Centralize thread ID printing
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46
47 static void target_info (char *, int);
48
49 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
51 static void default_terminal_info (struct target_ops *, const char *, int);
52
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
58
59 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
60
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
64 static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
67 static void default_mourn_inferior (struct target_ops *self);
68
69 static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
76 static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
80 static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
84
85 static int return_zero (struct target_ops *);
86
87 static int return_zero_has_execution (struct target_ops *, ptid_t);
88
89 static void target_command (char *, int);
90
91 static struct target_ops *find_default_run_target (char *);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
100 static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
103 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
105 static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
108 static struct target_ops debug_target;
109
110 #include "target-delegates.c"
111
112 static void init_dummy_target (void);
113
114 static void update_current_target (void);
115
116 /* Vector of existing target structures. */
117 typedef struct target_ops *target_ops_p;
118 DEF_VEC_P (target_ops_p);
119 static VEC (target_ops_p) *target_structs;
120
121 /* The initial current target, so that there is always a semi-valid
122 current target. */
123
124 static struct target_ops dummy_target;
125
126 /* Top of target stack. */
127
128 static struct target_ops *target_stack;
129
130 /* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133 struct target_ops current_target;
134
135 /* Command list for target. */
136
137 static struct cmd_list_element *targetlist = NULL;
138
139 /* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142 static int trust_readonly = 0;
143
144 /* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147 static int show_memory_breakpoints = 0;
148
149 /* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153 int may_write_registers = 1;
154
155 int may_write_memory = 1;
156
157 int may_insert_breakpoints = 1;
158
159 int may_insert_tracepoints = 1;
160
161 int may_insert_fast_tracepoints = 1;
162
163 int may_stop = 1;
164
165 /* Non-zero if we want to see trace of target level stuff. */
166
167 static unsigned int targetdebug = 0;
168
169 static void
170 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
171 {
172 update_current_target ();
173 }
174
175 static void
176 show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180 }
181
182 static void setup_target_debug (void);
183
184 /* The user just typed 'target' without the name of a target. */
185
186 static void
187 target_command (char *arg, int from_tty)
188 {
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191 }
192
193 /* Default target_has_* methods for process_stratum targets. */
194
195 int
196 default_child_has_all_memory (struct target_ops *ops)
197 {
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203 }
204
205 int
206 default_child_has_memory (struct target_ops *ops)
207 {
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213 }
214
215 int
216 default_child_has_stack (struct target_ops *ops)
217 {
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223 }
224
225 int
226 default_child_has_registers (struct target_ops *ops)
227 {
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233 }
234
235 int
236 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
237 {
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
240 if (ptid_equal (the_ptid, null_ptid))
241 return 0;
242
243 return 1;
244 }
245
246
247 int
248 target_has_all_memory_1 (void)
249 {
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257 }
258
259 int
260 target_has_memory_1 (void)
261 {
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269 }
270
271 int
272 target_has_stack_1 (void)
273 {
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281 }
282
283 int
284 target_has_registers_1 (void)
285 {
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293 }
294
295 int
296 target_has_execution_1 (ptid_t the_ptid)
297 {
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
301 if (t->to_has_execution (t, the_ptid))
302 return 1;
303
304 return 0;
305 }
306
307 int
308 target_has_execution_current (void)
309 {
310 return target_has_execution_1 (inferior_ptid);
311 }
312
313 /* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
315
316 void
317 complete_target_initialization (struct target_ops *t)
318 {
319 /* Provide default values for all "must have" methods. */
320
321 if (t->to_has_all_memory == NULL)
322 t->to_has_all_memory = return_zero;
323
324 if (t->to_has_memory == NULL)
325 t->to_has_memory = return_zero;
326
327 if (t->to_has_stack == NULL)
328 t->to_has_stack = return_zero;
329
330 if (t->to_has_registers == NULL)
331 t->to_has_registers = return_zero;
332
333 if (t->to_has_execution == NULL)
334 t->to_has_execution = return_zero_has_execution;
335
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
342 install_delegators (t);
343 }
344
345 /* This is used to implement the various target commands. */
346
347 static void
348 open_target (char *args, int from_tty, struct cmd_list_element *command)
349 {
350 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361 }
362
363 /* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367 void
368 add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370 {
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
374
375 VEC_safe_push (target_ops_p, target_structs, t);
376
377 if (targetlist == NULL)
378 add_prefix_cmd ("target", class_run, target_command, _("\
379 Connect to a target machine or process.\n\
380 The first argument is the type or protocol of the target machine.\n\
381 Remaining arguments are interpreted by the target protocol. For more\n\
382 information on the arguments for a particular protocol, type\n\
383 `help target ' followed by the protocol name."),
384 &targetlist, "target ", 0, &cmdlist);
385 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390 }
391
392 /* Add a possible target architecture to the list. */
393
394 void
395 add_target (struct target_ops *t)
396 {
397 add_target_with_completer (t, NULL);
398 }
399
400 /* See target.h. */
401
402 void
403 add_deprecated_target_alias (struct target_ops *t, char *alias)
404 {
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
410 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415 }
416
417 /* Stub functions */
418
419 void
420 target_kill (void)
421 {
422 current_target.to_kill (&current_target);
423 }
424
425 void
426 target_load (const char *arg, int from_tty)
427 {
428 target_dcache_invalidate ();
429 (*current_target.to_load) (&current_target, arg, from_tty);
430 }
431
432 /* Possible terminal states. */
433
434 enum terminal_state
435 {
436 /* The inferior's terminal settings are in effect. */
437 terminal_is_inferior = 0,
438
439 /* Some of our terminal settings are in effect, enough to get
440 proper output. */
441 terminal_is_ours_for_output = 1,
442
443 /* Our terminal settings are in effect, for output and input. */
444 terminal_is_ours = 2
445 };
446
447 static enum terminal_state terminal_state = terminal_is_ours;
448
449 /* See target.h. */
450
451 void
452 target_terminal_init (void)
453 {
454 (*current_target.to_terminal_init) (&current_target);
455
456 terminal_state = terminal_is_ours;
457 }
458
459 /* See target.h. */
460
461 int
462 target_terminal_is_inferior (void)
463 {
464 return (terminal_state == terminal_is_inferior);
465 }
466
467 /* See target.h. */
468
469 int
470 target_terminal_is_ours (void)
471 {
472 return (terminal_state == terminal_is_ours);
473 }
474
475 /* See target.h. */
476
477 void
478 target_terminal_inferior (void)
479 {
480 /* A background resume (``run&'') should leave GDB in control of the
481 terminal. Use target_can_async_p, not target_is_async_p, since at
482 this point the target is not async yet. However, if sync_execution
483 is not set, we know it will become async prior to resume. */
484 if (target_can_async_p () && !sync_execution)
485 return;
486
487 if (terminal_state == terminal_is_inferior)
488 return;
489
490 /* If GDB is resuming the inferior in the foreground, install
491 inferior's terminal modes. */
492 (*current_target.to_terminal_inferior) (&current_target);
493 terminal_state = terminal_is_inferior;
494 }
495
496 /* See target.h. */
497
498 void
499 target_terminal_ours (void)
500 {
501 if (terminal_state == terminal_is_ours)
502 return;
503
504 (*current_target.to_terminal_ours) (&current_target);
505 terminal_state = terminal_is_ours;
506 }
507
508 /* See target.h. */
509
510 void
511 target_terminal_ours_for_output (void)
512 {
513 if (terminal_state != terminal_is_inferior)
514 return;
515 (*current_target.to_terminal_ours_for_output) (&current_target);
516 terminal_state = terminal_is_ours_for_output;
517 }
518
519 /* See target.h. */
520
521 int
522 target_supports_terminal_ours (void)
523 {
524 struct target_ops *t;
525
526 for (t = current_target.beneath; t != NULL; t = t->beneath)
527 {
528 if (t->to_terminal_ours != delegate_terminal_ours
529 && t->to_terminal_ours != tdefault_terminal_ours)
530 return 1;
531 }
532
533 return 0;
534 }
535
536 /* Restore the terminal to its previous state (helper for
537 make_cleanup_restore_target_terminal). */
538
539 static void
540 cleanup_restore_target_terminal (void *arg)
541 {
542 enum terminal_state *previous_state = (enum terminal_state *) arg;
543
544 switch (*previous_state)
545 {
546 case terminal_is_ours:
547 target_terminal_ours ();
548 break;
549 case terminal_is_ours_for_output:
550 target_terminal_ours_for_output ();
551 break;
552 case terminal_is_inferior:
553 target_terminal_inferior ();
554 break;
555 }
556 }
557
558 /* See target.h. */
559
560 struct cleanup *
561 make_cleanup_restore_target_terminal (void)
562 {
563 enum terminal_state *ts = XNEW (enum terminal_state);
564
565 *ts = terminal_state;
566
567 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
568 }
569
570 static void
571 tcomplain (void)
572 {
573 error (_("You can't do that when your target is `%s'"),
574 current_target.to_shortname);
575 }
576
577 void
578 noprocess (void)
579 {
580 error (_("You can't do that without a process to debug."));
581 }
582
583 static void
584 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
585 {
586 printf_unfiltered (_("No saved terminal information.\n"));
587 }
588
589 /* A default implementation for the to_get_ada_task_ptid target method.
590
591 This function builds the PTID by using both LWP and TID as part of
592 the PTID lwp and tid elements. The pid used is the pid of the
593 inferior_ptid. */
594
595 static ptid_t
596 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
597 {
598 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
599 }
600
601 static enum exec_direction_kind
602 default_execution_direction (struct target_ops *self)
603 {
604 if (!target_can_execute_reverse)
605 return EXEC_FORWARD;
606 else if (!target_can_async_p ())
607 return EXEC_FORWARD;
608 else
609 gdb_assert_not_reached ("\
610 to_execution_direction must be implemented for reverse async");
611 }
612
613 /* Go through the target stack from top to bottom, copying over zero
614 entries in current_target, then filling in still empty entries. In
615 effect, we are doing class inheritance through the pushed target
616 vectors.
617
618 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
619 is currently implemented, is that it discards any knowledge of
620 which target an inherited method originally belonged to.
621 Consequently, new new target methods should instead explicitly and
622 locally search the target stack for the target that can handle the
623 request. */
624
625 static void
626 update_current_target (void)
627 {
628 struct target_ops *t;
629
630 /* First, reset current's contents. */
631 memset (&current_target, 0, sizeof (current_target));
632
633 /* Install the delegators. */
634 install_delegators (&current_target);
635
636 current_target.to_stratum = target_stack->to_stratum;
637
638 #define INHERIT(FIELD, TARGET) \
639 if (!current_target.FIELD) \
640 current_target.FIELD = (TARGET)->FIELD
641
642 /* Do not add any new INHERITs here. Instead, use the delegation
643 mechanism provided by make-target-delegates. */
644 for (t = target_stack; t; t = t->beneath)
645 {
646 INHERIT (to_shortname, t);
647 INHERIT (to_longname, t);
648 INHERIT (to_attach_no_wait, t);
649 INHERIT (to_have_steppable_watchpoint, t);
650 INHERIT (to_have_continuable_watchpoint, t);
651 INHERIT (to_has_thread_control, t);
652 }
653 #undef INHERIT
654
655 /* Finally, position the target-stack beneath the squashed
656 "current_target". That way code looking for a non-inherited
657 target method can quickly and simply find it. */
658 current_target.beneath = target_stack;
659
660 if (targetdebug)
661 setup_target_debug ();
662 }
663
664 /* Push a new target type into the stack of the existing target accessors,
665 possibly superseding some of the existing accessors.
666
667 Rather than allow an empty stack, we always have the dummy target at
668 the bottom stratum, so we can call the function vectors without
669 checking them. */
670
671 void
672 push_target (struct target_ops *t)
673 {
674 struct target_ops **cur;
675
676 /* Check magic number. If wrong, it probably means someone changed
677 the struct definition, but not all the places that initialize one. */
678 if (t->to_magic != OPS_MAGIC)
679 {
680 fprintf_unfiltered (gdb_stderr,
681 "Magic number of %s target struct wrong\n",
682 t->to_shortname);
683 internal_error (__FILE__, __LINE__,
684 _("failed internal consistency check"));
685 }
686
687 /* Find the proper stratum to install this target in. */
688 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
689 {
690 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
691 break;
692 }
693
694 /* If there's already targets at this stratum, remove them. */
695 /* FIXME: cagney/2003-10-15: I think this should be popping all
696 targets to CUR, and not just those at this stratum level. */
697 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
698 {
699 /* There's already something at this stratum level. Close it,
700 and un-hook it from the stack. */
701 struct target_ops *tmp = (*cur);
702
703 (*cur) = (*cur)->beneath;
704 tmp->beneath = NULL;
705 target_close (tmp);
706 }
707
708 /* We have removed all targets in our stratum, now add the new one. */
709 t->beneath = (*cur);
710 (*cur) = t;
711
712 update_current_target ();
713 }
714
715 /* Remove a target_ops vector from the stack, wherever it may be.
716 Return how many times it was removed (0 or 1). */
717
718 int
719 unpush_target (struct target_ops *t)
720 {
721 struct target_ops **cur;
722 struct target_ops *tmp;
723
724 if (t->to_stratum == dummy_stratum)
725 internal_error (__FILE__, __LINE__,
726 _("Attempt to unpush the dummy target"));
727
728 /* Look for the specified target. Note that we assume that a target
729 can only occur once in the target stack. */
730
731 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
732 {
733 if ((*cur) == t)
734 break;
735 }
736
737 /* If we don't find target_ops, quit. Only open targets should be
738 closed. */
739 if ((*cur) == NULL)
740 return 0;
741
742 /* Unchain the target. */
743 tmp = (*cur);
744 (*cur) = (*cur)->beneath;
745 tmp->beneath = NULL;
746
747 update_current_target ();
748
749 /* Finally close the target. Note we do this after unchaining, so
750 any target method calls from within the target_close
751 implementation don't end up in T anymore. */
752 target_close (t);
753
754 return 1;
755 }
756
757 /* Unpush TARGET and assert that it worked. */
758
759 static void
760 unpush_target_and_assert (struct target_ops *target)
761 {
762 if (!unpush_target (target))
763 {
764 fprintf_unfiltered (gdb_stderr,
765 "pop_all_targets couldn't find target %s\n",
766 target->to_shortname);
767 internal_error (__FILE__, __LINE__,
768 _("failed internal consistency check"));
769 }
770 }
771
772 void
773 pop_all_targets_above (enum strata above_stratum)
774 {
775 while ((int) (current_target.to_stratum) > (int) above_stratum)
776 unpush_target_and_assert (target_stack);
777 }
778
779 /* See target.h. */
780
781 void
782 pop_all_targets_at_and_above (enum strata stratum)
783 {
784 while ((int) (current_target.to_stratum) >= (int) stratum)
785 unpush_target_and_assert (target_stack);
786 }
787
788 void
789 pop_all_targets (void)
790 {
791 pop_all_targets_above (dummy_stratum);
792 }
793
794 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
795
796 int
797 target_is_pushed (struct target_ops *t)
798 {
799 struct target_ops *cur;
800
801 /* Check magic number. If wrong, it probably means someone changed
802 the struct definition, but not all the places that initialize one. */
803 if (t->to_magic != OPS_MAGIC)
804 {
805 fprintf_unfiltered (gdb_stderr,
806 "Magic number of %s target struct wrong\n",
807 t->to_shortname);
808 internal_error (__FILE__, __LINE__,
809 _("failed internal consistency check"));
810 }
811
812 for (cur = target_stack; cur != NULL; cur = cur->beneath)
813 if (cur == t)
814 return 1;
815
816 return 0;
817 }
818
819 /* Default implementation of to_get_thread_local_address. */
820
821 static void
822 generic_tls_error (void)
823 {
824 throw_error (TLS_GENERIC_ERROR,
825 _("Cannot find thread-local variables on this target"));
826 }
827
828 /* Using the objfile specified in OBJFILE, find the address for the
829 current thread's thread-local storage with offset OFFSET. */
830 CORE_ADDR
831 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
832 {
833 volatile CORE_ADDR addr = 0;
834 struct target_ops *target = &current_target;
835
836 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
837 {
838 ptid_t ptid = inferior_ptid;
839
840 TRY
841 {
842 CORE_ADDR lm_addr;
843
844 /* Fetch the load module address for this objfile. */
845 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
846 objfile);
847
848 addr = target->to_get_thread_local_address (target, ptid,
849 lm_addr, offset);
850 }
851 /* If an error occurred, print TLS related messages here. Otherwise,
852 throw the error to some higher catcher. */
853 CATCH (ex, RETURN_MASK_ALL)
854 {
855 int objfile_is_library = (objfile->flags & OBJF_SHARED);
856
857 switch (ex.error)
858 {
859 case TLS_NO_LIBRARY_SUPPORT_ERROR:
860 error (_("Cannot find thread-local variables "
861 "in this thread library."));
862 break;
863 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
864 if (objfile_is_library)
865 error (_("Cannot find shared library `%s' in dynamic"
866 " linker's load module list"), objfile_name (objfile));
867 else
868 error (_("Cannot find executable file `%s' in dynamic"
869 " linker's load module list"), objfile_name (objfile));
870 break;
871 case TLS_NOT_ALLOCATED_YET_ERROR:
872 if (objfile_is_library)
873 error (_("The inferior has not yet allocated storage for"
874 " thread-local variables in\n"
875 "the shared library `%s'\n"
876 "for %s"),
877 objfile_name (objfile), target_pid_to_str (ptid));
878 else
879 error (_("The inferior has not yet allocated storage for"
880 " thread-local variables in\n"
881 "the executable `%s'\n"
882 "for %s"),
883 objfile_name (objfile), target_pid_to_str (ptid));
884 break;
885 case TLS_GENERIC_ERROR:
886 if (objfile_is_library)
887 error (_("Cannot find thread-local storage for %s, "
888 "shared library %s:\n%s"),
889 target_pid_to_str (ptid),
890 objfile_name (objfile), ex.message);
891 else
892 error (_("Cannot find thread-local storage for %s, "
893 "executable file %s:\n%s"),
894 target_pid_to_str (ptid),
895 objfile_name (objfile), ex.message);
896 break;
897 default:
898 throw_exception (ex);
899 break;
900 }
901 }
902 END_CATCH
903 }
904 /* It wouldn't be wrong here to try a gdbarch method, too; finding
905 TLS is an ABI-specific thing. But we don't do that yet. */
906 else
907 error (_("Cannot find thread-local variables on this target"));
908
909 return addr;
910 }
911
912 const char *
913 target_xfer_status_to_string (enum target_xfer_status status)
914 {
915 #define CASE(X) case X: return #X
916 switch (status)
917 {
918 CASE(TARGET_XFER_E_IO);
919 CASE(TARGET_XFER_UNAVAILABLE);
920 default:
921 return "<unknown>";
922 }
923 #undef CASE
924 };
925
926
927 #undef MIN
928 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
929
930 /* target_read_string -- read a null terminated string, up to LEN bytes,
931 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
932 Set *STRING to a pointer to malloc'd memory containing the data; the caller
933 is responsible for freeing it. Return the number of bytes successfully
934 read. */
935
936 int
937 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
938 {
939 int tlen, offset, i;
940 gdb_byte buf[4];
941 int errcode = 0;
942 char *buffer;
943 int buffer_allocated;
944 char *bufptr;
945 unsigned int nbytes_read = 0;
946
947 gdb_assert (string);
948
949 /* Small for testing. */
950 buffer_allocated = 4;
951 buffer = (char *) xmalloc (buffer_allocated);
952 bufptr = buffer;
953
954 while (len > 0)
955 {
956 tlen = MIN (len, 4 - (memaddr & 3));
957 offset = memaddr & 3;
958
959 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
960 if (errcode != 0)
961 {
962 /* The transfer request might have crossed the boundary to an
963 unallocated region of memory. Retry the transfer, requesting
964 a single byte. */
965 tlen = 1;
966 offset = 0;
967 errcode = target_read_memory (memaddr, buf, 1);
968 if (errcode != 0)
969 goto done;
970 }
971
972 if (bufptr - buffer + tlen > buffer_allocated)
973 {
974 unsigned int bytes;
975
976 bytes = bufptr - buffer;
977 buffer_allocated *= 2;
978 buffer = (char *) xrealloc (buffer, buffer_allocated);
979 bufptr = buffer + bytes;
980 }
981
982 for (i = 0; i < tlen; i++)
983 {
984 *bufptr++ = buf[i + offset];
985 if (buf[i + offset] == '\000')
986 {
987 nbytes_read += i + 1;
988 goto done;
989 }
990 }
991
992 memaddr += tlen;
993 len -= tlen;
994 nbytes_read += tlen;
995 }
996 done:
997 *string = buffer;
998 if (errnop != NULL)
999 *errnop = errcode;
1000 return nbytes_read;
1001 }
1002
1003 struct target_section_table *
1004 target_get_section_table (struct target_ops *target)
1005 {
1006 return (*target->to_get_section_table) (target);
1007 }
1008
1009 /* Find a section containing ADDR. */
1010
1011 struct target_section *
1012 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1013 {
1014 struct target_section_table *table = target_get_section_table (target);
1015 struct target_section *secp;
1016
1017 if (table == NULL)
1018 return NULL;
1019
1020 for (secp = table->sections; secp < table->sections_end; secp++)
1021 {
1022 if (addr >= secp->addr && addr < secp->endaddr)
1023 return secp;
1024 }
1025 return NULL;
1026 }
1027
1028
1029 /* Helper for the memory xfer routines. Checks the attributes of the
1030 memory region of MEMADDR against the read or write being attempted.
1031 If the access is permitted returns true, otherwise returns false.
1032 REGION_P is an optional output parameter. If not-NULL, it is
1033 filled with a pointer to the memory region of MEMADDR. REG_LEN
1034 returns LEN trimmed to the end of the region. This is how much the
1035 caller can continue requesting, if the access is permitted. A
1036 single xfer request must not straddle memory region boundaries. */
1037
1038 static int
1039 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1040 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1041 struct mem_region **region_p)
1042 {
1043 struct mem_region *region;
1044
1045 region = lookup_mem_region (memaddr);
1046
1047 if (region_p != NULL)
1048 *region_p = region;
1049
1050 switch (region->attrib.mode)
1051 {
1052 case MEM_RO:
1053 if (writebuf != NULL)
1054 return 0;
1055 break;
1056
1057 case MEM_WO:
1058 if (readbuf != NULL)
1059 return 0;
1060 break;
1061
1062 case MEM_FLASH:
1063 /* We only support writing to flash during "load" for now. */
1064 if (writebuf != NULL)
1065 error (_("Writing to flash memory forbidden in this context"));
1066 break;
1067
1068 case MEM_NONE:
1069 return 0;
1070 }
1071
1072 /* region->hi == 0 means there's no upper bound. */
1073 if (memaddr + len < region->hi || region->hi == 0)
1074 *reg_len = len;
1075 else
1076 *reg_len = region->hi - memaddr;
1077
1078 return 1;
1079 }
1080
1081 /* Read memory from more than one valid target. A core file, for
1082 instance, could have some of memory but delegate other bits to
1083 the target below it. So, we must manually try all targets. */
1084
1085 enum target_xfer_status
1086 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1087 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1088 ULONGEST *xfered_len)
1089 {
1090 enum target_xfer_status res;
1091
1092 do
1093 {
1094 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1095 readbuf, writebuf, memaddr, len,
1096 xfered_len);
1097 if (res == TARGET_XFER_OK)
1098 break;
1099
1100 /* Stop if the target reports that the memory is not available. */
1101 if (res == TARGET_XFER_UNAVAILABLE)
1102 break;
1103
1104 /* We want to continue past core files to executables, but not
1105 past a running target's memory. */
1106 if (ops->to_has_all_memory (ops))
1107 break;
1108
1109 ops = ops->beneath;
1110 }
1111 while (ops != NULL);
1112
1113 /* The cache works at the raw memory level. Make sure the cache
1114 gets updated with raw contents no matter what kind of memory
1115 object was originally being written. Note we do write-through
1116 first, so that if it fails, we don't write to the cache contents
1117 that never made it to the target. */
1118 if (writebuf != NULL
1119 && !ptid_equal (inferior_ptid, null_ptid)
1120 && target_dcache_init_p ()
1121 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1122 {
1123 DCACHE *dcache = target_dcache_get ();
1124
1125 /* Note that writing to an area of memory which wasn't present
1126 in the cache doesn't cause it to be loaded in. */
1127 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1128 }
1129
1130 return res;
1131 }
1132
1133 /* Perform a partial memory transfer.
1134 For docs see target.h, to_xfer_partial. */
1135
1136 static enum target_xfer_status
1137 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1138 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1139 ULONGEST len, ULONGEST *xfered_len)
1140 {
1141 enum target_xfer_status res;
1142 ULONGEST reg_len;
1143 struct mem_region *region;
1144 struct inferior *inf;
1145
1146 /* For accesses to unmapped overlay sections, read directly from
1147 files. Must do this first, as MEMADDR may need adjustment. */
1148 if (readbuf != NULL && overlay_debugging)
1149 {
1150 struct obj_section *section = find_pc_overlay (memaddr);
1151
1152 if (pc_in_unmapped_range (memaddr, section))
1153 {
1154 struct target_section_table *table
1155 = target_get_section_table (ops);
1156 const char *section_name = section->the_bfd_section->name;
1157
1158 memaddr = overlay_mapped_address (memaddr, section);
1159 return section_table_xfer_memory_partial (readbuf, writebuf,
1160 memaddr, len, xfered_len,
1161 table->sections,
1162 table->sections_end,
1163 section_name);
1164 }
1165 }
1166
1167 /* Try the executable files, if "trust-readonly-sections" is set. */
1168 if (readbuf != NULL && trust_readonly)
1169 {
1170 struct target_section *secp;
1171 struct target_section_table *table;
1172
1173 secp = target_section_by_addr (ops, memaddr);
1174 if (secp != NULL
1175 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1176 secp->the_bfd_section)
1177 & SEC_READONLY))
1178 {
1179 table = target_get_section_table (ops);
1180 return section_table_xfer_memory_partial (readbuf, writebuf,
1181 memaddr, len, xfered_len,
1182 table->sections,
1183 table->sections_end,
1184 NULL);
1185 }
1186 }
1187
1188 /* Try GDB's internal data cache. */
1189
1190 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1191 &region))
1192 return TARGET_XFER_E_IO;
1193
1194 if (!ptid_equal (inferior_ptid, null_ptid))
1195 inf = find_inferior_ptid (inferior_ptid);
1196 else
1197 inf = NULL;
1198
1199 if (inf != NULL
1200 && readbuf != NULL
1201 /* The dcache reads whole cache lines; that doesn't play well
1202 with reading from a trace buffer, because reading outside of
1203 the collected memory range fails. */
1204 && get_traceframe_number () == -1
1205 && (region->attrib.cache
1206 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1207 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1208 {
1209 DCACHE *dcache = target_dcache_get_or_init ();
1210
1211 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1212 reg_len, xfered_len);
1213 }
1214
1215 /* If none of those methods found the memory we wanted, fall back
1216 to a target partial transfer. Normally a single call to
1217 to_xfer_partial is enough; if it doesn't recognize an object
1218 it will call the to_xfer_partial of the next target down.
1219 But for memory this won't do. Memory is the only target
1220 object which can be read from more than one valid target.
1221 A core file, for instance, could have some of memory but
1222 delegate other bits to the target below it. So, we must
1223 manually try all targets. */
1224
1225 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1226 xfered_len);
1227
1228 /* If we still haven't got anything, return the last error. We
1229 give up. */
1230 return res;
1231 }
1232
1233 /* Perform a partial memory transfer. For docs see target.h,
1234 to_xfer_partial. */
1235
1236 static enum target_xfer_status
1237 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1238 gdb_byte *readbuf, const gdb_byte *writebuf,
1239 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1240 {
1241 enum target_xfer_status res;
1242
1243 /* Zero length requests are ok and require no work. */
1244 if (len == 0)
1245 return TARGET_XFER_EOF;
1246
1247 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1248 breakpoint insns, thus hiding out from higher layers whether
1249 there are software breakpoints inserted in the code stream. */
1250 if (readbuf != NULL)
1251 {
1252 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1253 xfered_len);
1254
1255 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1256 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1257 }
1258 else
1259 {
1260 gdb_byte *buf;
1261 struct cleanup *old_chain;
1262
1263 /* A large write request is likely to be partially satisfied
1264 by memory_xfer_partial_1. We will continually malloc
1265 and free a copy of the entire write request for breakpoint
1266 shadow handling even though we only end up writing a small
1267 subset of it. Cap writes to 4KB to mitigate this. */
1268 len = min (4096, len);
1269
1270 buf = (gdb_byte *) xmalloc (len);
1271 old_chain = make_cleanup (xfree, buf);
1272 memcpy (buf, writebuf, len);
1273
1274 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1275 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1276 xfered_len);
1277
1278 do_cleanups (old_chain);
1279 }
1280
1281 return res;
1282 }
1283
1284 static void
1285 restore_show_memory_breakpoints (void *arg)
1286 {
1287 show_memory_breakpoints = (uintptr_t) arg;
1288 }
1289
1290 struct cleanup *
1291 make_show_memory_breakpoints_cleanup (int show)
1292 {
1293 int current = show_memory_breakpoints;
1294
1295 show_memory_breakpoints = show;
1296 return make_cleanup (restore_show_memory_breakpoints,
1297 (void *) (uintptr_t) current);
1298 }
1299
1300 /* For docs see target.h, to_xfer_partial. */
1301
1302 enum target_xfer_status
1303 target_xfer_partial (struct target_ops *ops,
1304 enum target_object object, const char *annex,
1305 gdb_byte *readbuf, const gdb_byte *writebuf,
1306 ULONGEST offset, ULONGEST len,
1307 ULONGEST *xfered_len)
1308 {
1309 enum target_xfer_status retval;
1310
1311 gdb_assert (ops->to_xfer_partial != NULL);
1312
1313 /* Transfer is done when LEN is zero. */
1314 if (len == 0)
1315 return TARGET_XFER_EOF;
1316
1317 if (writebuf && !may_write_memory)
1318 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1319 core_addr_to_string_nz (offset), plongest (len));
1320
1321 *xfered_len = 0;
1322
1323 /* If this is a memory transfer, let the memory-specific code
1324 have a look at it instead. Memory transfers are more
1325 complicated. */
1326 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1327 || object == TARGET_OBJECT_CODE_MEMORY)
1328 retval = memory_xfer_partial (ops, object, readbuf,
1329 writebuf, offset, len, xfered_len);
1330 else if (object == TARGET_OBJECT_RAW_MEMORY)
1331 {
1332 /* Skip/avoid accessing the target if the memory region
1333 attributes block the access. Check this here instead of in
1334 raw_memory_xfer_partial as otherwise we'd end up checking
1335 this twice in the case of the memory_xfer_partial path is
1336 taken; once before checking the dcache, and another in the
1337 tail call to raw_memory_xfer_partial. */
1338 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1339 NULL))
1340 return TARGET_XFER_E_IO;
1341
1342 /* Request the normal memory object from other layers. */
1343 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1344 xfered_len);
1345 }
1346 else
1347 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1348 writebuf, offset, len, xfered_len);
1349
1350 if (targetdebug)
1351 {
1352 const unsigned char *myaddr = NULL;
1353
1354 fprintf_unfiltered (gdb_stdlog,
1355 "%s:target_xfer_partial "
1356 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1357 ops->to_shortname,
1358 (int) object,
1359 (annex ? annex : "(null)"),
1360 host_address_to_string (readbuf),
1361 host_address_to_string (writebuf),
1362 core_addr_to_string_nz (offset),
1363 pulongest (len), retval,
1364 pulongest (*xfered_len));
1365
1366 if (readbuf)
1367 myaddr = readbuf;
1368 if (writebuf)
1369 myaddr = writebuf;
1370 if (retval == TARGET_XFER_OK && myaddr != NULL)
1371 {
1372 int i;
1373
1374 fputs_unfiltered (", bytes =", gdb_stdlog);
1375 for (i = 0; i < *xfered_len; i++)
1376 {
1377 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1378 {
1379 if (targetdebug < 2 && i > 0)
1380 {
1381 fprintf_unfiltered (gdb_stdlog, " ...");
1382 break;
1383 }
1384 fprintf_unfiltered (gdb_stdlog, "\n");
1385 }
1386
1387 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1388 }
1389 }
1390
1391 fputc_unfiltered ('\n', gdb_stdlog);
1392 }
1393
1394 /* Check implementations of to_xfer_partial update *XFERED_LEN
1395 properly. Do assertion after printing debug messages, so that we
1396 can find more clues on assertion failure from debugging messages. */
1397 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1398 gdb_assert (*xfered_len > 0);
1399
1400 return retval;
1401 }
1402
1403 /* Read LEN bytes of target memory at address MEMADDR, placing the
1404 results in GDB's memory at MYADDR. Returns either 0 for success or
1405 -1 if any error occurs.
1406
1407 If an error occurs, no guarantee is made about the contents of the data at
1408 MYADDR. In particular, the caller should not depend upon partial reads
1409 filling the buffer with good data. There is no way for the caller to know
1410 how much good data might have been transfered anyway. Callers that can
1411 deal with partial reads should call target_read (which will retry until
1412 it makes no progress, and then return how much was transferred). */
1413
1414 int
1415 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1416 {
1417 /* Dispatch to the topmost target, not the flattened current_target.
1418 Memory accesses check target->to_has_(all_)memory, and the
1419 flattened target doesn't inherit those. */
1420 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1421 myaddr, memaddr, len) == len)
1422 return 0;
1423 else
1424 return -1;
1425 }
1426
1427 /* See target/target.h. */
1428
1429 int
1430 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1431 {
1432 gdb_byte buf[4];
1433 int r;
1434
1435 r = target_read_memory (memaddr, buf, sizeof buf);
1436 if (r != 0)
1437 return r;
1438 *result = extract_unsigned_integer (buf, sizeof buf,
1439 gdbarch_byte_order (target_gdbarch ()));
1440 return 0;
1441 }
1442
1443 /* Like target_read_memory, but specify explicitly that this is a read
1444 from the target's raw memory. That is, this read bypasses the
1445 dcache, breakpoint shadowing, etc. */
1446
1447 int
1448 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1449 {
1450 /* See comment in target_read_memory about why the request starts at
1451 current_target.beneath. */
1452 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1453 myaddr, memaddr, len) == len)
1454 return 0;
1455 else
1456 return -1;
1457 }
1458
1459 /* Like target_read_memory, but specify explicitly that this is a read from
1460 the target's stack. This may trigger different cache behavior. */
1461
1462 int
1463 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1464 {
1465 /* See comment in target_read_memory about why the request starts at
1466 current_target.beneath. */
1467 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1468 myaddr, memaddr, len) == len)
1469 return 0;
1470 else
1471 return -1;
1472 }
1473
1474 /* Like target_read_memory, but specify explicitly that this is a read from
1475 the target's code. This may trigger different cache behavior. */
1476
1477 int
1478 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1479 {
1480 /* See comment in target_read_memory about why the request starts at
1481 current_target.beneath. */
1482 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1483 myaddr, memaddr, len) == len)
1484 return 0;
1485 else
1486 return -1;
1487 }
1488
1489 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1490 Returns either 0 for success or -1 if any error occurs. If an
1491 error occurs, no guarantee is made about how much data got written.
1492 Callers that can deal with partial writes should call
1493 target_write. */
1494
1495 int
1496 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1497 {
1498 /* See comment in target_read_memory about why the request starts at
1499 current_target.beneath. */
1500 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1501 myaddr, memaddr, len) == len)
1502 return 0;
1503 else
1504 return -1;
1505 }
1506
1507 /* Write LEN bytes from MYADDR to target raw memory at address
1508 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1509 If an error occurs, no guarantee is made about how much data got
1510 written. Callers that can deal with partial writes should call
1511 target_write. */
1512
1513 int
1514 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1515 {
1516 /* See comment in target_read_memory about why the request starts at
1517 current_target.beneath. */
1518 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1519 myaddr, memaddr, len) == len)
1520 return 0;
1521 else
1522 return -1;
1523 }
1524
1525 /* Fetch the target's memory map. */
1526
1527 VEC(mem_region_s) *
1528 target_memory_map (void)
1529 {
1530 VEC(mem_region_s) *result;
1531 struct mem_region *last_one, *this_one;
1532 int ix;
1533 struct target_ops *t;
1534
1535 result = current_target.to_memory_map (&current_target);
1536 if (result == NULL)
1537 return NULL;
1538
1539 qsort (VEC_address (mem_region_s, result),
1540 VEC_length (mem_region_s, result),
1541 sizeof (struct mem_region), mem_region_cmp);
1542
1543 /* Check that regions do not overlap. Simultaneously assign
1544 a numbering for the "mem" commands to use to refer to
1545 each region. */
1546 last_one = NULL;
1547 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1548 {
1549 this_one->number = ix;
1550
1551 if (last_one && last_one->hi > this_one->lo)
1552 {
1553 warning (_("Overlapping regions in memory map: ignoring"));
1554 VEC_free (mem_region_s, result);
1555 return NULL;
1556 }
1557 last_one = this_one;
1558 }
1559
1560 return result;
1561 }
1562
1563 void
1564 target_flash_erase (ULONGEST address, LONGEST length)
1565 {
1566 current_target.to_flash_erase (&current_target, address, length);
1567 }
1568
1569 void
1570 target_flash_done (void)
1571 {
1572 current_target.to_flash_done (&current_target);
1573 }
1574
1575 static void
1576 show_trust_readonly (struct ui_file *file, int from_tty,
1577 struct cmd_list_element *c, const char *value)
1578 {
1579 fprintf_filtered (file,
1580 _("Mode for reading from readonly sections is %s.\n"),
1581 value);
1582 }
1583
1584 /* Target vector read/write partial wrapper functions. */
1585
1586 static enum target_xfer_status
1587 target_read_partial (struct target_ops *ops,
1588 enum target_object object,
1589 const char *annex, gdb_byte *buf,
1590 ULONGEST offset, ULONGEST len,
1591 ULONGEST *xfered_len)
1592 {
1593 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1594 xfered_len);
1595 }
1596
1597 static enum target_xfer_status
1598 target_write_partial (struct target_ops *ops,
1599 enum target_object object,
1600 const char *annex, const gdb_byte *buf,
1601 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1602 {
1603 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1604 xfered_len);
1605 }
1606
1607 /* Wrappers to perform the full transfer. */
1608
1609 /* For docs on target_read see target.h. */
1610
1611 LONGEST
1612 target_read (struct target_ops *ops,
1613 enum target_object object,
1614 const char *annex, gdb_byte *buf,
1615 ULONGEST offset, LONGEST len)
1616 {
1617 LONGEST xfered_total = 0;
1618 int unit_size = 1;
1619
1620 /* If we are reading from a memory object, find the length of an addressable
1621 unit for that architecture. */
1622 if (object == TARGET_OBJECT_MEMORY
1623 || object == TARGET_OBJECT_STACK_MEMORY
1624 || object == TARGET_OBJECT_CODE_MEMORY
1625 || object == TARGET_OBJECT_RAW_MEMORY)
1626 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1627
1628 while (xfered_total < len)
1629 {
1630 ULONGEST xfered_partial;
1631 enum target_xfer_status status;
1632
1633 status = target_read_partial (ops, object, annex,
1634 buf + xfered_total * unit_size,
1635 offset + xfered_total, len - xfered_total,
1636 &xfered_partial);
1637
1638 /* Call an observer, notifying them of the xfer progress? */
1639 if (status == TARGET_XFER_EOF)
1640 return xfered_total;
1641 else if (status == TARGET_XFER_OK)
1642 {
1643 xfered_total += xfered_partial;
1644 QUIT;
1645 }
1646 else
1647 return TARGET_XFER_E_IO;
1648
1649 }
1650 return len;
1651 }
1652
1653 /* Assuming that the entire [begin, end) range of memory cannot be
1654 read, try to read whatever subrange is possible to read.
1655
1656 The function returns, in RESULT, either zero or one memory block.
1657 If there's a readable subrange at the beginning, it is completely
1658 read and returned. Any further readable subrange will not be read.
1659 Otherwise, if there's a readable subrange at the end, it will be
1660 completely read and returned. Any readable subranges before it
1661 (obviously, not starting at the beginning), will be ignored. In
1662 other cases -- either no readable subrange, or readable subrange(s)
1663 that is neither at the beginning, or end, nothing is returned.
1664
1665 The purpose of this function is to handle a read across a boundary
1666 of accessible memory in a case when memory map is not available.
1667 The above restrictions are fine for this case, but will give
1668 incorrect results if the memory is 'patchy'. However, supporting
1669 'patchy' memory would require trying to read every single byte,
1670 and it seems unacceptable solution. Explicit memory map is
1671 recommended for this case -- and target_read_memory_robust will
1672 take care of reading multiple ranges then. */
1673
1674 static void
1675 read_whatever_is_readable (struct target_ops *ops,
1676 const ULONGEST begin, const ULONGEST end,
1677 int unit_size,
1678 VEC(memory_read_result_s) **result)
1679 {
1680 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1681 ULONGEST current_begin = begin;
1682 ULONGEST current_end = end;
1683 int forward;
1684 memory_read_result_s r;
1685 ULONGEST xfered_len;
1686
1687 /* If we previously failed to read 1 byte, nothing can be done here. */
1688 if (end - begin <= 1)
1689 {
1690 xfree (buf);
1691 return;
1692 }
1693
1694 /* Check that either first or the last byte is readable, and give up
1695 if not. This heuristic is meant to permit reading accessible memory
1696 at the boundary of accessible region. */
1697 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1698 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1699 {
1700 forward = 1;
1701 ++current_begin;
1702 }
1703 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1704 buf + (end - begin) - 1, end - 1, 1,
1705 &xfered_len) == TARGET_XFER_OK)
1706 {
1707 forward = 0;
1708 --current_end;
1709 }
1710 else
1711 {
1712 xfree (buf);
1713 return;
1714 }
1715
1716 /* Loop invariant is that the [current_begin, current_end) was previously
1717 found to be not readable as a whole.
1718
1719 Note loop condition -- if the range has 1 byte, we can't divide the range
1720 so there's no point trying further. */
1721 while (current_end - current_begin > 1)
1722 {
1723 ULONGEST first_half_begin, first_half_end;
1724 ULONGEST second_half_begin, second_half_end;
1725 LONGEST xfer;
1726 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1727
1728 if (forward)
1729 {
1730 first_half_begin = current_begin;
1731 first_half_end = middle;
1732 second_half_begin = middle;
1733 second_half_end = current_end;
1734 }
1735 else
1736 {
1737 first_half_begin = middle;
1738 first_half_end = current_end;
1739 second_half_begin = current_begin;
1740 second_half_end = middle;
1741 }
1742
1743 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1744 buf + (first_half_begin - begin) * unit_size,
1745 first_half_begin,
1746 first_half_end - first_half_begin);
1747
1748 if (xfer == first_half_end - first_half_begin)
1749 {
1750 /* This half reads up fine. So, the error must be in the
1751 other half. */
1752 current_begin = second_half_begin;
1753 current_end = second_half_end;
1754 }
1755 else
1756 {
1757 /* This half is not readable. Because we've tried one byte, we
1758 know some part of this half if actually readable. Go to the next
1759 iteration to divide again and try to read.
1760
1761 We don't handle the other half, because this function only tries
1762 to read a single readable subrange. */
1763 current_begin = first_half_begin;
1764 current_end = first_half_end;
1765 }
1766 }
1767
1768 if (forward)
1769 {
1770 /* The [begin, current_begin) range has been read. */
1771 r.begin = begin;
1772 r.end = current_begin;
1773 r.data = buf;
1774 }
1775 else
1776 {
1777 /* The [current_end, end) range has been read. */
1778 LONGEST region_len = end - current_end;
1779
1780 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1781 memcpy (r.data, buf + (current_end - begin) * unit_size,
1782 region_len * unit_size);
1783 r.begin = current_end;
1784 r.end = end;
1785 xfree (buf);
1786 }
1787 VEC_safe_push(memory_read_result_s, (*result), &r);
1788 }
1789
1790 void
1791 free_memory_read_result_vector (void *x)
1792 {
1793 VEC(memory_read_result_s) *v = (VEC(memory_read_result_s) *) x;
1794 memory_read_result_s *current;
1795 int ix;
1796
1797 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1798 {
1799 xfree (current->data);
1800 }
1801 VEC_free (memory_read_result_s, v);
1802 }
1803
1804 VEC(memory_read_result_s) *
1805 read_memory_robust (struct target_ops *ops,
1806 const ULONGEST offset, const LONGEST len)
1807 {
1808 VEC(memory_read_result_s) *result = 0;
1809 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1810
1811 LONGEST xfered_total = 0;
1812 while (xfered_total < len)
1813 {
1814 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1815 LONGEST region_len;
1816
1817 /* If there is no explicit region, a fake one should be created. */
1818 gdb_assert (region);
1819
1820 if (region->hi == 0)
1821 region_len = len - xfered_total;
1822 else
1823 region_len = region->hi - offset;
1824
1825 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1826 {
1827 /* Cannot read this region. Note that we can end up here only
1828 if the region is explicitly marked inaccessible, or
1829 'inaccessible-by-default' is in effect. */
1830 xfered_total += region_len;
1831 }
1832 else
1833 {
1834 LONGEST to_read = min (len - xfered_total, region_len);
1835 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1836
1837 LONGEST xfered_partial =
1838 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1839 (gdb_byte *) buffer,
1840 offset + xfered_total, to_read);
1841 /* Call an observer, notifying them of the xfer progress? */
1842 if (xfered_partial <= 0)
1843 {
1844 /* Got an error reading full chunk. See if maybe we can read
1845 some subrange. */
1846 xfree (buffer);
1847 read_whatever_is_readable (ops, offset + xfered_total,
1848 offset + xfered_total + to_read,
1849 unit_size, &result);
1850 xfered_total += to_read;
1851 }
1852 else
1853 {
1854 struct memory_read_result r;
1855 r.data = buffer;
1856 r.begin = offset + xfered_total;
1857 r.end = r.begin + xfered_partial;
1858 VEC_safe_push (memory_read_result_s, result, &r);
1859 xfered_total += xfered_partial;
1860 }
1861 QUIT;
1862 }
1863 }
1864 return result;
1865 }
1866
1867
1868 /* An alternative to target_write with progress callbacks. */
1869
1870 LONGEST
1871 target_write_with_progress (struct target_ops *ops,
1872 enum target_object object,
1873 const char *annex, const gdb_byte *buf,
1874 ULONGEST offset, LONGEST len,
1875 void (*progress) (ULONGEST, void *), void *baton)
1876 {
1877 LONGEST xfered_total = 0;
1878 int unit_size = 1;
1879
1880 /* If we are writing to a memory object, find the length of an addressable
1881 unit for that architecture. */
1882 if (object == TARGET_OBJECT_MEMORY
1883 || object == TARGET_OBJECT_STACK_MEMORY
1884 || object == TARGET_OBJECT_CODE_MEMORY
1885 || object == TARGET_OBJECT_RAW_MEMORY)
1886 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1887
1888 /* Give the progress callback a chance to set up. */
1889 if (progress)
1890 (*progress) (0, baton);
1891
1892 while (xfered_total < len)
1893 {
1894 ULONGEST xfered_partial;
1895 enum target_xfer_status status;
1896
1897 status = target_write_partial (ops, object, annex,
1898 buf + xfered_total * unit_size,
1899 offset + xfered_total, len - xfered_total,
1900 &xfered_partial);
1901
1902 if (status != TARGET_XFER_OK)
1903 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1904
1905 if (progress)
1906 (*progress) (xfered_partial, baton);
1907
1908 xfered_total += xfered_partial;
1909 QUIT;
1910 }
1911 return len;
1912 }
1913
1914 /* For docs on target_write see target.h. */
1915
1916 LONGEST
1917 target_write (struct target_ops *ops,
1918 enum target_object object,
1919 const char *annex, const gdb_byte *buf,
1920 ULONGEST offset, LONGEST len)
1921 {
1922 return target_write_with_progress (ops, object, annex, buf, offset, len,
1923 NULL, NULL);
1924 }
1925
1926 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1927 the size of the transferred data. PADDING additional bytes are
1928 available in *BUF_P. This is a helper function for
1929 target_read_alloc; see the declaration of that function for more
1930 information. */
1931
1932 static LONGEST
1933 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1934 const char *annex, gdb_byte **buf_p, int padding)
1935 {
1936 size_t buf_alloc, buf_pos;
1937 gdb_byte *buf;
1938
1939 /* This function does not have a length parameter; it reads the
1940 entire OBJECT). Also, it doesn't support objects fetched partly
1941 from one target and partly from another (in a different stratum,
1942 e.g. a core file and an executable). Both reasons make it
1943 unsuitable for reading memory. */
1944 gdb_assert (object != TARGET_OBJECT_MEMORY);
1945
1946 /* Start by reading up to 4K at a time. The target will throttle
1947 this number down if necessary. */
1948 buf_alloc = 4096;
1949 buf = (gdb_byte *) xmalloc (buf_alloc);
1950 buf_pos = 0;
1951 while (1)
1952 {
1953 ULONGEST xfered_len;
1954 enum target_xfer_status status;
1955
1956 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1957 buf_pos, buf_alloc - buf_pos - padding,
1958 &xfered_len);
1959
1960 if (status == TARGET_XFER_EOF)
1961 {
1962 /* Read all there was. */
1963 if (buf_pos == 0)
1964 xfree (buf);
1965 else
1966 *buf_p = buf;
1967 return buf_pos;
1968 }
1969 else if (status != TARGET_XFER_OK)
1970 {
1971 /* An error occurred. */
1972 xfree (buf);
1973 return TARGET_XFER_E_IO;
1974 }
1975
1976 buf_pos += xfered_len;
1977
1978 /* If the buffer is filling up, expand it. */
1979 if (buf_alloc < buf_pos * 2)
1980 {
1981 buf_alloc *= 2;
1982 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1983 }
1984
1985 QUIT;
1986 }
1987 }
1988
1989 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1990 the size of the transferred data. See the declaration in "target.h"
1991 function for more information about the return value. */
1992
1993 LONGEST
1994 target_read_alloc (struct target_ops *ops, enum target_object object,
1995 const char *annex, gdb_byte **buf_p)
1996 {
1997 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1998 }
1999
2000 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2001 returned as a string, allocated using xmalloc. If an error occurs
2002 or the transfer is unsupported, NULL is returned. Empty objects
2003 are returned as allocated but empty strings. A warning is issued
2004 if the result contains any embedded NUL bytes. */
2005
2006 char *
2007 target_read_stralloc (struct target_ops *ops, enum target_object object,
2008 const char *annex)
2009 {
2010 gdb_byte *buffer;
2011 char *bufstr;
2012 LONGEST i, transferred;
2013
2014 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2015 bufstr = (char *) buffer;
2016
2017 if (transferred < 0)
2018 return NULL;
2019
2020 if (transferred == 0)
2021 return xstrdup ("");
2022
2023 bufstr[transferred] = 0;
2024
2025 /* Check for embedded NUL bytes; but allow trailing NULs. */
2026 for (i = strlen (bufstr); i < transferred; i++)
2027 if (bufstr[i] != 0)
2028 {
2029 warning (_("target object %d, annex %s, "
2030 "contained unexpected null characters"),
2031 (int) object, annex ? annex : "(none)");
2032 break;
2033 }
2034
2035 return bufstr;
2036 }
2037
2038 /* Memory transfer methods. */
2039
2040 void
2041 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2042 LONGEST len)
2043 {
2044 /* This method is used to read from an alternate, non-current
2045 target. This read must bypass the overlay support (as symbols
2046 don't match this target), and GDB's internal cache (wrong cache
2047 for this target). */
2048 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2049 != len)
2050 memory_error (TARGET_XFER_E_IO, addr);
2051 }
2052
2053 ULONGEST
2054 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2055 int len, enum bfd_endian byte_order)
2056 {
2057 gdb_byte buf[sizeof (ULONGEST)];
2058
2059 gdb_assert (len <= sizeof (buf));
2060 get_target_memory (ops, addr, buf, len);
2061 return extract_unsigned_integer (buf, len, byte_order);
2062 }
2063
2064 /* See target.h. */
2065
2066 int
2067 target_insert_breakpoint (struct gdbarch *gdbarch,
2068 struct bp_target_info *bp_tgt)
2069 {
2070 if (!may_insert_breakpoints)
2071 {
2072 warning (_("May not insert breakpoints"));
2073 return 1;
2074 }
2075
2076 return current_target.to_insert_breakpoint (&current_target,
2077 gdbarch, bp_tgt);
2078 }
2079
2080 /* See target.h. */
2081
2082 int
2083 target_remove_breakpoint (struct gdbarch *gdbarch,
2084 struct bp_target_info *bp_tgt)
2085 {
2086 /* This is kind of a weird case to handle, but the permission might
2087 have been changed after breakpoints were inserted - in which case
2088 we should just take the user literally and assume that any
2089 breakpoints should be left in place. */
2090 if (!may_insert_breakpoints)
2091 {
2092 warning (_("May not remove breakpoints"));
2093 return 1;
2094 }
2095
2096 return current_target.to_remove_breakpoint (&current_target,
2097 gdbarch, bp_tgt);
2098 }
2099
2100 static void
2101 target_info (char *args, int from_tty)
2102 {
2103 struct target_ops *t;
2104 int has_all_mem = 0;
2105
2106 if (symfile_objfile != NULL)
2107 printf_unfiltered (_("Symbols from \"%s\".\n"),
2108 objfile_name (symfile_objfile));
2109
2110 for (t = target_stack; t != NULL; t = t->beneath)
2111 {
2112 if (!(*t->to_has_memory) (t))
2113 continue;
2114
2115 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2116 continue;
2117 if (has_all_mem)
2118 printf_unfiltered (_("\tWhile running this, "
2119 "GDB does not access memory from...\n"));
2120 printf_unfiltered ("%s:\n", t->to_longname);
2121 (t->to_files_info) (t);
2122 has_all_mem = (*t->to_has_all_memory) (t);
2123 }
2124 }
2125
2126 /* This function is called before any new inferior is created, e.g.
2127 by running a program, attaching, or connecting to a target.
2128 It cleans up any state from previous invocations which might
2129 change between runs. This is a subset of what target_preopen
2130 resets (things which might change between targets). */
2131
2132 void
2133 target_pre_inferior (int from_tty)
2134 {
2135 /* Clear out solib state. Otherwise the solib state of the previous
2136 inferior might have survived and is entirely wrong for the new
2137 target. This has been observed on GNU/Linux using glibc 2.3. How
2138 to reproduce:
2139
2140 bash$ ./foo&
2141 [1] 4711
2142 bash$ ./foo&
2143 [1] 4712
2144 bash$ gdb ./foo
2145 [...]
2146 (gdb) attach 4711
2147 (gdb) detach
2148 (gdb) attach 4712
2149 Cannot access memory at address 0xdeadbeef
2150 */
2151
2152 /* In some OSs, the shared library list is the same/global/shared
2153 across inferiors. If code is shared between processes, so are
2154 memory regions and features. */
2155 if (!gdbarch_has_global_solist (target_gdbarch ()))
2156 {
2157 no_shared_libraries (NULL, from_tty);
2158
2159 invalidate_target_mem_regions ();
2160
2161 target_clear_description ();
2162 }
2163
2164 /* attach_flag may be set if the previous process associated with
2165 the inferior was attached to. */
2166 current_inferior ()->attach_flag = 0;
2167
2168 agent_capability_invalidate ();
2169 }
2170
2171 /* Callback for iterate_over_inferiors. Gets rid of the given
2172 inferior. */
2173
2174 static int
2175 dispose_inferior (struct inferior *inf, void *args)
2176 {
2177 struct thread_info *thread;
2178
2179 thread = any_thread_of_process (inf->pid);
2180 if (thread)
2181 {
2182 switch_to_thread (thread->ptid);
2183
2184 /* Core inferiors actually should be detached, not killed. */
2185 if (target_has_execution)
2186 target_kill ();
2187 else
2188 target_detach (NULL, 0);
2189 }
2190
2191 return 0;
2192 }
2193
2194 /* This is to be called by the open routine before it does
2195 anything. */
2196
2197 void
2198 target_preopen (int from_tty)
2199 {
2200 dont_repeat ();
2201
2202 if (have_inferiors ())
2203 {
2204 if (!from_tty
2205 || !have_live_inferiors ()
2206 || query (_("A program is being debugged already. Kill it? ")))
2207 iterate_over_inferiors (dispose_inferior, NULL);
2208 else
2209 error (_("Program not killed."));
2210 }
2211
2212 /* Calling target_kill may remove the target from the stack. But if
2213 it doesn't (which seems like a win for UDI), remove it now. */
2214 /* Leave the exec target, though. The user may be switching from a
2215 live process to a core of the same program. */
2216 pop_all_targets_above (file_stratum);
2217
2218 target_pre_inferior (from_tty);
2219 }
2220
2221 /* Detach a target after doing deferred register stores. */
2222
2223 void
2224 target_detach (const char *args, int from_tty)
2225 {
2226 struct target_ops* t;
2227
2228 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2229 /* Don't remove global breakpoints here. They're removed on
2230 disconnection from the target. */
2231 ;
2232 else
2233 /* If we're in breakpoints-always-inserted mode, have to remove
2234 them before detaching. */
2235 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2236
2237 prepare_for_detach ();
2238
2239 current_target.to_detach (&current_target, args, from_tty);
2240 }
2241
2242 void
2243 target_disconnect (const char *args, int from_tty)
2244 {
2245 /* If we're in breakpoints-always-inserted mode or if breakpoints
2246 are global across processes, we have to remove them before
2247 disconnecting. */
2248 remove_breakpoints ();
2249
2250 current_target.to_disconnect (&current_target, args, from_tty);
2251 }
2252
2253 ptid_t
2254 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2255 {
2256 return (current_target.to_wait) (&current_target, ptid, status, options);
2257 }
2258
2259 /* See target.h. */
2260
2261 ptid_t
2262 default_target_wait (struct target_ops *ops,
2263 ptid_t ptid, struct target_waitstatus *status,
2264 int options)
2265 {
2266 status->kind = TARGET_WAITKIND_IGNORE;
2267 return minus_one_ptid;
2268 }
2269
2270 char *
2271 target_pid_to_str (ptid_t ptid)
2272 {
2273 return (*current_target.to_pid_to_str) (&current_target, ptid);
2274 }
2275
2276 const char *
2277 target_thread_name (struct thread_info *info)
2278 {
2279 return current_target.to_thread_name (&current_target, info);
2280 }
2281
2282 void
2283 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2284 {
2285 struct target_ops *t;
2286
2287 target_dcache_invalidate ();
2288
2289 current_target.to_resume (&current_target, ptid, step, signal);
2290
2291 registers_changed_ptid (ptid);
2292 /* We only set the internal executing state here. The user/frontend
2293 running state is set at a higher level. */
2294 set_executing (ptid, 1);
2295 clear_inline_frame_state (ptid);
2296 }
2297
2298 void
2299 target_pass_signals (int numsigs, unsigned char *pass_signals)
2300 {
2301 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2302 }
2303
2304 void
2305 target_program_signals (int numsigs, unsigned char *program_signals)
2306 {
2307 (*current_target.to_program_signals) (&current_target,
2308 numsigs, program_signals);
2309 }
2310
2311 static int
2312 default_follow_fork (struct target_ops *self, int follow_child,
2313 int detach_fork)
2314 {
2315 /* Some target returned a fork event, but did not know how to follow it. */
2316 internal_error (__FILE__, __LINE__,
2317 _("could not find a target to follow fork"));
2318 }
2319
2320 /* Look through the list of possible targets for a target that can
2321 follow forks. */
2322
2323 int
2324 target_follow_fork (int follow_child, int detach_fork)
2325 {
2326 return current_target.to_follow_fork (&current_target,
2327 follow_child, detach_fork);
2328 }
2329
2330 /* Target wrapper for follow exec hook. */
2331
2332 void
2333 target_follow_exec (struct inferior *inf, char *execd_pathname)
2334 {
2335 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2336 }
2337
2338 static void
2339 default_mourn_inferior (struct target_ops *self)
2340 {
2341 internal_error (__FILE__, __LINE__,
2342 _("could not find a target to follow mourn inferior"));
2343 }
2344
2345 void
2346 target_mourn_inferior (void)
2347 {
2348 current_target.to_mourn_inferior (&current_target);
2349
2350 /* We no longer need to keep handles on any of the object files.
2351 Make sure to release them to avoid unnecessarily locking any
2352 of them while we're not actually debugging. */
2353 bfd_cache_close_all ();
2354 }
2355
2356 /* Look for a target which can describe architectural features, starting
2357 from TARGET. If we find one, return its description. */
2358
2359 const struct target_desc *
2360 target_read_description (struct target_ops *target)
2361 {
2362 return target->to_read_description (target);
2363 }
2364
2365 /* This implements a basic search of memory, reading target memory and
2366 performing the search here (as opposed to performing the search in on the
2367 target side with, for example, gdbserver). */
2368
2369 int
2370 simple_search_memory (struct target_ops *ops,
2371 CORE_ADDR start_addr, ULONGEST search_space_len,
2372 const gdb_byte *pattern, ULONGEST pattern_len,
2373 CORE_ADDR *found_addrp)
2374 {
2375 /* NOTE: also defined in find.c testcase. */
2376 #define SEARCH_CHUNK_SIZE 16000
2377 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2378 /* Buffer to hold memory contents for searching. */
2379 gdb_byte *search_buf;
2380 unsigned search_buf_size;
2381 struct cleanup *old_cleanups;
2382
2383 search_buf_size = chunk_size + pattern_len - 1;
2384
2385 /* No point in trying to allocate a buffer larger than the search space. */
2386 if (search_space_len < search_buf_size)
2387 search_buf_size = search_space_len;
2388
2389 search_buf = (gdb_byte *) malloc (search_buf_size);
2390 if (search_buf == NULL)
2391 error (_("Unable to allocate memory to perform the search."));
2392 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2393
2394 /* Prime the search buffer. */
2395
2396 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2397 search_buf, start_addr, search_buf_size) != search_buf_size)
2398 {
2399 warning (_("Unable to access %s bytes of target "
2400 "memory at %s, halting search."),
2401 pulongest (search_buf_size), hex_string (start_addr));
2402 do_cleanups (old_cleanups);
2403 return -1;
2404 }
2405
2406 /* Perform the search.
2407
2408 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2409 When we've scanned N bytes we copy the trailing bytes to the start and
2410 read in another N bytes. */
2411
2412 while (search_space_len >= pattern_len)
2413 {
2414 gdb_byte *found_ptr;
2415 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2416
2417 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2418 pattern, pattern_len);
2419
2420 if (found_ptr != NULL)
2421 {
2422 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2423
2424 *found_addrp = found_addr;
2425 do_cleanups (old_cleanups);
2426 return 1;
2427 }
2428
2429 /* Not found in this chunk, skip to next chunk. */
2430
2431 /* Don't let search_space_len wrap here, it's unsigned. */
2432 if (search_space_len >= chunk_size)
2433 search_space_len -= chunk_size;
2434 else
2435 search_space_len = 0;
2436
2437 if (search_space_len >= pattern_len)
2438 {
2439 unsigned keep_len = search_buf_size - chunk_size;
2440 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2441 int nr_to_read;
2442
2443 /* Copy the trailing part of the previous iteration to the front
2444 of the buffer for the next iteration. */
2445 gdb_assert (keep_len == pattern_len - 1);
2446 memcpy (search_buf, search_buf + chunk_size, keep_len);
2447
2448 nr_to_read = min (search_space_len - keep_len, chunk_size);
2449
2450 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2451 search_buf + keep_len, read_addr,
2452 nr_to_read) != nr_to_read)
2453 {
2454 warning (_("Unable to access %s bytes of target "
2455 "memory at %s, halting search."),
2456 plongest (nr_to_read),
2457 hex_string (read_addr));
2458 do_cleanups (old_cleanups);
2459 return -1;
2460 }
2461
2462 start_addr += chunk_size;
2463 }
2464 }
2465
2466 /* Not found. */
2467
2468 do_cleanups (old_cleanups);
2469 return 0;
2470 }
2471
2472 /* Default implementation of memory-searching. */
2473
2474 static int
2475 default_search_memory (struct target_ops *self,
2476 CORE_ADDR start_addr, ULONGEST search_space_len,
2477 const gdb_byte *pattern, ULONGEST pattern_len,
2478 CORE_ADDR *found_addrp)
2479 {
2480 /* Start over from the top of the target stack. */
2481 return simple_search_memory (current_target.beneath,
2482 start_addr, search_space_len,
2483 pattern, pattern_len, found_addrp);
2484 }
2485
2486 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2487 sequence of bytes in PATTERN with length PATTERN_LEN.
2488
2489 The result is 1 if found, 0 if not found, and -1 if there was an error
2490 requiring halting of the search (e.g. memory read error).
2491 If the pattern is found the address is recorded in FOUND_ADDRP. */
2492
2493 int
2494 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2495 const gdb_byte *pattern, ULONGEST pattern_len,
2496 CORE_ADDR *found_addrp)
2497 {
2498 return current_target.to_search_memory (&current_target, start_addr,
2499 search_space_len,
2500 pattern, pattern_len, found_addrp);
2501 }
2502
2503 /* Look through the currently pushed targets. If none of them will
2504 be able to restart the currently running process, issue an error
2505 message. */
2506
2507 void
2508 target_require_runnable (void)
2509 {
2510 struct target_ops *t;
2511
2512 for (t = target_stack; t != NULL; t = t->beneath)
2513 {
2514 /* If this target knows how to create a new program, then
2515 assume we will still be able to after killing the current
2516 one. Either killing and mourning will not pop T, or else
2517 find_default_run_target will find it again. */
2518 if (t->to_create_inferior != NULL)
2519 return;
2520
2521 /* Do not worry about targets at certain strata that can not
2522 create inferiors. Assume they will be pushed again if
2523 necessary, and continue to the process_stratum. */
2524 if (t->to_stratum == thread_stratum
2525 || t->to_stratum == record_stratum
2526 || t->to_stratum == arch_stratum)
2527 continue;
2528
2529 error (_("The \"%s\" target does not support \"run\". "
2530 "Try \"help target\" or \"continue\"."),
2531 t->to_shortname);
2532 }
2533
2534 /* This function is only called if the target is running. In that
2535 case there should have been a process_stratum target and it
2536 should either know how to create inferiors, or not... */
2537 internal_error (__FILE__, __LINE__, _("No targets found"));
2538 }
2539
2540 /* Whether GDB is allowed to fall back to the default run target for
2541 "run", "attach", etc. when no target is connected yet. */
2542 static int auto_connect_native_target = 1;
2543
2544 static void
2545 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2546 struct cmd_list_element *c, const char *value)
2547 {
2548 fprintf_filtered (file,
2549 _("Whether GDB may automatically connect to the "
2550 "native target is %s.\n"),
2551 value);
2552 }
2553
2554 /* Look through the list of possible targets for a target that can
2555 execute a run or attach command without any other data. This is
2556 used to locate the default process stratum.
2557
2558 If DO_MESG is not NULL, the result is always valid (error() is
2559 called for errors); else, return NULL on error. */
2560
2561 static struct target_ops *
2562 find_default_run_target (char *do_mesg)
2563 {
2564 struct target_ops *runable = NULL;
2565
2566 if (auto_connect_native_target)
2567 {
2568 struct target_ops *t;
2569 int count = 0;
2570 int i;
2571
2572 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2573 {
2574 if (t->to_can_run != delegate_can_run && target_can_run (t))
2575 {
2576 runable = t;
2577 ++count;
2578 }
2579 }
2580
2581 if (count != 1)
2582 runable = NULL;
2583 }
2584
2585 if (runable == NULL)
2586 {
2587 if (do_mesg)
2588 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2589 else
2590 return NULL;
2591 }
2592
2593 return runable;
2594 }
2595
2596 /* See target.h. */
2597
2598 struct target_ops *
2599 find_attach_target (void)
2600 {
2601 struct target_ops *t;
2602
2603 /* If a target on the current stack can attach, use it. */
2604 for (t = current_target.beneath; t != NULL; t = t->beneath)
2605 {
2606 if (t->to_attach != NULL)
2607 break;
2608 }
2609
2610 /* Otherwise, use the default run target for attaching. */
2611 if (t == NULL)
2612 t = find_default_run_target ("attach");
2613
2614 return t;
2615 }
2616
2617 /* See target.h. */
2618
2619 struct target_ops *
2620 find_run_target (void)
2621 {
2622 struct target_ops *t;
2623
2624 /* If a target on the current stack can attach, use it. */
2625 for (t = current_target.beneath; t != NULL; t = t->beneath)
2626 {
2627 if (t->to_create_inferior != NULL)
2628 break;
2629 }
2630
2631 /* Otherwise, use the default run target. */
2632 if (t == NULL)
2633 t = find_default_run_target ("run");
2634
2635 return t;
2636 }
2637
2638 /* Implement the "info proc" command. */
2639
2640 int
2641 target_info_proc (const char *args, enum info_proc_what what)
2642 {
2643 struct target_ops *t;
2644
2645 /* If we're already connected to something that can get us OS
2646 related data, use it. Otherwise, try using the native
2647 target. */
2648 if (current_target.to_stratum >= process_stratum)
2649 t = current_target.beneath;
2650 else
2651 t = find_default_run_target (NULL);
2652
2653 for (; t != NULL; t = t->beneath)
2654 {
2655 if (t->to_info_proc != NULL)
2656 {
2657 t->to_info_proc (t, args, what);
2658
2659 if (targetdebug)
2660 fprintf_unfiltered (gdb_stdlog,
2661 "target_info_proc (\"%s\", %d)\n", args, what);
2662
2663 return 1;
2664 }
2665 }
2666
2667 return 0;
2668 }
2669
2670 static int
2671 find_default_supports_disable_randomization (struct target_ops *self)
2672 {
2673 struct target_ops *t;
2674
2675 t = find_default_run_target (NULL);
2676 if (t && t->to_supports_disable_randomization)
2677 return (t->to_supports_disable_randomization) (t);
2678 return 0;
2679 }
2680
2681 int
2682 target_supports_disable_randomization (void)
2683 {
2684 struct target_ops *t;
2685
2686 for (t = &current_target; t != NULL; t = t->beneath)
2687 if (t->to_supports_disable_randomization)
2688 return t->to_supports_disable_randomization (t);
2689
2690 return 0;
2691 }
2692
2693 char *
2694 target_get_osdata (const char *type)
2695 {
2696 struct target_ops *t;
2697
2698 /* If we're already connected to something that can get us OS
2699 related data, use it. Otherwise, try using the native
2700 target. */
2701 if (current_target.to_stratum >= process_stratum)
2702 t = current_target.beneath;
2703 else
2704 t = find_default_run_target ("get OS data");
2705
2706 if (!t)
2707 return NULL;
2708
2709 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2710 }
2711
2712 static struct address_space *
2713 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2714 {
2715 struct inferior *inf;
2716
2717 /* Fall-back to the "main" address space of the inferior. */
2718 inf = find_inferior_ptid (ptid);
2719
2720 if (inf == NULL || inf->aspace == NULL)
2721 internal_error (__FILE__, __LINE__,
2722 _("Can't determine the current "
2723 "address space of thread %s\n"),
2724 target_pid_to_str (ptid));
2725
2726 return inf->aspace;
2727 }
2728
2729 /* Determine the current address space of thread PTID. */
2730
2731 struct address_space *
2732 target_thread_address_space (ptid_t ptid)
2733 {
2734 struct address_space *aspace;
2735
2736 aspace = current_target.to_thread_address_space (&current_target, ptid);
2737 gdb_assert (aspace != NULL);
2738
2739 return aspace;
2740 }
2741
2742
2743 /* Target file operations. */
2744
2745 static struct target_ops *
2746 default_fileio_target (void)
2747 {
2748 /* If we're already connected to something that can perform
2749 file I/O, use it. Otherwise, try using the native target. */
2750 if (current_target.to_stratum >= process_stratum)
2751 return current_target.beneath;
2752 else
2753 return find_default_run_target ("file I/O");
2754 }
2755
2756 /* File handle for target file operations. */
2757
2758 typedef struct
2759 {
2760 /* The target on which this file is open. */
2761 struct target_ops *t;
2762
2763 /* The file descriptor on the target. */
2764 int fd;
2765 } fileio_fh_t;
2766
2767 DEF_VEC_O (fileio_fh_t);
2768
2769 /* Vector of currently open file handles. The value returned by
2770 target_fileio_open and passed as the FD argument to other
2771 target_fileio_* functions is an index into this vector. This
2772 vector's entries are never freed; instead, files are marked as
2773 closed, and the handle becomes available for reuse. */
2774 static VEC (fileio_fh_t) *fileio_fhandles;
2775
2776 /* Macro to check whether a fileio_fh_t represents a closed file. */
2777 #define is_closed_fileio_fh(fd) ((fd) < 0)
2778
2779 /* Index into fileio_fhandles of the lowest handle that might be
2780 closed. This permits handle reuse without searching the whole
2781 list each time a new file is opened. */
2782 static int lowest_closed_fd;
2783
2784 /* Acquire a target fileio file descriptor. */
2785
2786 static int
2787 acquire_fileio_fd (struct target_ops *t, int fd)
2788 {
2789 fileio_fh_t *fh, buf;
2790
2791 gdb_assert (!is_closed_fileio_fh (fd));
2792
2793 /* Search for closed handles to reuse. */
2794 for (;
2795 VEC_iterate (fileio_fh_t, fileio_fhandles,
2796 lowest_closed_fd, fh);
2797 lowest_closed_fd++)
2798 if (is_closed_fileio_fh (fh->fd))
2799 break;
2800
2801 /* Push a new handle if no closed handles were found. */
2802 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2803 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2804
2805 /* Fill in the handle. */
2806 fh->t = t;
2807 fh->fd = fd;
2808
2809 /* Return its index, and start the next lookup at
2810 the next index. */
2811 return lowest_closed_fd++;
2812 }
2813
2814 /* Release a target fileio file descriptor. */
2815
2816 static void
2817 release_fileio_fd (int fd, fileio_fh_t *fh)
2818 {
2819 fh->fd = -1;
2820 lowest_closed_fd = min (lowest_closed_fd, fd);
2821 }
2822
2823 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2824
2825 #define fileio_fd_to_fh(fd) \
2826 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2827
2828 /* Helper for target_fileio_open and
2829 target_fileio_open_warn_if_slow. */
2830
2831 static int
2832 target_fileio_open_1 (struct inferior *inf, const char *filename,
2833 int flags, int mode, int warn_if_slow,
2834 int *target_errno)
2835 {
2836 struct target_ops *t;
2837
2838 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2839 {
2840 if (t->to_fileio_open != NULL)
2841 {
2842 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2843 warn_if_slow, target_errno);
2844
2845 if (fd < 0)
2846 fd = -1;
2847 else
2848 fd = acquire_fileio_fd (t, fd);
2849
2850 if (targetdebug)
2851 fprintf_unfiltered (gdb_stdlog,
2852 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2853 " = %d (%d)\n",
2854 inf == NULL ? 0 : inf->num,
2855 filename, flags, mode,
2856 warn_if_slow, fd,
2857 fd != -1 ? 0 : *target_errno);
2858 return fd;
2859 }
2860 }
2861
2862 *target_errno = FILEIO_ENOSYS;
2863 return -1;
2864 }
2865
2866 /* See target.h. */
2867
2868 int
2869 target_fileio_open (struct inferior *inf, const char *filename,
2870 int flags, int mode, int *target_errno)
2871 {
2872 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2873 target_errno);
2874 }
2875
2876 /* See target.h. */
2877
2878 int
2879 target_fileio_open_warn_if_slow (struct inferior *inf,
2880 const char *filename,
2881 int flags, int mode, int *target_errno)
2882 {
2883 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2884 target_errno);
2885 }
2886
2887 /* See target.h. */
2888
2889 int
2890 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2891 ULONGEST offset, int *target_errno)
2892 {
2893 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2894 int ret = -1;
2895
2896 if (is_closed_fileio_fh (fh->fd))
2897 *target_errno = EBADF;
2898 else
2899 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2900 len, offset, target_errno);
2901
2902 if (targetdebug)
2903 fprintf_unfiltered (gdb_stdlog,
2904 "target_fileio_pwrite (%d,...,%d,%s) "
2905 "= %d (%d)\n",
2906 fd, len, pulongest (offset),
2907 ret, ret != -1 ? 0 : *target_errno);
2908 return ret;
2909 }
2910
2911 /* See target.h. */
2912
2913 int
2914 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2915 ULONGEST offset, int *target_errno)
2916 {
2917 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2918 int ret = -1;
2919
2920 if (is_closed_fileio_fh (fh->fd))
2921 *target_errno = EBADF;
2922 else
2923 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2924 len, offset, target_errno);
2925
2926 if (targetdebug)
2927 fprintf_unfiltered (gdb_stdlog,
2928 "target_fileio_pread (%d,...,%d,%s) "
2929 "= %d (%d)\n",
2930 fd, len, pulongest (offset),
2931 ret, ret != -1 ? 0 : *target_errno);
2932 return ret;
2933 }
2934
2935 /* See target.h. */
2936
2937 int
2938 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2939 {
2940 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2941 int ret = -1;
2942
2943 if (is_closed_fileio_fh (fh->fd))
2944 *target_errno = EBADF;
2945 else
2946 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2947
2948 if (targetdebug)
2949 fprintf_unfiltered (gdb_stdlog,
2950 "target_fileio_fstat (%d) = %d (%d)\n",
2951 fd, ret, ret != -1 ? 0 : *target_errno);
2952 return ret;
2953 }
2954
2955 /* See target.h. */
2956
2957 int
2958 target_fileio_close (int fd, int *target_errno)
2959 {
2960 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2961 int ret = -1;
2962
2963 if (is_closed_fileio_fh (fh->fd))
2964 *target_errno = EBADF;
2965 else
2966 {
2967 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2968 release_fileio_fd (fd, fh);
2969 }
2970
2971 if (targetdebug)
2972 fprintf_unfiltered (gdb_stdlog,
2973 "target_fileio_close (%d) = %d (%d)\n",
2974 fd, ret, ret != -1 ? 0 : *target_errno);
2975 return ret;
2976 }
2977
2978 /* See target.h. */
2979
2980 int
2981 target_fileio_unlink (struct inferior *inf, const char *filename,
2982 int *target_errno)
2983 {
2984 struct target_ops *t;
2985
2986 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2987 {
2988 if (t->to_fileio_unlink != NULL)
2989 {
2990 int ret = t->to_fileio_unlink (t, inf, filename,
2991 target_errno);
2992
2993 if (targetdebug)
2994 fprintf_unfiltered (gdb_stdlog,
2995 "target_fileio_unlink (%d,%s)"
2996 " = %d (%d)\n",
2997 inf == NULL ? 0 : inf->num, filename,
2998 ret, ret != -1 ? 0 : *target_errno);
2999 return ret;
3000 }
3001 }
3002
3003 *target_errno = FILEIO_ENOSYS;
3004 return -1;
3005 }
3006
3007 /* See target.h. */
3008
3009 char *
3010 target_fileio_readlink (struct inferior *inf, const char *filename,
3011 int *target_errno)
3012 {
3013 struct target_ops *t;
3014
3015 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3016 {
3017 if (t->to_fileio_readlink != NULL)
3018 {
3019 char *ret = t->to_fileio_readlink (t, inf, filename,
3020 target_errno);
3021
3022 if (targetdebug)
3023 fprintf_unfiltered (gdb_stdlog,
3024 "target_fileio_readlink (%d,%s)"
3025 " = %s (%d)\n",
3026 inf == NULL ? 0 : inf->num,
3027 filename, ret? ret : "(nil)",
3028 ret? 0 : *target_errno);
3029 return ret;
3030 }
3031 }
3032
3033 *target_errno = FILEIO_ENOSYS;
3034 return NULL;
3035 }
3036
3037 static void
3038 target_fileio_close_cleanup (void *opaque)
3039 {
3040 int fd = *(int *) opaque;
3041 int target_errno;
3042
3043 target_fileio_close (fd, &target_errno);
3044 }
3045
3046 /* Read target file FILENAME, in the filesystem as seen by INF. If
3047 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3048 remote targets, the remote stub). Store the result in *BUF_P and
3049 return the size of the transferred data. PADDING additional bytes
3050 are available in *BUF_P. This is a helper function for
3051 target_fileio_read_alloc; see the declaration of that function for
3052 more information. */
3053
3054 static LONGEST
3055 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3056 gdb_byte **buf_p, int padding)
3057 {
3058 struct cleanup *close_cleanup;
3059 size_t buf_alloc, buf_pos;
3060 gdb_byte *buf;
3061 LONGEST n;
3062 int fd;
3063 int target_errno;
3064
3065 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3066 &target_errno);
3067 if (fd == -1)
3068 return -1;
3069
3070 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3071
3072 /* Start by reading up to 4K at a time. The target will throttle
3073 this number down if necessary. */
3074 buf_alloc = 4096;
3075 buf = (gdb_byte *) xmalloc (buf_alloc);
3076 buf_pos = 0;
3077 while (1)
3078 {
3079 n = target_fileio_pread (fd, &buf[buf_pos],
3080 buf_alloc - buf_pos - padding, buf_pos,
3081 &target_errno);
3082 if (n < 0)
3083 {
3084 /* An error occurred. */
3085 do_cleanups (close_cleanup);
3086 xfree (buf);
3087 return -1;
3088 }
3089 else if (n == 0)
3090 {
3091 /* Read all there was. */
3092 do_cleanups (close_cleanup);
3093 if (buf_pos == 0)
3094 xfree (buf);
3095 else
3096 *buf_p = buf;
3097 return buf_pos;
3098 }
3099
3100 buf_pos += n;
3101
3102 /* If the buffer is filling up, expand it. */
3103 if (buf_alloc < buf_pos * 2)
3104 {
3105 buf_alloc *= 2;
3106 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3107 }
3108
3109 QUIT;
3110 }
3111 }
3112
3113 /* See target.h. */
3114
3115 LONGEST
3116 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3117 gdb_byte **buf_p)
3118 {
3119 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3120 }
3121
3122 /* See target.h. */
3123
3124 char *
3125 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3126 {
3127 gdb_byte *buffer;
3128 char *bufstr;
3129 LONGEST i, transferred;
3130
3131 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3132 bufstr = (char *) buffer;
3133
3134 if (transferred < 0)
3135 return NULL;
3136
3137 if (transferred == 0)
3138 return xstrdup ("");
3139
3140 bufstr[transferred] = 0;
3141
3142 /* Check for embedded NUL bytes; but allow trailing NULs. */
3143 for (i = strlen (bufstr); i < transferred; i++)
3144 if (bufstr[i] != 0)
3145 {
3146 warning (_("target file %s "
3147 "contained unexpected null characters"),
3148 filename);
3149 break;
3150 }
3151
3152 return bufstr;
3153 }
3154
3155
3156 static int
3157 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3158 CORE_ADDR addr, int len)
3159 {
3160 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3161 }
3162
3163 static int
3164 default_watchpoint_addr_within_range (struct target_ops *target,
3165 CORE_ADDR addr,
3166 CORE_ADDR start, int length)
3167 {
3168 return addr >= start && addr < start + length;
3169 }
3170
3171 static struct gdbarch *
3172 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3173 {
3174 return target_gdbarch ();
3175 }
3176
3177 static int
3178 return_zero (struct target_ops *ignore)
3179 {
3180 return 0;
3181 }
3182
3183 static int
3184 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3185 {
3186 return 0;
3187 }
3188
3189 /*
3190 * Find the next target down the stack from the specified target.
3191 */
3192
3193 struct target_ops *
3194 find_target_beneath (struct target_ops *t)
3195 {
3196 return t->beneath;
3197 }
3198
3199 /* See target.h. */
3200
3201 struct target_ops *
3202 find_target_at (enum strata stratum)
3203 {
3204 struct target_ops *t;
3205
3206 for (t = current_target.beneath; t != NULL; t = t->beneath)
3207 if (t->to_stratum == stratum)
3208 return t;
3209
3210 return NULL;
3211 }
3212
3213 \f
3214 /* The inferior process has died. Long live the inferior! */
3215
3216 void
3217 generic_mourn_inferior (void)
3218 {
3219 ptid_t ptid;
3220
3221 ptid = inferior_ptid;
3222 inferior_ptid = null_ptid;
3223
3224 /* Mark breakpoints uninserted in case something tries to delete a
3225 breakpoint while we delete the inferior's threads (which would
3226 fail, since the inferior is long gone). */
3227 mark_breakpoints_out ();
3228
3229 if (!ptid_equal (ptid, null_ptid))
3230 {
3231 int pid = ptid_get_pid (ptid);
3232 exit_inferior (pid);
3233 }
3234
3235 /* Note this wipes step-resume breakpoints, so needs to be done
3236 after exit_inferior, which ends up referencing the step-resume
3237 breakpoints through clear_thread_inferior_resources. */
3238 breakpoint_init_inferior (inf_exited);
3239
3240 registers_changed ();
3241
3242 reopen_exec_file ();
3243 reinit_frame_cache ();
3244
3245 if (deprecated_detach_hook)
3246 deprecated_detach_hook ();
3247 }
3248 \f
3249 /* Convert a normal process ID to a string. Returns the string in a
3250 static buffer. */
3251
3252 char *
3253 normal_pid_to_str (ptid_t ptid)
3254 {
3255 static char buf[32];
3256
3257 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3258 return buf;
3259 }
3260
3261 static char *
3262 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3263 {
3264 return normal_pid_to_str (ptid);
3265 }
3266
3267 /* Error-catcher for target_find_memory_regions. */
3268 static int
3269 dummy_find_memory_regions (struct target_ops *self,
3270 find_memory_region_ftype ignore1, void *ignore2)
3271 {
3272 error (_("Command not implemented for this target."));
3273 return 0;
3274 }
3275
3276 /* Error-catcher for target_make_corefile_notes. */
3277 static char *
3278 dummy_make_corefile_notes (struct target_ops *self,
3279 bfd *ignore1, int *ignore2)
3280 {
3281 error (_("Command not implemented for this target."));
3282 return NULL;
3283 }
3284
3285 /* Set up the handful of non-empty slots needed by the dummy target
3286 vector. */
3287
3288 static void
3289 init_dummy_target (void)
3290 {
3291 dummy_target.to_shortname = "None";
3292 dummy_target.to_longname = "None";
3293 dummy_target.to_doc = "";
3294 dummy_target.to_supports_disable_randomization
3295 = find_default_supports_disable_randomization;
3296 dummy_target.to_stratum = dummy_stratum;
3297 dummy_target.to_has_all_memory = return_zero;
3298 dummy_target.to_has_memory = return_zero;
3299 dummy_target.to_has_stack = return_zero;
3300 dummy_target.to_has_registers = return_zero;
3301 dummy_target.to_has_execution = return_zero_has_execution;
3302 dummy_target.to_magic = OPS_MAGIC;
3303
3304 install_dummy_methods (&dummy_target);
3305 }
3306 \f
3307
3308 void
3309 target_close (struct target_ops *targ)
3310 {
3311 gdb_assert (!target_is_pushed (targ));
3312
3313 if (targ->to_xclose != NULL)
3314 targ->to_xclose (targ);
3315 else if (targ->to_close != NULL)
3316 targ->to_close (targ);
3317
3318 if (targetdebug)
3319 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3320 }
3321
3322 int
3323 target_thread_alive (ptid_t ptid)
3324 {
3325 return current_target.to_thread_alive (&current_target, ptid);
3326 }
3327
3328 void
3329 target_update_thread_list (void)
3330 {
3331 current_target.to_update_thread_list (&current_target);
3332 }
3333
3334 void
3335 target_stop (ptid_t ptid)
3336 {
3337 if (!may_stop)
3338 {
3339 warning (_("May not interrupt or stop the target, ignoring attempt"));
3340 return;
3341 }
3342
3343 (*current_target.to_stop) (&current_target, ptid);
3344 }
3345
3346 void
3347 target_interrupt (ptid_t ptid)
3348 {
3349 if (!may_stop)
3350 {
3351 warning (_("May not interrupt or stop the target, ignoring attempt"));
3352 return;
3353 }
3354
3355 (*current_target.to_interrupt) (&current_target, ptid);
3356 }
3357
3358 /* See target.h. */
3359
3360 void
3361 target_check_pending_interrupt (void)
3362 {
3363 (*current_target.to_check_pending_interrupt) (&current_target);
3364 }
3365
3366 /* See target/target.h. */
3367
3368 void
3369 target_stop_and_wait (ptid_t ptid)
3370 {
3371 struct target_waitstatus status;
3372 int was_non_stop = non_stop;
3373
3374 non_stop = 1;
3375 target_stop (ptid);
3376
3377 memset (&status, 0, sizeof (status));
3378 target_wait (ptid, &status, 0);
3379
3380 non_stop = was_non_stop;
3381 }
3382
3383 /* See target/target.h. */
3384
3385 void
3386 target_continue_no_signal (ptid_t ptid)
3387 {
3388 target_resume (ptid, 0, GDB_SIGNAL_0);
3389 }
3390
3391 /* Concatenate ELEM to LIST, a comma separate list, and return the
3392 result. The LIST incoming argument is released. */
3393
3394 static char *
3395 str_comma_list_concat_elem (char *list, const char *elem)
3396 {
3397 if (list == NULL)
3398 return xstrdup (elem);
3399 else
3400 return reconcat (list, list, ", ", elem, (char *) NULL);
3401 }
3402
3403 /* Helper for target_options_to_string. If OPT is present in
3404 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3405 Returns the new resulting string. OPT is removed from
3406 TARGET_OPTIONS. */
3407
3408 static char *
3409 do_option (int *target_options, char *ret,
3410 int opt, char *opt_str)
3411 {
3412 if ((*target_options & opt) != 0)
3413 {
3414 ret = str_comma_list_concat_elem (ret, opt_str);
3415 *target_options &= ~opt;
3416 }
3417
3418 return ret;
3419 }
3420
3421 char *
3422 target_options_to_string (int target_options)
3423 {
3424 char *ret = NULL;
3425
3426 #define DO_TARG_OPTION(OPT) \
3427 ret = do_option (&target_options, ret, OPT, #OPT)
3428
3429 DO_TARG_OPTION (TARGET_WNOHANG);
3430
3431 if (target_options != 0)
3432 ret = str_comma_list_concat_elem (ret, "unknown???");
3433
3434 if (ret == NULL)
3435 ret = xstrdup ("");
3436 return ret;
3437 }
3438
3439 static void
3440 debug_print_register (const char * func,
3441 struct regcache *regcache, int regno)
3442 {
3443 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3444
3445 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3446 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3447 && gdbarch_register_name (gdbarch, regno) != NULL
3448 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3449 fprintf_unfiltered (gdb_stdlog, "(%s)",
3450 gdbarch_register_name (gdbarch, regno));
3451 else
3452 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3453 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3454 {
3455 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3456 int i, size = register_size (gdbarch, regno);
3457 gdb_byte buf[MAX_REGISTER_SIZE];
3458
3459 regcache_raw_collect (regcache, regno, buf);
3460 fprintf_unfiltered (gdb_stdlog, " = ");
3461 for (i = 0; i < size; i++)
3462 {
3463 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3464 }
3465 if (size <= sizeof (LONGEST))
3466 {
3467 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3468
3469 fprintf_unfiltered (gdb_stdlog, " %s %s",
3470 core_addr_to_string_nz (val), plongest (val));
3471 }
3472 }
3473 fprintf_unfiltered (gdb_stdlog, "\n");
3474 }
3475
3476 void
3477 target_fetch_registers (struct regcache *regcache, int regno)
3478 {
3479 current_target.to_fetch_registers (&current_target, regcache, regno);
3480 if (targetdebug)
3481 debug_print_register ("target_fetch_registers", regcache, regno);
3482 }
3483
3484 void
3485 target_store_registers (struct regcache *regcache, int regno)
3486 {
3487 struct target_ops *t;
3488
3489 if (!may_write_registers)
3490 error (_("Writing to registers is not allowed (regno %d)"), regno);
3491
3492 current_target.to_store_registers (&current_target, regcache, regno);
3493 if (targetdebug)
3494 {
3495 debug_print_register ("target_store_registers", regcache, regno);
3496 }
3497 }
3498
3499 int
3500 target_core_of_thread (ptid_t ptid)
3501 {
3502 return current_target.to_core_of_thread (&current_target, ptid);
3503 }
3504
3505 int
3506 simple_verify_memory (struct target_ops *ops,
3507 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3508 {
3509 LONGEST total_xfered = 0;
3510
3511 while (total_xfered < size)
3512 {
3513 ULONGEST xfered_len;
3514 enum target_xfer_status status;
3515 gdb_byte buf[1024];
3516 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3517
3518 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3519 buf, NULL, lma + total_xfered, howmuch,
3520 &xfered_len);
3521 if (status == TARGET_XFER_OK
3522 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3523 {
3524 total_xfered += xfered_len;
3525 QUIT;
3526 }
3527 else
3528 return 0;
3529 }
3530 return 1;
3531 }
3532
3533 /* Default implementation of memory verification. */
3534
3535 static int
3536 default_verify_memory (struct target_ops *self,
3537 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3538 {
3539 /* Start over from the top of the target stack. */
3540 return simple_verify_memory (current_target.beneath,
3541 data, memaddr, size);
3542 }
3543
3544 int
3545 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3546 {
3547 return current_target.to_verify_memory (&current_target,
3548 data, memaddr, size);
3549 }
3550
3551 /* The documentation for this function is in its prototype declaration in
3552 target.h. */
3553
3554 int
3555 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3556 enum target_hw_bp_type rw)
3557 {
3558 return current_target.to_insert_mask_watchpoint (&current_target,
3559 addr, mask, rw);
3560 }
3561
3562 /* The documentation for this function is in its prototype declaration in
3563 target.h. */
3564
3565 int
3566 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3567 enum target_hw_bp_type rw)
3568 {
3569 return current_target.to_remove_mask_watchpoint (&current_target,
3570 addr, mask, rw);
3571 }
3572
3573 /* The documentation for this function is in its prototype declaration
3574 in target.h. */
3575
3576 int
3577 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3578 {
3579 return current_target.to_masked_watch_num_registers (&current_target,
3580 addr, mask);
3581 }
3582
3583 /* The documentation for this function is in its prototype declaration
3584 in target.h. */
3585
3586 int
3587 target_ranged_break_num_registers (void)
3588 {
3589 return current_target.to_ranged_break_num_registers (&current_target);
3590 }
3591
3592 /* See target.h. */
3593
3594 int
3595 target_supports_btrace (enum btrace_format format)
3596 {
3597 return current_target.to_supports_btrace (&current_target, format);
3598 }
3599
3600 /* See target.h. */
3601
3602 struct btrace_target_info *
3603 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3604 {
3605 return current_target.to_enable_btrace (&current_target, ptid, conf);
3606 }
3607
3608 /* See target.h. */
3609
3610 void
3611 target_disable_btrace (struct btrace_target_info *btinfo)
3612 {
3613 current_target.to_disable_btrace (&current_target, btinfo);
3614 }
3615
3616 /* See target.h. */
3617
3618 void
3619 target_teardown_btrace (struct btrace_target_info *btinfo)
3620 {
3621 current_target.to_teardown_btrace (&current_target, btinfo);
3622 }
3623
3624 /* See target.h. */
3625
3626 enum btrace_error
3627 target_read_btrace (struct btrace_data *btrace,
3628 struct btrace_target_info *btinfo,
3629 enum btrace_read_type type)
3630 {
3631 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3632 }
3633
3634 /* See target.h. */
3635
3636 const struct btrace_config *
3637 target_btrace_conf (const struct btrace_target_info *btinfo)
3638 {
3639 return current_target.to_btrace_conf (&current_target, btinfo);
3640 }
3641
3642 /* See target.h. */
3643
3644 void
3645 target_stop_recording (void)
3646 {
3647 current_target.to_stop_recording (&current_target);
3648 }
3649
3650 /* See target.h. */
3651
3652 void
3653 target_save_record (const char *filename)
3654 {
3655 current_target.to_save_record (&current_target, filename);
3656 }
3657
3658 /* See target.h. */
3659
3660 int
3661 target_supports_delete_record (void)
3662 {
3663 struct target_ops *t;
3664
3665 for (t = current_target.beneath; t != NULL; t = t->beneath)
3666 if (t->to_delete_record != delegate_delete_record
3667 && t->to_delete_record != tdefault_delete_record)
3668 return 1;
3669
3670 return 0;
3671 }
3672
3673 /* See target.h. */
3674
3675 void
3676 target_delete_record (void)
3677 {
3678 current_target.to_delete_record (&current_target);
3679 }
3680
3681 /* See target.h. */
3682
3683 int
3684 target_record_is_replaying (ptid_t ptid)
3685 {
3686 return current_target.to_record_is_replaying (&current_target, ptid);
3687 }
3688
3689 /* See target.h. */
3690
3691 int
3692 target_record_will_replay (ptid_t ptid, int dir)
3693 {
3694 return current_target.to_record_will_replay (&current_target, ptid, dir);
3695 }
3696
3697 /* See target.h. */
3698
3699 void
3700 target_record_stop_replaying (void)
3701 {
3702 current_target.to_record_stop_replaying (&current_target);
3703 }
3704
3705 /* See target.h. */
3706
3707 void
3708 target_goto_record_begin (void)
3709 {
3710 current_target.to_goto_record_begin (&current_target);
3711 }
3712
3713 /* See target.h. */
3714
3715 void
3716 target_goto_record_end (void)
3717 {
3718 current_target.to_goto_record_end (&current_target);
3719 }
3720
3721 /* See target.h. */
3722
3723 void
3724 target_goto_record (ULONGEST insn)
3725 {
3726 current_target.to_goto_record (&current_target, insn);
3727 }
3728
3729 /* See target.h. */
3730
3731 void
3732 target_insn_history (int size, int flags)
3733 {
3734 current_target.to_insn_history (&current_target, size, flags);
3735 }
3736
3737 /* See target.h. */
3738
3739 void
3740 target_insn_history_from (ULONGEST from, int size, int flags)
3741 {
3742 current_target.to_insn_history_from (&current_target, from, size, flags);
3743 }
3744
3745 /* See target.h. */
3746
3747 void
3748 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3749 {
3750 current_target.to_insn_history_range (&current_target, begin, end, flags);
3751 }
3752
3753 /* See target.h. */
3754
3755 void
3756 target_call_history (int size, int flags)
3757 {
3758 current_target.to_call_history (&current_target, size, flags);
3759 }
3760
3761 /* See target.h. */
3762
3763 void
3764 target_call_history_from (ULONGEST begin, int size, int flags)
3765 {
3766 current_target.to_call_history_from (&current_target, begin, size, flags);
3767 }
3768
3769 /* See target.h. */
3770
3771 void
3772 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3773 {
3774 current_target.to_call_history_range (&current_target, begin, end, flags);
3775 }
3776
3777 /* See target.h. */
3778
3779 const struct frame_unwind *
3780 target_get_unwinder (void)
3781 {
3782 return current_target.to_get_unwinder (&current_target);
3783 }
3784
3785 /* See target.h. */
3786
3787 const struct frame_unwind *
3788 target_get_tailcall_unwinder (void)
3789 {
3790 return current_target.to_get_tailcall_unwinder (&current_target);
3791 }
3792
3793 /* See target.h. */
3794
3795 void
3796 target_prepare_to_generate_core (void)
3797 {
3798 current_target.to_prepare_to_generate_core (&current_target);
3799 }
3800
3801 /* See target.h. */
3802
3803 void
3804 target_done_generating_core (void)
3805 {
3806 current_target.to_done_generating_core (&current_target);
3807 }
3808
3809 static void
3810 setup_target_debug (void)
3811 {
3812 memcpy (&debug_target, &current_target, sizeof debug_target);
3813
3814 init_debug_target (&current_target);
3815 }
3816 \f
3817
3818 static char targ_desc[] =
3819 "Names of targets and files being debugged.\nShows the entire \
3820 stack of targets currently in use (including the exec-file,\n\
3821 core-file, and process, if any), as well as the symbol file name.";
3822
3823 static void
3824 default_rcmd (struct target_ops *self, const char *command,
3825 struct ui_file *output)
3826 {
3827 error (_("\"monitor\" command not supported by this target."));
3828 }
3829
3830 static void
3831 do_monitor_command (char *cmd,
3832 int from_tty)
3833 {
3834 target_rcmd (cmd, gdb_stdtarg);
3835 }
3836
3837 /* Print the name of each layers of our target stack. */
3838
3839 static void
3840 maintenance_print_target_stack (char *cmd, int from_tty)
3841 {
3842 struct target_ops *t;
3843
3844 printf_filtered (_("The current target stack is:\n"));
3845
3846 for (t = target_stack; t != NULL; t = t->beneath)
3847 {
3848 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3849 }
3850 }
3851
3852 /* See target.h. */
3853
3854 void
3855 target_async (int enable)
3856 {
3857 infrun_async (enable);
3858 current_target.to_async (&current_target, enable);
3859 }
3860
3861 /* See target.h. */
3862
3863 void
3864 target_thread_events (int enable)
3865 {
3866 current_target.to_thread_events (&current_target, enable);
3867 }
3868
3869 /* Controls if targets can report that they can/are async. This is
3870 just for maintainers to use when debugging gdb. */
3871 int target_async_permitted = 1;
3872
3873 /* The set command writes to this variable. If the inferior is
3874 executing, target_async_permitted is *not* updated. */
3875 static int target_async_permitted_1 = 1;
3876
3877 static void
3878 maint_set_target_async_command (char *args, int from_tty,
3879 struct cmd_list_element *c)
3880 {
3881 if (have_live_inferiors ())
3882 {
3883 target_async_permitted_1 = target_async_permitted;
3884 error (_("Cannot change this setting while the inferior is running."));
3885 }
3886
3887 target_async_permitted = target_async_permitted_1;
3888 }
3889
3890 static void
3891 maint_show_target_async_command (struct ui_file *file, int from_tty,
3892 struct cmd_list_element *c,
3893 const char *value)
3894 {
3895 fprintf_filtered (file,
3896 _("Controlling the inferior in "
3897 "asynchronous mode is %s.\n"), value);
3898 }
3899
3900 /* Return true if the target operates in non-stop mode even with "set
3901 non-stop off". */
3902
3903 static int
3904 target_always_non_stop_p (void)
3905 {
3906 return current_target.to_always_non_stop_p (&current_target);
3907 }
3908
3909 /* See target.h. */
3910
3911 int
3912 target_is_non_stop_p (void)
3913 {
3914 return (non_stop
3915 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3916 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3917 && target_always_non_stop_p ()));
3918 }
3919
3920 /* Controls if targets can report that they always run in non-stop
3921 mode. This is just for maintainers to use when debugging gdb. */
3922 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3923
3924 /* The set command writes to this variable. If the inferior is
3925 executing, target_non_stop_enabled is *not* updated. */
3926 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3927
3928 /* Implementation of "maint set target-non-stop". */
3929
3930 static void
3931 maint_set_target_non_stop_command (char *args, int from_tty,
3932 struct cmd_list_element *c)
3933 {
3934 if (have_live_inferiors ())
3935 {
3936 target_non_stop_enabled_1 = target_non_stop_enabled;
3937 error (_("Cannot change this setting while the inferior is running."));
3938 }
3939
3940 target_non_stop_enabled = target_non_stop_enabled_1;
3941 }
3942
3943 /* Implementation of "maint show target-non-stop". */
3944
3945 static void
3946 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3947 struct cmd_list_element *c,
3948 const char *value)
3949 {
3950 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3951 fprintf_filtered (file,
3952 _("Whether the target is always in non-stop mode "
3953 "is %s (currently %s).\n"), value,
3954 target_always_non_stop_p () ? "on" : "off");
3955 else
3956 fprintf_filtered (file,
3957 _("Whether the target is always in non-stop mode "
3958 "is %s.\n"), value);
3959 }
3960
3961 /* Temporary copies of permission settings. */
3962
3963 static int may_write_registers_1 = 1;
3964 static int may_write_memory_1 = 1;
3965 static int may_insert_breakpoints_1 = 1;
3966 static int may_insert_tracepoints_1 = 1;
3967 static int may_insert_fast_tracepoints_1 = 1;
3968 static int may_stop_1 = 1;
3969
3970 /* Make the user-set values match the real values again. */
3971
3972 void
3973 update_target_permissions (void)
3974 {
3975 may_write_registers_1 = may_write_registers;
3976 may_write_memory_1 = may_write_memory;
3977 may_insert_breakpoints_1 = may_insert_breakpoints;
3978 may_insert_tracepoints_1 = may_insert_tracepoints;
3979 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3980 may_stop_1 = may_stop;
3981 }
3982
3983 /* The one function handles (most of) the permission flags in the same
3984 way. */
3985
3986 static void
3987 set_target_permissions (char *args, int from_tty,
3988 struct cmd_list_element *c)
3989 {
3990 if (target_has_execution)
3991 {
3992 update_target_permissions ();
3993 error (_("Cannot change this setting while the inferior is running."));
3994 }
3995
3996 /* Make the real values match the user-changed values. */
3997 may_write_registers = may_write_registers_1;
3998 may_insert_breakpoints = may_insert_breakpoints_1;
3999 may_insert_tracepoints = may_insert_tracepoints_1;
4000 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4001 may_stop = may_stop_1;
4002 update_observer_mode ();
4003 }
4004
4005 /* Set memory write permission independently of observer mode. */
4006
4007 static void
4008 set_write_memory_permission (char *args, int from_tty,
4009 struct cmd_list_element *c)
4010 {
4011 /* Make the real values match the user-changed values. */
4012 may_write_memory = may_write_memory_1;
4013 update_observer_mode ();
4014 }
4015
4016
4017 void
4018 initialize_targets (void)
4019 {
4020 init_dummy_target ();
4021 push_target (&dummy_target);
4022
4023 add_info ("target", target_info, targ_desc);
4024 add_info ("files", target_info, targ_desc);
4025
4026 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4027 Set target debugging."), _("\
4028 Show target debugging."), _("\
4029 When non-zero, target debugging is enabled. Higher numbers are more\n\
4030 verbose."),
4031 set_targetdebug,
4032 show_targetdebug,
4033 &setdebuglist, &showdebuglist);
4034
4035 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4036 &trust_readonly, _("\
4037 Set mode for reading from readonly sections."), _("\
4038 Show mode for reading from readonly sections."), _("\
4039 When this mode is on, memory reads from readonly sections (such as .text)\n\
4040 will be read from the object file instead of from the target. This will\n\
4041 result in significant performance improvement for remote targets."),
4042 NULL,
4043 show_trust_readonly,
4044 &setlist, &showlist);
4045
4046 add_com ("monitor", class_obscure, do_monitor_command,
4047 _("Send a command to the remote monitor (remote targets only)."));
4048
4049 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4050 _("Print the name of each layer of the internal target stack."),
4051 &maintenanceprintlist);
4052
4053 add_setshow_boolean_cmd ("target-async", no_class,
4054 &target_async_permitted_1, _("\
4055 Set whether gdb controls the inferior in asynchronous mode."), _("\
4056 Show whether gdb controls the inferior in asynchronous mode."), _("\
4057 Tells gdb whether to control the inferior in asynchronous mode."),
4058 maint_set_target_async_command,
4059 maint_show_target_async_command,
4060 &maintenance_set_cmdlist,
4061 &maintenance_show_cmdlist);
4062
4063 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4064 &target_non_stop_enabled_1, _("\
4065 Set whether gdb always controls the inferior in non-stop mode."), _("\
4066 Show whether gdb always controls the inferior in non-stop mode."), _("\
4067 Tells gdb whether to control the inferior in non-stop mode."),
4068 maint_set_target_non_stop_command,
4069 maint_show_target_non_stop_command,
4070 &maintenance_set_cmdlist,
4071 &maintenance_show_cmdlist);
4072
4073 add_setshow_boolean_cmd ("may-write-registers", class_support,
4074 &may_write_registers_1, _("\
4075 Set permission to write into registers."), _("\
4076 Show permission to write into registers."), _("\
4077 When this permission is on, GDB may write into the target's registers.\n\
4078 Otherwise, any sort of write attempt will result in an error."),
4079 set_target_permissions, NULL,
4080 &setlist, &showlist);
4081
4082 add_setshow_boolean_cmd ("may-write-memory", class_support,
4083 &may_write_memory_1, _("\
4084 Set permission to write into target memory."), _("\
4085 Show permission to write into target memory."), _("\
4086 When this permission is on, GDB may write into the target's memory.\n\
4087 Otherwise, any sort of write attempt will result in an error."),
4088 set_write_memory_permission, NULL,
4089 &setlist, &showlist);
4090
4091 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4092 &may_insert_breakpoints_1, _("\
4093 Set permission to insert breakpoints in the target."), _("\
4094 Show permission to insert breakpoints in the target."), _("\
4095 When this permission is on, GDB may insert breakpoints in the program.\n\
4096 Otherwise, any sort of insertion attempt will result in an error."),
4097 set_target_permissions, NULL,
4098 &setlist, &showlist);
4099
4100 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4101 &may_insert_tracepoints_1, _("\
4102 Set permission to insert tracepoints in the target."), _("\
4103 Show permission to insert tracepoints in the target."), _("\
4104 When this permission is on, GDB may insert tracepoints in the program.\n\
4105 Otherwise, any sort of insertion attempt will result in an error."),
4106 set_target_permissions, NULL,
4107 &setlist, &showlist);
4108
4109 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4110 &may_insert_fast_tracepoints_1, _("\
4111 Set permission to insert fast tracepoints in the target."), _("\
4112 Show permission to insert fast tracepoints in the target."), _("\
4113 When this permission is on, GDB may insert fast tracepoints.\n\
4114 Otherwise, any sort of insertion attempt will result in an error."),
4115 set_target_permissions, NULL,
4116 &setlist, &showlist);
4117
4118 add_setshow_boolean_cmd ("may-interrupt", class_support,
4119 &may_stop_1, _("\
4120 Set permission to interrupt or signal the target."), _("\
4121 Show permission to interrupt or signal the target."), _("\
4122 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4123 Otherwise, any attempt to interrupt or stop will be ignored."),
4124 set_target_permissions, NULL,
4125 &setlist, &showlist);
4126
4127 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4128 &auto_connect_native_target, _("\
4129 Set whether GDB may automatically connect to the native target."), _("\
4130 Show whether GDB may automatically connect to the native target."), _("\
4131 When on, and GDB is not connected to a target yet, GDB\n\
4132 attempts \"run\" and other commands with the native target."),
4133 NULL, show_auto_connect_native_target,
4134 &setlist, &showlist);
4135 }
This page took 0.125256 seconds and 5 git commands to generate.