->terminal_state != desired_state)
555 {
556 set_current_inferior (inf);
557 if (desired_state == target_terminal_state::is_ours)
558 (*current_target.to_terminal_ours) (&current_target);
559 else if (desired_state == target_terminal_state::is_ours_for_output)
560 (*current_target.to_terminal_ours_for_output) (&current_target);
561 else
562 gdb_assert_not_reached ("unhandled desired state");
563 inf->terminal_state = desired_state;
564 }
565 }
566 }
567
568 /* See target/target.h. */
569
570 void
571 target_terminal::ours ()
572 {
573 struct ui *ui = current_ui;
574
575 /* See target_terminal::inferior. */
576 if (ui != main_ui)
577 return;
578
579 if (m_terminal_state == target_terminal_state::is_ours)
580 return;
581
582 target_terminal_is_ours_kind (target_terminal_state::is_ours);
583 m_terminal_state = target_terminal_state::is_ours;
584 }
585
586 /* See target/target.h. */
587
588 void
589 target_terminal::ours_for_output ()
590 {
591 struct ui *ui = current_ui;
592
593 /* See target_terminal::inferior. */
594 if (ui != main_ui)
595 return;
596
597 if (!target_terminal::is_inferior ())
598 return;
599
600 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
601 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
602 }
603
604 /* See target/target.h. */
605
606 void
607 target_terminal::info (const char *arg, int from_tty)
608 {
609 (*current_target.to_terminal_info) (&current_target, arg, from_tty);
610 }
611
612 /* See target.h. */
613
614 int
615 target_supports_terminal_ours (void)
616 {
617 struct target_ops *t;
618
619 for (t = current_target.beneath; t != NULL; t = t->beneath)
620 {
621 if (t->to_terminal_ours != delegate_terminal_ours
622 && t->to_terminal_ours != tdefault_terminal_ours)
623 return 1;
624 }
625
626 return 0;
627 }
628
629 static void
630 tcomplain (void)
631 {
632 error (_("You can't do that when your target is `%s'"),
633 current_target.to_shortname);
634 }
635
636 void
637 noprocess (void)
638 {
639 error (_("You can't do that without a process to debug."));
640 }
641
642 static void
643 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
644 {
645 printf_unfiltered (_("No saved terminal information.\n"));
646 }
647
648 /* A default implementation for the to_get_ada_task_ptid target method.
649
650 This function builds the PTID by using both LWP and TID as part of
651 the PTID lwp and tid elements. The pid used is the pid of the
652 inferior_ptid. */
653
654 static ptid_t
655 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
656 {
657 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
658 }
659
660 static enum exec_direction_kind
661 default_execution_direction (struct target_ops *self)
662 {
663 if (!target_can_execute_reverse)
664 return EXEC_FORWARD;
665 else if (!target_can_async_p ())
666 return EXEC_FORWARD;
667 else
668 gdb_assert_not_reached ("\
669 to_execution_direction must be implemented for reverse async");
670 }
671
672 /* Go through the target stack from top to bottom, copying over zero
673 entries in current_target, then filling in still empty entries. In
674 effect, we are doing class inheritance through the pushed target
675 vectors.
676
677 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
678 is currently implemented, is that it discards any knowledge of
679 which target an inherited method originally belonged to.
680 Consequently, new new target methods should instead explicitly and
681 locally search the target stack for the target that can handle the
682 request. */
683
684 static void
685 update_current_target (void)
686 {
687 struct target_ops *t;
688
689 /* First, reset current's contents. */
690 memset (&current_target, 0, sizeof (current_target));
691
692 /* Install the delegators. */
693 install_delegators (&current_target);
694
695 current_target.to_stratum = target_stack->to_stratum;
696
697 #define INHERIT(FIELD, TARGET) \
698 if (!current_target.FIELD) \
699 current_target.FIELD = (TARGET)->FIELD
700
701 /* Do not add any new INHERITs here. Instead, use the delegation
702 mechanism provided by make-target-delegates. */
703 for (t = target_stack; t; t = t->beneath)
704 {
705 INHERIT (to_shortname, t);
706 INHERIT (to_longname, t);
707 INHERIT (to_attach_no_wait, t);
708 INHERIT (to_have_steppable_watchpoint, t);
709 INHERIT (to_have_continuable_watchpoint, t);
710 INHERIT (to_has_thread_control, t);
711 }
712 #undef INHERIT
713
714 /* Finally, position the target-stack beneath the squashed
715 "current_target". That way code looking for a non-inherited
716 target method can quickly and simply find it. */
717 current_target.beneath = target_stack;
718
719 if (targetdebug)
720 setup_target_debug ();
721 }
722
723 /* Push a new target type into the stack of the existing target accessors,
724 possibly superseding some of the existing accessors.
725
726 Rather than allow an empty stack, we always have the dummy target at
727 the bottom stratum, so we can call the function vectors without
728 checking them. */
729
730 void
731 push_target (struct target_ops *t)
732 {
733 struct target_ops **cur;
734
735 /* Check magic number. If wrong, it probably means someone changed
736 the struct definition, but not all the places that initialize one. */
737 if (t->to_magic != OPS_MAGIC)
738 {
739 fprintf_unfiltered (gdb_stderr,
740 "Magic number of %s target struct wrong\n",
741 t->to_shortname);
742 internal_error (__FILE__, __LINE__,
743 _("failed internal consistency check"));
744 }
745
746 /* Find the proper stratum to install this target in. */
747 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
748 {
749 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
750 break;
751 }
752
753 /* If there's already targets at this stratum, remove them. */
754 /* FIXME: cagney/2003-10-15: I think this should be popping all
755 targets to CUR, and not just those at this stratum level. */
756 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
757 {
758 /* There's already something at this stratum level. Close it,
759 and un-hook it from the stack. */
760 struct target_ops *tmp = (*cur);
761
762 (*cur) = (*cur)->beneath;
763 tmp->beneath = NULL;
764 target_close (tmp);
765 }
766
767 /* We have removed all targets in our stratum, now add the new one. */
768 t->beneath = (*cur);
769 (*cur) = t;
770
771 update_current_target ();
772 }
773
774 /* Remove a target_ops vector from the stack, wherever it may be.
775 Return how many times it was removed (0 or 1). */
776
777 int
778 unpush_target (struct target_ops *t)
779 {
780 struct target_ops **cur;
781 struct target_ops *tmp;
782
783 if (t->to_stratum == dummy_stratum)
784 internal_error (__FILE__, __LINE__,
785 _("Attempt to unpush the dummy target"));
786
787 /* Look for the specified target. Note that we assume that a target
788 can only occur once in the target stack. */
789
790 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
791 {
792 if ((*cur) == t)
793 break;
794 }
795
796 /* If we don't find target_ops, quit. Only open targets should be
797 closed. */
798 if ((*cur) == NULL)
799 return 0;
800
801 /* Unchain the target. */
802 tmp = (*cur);
803 (*cur) = (*cur)->beneath;
804 tmp->beneath = NULL;
805
806 update_current_target ();
807
808 /* Finally close the target. Note we do this after unchaining, so
809 any target method calls from within the target_close
810 implementation don't end up in T anymore. */
811 target_close (t);
812
813 return 1;
814 }
815
816 /* Unpush TARGET and assert that it worked. */
817
818 static void
819 unpush_target_and_assert (struct target_ops *target)
820 {
821 if (!unpush_target (target))
822 {
823 fprintf_unfiltered (gdb_stderr,
824 "pop_all_targets couldn't find target %s\n",
825 target->to_shortname);
826 internal_error (__FILE__, __LINE__,
827 _("failed internal consistency check"));
828 }
829 }
830
831 void
832 pop_all_targets_above (enum strata above_stratum)
833 {
834 while ((int) (current_target.to_stratum) > (int) above_stratum)
835 unpush_target_and_assert (target_stack);
836 }
837
838 /* See target.h. */
839
840 void
841 pop_all_targets_at_and_above (enum strata stratum)
842 {
843 while ((int) (current_target.to_stratum) >= (int) stratum)
844 unpush_target_and_assert (target_stack);
845 }
846
847 void
848 pop_all_targets (void)
849 {
850 pop_all_targets_above (dummy_stratum);
851 }
852
853 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
854
855 int
856 target_is_pushed (struct target_ops *t)
857 {
858 struct target_ops *cur;
859
860 /* Check magic number. If wrong, it probably means someone changed
861 the struct definition, but not all the places that initialize one. */
862 if (t->to_magic != OPS_MAGIC)
863 {
864 fprintf_unfiltered (gdb_stderr,
865 "Magic number of %s target struct wrong\n",
866 t->to_shortname);
867 internal_error (__FILE__, __LINE__,
868 _("failed internal consistency check"));
869 }
870
871 for (cur = target_stack; cur != NULL; cur = cur->beneath)
872 if (cur == t)
873 return 1;
874
875 return 0;
876 }
877
878 /* Default implementation of to_get_thread_local_address. */
879
880 static void
881 generic_tls_error (void)
882 {
883 throw_error (TLS_GENERIC_ERROR,
884 _("Cannot find thread-local variables on this target"));
885 }
886
887 /* Using the objfile specified in OBJFILE, find the address for the
888 current thread's thread-local storage with offset OFFSET. */
889 CORE_ADDR
890 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
891 {
892 volatile CORE_ADDR addr = 0;
893 struct target_ops *target = &current_target;
894
895 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
896 {
897 ptid_t ptid = inferior_ptid;
898
899 TRY
900 {
901 CORE_ADDR lm_addr;
902
903 /* Fetch the load module address for this objfile. */
904 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
905 objfile);
906
907 addr = target->to_get_thread_local_address (target, ptid,
908 lm_addr, offset);
909 }
910 /* If an error occurred, print TLS related messages here. Otherwise,
911 throw the error to some higher catcher. */
912 CATCH (ex, RETURN_MASK_ALL)
913 {
914 int objfile_is_library = (objfile->flags & OBJF_SHARED);
915
916 switch (ex.error)
917 {
918 case TLS_NO_LIBRARY_SUPPORT_ERROR:
919 error (_("Cannot find thread-local variables "
920 "in this thread library."));
921 break;
922 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
923 if (objfile_is_library)
924 error (_("Cannot find shared library `%s' in dynamic"
925 " linker's load module list"), objfile_name (objfile));
926 else
927 error (_("Cannot find executable file `%s' in dynamic"
928 " linker's load module list"), objfile_name (objfile));
929 break;
930 case TLS_NOT_ALLOCATED_YET_ERROR:
931 if (objfile_is_library)
932 error (_("The inferior has not yet allocated storage for"
933 " thread-local variables in\n"
934 "the shared library `%s'\n"
935 "for %s"),
936 objfile_name (objfile), target_pid_to_str (ptid));
937 else
938 error (_("The inferior has not yet allocated storage for"
939 " thread-local variables in\n"
940 "the executable `%s'\n"
941 "for %s"),
942 objfile_name (objfile), target_pid_to_str (ptid));
943 break;
944 case TLS_GENERIC_ERROR:
945 if (objfile_is_library)
946 error (_("Cannot find thread-local storage for %s, "
947 "shared library %s:\n%s"),
948 target_pid_to_str (ptid),
949 objfile_name (objfile), ex.message);
950 else
951 error (_("Cannot find thread-local storage for %s, "
952 "executable file %s:\n%s"),
953 target_pid_to_str (ptid),
954 objfile_name (objfile), ex.message);
955 break;
956 default:
957 throw_exception (ex);
958 break;
959 }
960 }
961 END_CATCH
962 }
963 /* It wouldn't be wrong here to try a gdbarch method, too; finding
964 TLS is an ABI-specific thing. But we don't do that yet. */
965 else
966 error (_("Cannot find thread-local variables on this target"));
967
968 return addr;
969 }
970
971 const char *
972 target_xfer_status_to_string (enum target_xfer_status status)
973 {
974 #define CASE(X) case X: return #X
975 switch (status)
976 {
977 CASE(TARGET_XFER_E_IO);
978 CASE(TARGET_XFER_UNAVAILABLE);
979 default:
980 return "<unknown>";
981 }
982 #undef CASE
983 };
984
985
986 #undef MIN
987 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
988
989 /* target_read_string -- read a null terminated string, up to LEN bytes,
990 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
991 Set *STRING to a pointer to malloc'd memory containing the data; the caller
992 is responsible for freeing it. Return the number of bytes successfully
993 read. */
994
995 int
996 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
997 int len, int *errnop)
998 {
999 int tlen, offset, i;
1000 gdb_byte buf[4];
1001 int errcode = 0;
1002 char *buffer;
1003 int buffer_allocated;
1004 char *bufptr;
1005 unsigned int nbytes_read = 0;
1006
1007 gdb_assert (string);
1008
1009 /* Small for testing. */
1010 buffer_allocated = 4;
1011 buffer = (char *) xmalloc (buffer_allocated);
1012 bufptr = buffer;
1013
1014 while (len > 0)
1015 {
1016 tlen = MIN (len, 4 - (memaddr & 3));
1017 offset = memaddr & 3;
1018
1019 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1020 if (errcode != 0)
1021 {
1022 /* The transfer request might have crossed the boundary to an
1023 unallocated region of memory. Retry the transfer, requesting
1024 a single byte. */
1025 tlen = 1;
1026 offset = 0;
1027 errcode = target_read_memory (memaddr, buf, 1);
1028 if (errcode != 0)
1029 goto done;
1030 }
1031
1032 if (bufptr - buffer + tlen > buffer_allocated)
1033 {
1034 unsigned int bytes;
1035
1036 bytes = bufptr - buffer;
1037 buffer_allocated *= 2;
1038 buffer = (char *) xrealloc (buffer, buffer_allocated);
1039 bufptr = buffer + bytes;
1040 }
1041
1042 for (i = 0; i < tlen; i++)
1043 {
1044 *bufptr++ = buf[i + offset];
1045 if (buf[i + offset] == '\000')
1046 {
1047 nbytes_read += i + 1;
1048 goto done;
1049 }
1050 }
1051
1052 memaddr += tlen;
1053 len -= tlen;
1054 nbytes_read += tlen;
1055 }
1056 done:
1057 string->reset (buffer);
1058 if (errnop != NULL)
1059 *errnop = errcode;
1060 return nbytes_read;
1061 }
1062
1063 struct target_section_table *
1064 target_get_section_table (struct target_ops *target)
1065 {
1066 return (*target->to_get_section_table) (target);
1067 }
1068
1069 /* Find a section containing ADDR. */
1070
1071 struct target_section *
1072 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1073 {
1074 struct target_section_table *table = target_get_section_table (target);
1075 struct target_section *secp;
1076
1077 if (table == NULL)
1078 return NULL;
1079
1080 for (secp = table->sections; secp < table->sections_end; secp++)
1081 {
1082 if (addr >= secp->addr && addr < secp->endaddr)
1083 return secp;
1084 }
1085 return NULL;
1086 }
1087
1088
1089 /* Helper for the memory xfer routines. Checks the attributes of the
1090 memory region of MEMADDR against the read or write being attempted.
1091 If the access is permitted returns true, otherwise returns false.
1092 REGION_P is an optional output parameter. If not-NULL, it is
1093 filled with a pointer to the memory region of MEMADDR. REG_LEN
1094 returns LEN trimmed to the end of the region. This is how much the
1095 caller can continue requesting, if the access is permitted. A
1096 single xfer request must not straddle memory region boundaries. */
1097
1098 static int
1099 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1100 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1101 struct mem_region **region_p)
1102 {
1103 struct mem_region *region;
1104
1105 region = lookup_mem_region (memaddr);
1106
1107 if (region_p != NULL)
1108 *region_p = region;
1109
1110 switch (region->attrib.mode)
1111 {
1112 case MEM_RO:
1113 if (writebuf != NULL)
1114 return 0;
1115 break;
1116
1117 case MEM_WO:
1118 if (readbuf != NULL)
1119 return 0;
1120 break;
1121
1122 case MEM_FLASH:
1123 /* We only support writing to flash during "load" for now. */
1124 if (writebuf != NULL)
1125 error (_("Writing to flash memory forbidden in this context"));
1126 break;
1127
1128 case MEM_NONE:
1129 return 0;
1130 }
1131
1132 /* region->hi == 0 means there's no upper bound. */
1133 if (memaddr + len < region->hi || region->hi == 0)
1134 *reg_len = len;
1135 else
1136 *reg_len = region->hi - memaddr;
1137
1138 return 1;
1139 }
1140
1141 /* Read memory from more than one valid target. A core file, for
1142 instance, could have some of memory but delegate other bits to
1143 the target below it. So, we must manually try all targets. */
1144
1145 enum target_xfer_status
1146 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1147 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1148 ULONGEST *xfered_len)
1149 {
1150 enum target_xfer_status res;
1151
1152 do
1153 {
1154 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1155 readbuf, writebuf, memaddr, len,
1156 xfered_len);
1157 if (res == TARGET_XFER_OK)
1158 break;
1159
1160 /* Stop if the target reports that the memory is not available. */
1161 if (res == TARGET_XFER_UNAVAILABLE)
1162 break;
1163
1164 /* We want to continue past core files to executables, but not
1165 past a running target's memory. */
1166 if (ops->to_has_all_memory (ops))
1167 break;
1168
1169 ops = ops->beneath;
1170 }
1171 while (ops != NULL);
1172
1173 /* The cache works at the raw memory level. Make sure the cache
1174 gets updated with raw contents no matter what kind of memory
1175 object was originally being written. Note we do write-through
1176 first, so that if it fails, we don't write to the cache contents
1177 that never made it to the target. */
1178 if (writebuf != NULL
1179 && !ptid_equal (inferior_ptid, null_ptid)
1180 && target_dcache_init_p ()
1181 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1182 {
1183 DCACHE *dcache = target_dcache_get ();
1184
1185 /* Note that writing to an area of memory which wasn't present
1186 in the cache doesn't cause it to be loaded in. */
1187 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1188 }
1189
1190 return res;
1191 }
1192
1193 /* Perform a partial memory transfer.
1194 For docs see target.h, to_xfer_partial. */
1195
1196 static enum target_xfer_status
1197 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1198 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1199 ULONGEST len, ULONGEST *xfered_len)
1200 {
1201 enum target_xfer_status res;
1202 ULONGEST reg_len;
1203 struct mem_region *region;
1204 struct inferior *inf;
1205
1206 /* For accesses to unmapped overlay sections, read directly from
1207 files. Must do this first, as MEMADDR may need adjustment. */
1208 if (readbuf != NULL && overlay_debugging)
1209 {
1210 struct obj_section *section = find_pc_overlay (memaddr);
1211
1212 if (pc_in_unmapped_range (memaddr, section))
1213 {
1214 struct target_section_table *table
1215 = target_get_section_table (ops);
1216 const char *section_name = section->the_bfd_section->name;
1217
1218 memaddr = overlay_mapped_address (memaddr, section);
1219 return section_table_xfer_memory_partial (readbuf, writebuf,
1220 memaddr, len, xfered_len,
1221 table->sections,
1222 table->sections_end,
1223 section_name);
1224 }
1225 }
1226
1227 /* Try the executable files, if "trust-readonly-sections" is set. */
1228 if (readbuf != NULL && trust_readonly)
1229 {
1230 struct target_section *secp;
1231 struct target_section_table *table;
1232
1233 secp = target_section_by_addr (ops, memaddr);
1234 if (secp != NULL
1235 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1236 secp->the_bfd_section)
1237 & SEC_READONLY))
1238 {
1239 table = target_get_section_table (ops);
1240 return section_table_xfer_memory_partial (readbuf, writebuf,
1241 memaddr, len, xfered_len,
1242 table->sections,
1243 table->sections_end,
1244 NULL);
1245 }
1246 }
1247
1248 /* Try GDB's internal data cache. */
1249
1250 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1251 &region))
1252 return TARGET_XFER_E_IO;
1253
1254 if (!ptid_equal (inferior_ptid, null_ptid))
1255 inf = find_inferior_ptid (inferior_ptid);
1256 else
1257 inf = NULL;
1258
1259 if (inf != NULL
1260 && readbuf != NULL
1261 /* The dcache reads whole cache lines; that doesn't play well
1262 with reading from a trace buffer, because reading outside of
1263 the collected memory range fails. */
1264 && get_traceframe_number () == -1
1265 && (region->attrib.cache
1266 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1267 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1268 {
1269 DCACHE *dcache = target_dcache_get_or_init ();
1270
1271 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1272 reg_len, xfered_len);
1273 }
1274
1275 /* If none of those methods found the memory we wanted, fall back
1276 to a target partial transfer. Normally a single call to
1277 to_xfer_partial is enough; if it doesn't recognize an object
1278 it will call the to_xfer_partial of the next target down.
1279 But for memory this won't do. Memory is the only target
1280 object which can be read from more than one valid target.
1281 A core file, for instance, could have some of memory but
1282 delegate other bits to the target below it. So, we must
1283 manually try all targets. */
1284
1285 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1286 xfered_len);
1287
1288 /* If we still haven't got anything, return the last error. We
1289 give up. */
1290 return res;
1291 }
1292
1293 /* Perform a partial memory transfer. For docs see target.h,
1294 to_xfer_partial. */
1295
1296 static enum target_xfer_status
1297 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1298 gdb_byte *readbuf, const gdb_byte *writebuf,
1299 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1300 {
1301 enum target_xfer_status res;
1302
1303 /* Zero length requests are ok and require no work. */
1304 if (len == 0)
1305 return TARGET_XFER_EOF;
1306
1307 memaddr = address_significant (target_gdbarch (), memaddr);
1308
1309 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1310 breakpoint insns, thus hiding out from higher layers whether
1311 there are software breakpoints inserted in the code stream. */
1312 if (readbuf != NULL)
1313 {
1314 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1315 xfered_len);
1316
1317 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1318 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1319 }
1320 else
1321 {
1322 /* A large write request is likely to be partially satisfied
1323 by memory_xfer_partial_1. We will continually malloc
1324 and free a copy of the entire write request for breakpoint
1325 shadow handling even though we only end up writing a small
1326 subset of it. Cap writes to a limit specified by the target
1327 to mitigate this. */
1328 len = std::min (ops->to_get_memory_xfer_limit (ops), len);
1329
1330 gdb::byte_vector buf (writebuf, writebuf + len);
1331 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1332 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1333 xfered_len);
1334 }
1335
1336 return res;
1337 }
1338
1339 scoped_restore_tmpl<int>
1340 make_scoped_restore_show_memory_breakpoints (int show)
1341 {
1342 return make_scoped_restore (&show_memory_breakpoints, show);
1343 }
1344
1345 /* For docs see target.h, to_xfer_partial. */
1346
1347 enum target_xfer_status
1348 target_xfer_partial (struct target_ops *ops,
1349 enum target_object object, const char *annex,
1350 gdb_byte *readbuf, const gdb_byte *writebuf,
1351 ULONGEST offset, ULONGEST len,
1352 ULONGEST *xfered_len)
1353 {
1354 enum target_xfer_status retval;
1355
1356 gdb_assert (ops->to_xfer_partial != NULL);
1357
1358 /* Transfer is done when LEN is zero. */
1359 if (len == 0)
1360 return TARGET_XFER_EOF;
1361
1362 if (writebuf && !may_write_memory)
1363 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1364 core_addr_to_string_nz (offset), plongest (len));
1365
1366 *xfered_len = 0;
1367
1368 /* If this is a memory transfer, let the memory-specific code
1369 have a look at it instead. Memory transfers are more
1370 complicated. */
1371 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1372 || object == TARGET_OBJECT_CODE_MEMORY)
1373 retval = memory_xfer_partial (ops, object, readbuf,
1374 writebuf, offset, len, xfered_len);
1375 else if (object == TARGET_OBJECT_RAW_MEMORY)
1376 {
1377 /* Skip/avoid accessing the target if the memory region
1378 attributes block the access. Check this here instead of in
1379 raw_memory_xfer_partial as otherwise we'd end up checking
1380 this twice in the case of the memory_xfer_partial path is
1381 taken; once before checking the dcache, and another in the
1382 tail call to raw_memory_xfer_partial. */
1383 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1384 NULL))
1385 return TARGET_XFER_E_IO;
1386
1387 /* Request the normal memory object from other layers. */
1388 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1389 xfered_len);
1390 }
1391 else
1392 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1393 writebuf, offset, len, xfered_len);
1394
1395 if (targetdebug)
1396 {
1397 const unsigned char *myaddr = NULL;
1398
1399 fprintf_unfiltered (gdb_stdlog,
1400 "%s:target_xfer_partial "
1401 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1402 ops->to_shortname,
1403 (int) object,
1404 (annex ? annex : "(null)"),
1405 host_address_to_string (readbuf),
1406 host_address_to_string (writebuf),
1407 core_addr_to_string_nz (offset),
1408 pulongest (len), retval,
1409 pulongest (*xfered_len));
1410
1411 if (readbuf)
1412 myaddr = readbuf;
1413 if (writebuf)
1414 myaddr = writebuf;
1415 if (retval == TARGET_XFER_OK && myaddr != NULL)
1416 {
1417 int i;
1418
1419 fputs_unfiltered (", bytes =", gdb_stdlog);
1420 for (i = 0; i < *xfered_len; i++)
1421 {
1422 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1423 {
1424 if (targetdebug < 2 && i > 0)
1425 {
1426 fprintf_unfiltered (gdb_stdlog, " ...");
1427 break;
1428 }
1429 fprintf_unfiltered (gdb_stdlog, "\n");
1430 }
1431
1432 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1433 }
1434 }
1435
1436 fputc_unfiltered ('\n', gdb_stdlog);
1437 }
1438
1439 /* Check implementations of to_xfer_partial update *XFERED_LEN
1440 properly. Do assertion after printing debug messages, so that we
1441 can find more clues on assertion failure from debugging messages. */
1442 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1443 gdb_assert (*xfered_len > 0);
1444
1445 return retval;
1446 }
1447
1448 /* Read LEN bytes of target memory at address MEMADDR, placing the
1449 results in GDB's memory at MYADDR. Returns either 0 for success or
1450 -1 if any error occurs.
1451
1452 If an error occurs, no guarantee is made about the contents of the data at
1453 MYADDR. In particular, the caller should not depend upon partial reads
1454 filling the buffer with good data. There is no way for the caller to know
1455 how much good data might have been transfered anyway. Callers that can
1456 deal with partial reads should call target_read (which will retry until
1457 it makes no progress, and then return how much was transferred). */
1458
1459 int
1460 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1461 {
1462 /* Dispatch to the topmost target, not the flattened current_target.
1463 Memory accesses check target->to_has_(all_)memory, and the
1464 flattened target doesn't inherit those. */
1465 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1466 myaddr, memaddr, len) == len)
1467 return 0;
1468 else
1469 return -1;
1470 }
1471
1472 /* See target/target.h. */
1473
1474 int
1475 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1476 {
1477 gdb_byte buf[4];
1478 int r;
1479
1480 r = target_read_memory (memaddr, buf, sizeof buf);
1481 if (r != 0)
1482 return r;
1483 *result = extract_unsigned_integer (buf, sizeof buf,
1484 gdbarch_byte_order (target_gdbarch ()));
1485 return 0;
1486 }
1487
1488 /* Like target_read_memory, but specify explicitly that this is a read
1489 from the target's raw memory. That is, this read bypasses the
1490 dcache, breakpoint shadowing, etc. */
1491
1492 int
1493 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1494 {
1495 /* See comment in target_read_memory about why the request starts at
1496 current_target.beneath. */
1497 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1498 myaddr, memaddr, len) == len)
1499 return 0;
1500 else
1501 return -1;
1502 }
1503
1504 /* Like target_read_memory, but specify explicitly that this is a read from
1505 the target's stack. This may trigger different cache behavior. */
1506
1507 int
1508 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1509 {
1510 /* See comment in target_read_memory about why the request starts at
1511 current_target.beneath. */
1512 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1513 myaddr, memaddr, len) == len)
1514 return 0;
1515 else
1516 return -1;
1517 }
1518
1519 /* Like target_read_memory, but specify explicitly that this is a read from
1520 the target's code. This may trigger different cache behavior. */
1521
1522 int
1523 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1524 {
1525 /* See comment in target_read_memory about why the request starts at
1526 current_target.beneath. */
1527 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1528 myaddr, memaddr, len) == len)
1529 return 0;
1530 else
1531 return -1;
1532 }
1533
1534 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1535 Returns either 0 for success or -1 if any error occurs. If an
1536 error occurs, no guarantee is made about how much data got written.
1537 Callers that can deal with partial writes should call
1538 target_write. */
1539
1540 int
1541 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1542 {
1543 /* See comment in target_read_memory about why the request starts at
1544 current_target.beneath. */
1545 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1546 myaddr, memaddr, len) == len)
1547 return 0;
1548 else
1549 return -1;
1550 }
1551
1552 /* Write LEN bytes from MYADDR to target raw memory at address
1553 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1554 If an error occurs, no guarantee is made about how much data got
1555 written. Callers that can deal with partial writes should call
1556 target_write. */
1557
1558 int
1559 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1560 {
1561 /* See comment in target_read_memory about why the request starts at
1562 current_target.beneath. */
1563 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1564 myaddr, memaddr, len) == len)
1565 return 0;
1566 else
1567 return -1;
1568 }
1569
1570 /* Fetch the target's memory map. */
1571
1572 std::vector<mem_region>
1573 target_memory_map (void)
1574 {
1575 std::vector<mem_region> result
1576 = current_target.to_memory_map (&current_target);
1577 if (result.empty ())
1578 return result;
1579
1580 std::sort (result.begin (), result.end ());
1581
1582 /* Check that regions do not overlap. Simultaneously assign
1583 a numbering for the "mem" commands to use to refer to
1584 each region. */
1585 mem_region *last_one = NULL;
1586 for (size_t ix = 0; ix < result.size (); ix++)
1587 {
1588 mem_region *this_one = &result[ix];
1589 this_one->number = ix;
1590
1591 if (last_one != NULL && last_one->hi > this_one->lo)
1592 {
1593 warning (_("Overlapping regions in memory map: ignoring"));
1594 return std::vector<mem_region> ();
1595 }
1596
1597 last_one = this_one;
1598 }
1599
1600 return result;
1601 }
1602
1603 void
1604 target_flash_erase (ULONGEST address, LONGEST length)
1605 {
1606 current_target.to_flash_erase (&current_target, address, length);
1607 }
1608
1609 void
1610 target_flash_done (void)
1611 {
1612 current_target.to_flash_done (&current_target);
1613 }
1614
1615 static void
1616 show_trust_readonly (struct ui_file *file, int from_tty,
1617 struct cmd_list_element *c, const char *value)
1618 {
1619 fprintf_filtered (file,
1620 _("Mode for reading from readonly sections is %s.\n"),
1621 value);
1622 }
1623
1624 /* Target vector read/write partial wrapper functions. */
1625
1626 static enum target_xfer_status
1627 target_read_partial (struct target_ops *ops,
1628 enum target_object object,
1629 const char *annex, gdb_byte *buf,
1630 ULONGEST offset, ULONGEST len,
1631 ULONGEST *xfered_len)
1632 {
1633 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1634 xfered_len);
1635 }
1636
1637 static enum target_xfer_status
1638 target_write_partial (struct target_ops *ops,
1639 enum target_object object,
1640 const char *annex, const gdb_byte *buf,
1641 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1642 {
1643 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1644 xfered_len);
1645 }
1646
1647 /* Wrappers to perform the full transfer. */
1648
1649 /* For docs on target_read see target.h. */
1650
1651 LONGEST
1652 target_read (struct target_ops *ops,
1653 enum target_object object,
1654 const char *annex, gdb_byte *buf,
1655 ULONGEST offset, LONGEST len)
1656 {
1657 LONGEST xfered_total = 0;
1658 int unit_size = 1;
1659
1660 /* If we are reading from a memory object, find the length of an addressable
1661 unit for that architecture. */
1662 if (object == TARGET_OBJECT_MEMORY
1663 || object == TARGET_OBJECT_STACK_MEMORY
1664 || object == TARGET_OBJECT_CODE_MEMORY
1665 || object == TARGET_OBJECT_RAW_MEMORY)
1666 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1667
1668 while (xfered_total < len)
1669 {
1670 ULONGEST xfered_partial;
1671 enum target_xfer_status status;
1672
1673 status = target_read_partial (ops, object, annex,
1674 buf + xfered_total * unit_size,
1675 offset + xfered_total, len - xfered_total,
1676 &xfered_partial);
1677
1678 /* Call an observer, notifying them of the xfer progress? */
1679 if (status == TARGET_XFER_EOF)
1680 return xfered_total;
1681 else if (status == TARGET_XFER_OK)
1682 {
1683 xfered_total += xfered_partial;
1684 QUIT;
1685 }
1686 else
1687 return TARGET_XFER_E_IO;
1688
1689 }
1690 return len;
1691 }
1692
1693 /* Assuming that the entire [begin, end) range of memory cannot be
1694 read, try to read whatever subrange is possible to read.
1695
1696 The function returns, in RESULT, either zero or one memory block.
1697 If there's a readable subrange at the beginning, it is completely
1698 read and returned. Any further readable subrange will not be read.
1699 Otherwise, if there's a readable subrange at the end, it will be
1700 completely read and returned. Any readable subranges before it
1701 (obviously, not starting at the beginning), will be ignored. In
1702 other cases -- either no readable subrange, or readable subrange(s)
1703 that is neither at the beginning, or end, nothing is returned.
1704
1705 The purpose of this function is to handle a read across a boundary
1706 of accessible memory in a case when memory map is not available.
1707 The above restrictions are fine for this case, but will give
1708 incorrect results if the memory is 'patchy'. However, supporting
1709 'patchy' memory would require trying to read every single byte,
1710 and it seems unacceptable solution. Explicit memory map is
1711 recommended for this case -- and target_read_memory_robust will
1712 take care of reading multiple ranges then. */
1713
1714 static void
1715 read_whatever_is_readable (struct target_ops *ops,
1716 const ULONGEST begin, const ULONGEST end,
1717 int unit_size,
1718 std::vector<memory_read_result> *result)
1719 {
1720 ULONGEST current_begin = begin;
1721 ULONGEST current_end = end;
1722 int forward;
1723 ULONGEST xfered_len;
1724
1725 /* If we previously failed to read 1 byte, nothing can be done here. */
1726 if (end - begin <= 1)
1727 return;
1728
1729 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1730
1731 /* Check that either first or the last byte is readable, and give up
1732 if not. This heuristic is meant to permit reading accessible memory
1733 at the boundary of accessible region. */
1734 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1735 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1736 {
1737 forward = 1;
1738 ++current_begin;
1739 }
1740 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1741 buf.get () + (end - begin) - 1, end - 1, 1,
1742 &xfered_len) == TARGET_XFER_OK)
1743 {
1744 forward = 0;
1745 --current_end;
1746 }
1747 else
1748 return;
1749
1750 /* Loop invariant is that the [current_begin, current_end) was previously
1751 found to be not readable as a whole.
1752
1753 Note loop condition -- if the range has 1 byte, we can't divide the range
1754 so there's no point trying further. */
1755 while (current_end - current_begin > 1)
1756 {
1757 ULONGEST first_half_begin, first_half_end;
1758 ULONGEST second_half_begin, second_half_end;
1759 LONGEST xfer;
1760 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1761
1762 if (forward)
1763 {
1764 first_half_begin = current_begin;
1765 first_half_end = middle;
1766 second_half_begin = middle;
1767 second_half_end = current_end;
1768 }
1769 else
1770 {
1771 first_half_begin = middle;
1772 first_half_end = current_end;
1773 second_half_begin = current_begin;
1774 second_half_end = middle;
1775 }
1776
1777 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1778 buf.get () + (first_half_begin - begin) * unit_size,
1779 first_half_begin,
1780 first_half_end - first_half_begin);
1781
1782 if (xfer == first_half_end - first_half_begin)
1783 {
1784 /* This half reads up fine. So, the error must be in the
1785 other half. */
1786 current_begin = second_half_begin;
1787 current_end = second_half_end;
1788 }
1789 else
1790 {
1791 /* This half is not readable. Because we've tried one byte, we
1792 know some part of this half if actually readable. Go to the next
1793 iteration to divide again and try to read.
1794
1795 We don't handle the other half, because this function only tries
1796 to read a single readable subrange. */
1797 current_begin = first_half_begin;
1798 current_end = first_half_end;
1799 }
1800 }
1801
1802 if (forward)
1803 {
1804 /* The [begin, current_begin) range has been read. */
1805 result->emplace_back (begin, current_end, std::move (buf));
1806 }
1807 else
1808 {
1809 /* The [current_end, end) range has been read. */
1810 LONGEST region_len = end - current_end;
1811
1812 gdb::unique_xmalloc_ptr<gdb_byte> data
1813 ((gdb_byte *) xmalloc (region_len * unit_size));
1814 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1815 region_len * unit_size);
1816 result->emplace_back (current_end, end, std::move (data));
1817 }
1818 }
1819
1820 std::vector<memory_read_result>
1821 read_memory_robust (struct target_ops *ops,
1822 const ULONGEST offset, const LONGEST len)
1823 {
1824 std::vector<memory_read_result> result;
1825 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1826
1827 LONGEST xfered_total = 0;
1828 while (xfered_total < len)
1829 {
1830 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1831 LONGEST region_len;
1832
1833 /* If there is no explicit region, a fake one should be created. */
1834 gdb_assert (region);
1835
1836 if (region->hi == 0)
1837 region_len = len - xfered_total;
1838 else
1839 region_len = region->hi - offset;
1840
1841 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1842 {
1843 /* Cannot read this region. Note that we can end up here only
1844 if the region is explicitly marked inaccessible, or
1845 'inaccessible-by-default' is in effect. */
1846 xfered_total += region_len;
1847 }
1848 else
1849 {
1850 LONGEST to_read = std::min (len - xfered_total, region_len);
1851 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1852 ((gdb_byte *) xmalloc (to_read * unit_size));
1853
1854 LONGEST xfered_partial =
1855 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1856 offset + xfered_total, to_read);
1857 /* Call an observer, notifying them of the xfer progress? */
1858 if (xfered_partial <= 0)
1859 {
1860 /* Got an error reading full chunk. See if maybe we can read
1861 some subrange. */
1862 read_whatever_is_readable (ops, offset + xfered_total,
1863 offset + xfered_total + to_read,
1864 unit_size, &result);
1865 xfered_total += to_read;
1866 }
1867 else
1868 {
1869 result.emplace_back (offset + xfered_total,
1870 offset + xfered_total + xfered_partial,
1871 std::move (buffer));
1872 xfered_total += xfered_partial;
1873 }
1874 QUIT;
1875 }
1876 }
1877
1878 return result;
1879 }
1880
1881
1882 /* An alternative to target_write with progress callbacks. */
1883
1884 LONGEST
1885 target_write_with_progress (struct target_ops *ops,
1886 enum target_object object,
1887 const char *annex, const gdb_byte *buf,
1888 ULONGEST offset, LONGEST len,
1889 void (*progress) (ULONGEST, void *), void *baton)
1890 {
1891 LONGEST xfered_total = 0;
1892 int unit_size = 1;
1893
1894 /* If we are writing to a memory object, find the length of an addressable
1895 unit for that architecture. */
1896 if (object == TARGET_OBJECT_MEMORY
1897 || object == TARGET_OBJECT_STACK_MEMORY
1898 || object == TARGET_OBJECT_CODE_MEMORY
1899 || object == TARGET_OBJECT_RAW_MEMORY)
1900 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1901
1902 /* Give the progress callback a chance to set up. */
1903 if (progress)
1904 (*progress) (0, baton);
1905
1906 while (xfered_total < len)
1907 {
1908 ULONGEST xfered_partial;
1909 enum target_xfer_status status;
1910
1911 status = target_write_partial (ops, object, annex,
1912 buf + xfered_total * unit_size,
1913 offset + xfered_total, len - xfered_total,
1914 &xfered_partial);
1915
1916 if (status != TARGET_XFER_OK)
1917 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1918
1919 if (progress)
1920 (*progress) (xfered_partial, baton);
1921
1922 xfered_total += xfered_partial;
1923 QUIT;
1924 }
1925 return len;
1926 }
1927
1928 /* For docs on target_write see target.h. */
1929
1930 LONGEST
1931 target_write (struct target_ops *ops,
1932 enum target_object object,
1933 const char *annex, const gdb_byte *buf,
1934 ULONGEST offset, LONGEST len)
1935 {
1936 return target_write_with_progress (ops, object, annex, buf, offset, len,
1937 NULL, NULL);
1938 }
1939
1940 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1941 the size of the transferred data. PADDING additional bytes are
1942 available in *BUF_P. This is a helper function for
1943 target_read_alloc; see the declaration of that function for more
1944 information. */
1945
1946 static LONGEST
1947 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1948 const char *annex, gdb_byte **buf_p, int padding)
1949 {
1950 size_t buf_alloc, buf_pos;
1951 gdb_byte *buf;
1952
1953 /* This function does not have a length parameter; it reads the
1954 entire OBJECT). Also, it doesn't support objects fetched partly
1955 from one target and partly from another (in a different stratum,
1956 e.g. a core file and an executable). Both reasons make it
1957 unsuitable for reading memory. */
1958 gdb_assert (object != TARGET_OBJECT_MEMORY);
1959
1960 /* Start by reading up to 4K at a time. The target will throttle
1961 this number down if necessary. */
1962 buf_alloc = 4096;
1963 buf = (gdb_byte *) xmalloc (buf_alloc);
1964 buf_pos = 0;
1965 while (1)
1966 {
1967 ULONGEST xfered_len;
1968 enum target_xfer_status status;
1969
1970 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1971 buf_pos, buf_alloc - buf_pos - padding,
1972 &xfered_len);
1973
1974 if (status == TARGET_XFER_EOF)
1975 {
1976 /* Read all there was. */
1977 if (buf_pos == 0)
1978 xfree (buf);
1979 else
1980 *buf_p = buf;
1981 return buf_pos;
1982 }
1983 else if (status != TARGET_XFER_OK)
1984 {
1985 /* An error occurred. */
1986 xfree (buf);
1987 return TARGET_XFER_E_IO;
1988 }
1989
1990 buf_pos += xfered_len;
1991
1992 /* If the buffer is filling up, expand it. */
1993 if (buf_alloc < buf_pos * 2)
1994 {
1995 buf_alloc *= 2;
1996 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1997 }
1998
1999 QUIT;
2000 }
2001 }
2002
2003 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2004 the size of the transferred data. See the declaration in "target.h"
2005 function for more information about the return value. */
2006
2007 LONGEST
2008 target_read_alloc (struct target_ops *ops, enum target_object object,
2009 const char *annex, gdb_byte **buf_p)
2010 {
2011 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2012 }
2013
2014 /* See target.h. */
2015
2016 gdb::unique_xmalloc_ptr<char>
2017 target_read_stralloc (struct target_ops *ops, enum target_object object,
2018 const char *annex)
2019 {
2020 gdb_byte *buffer;
2021 char *bufstr;
2022 LONGEST i, transferred;
2023
2024 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2025 bufstr = (char *) buffer;
2026
2027 if (transferred < 0)
2028 return NULL;
2029
2030 if (transferred == 0)
2031 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
2032
2033 bufstr[transferred] = 0;
2034
2035 /* Check for embedded NUL bytes; but allow trailing NULs. */
2036 for (i = strlen (bufstr); i < transferred; i++)
2037 if (bufstr[i] != 0)
2038 {
2039 warning (_("target object %d, annex %s, "
2040 "contained unexpected null characters"),
2041 (int) object, annex ? annex : "(none)");
2042 break;
2043 }
2044
2045 return gdb::unique_xmalloc_ptr<char> (bufstr);
2046 }
2047
2048 /* Memory transfer methods. */
2049
2050 void
2051 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2052 LONGEST len)
2053 {
2054 /* This method is used to read from an alternate, non-current
2055 target. This read must bypass the overlay support (as symbols
2056 don't match this target), and GDB's internal cache (wrong cache
2057 for this target). */
2058 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2059 != len)
2060 memory_error (TARGET_XFER_E_IO, addr);
2061 }
2062
2063 ULONGEST
2064 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2065 int len, enum bfd_endian byte_order)
2066 {
2067 gdb_byte buf[sizeof (ULONGEST)];
2068
2069 gdb_assert (len <= sizeof (buf));
2070 get_target_memory (ops, addr, buf, len);
2071 return extract_unsigned_integer (buf, len, byte_order);
2072 }
2073
2074 /* See target.h. */
2075
2076 int
2077 target_insert_breakpoint (struct gdbarch *gdbarch,
2078 struct bp_target_info *bp_tgt)
2079 {
2080 if (!may_insert_breakpoints)
2081 {
2082 warning (_("May not insert breakpoints"));
2083 return 1;
2084 }
2085
2086 return current_target.to_insert_breakpoint (&current_target,
2087 gdbarch, bp_tgt);
2088 }
2089
2090 /* See target.h. */
2091
2092 int
2093 target_remove_breakpoint (struct gdbarch *gdbarch,
2094 struct bp_target_info *bp_tgt,
2095 enum remove_bp_reason reason)
2096 {
2097 /* This is kind of a weird case to handle, but the permission might
2098 have been changed after breakpoints were inserted - in which case
2099 we should just take the user literally and assume that any
2100 breakpoints should be left in place. */
2101 if (!may_insert_breakpoints)
2102 {
2103 warning (_("May not remove breakpoints"));
2104 return 1;
2105 }
2106
2107 return current_target.to_remove_breakpoint (&current_target,
2108 gdbarch, bp_tgt, reason);
2109 }
2110
2111 static void
2112 info_target_command (const char *args, int from_tty)
2113 {
2114 struct target_ops *t;
2115 int has_all_mem = 0;
2116
2117 if (symfile_objfile != NULL)
2118 printf_unfiltered (_("Symbols from \"%s\".\n"),
2119 objfile_name (symfile_objfile));
2120
2121 for (t = target_stack; t != NULL; t = t->beneath)
2122 {
2123 if (!(*t->to_has_memory) (t))
2124 continue;
2125
2126 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2127 continue;
2128 if (has_all_mem)
2129 printf_unfiltered (_("\tWhile running this, "
2130 "GDB does not access memory from...\n"));
2131 printf_unfiltered ("%s:\n", t->to_longname);
2132 (t->to_files_info) (t);
2133 has_all_mem = (*t->to_has_all_memory) (t);
2134 }
2135 }
2136
2137 /* This function is called before any new inferior is created, e.g.
2138 by running a program, attaching, or connecting to a target.
2139 It cleans up any state from previous invocations which might
2140 change between runs. This is a subset of what target_preopen
2141 resets (things which might change between targets). */
2142
2143 void
2144 target_pre_inferior (int from_tty)
2145 {
2146 /* Clear out solib state. Otherwise the solib state of the previous
2147 inferior might have survived and is entirely wrong for the new
2148 target. This has been observed on GNU/Linux using glibc 2.3. How
2149 to reproduce:
2150
2151 bash$ ./foo&
2152 [1] 4711
2153 bash$ ./foo&
2154 [1] 4712
2155 bash$ gdb ./foo
2156 [...]
2157 (gdb) attach 4711
2158 (gdb) detach
2159 (gdb) attach 4712
2160 Cannot access memory at address 0xdeadbeef
2161 */
2162
2163 /* In some OSs, the shared library list is the same/global/shared
2164 across inferiors. If code is shared between processes, so are
2165 memory regions and features. */
2166 if (!gdbarch_has_global_solist (target_gdbarch ()))
2167 {
2168 no_shared_libraries (NULL, from_tty);
2169
2170 invalidate_target_mem_regions ();
2171
2172 target_clear_description ();
2173 }
2174
2175 /* attach_flag may be set if the previous process associated with
2176 the inferior was attached to. */
2177 current_inferior ()->attach_flag = 0;
2178
2179 current_inferior ()->highest_thread_num = 0;
2180
2181 agent_capability_invalidate ();
2182 }
2183
2184 /* Callback for iterate_over_inferiors. Gets rid of the given
2185 inferior. */
2186
2187 static int
2188 dispose_inferior (struct inferior *inf, void *args)
2189 {
2190 struct thread_info *thread;
2191
2192 thread = any_thread_of_process (inf->pid);
2193 if (thread)
2194 {
2195 switch_to_thread (thread->ptid);
2196
2197 /* Core inferiors actually should be detached, not killed. */
2198 if (target_has_execution)
2199 target_kill ();
2200 else
2201 target_detach (inf, 0);
2202 }
2203
2204 return 0;
2205 }
2206
2207 /* This is to be called by the open routine before it does
2208 anything. */
2209
2210 void
2211 target_preopen (int from_tty)
2212 {
2213 dont_repeat ();
2214
2215 if (have_inferiors ())
2216 {
2217 if (!from_tty
2218 || !have_live_inferiors ()
2219 || query (_("A program is being debugged already. Kill it? ")))
2220 iterate_over_inferiors (dispose_inferior, NULL);
2221 else
2222 error (_("Program not killed."));
2223 }
2224
2225 /* Calling target_kill may remove the target from the stack. But if
2226 it doesn't (which seems like a win for UDI), remove it now. */
2227 /* Leave the exec target, though. The user may be switching from a
2228 live process to a core of the same program. */
2229 pop_all_targets_above (file_stratum);
2230
2231 target_pre_inferior (from_tty);
2232 }
2233
2234 /* See target.h. */
2235
2236 void
2237 target_detach (inferior *inf, int from_tty)
2238 {
2239 /* As long as some to_detach implementations rely on the current_inferior
2240 (either directly, or indirectly, like through target_gdbarch or by
2241 reading memory), INF needs to be the current inferior. When that
2242 requirement will become no longer true, then we can remove this
2243 assertion. */
2244 gdb_assert (inf == current_inferior ());
2245
2246 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2247 /* Don't remove global breakpoints here. They're removed on
2248 disconnection from the target. */
2249 ;
2250 else
2251 /* If we're in breakpoints-always-inserted mode, have to remove
2252 them before detaching. */
2253 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2254
2255 prepare_for_detach ();
2256
2257 current_target.to_detach (&current_target, inf, from_tty);
2258 }
2259
2260 void
2261 target_disconnect (const char *args, int from_tty)
2262 {
2263 /* If we're in breakpoints-always-inserted mode or if breakpoints
2264 are global across processes, we have to remove them before
2265 disconnecting. */
2266 remove_breakpoints ();
2267
2268 current_target.to_disconnect (&current_target, args, from_tty);
2269 }
2270
2271 /* See target/target.h. */
2272
2273 ptid_t
2274 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2275 {
2276 return (current_target.to_wait) (&current_target, ptid, status, options);
2277 }
2278
2279 /* See target.h. */
2280
2281 ptid_t
2282 default_target_wait (struct target_ops *ops,
2283 ptid_t ptid, struct target_waitstatus *status,
2284 int options)
2285 {
2286 status->kind = TARGET_WAITKIND_IGNORE;
2287 return minus_one_ptid;
2288 }
2289
2290 const char *
2291 target_pid_to_str (ptid_t ptid)
2292 {
2293 return (*current_target.to_pid_to_str) (&current_target, ptid);
2294 }
2295
2296 const char *
2297 target_thread_name (struct thread_info *info)
2298 {
2299 return current_target.to_thread_name (&current_target, info);
2300 }
2301
2302 struct thread_info *
2303 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2304 int handle_len,
2305 struct inferior *inf)
2306 {
2307 return current_target.to_thread_handle_to_thread_info
2308 (&current_target, thread_handle, handle_len, inf);
2309 }
2310
2311 void
2312 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2313 {
2314 target_dcache_invalidate ();
2315
2316 current_target.to_resume (&current_target, ptid, step, signal);
2317
2318 registers_changed_ptid (ptid);
2319 /* We only set the internal executing state here. The user/frontend
2320 running state is set at a higher level. */
2321 set_executing (ptid, 1);
2322 clear_inline_frame_state (ptid);
2323 }
2324
2325 /* If true, target_commit_resume is a nop. */
2326 static int defer_target_commit_resume;
2327
2328 /* See target.h. */
2329
2330 void
2331 target_commit_resume (void)
2332 {
2333 if (defer_target_commit_resume)
2334 return;
2335
2336 current_target.to_commit_resume (&current_target);
2337 }
2338
2339 /* See target.h. */
2340
2341 scoped_restore_tmpl<int>
2342 make_scoped_defer_target_commit_resume ()
2343 {
2344 return make_scoped_restore (&defer_target_commit_resume, 1);
2345 }
2346
2347 void
2348 target_pass_signals (int numsigs, unsigned char *pass_signals)
2349 {
2350 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2351 }
2352
2353 void
2354 target_program_signals (int numsigs, unsigned char *program_signals)
2355 {
2356 (*current_target.to_program_signals) (&current_target,
2357 numsigs, program_signals);
2358 }
2359
2360 static int
2361 default_follow_fork (struct target_ops *self, int follow_child,
2362 int detach_fork)
2363 {
2364 /* Some target returned a fork event, but did not know how to follow it. */
2365 internal_error (__FILE__, __LINE__,
2366 _("could not find a target to follow fork"));
2367 }
2368
2369 /* Look through the list of possible targets for a target that can
2370 follow forks. */
2371
2372 int
2373 target_follow_fork (int follow_child, int detach_fork)
2374 {
2375 return current_target.to_follow_fork (&current_target,
2376 follow_child, detach_fork);
2377 }
2378
2379 /* Target wrapper for follow exec hook. */
2380
2381 void
2382 target_follow_exec (struct inferior *inf, char *execd_pathname)
2383 {
2384 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2385 }
2386
2387 static void
2388 default_mourn_inferior (struct target_ops *self)
2389 {
2390 internal_error (__FILE__, __LINE__,
2391 _("could not find a target to follow mourn inferior"));
2392 }
2393
2394 void
2395 target_mourn_inferior (ptid_t ptid)
2396 {
2397 gdb_assert (ptid_equal (ptid, inferior_ptid));
2398 current_target.to_mourn_inferior (&current_target);
2399
2400 /* We no longer need to keep handles on any of the object files.
2401 Make sure to release them to avoid unnecessarily locking any
2402 of them while we're not actually debugging. */
2403 bfd_cache_close_all ();
2404 }
2405
2406 /* Look for a target which can describe architectural features, starting
2407 from TARGET. If we find one, return its description. */
2408
2409 const struct target_desc *
2410 target_read_description (struct target_ops *target)
2411 {
2412 return target->to_read_description (target);
2413 }
2414
2415 /* This implements a basic search of memory, reading target memory and
2416 performing the search here (as opposed to performing the search in on the
2417 target side with, for example, gdbserver). */
2418
2419 int
2420 simple_search_memory (struct target_ops *ops,
2421 CORE_ADDR start_addr, ULONGEST search_space_len,
2422 const gdb_byte *pattern, ULONGEST pattern_len,
2423 CORE_ADDR *found_addrp)
2424 {
2425 /* NOTE: also defined in find.c testcase. */
2426 #define SEARCH_CHUNK_SIZE 16000
2427 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2428 /* Buffer to hold memory contents for searching. */
2429 unsigned search_buf_size;
2430
2431 search_buf_size = chunk_size + pattern_len - 1;
2432
2433 /* No point in trying to allocate a buffer larger than the search space. */
2434 if (search_space_len < search_buf_size)
2435 search_buf_size = search_space_len;
2436
2437 gdb::byte_vector search_buf (search_buf_size);
2438
2439 /* Prime the search buffer. */
2440
2441 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2442 search_buf.data (), start_addr, search_buf_size)
2443 != search_buf_size)
2444 {
2445 warning (_("Unable to access %s bytes of target "
2446 "memory at %s, halting search."),
2447 pulongest (search_buf_size), hex_string (start_addr));
2448 return -1;
2449 }
2450
2451 /* Perform the search.
2452
2453 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2454 When we've scanned N bytes we copy the trailing bytes to the start and
2455 read in another N bytes. */
2456
2457 while (search_space_len >= pattern_len)
2458 {
2459 gdb_byte *found_ptr;
2460 unsigned nr_search_bytes
2461 = std::min (search_space_len, (ULONGEST) search_buf_size);
2462
2463 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2464 pattern, pattern_len);
2465
2466 if (found_ptr != NULL)
2467 {
2468 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2469
2470 *found_addrp = found_addr;
2471 return 1;
2472 }
2473
2474 /* Not found in this chunk, skip to next chunk. */
2475
2476 /* Don't let search_space_len wrap here, it's unsigned. */
2477 if (search_space_len >= chunk_size)
2478 search_space_len -= chunk_size;
2479 else
2480 search_space_len = 0;
2481
2482 if (search_space_len >= pattern_len)
2483 {
2484 unsigned keep_len = search_buf_size - chunk_size;
2485 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2486 int nr_to_read;
2487
2488 /* Copy the trailing part of the previous iteration to the front
2489 of the buffer for the next iteration. */
2490 gdb_assert (keep_len == pattern_len - 1);
2491 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2492
2493 nr_to_read = std::min (search_space_len - keep_len,
2494 (ULONGEST) chunk_size);
2495
2496 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2497 &search_buf[keep_len], read_addr,
2498 nr_to_read) != nr_to_read)
2499 {
2500 warning (_("Unable to access %s bytes of target "
2501 "memory at %s, halting search."),
2502 plongest (nr_to_read),
2503 hex_string (read_addr));
2504 return -1;
2505 }
2506
2507 start_addr += chunk_size;
2508 }
2509 }
2510
2511 /* Not found. */
2512
2513 return 0;
2514 }
2515
2516 /* Default implementation of memory-searching. */
2517
2518 static int
2519 default_search_memory (struct target_ops *self,
2520 CORE_ADDR start_addr, ULONGEST search_space_len,
2521 const gdb_byte *pattern, ULONGEST pattern_len,
2522 CORE_ADDR *found_addrp)
2523 {
2524 /* Start over from the top of the target stack. */
2525 return simple_search_memory (current_target.beneath,
2526 start_addr, search_space_len,
2527 pattern, pattern_len, found_addrp);
2528 }
2529
2530 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2531 sequence of bytes in PATTERN with length PATTERN_LEN.
2532
2533 The result is 1 if found, 0 if not found, and -1 if there was an error
2534 requiring halting of the search (e.g. memory read error).
2535 If the pattern is found the address is recorded in FOUND_ADDRP. */
2536
2537 int
2538 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2539 const gdb_byte *pattern, ULONGEST pattern_len,
2540 CORE_ADDR *found_addrp)
2541 {
2542 return current_target.to_search_memory (&current_target, start_addr,
2543 search_space_len,
2544 pattern, pattern_len, found_addrp);
2545 }
2546
2547 /* Look through the currently pushed targets. If none of them will
2548 be able to restart the currently running process, issue an error
2549 message. */
2550
2551 void
2552 target_require_runnable (void)
2553 {
2554 struct target_ops *t;
2555
2556 for (t = target_stack; t != NULL; t = t->beneath)
2557 {
2558 /* If this target knows how to create a new program, then
2559 assume we will still be able to after killing the current
2560 one. Either killing and mourning will not pop T, or else
2561 find_default_run_target will find it again. */
2562 if (t->to_create_inferior != NULL)
2563 return;
2564
2565 /* Do not worry about targets at certain strata that can not
2566 create inferiors. Assume they will be pushed again if
2567 necessary, and continue to the process_stratum. */
2568 if (t->to_stratum == thread_stratum
2569 || t->to_stratum == record_stratum
2570 || t->to_stratum == arch_stratum)
2571 continue;
2572
2573 error (_("The \"%s\" target does not support \"run\". "
2574 "Try \"help target\" or \"continue\"."),
2575 t->to_shortname);
2576 }
2577
2578 /* This function is only called if the target is running. In that
2579 case there should have been a process_stratum target and it
2580 should either know how to create inferiors, or not... */
2581 internal_error (__FILE__, __LINE__, _("No targets found"));
2582 }
2583
2584 /* Whether GDB is allowed to fall back to the default run target for
2585 "run", "attach", etc. when no target is connected yet. */
2586 static int auto_connect_native_target = 1;
2587
2588 static void
2589 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2590 struct cmd_list_element *c, const char *value)
2591 {
2592 fprintf_filtered (file,
2593 _("Whether GDB may automatically connect to the "
2594 "native target is %s.\n"),
2595 value);
2596 }
2597
2598 /* Look through the list of possible targets for a target that can
2599 execute a run or attach command without any other data. This is
2600 used to locate the default process stratum.
2601
2602 If DO_MESG is not NULL, the result is always valid (error() is
2603 called for errors); else, return NULL on error. */
2604
2605 static struct target_ops *
2606 find_default_run_target (const char *do_mesg)
2607 {
2608 struct target_ops *runable = NULL;
2609
2610 if (auto_connect_native_target)
2611 {
2612 struct target_ops *t;
2613 int count = 0;
2614 int i;
2615
2616 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2617 {
2618 if (t->to_can_run != delegate_can_run && target_can_run (t))
2619 {
2620 runable = t;
2621 ++count;
2622 }
2623 }
2624
2625 if (count != 1)
2626 runable = NULL;
2627 }
2628
2629 if (runable == NULL)
2630 {
2631 if (do_mesg)
2632 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2633 else
2634 return NULL;
2635 }
2636
2637 return runable;
2638 }
2639
2640 /* See target.h. */
2641
2642 struct target_ops *
2643 find_attach_target (void)
2644 {
2645 struct target_ops *t;
2646
2647 /* If a target on the current stack can attach, use it. */
2648 for (t = current_target.beneath; t != NULL; t = t->beneath)
2649 {
2650 if (t->to_attach != NULL)
2651 break;
2652 }
2653
2654 /* Otherwise, use the default run target for attaching. */
2655 if (t == NULL)
2656 t = find_default_run_target ("attach");
2657
2658 return t;
2659 }
2660
2661 /* See target.h. */
2662
2663 struct target_ops *
2664 find_run_target (void)
2665 {
2666 struct target_ops *t;
2667
2668 /* If a target on the current stack can attach, use it. */
2669 for (t = current_target.beneath; t != NULL; t = t->beneath)
2670 {
2671 if (t->to_create_inferior != NULL)
2672 break;
2673 }
2674
2675 /* Otherwise, use the default run target. */
2676 if (t == NULL)
2677 t = find_default_run_target ("run");
2678
2679 return t;
2680 }
2681
2682 /* Implement the "info proc" command. */
2683
2684 int
2685 target_info_proc (const char *args, enum info_proc_what what)
2686 {
2687 struct target_ops *t;
2688
2689 /* If we're already connected to something that can get us OS
2690 related data, use it. Otherwise, try using the native
2691 target. */
2692 if (current_target.to_stratum >= process_stratum)
2693 t = current_target.beneath;
2694 else
2695 t = find_default_run_target (NULL);
2696
2697 for (; t != NULL; t = t->beneath)
2698 {
2699 if (t->to_info_proc != NULL)
2700 {
2701 t->to_info_proc (t, args, what);
2702
2703 if (targetdebug)
2704 fprintf_unfiltered (gdb_stdlog,
2705 "target_info_proc (\"%s\", %d)\n", args, what);
2706
2707 return 1;
2708 }
2709 }
2710
2711 return 0;
2712 }
2713
2714 static int
2715 find_default_supports_disable_randomization (struct target_ops *self)
2716 {
2717 struct target_ops *t;
2718
2719 t = find_default_run_target (NULL);
2720 if (t && t->to_supports_disable_randomization)
2721 return (t->to_supports_disable_randomization) (t);
2722 return 0;
2723 }
2724
2725 int
2726 target_supports_disable_randomization (void)
2727 {
2728 struct target_ops *t;
2729
2730 for (t = &current_target; t != NULL; t = t->beneath)
2731 if (t->to_supports_disable_randomization)
2732 return t->to_supports_disable_randomization (t);
2733
2734 return 0;
2735 }
2736
2737 /* See target/target.h. */
2738
2739 int
2740 target_supports_multi_process (void)
2741 {
2742 return (*current_target.to_supports_multi_process) (&current_target);
2743 }
2744
2745 /* See target.h. */
2746
2747 gdb::unique_xmalloc_ptr<char>
2748 target_get_osdata (const char *type)
2749 {
2750 struct target_ops *t;
2751
2752 /* If we're already connected to something that can get us OS
2753 related data, use it. Otherwise, try using the native
2754 target. */
2755 if (current_target.to_stratum >= process_stratum)
2756 t = current_target.beneath;
2757 else
2758 t = find_default_run_target ("get OS data");
2759
2760 if (!t)
2761 return NULL;
2762
2763 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2764 }
2765
2766 static struct address_space *
2767 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2768 {
2769 struct inferior *inf;
2770
2771 /* Fall-back to the "main" address space of the inferior. */
2772 inf = find_inferior_ptid (ptid);
2773
2774 if (inf == NULL || inf->aspace == NULL)
2775 internal_error (__FILE__, __LINE__,
2776 _("Can't determine the current "
2777 "address space of thread %s\n"),
2778 target_pid_to_str (ptid));
2779
2780 return inf->aspace;
2781 }
2782
2783 /* Determine the current address space of thread PTID. */
2784
2785 struct address_space *
2786 target_thread_address_space (ptid_t ptid)
2787 {
2788 struct address_space *aspace;
2789
2790 aspace = current_target.to_thread_address_space (&current_target, ptid);
2791 gdb_assert (aspace != NULL);
2792
2793 return aspace;
2794 }
2795
2796
2797 /* Target file operations. */
2798
2799 static struct target_ops *
2800 default_fileio_target (void)
2801 {
2802 /* If we're already connected to something that can perform
2803 file I/O, use it. Otherwise, try using the native target. */
2804 if (current_target.to_stratum >= process_stratum)
2805 return current_target.beneath;
2806 else
2807 return find_default_run_target ("file I/O");
2808 }
2809
2810 /* File handle for target file operations. */
2811
2812 typedef struct
2813 {
2814 /* The target on which this file is open. */
2815 struct target_ops *t;
2816
2817 /* The file descriptor on the target. */
2818 int fd;
2819 } fileio_fh_t;
2820
2821 DEF_VEC_O (fileio_fh_t);
2822
2823 /* Vector of currently open file handles. The value returned by
2824 target_fileio_open and passed as the FD argument to other
2825 target_fileio_* functions is an index into this vector. This
2826 vector's entries are never freed; instead, files are marked as
2827 closed, and the handle becomes available for reuse. */
2828 static VEC (fileio_fh_t) *fileio_fhandles;
2829
2830 /* Macro to check whether a fileio_fh_t represents a closed file. */
2831 #define is_closed_fileio_fh(fd) ((fd) < 0)
2832
2833 /* Index into fileio_fhandles of the lowest handle that might be
2834 closed. This permits handle reuse without searching the whole
2835 list each time a new file is opened. */
2836 static int lowest_closed_fd;
2837
2838 /* Acquire a target fileio file descriptor. */
2839
2840 static int
2841 acquire_fileio_fd (struct target_ops *t, int fd)
2842 {
2843 fileio_fh_t *fh;
2844
2845 gdb_assert (!is_closed_fileio_fh (fd));
2846
2847 /* Search for closed handles to reuse. */
2848 for (;
2849 VEC_iterate (fileio_fh_t, fileio_fhandles,
2850 lowest_closed_fd, fh);
2851 lowest_closed_fd++)
2852 if (is_closed_fileio_fh (fh->fd))
2853 break;
2854
2855 /* Push a new handle if no closed handles were found. */
2856 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2857 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2858
2859 /* Fill in the handle. */
2860 fh->t = t;
2861 fh->fd = fd;
2862
2863 /* Return its index, and start the next lookup at
2864 the next index. */
2865 return lowest_closed_fd++;
2866 }
2867
2868 /* Release a target fileio file descriptor. */
2869
2870 static void
2871 release_fileio_fd (int fd, fileio_fh_t *fh)
2872 {
2873 fh->fd = -1;
2874 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2875 }
2876
2877 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2878
2879 #define fileio_fd_to_fh(fd) \
2880 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2881
2882 /* Helper for target_fileio_open and
2883 target_fileio_open_warn_if_slow. */
2884
2885 static int
2886 target_fileio_open_1 (struct inferior *inf, const char *filename,
2887 int flags, int mode, int warn_if_slow,
2888 int *target_errno)
2889 {
2890 struct target_ops *t;
2891
2892 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2893 {
2894 if (t->to_fileio_open != NULL)
2895 {
2896 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2897 warn_if_slow, target_errno);
2898
2899 if (fd < 0)
2900 fd = -1;
2901 else
2902 fd = acquire_fileio_fd (t, fd);
2903
2904 if (targetdebug)
2905 fprintf_unfiltered (gdb_stdlog,
2906 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2907 " = %d (%d)\n",
2908 inf == NULL ? 0 : inf->num,
2909 filename, flags, mode,
2910 warn_if_slow, fd,
2911 fd != -1 ? 0 : *target_errno);
2912 return fd;
2913 }
2914 }
2915
2916 *target_errno = FILEIO_ENOSYS;
2917 return -1;
2918 }
2919
2920 /* See target.h. */
2921
2922 int
2923 target_fileio_open (struct inferior *inf, const char *filename,
2924 int flags, int mode, int *target_errno)
2925 {
2926 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2927 target_errno);
2928 }
2929
2930 /* See target.h. */
2931
2932 int
2933 target_fileio_open_warn_if_slow (struct inferior *inf,
2934 const char *filename,
2935 int flags, int mode, int *target_errno)
2936 {
2937 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2938 target_errno);
2939 }
2940
2941 /* See target.h. */
2942
2943 int
2944 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2945 ULONGEST offset, int *target_errno)
2946 {
2947 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2948 int ret = -1;
2949
2950 if (is_closed_fileio_fh (fh->fd))
2951 *target_errno = EBADF;
2952 else
2953 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2954 len, offset, target_errno);
2955
2956 if (targetdebug)
2957 fprintf_unfiltered (gdb_stdlog,
2958 "target_fileio_pwrite (%d,...,%d,%s) "
2959 "= %d (%d)\n",
2960 fd, len, pulongest (offset),
2961 ret, ret != -1 ? 0 : *target_errno);
2962 return ret;
2963 }
2964
2965 /* See target.h. */
2966
2967 int
2968 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2969 ULONGEST offset, int *target_errno)
2970 {
2971 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2972 int ret = -1;
2973
2974 if (is_closed_fileio_fh (fh->fd))
2975 *target_errno = EBADF;
2976 else
2977 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2978 len, offset, target_errno);
2979
2980 if (targetdebug)
2981 fprintf_unfiltered (gdb_stdlog,
2982 "target_fileio_pread (%d,...,%d,%s) "
2983 "= %d (%d)\n",
2984 fd, len, pulongest (offset),
2985 ret, ret != -1 ? 0 : *target_errno);
2986 return ret;
2987 }
2988
2989 /* See target.h. */
2990
2991 int
2992 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2993 {
2994 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2995 int ret = -1;
2996
2997 if (is_closed_fileio_fh (fh->fd))
2998 *target_errno = EBADF;
2999 else
3000 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
3001
3002 if (targetdebug)
3003 fprintf_unfiltered (gdb_stdlog,
3004 "target_fileio_fstat (%d) = %d (%d)\n",
3005 fd, ret, ret != -1 ? 0 : *target_errno);
3006 return ret;
3007 }
3008
3009 /* See target.h. */
3010
3011 int
3012 target_fileio_close (int fd, int *target_errno)
3013 {
3014 fileio_fh_t *fh = fileio_fd_to_fh (fd);
3015 int ret = -1;
3016
3017 if (is_closed_fileio_fh (fh->fd))
3018 *target_errno = EBADF;
3019 else
3020 {
3021 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
3022 release_fileio_fd (fd, fh);
3023 }
3024
3025 if (targetdebug)
3026 fprintf_unfiltered (gdb_stdlog,
3027 "target_fileio_close (%d) = %d (%d)\n",
3028 fd, ret, ret != -1 ? 0 : *target_errno);
3029 return ret;
3030 }
3031
3032 /* See target.h. */
3033
3034 int
3035 target_fileio_unlink (struct inferior *inf, const char *filename,
3036 int *target_errno)
3037 {
3038 struct target_ops *t;
3039
3040 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3041 {
3042 if (t->to_fileio_unlink != NULL)
3043 {
3044 int ret = t->to_fileio_unlink (t, inf, filename,
3045 target_errno);
3046
3047 if (targetdebug)
3048 fprintf_unfiltered (gdb_stdlog,
3049 "target_fileio_unlink (%d,%s)"
3050 " = %d (%d)\n",
3051 inf == NULL ? 0 : inf->num, filename,
3052 ret, ret != -1 ? 0 : *target_errno);
3053 return ret;
3054 }
3055 }
3056
3057 *target_errno = FILEIO_ENOSYS;
3058 return -1;
3059 }
3060
3061 /* See target.h. */
3062
3063 gdb::optional<std::string>
3064 target_fileio_readlink (struct inferior *inf, const char *filename,
3065 int *target_errno)
3066 {
3067 struct target_ops *t;
3068
3069 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3070 {
3071 if (t->to_fileio_readlink != NULL)
3072 {
3073 gdb::optional<std::string> ret
3074 = t->to_fileio_readlink (t, inf, filename, target_errno);
3075
3076 if (targetdebug)
3077 fprintf_unfiltered (gdb_stdlog,
3078 "target_fileio_readlink (%d,%s)"
3079 " = %s (%d)\n",
3080 inf == NULL ? 0 : inf->num,
3081 filename, ret ? ret->c_str () : "(nil)",
3082 ret ? 0 : *target_errno);
3083 return ret;
3084 }
3085 }
3086
3087 *target_errno = FILEIO_ENOSYS;
3088 return {};
3089 }
3090
3091 /* Like scoped_fd, but specific to target fileio. */
3092
3093 class scoped_target_fd
3094 {
3095 public:
3096 explicit scoped_target_fd (int fd) noexcept
3097 : m_fd (fd)
3098 {
3099 }
3100
3101 ~scoped_target_fd ()
3102 {
3103 if (m_fd >= 0)
3104 {
3105 int target_errno;
3106
3107 target_fileio_close (m_fd, &target_errno);
3108 }
3109 }
3110
3111 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3112
3113 int get () const noexcept
3114 {
3115 return m_fd;
3116 }
3117
3118 private:
3119 int m_fd;
3120 };
3121
3122 /* Read target file FILENAME, in the filesystem as seen by INF. If
3123 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3124 remote targets, the remote stub). Store the result in *BUF_P and
3125 return the size of the transferred data. PADDING additional bytes
3126 are available in *BUF_P. This is a helper function for
3127 target_fileio_read_alloc; see the declaration of that function for
3128 more information. */
3129
3130 static LONGEST
3131 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3132 gdb_byte **buf_p, int padding)
3133 {
3134 size_t buf_alloc, buf_pos;
3135 gdb_byte *buf;
3136 LONGEST n;
3137 int target_errno;
3138
3139 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3140 0700, &target_errno));
3141 if (fd.get () == -1)
3142 return -1;
3143
3144 /* Start by reading up to 4K at a time. The target will throttle
3145 this number down if necessary. */
3146 buf_alloc = 4096;
3147 buf = (gdb_byte *) xmalloc (buf_alloc);
3148 buf_pos = 0;
3149 while (1)
3150 {
3151 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3152 buf_alloc - buf_pos - padding, buf_pos,
3153 &target_errno);
3154 if (n < 0)
3155 {
3156 /* An error occurred. */
3157 xfree (buf);
3158 return -1;
3159 }
3160 else if (n == 0)
3161 {
3162 /* Read all there was. */
3163 if (buf_pos == 0)
3164 xfree (buf);
3165 else
3166 *buf_p = buf;
3167 return buf_pos;
3168 }
3169
3170 buf_pos += n;
3171
3172 /* If the buffer is filling up, expand it. */
3173 if (buf_alloc < buf_pos * 2)
3174 {
3175 buf_alloc *= 2;
3176 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3177 }
3178
3179 QUIT;
3180 }
3181 }
3182
3183 /* See target.h. */
3184
3185 LONGEST
3186 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3187 gdb_byte **buf_p)
3188 {
3189 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3190 }
3191
3192 /* See target.h. */
3193
3194 gdb::unique_xmalloc_ptr<char>
3195 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3196 {
3197 gdb_byte *buffer;
3198 char *bufstr;
3199 LONGEST i, transferred;
3200
3201 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3202 bufstr = (char *) buffer;
3203
3204 if (transferred < 0)
3205 return gdb::unique_xmalloc_ptr<char> (nullptr);
3206
3207 if (transferred == 0)
3208 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3209
3210 bufstr[transferred] = 0;
3211
3212 /* Check for embedded NUL bytes; but allow trailing NULs. */
3213 for (i = strlen (bufstr); i < transferred; i++)
3214 if (bufstr[i] != 0)
3215 {
3216 warning (_("target file %s "
3217 "contained unexpected null characters"),
3218 filename);
3219 break;
3220 }
3221
3222 return gdb::unique_xmalloc_ptr<char> (bufstr);
3223 }
3224
3225
3226 static int
3227 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3228 CORE_ADDR addr, int len)
3229 {
3230 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3231 }
3232
3233 static int
3234 default_watchpoint_addr_within_range (struct target_ops *target,
3235 CORE_ADDR addr,
3236 CORE_ADDR start, int length)
3237 {
3238 return addr >= start && addr < start + length;
3239 }
3240
3241 static struct gdbarch *
3242 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3243 {
3244 inferior *inf = find_inferior_ptid (ptid);
3245 gdb_assert (inf != NULL);
3246 return inf->gdbarch;
3247 }
3248
3249 static int
3250 return_zero (struct target_ops *ignore)
3251 {
3252 return 0;
3253 }
3254
3255 static int
3256 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3257 {
3258 return 0;
3259 }
3260
3261 /*
3262 * Find the next target down the stack from the specified target.
3263 */
3264
3265 struct target_ops *
3266 find_target_beneath (struct target_ops *t)
3267 {
3268 return t->beneath;
3269 }
3270
3271 /* See target.h. */
3272
3273 struct target_ops *
3274 find_target_at (enum strata stratum)
3275 {
3276 struct target_ops *t;
3277
3278 for (t = current_target.beneath; t != NULL; t = t->beneath)
3279 if (t->to_stratum == stratum)
3280 return t;
3281
3282 return NULL;
3283 }
3284
3285 \f
3286
3287 /* See target.h */
3288
3289 void
3290 target_announce_detach (int from_tty)
3291 {
3292 pid_t pid;
3293 const char *exec_file;
3294
3295 if (!from_tty)
3296 return;
3297
3298 exec_file = get_exec_file (0);
3299 if (exec_file == NULL)
3300 exec_file = "";
3301
3302 pid = ptid_get_pid (inferior_ptid);
3303 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3304 target_pid_to_str (pid_to_ptid (pid)));
3305 gdb_flush (gdb_stdout);
3306 }
3307
3308 /* The inferior process has died. Long live the inferior! */
3309
3310 void
3311 generic_mourn_inferior (void)
3312 {
3313 ptid_t ptid;
3314
3315 ptid = inferior_ptid;
3316 inferior_ptid = null_ptid;
3317
3318 /* Mark breakpoints uninserted in case something tries to delete a
3319 breakpoint while we delete the inferior's threads (which would
3320 fail, since the inferior is long gone). */
3321 mark_breakpoints_out ();
3322
3323 if (!ptid_equal (ptid, null_ptid))
3324 {
3325 int pid = ptid_get_pid (ptid);
3326 exit_inferior (pid);
3327 }
3328
3329 /* Note this wipes step-resume breakpoints, so needs to be done
3330 after exit_inferior, which ends up referencing the step-resume
3331 breakpoints through clear_thread_inferior_resources. */
3332 breakpoint_init_inferior (inf_exited);
3333
3334 registers_changed ();
3335
3336 reopen_exec_file ();
3337 reinit_frame_cache ();
3338
3339 if (deprecated_detach_hook)
3340 deprecated_detach_hook ();
3341 }
3342 \f
3343 /* Convert a normal process ID to a string. Returns the string in a
3344 static buffer. */
3345
3346 const char *
3347 normal_pid_to_str (ptid_t ptid)
3348 {
3349 static char buf[32];
3350
3351 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3352 return buf;
3353 }
3354
3355 static const char *
3356 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3357 {
3358 return normal_pid_to_str (ptid);
3359 }
3360
3361 /* Error-catcher for target_find_memory_regions. */
3362 static int
3363 dummy_find_memory_regions (struct target_ops *self,
3364 find_memory_region_ftype ignore1, void *ignore2)
3365 {
3366 error (_("Command not implemented for this target."));
3367 return 0;
3368 }
3369
3370 /* Error-catcher for target_make_corefile_notes. */
3371 static char *
3372 dummy_make_corefile_notes (struct target_ops *self,
3373 bfd *ignore1, int *ignore2)
3374 {
3375 error (_("Command not implemented for this target."));
3376 return NULL;
3377 }
3378
3379 /* Set up the handful of non-empty slots needed by the dummy target
3380 vector. */
3381
3382 static void
3383 init_dummy_target (void)
3384 {
3385 dummy_target.to_shortname = "None";
3386 dummy_target.to_longname = "None";
3387 dummy_target.to_doc = "";
3388 dummy_target.to_supports_disable_randomization
3389 = find_default_supports_disable_randomization;
3390 dummy_target.to_stratum = dummy_stratum;
3391 dummy_target.to_has_all_memory = return_zero;
3392 dummy_target.to_has_memory = return_zero;
3393 dummy_target.to_has_stack = return_zero;
3394 dummy_target.to_has_registers = return_zero;
3395 dummy_target.to_has_execution = return_zero_has_execution;
3396 dummy_target.to_magic = OPS_MAGIC;
3397
3398 install_dummy_methods (&dummy_target);
3399 }
3400 \f
3401
3402 void
3403 target_close (struct target_ops *targ)
3404 {
3405 gdb_assert (!target_is_pushed (targ));
3406
3407 if (targ->to_xclose != NULL)
3408 targ->to_xclose (targ);
3409 else if (targ->to_close != NULL)
3410 targ->to_close (targ);
3411
3412 if (targetdebug)
3413 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3414 }
3415
3416 int
3417 target_thread_alive (ptid_t ptid)
3418 {
3419 return current_target.to_thread_alive (&current_target, ptid);
3420 }
3421
3422 void
3423 target_update_thread_list (void)
3424 {
3425 current_target.to_update_thread_list (&current_target);
3426 }
3427
3428 void
3429 target_stop (ptid_t ptid)
3430 {
3431 if (!may_stop)
3432 {
3433 warning (_("May not interrupt or stop the target, ignoring attempt"));
3434 return;
3435 }
3436
3437 (*current_target.to_stop) (&current_target, ptid);
3438 }
3439
3440 void
3441 target_interrupt ()
3442 {
3443 if (!may_stop)
3444 {
3445 warning (_("May not interrupt or stop the target, ignoring attempt"));
3446 return;
3447 }
3448
3449 (*current_target.to_interrupt) (&current_target);
3450 }
3451
3452 /* See target.h. */
3453
3454 void
3455 target_pass_ctrlc (void)
3456 {
3457 (*current_target.to_pass_ctrlc) (&current_target);
3458 }
3459
3460 /* See target.h. */
3461
3462 void
3463 default_target_pass_ctrlc (struct target_ops *ops)
3464 {
3465 target_interrupt ();
3466 }
3467
3468 /* See target/target.h. */
3469
3470 void
3471 target_stop_and_wait (ptid_t ptid)
3472 {
3473 struct target_waitstatus status;
3474 int was_non_stop = non_stop;
3475
3476 non_stop = 1;
3477 target_stop (ptid);
3478
3479 memset (&status, 0, sizeof (status));
3480 target_wait (ptid, &status, 0);
3481
3482 non_stop = was_non_stop;
3483 }
3484
3485 /* See target/target.h. */
3486
3487 void
3488 target_continue_no_signal (ptid_t ptid)
3489 {
3490 target_resume (ptid, 0, GDB_SIGNAL_0);
3491 }
3492
3493 /* See target/target.h. */
3494
3495 void
3496 target_continue (ptid_t ptid, enum gdb_signal signal)
3497 {
3498 target_resume (ptid, 0, signal);
3499 }
3500
3501 /* Concatenate ELEM to LIST, a comma separate list, and return the
3502 result. The LIST incoming argument is released. */
3503
3504 static char *
3505 str_comma_list_concat_elem (char *list, const char *elem)
3506 {
3507 if (list == NULL)
3508 return xstrdup (elem);
3509 else
3510 return reconcat (list, list, ", ", elem, (char *) NULL);
3511 }
3512
3513 /* Helper for target_options_to_string. If OPT is present in
3514 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3515 Returns the new resulting string. OPT is removed from
3516 TARGET_OPTIONS. */
3517
3518 static char *
3519 do_option (int *target_options, char *ret,
3520 int opt, const char *opt_str)
3521 {
3522 if ((*target_options & opt) != 0)
3523 {
3524 ret = str_comma_list_concat_elem (ret, opt_str);
3525 *target_options &= ~opt;
3526 }
3527
3528 return ret;
3529 }
3530
3531 char *
3532 target_options_to_string (int target_options)
3533 {
3534 char *ret = NULL;
3535
3536 #define DO_TARG_OPTION(OPT) \
3537 ret = do_option (&target_options, ret, OPT, #OPT)
3538
3539 DO_TARG_OPTION (TARGET_WNOHANG);
3540
3541 if (target_options != 0)
3542 ret = str_comma_list_concat_elem (ret, "unknown???");
3543
3544 if (ret == NULL)
3545 ret = xstrdup ("");
3546 return ret;
3547 }
3548
3549 void
3550 target_fetch_registers (struct regcache *regcache, int regno)
3551 {
3552 current_target.to_fetch_registers (&current_target, regcache, regno);
3553 if (targetdebug)
3554 regcache->debug_print_register ("target_fetch_registers", regno);
3555 }
3556
3557 void
3558 target_store_registers (struct regcache *regcache, int regno)
3559 {
3560 if (!may_write_registers)
3561 error (_("Writing to registers is not allowed (regno %d)"), regno);
3562
3563 current_target.to_store_registers (&current_target, regcache, regno);
3564 if (targetdebug)
3565 {
3566 regcache->debug_print_register ("target_store_registers", regno);
3567 }
3568 }
3569
3570 int
3571 target_core_of_thread (ptid_t ptid)
3572 {
3573 return current_target.to_core_of_thread (&current_target, ptid);
3574 }
3575
3576 int
3577 simple_verify_memory (struct target_ops *ops,
3578 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3579 {
3580 LONGEST total_xfered = 0;
3581
3582 while (total_xfered < size)
3583 {
3584 ULONGEST xfered_len;
3585 enum target_xfer_status status;
3586 gdb_byte buf[1024];
3587 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3588
3589 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3590 buf, NULL, lma + total_xfered, howmuch,
3591 &xfered_len);
3592 if (status == TARGET_XFER_OK
3593 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3594 {
3595 total_xfered += xfered_len;
3596 QUIT;
3597 }
3598 else
3599 return 0;
3600 }
3601 return 1;
3602 }
3603
3604 /* Default implementation of memory verification. */
3605
3606 static int
3607 default_verify_memory (struct target_ops *self,
3608 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3609 {
3610 /* Start over from the top of the target stack. */
3611 return simple_verify_memory (current_target.beneath,
3612 data, memaddr, size);
3613 }
3614
3615 int
3616 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3617 {
3618 return current_target.to_verify_memory (&current_target,
3619 data, memaddr, size);
3620 }
3621
3622 /* The documentation for this function is in its prototype declaration in
3623 target.h. */
3624
3625 int
3626 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3627 enum target_hw_bp_type rw)
3628 {
3629 return current_target.to_insert_mask_watchpoint (&current_target,
3630 addr, mask, rw);
3631 }
3632
3633 /* The documentation for this function is in its prototype declaration in
3634 target.h. */
3635
3636 int
3637 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3638 enum target_hw_bp_type rw)
3639 {
3640 return current_target.to_remove_mask_watchpoint (&current_target,
3641 addr, mask, rw);
3642 }
3643
3644 /* The documentation for this function is in its prototype declaration
3645 in target.h. */
3646
3647 int
3648 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3649 {
3650 return current_target.to_masked_watch_num_registers (&current_target,
3651 addr, mask);
3652 }
3653
3654 /* The documentation for this function is in its prototype declaration
3655 in target.h. */
3656
3657 int
3658 target_ranged_break_num_registers (void)
3659 {
3660 return current_target.to_ranged_break_num_registers (&current_target);
3661 }
3662
3663 /* See target.h. */
3664
3665 struct btrace_target_info *
3666 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3667 {
3668 return current_target.to_enable_btrace (&current_target, ptid, conf);
3669 }
3670
3671 /* See target.h. */
3672
3673 void
3674 target_disable_btrace (struct btrace_target_info *btinfo)
3675 {
3676 current_target.to_disable_btrace (&current_target, btinfo);
3677 }
3678
3679 /* See target.h. */
3680
3681 void
3682 target_teardown_btrace (struct btrace_target_info *btinfo)
3683 {
3684 current_target.to_teardown_btrace (&current_target, btinfo);
3685 }
3686
3687 /* See target.h. */
3688
3689 enum btrace_error
3690 target_read_btrace (struct btrace_data *btrace,
3691 struct btrace_target_info *btinfo,
3692 enum btrace_read_type type)
3693 {
3694 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3695 }
3696
3697 /* See target.h. */
3698
3699 const struct btrace_config *
3700 target_btrace_conf (const struct btrace_target_info *btinfo)
3701 {
3702 return current_target.to_btrace_conf (&current_target, btinfo);
3703 }
3704
3705 /* See target.h. */
3706
3707 void
3708 target_stop_recording (void)
3709 {
3710 current_target.to_stop_recording (&current_target);
3711 }
3712
3713 /* See target.h. */
3714
3715 void
3716 target_save_record (const char *filename)
3717 {
3718 current_target.to_save_record (&current_target, filename);
3719 }
3720
3721 /* See target.h. */
3722
3723 int
3724 target_supports_delete_record (void)
3725 {
3726 struct target_ops *t;
3727
3728 for (t = current_target.beneath; t != NULL; t = t->beneath)
3729 if (t->to_delete_record != delegate_delete_record
3730 && t->to_delete_record != tdefault_delete_record)
3731 return 1;
3732
3733 return 0;
3734 }
3735
3736 /* See target.h. */
3737
3738 void
3739 target_delete_record (void)
3740 {
3741 current_target.to_delete_record (&current_target);
3742 }
3743
3744 /* See target.h. */
3745
3746 enum record_method
3747 target_record_method (ptid_t ptid)
3748 {
3749 return current_target.to_record_method (&current_target, ptid);
3750 }
3751
3752 /* See target.h. */
3753
3754 int
3755 target_record_is_replaying (ptid_t ptid)
3756 {
3757 return current_target.to_record_is_replaying (&current_target, ptid);
3758 }
3759
3760 /* See target.h. */
3761
3762 int
3763 target_record_will_replay (ptid_t ptid, int dir)
3764 {
3765 return current_target.to_record_will_replay (&current_target, ptid, dir);
3766 }
3767
3768 /* See target.h. */
3769
3770 void
3771 target_record_stop_replaying (void)
3772 {
3773 current_target.to_record_stop_replaying (&current_target);
3774 }
3775
3776 /* See target.h. */
3777
3778 void
3779 target_goto_record_begin (void)
3780 {
3781 current_target.to_goto_record_begin (&current_target);
3782 }
3783
3784 /* See target.h. */
3785
3786 void
3787 target_goto_record_end (void)
3788 {
3789 current_target.to_goto_record_end (&current_target);
3790 }
3791
3792 /* See target.h. */
3793
3794 void
3795 target_goto_record (ULONGEST insn)
3796 {
3797 current_target.to_goto_record (&current_target, insn);
3798 }
3799
3800 /* See target.h. */
3801
3802 void
3803 target_insn_history (int size, gdb_disassembly_flags flags)
3804 {
3805 current_target.to_insn_history (&current_target, size, flags);
3806 }
3807
3808 /* See target.h. */
3809
3810 void
3811 target_insn_history_from (ULONGEST from, int size,
3812 gdb_disassembly_flags flags)
3813 {
3814 current_target.to_insn_history_from (&current_target, from, size, flags);
3815 }
3816
3817 /* See target.h. */
3818
3819 void
3820 target_insn_history_range (ULONGEST begin, ULONGEST end,
3821 gdb_disassembly_flags flags)
3822 {
3823 current_target.to_insn_history_range (&current_target, begin, end, flags);
3824 }
3825
3826 /* See target.h. */
3827
3828 void
3829 target_call_history (int size, record_print_flags flags)
3830 {
3831 current_target.to_call_history (&current_target, size, flags);
3832 }
3833
3834 /* See target.h. */
3835
3836 void
3837 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3838 {
3839 current_target.to_call_history_from (&current_target, begin, size, flags);
3840 }
3841
3842 /* See target.h. */
3843
3844 void
3845 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3846 {
3847 current_target.to_call_history_range (&current_target, begin, end, flags);
3848 }
3849
3850 /* See target.h. */
3851
3852 const struct frame_unwind *
3853 target_get_unwinder (void)
3854 {
3855 return current_target.to_get_unwinder (&current_target);
3856 }
3857
3858 /* See target.h. */
3859
3860 const struct frame_unwind *
3861 target_get_tailcall_unwinder (void)
3862 {
3863 return current_target.to_get_tailcall_unwinder (&current_target);
3864 }
3865
3866 /* See target.h. */
3867
3868 void
3869 target_prepare_to_generate_core (void)
3870 {
3871 current_target.to_prepare_to_generate_core (&current_target);
3872 }
3873
3874 /* See target.h. */
3875
3876 void
3877 target_done_generating_core (void)
3878 {
3879 current_target.to_done_generating_core (&current_target);
3880 }
3881
3882 static void
3883 setup_target_debug (void)
3884 {
3885 memcpy (&debug_target, &current_target, sizeof debug_target);
3886
3887 init_debug_target (&current_target);
3888 }
3889 \f
3890
3891 static char targ_desc[] =
3892 "Names of targets and files being debugged.\nShows the entire \
3893 stack of targets currently in use (including the exec-file,\n\
3894 core-file, and process, if any), as well as the symbol file name.";
3895
3896 static void
3897 default_rcmd (struct target_ops *self, const char *command,
3898 struct ui_file *output)
3899 {
3900 error (_("\"monitor\" command not supported by this target."));
3901 }
3902
3903 static void
3904 do_monitor_command (const char *cmd, int from_tty)
3905 {
3906 target_rcmd (cmd, gdb_stdtarg);
3907 }
3908
3909 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3910 ignored. */
3911
3912 void
3913 flash_erase_command (const char *cmd, int from_tty)
3914 {
3915 /* Used to communicate termination of flash operations to the target. */
3916 bool found_flash_region = false;
3917 struct gdbarch *gdbarch = target_gdbarch ();
3918
3919 std::vector<mem_region> mem_regions = target_memory_map ();
3920
3921 /* Iterate over all memory regions. */
3922 for (const mem_region &m : mem_regions)
3923 {
3924 /* Is this a flash memory region? */
3925 if (m.attrib.mode == MEM_FLASH)
3926 {
3927 found_flash_region = true;
3928 target_flash_erase (m.lo, m.hi - m.lo);
3929
3930 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3931
3932 current_uiout->message (_("Erasing flash memory region at address "));
3933 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3934 current_uiout->message (", size = ");
3935 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3936 current_uiout->message ("\n");
3937 }
3938 }
3939
3940 /* Did we do any flash operations? If so, we need to finalize them. */
3941 if (found_flash_region)
3942 target_flash_done ();
3943 else
3944 current_uiout->message (_("No flash memory regions found.\n"));
3945 }
3946
3947 /* Print the name of each layers of our target stack. */
3948
3949 static void
3950 maintenance_print_target_stack (const char *cmd, int from_tty)
3951 {
3952 struct target_ops *t;
3953
3954 printf_filtered (_("The current target stack is:\n"));
3955
3956 for (t = target_stack; t != NULL; t = t->beneath)
3957 {
3958 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3959 }
3960 }
3961
3962 /* See target.h. */
3963
3964 void
3965 target_async (int enable)
3966 {
3967 infrun_async (enable);
3968 current_target.to_async (&current_target, enable);
3969 }
3970
3971 /* See target.h. */
3972
3973 void
3974 target_thread_events (int enable)
3975 {
3976 current_target.to_thread_events (&current_target, enable);
3977 }
3978
3979 /* Controls if targets can report that they can/are async. This is
3980 just for maintainers to use when debugging gdb. */
3981 int target_async_permitted = 1;
3982
3983 /* The set command writes to this variable. If the inferior is
3984 executing, target_async_permitted is *not* updated. */
3985 static int target_async_permitted_1 = 1;
3986
3987 static void
3988 maint_set_target_async_command (const char *args, int from_tty,
3989 struct cmd_list_element *c)
3990 {
3991 if (have_live_inferiors ())
3992 {
3993 target_async_permitted_1 = target_async_permitted;
3994 error (_("Cannot change this setting while the inferior is running."));
3995 }
3996
3997 target_async_permitted = target_async_permitted_1;
3998 }
3999
4000 static void
4001 maint_show_target_async_command (struct ui_file *file, int from_tty,
4002 struct cmd_list_element *c,
4003 const char *value)
4004 {
4005 fprintf_filtered (file,
4006 _("Controlling the inferior in "
4007 "asynchronous mode is %s.\n"), value);
4008 }
4009
4010 /* Return true if the target operates in non-stop mode even with "set
4011 non-stop off". */
4012
4013 static int
4014 target_always_non_stop_p (void)
4015 {
4016 return current_target.to_always_non_stop_p (&current_target);
4017 }
4018
4019 /* See target.h. */
4020
4021 int
4022 target_is_non_stop_p (void)
4023 {
4024 return (non_stop
4025 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
4026 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
4027 && target_always_non_stop_p ()));
4028 }
4029
4030 /* Controls if targets can report that they always run in non-stop
4031 mode. This is just for maintainers to use when debugging gdb. */
4032 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
4033
4034 /* The set command writes to this variable. If the inferior is
4035 executing, target_non_stop_enabled is *not* updated. */
4036 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
4037
4038 /* Implementation of "maint set target-non-stop". */
4039
4040 static void
4041 maint_set_target_non_stop_command (const char *args, int from_tty,
4042 struct cmd_list_element *c)
4043 {
4044 if (have_live_inferiors ())
4045 {
4046 target_non_stop_enabled_1 = target_non_stop_enabled;
4047 error (_("Cannot change this setting while the inferior is running."));
4048 }
4049
4050 target_non_stop_enabled = target_non_stop_enabled_1;
4051 }
4052
4053 /* Implementation of "maint show target-non-stop". */
4054
4055 static void
4056 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
4057 struct cmd_list_element *c,
4058 const char *value)
4059 {
4060 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4061 fprintf_filtered (file,
4062 _("Whether the target is always in non-stop mode "
4063 "is %s (currently %s).\n"), value,
4064 target_always_non_stop_p () ? "on" : "off");
4065 else
4066 fprintf_filtered (file,
4067 _("Whether the target is always in non-stop mode "
4068 "is %s.\n"), value);
4069 }
4070
4071 /* Temporary copies of permission settings. */
4072
4073 static int may_write_registers_1 = 1;
4074 static int may_write_memory_1 = 1;
4075 static int may_insert_breakpoints_1 = 1;
4076 static int may_insert_tracepoints_1 = 1;
4077 static int may_insert_fast_tracepoints_1 = 1;
4078 static int may_stop_1 = 1;
4079
4080 /* Make the user-set values match the real values again. */
4081
4082 void
4083 update_target_permissions (void)
4084 {
4085 may_write_registers_1 = may_write_registers;
4086 may_write_memory_1 = may_write_memory;
4087 may_insert_breakpoints_1 = may_insert_breakpoints;
4088 may_insert_tracepoints_1 = may_insert_tracepoints;
4089 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4090 may_stop_1 = may_stop;
4091 }
4092
4093 /* The one function handles (most of) the permission flags in the same
4094 way. */
4095
4096 static void
4097 set_target_permissions (const char *args, int from_tty,
4098 struct cmd_list_element *c)
4099 {
4100 if (target_has_execution)
4101 {
4102 update_target_permissions ();
4103 error (_("Cannot change this setting while the inferior is running."));
4104 }
4105
4106 /* Make the real values match the user-changed values. */
4107 may_write_registers = may_write_registers_1;
4108 may_insert_breakpoints = may_insert_breakpoints_1;
4109 may_insert_tracepoints = may_insert_tracepoints_1;
4110 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4111 may_stop = may_stop_1;
4112 update_observer_mode ();
4113 }
4114
4115 /* Set memory write permission independently of observer mode. */
4116
4117 static void
4118 set_write_memory_permission (const char *args, int from_tty,
4119 struct cmd_list_element *c)
4120 {
4121 /* Make the real values match the user-changed values. */
4122 may_write_memory = may_write_memory_1;
4123 update_observer_mode ();
4124 }
4125
4126 #if GDB_SELF_TEST
4127 namespace selftests {
4128
4129 static int
4130 test_target_has_registers (target_ops *self)
4131 {
4132 return 1;
4133 }
4134
4135 static int
4136 test_target_has_stack (target_ops *self)
4137 {
4138 return 1;
4139 }
4140
4141 static int
4142 test_target_has_memory (target_ops *self)
4143 {
4144 return 1;
4145 }
4146
4147 static void
4148 test_target_prepare_to_store (target_ops *self, regcache *regs)
4149 {
4150 }
4151
4152 static void
4153 test_target_store_registers (target_ops *self, regcache *regs, int regno)
4154 {
4155 }
4156
4157 test_target_ops::test_target_ops ()
4158 : target_ops {}
4159 {
4160 to_magic = OPS_MAGIC;
4161 to_stratum = process_stratum;
4162 to_has_memory = test_target_has_memory;
4163 to_has_stack = test_target_has_stack;
4164 to_has_registers = test_target_has_registers;
4165 to_prepare_to_store = test_target_prepare_to_store;
4166 to_store_registers = test_target_store_registers;
4167
4168 complete_target_initialization (this);
4169 }
4170
4171 } // namespace selftests
4172 #endif /* GDB_SELF_TEST */
4173
4174 void
4175 initialize_targets (void)
4176 {
4177 init_dummy_target ();
4178 push_target (&dummy_target);
4179
4180 add_info ("target", info_target_command, targ_desc);
4181 add_info ("files", info_target_command, targ_desc);
4182
4183 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4184 Set target debugging."), _("\
4185 Show target debugging."), _("\
4186 When non-zero, target debugging is enabled. Higher numbers are more\n\
4187 verbose."),
4188 set_targetdebug,
4189 show_targetdebug,
4190 &setdebuglist, &showdebuglist);
4191
4192 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4193 &trust_readonly, _("\
4194 Set mode for reading from readonly sections."), _("\
4195 Show mode for reading from readonly sections."), _("\
4196 When this mode is on, memory reads from readonly sections (such as .text)\n\
4197 will be read from the object file instead of from the target. This will\n\
4198 result in significant performance improvement for remote targets."),
4199 NULL,
4200 show_trust_readonly,
4201 &setlist, &showlist);
4202
4203 add_com ("monitor", class_obscure, do_monitor_command,
4204 _("Send a command to the remote monitor (remote targets only)."));
4205
4206 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4207 _("Print the name of each layer of the internal target stack."),
4208 &maintenanceprintlist);
4209
4210 add_setshow_boolean_cmd ("target-async", no_class,
4211 &target_async_permitted_1, _("\
4212 Set whether gdb controls the inferior in asynchronous mode."), _("\
4213 Show whether gdb controls the inferior in asynchronous mode."), _("\
4214 Tells gdb whether to control the inferior in asynchronous mode."),
4215 maint_set_target_async_command,
4216 maint_show_target_async_command,
4217 &maintenance_set_cmdlist,
4218 &maintenance_show_cmdlist);
4219
4220 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4221 &target_non_stop_enabled_1, _("\
4222 Set whether gdb always controls the inferior in non-stop mode."), _("\
4223 Show whether gdb always controls the inferior in non-stop mode."), _("\
4224 Tells gdb whether to control the inferior in non-stop mode."),
4225 maint_set_target_non_stop_command,
4226 maint_show_target_non_stop_command,
4227 &maintenance_set_cmdlist,
4228 &maintenance_show_cmdlist);
4229
4230 add_setshow_boolean_cmd ("may-write-registers", class_support,
4231 &may_write_registers_1, _("\
4232 Set permission to write into registers."), _("\
4233 Show permission to write into registers."), _("\
4234 When this permission is on, GDB may write into the target's registers.\n\
4235 Otherwise, any sort of write attempt will result in an error."),
4236 set_target_permissions, NULL,
4237 &setlist, &showlist);
4238
4239 add_setshow_boolean_cmd ("may-write-memory", class_support,
4240 &may_write_memory_1, _("\
4241 Set permission to write into target memory."), _("\
4242 Show permission to write into target memory."), _("\
4243 When this permission is on, GDB may write into the target's memory.\n\
4244 Otherwise, any sort of write attempt will result in an error."),
4245 set_write_memory_permission, NULL,
4246 &setlist, &showlist);
4247
4248 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4249 &may_insert_breakpoints_1, _("\
4250 Set permission to insert breakpoints in the target."), _("\
4251 Show permission to insert breakpoints in the target."), _("\
4252 When this permission is on, GDB may insert breakpoints in the program.\n\
4253 Otherwise, any sort of insertion attempt will result in an error."),
4254 set_target_permissions, NULL,
4255 &setlist, &showlist);
4256
4257 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4258 &may_insert_tracepoints_1, _("\
4259 Set permission to insert tracepoints in the target."), _("\
4260 Show permission to insert tracepoints in the target."), _("\
4261 When this permission is on, GDB may insert tracepoints in the program.\n\
4262 Otherwise, any sort of insertion attempt will result in an error."),
4263 set_target_permissions, NULL,
4264 &setlist, &showlist);
4265
4266 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4267 &may_insert_fast_tracepoints_1, _("\
4268 Set permission to insert fast tracepoints in the target."), _("\
4269 Show permission to insert fast tracepoints in the target."), _("\
4270 When this permission is on, GDB may insert fast tracepoints.\n\
4271 Otherwise, any sort of insertion attempt will result in an error."),
4272 set_target_permissions, NULL,
4273 &setlist, &showlist);
4274
4275 add_setshow_boolean_cmd ("may-interrupt", class_support,
4276 &may_stop_1, _("\
4277 Set permission to interrupt or signal the target."), _("\
4278 Show permission to interrupt or signal the target."), _("\
4279 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4280 Otherwise, any attempt to interrupt or stop will be ignored."),
4281 set_target_permissions, NULL,
4282 &setlist, &showlist);
4283
4284 add_com ("flash-erase", no_class, flash_erase_command,
4285 _("Erase all flash memory regions."));
4286
4287 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4288 &auto_connect_native_target, _("\
4289 Set whether GDB may automatically connect to the native target."), _("\
4290 Show whether GDB may automatically connect to the native target."), _("\
4291 When on, and GDB is not connected to a target yet, GDB\n\
4292 attempts \"run\" and other commands with the native target."),
4293 NULL, show_auto_connect_native_target,
4294 &setlist, &showlist);
4295 }
This page took 0.201731 seconds and 5 git commands to generate.