2012-03-07 Pedro Alves <palves@redhat.com>
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include "gdb_string.h"
25 #include "target.h"
26 #include "gdbcmd.h"
27 #include "symtab.h"
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdb_wait.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static void tcomplain (void) ATTRIBUTE_NORETURN;
58
59 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
60
61 static int return_zero (void);
62
63 static int return_one (void);
64
65 static int return_minus_one (void);
66
67 void target_ignore (void);
68
69 static void target_command (char *, int);
70
71 static struct target_ops *find_default_run_target (char *);
72
73 static LONGEST default_xfer_partial (struct target_ops *ops,
74 enum target_object object,
75 const char *annex, gdb_byte *readbuf,
76 const gdb_byte *writebuf,
77 ULONGEST offset, LONGEST len);
78
79 static LONGEST current_xfer_partial (struct target_ops *ops,
80 enum target_object object,
81 const char *annex, gdb_byte *readbuf,
82 const gdb_byte *writebuf,
83 ULONGEST offset, LONGEST len);
84
85 static LONGEST target_xfer_partial (struct target_ops *ops,
86 enum target_object object,
87 const char *annex,
88 void *readbuf, const void *writebuf,
89 ULONGEST offset, LONGEST len);
90
91 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
92 ptid_t ptid);
93
94 static void init_dummy_target (void);
95
96 static struct target_ops debug_target;
97
98 static void debug_to_open (char *, int);
99
100 static void debug_to_prepare_to_store (struct regcache *);
101
102 static void debug_to_files_info (struct target_ops *);
103
104 static int debug_to_insert_breakpoint (struct gdbarch *,
105 struct bp_target_info *);
106
107 static int debug_to_remove_breakpoint (struct gdbarch *,
108 struct bp_target_info *);
109
110 static int debug_to_can_use_hw_breakpoint (int, int, int);
111
112 static int debug_to_insert_hw_breakpoint (struct gdbarch *,
113 struct bp_target_info *);
114
115 static int debug_to_remove_hw_breakpoint (struct gdbarch *,
116 struct bp_target_info *);
117
118 static int debug_to_insert_watchpoint (CORE_ADDR, int, int,
119 struct expression *);
120
121 static int debug_to_remove_watchpoint (CORE_ADDR, int, int,
122 struct expression *);
123
124 static int debug_to_stopped_by_watchpoint (void);
125
126 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
127
128 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
129 CORE_ADDR, CORE_ADDR, int);
130
131 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
132
133 static int debug_to_can_accel_watchpoint_condition (CORE_ADDR, int, int,
134 struct expression *);
135
136 static void debug_to_terminal_init (void);
137
138 static void debug_to_terminal_inferior (void);
139
140 static void debug_to_terminal_ours_for_output (void);
141
142 static void debug_to_terminal_save_ours (void);
143
144 static void debug_to_terminal_ours (void);
145
146 static void debug_to_terminal_info (char *, int);
147
148 static void debug_to_load (char *, int);
149
150 static int debug_to_can_run (void);
151
152 static void debug_to_stop (ptid_t);
153
154 /* Pointer to array of target architecture structures; the size of the
155 array; the current index into the array; the allocated size of the
156 array. */
157 struct target_ops **target_structs;
158 unsigned target_struct_size;
159 unsigned target_struct_index;
160 unsigned target_struct_allocsize;
161 #define DEFAULT_ALLOCSIZE 10
162
163 /* The initial current target, so that there is always a semi-valid
164 current target. */
165
166 static struct target_ops dummy_target;
167
168 /* Top of target stack. */
169
170 static struct target_ops *target_stack;
171
172 /* The target structure we are currently using to talk to a process
173 or file or whatever "inferior" we have. */
174
175 struct target_ops current_target;
176
177 /* Command list for target. */
178
179 static struct cmd_list_element *targetlist = NULL;
180
181 /* Nonzero if we should trust readonly sections from the
182 executable when reading memory. */
183
184 static int trust_readonly = 0;
185
186 /* Nonzero if we should show true memory content including
187 memory breakpoint inserted by gdb. */
188
189 static int show_memory_breakpoints = 0;
190
191 /* These globals control whether GDB attempts to perform these
192 operations; they are useful for targets that need to prevent
193 inadvertant disruption, such as in non-stop mode. */
194
195 int may_write_registers = 1;
196
197 int may_write_memory = 1;
198
199 int may_insert_breakpoints = 1;
200
201 int may_insert_tracepoints = 1;
202
203 int may_insert_fast_tracepoints = 1;
204
205 int may_stop = 1;
206
207 /* Non-zero if we want to see trace of target level stuff. */
208
209 static int targetdebug = 0;
210 static void
211 show_targetdebug (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
215 }
216
217 static void setup_target_debug (void);
218
219 /* The option sets this. */
220 static int stack_cache_enabled_p_1 = 1;
221 /* And set_stack_cache_enabled_p updates this.
222 The reason for the separation is so that we don't flush the cache for
223 on->on transitions. */
224 static int stack_cache_enabled_p = 1;
225
226 /* This is called *after* the stack-cache has been set.
227 Flush the cache for off->on and on->off transitions.
228 There's no real need to flush the cache for on->off transitions,
229 except cleanliness. */
230
231 static void
232 set_stack_cache_enabled_p (char *args, int from_tty,
233 struct cmd_list_element *c)
234 {
235 if (stack_cache_enabled_p != stack_cache_enabled_p_1)
236 target_dcache_invalidate ();
237
238 stack_cache_enabled_p = stack_cache_enabled_p_1;
239 }
240
241 static void
242 show_stack_cache_enabled_p (struct ui_file *file, int from_tty,
243 struct cmd_list_element *c, const char *value)
244 {
245 fprintf_filtered (file, _("Cache use for stack accesses is %s.\n"), value);
246 }
247
248 /* Cache of memory operations, to speed up remote access. */
249 static DCACHE *target_dcache;
250
251 /* Invalidate the target dcache. */
252
253 void
254 target_dcache_invalidate (void)
255 {
256 dcache_invalidate (target_dcache);
257 }
258
259 /* The user just typed 'target' without the name of a target. */
260
261 static void
262 target_command (char *arg, int from_tty)
263 {
264 fputs_filtered ("Argument required (target name). Try `help target'\n",
265 gdb_stdout);
266 }
267
268 /* Default target_has_* methods for process_stratum targets. */
269
270 int
271 default_child_has_all_memory (struct target_ops *ops)
272 {
273 /* If no inferior selected, then we can't read memory here. */
274 if (ptid_equal (inferior_ptid, null_ptid))
275 return 0;
276
277 return 1;
278 }
279
280 int
281 default_child_has_memory (struct target_ops *ops)
282 {
283 /* If no inferior selected, then we can't read memory here. */
284 if (ptid_equal (inferior_ptid, null_ptid))
285 return 0;
286
287 return 1;
288 }
289
290 int
291 default_child_has_stack (struct target_ops *ops)
292 {
293 /* If no inferior selected, there's no stack. */
294 if (ptid_equal (inferior_ptid, null_ptid))
295 return 0;
296
297 return 1;
298 }
299
300 int
301 default_child_has_registers (struct target_ops *ops)
302 {
303 /* Can't read registers from no inferior. */
304 if (ptid_equal (inferior_ptid, null_ptid))
305 return 0;
306
307 return 1;
308 }
309
310 int
311 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
312 {
313 /* If there's no thread selected, then we can't make it run through
314 hoops. */
315 if (ptid_equal (the_ptid, null_ptid))
316 return 0;
317
318 return 1;
319 }
320
321
322 int
323 target_has_all_memory_1 (void)
324 {
325 struct target_ops *t;
326
327 for (t = current_target.beneath; t != NULL; t = t->beneath)
328 if (t->to_has_all_memory (t))
329 return 1;
330
331 return 0;
332 }
333
334 int
335 target_has_memory_1 (void)
336 {
337 struct target_ops *t;
338
339 for (t = current_target.beneath; t != NULL; t = t->beneath)
340 if (t->to_has_memory (t))
341 return 1;
342
343 return 0;
344 }
345
346 int
347 target_has_stack_1 (void)
348 {
349 struct target_ops *t;
350
351 for (t = current_target.beneath; t != NULL; t = t->beneath)
352 if (t->to_has_stack (t))
353 return 1;
354
355 return 0;
356 }
357
358 int
359 target_has_registers_1 (void)
360 {
361 struct target_ops *t;
362
363 for (t = current_target.beneath; t != NULL; t = t->beneath)
364 if (t->to_has_registers (t))
365 return 1;
366
367 return 0;
368 }
369
370 int
371 target_has_execution_1 (ptid_t the_ptid)
372 {
373 struct target_ops *t;
374
375 for (t = current_target.beneath; t != NULL; t = t->beneath)
376 if (t->to_has_execution (t, the_ptid))
377 return 1;
378
379 return 0;
380 }
381
382 int
383 target_has_execution_current (void)
384 {
385 return target_has_execution_1 (inferior_ptid);
386 }
387
388 /* Add a possible target architecture to the list. */
389
390 void
391 add_target (struct target_ops *t)
392 {
393 /* Provide default values for all "must have" methods. */
394 if (t->to_xfer_partial == NULL)
395 t->to_xfer_partial = default_xfer_partial;
396
397 if (t->to_has_all_memory == NULL)
398 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
399
400 if (t->to_has_memory == NULL)
401 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
402
403 if (t->to_has_stack == NULL)
404 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
405
406 if (t->to_has_registers == NULL)
407 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
408
409 if (t->to_has_execution == NULL)
410 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
411
412 if (!target_structs)
413 {
414 target_struct_allocsize = DEFAULT_ALLOCSIZE;
415 target_structs = (struct target_ops **) xmalloc
416 (target_struct_allocsize * sizeof (*target_structs));
417 }
418 if (target_struct_size >= target_struct_allocsize)
419 {
420 target_struct_allocsize *= 2;
421 target_structs = (struct target_ops **)
422 xrealloc ((char *) target_structs,
423 target_struct_allocsize * sizeof (*target_structs));
424 }
425 target_structs[target_struct_size++] = t;
426
427 if (targetlist == NULL)
428 add_prefix_cmd ("target", class_run, target_command, _("\
429 Connect to a target machine or process.\n\
430 The first argument is the type or protocol of the target machine.\n\
431 Remaining arguments are interpreted by the target protocol. For more\n\
432 information on the arguments for a particular protocol, type\n\
433 `help target ' followed by the protocol name."),
434 &targetlist, "target ", 0, &cmdlist);
435 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
436 }
437
438 /* Stub functions */
439
440 void
441 target_ignore (void)
442 {
443 }
444
445 void
446 target_kill (void)
447 {
448 struct target_ops *t;
449
450 for (t = current_target.beneath; t != NULL; t = t->beneath)
451 if (t->to_kill != NULL)
452 {
453 if (targetdebug)
454 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
455
456 t->to_kill (t);
457 return;
458 }
459
460 noprocess ();
461 }
462
463 void
464 target_load (char *arg, int from_tty)
465 {
466 target_dcache_invalidate ();
467 (*current_target.to_load) (arg, from_tty);
468 }
469
470 void
471 target_create_inferior (char *exec_file, char *args,
472 char **env, int from_tty)
473 {
474 struct target_ops *t;
475
476 for (t = current_target.beneath; t != NULL; t = t->beneath)
477 {
478 if (t->to_create_inferior != NULL)
479 {
480 t->to_create_inferior (t, exec_file, args, env, from_tty);
481 if (targetdebug)
482 fprintf_unfiltered (gdb_stdlog,
483 "target_create_inferior (%s, %s, xxx, %d)\n",
484 exec_file, args, from_tty);
485 return;
486 }
487 }
488
489 internal_error (__FILE__, __LINE__,
490 _("could not find a target to create inferior"));
491 }
492
493 void
494 target_terminal_inferior (void)
495 {
496 /* A background resume (``run&'') should leave GDB in control of the
497 terminal. Use target_can_async_p, not target_is_async_p, since at
498 this point the target is not async yet. However, if sync_execution
499 is not set, we know it will become async prior to resume. */
500 if (target_can_async_p () && !sync_execution)
501 return;
502
503 /* If GDB is resuming the inferior in the foreground, install
504 inferior's terminal modes. */
505 (*current_target.to_terminal_inferior) ();
506 }
507
508 static int
509 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
510 struct target_ops *t)
511 {
512 errno = EIO; /* Can't read/write this location. */
513 return 0; /* No bytes handled. */
514 }
515
516 static void
517 tcomplain (void)
518 {
519 error (_("You can't do that when your target is `%s'"),
520 current_target.to_shortname);
521 }
522
523 void
524 noprocess (void)
525 {
526 error (_("You can't do that without a process to debug."));
527 }
528
529 static void
530 default_terminal_info (char *args, int from_tty)
531 {
532 printf_unfiltered (_("No saved terminal information.\n"));
533 }
534
535 /* A default implementation for the to_get_ada_task_ptid target method.
536
537 This function builds the PTID by using both LWP and TID as part of
538 the PTID lwp and tid elements. The pid used is the pid of the
539 inferior_ptid. */
540
541 static ptid_t
542 default_get_ada_task_ptid (long lwp, long tid)
543 {
544 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
545 }
546
547 static enum exec_direction_kind
548 default_execution_direction (void)
549 {
550 if (!target_can_execute_reverse)
551 return EXEC_FORWARD;
552 else if (!target_can_async_p ())
553 return EXEC_FORWARD;
554 else
555 gdb_assert_not_reached ("\
556 to_execution_direction must be implemented for reverse async");
557 }
558
559 /* Go through the target stack from top to bottom, copying over zero
560 entries in current_target, then filling in still empty entries. In
561 effect, we are doing class inheritance through the pushed target
562 vectors.
563
564 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
565 is currently implemented, is that it discards any knowledge of
566 which target an inherited method originally belonged to.
567 Consequently, new new target methods should instead explicitly and
568 locally search the target stack for the target that can handle the
569 request. */
570
571 static void
572 update_current_target (void)
573 {
574 struct target_ops *t;
575
576 /* First, reset current's contents. */
577 memset (&current_target, 0, sizeof (current_target));
578
579 #define INHERIT(FIELD, TARGET) \
580 if (!current_target.FIELD) \
581 current_target.FIELD = (TARGET)->FIELD
582
583 for (t = target_stack; t; t = t->beneath)
584 {
585 INHERIT (to_shortname, t);
586 INHERIT (to_longname, t);
587 INHERIT (to_doc, t);
588 /* Do not inherit to_open. */
589 /* Do not inherit to_close. */
590 /* Do not inherit to_attach. */
591 INHERIT (to_post_attach, t);
592 INHERIT (to_attach_no_wait, t);
593 /* Do not inherit to_detach. */
594 /* Do not inherit to_disconnect. */
595 /* Do not inherit to_resume. */
596 /* Do not inherit to_wait. */
597 /* Do not inherit to_fetch_registers. */
598 /* Do not inherit to_store_registers. */
599 INHERIT (to_prepare_to_store, t);
600 INHERIT (deprecated_xfer_memory, t);
601 INHERIT (to_files_info, t);
602 INHERIT (to_insert_breakpoint, t);
603 INHERIT (to_remove_breakpoint, t);
604 INHERIT (to_can_use_hw_breakpoint, t);
605 INHERIT (to_insert_hw_breakpoint, t);
606 INHERIT (to_remove_hw_breakpoint, t);
607 /* Do not inherit to_ranged_break_num_registers. */
608 INHERIT (to_insert_watchpoint, t);
609 INHERIT (to_remove_watchpoint, t);
610 /* Do not inherit to_insert_mask_watchpoint. */
611 /* Do not inherit to_remove_mask_watchpoint. */
612 INHERIT (to_stopped_data_address, t);
613 INHERIT (to_have_steppable_watchpoint, t);
614 INHERIT (to_have_continuable_watchpoint, t);
615 INHERIT (to_stopped_by_watchpoint, t);
616 INHERIT (to_watchpoint_addr_within_range, t);
617 INHERIT (to_region_ok_for_hw_watchpoint, t);
618 INHERIT (to_can_accel_watchpoint_condition, t);
619 /* Do not inherit to_masked_watch_num_registers. */
620 INHERIT (to_terminal_init, t);
621 INHERIT (to_terminal_inferior, t);
622 INHERIT (to_terminal_ours_for_output, t);
623 INHERIT (to_terminal_ours, t);
624 INHERIT (to_terminal_save_ours, t);
625 INHERIT (to_terminal_info, t);
626 /* Do not inherit to_kill. */
627 INHERIT (to_load, t);
628 /* Do no inherit to_create_inferior. */
629 INHERIT (to_post_startup_inferior, t);
630 INHERIT (to_insert_fork_catchpoint, t);
631 INHERIT (to_remove_fork_catchpoint, t);
632 INHERIT (to_insert_vfork_catchpoint, t);
633 INHERIT (to_remove_vfork_catchpoint, t);
634 /* Do not inherit to_follow_fork. */
635 INHERIT (to_insert_exec_catchpoint, t);
636 INHERIT (to_remove_exec_catchpoint, t);
637 INHERIT (to_set_syscall_catchpoint, t);
638 INHERIT (to_has_exited, t);
639 /* Do not inherit to_mourn_inferior. */
640 INHERIT (to_can_run, t);
641 /* Do not inherit to_pass_signals. */
642 /* Do not inherit to_thread_alive. */
643 /* Do not inherit to_find_new_threads. */
644 /* Do not inherit to_pid_to_str. */
645 INHERIT (to_extra_thread_info, t);
646 INHERIT (to_thread_name, t);
647 INHERIT (to_stop, t);
648 /* Do not inherit to_xfer_partial. */
649 INHERIT (to_rcmd, t);
650 INHERIT (to_pid_to_exec_file, t);
651 INHERIT (to_log_command, t);
652 INHERIT (to_stratum, t);
653 /* Do not inherit to_has_all_memory. */
654 /* Do not inherit to_has_memory. */
655 /* Do not inherit to_has_stack. */
656 /* Do not inherit to_has_registers. */
657 /* Do not inherit to_has_execution. */
658 INHERIT (to_has_thread_control, t);
659 INHERIT (to_can_async_p, t);
660 INHERIT (to_is_async_p, t);
661 INHERIT (to_async, t);
662 INHERIT (to_find_memory_regions, t);
663 INHERIT (to_make_corefile_notes, t);
664 INHERIT (to_get_bookmark, t);
665 INHERIT (to_goto_bookmark, t);
666 /* Do not inherit to_get_thread_local_address. */
667 INHERIT (to_can_execute_reverse, t);
668 INHERIT (to_execution_direction, t);
669 INHERIT (to_thread_architecture, t);
670 /* Do not inherit to_read_description. */
671 INHERIT (to_get_ada_task_ptid, t);
672 /* Do not inherit to_search_memory. */
673 INHERIT (to_supports_multi_process, t);
674 INHERIT (to_supports_enable_disable_tracepoint, t);
675 INHERIT (to_supports_string_tracing, t);
676 INHERIT (to_trace_init, t);
677 INHERIT (to_download_tracepoint, t);
678 INHERIT (to_can_download_tracepoint, t);
679 INHERIT (to_download_trace_state_variable, t);
680 INHERIT (to_enable_tracepoint, t);
681 INHERIT (to_disable_tracepoint, t);
682 INHERIT (to_trace_set_readonly_regions, t);
683 INHERIT (to_trace_start, t);
684 INHERIT (to_get_trace_status, t);
685 INHERIT (to_get_tracepoint_status, t);
686 INHERIT (to_trace_stop, t);
687 INHERIT (to_trace_find, t);
688 INHERIT (to_get_trace_state_variable_value, t);
689 INHERIT (to_save_trace_data, t);
690 INHERIT (to_upload_tracepoints, t);
691 INHERIT (to_upload_trace_state_variables, t);
692 INHERIT (to_get_raw_trace_data, t);
693 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
694 INHERIT (to_set_disconnected_tracing, t);
695 INHERIT (to_set_circular_trace_buffer, t);
696 INHERIT (to_set_trace_notes, t);
697 INHERIT (to_get_tib_address, t);
698 INHERIT (to_set_permissions, t);
699 INHERIT (to_static_tracepoint_marker_at, t);
700 INHERIT (to_static_tracepoint_markers_by_strid, t);
701 INHERIT (to_traceframe_info, t);
702 INHERIT (to_use_agent, t);
703 INHERIT (to_can_use_agent, t);
704 INHERIT (to_magic, t);
705 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
706 /* Do not inherit to_memory_map. */
707 /* Do not inherit to_flash_erase. */
708 /* Do not inherit to_flash_done. */
709 }
710 #undef INHERIT
711
712 /* Clean up a target struct so it no longer has any zero pointers in
713 it. Some entries are defaulted to a method that print an error,
714 others are hard-wired to a standard recursive default. */
715
716 #define de_fault(field, value) \
717 if (!current_target.field) \
718 current_target.field = value
719
720 de_fault (to_open,
721 (void (*) (char *, int))
722 tcomplain);
723 de_fault (to_close,
724 (void (*) (int))
725 target_ignore);
726 de_fault (to_post_attach,
727 (void (*) (int))
728 target_ignore);
729 de_fault (to_prepare_to_store,
730 (void (*) (struct regcache *))
731 noprocess);
732 de_fault (deprecated_xfer_memory,
733 (int (*) (CORE_ADDR, gdb_byte *, int, int,
734 struct mem_attrib *, struct target_ops *))
735 nomemory);
736 de_fault (to_files_info,
737 (void (*) (struct target_ops *))
738 target_ignore);
739 de_fault (to_insert_breakpoint,
740 memory_insert_breakpoint);
741 de_fault (to_remove_breakpoint,
742 memory_remove_breakpoint);
743 de_fault (to_can_use_hw_breakpoint,
744 (int (*) (int, int, int))
745 return_zero);
746 de_fault (to_insert_hw_breakpoint,
747 (int (*) (struct gdbarch *, struct bp_target_info *))
748 return_minus_one);
749 de_fault (to_remove_hw_breakpoint,
750 (int (*) (struct gdbarch *, struct bp_target_info *))
751 return_minus_one);
752 de_fault (to_insert_watchpoint,
753 (int (*) (CORE_ADDR, int, int, struct expression *))
754 return_minus_one);
755 de_fault (to_remove_watchpoint,
756 (int (*) (CORE_ADDR, int, int, struct expression *))
757 return_minus_one);
758 de_fault (to_stopped_by_watchpoint,
759 (int (*) (void))
760 return_zero);
761 de_fault (to_stopped_data_address,
762 (int (*) (struct target_ops *, CORE_ADDR *))
763 return_zero);
764 de_fault (to_watchpoint_addr_within_range,
765 default_watchpoint_addr_within_range);
766 de_fault (to_region_ok_for_hw_watchpoint,
767 default_region_ok_for_hw_watchpoint);
768 de_fault (to_can_accel_watchpoint_condition,
769 (int (*) (CORE_ADDR, int, int, struct expression *))
770 return_zero);
771 de_fault (to_terminal_init,
772 (void (*) (void))
773 target_ignore);
774 de_fault (to_terminal_inferior,
775 (void (*) (void))
776 target_ignore);
777 de_fault (to_terminal_ours_for_output,
778 (void (*) (void))
779 target_ignore);
780 de_fault (to_terminal_ours,
781 (void (*) (void))
782 target_ignore);
783 de_fault (to_terminal_save_ours,
784 (void (*) (void))
785 target_ignore);
786 de_fault (to_terminal_info,
787 default_terminal_info);
788 de_fault (to_load,
789 (void (*) (char *, int))
790 tcomplain);
791 de_fault (to_post_startup_inferior,
792 (void (*) (ptid_t))
793 target_ignore);
794 de_fault (to_insert_fork_catchpoint,
795 (int (*) (int))
796 return_one);
797 de_fault (to_remove_fork_catchpoint,
798 (int (*) (int))
799 return_one);
800 de_fault (to_insert_vfork_catchpoint,
801 (int (*) (int))
802 return_one);
803 de_fault (to_remove_vfork_catchpoint,
804 (int (*) (int))
805 return_one);
806 de_fault (to_insert_exec_catchpoint,
807 (int (*) (int))
808 return_one);
809 de_fault (to_remove_exec_catchpoint,
810 (int (*) (int))
811 return_one);
812 de_fault (to_set_syscall_catchpoint,
813 (int (*) (int, int, int, int, int *))
814 return_one);
815 de_fault (to_has_exited,
816 (int (*) (int, int, int *))
817 return_zero);
818 de_fault (to_can_run,
819 return_zero);
820 de_fault (to_extra_thread_info,
821 (char *(*) (struct thread_info *))
822 return_zero);
823 de_fault (to_thread_name,
824 (char *(*) (struct thread_info *))
825 return_zero);
826 de_fault (to_stop,
827 (void (*) (ptid_t))
828 target_ignore);
829 current_target.to_xfer_partial = current_xfer_partial;
830 de_fault (to_rcmd,
831 (void (*) (char *, struct ui_file *))
832 tcomplain);
833 de_fault (to_pid_to_exec_file,
834 (char *(*) (int))
835 return_zero);
836 de_fault (to_async,
837 (void (*) (void (*) (enum inferior_event_type, void*), void*))
838 tcomplain);
839 de_fault (to_thread_architecture,
840 default_thread_architecture);
841 current_target.to_read_description = NULL;
842 de_fault (to_get_ada_task_ptid,
843 (ptid_t (*) (long, long))
844 default_get_ada_task_ptid);
845 de_fault (to_supports_multi_process,
846 (int (*) (void))
847 return_zero);
848 de_fault (to_supports_enable_disable_tracepoint,
849 (int (*) (void))
850 return_zero);
851 de_fault (to_supports_string_tracing,
852 (int (*) (void))
853 return_zero);
854 de_fault (to_trace_init,
855 (void (*) (void))
856 tcomplain);
857 de_fault (to_download_tracepoint,
858 (void (*) (struct bp_location *))
859 tcomplain);
860 de_fault (to_can_download_tracepoint,
861 (int (*) (void))
862 return_zero);
863 de_fault (to_download_trace_state_variable,
864 (void (*) (struct trace_state_variable *))
865 tcomplain);
866 de_fault (to_enable_tracepoint,
867 (void (*) (struct bp_location *))
868 tcomplain);
869 de_fault (to_disable_tracepoint,
870 (void (*) (struct bp_location *))
871 tcomplain);
872 de_fault (to_trace_set_readonly_regions,
873 (void (*) (void))
874 tcomplain);
875 de_fault (to_trace_start,
876 (void (*) (void))
877 tcomplain);
878 de_fault (to_get_trace_status,
879 (int (*) (struct trace_status *))
880 return_minus_one);
881 de_fault (to_get_tracepoint_status,
882 (void (*) (struct breakpoint *, struct uploaded_tp *))
883 tcomplain);
884 de_fault (to_trace_stop,
885 (void (*) (void))
886 tcomplain);
887 de_fault (to_trace_find,
888 (int (*) (enum trace_find_type, int, ULONGEST, ULONGEST, int *))
889 return_minus_one);
890 de_fault (to_get_trace_state_variable_value,
891 (int (*) (int, LONGEST *))
892 return_zero);
893 de_fault (to_save_trace_data,
894 (int (*) (const char *))
895 tcomplain);
896 de_fault (to_upload_tracepoints,
897 (int (*) (struct uploaded_tp **))
898 return_zero);
899 de_fault (to_upload_trace_state_variables,
900 (int (*) (struct uploaded_tsv **))
901 return_zero);
902 de_fault (to_get_raw_trace_data,
903 (LONGEST (*) (gdb_byte *, ULONGEST, LONGEST))
904 tcomplain);
905 de_fault (to_get_min_fast_tracepoint_insn_len,
906 (int (*) (void))
907 return_minus_one);
908 de_fault (to_set_disconnected_tracing,
909 (void (*) (int))
910 target_ignore);
911 de_fault (to_set_circular_trace_buffer,
912 (void (*) (int))
913 target_ignore);
914 de_fault (to_set_trace_notes,
915 (int (*) (char *, char *, char *))
916 return_zero);
917 de_fault (to_get_tib_address,
918 (int (*) (ptid_t, CORE_ADDR *))
919 tcomplain);
920 de_fault (to_set_permissions,
921 (void (*) (void))
922 target_ignore);
923 de_fault (to_static_tracepoint_marker_at,
924 (int (*) (CORE_ADDR, struct static_tracepoint_marker *))
925 return_zero);
926 de_fault (to_static_tracepoint_markers_by_strid,
927 (VEC(static_tracepoint_marker_p) * (*) (const char *))
928 tcomplain);
929 de_fault (to_traceframe_info,
930 (struct traceframe_info * (*) (void))
931 tcomplain);
932 de_fault (to_supports_evaluation_of_breakpoint_conditions,
933 (int (*) (void))
934 return_zero);
935 de_fault (to_use_agent,
936 (int (*) (int))
937 tcomplain);
938 de_fault (to_can_use_agent,
939 (int (*) (void))
940 return_zero);
941 de_fault (to_execution_direction, default_execution_direction);
942
943 #undef de_fault
944
945 /* Finally, position the target-stack beneath the squashed
946 "current_target". That way code looking for a non-inherited
947 target method can quickly and simply find it. */
948 current_target.beneath = target_stack;
949
950 if (targetdebug)
951 setup_target_debug ();
952 }
953
954 /* Push a new target type into the stack of the existing target accessors,
955 possibly superseding some of the existing accessors.
956
957 Rather than allow an empty stack, we always have the dummy target at
958 the bottom stratum, so we can call the function vectors without
959 checking them. */
960
961 void
962 push_target (struct target_ops *t)
963 {
964 struct target_ops **cur;
965
966 /* Check magic number. If wrong, it probably means someone changed
967 the struct definition, but not all the places that initialize one. */
968 if (t->to_magic != OPS_MAGIC)
969 {
970 fprintf_unfiltered (gdb_stderr,
971 "Magic number of %s target struct wrong\n",
972 t->to_shortname);
973 internal_error (__FILE__, __LINE__,
974 _("failed internal consistency check"));
975 }
976
977 /* Find the proper stratum to install this target in. */
978 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
979 {
980 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
981 break;
982 }
983
984 /* If there's already targets at this stratum, remove them. */
985 /* FIXME: cagney/2003-10-15: I think this should be popping all
986 targets to CUR, and not just those at this stratum level. */
987 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
988 {
989 /* There's already something at this stratum level. Close it,
990 and un-hook it from the stack. */
991 struct target_ops *tmp = (*cur);
992
993 (*cur) = (*cur)->beneath;
994 tmp->beneath = NULL;
995 target_close (tmp, 0);
996 }
997
998 /* We have removed all targets in our stratum, now add the new one. */
999 t->beneath = (*cur);
1000 (*cur) = t;
1001
1002 update_current_target ();
1003 }
1004
1005 /* Remove a target_ops vector from the stack, wherever it may be.
1006 Return how many times it was removed (0 or 1). */
1007
1008 int
1009 unpush_target (struct target_ops *t)
1010 {
1011 struct target_ops **cur;
1012 struct target_ops *tmp;
1013
1014 if (t->to_stratum == dummy_stratum)
1015 internal_error (__FILE__, __LINE__,
1016 _("Attempt to unpush the dummy target"));
1017
1018 /* Look for the specified target. Note that we assume that a target
1019 can only occur once in the target stack. */
1020
1021 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1022 {
1023 if ((*cur) == t)
1024 break;
1025 }
1026
1027 /* If we don't find target_ops, quit. Only open targets should be
1028 closed. */
1029 if ((*cur) == NULL)
1030 return 0;
1031
1032 /* Unchain the target. */
1033 tmp = (*cur);
1034 (*cur) = (*cur)->beneath;
1035 tmp->beneath = NULL;
1036
1037 update_current_target ();
1038
1039 /* Finally close the target. Note we do this after unchaining, so
1040 any target method calls from within the target_close
1041 implementation don't end up in T anymore. */
1042 target_close (t, 0);
1043
1044 return 1;
1045 }
1046
1047 void
1048 pop_target (void)
1049 {
1050 target_close (target_stack, 0); /* Let it clean up. */
1051 if (unpush_target (target_stack) == 1)
1052 return;
1053
1054 fprintf_unfiltered (gdb_stderr,
1055 "pop_target couldn't find target %s\n",
1056 current_target.to_shortname);
1057 internal_error (__FILE__, __LINE__,
1058 _("failed internal consistency check"));
1059 }
1060
1061 void
1062 pop_all_targets_above (enum strata above_stratum, int quitting)
1063 {
1064 while ((int) (current_target.to_stratum) > (int) above_stratum)
1065 {
1066 target_close (target_stack, quitting);
1067 if (!unpush_target (target_stack))
1068 {
1069 fprintf_unfiltered (gdb_stderr,
1070 "pop_all_targets couldn't find target %s\n",
1071 target_stack->to_shortname);
1072 internal_error (__FILE__, __LINE__,
1073 _("failed internal consistency check"));
1074 break;
1075 }
1076 }
1077 }
1078
1079 void
1080 pop_all_targets (int quitting)
1081 {
1082 pop_all_targets_above (dummy_stratum, quitting);
1083 }
1084
1085 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
1086
1087 int
1088 target_is_pushed (struct target_ops *t)
1089 {
1090 struct target_ops **cur;
1091
1092 /* Check magic number. If wrong, it probably means someone changed
1093 the struct definition, but not all the places that initialize one. */
1094 if (t->to_magic != OPS_MAGIC)
1095 {
1096 fprintf_unfiltered (gdb_stderr,
1097 "Magic number of %s target struct wrong\n",
1098 t->to_shortname);
1099 internal_error (__FILE__, __LINE__,
1100 _("failed internal consistency check"));
1101 }
1102
1103 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1104 if (*cur == t)
1105 return 1;
1106
1107 return 0;
1108 }
1109
1110 /* Using the objfile specified in OBJFILE, find the address for the
1111 current thread's thread-local storage with offset OFFSET. */
1112 CORE_ADDR
1113 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1114 {
1115 volatile CORE_ADDR addr = 0;
1116 struct target_ops *target;
1117
1118 for (target = current_target.beneath;
1119 target != NULL;
1120 target = target->beneath)
1121 {
1122 if (target->to_get_thread_local_address != NULL)
1123 break;
1124 }
1125
1126 if (target != NULL
1127 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch))
1128 {
1129 ptid_t ptid = inferior_ptid;
1130 volatile struct gdb_exception ex;
1131
1132 TRY_CATCH (ex, RETURN_MASK_ALL)
1133 {
1134 CORE_ADDR lm_addr;
1135
1136 /* Fetch the load module address for this objfile. */
1137 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch,
1138 objfile);
1139 /* If it's 0, throw the appropriate exception. */
1140 if (lm_addr == 0)
1141 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1142 _("TLS load module not found"));
1143
1144 addr = target->to_get_thread_local_address (target, ptid,
1145 lm_addr, offset);
1146 }
1147 /* If an error occurred, print TLS related messages here. Otherwise,
1148 throw the error to some higher catcher. */
1149 if (ex.reason < 0)
1150 {
1151 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1152
1153 switch (ex.error)
1154 {
1155 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1156 error (_("Cannot find thread-local variables "
1157 "in this thread library."));
1158 break;
1159 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1160 if (objfile_is_library)
1161 error (_("Cannot find shared library `%s' in dynamic"
1162 " linker's load module list"), objfile->name);
1163 else
1164 error (_("Cannot find executable file `%s' in dynamic"
1165 " linker's load module list"), objfile->name);
1166 break;
1167 case TLS_NOT_ALLOCATED_YET_ERROR:
1168 if (objfile_is_library)
1169 error (_("The inferior has not yet allocated storage for"
1170 " thread-local variables in\n"
1171 "the shared library `%s'\n"
1172 "for %s"),
1173 objfile->name, target_pid_to_str (ptid));
1174 else
1175 error (_("The inferior has not yet allocated storage for"
1176 " thread-local variables in\n"
1177 "the executable `%s'\n"
1178 "for %s"),
1179 objfile->name, target_pid_to_str (ptid));
1180 break;
1181 case TLS_GENERIC_ERROR:
1182 if (objfile_is_library)
1183 error (_("Cannot find thread-local storage for %s, "
1184 "shared library %s:\n%s"),
1185 target_pid_to_str (ptid),
1186 objfile->name, ex.message);
1187 else
1188 error (_("Cannot find thread-local storage for %s, "
1189 "executable file %s:\n%s"),
1190 target_pid_to_str (ptid),
1191 objfile->name, ex.message);
1192 break;
1193 default:
1194 throw_exception (ex);
1195 break;
1196 }
1197 }
1198 }
1199 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1200 TLS is an ABI-specific thing. But we don't do that yet. */
1201 else
1202 error (_("Cannot find thread-local variables on this target"));
1203
1204 return addr;
1205 }
1206
1207 #undef MIN
1208 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1209
1210 /* target_read_string -- read a null terminated string, up to LEN bytes,
1211 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1212 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1213 is responsible for freeing it. Return the number of bytes successfully
1214 read. */
1215
1216 int
1217 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1218 {
1219 int tlen, origlen, offset, i;
1220 gdb_byte buf[4];
1221 int errcode = 0;
1222 char *buffer;
1223 int buffer_allocated;
1224 char *bufptr;
1225 unsigned int nbytes_read = 0;
1226
1227 gdb_assert (string);
1228
1229 /* Small for testing. */
1230 buffer_allocated = 4;
1231 buffer = xmalloc (buffer_allocated);
1232 bufptr = buffer;
1233
1234 origlen = len;
1235
1236 while (len > 0)
1237 {
1238 tlen = MIN (len, 4 - (memaddr & 3));
1239 offset = memaddr & 3;
1240
1241 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1242 if (errcode != 0)
1243 {
1244 /* The transfer request might have crossed the boundary to an
1245 unallocated region of memory. Retry the transfer, requesting
1246 a single byte. */
1247 tlen = 1;
1248 offset = 0;
1249 errcode = target_read_memory (memaddr, buf, 1);
1250 if (errcode != 0)
1251 goto done;
1252 }
1253
1254 if (bufptr - buffer + tlen > buffer_allocated)
1255 {
1256 unsigned int bytes;
1257
1258 bytes = bufptr - buffer;
1259 buffer_allocated *= 2;
1260 buffer = xrealloc (buffer, buffer_allocated);
1261 bufptr = buffer + bytes;
1262 }
1263
1264 for (i = 0; i < tlen; i++)
1265 {
1266 *bufptr++ = buf[i + offset];
1267 if (buf[i + offset] == '\000')
1268 {
1269 nbytes_read += i + 1;
1270 goto done;
1271 }
1272 }
1273
1274 memaddr += tlen;
1275 len -= tlen;
1276 nbytes_read += tlen;
1277 }
1278 done:
1279 *string = buffer;
1280 if (errnop != NULL)
1281 *errnop = errcode;
1282 return nbytes_read;
1283 }
1284
1285 struct target_section_table *
1286 target_get_section_table (struct target_ops *target)
1287 {
1288 struct target_ops *t;
1289
1290 if (targetdebug)
1291 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1292
1293 for (t = target; t != NULL; t = t->beneath)
1294 if (t->to_get_section_table != NULL)
1295 return (*t->to_get_section_table) (t);
1296
1297 return NULL;
1298 }
1299
1300 /* Find a section containing ADDR. */
1301
1302 struct target_section *
1303 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1304 {
1305 struct target_section_table *table = target_get_section_table (target);
1306 struct target_section *secp;
1307
1308 if (table == NULL)
1309 return NULL;
1310
1311 for (secp = table->sections; secp < table->sections_end; secp++)
1312 {
1313 if (addr >= secp->addr && addr < secp->endaddr)
1314 return secp;
1315 }
1316 return NULL;
1317 }
1318
1319 /* Read memory from the live target, even if currently inspecting a
1320 traceframe. The return is the same as that of target_read. */
1321
1322 static LONGEST
1323 target_read_live_memory (enum target_object object,
1324 ULONGEST memaddr, gdb_byte *myaddr, LONGEST len)
1325 {
1326 int ret;
1327 struct cleanup *cleanup;
1328
1329 /* Switch momentarily out of tfind mode so to access live memory.
1330 Note that this must not clear global state, such as the frame
1331 cache, which must still remain valid for the previous traceframe.
1332 We may be _building_ the frame cache at this point. */
1333 cleanup = make_cleanup_restore_traceframe_number ();
1334 set_traceframe_number (-1);
1335
1336 ret = target_read (current_target.beneath, object, NULL,
1337 myaddr, memaddr, len);
1338
1339 do_cleanups (cleanup);
1340 return ret;
1341 }
1342
1343 /* Using the set of read-only target sections of OPS, read live
1344 read-only memory. Note that the actual reads start from the
1345 top-most target again.
1346
1347 For interface/parameters/return description see target.h,
1348 to_xfer_partial. */
1349
1350 static LONGEST
1351 memory_xfer_live_readonly_partial (struct target_ops *ops,
1352 enum target_object object,
1353 gdb_byte *readbuf, ULONGEST memaddr,
1354 LONGEST len)
1355 {
1356 struct target_section *secp;
1357 struct target_section_table *table;
1358
1359 secp = target_section_by_addr (ops, memaddr);
1360 if (secp != NULL
1361 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1362 & SEC_READONLY))
1363 {
1364 struct target_section *p;
1365 ULONGEST memend = memaddr + len;
1366
1367 table = target_get_section_table (ops);
1368
1369 for (p = table->sections; p < table->sections_end; p++)
1370 {
1371 if (memaddr >= p->addr)
1372 {
1373 if (memend <= p->endaddr)
1374 {
1375 /* Entire transfer is within this section. */
1376 return target_read_live_memory (object, memaddr,
1377 readbuf, len);
1378 }
1379 else if (memaddr >= p->endaddr)
1380 {
1381 /* This section ends before the transfer starts. */
1382 continue;
1383 }
1384 else
1385 {
1386 /* This section overlaps the transfer. Just do half. */
1387 len = p->endaddr - memaddr;
1388 return target_read_live_memory (object, memaddr,
1389 readbuf, len);
1390 }
1391 }
1392 }
1393 }
1394
1395 return 0;
1396 }
1397
1398 /* Perform a partial memory transfer.
1399 For docs see target.h, to_xfer_partial. */
1400
1401 static LONGEST
1402 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1403 void *readbuf, const void *writebuf, ULONGEST memaddr,
1404 LONGEST len)
1405 {
1406 LONGEST res;
1407 int reg_len;
1408 struct mem_region *region;
1409 struct inferior *inf;
1410
1411 /* For accesses to unmapped overlay sections, read directly from
1412 files. Must do this first, as MEMADDR may need adjustment. */
1413 if (readbuf != NULL && overlay_debugging)
1414 {
1415 struct obj_section *section = find_pc_overlay (memaddr);
1416
1417 if (pc_in_unmapped_range (memaddr, section))
1418 {
1419 struct target_section_table *table
1420 = target_get_section_table (ops);
1421 const char *section_name = section->the_bfd_section->name;
1422
1423 memaddr = overlay_mapped_address (memaddr, section);
1424 return section_table_xfer_memory_partial (readbuf, writebuf,
1425 memaddr, len,
1426 table->sections,
1427 table->sections_end,
1428 section_name);
1429 }
1430 }
1431
1432 /* Try the executable files, if "trust-readonly-sections" is set. */
1433 if (readbuf != NULL && trust_readonly)
1434 {
1435 struct target_section *secp;
1436 struct target_section_table *table;
1437
1438 secp = target_section_by_addr (ops, memaddr);
1439 if (secp != NULL
1440 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1441 & SEC_READONLY))
1442 {
1443 table = target_get_section_table (ops);
1444 return section_table_xfer_memory_partial (readbuf, writebuf,
1445 memaddr, len,
1446 table->sections,
1447 table->sections_end,
1448 NULL);
1449 }
1450 }
1451
1452 /* If reading unavailable memory in the context of traceframes, and
1453 this address falls within a read-only section, fallback to
1454 reading from live memory. */
1455 if (readbuf != NULL && get_traceframe_number () != -1)
1456 {
1457 VEC(mem_range_s) *available;
1458
1459 /* If we fail to get the set of available memory, then the
1460 target does not support querying traceframe info, and so we
1461 attempt reading from the traceframe anyway (assuming the
1462 target implements the old QTro packet then). */
1463 if (traceframe_available_memory (&available, memaddr, len))
1464 {
1465 struct cleanup *old_chain;
1466
1467 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1468
1469 if (VEC_empty (mem_range_s, available)
1470 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1471 {
1472 /* Don't read into the traceframe's available
1473 memory. */
1474 if (!VEC_empty (mem_range_s, available))
1475 {
1476 LONGEST oldlen = len;
1477
1478 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1479 gdb_assert (len <= oldlen);
1480 }
1481
1482 do_cleanups (old_chain);
1483
1484 /* This goes through the topmost target again. */
1485 res = memory_xfer_live_readonly_partial (ops, object,
1486 readbuf, memaddr, len);
1487 if (res > 0)
1488 return res;
1489
1490 /* No use trying further, we know some memory starting
1491 at MEMADDR isn't available. */
1492 return -1;
1493 }
1494
1495 /* Don't try to read more than how much is available, in
1496 case the target implements the deprecated QTro packet to
1497 cater for older GDBs (the target's knowledge of read-only
1498 sections may be outdated by now). */
1499 len = VEC_index (mem_range_s, available, 0)->length;
1500
1501 do_cleanups (old_chain);
1502 }
1503 }
1504
1505 /* Try GDB's internal data cache. */
1506 region = lookup_mem_region (memaddr);
1507 /* region->hi == 0 means there's no upper bound. */
1508 if (memaddr + len < region->hi || region->hi == 0)
1509 reg_len = len;
1510 else
1511 reg_len = region->hi - memaddr;
1512
1513 switch (region->attrib.mode)
1514 {
1515 case MEM_RO:
1516 if (writebuf != NULL)
1517 return -1;
1518 break;
1519
1520 case MEM_WO:
1521 if (readbuf != NULL)
1522 return -1;
1523 break;
1524
1525 case MEM_FLASH:
1526 /* We only support writing to flash during "load" for now. */
1527 if (writebuf != NULL)
1528 error (_("Writing to flash memory forbidden in this context"));
1529 break;
1530
1531 case MEM_NONE:
1532 return -1;
1533 }
1534
1535 if (!ptid_equal (inferior_ptid, null_ptid))
1536 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1537 else
1538 inf = NULL;
1539
1540 if (inf != NULL
1541 /* The dcache reads whole cache lines; that doesn't play well
1542 with reading from a trace buffer, because reading outside of
1543 the collected memory range fails. */
1544 && get_traceframe_number () == -1
1545 && (region->attrib.cache
1546 || (stack_cache_enabled_p && object == TARGET_OBJECT_STACK_MEMORY)))
1547 {
1548 if (readbuf != NULL)
1549 res = dcache_xfer_memory (ops, target_dcache, memaddr, readbuf,
1550 reg_len, 0);
1551 else
1552 /* FIXME drow/2006-08-09: If we're going to preserve const
1553 correctness dcache_xfer_memory should take readbuf and
1554 writebuf. */
1555 res = dcache_xfer_memory (ops, target_dcache, memaddr,
1556 (void *) writebuf,
1557 reg_len, 1);
1558 if (res <= 0)
1559 return -1;
1560 else
1561 return res;
1562 }
1563
1564 /* If none of those methods found the memory we wanted, fall back
1565 to a target partial transfer. Normally a single call to
1566 to_xfer_partial is enough; if it doesn't recognize an object
1567 it will call the to_xfer_partial of the next target down.
1568 But for memory this won't do. Memory is the only target
1569 object which can be read from more than one valid target.
1570 A core file, for instance, could have some of memory but
1571 delegate other bits to the target below it. So, we must
1572 manually try all targets. */
1573
1574 do
1575 {
1576 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1577 readbuf, writebuf, memaddr, reg_len);
1578 if (res > 0)
1579 break;
1580
1581 /* We want to continue past core files to executables, but not
1582 past a running target's memory. */
1583 if (ops->to_has_all_memory (ops))
1584 break;
1585
1586 ops = ops->beneath;
1587 }
1588 while (ops != NULL);
1589
1590 /* Make sure the cache gets updated no matter what - if we are writing
1591 to the stack. Even if this write is not tagged as such, we still need
1592 to update the cache. */
1593
1594 if (res > 0
1595 && inf != NULL
1596 && writebuf != NULL
1597 && !region->attrib.cache
1598 && stack_cache_enabled_p
1599 && object != TARGET_OBJECT_STACK_MEMORY)
1600 {
1601 dcache_update (target_dcache, memaddr, (void *) writebuf, res);
1602 }
1603
1604 /* If we still haven't got anything, return the last error. We
1605 give up. */
1606 return res;
1607 }
1608
1609 /* Perform a partial memory transfer. For docs see target.h,
1610 to_xfer_partial. */
1611
1612 static LONGEST
1613 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1614 void *readbuf, const void *writebuf, ULONGEST memaddr,
1615 LONGEST len)
1616 {
1617 int res;
1618
1619 /* Zero length requests are ok and require no work. */
1620 if (len == 0)
1621 return 0;
1622
1623 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1624 breakpoint insns, thus hiding out from higher layers whether
1625 there are software breakpoints inserted in the code stream. */
1626 if (readbuf != NULL)
1627 {
1628 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len);
1629
1630 if (res > 0 && !show_memory_breakpoints)
1631 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1632 }
1633 else
1634 {
1635 void *buf;
1636 struct cleanup *old_chain;
1637
1638 buf = xmalloc (len);
1639 old_chain = make_cleanup (xfree, buf);
1640 memcpy (buf, writebuf, len);
1641
1642 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1643 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len);
1644
1645 do_cleanups (old_chain);
1646 }
1647
1648 return res;
1649 }
1650
1651 static void
1652 restore_show_memory_breakpoints (void *arg)
1653 {
1654 show_memory_breakpoints = (uintptr_t) arg;
1655 }
1656
1657 struct cleanup *
1658 make_show_memory_breakpoints_cleanup (int show)
1659 {
1660 int current = show_memory_breakpoints;
1661
1662 show_memory_breakpoints = show;
1663 return make_cleanup (restore_show_memory_breakpoints,
1664 (void *) (uintptr_t) current);
1665 }
1666
1667 /* For docs see target.h, to_xfer_partial. */
1668
1669 static LONGEST
1670 target_xfer_partial (struct target_ops *ops,
1671 enum target_object object, const char *annex,
1672 void *readbuf, const void *writebuf,
1673 ULONGEST offset, LONGEST len)
1674 {
1675 LONGEST retval;
1676
1677 gdb_assert (ops->to_xfer_partial != NULL);
1678
1679 if (writebuf && !may_write_memory)
1680 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1681 core_addr_to_string_nz (offset), plongest (len));
1682
1683 /* If this is a memory transfer, let the memory-specific code
1684 have a look at it instead. Memory transfers are more
1685 complicated. */
1686 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY)
1687 retval = memory_xfer_partial (ops, object, readbuf,
1688 writebuf, offset, len);
1689 else
1690 {
1691 enum target_object raw_object = object;
1692
1693 /* If this is a raw memory transfer, request the normal
1694 memory object from other layers. */
1695 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1696 raw_object = TARGET_OBJECT_MEMORY;
1697
1698 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1699 writebuf, offset, len);
1700 }
1701
1702 if (targetdebug)
1703 {
1704 const unsigned char *myaddr = NULL;
1705
1706 fprintf_unfiltered (gdb_stdlog,
1707 "%s:target_xfer_partial "
1708 "(%d, %s, %s, %s, %s, %s) = %s",
1709 ops->to_shortname,
1710 (int) object,
1711 (annex ? annex : "(null)"),
1712 host_address_to_string (readbuf),
1713 host_address_to_string (writebuf),
1714 core_addr_to_string_nz (offset),
1715 plongest (len), plongest (retval));
1716
1717 if (readbuf)
1718 myaddr = readbuf;
1719 if (writebuf)
1720 myaddr = writebuf;
1721 if (retval > 0 && myaddr != NULL)
1722 {
1723 int i;
1724
1725 fputs_unfiltered (", bytes =", gdb_stdlog);
1726 for (i = 0; i < retval; i++)
1727 {
1728 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1729 {
1730 if (targetdebug < 2 && i > 0)
1731 {
1732 fprintf_unfiltered (gdb_stdlog, " ...");
1733 break;
1734 }
1735 fprintf_unfiltered (gdb_stdlog, "\n");
1736 }
1737
1738 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1739 }
1740 }
1741
1742 fputc_unfiltered ('\n', gdb_stdlog);
1743 }
1744 return retval;
1745 }
1746
1747 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1748 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1749 if any error occurs.
1750
1751 If an error occurs, no guarantee is made about the contents of the data at
1752 MYADDR. In particular, the caller should not depend upon partial reads
1753 filling the buffer with good data. There is no way for the caller to know
1754 how much good data might have been transfered anyway. Callers that can
1755 deal with partial reads should call target_read (which will retry until
1756 it makes no progress, and then return how much was transferred). */
1757
1758 int
1759 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1760 {
1761 /* Dispatch to the topmost target, not the flattened current_target.
1762 Memory accesses check target->to_has_(all_)memory, and the
1763 flattened target doesn't inherit those. */
1764 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1765 myaddr, memaddr, len) == len)
1766 return 0;
1767 else
1768 return EIO;
1769 }
1770
1771 /* Like target_read_memory, but specify explicitly that this is a read from
1772 the target's stack. This may trigger different cache behavior. */
1773
1774 int
1775 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1776 {
1777 /* Dispatch to the topmost target, not the flattened current_target.
1778 Memory accesses check target->to_has_(all_)memory, and the
1779 flattened target doesn't inherit those. */
1780
1781 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1782 myaddr, memaddr, len) == len)
1783 return 0;
1784 else
1785 return EIO;
1786 }
1787
1788 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1789 Returns either 0 for success or an errno value if any error occurs.
1790 If an error occurs, no guarantee is made about how much data got written.
1791 Callers that can deal with partial writes should call target_write. */
1792
1793 int
1794 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1795 {
1796 /* Dispatch to the topmost target, not the flattened current_target.
1797 Memory accesses check target->to_has_(all_)memory, and the
1798 flattened target doesn't inherit those. */
1799 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1800 myaddr, memaddr, len) == len)
1801 return 0;
1802 else
1803 return EIO;
1804 }
1805
1806 /* Write LEN bytes from MYADDR to target raw memory at address
1807 MEMADDR. Returns either 0 for success or an errno value if any
1808 error occurs. If an error occurs, no guarantee is made about how
1809 much data got written. Callers that can deal with partial writes
1810 should call target_write. */
1811
1812 int
1813 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1814 {
1815 /* Dispatch to the topmost target, not the flattened current_target.
1816 Memory accesses check target->to_has_(all_)memory, and the
1817 flattened target doesn't inherit those. */
1818 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1819 myaddr, memaddr, len) == len)
1820 return 0;
1821 else
1822 return EIO;
1823 }
1824
1825 /* Fetch the target's memory map. */
1826
1827 VEC(mem_region_s) *
1828 target_memory_map (void)
1829 {
1830 VEC(mem_region_s) *result;
1831 struct mem_region *last_one, *this_one;
1832 int ix;
1833 struct target_ops *t;
1834
1835 if (targetdebug)
1836 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1837
1838 for (t = current_target.beneath; t != NULL; t = t->beneath)
1839 if (t->to_memory_map != NULL)
1840 break;
1841
1842 if (t == NULL)
1843 return NULL;
1844
1845 result = t->to_memory_map (t);
1846 if (result == NULL)
1847 return NULL;
1848
1849 qsort (VEC_address (mem_region_s, result),
1850 VEC_length (mem_region_s, result),
1851 sizeof (struct mem_region), mem_region_cmp);
1852
1853 /* Check that regions do not overlap. Simultaneously assign
1854 a numbering for the "mem" commands to use to refer to
1855 each region. */
1856 last_one = NULL;
1857 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1858 {
1859 this_one->number = ix;
1860
1861 if (last_one && last_one->hi > this_one->lo)
1862 {
1863 warning (_("Overlapping regions in memory map: ignoring"));
1864 VEC_free (mem_region_s, result);
1865 return NULL;
1866 }
1867 last_one = this_one;
1868 }
1869
1870 return result;
1871 }
1872
1873 void
1874 target_flash_erase (ULONGEST address, LONGEST length)
1875 {
1876 struct target_ops *t;
1877
1878 for (t = current_target.beneath; t != NULL; t = t->beneath)
1879 if (t->to_flash_erase != NULL)
1880 {
1881 if (targetdebug)
1882 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1883 hex_string (address), phex (length, 0));
1884 t->to_flash_erase (t, address, length);
1885 return;
1886 }
1887
1888 tcomplain ();
1889 }
1890
1891 void
1892 target_flash_done (void)
1893 {
1894 struct target_ops *t;
1895
1896 for (t = current_target.beneath; t != NULL; t = t->beneath)
1897 if (t->to_flash_done != NULL)
1898 {
1899 if (targetdebug)
1900 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1901 t->to_flash_done (t);
1902 return;
1903 }
1904
1905 tcomplain ();
1906 }
1907
1908 static void
1909 show_trust_readonly (struct ui_file *file, int from_tty,
1910 struct cmd_list_element *c, const char *value)
1911 {
1912 fprintf_filtered (file,
1913 _("Mode for reading from readonly sections is %s.\n"),
1914 value);
1915 }
1916
1917 /* More generic transfers. */
1918
1919 static LONGEST
1920 default_xfer_partial (struct target_ops *ops, enum target_object object,
1921 const char *annex, gdb_byte *readbuf,
1922 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1923 {
1924 if (object == TARGET_OBJECT_MEMORY
1925 && ops->deprecated_xfer_memory != NULL)
1926 /* If available, fall back to the target's
1927 "deprecated_xfer_memory" method. */
1928 {
1929 int xfered = -1;
1930
1931 errno = 0;
1932 if (writebuf != NULL)
1933 {
1934 void *buffer = xmalloc (len);
1935 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1936
1937 memcpy (buffer, writebuf, len);
1938 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1939 1/*write*/, NULL, ops);
1940 do_cleanups (cleanup);
1941 }
1942 if (readbuf != NULL)
1943 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1944 0/*read*/, NULL, ops);
1945 if (xfered > 0)
1946 return xfered;
1947 else if (xfered == 0 && errno == 0)
1948 /* "deprecated_xfer_memory" uses 0, cross checked against
1949 ERRNO as one indication of an error. */
1950 return 0;
1951 else
1952 return -1;
1953 }
1954 else if (ops->beneath != NULL)
1955 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1956 readbuf, writebuf, offset, len);
1957 else
1958 return -1;
1959 }
1960
1961 /* The xfer_partial handler for the topmost target. Unlike the default,
1962 it does not need to handle memory specially; it just passes all
1963 requests down the stack. */
1964
1965 static LONGEST
1966 current_xfer_partial (struct target_ops *ops, enum target_object object,
1967 const char *annex, gdb_byte *readbuf,
1968 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1969 {
1970 if (ops->beneath != NULL)
1971 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1972 readbuf, writebuf, offset, len);
1973 else
1974 return -1;
1975 }
1976
1977 /* Target vector read/write partial wrapper functions. */
1978
1979 static LONGEST
1980 target_read_partial (struct target_ops *ops,
1981 enum target_object object,
1982 const char *annex, gdb_byte *buf,
1983 ULONGEST offset, LONGEST len)
1984 {
1985 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1986 }
1987
1988 static LONGEST
1989 target_write_partial (struct target_ops *ops,
1990 enum target_object object,
1991 const char *annex, const gdb_byte *buf,
1992 ULONGEST offset, LONGEST len)
1993 {
1994 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1995 }
1996
1997 /* Wrappers to perform the full transfer. */
1998
1999 /* For docs on target_read see target.h. */
2000
2001 LONGEST
2002 target_read (struct target_ops *ops,
2003 enum target_object object,
2004 const char *annex, gdb_byte *buf,
2005 ULONGEST offset, LONGEST len)
2006 {
2007 LONGEST xfered = 0;
2008
2009 while (xfered < len)
2010 {
2011 LONGEST xfer = target_read_partial (ops, object, annex,
2012 (gdb_byte *) buf + xfered,
2013 offset + xfered, len - xfered);
2014
2015 /* Call an observer, notifying them of the xfer progress? */
2016 if (xfer == 0)
2017 return xfered;
2018 if (xfer < 0)
2019 return -1;
2020 xfered += xfer;
2021 QUIT;
2022 }
2023 return len;
2024 }
2025
2026 /* Assuming that the entire [begin, end) range of memory cannot be
2027 read, try to read whatever subrange is possible to read.
2028
2029 The function returns, in RESULT, either zero or one memory block.
2030 If there's a readable subrange at the beginning, it is completely
2031 read and returned. Any further readable subrange will not be read.
2032 Otherwise, if there's a readable subrange at the end, it will be
2033 completely read and returned. Any readable subranges before it
2034 (obviously, not starting at the beginning), will be ignored. In
2035 other cases -- either no readable subrange, or readable subrange(s)
2036 that is neither at the beginning, or end, nothing is returned.
2037
2038 The purpose of this function is to handle a read across a boundary
2039 of accessible memory in a case when memory map is not available.
2040 The above restrictions are fine for this case, but will give
2041 incorrect results if the memory is 'patchy'. However, supporting
2042 'patchy' memory would require trying to read every single byte,
2043 and it seems unacceptable solution. Explicit memory map is
2044 recommended for this case -- and target_read_memory_robust will
2045 take care of reading multiple ranges then. */
2046
2047 static void
2048 read_whatever_is_readable (struct target_ops *ops,
2049 ULONGEST begin, ULONGEST end,
2050 VEC(memory_read_result_s) **result)
2051 {
2052 gdb_byte *buf = xmalloc (end - begin);
2053 ULONGEST current_begin = begin;
2054 ULONGEST current_end = end;
2055 int forward;
2056 memory_read_result_s r;
2057
2058 /* If we previously failed to read 1 byte, nothing can be done here. */
2059 if (end - begin <= 1)
2060 {
2061 xfree (buf);
2062 return;
2063 }
2064
2065 /* Check that either first or the last byte is readable, and give up
2066 if not. This heuristic is meant to permit reading accessible memory
2067 at the boundary of accessible region. */
2068 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2069 buf, begin, 1) == 1)
2070 {
2071 forward = 1;
2072 ++current_begin;
2073 }
2074 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2075 buf + (end-begin) - 1, end - 1, 1) == 1)
2076 {
2077 forward = 0;
2078 --current_end;
2079 }
2080 else
2081 {
2082 xfree (buf);
2083 return;
2084 }
2085
2086 /* Loop invariant is that the [current_begin, current_end) was previously
2087 found to be not readable as a whole.
2088
2089 Note loop condition -- if the range has 1 byte, we can't divide the range
2090 so there's no point trying further. */
2091 while (current_end - current_begin > 1)
2092 {
2093 ULONGEST first_half_begin, first_half_end;
2094 ULONGEST second_half_begin, second_half_end;
2095 LONGEST xfer;
2096 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2097
2098 if (forward)
2099 {
2100 first_half_begin = current_begin;
2101 first_half_end = middle;
2102 second_half_begin = middle;
2103 second_half_end = current_end;
2104 }
2105 else
2106 {
2107 first_half_begin = middle;
2108 first_half_end = current_end;
2109 second_half_begin = current_begin;
2110 second_half_end = middle;
2111 }
2112
2113 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2114 buf + (first_half_begin - begin),
2115 first_half_begin,
2116 first_half_end - first_half_begin);
2117
2118 if (xfer == first_half_end - first_half_begin)
2119 {
2120 /* This half reads up fine. So, the error must be in the
2121 other half. */
2122 current_begin = second_half_begin;
2123 current_end = second_half_end;
2124 }
2125 else
2126 {
2127 /* This half is not readable. Because we've tried one byte, we
2128 know some part of this half if actually redable. Go to the next
2129 iteration to divide again and try to read.
2130
2131 We don't handle the other half, because this function only tries
2132 to read a single readable subrange. */
2133 current_begin = first_half_begin;
2134 current_end = first_half_end;
2135 }
2136 }
2137
2138 if (forward)
2139 {
2140 /* The [begin, current_begin) range has been read. */
2141 r.begin = begin;
2142 r.end = current_begin;
2143 r.data = buf;
2144 }
2145 else
2146 {
2147 /* The [current_end, end) range has been read. */
2148 LONGEST rlen = end - current_end;
2149
2150 r.data = xmalloc (rlen);
2151 memcpy (r.data, buf + current_end - begin, rlen);
2152 r.begin = current_end;
2153 r.end = end;
2154 xfree (buf);
2155 }
2156 VEC_safe_push(memory_read_result_s, (*result), &r);
2157 }
2158
2159 void
2160 free_memory_read_result_vector (void *x)
2161 {
2162 VEC(memory_read_result_s) *v = x;
2163 memory_read_result_s *current;
2164 int ix;
2165
2166 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2167 {
2168 xfree (current->data);
2169 }
2170 VEC_free (memory_read_result_s, v);
2171 }
2172
2173 VEC(memory_read_result_s) *
2174 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2175 {
2176 VEC(memory_read_result_s) *result = 0;
2177
2178 LONGEST xfered = 0;
2179 while (xfered < len)
2180 {
2181 struct mem_region *region = lookup_mem_region (offset + xfered);
2182 LONGEST rlen;
2183
2184 /* If there is no explicit region, a fake one should be created. */
2185 gdb_assert (region);
2186
2187 if (region->hi == 0)
2188 rlen = len - xfered;
2189 else
2190 rlen = region->hi - offset;
2191
2192 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2193 {
2194 /* Cannot read this region. Note that we can end up here only
2195 if the region is explicitly marked inaccessible, or
2196 'inaccessible-by-default' is in effect. */
2197 xfered += rlen;
2198 }
2199 else
2200 {
2201 LONGEST to_read = min (len - xfered, rlen);
2202 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2203
2204 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2205 (gdb_byte *) buffer,
2206 offset + xfered, to_read);
2207 /* Call an observer, notifying them of the xfer progress? */
2208 if (xfer <= 0)
2209 {
2210 /* Got an error reading full chunk. See if maybe we can read
2211 some subrange. */
2212 xfree (buffer);
2213 read_whatever_is_readable (ops, offset + xfered,
2214 offset + xfered + to_read, &result);
2215 xfered += to_read;
2216 }
2217 else
2218 {
2219 struct memory_read_result r;
2220 r.data = buffer;
2221 r.begin = offset + xfered;
2222 r.end = r.begin + xfer;
2223 VEC_safe_push (memory_read_result_s, result, &r);
2224 xfered += xfer;
2225 }
2226 QUIT;
2227 }
2228 }
2229 return result;
2230 }
2231
2232
2233 /* An alternative to target_write with progress callbacks. */
2234
2235 LONGEST
2236 target_write_with_progress (struct target_ops *ops,
2237 enum target_object object,
2238 const char *annex, const gdb_byte *buf,
2239 ULONGEST offset, LONGEST len,
2240 void (*progress) (ULONGEST, void *), void *baton)
2241 {
2242 LONGEST xfered = 0;
2243
2244 /* Give the progress callback a chance to set up. */
2245 if (progress)
2246 (*progress) (0, baton);
2247
2248 while (xfered < len)
2249 {
2250 LONGEST xfer = target_write_partial (ops, object, annex,
2251 (gdb_byte *) buf + xfered,
2252 offset + xfered, len - xfered);
2253
2254 if (xfer == 0)
2255 return xfered;
2256 if (xfer < 0)
2257 return -1;
2258
2259 if (progress)
2260 (*progress) (xfer, baton);
2261
2262 xfered += xfer;
2263 QUIT;
2264 }
2265 return len;
2266 }
2267
2268 /* For docs on target_write see target.h. */
2269
2270 LONGEST
2271 target_write (struct target_ops *ops,
2272 enum target_object object,
2273 const char *annex, const gdb_byte *buf,
2274 ULONGEST offset, LONGEST len)
2275 {
2276 return target_write_with_progress (ops, object, annex, buf, offset, len,
2277 NULL, NULL);
2278 }
2279
2280 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2281 the size of the transferred data. PADDING additional bytes are
2282 available in *BUF_P. This is a helper function for
2283 target_read_alloc; see the declaration of that function for more
2284 information. */
2285
2286 static LONGEST
2287 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2288 const char *annex, gdb_byte **buf_p, int padding)
2289 {
2290 size_t buf_alloc, buf_pos;
2291 gdb_byte *buf;
2292 LONGEST n;
2293
2294 /* This function does not have a length parameter; it reads the
2295 entire OBJECT). Also, it doesn't support objects fetched partly
2296 from one target and partly from another (in a different stratum,
2297 e.g. a core file and an executable). Both reasons make it
2298 unsuitable for reading memory. */
2299 gdb_assert (object != TARGET_OBJECT_MEMORY);
2300
2301 /* Start by reading up to 4K at a time. The target will throttle
2302 this number down if necessary. */
2303 buf_alloc = 4096;
2304 buf = xmalloc (buf_alloc);
2305 buf_pos = 0;
2306 while (1)
2307 {
2308 n = target_read_partial (ops, object, annex, &buf[buf_pos],
2309 buf_pos, buf_alloc - buf_pos - padding);
2310 if (n < 0)
2311 {
2312 /* An error occurred. */
2313 xfree (buf);
2314 return -1;
2315 }
2316 else if (n == 0)
2317 {
2318 /* Read all there was. */
2319 if (buf_pos == 0)
2320 xfree (buf);
2321 else
2322 *buf_p = buf;
2323 return buf_pos;
2324 }
2325
2326 buf_pos += n;
2327
2328 /* If the buffer is filling up, expand it. */
2329 if (buf_alloc < buf_pos * 2)
2330 {
2331 buf_alloc *= 2;
2332 buf = xrealloc (buf, buf_alloc);
2333 }
2334
2335 QUIT;
2336 }
2337 }
2338
2339 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2340 the size of the transferred data. See the declaration in "target.h"
2341 function for more information about the return value. */
2342
2343 LONGEST
2344 target_read_alloc (struct target_ops *ops, enum target_object object,
2345 const char *annex, gdb_byte **buf_p)
2346 {
2347 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2348 }
2349
2350 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2351 returned as a string, allocated using xmalloc. If an error occurs
2352 or the transfer is unsupported, NULL is returned. Empty objects
2353 are returned as allocated but empty strings. A warning is issued
2354 if the result contains any embedded NUL bytes. */
2355
2356 char *
2357 target_read_stralloc (struct target_ops *ops, enum target_object object,
2358 const char *annex)
2359 {
2360 gdb_byte *buffer;
2361 LONGEST i, transferred;
2362
2363 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2364
2365 if (transferred < 0)
2366 return NULL;
2367
2368 if (transferred == 0)
2369 return xstrdup ("");
2370
2371 buffer[transferred] = 0;
2372
2373 /* Check for embedded NUL bytes; but allow trailing NULs. */
2374 for (i = strlen (buffer); i < transferred; i++)
2375 if (buffer[i] != 0)
2376 {
2377 warning (_("target object %d, annex %s, "
2378 "contained unexpected null characters"),
2379 (int) object, annex ? annex : "(none)");
2380 break;
2381 }
2382
2383 return (char *) buffer;
2384 }
2385
2386 /* Memory transfer methods. */
2387
2388 void
2389 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2390 LONGEST len)
2391 {
2392 /* This method is used to read from an alternate, non-current
2393 target. This read must bypass the overlay support (as symbols
2394 don't match this target), and GDB's internal cache (wrong cache
2395 for this target). */
2396 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2397 != len)
2398 memory_error (EIO, addr);
2399 }
2400
2401 ULONGEST
2402 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2403 int len, enum bfd_endian byte_order)
2404 {
2405 gdb_byte buf[sizeof (ULONGEST)];
2406
2407 gdb_assert (len <= sizeof (buf));
2408 get_target_memory (ops, addr, buf, len);
2409 return extract_unsigned_integer (buf, len, byte_order);
2410 }
2411
2412 int
2413 target_insert_breakpoint (struct gdbarch *gdbarch,
2414 struct bp_target_info *bp_tgt)
2415 {
2416 if (!may_insert_breakpoints)
2417 {
2418 warning (_("May not insert breakpoints"));
2419 return 1;
2420 }
2421
2422 return (*current_target.to_insert_breakpoint) (gdbarch, bp_tgt);
2423 }
2424
2425 int
2426 target_remove_breakpoint (struct gdbarch *gdbarch,
2427 struct bp_target_info *bp_tgt)
2428 {
2429 /* This is kind of a weird case to handle, but the permission might
2430 have been changed after breakpoints were inserted - in which case
2431 we should just take the user literally and assume that any
2432 breakpoints should be left in place. */
2433 if (!may_insert_breakpoints)
2434 {
2435 warning (_("May not remove breakpoints"));
2436 return 1;
2437 }
2438
2439 return (*current_target.to_remove_breakpoint) (gdbarch, bp_tgt);
2440 }
2441
2442 static void
2443 target_info (char *args, int from_tty)
2444 {
2445 struct target_ops *t;
2446 int has_all_mem = 0;
2447
2448 if (symfile_objfile != NULL)
2449 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
2450
2451 for (t = target_stack; t != NULL; t = t->beneath)
2452 {
2453 if (!(*t->to_has_memory) (t))
2454 continue;
2455
2456 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2457 continue;
2458 if (has_all_mem)
2459 printf_unfiltered (_("\tWhile running this, "
2460 "GDB does not access memory from...\n"));
2461 printf_unfiltered ("%s:\n", t->to_longname);
2462 (t->to_files_info) (t);
2463 has_all_mem = (*t->to_has_all_memory) (t);
2464 }
2465 }
2466
2467 /* This function is called before any new inferior is created, e.g.
2468 by running a program, attaching, or connecting to a target.
2469 It cleans up any state from previous invocations which might
2470 change between runs. This is a subset of what target_preopen
2471 resets (things which might change between targets). */
2472
2473 void
2474 target_pre_inferior (int from_tty)
2475 {
2476 /* Clear out solib state. Otherwise the solib state of the previous
2477 inferior might have survived and is entirely wrong for the new
2478 target. This has been observed on GNU/Linux using glibc 2.3. How
2479 to reproduce:
2480
2481 bash$ ./foo&
2482 [1] 4711
2483 bash$ ./foo&
2484 [1] 4712
2485 bash$ gdb ./foo
2486 [...]
2487 (gdb) attach 4711
2488 (gdb) detach
2489 (gdb) attach 4712
2490 Cannot access memory at address 0xdeadbeef
2491 */
2492
2493 /* In some OSs, the shared library list is the same/global/shared
2494 across inferiors. If code is shared between processes, so are
2495 memory regions and features. */
2496 if (!gdbarch_has_global_solist (target_gdbarch))
2497 {
2498 no_shared_libraries (NULL, from_tty);
2499
2500 invalidate_target_mem_regions ();
2501
2502 target_clear_description ();
2503 }
2504
2505 agent_capability_invalidate ();
2506 }
2507
2508 /* Callback for iterate_over_inferiors. Gets rid of the given
2509 inferior. */
2510
2511 static int
2512 dispose_inferior (struct inferior *inf, void *args)
2513 {
2514 struct thread_info *thread;
2515
2516 thread = any_thread_of_process (inf->pid);
2517 if (thread)
2518 {
2519 switch_to_thread (thread->ptid);
2520
2521 /* Core inferiors actually should be detached, not killed. */
2522 if (target_has_execution)
2523 target_kill ();
2524 else
2525 target_detach (NULL, 0);
2526 }
2527
2528 return 0;
2529 }
2530
2531 /* This is to be called by the open routine before it does
2532 anything. */
2533
2534 void
2535 target_preopen (int from_tty)
2536 {
2537 dont_repeat ();
2538
2539 if (have_inferiors ())
2540 {
2541 if (!from_tty
2542 || !have_live_inferiors ()
2543 || query (_("A program is being debugged already. Kill it? ")))
2544 iterate_over_inferiors (dispose_inferior, NULL);
2545 else
2546 error (_("Program not killed."));
2547 }
2548
2549 /* Calling target_kill may remove the target from the stack. But if
2550 it doesn't (which seems like a win for UDI), remove it now. */
2551 /* Leave the exec target, though. The user may be switching from a
2552 live process to a core of the same program. */
2553 pop_all_targets_above (file_stratum, 0);
2554
2555 target_pre_inferior (from_tty);
2556 }
2557
2558 /* Detach a target after doing deferred register stores. */
2559
2560 void
2561 target_detach (char *args, int from_tty)
2562 {
2563 struct target_ops* t;
2564
2565 if (gdbarch_has_global_breakpoints (target_gdbarch))
2566 /* Don't remove global breakpoints here. They're removed on
2567 disconnection from the target. */
2568 ;
2569 else
2570 /* If we're in breakpoints-always-inserted mode, have to remove
2571 them before detaching. */
2572 remove_breakpoints_pid (PIDGET (inferior_ptid));
2573
2574 prepare_for_detach ();
2575
2576 for (t = current_target.beneath; t != NULL; t = t->beneath)
2577 {
2578 if (t->to_detach != NULL)
2579 {
2580 t->to_detach (t, args, from_tty);
2581 if (targetdebug)
2582 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2583 args, from_tty);
2584 return;
2585 }
2586 }
2587
2588 internal_error (__FILE__, __LINE__, _("could not find a target to detach"));
2589 }
2590
2591 void
2592 target_disconnect (char *args, int from_tty)
2593 {
2594 struct target_ops *t;
2595
2596 /* If we're in breakpoints-always-inserted mode or if breakpoints
2597 are global across processes, we have to remove them before
2598 disconnecting. */
2599 remove_breakpoints ();
2600
2601 for (t = current_target.beneath; t != NULL; t = t->beneath)
2602 if (t->to_disconnect != NULL)
2603 {
2604 if (targetdebug)
2605 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2606 args, from_tty);
2607 t->to_disconnect (t, args, from_tty);
2608 return;
2609 }
2610
2611 tcomplain ();
2612 }
2613
2614 ptid_t
2615 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2616 {
2617 struct target_ops *t;
2618
2619 for (t = current_target.beneath; t != NULL; t = t->beneath)
2620 {
2621 if (t->to_wait != NULL)
2622 {
2623 ptid_t retval = (*t->to_wait) (t, ptid, status, options);
2624
2625 if (targetdebug)
2626 {
2627 char *status_string;
2628
2629 status_string = target_waitstatus_to_string (status);
2630 fprintf_unfiltered (gdb_stdlog,
2631 "target_wait (%d, status) = %d, %s\n",
2632 PIDGET (ptid), PIDGET (retval),
2633 status_string);
2634 xfree (status_string);
2635 }
2636
2637 return retval;
2638 }
2639 }
2640
2641 noprocess ();
2642 }
2643
2644 char *
2645 target_pid_to_str (ptid_t ptid)
2646 {
2647 struct target_ops *t;
2648
2649 for (t = current_target.beneath; t != NULL; t = t->beneath)
2650 {
2651 if (t->to_pid_to_str != NULL)
2652 return (*t->to_pid_to_str) (t, ptid);
2653 }
2654
2655 return normal_pid_to_str (ptid);
2656 }
2657
2658 char *
2659 target_thread_name (struct thread_info *info)
2660 {
2661 struct target_ops *t;
2662
2663 for (t = current_target.beneath; t != NULL; t = t->beneath)
2664 {
2665 if (t->to_thread_name != NULL)
2666 return (*t->to_thread_name) (info);
2667 }
2668
2669 return NULL;
2670 }
2671
2672 void
2673 target_resume (ptid_t ptid, int step, enum target_signal signal)
2674 {
2675 struct target_ops *t;
2676
2677 target_dcache_invalidate ();
2678
2679 for (t = current_target.beneath; t != NULL; t = t->beneath)
2680 {
2681 if (t->to_resume != NULL)
2682 {
2683 t->to_resume (t, ptid, step, signal);
2684 if (targetdebug)
2685 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2686 PIDGET (ptid),
2687 step ? "step" : "continue",
2688 target_signal_to_name (signal));
2689
2690 registers_changed_ptid (ptid);
2691 set_executing (ptid, 1);
2692 set_running (ptid, 1);
2693 clear_inline_frame_state (ptid);
2694 return;
2695 }
2696 }
2697
2698 noprocess ();
2699 }
2700
2701 void
2702 target_pass_signals (int numsigs, unsigned char *pass_signals)
2703 {
2704 struct target_ops *t;
2705
2706 for (t = current_target.beneath; t != NULL; t = t->beneath)
2707 {
2708 if (t->to_pass_signals != NULL)
2709 {
2710 if (targetdebug)
2711 {
2712 int i;
2713
2714 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2715 numsigs);
2716
2717 for (i = 0; i < numsigs; i++)
2718 if (pass_signals[i])
2719 fprintf_unfiltered (gdb_stdlog, " %s",
2720 target_signal_to_name (i));
2721
2722 fprintf_unfiltered (gdb_stdlog, " })\n");
2723 }
2724
2725 (*t->to_pass_signals) (numsigs, pass_signals);
2726 return;
2727 }
2728 }
2729 }
2730
2731 /* Look through the list of possible targets for a target that can
2732 follow forks. */
2733
2734 int
2735 target_follow_fork (int follow_child)
2736 {
2737 struct target_ops *t;
2738
2739 for (t = current_target.beneath; t != NULL; t = t->beneath)
2740 {
2741 if (t->to_follow_fork != NULL)
2742 {
2743 int retval = t->to_follow_fork (t, follow_child);
2744
2745 if (targetdebug)
2746 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2747 follow_child, retval);
2748 return retval;
2749 }
2750 }
2751
2752 /* Some target returned a fork event, but did not know how to follow it. */
2753 internal_error (__FILE__, __LINE__,
2754 _("could not find a target to follow fork"));
2755 }
2756
2757 void
2758 target_mourn_inferior (void)
2759 {
2760 struct target_ops *t;
2761
2762 for (t = current_target.beneath; t != NULL; t = t->beneath)
2763 {
2764 if (t->to_mourn_inferior != NULL)
2765 {
2766 t->to_mourn_inferior (t);
2767 if (targetdebug)
2768 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2769
2770 /* We no longer need to keep handles on any of the object files.
2771 Make sure to release them to avoid unnecessarily locking any
2772 of them while we're not actually debugging. */
2773 bfd_cache_close_all ();
2774
2775 return;
2776 }
2777 }
2778
2779 internal_error (__FILE__, __LINE__,
2780 _("could not find a target to follow mourn inferior"));
2781 }
2782
2783 /* Look for a target which can describe architectural features, starting
2784 from TARGET. If we find one, return its description. */
2785
2786 const struct target_desc *
2787 target_read_description (struct target_ops *target)
2788 {
2789 struct target_ops *t;
2790
2791 for (t = target; t != NULL; t = t->beneath)
2792 if (t->to_read_description != NULL)
2793 {
2794 const struct target_desc *tdesc;
2795
2796 tdesc = t->to_read_description (t);
2797 if (tdesc)
2798 return tdesc;
2799 }
2800
2801 return NULL;
2802 }
2803
2804 /* The default implementation of to_search_memory.
2805 This implements a basic search of memory, reading target memory and
2806 performing the search here (as opposed to performing the search in on the
2807 target side with, for example, gdbserver). */
2808
2809 int
2810 simple_search_memory (struct target_ops *ops,
2811 CORE_ADDR start_addr, ULONGEST search_space_len,
2812 const gdb_byte *pattern, ULONGEST pattern_len,
2813 CORE_ADDR *found_addrp)
2814 {
2815 /* NOTE: also defined in find.c testcase. */
2816 #define SEARCH_CHUNK_SIZE 16000
2817 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2818 /* Buffer to hold memory contents for searching. */
2819 gdb_byte *search_buf;
2820 unsigned search_buf_size;
2821 struct cleanup *old_cleanups;
2822
2823 search_buf_size = chunk_size + pattern_len - 1;
2824
2825 /* No point in trying to allocate a buffer larger than the search space. */
2826 if (search_space_len < search_buf_size)
2827 search_buf_size = search_space_len;
2828
2829 search_buf = malloc (search_buf_size);
2830 if (search_buf == NULL)
2831 error (_("Unable to allocate memory to perform the search."));
2832 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2833
2834 /* Prime the search buffer. */
2835
2836 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2837 search_buf, start_addr, search_buf_size) != search_buf_size)
2838 {
2839 warning (_("Unable to access target memory at %s, halting search."),
2840 hex_string (start_addr));
2841 do_cleanups (old_cleanups);
2842 return -1;
2843 }
2844
2845 /* Perform the search.
2846
2847 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2848 When we've scanned N bytes we copy the trailing bytes to the start and
2849 read in another N bytes. */
2850
2851 while (search_space_len >= pattern_len)
2852 {
2853 gdb_byte *found_ptr;
2854 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2855
2856 found_ptr = memmem (search_buf, nr_search_bytes,
2857 pattern, pattern_len);
2858
2859 if (found_ptr != NULL)
2860 {
2861 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2862
2863 *found_addrp = found_addr;
2864 do_cleanups (old_cleanups);
2865 return 1;
2866 }
2867
2868 /* Not found in this chunk, skip to next chunk. */
2869
2870 /* Don't let search_space_len wrap here, it's unsigned. */
2871 if (search_space_len >= chunk_size)
2872 search_space_len -= chunk_size;
2873 else
2874 search_space_len = 0;
2875
2876 if (search_space_len >= pattern_len)
2877 {
2878 unsigned keep_len = search_buf_size - chunk_size;
2879 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2880 int nr_to_read;
2881
2882 /* Copy the trailing part of the previous iteration to the front
2883 of the buffer for the next iteration. */
2884 gdb_assert (keep_len == pattern_len - 1);
2885 memcpy (search_buf, search_buf + chunk_size, keep_len);
2886
2887 nr_to_read = min (search_space_len - keep_len, chunk_size);
2888
2889 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2890 search_buf + keep_len, read_addr,
2891 nr_to_read) != nr_to_read)
2892 {
2893 warning (_("Unable to access target "
2894 "memory at %s, halting search."),
2895 hex_string (read_addr));
2896 do_cleanups (old_cleanups);
2897 return -1;
2898 }
2899
2900 start_addr += chunk_size;
2901 }
2902 }
2903
2904 /* Not found. */
2905
2906 do_cleanups (old_cleanups);
2907 return 0;
2908 }
2909
2910 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2911 sequence of bytes in PATTERN with length PATTERN_LEN.
2912
2913 The result is 1 if found, 0 if not found, and -1 if there was an error
2914 requiring halting of the search (e.g. memory read error).
2915 If the pattern is found the address is recorded in FOUND_ADDRP. */
2916
2917 int
2918 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2919 const gdb_byte *pattern, ULONGEST pattern_len,
2920 CORE_ADDR *found_addrp)
2921 {
2922 struct target_ops *t;
2923 int found;
2924
2925 /* We don't use INHERIT to set current_target.to_search_memory,
2926 so we have to scan the target stack and handle targetdebug
2927 ourselves. */
2928
2929 if (targetdebug)
2930 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2931 hex_string (start_addr));
2932
2933 for (t = current_target.beneath; t != NULL; t = t->beneath)
2934 if (t->to_search_memory != NULL)
2935 break;
2936
2937 if (t != NULL)
2938 {
2939 found = t->to_search_memory (t, start_addr, search_space_len,
2940 pattern, pattern_len, found_addrp);
2941 }
2942 else
2943 {
2944 /* If a special version of to_search_memory isn't available, use the
2945 simple version. */
2946 found = simple_search_memory (current_target.beneath,
2947 start_addr, search_space_len,
2948 pattern, pattern_len, found_addrp);
2949 }
2950
2951 if (targetdebug)
2952 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2953
2954 return found;
2955 }
2956
2957 /* Look through the currently pushed targets. If none of them will
2958 be able to restart the currently running process, issue an error
2959 message. */
2960
2961 void
2962 target_require_runnable (void)
2963 {
2964 struct target_ops *t;
2965
2966 for (t = target_stack; t != NULL; t = t->beneath)
2967 {
2968 /* If this target knows how to create a new program, then
2969 assume we will still be able to after killing the current
2970 one. Either killing and mourning will not pop T, or else
2971 find_default_run_target will find it again. */
2972 if (t->to_create_inferior != NULL)
2973 return;
2974
2975 /* Do not worry about thread_stratum targets that can not
2976 create inferiors. Assume they will be pushed again if
2977 necessary, and continue to the process_stratum. */
2978 if (t->to_stratum == thread_stratum
2979 || t->to_stratum == arch_stratum)
2980 continue;
2981
2982 error (_("The \"%s\" target does not support \"run\". "
2983 "Try \"help target\" or \"continue\"."),
2984 t->to_shortname);
2985 }
2986
2987 /* This function is only called if the target is running. In that
2988 case there should have been a process_stratum target and it
2989 should either know how to create inferiors, or not... */
2990 internal_error (__FILE__, __LINE__, _("No targets found"));
2991 }
2992
2993 /* Look through the list of possible targets for a target that can
2994 execute a run or attach command without any other data. This is
2995 used to locate the default process stratum.
2996
2997 If DO_MESG is not NULL, the result is always valid (error() is
2998 called for errors); else, return NULL on error. */
2999
3000 static struct target_ops *
3001 find_default_run_target (char *do_mesg)
3002 {
3003 struct target_ops **t;
3004 struct target_ops *runable = NULL;
3005 int count;
3006
3007 count = 0;
3008
3009 for (t = target_structs; t < target_structs + target_struct_size;
3010 ++t)
3011 {
3012 if ((*t)->to_can_run && target_can_run (*t))
3013 {
3014 runable = *t;
3015 ++count;
3016 }
3017 }
3018
3019 if (count != 1)
3020 {
3021 if (do_mesg)
3022 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3023 else
3024 return NULL;
3025 }
3026
3027 return runable;
3028 }
3029
3030 void
3031 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3032 {
3033 struct target_ops *t;
3034
3035 t = find_default_run_target ("attach");
3036 (t->to_attach) (t, args, from_tty);
3037 return;
3038 }
3039
3040 void
3041 find_default_create_inferior (struct target_ops *ops,
3042 char *exec_file, char *allargs, char **env,
3043 int from_tty)
3044 {
3045 struct target_ops *t;
3046
3047 t = find_default_run_target ("run");
3048 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3049 return;
3050 }
3051
3052 static int
3053 find_default_can_async_p (void)
3054 {
3055 struct target_ops *t;
3056
3057 /* This may be called before the target is pushed on the stack;
3058 look for the default process stratum. If there's none, gdb isn't
3059 configured with a native debugger, and target remote isn't
3060 connected yet. */
3061 t = find_default_run_target (NULL);
3062 if (t && t->to_can_async_p)
3063 return (t->to_can_async_p) ();
3064 return 0;
3065 }
3066
3067 static int
3068 find_default_is_async_p (void)
3069 {
3070 struct target_ops *t;
3071
3072 /* This may be called before the target is pushed on the stack;
3073 look for the default process stratum. If there's none, gdb isn't
3074 configured with a native debugger, and target remote isn't
3075 connected yet. */
3076 t = find_default_run_target (NULL);
3077 if (t && t->to_is_async_p)
3078 return (t->to_is_async_p) ();
3079 return 0;
3080 }
3081
3082 static int
3083 find_default_supports_non_stop (void)
3084 {
3085 struct target_ops *t;
3086
3087 t = find_default_run_target (NULL);
3088 if (t && t->to_supports_non_stop)
3089 return (t->to_supports_non_stop) ();
3090 return 0;
3091 }
3092
3093 int
3094 target_supports_non_stop (void)
3095 {
3096 struct target_ops *t;
3097
3098 for (t = &current_target; t != NULL; t = t->beneath)
3099 if (t->to_supports_non_stop)
3100 return t->to_supports_non_stop ();
3101
3102 return 0;
3103 }
3104
3105 /* Implement the "info proc" command. */
3106
3107 void
3108 target_info_proc (char *args, enum info_proc_what what)
3109 {
3110 struct target_ops *t;
3111
3112 /* If we're already connected to something that can get us OS
3113 related data, use it. Otherwise, try using the native
3114 target. */
3115 if (current_target.to_stratum >= process_stratum)
3116 t = current_target.beneath;
3117 else
3118 t = find_default_run_target (NULL);
3119
3120 for (; t != NULL; t = t->beneath)
3121 {
3122 if (t->to_info_proc != NULL)
3123 {
3124 t->to_info_proc (t, args, what);
3125
3126 if (targetdebug)
3127 fprintf_unfiltered (gdb_stdlog,
3128 "target_info_proc (\"%s\", %d)\n", args, what);
3129
3130 return;
3131 }
3132 }
3133
3134 error (_("Not supported on this target."));
3135 }
3136
3137 static int
3138 find_default_supports_disable_randomization (void)
3139 {
3140 struct target_ops *t;
3141
3142 t = find_default_run_target (NULL);
3143 if (t && t->to_supports_disable_randomization)
3144 return (t->to_supports_disable_randomization) ();
3145 return 0;
3146 }
3147
3148 int
3149 target_supports_disable_randomization (void)
3150 {
3151 struct target_ops *t;
3152
3153 for (t = &current_target; t != NULL; t = t->beneath)
3154 if (t->to_supports_disable_randomization)
3155 return t->to_supports_disable_randomization ();
3156
3157 return 0;
3158 }
3159
3160 char *
3161 target_get_osdata (const char *type)
3162 {
3163 struct target_ops *t;
3164
3165 /* If we're already connected to something that can get us OS
3166 related data, use it. Otherwise, try using the native
3167 target. */
3168 if (current_target.to_stratum >= process_stratum)
3169 t = current_target.beneath;
3170 else
3171 t = find_default_run_target ("get OS data");
3172
3173 if (!t)
3174 return NULL;
3175
3176 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3177 }
3178
3179 /* Determine the current address space of thread PTID. */
3180
3181 struct address_space *
3182 target_thread_address_space (ptid_t ptid)
3183 {
3184 struct address_space *aspace;
3185 struct inferior *inf;
3186 struct target_ops *t;
3187
3188 for (t = current_target.beneath; t != NULL; t = t->beneath)
3189 {
3190 if (t->to_thread_address_space != NULL)
3191 {
3192 aspace = t->to_thread_address_space (t, ptid);
3193 gdb_assert (aspace);
3194
3195 if (targetdebug)
3196 fprintf_unfiltered (gdb_stdlog,
3197 "target_thread_address_space (%s) = %d\n",
3198 target_pid_to_str (ptid),
3199 address_space_num (aspace));
3200 return aspace;
3201 }
3202 }
3203
3204 /* Fall-back to the "main" address space of the inferior. */
3205 inf = find_inferior_pid (ptid_get_pid (ptid));
3206
3207 if (inf == NULL || inf->aspace == NULL)
3208 internal_error (__FILE__, __LINE__,
3209 _("Can't determine the current "
3210 "address space of thread %s\n"),
3211 target_pid_to_str (ptid));
3212
3213 return inf->aspace;
3214 }
3215
3216
3217 /* Target file operations. */
3218
3219 static struct target_ops *
3220 default_fileio_target (void)
3221 {
3222 /* If we're already connected to something that can perform
3223 file I/O, use it. Otherwise, try using the native target. */
3224 if (current_target.to_stratum >= process_stratum)
3225 return current_target.beneath;
3226 else
3227 return find_default_run_target ("file I/O");
3228 }
3229
3230 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3231 target file descriptor, or -1 if an error occurs (and set
3232 *TARGET_ERRNO). */
3233 int
3234 target_fileio_open (const char *filename, int flags, int mode,
3235 int *target_errno)
3236 {
3237 struct target_ops *t;
3238
3239 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3240 {
3241 if (t->to_fileio_open != NULL)
3242 {
3243 int fd = t->to_fileio_open (filename, flags, mode, target_errno);
3244
3245 if (targetdebug)
3246 fprintf_unfiltered (gdb_stdlog,
3247 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3248 filename, flags, mode,
3249 fd, fd != -1 ? 0 : *target_errno);
3250 return fd;
3251 }
3252 }
3253
3254 *target_errno = FILEIO_ENOSYS;
3255 return -1;
3256 }
3257
3258 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3259 Return the number of bytes written, or -1 if an error occurs
3260 (and set *TARGET_ERRNO). */
3261 int
3262 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3263 ULONGEST offset, int *target_errno)
3264 {
3265 struct target_ops *t;
3266
3267 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3268 {
3269 if (t->to_fileio_pwrite != NULL)
3270 {
3271 int ret = t->to_fileio_pwrite (fd, write_buf, len, offset,
3272 target_errno);
3273
3274 if (targetdebug)
3275 fprintf_unfiltered (gdb_stdlog,
3276 "target_fileio_pwrite (%d,...,%d,%s) "
3277 "= %d (%d)\n",
3278 fd, len, pulongest (offset),
3279 ret, ret != -1 ? 0 : *target_errno);
3280 return ret;
3281 }
3282 }
3283
3284 *target_errno = FILEIO_ENOSYS;
3285 return -1;
3286 }
3287
3288 /* Read up to LEN bytes FD on the target into READ_BUF.
3289 Return the number of bytes read, or -1 if an error occurs
3290 (and set *TARGET_ERRNO). */
3291 int
3292 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3293 ULONGEST offset, int *target_errno)
3294 {
3295 struct target_ops *t;
3296
3297 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3298 {
3299 if (t->to_fileio_pread != NULL)
3300 {
3301 int ret = t->to_fileio_pread (fd, read_buf, len, offset,
3302 target_errno);
3303
3304 if (targetdebug)
3305 fprintf_unfiltered (gdb_stdlog,
3306 "target_fileio_pread (%d,...,%d,%s) "
3307 "= %d (%d)\n",
3308 fd, len, pulongest (offset),
3309 ret, ret != -1 ? 0 : *target_errno);
3310 return ret;
3311 }
3312 }
3313
3314 *target_errno = FILEIO_ENOSYS;
3315 return -1;
3316 }
3317
3318 /* Close FD on the target. Return 0, or -1 if an error occurs
3319 (and set *TARGET_ERRNO). */
3320 int
3321 target_fileio_close (int fd, int *target_errno)
3322 {
3323 struct target_ops *t;
3324
3325 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3326 {
3327 if (t->to_fileio_close != NULL)
3328 {
3329 int ret = t->to_fileio_close (fd, target_errno);
3330
3331 if (targetdebug)
3332 fprintf_unfiltered (gdb_stdlog,
3333 "target_fileio_close (%d) = %d (%d)\n",
3334 fd, ret, ret != -1 ? 0 : *target_errno);
3335 return ret;
3336 }
3337 }
3338
3339 *target_errno = FILEIO_ENOSYS;
3340 return -1;
3341 }
3342
3343 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3344 occurs (and set *TARGET_ERRNO). */
3345 int
3346 target_fileio_unlink (const char *filename, int *target_errno)
3347 {
3348 struct target_ops *t;
3349
3350 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3351 {
3352 if (t->to_fileio_unlink != NULL)
3353 {
3354 int ret = t->to_fileio_unlink (filename, target_errno);
3355
3356 if (targetdebug)
3357 fprintf_unfiltered (gdb_stdlog,
3358 "target_fileio_unlink (%s) = %d (%d)\n",
3359 filename, ret, ret != -1 ? 0 : *target_errno);
3360 return ret;
3361 }
3362 }
3363
3364 *target_errno = FILEIO_ENOSYS;
3365 return -1;
3366 }
3367
3368 /* Read value of symbolic link FILENAME on the target. Return a
3369 null-terminated string allocated via xmalloc, or NULL if an error
3370 occurs (and set *TARGET_ERRNO). */
3371 char *
3372 target_fileio_readlink (const char *filename, int *target_errno)
3373 {
3374 struct target_ops *t;
3375
3376 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3377 {
3378 if (t->to_fileio_readlink != NULL)
3379 {
3380 char *ret = t->to_fileio_readlink (filename, target_errno);
3381
3382 if (targetdebug)
3383 fprintf_unfiltered (gdb_stdlog,
3384 "target_fileio_readlink (%s) = %s (%d)\n",
3385 filename, ret? ret : "(nil)",
3386 ret? 0 : *target_errno);
3387 return ret;
3388 }
3389 }
3390
3391 *target_errno = FILEIO_ENOSYS;
3392 return NULL;
3393 }
3394
3395 static void
3396 target_fileio_close_cleanup (void *opaque)
3397 {
3398 int fd = *(int *) opaque;
3399 int target_errno;
3400
3401 target_fileio_close (fd, &target_errno);
3402 }
3403
3404 /* Read target file FILENAME. Store the result in *BUF_P and
3405 return the size of the transferred data. PADDING additional bytes are
3406 available in *BUF_P. This is a helper function for
3407 target_fileio_read_alloc; see the declaration of that function for more
3408 information. */
3409
3410 static LONGEST
3411 target_fileio_read_alloc_1 (const char *filename,
3412 gdb_byte **buf_p, int padding)
3413 {
3414 struct cleanup *close_cleanup;
3415 size_t buf_alloc, buf_pos;
3416 gdb_byte *buf;
3417 LONGEST n;
3418 int fd;
3419 int target_errno;
3420
3421 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3422 if (fd == -1)
3423 return -1;
3424
3425 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3426
3427 /* Start by reading up to 4K at a time. The target will throttle
3428 this number down if necessary. */
3429 buf_alloc = 4096;
3430 buf = xmalloc (buf_alloc);
3431 buf_pos = 0;
3432 while (1)
3433 {
3434 n = target_fileio_pread (fd, &buf[buf_pos],
3435 buf_alloc - buf_pos - padding, buf_pos,
3436 &target_errno);
3437 if (n < 0)
3438 {
3439 /* An error occurred. */
3440 do_cleanups (close_cleanup);
3441 xfree (buf);
3442 return -1;
3443 }
3444 else if (n == 0)
3445 {
3446 /* Read all there was. */
3447 do_cleanups (close_cleanup);
3448 if (buf_pos == 0)
3449 xfree (buf);
3450 else
3451 *buf_p = buf;
3452 return buf_pos;
3453 }
3454
3455 buf_pos += n;
3456
3457 /* If the buffer is filling up, expand it. */
3458 if (buf_alloc < buf_pos * 2)
3459 {
3460 buf_alloc *= 2;
3461 buf = xrealloc (buf, buf_alloc);
3462 }
3463
3464 QUIT;
3465 }
3466 }
3467
3468 /* Read target file FILENAME. Store the result in *BUF_P and return
3469 the size of the transferred data. See the declaration in "target.h"
3470 function for more information about the return value. */
3471
3472 LONGEST
3473 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3474 {
3475 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3476 }
3477
3478 /* Read target file FILENAME. The result is NUL-terminated and
3479 returned as a string, allocated using xmalloc. If an error occurs
3480 or the transfer is unsupported, NULL is returned. Empty objects
3481 are returned as allocated but empty strings. A warning is issued
3482 if the result contains any embedded NUL bytes. */
3483
3484 char *
3485 target_fileio_read_stralloc (const char *filename)
3486 {
3487 gdb_byte *buffer;
3488 LONGEST i, transferred;
3489
3490 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3491
3492 if (transferred < 0)
3493 return NULL;
3494
3495 if (transferred == 0)
3496 return xstrdup ("");
3497
3498 buffer[transferred] = 0;
3499
3500 /* Check for embedded NUL bytes; but allow trailing NULs. */
3501 for (i = strlen (buffer); i < transferred; i++)
3502 if (buffer[i] != 0)
3503 {
3504 warning (_("target file %s "
3505 "contained unexpected null characters"),
3506 filename);
3507 break;
3508 }
3509
3510 return (char *) buffer;
3511 }
3512
3513
3514 static int
3515 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
3516 {
3517 return (len <= gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT);
3518 }
3519
3520 static int
3521 default_watchpoint_addr_within_range (struct target_ops *target,
3522 CORE_ADDR addr,
3523 CORE_ADDR start, int length)
3524 {
3525 return addr >= start && addr < start + length;
3526 }
3527
3528 static struct gdbarch *
3529 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3530 {
3531 return target_gdbarch;
3532 }
3533
3534 static int
3535 return_zero (void)
3536 {
3537 return 0;
3538 }
3539
3540 static int
3541 return_one (void)
3542 {
3543 return 1;
3544 }
3545
3546 static int
3547 return_minus_one (void)
3548 {
3549 return -1;
3550 }
3551
3552 /* Find a single runnable target in the stack and return it. If for
3553 some reason there is more than one, return NULL. */
3554
3555 struct target_ops *
3556 find_run_target (void)
3557 {
3558 struct target_ops **t;
3559 struct target_ops *runable = NULL;
3560 int count;
3561
3562 count = 0;
3563
3564 for (t = target_structs; t < target_structs + target_struct_size; ++t)
3565 {
3566 if ((*t)->to_can_run && target_can_run (*t))
3567 {
3568 runable = *t;
3569 ++count;
3570 }
3571 }
3572
3573 return (count == 1 ? runable : NULL);
3574 }
3575
3576 /*
3577 * Find the next target down the stack from the specified target.
3578 */
3579
3580 struct target_ops *
3581 find_target_beneath (struct target_ops *t)
3582 {
3583 return t->beneath;
3584 }
3585
3586 \f
3587 /* The inferior process has died. Long live the inferior! */
3588
3589 void
3590 generic_mourn_inferior (void)
3591 {
3592 ptid_t ptid;
3593
3594 ptid = inferior_ptid;
3595 inferior_ptid = null_ptid;
3596
3597 /* Mark breakpoints uninserted in case something tries to delete a
3598 breakpoint while we delete the inferior's threads (which would
3599 fail, since the inferior is long gone). */
3600 mark_breakpoints_out ();
3601
3602 if (!ptid_equal (ptid, null_ptid))
3603 {
3604 int pid = ptid_get_pid (ptid);
3605 exit_inferior (pid);
3606 }
3607
3608 /* Note this wipes step-resume breakpoints, so needs to be done
3609 after exit_inferior, which ends up referencing the step-resume
3610 breakpoints through clear_thread_inferior_resources. */
3611 breakpoint_init_inferior (inf_exited);
3612
3613 registers_changed ();
3614
3615 reopen_exec_file ();
3616 reinit_frame_cache ();
3617
3618 if (deprecated_detach_hook)
3619 deprecated_detach_hook ();
3620 }
3621 \f
3622 /* Helper function for child_wait and the derivatives of child_wait.
3623 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
3624 translation of that in OURSTATUS. */
3625 void
3626 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
3627 {
3628 if (WIFEXITED (hoststatus))
3629 {
3630 ourstatus->kind = TARGET_WAITKIND_EXITED;
3631 ourstatus->value.integer = WEXITSTATUS (hoststatus);
3632 }
3633 else if (!WIFSTOPPED (hoststatus))
3634 {
3635 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3636 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
3637 }
3638 else
3639 {
3640 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3641 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
3642 }
3643 }
3644 \f
3645 /* Convert a normal process ID to a string. Returns the string in a
3646 static buffer. */
3647
3648 char *
3649 normal_pid_to_str (ptid_t ptid)
3650 {
3651 static char buf[32];
3652
3653 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3654 return buf;
3655 }
3656
3657 static char *
3658 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3659 {
3660 return normal_pid_to_str (ptid);
3661 }
3662
3663 /* Error-catcher for target_find_memory_regions. */
3664 static int
3665 dummy_find_memory_regions (find_memory_region_ftype ignore1, void *ignore2)
3666 {
3667 error (_("Command not implemented for this target."));
3668 return 0;
3669 }
3670
3671 /* Error-catcher for target_make_corefile_notes. */
3672 static char *
3673 dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
3674 {
3675 error (_("Command not implemented for this target."));
3676 return NULL;
3677 }
3678
3679 /* Error-catcher for target_get_bookmark. */
3680 static gdb_byte *
3681 dummy_get_bookmark (char *ignore1, int ignore2)
3682 {
3683 tcomplain ();
3684 return NULL;
3685 }
3686
3687 /* Error-catcher for target_goto_bookmark. */
3688 static void
3689 dummy_goto_bookmark (gdb_byte *ignore, int from_tty)
3690 {
3691 tcomplain ();
3692 }
3693
3694 /* Set up the handful of non-empty slots needed by the dummy target
3695 vector. */
3696
3697 static void
3698 init_dummy_target (void)
3699 {
3700 dummy_target.to_shortname = "None";
3701 dummy_target.to_longname = "None";
3702 dummy_target.to_doc = "";
3703 dummy_target.to_attach = find_default_attach;
3704 dummy_target.to_detach =
3705 (void (*)(struct target_ops *, char *, int))target_ignore;
3706 dummy_target.to_create_inferior = find_default_create_inferior;
3707 dummy_target.to_can_async_p = find_default_can_async_p;
3708 dummy_target.to_is_async_p = find_default_is_async_p;
3709 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3710 dummy_target.to_supports_disable_randomization
3711 = find_default_supports_disable_randomization;
3712 dummy_target.to_pid_to_str = dummy_pid_to_str;
3713 dummy_target.to_stratum = dummy_stratum;
3714 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
3715 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
3716 dummy_target.to_get_bookmark = dummy_get_bookmark;
3717 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3718 dummy_target.to_xfer_partial = default_xfer_partial;
3719 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3720 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3721 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3722 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3723 dummy_target.to_has_execution
3724 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3725 dummy_target.to_stopped_by_watchpoint = return_zero;
3726 dummy_target.to_stopped_data_address =
3727 (int (*) (struct target_ops *, CORE_ADDR *)) return_zero;
3728 dummy_target.to_magic = OPS_MAGIC;
3729 }
3730 \f
3731 static void
3732 debug_to_open (char *args, int from_tty)
3733 {
3734 debug_target.to_open (args, from_tty);
3735
3736 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3737 }
3738
3739 void
3740 target_close (struct target_ops *targ, int quitting)
3741 {
3742 if (targ->to_xclose != NULL)
3743 targ->to_xclose (targ, quitting);
3744 else if (targ->to_close != NULL)
3745 targ->to_close (quitting);
3746
3747 if (targetdebug)
3748 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
3749 }
3750
3751 void
3752 target_attach (char *args, int from_tty)
3753 {
3754 struct target_ops *t;
3755
3756 for (t = current_target.beneath; t != NULL; t = t->beneath)
3757 {
3758 if (t->to_attach != NULL)
3759 {
3760 t->to_attach (t, args, from_tty);
3761 if (targetdebug)
3762 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3763 args, from_tty);
3764 return;
3765 }
3766 }
3767
3768 internal_error (__FILE__, __LINE__,
3769 _("could not find a target to attach"));
3770 }
3771
3772 int
3773 target_thread_alive (ptid_t ptid)
3774 {
3775 struct target_ops *t;
3776
3777 for (t = current_target.beneath; t != NULL; t = t->beneath)
3778 {
3779 if (t->to_thread_alive != NULL)
3780 {
3781 int retval;
3782
3783 retval = t->to_thread_alive (t, ptid);
3784 if (targetdebug)
3785 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3786 PIDGET (ptid), retval);
3787
3788 return retval;
3789 }
3790 }
3791
3792 return 0;
3793 }
3794
3795 void
3796 target_find_new_threads (void)
3797 {
3798 struct target_ops *t;
3799
3800 for (t = current_target.beneath; t != NULL; t = t->beneath)
3801 {
3802 if (t->to_find_new_threads != NULL)
3803 {
3804 t->to_find_new_threads (t);
3805 if (targetdebug)
3806 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3807
3808 return;
3809 }
3810 }
3811 }
3812
3813 void
3814 target_stop (ptid_t ptid)
3815 {
3816 if (!may_stop)
3817 {
3818 warning (_("May not interrupt or stop the target, ignoring attempt"));
3819 return;
3820 }
3821
3822 (*current_target.to_stop) (ptid);
3823 }
3824
3825 static void
3826 debug_to_post_attach (int pid)
3827 {
3828 debug_target.to_post_attach (pid);
3829
3830 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3831 }
3832
3833 /* Return a pretty printed form of target_waitstatus.
3834 Space for the result is malloc'd, caller must free. */
3835
3836 char *
3837 target_waitstatus_to_string (const struct target_waitstatus *ws)
3838 {
3839 const char *kind_str = "status->kind = ";
3840
3841 switch (ws->kind)
3842 {
3843 case TARGET_WAITKIND_EXITED:
3844 return xstrprintf ("%sexited, status = %d",
3845 kind_str, ws->value.integer);
3846 case TARGET_WAITKIND_STOPPED:
3847 return xstrprintf ("%sstopped, signal = %s",
3848 kind_str, target_signal_to_name (ws->value.sig));
3849 case TARGET_WAITKIND_SIGNALLED:
3850 return xstrprintf ("%ssignalled, signal = %s",
3851 kind_str, target_signal_to_name (ws->value.sig));
3852 case TARGET_WAITKIND_LOADED:
3853 return xstrprintf ("%sloaded", kind_str);
3854 case TARGET_WAITKIND_FORKED:
3855 return xstrprintf ("%sforked", kind_str);
3856 case TARGET_WAITKIND_VFORKED:
3857 return xstrprintf ("%svforked", kind_str);
3858 case TARGET_WAITKIND_EXECD:
3859 return xstrprintf ("%sexecd", kind_str);
3860 case TARGET_WAITKIND_SYSCALL_ENTRY:
3861 return xstrprintf ("%sentered syscall", kind_str);
3862 case TARGET_WAITKIND_SYSCALL_RETURN:
3863 return xstrprintf ("%sexited syscall", kind_str);
3864 case TARGET_WAITKIND_SPURIOUS:
3865 return xstrprintf ("%sspurious", kind_str);
3866 case TARGET_WAITKIND_IGNORE:
3867 return xstrprintf ("%signore", kind_str);
3868 case TARGET_WAITKIND_NO_HISTORY:
3869 return xstrprintf ("%sno-history", kind_str);
3870 case TARGET_WAITKIND_NO_RESUMED:
3871 return xstrprintf ("%sno-resumed", kind_str);
3872 default:
3873 return xstrprintf ("%sunknown???", kind_str);
3874 }
3875 }
3876
3877 static void
3878 debug_print_register (const char * func,
3879 struct regcache *regcache, int regno)
3880 {
3881 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3882
3883 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3884 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3885 && gdbarch_register_name (gdbarch, regno) != NULL
3886 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3887 fprintf_unfiltered (gdb_stdlog, "(%s)",
3888 gdbarch_register_name (gdbarch, regno));
3889 else
3890 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3891 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3892 {
3893 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3894 int i, size = register_size (gdbarch, regno);
3895 unsigned char buf[MAX_REGISTER_SIZE];
3896
3897 regcache_raw_collect (regcache, regno, buf);
3898 fprintf_unfiltered (gdb_stdlog, " = ");
3899 for (i = 0; i < size; i++)
3900 {
3901 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3902 }
3903 if (size <= sizeof (LONGEST))
3904 {
3905 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3906
3907 fprintf_unfiltered (gdb_stdlog, " %s %s",
3908 core_addr_to_string_nz (val), plongest (val));
3909 }
3910 }
3911 fprintf_unfiltered (gdb_stdlog, "\n");
3912 }
3913
3914 void
3915 target_fetch_registers (struct regcache *regcache, int regno)
3916 {
3917 struct target_ops *t;
3918
3919 for (t = current_target.beneath; t != NULL; t = t->beneath)
3920 {
3921 if (t->to_fetch_registers != NULL)
3922 {
3923 t->to_fetch_registers (t, regcache, regno);
3924 if (targetdebug)
3925 debug_print_register ("target_fetch_registers", regcache, regno);
3926 return;
3927 }
3928 }
3929 }
3930
3931 void
3932 target_store_registers (struct regcache *regcache, int regno)
3933 {
3934 struct target_ops *t;
3935
3936 if (!may_write_registers)
3937 error (_("Writing to registers is not allowed (regno %d)"), regno);
3938
3939 for (t = current_target.beneath; t != NULL; t = t->beneath)
3940 {
3941 if (t->to_store_registers != NULL)
3942 {
3943 t->to_store_registers (t, regcache, regno);
3944 if (targetdebug)
3945 {
3946 debug_print_register ("target_store_registers", regcache, regno);
3947 }
3948 return;
3949 }
3950 }
3951
3952 noprocess ();
3953 }
3954
3955 int
3956 target_core_of_thread (ptid_t ptid)
3957 {
3958 struct target_ops *t;
3959
3960 for (t = current_target.beneath; t != NULL; t = t->beneath)
3961 {
3962 if (t->to_core_of_thread != NULL)
3963 {
3964 int retval = t->to_core_of_thread (t, ptid);
3965
3966 if (targetdebug)
3967 fprintf_unfiltered (gdb_stdlog,
3968 "target_core_of_thread (%d) = %d\n",
3969 PIDGET (ptid), retval);
3970 return retval;
3971 }
3972 }
3973
3974 return -1;
3975 }
3976
3977 int
3978 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3979 {
3980 struct target_ops *t;
3981
3982 for (t = current_target.beneath; t != NULL; t = t->beneath)
3983 {
3984 if (t->to_verify_memory != NULL)
3985 {
3986 int retval = t->to_verify_memory (t, data, memaddr, size);
3987
3988 if (targetdebug)
3989 fprintf_unfiltered (gdb_stdlog,
3990 "target_verify_memory (%s, %s) = %d\n",
3991 paddress (target_gdbarch, memaddr),
3992 pulongest (size),
3993 retval);
3994 return retval;
3995 }
3996 }
3997
3998 tcomplain ();
3999 }
4000
4001 /* The documentation for this function is in its prototype declaration in
4002 target.h. */
4003
4004 int
4005 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4006 {
4007 struct target_ops *t;
4008
4009 for (t = current_target.beneath; t != NULL; t = t->beneath)
4010 if (t->to_insert_mask_watchpoint != NULL)
4011 {
4012 int ret;
4013
4014 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
4015
4016 if (targetdebug)
4017 fprintf_unfiltered (gdb_stdlog, "\
4018 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
4019 core_addr_to_string (addr),
4020 core_addr_to_string (mask), rw, ret);
4021
4022 return ret;
4023 }
4024
4025 return 1;
4026 }
4027
4028 /* The documentation for this function is in its prototype declaration in
4029 target.h. */
4030
4031 int
4032 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4033 {
4034 struct target_ops *t;
4035
4036 for (t = current_target.beneath; t != NULL; t = t->beneath)
4037 if (t->to_remove_mask_watchpoint != NULL)
4038 {
4039 int ret;
4040
4041 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4042
4043 if (targetdebug)
4044 fprintf_unfiltered (gdb_stdlog, "\
4045 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4046 core_addr_to_string (addr),
4047 core_addr_to_string (mask), rw, ret);
4048
4049 return ret;
4050 }
4051
4052 return 1;
4053 }
4054
4055 /* The documentation for this function is in its prototype declaration
4056 in target.h. */
4057
4058 int
4059 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4060 {
4061 struct target_ops *t;
4062
4063 for (t = current_target.beneath; t != NULL; t = t->beneath)
4064 if (t->to_masked_watch_num_registers != NULL)
4065 return t->to_masked_watch_num_registers (t, addr, mask);
4066
4067 return -1;
4068 }
4069
4070 /* The documentation for this function is in its prototype declaration
4071 in target.h. */
4072
4073 int
4074 target_ranged_break_num_registers (void)
4075 {
4076 struct target_ops *t;
4077
4078 for (t = current_target.beneath; t != NULL; t = t->beneath)
4079 if (t->to_ranged_break_num_registers != NULL)
4080 return t->to_ranged_break_num_registers (t);
4081
4082 return -1;
4083 }
4084
4085 static void
4086 debug_to_prepare_to_store (struct regcache *regcache)
4087 {
4088 debug_target.to_prepare_to_store (regcache);
4089
4090 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4091 }
4092
4093 static int
4094 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4095 int write, struct mem_attrib *attrib,
4096 struct target_ops *target)
4097 {
4098 int retval;
4099
4100 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4101 attrib, target);
4102
4103 fprintf_unfiltered (gdb_stdlog,
4104 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4105 paddress (target_gdbarch, memaddr), len,
4106 write ? "write" : "read", retval);
4107
4108 if (retval > 0)
4109 {
4110 int i;
4111
4112 fputs_unfiltered (", bytes =", gdb_stdlog);
4113 for (i = 0; i < retval; i++)
4114 {
4115 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4116 {
4117 if (targetdebug < 2 && i > 0)
4118 {
4119 fprintf_unfiltered (gdb_stdlog, " ...");
4120 break;
4121 }
4122 fprintf_unfiltered (gdb_stdlog, "\n");
4123 }
4124
4125 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4126 }
4127 }
4128
4129 fputc_unfiltered ('\n', gdb_stdlog);
4130
4131 return retval;
4132 }
4133
4134 static void
4135 debug_to_files_info (struct target_ops *target)
4136 {
4137 debug_target.to_files_info (target);
4138
4139 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4140 }
4141
4142 static int
4143 debug_to_insert_breakpoint (struct gdbarch *gdbarch,
4144 struct bp_target_info *bp_tgt)
4145 {
4146 int retval;
4147
4148 retval = debug_target.to_insert_breakpoint (gdbarch, bp_tgt);
4149
4150 fprintf_unfiltered (gdb_stdlog,
4151 "target_insert_breakpoint (%s, xxx) = %ld\n",
4152 core_addr_to_string (bp_tgt->placed_address),
4153 (unsigned long) retval);
4154 return retval;
4155 }
4156
4157 static int
4158 debug_to_remove_breakpoint (struct gdbarch *gdbarch,
4159 struct bp_target_info *bp_tgt)
4160 {
4161 int retval;
4162
4163 retval = debug_target.to_remove_breakpoint (gdbarch, bp_tgt);
4164
4165 fprintf_unfiltered (gdb_stdlog,
4166 "target_remove_breakpoint (%s, xxx) = %ld\n",
4167 core_addr_to_string (bp_tgt->placed_address),
4168 (unsigned long) retval);
4169 return retval;
4170 }
4171
4172 static int
4173 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
4174 {
4175 int retval;
4176
4177 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
4178
4179 fprintf_unfiltered (gdb_stdlog,
4180 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4181 (unsigned long) type,
4182 (unsigned long) cnt,
4183 (unsigned long) from_tty,
4184 (unsigned long) retval);
4185 return retval;
4186 }
4187
4188 static int
4189 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
4190 {
4191 CORE_ADDR retval;
4192
4193 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
4194
4195 fprintf_unfiltered (gdb_stdlog,
4196 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4197 core_addr_to_string (addr), (unsigned long) len,
4198 core_addr_to_string (retval));
4199 return retval;
4200 }
4201
4202 static int
4203 debug_to_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int rw,
4204 struct expression *cond)
4205 {
4206 int retval;
4207
4208 retval = debug_target.to_can_accel_watchpoint_condition (addr, len,
4209 rw, cond);
4210
4211 fprintf_unfiltered (gdb_stdlog,
4212 "target_can_accel_watchpoint_condition "
4213 "(%s, %d, %d, %s) = %ld\n",
4214 core_addr_to_string (addr), len, rw,
4215 host_address_to_string (cond), (unsigned long) retval);
4216 return retval;
4217 }
4218
4219 static int
4220 debug_to_stopped_by_watchpoint (void)
4221 {
4222 int retval;
4223
4224 retval = debug_target.to_stopped_by_watchpoint ();
4225
4226 fprintf_unfiltered (gdb_stdlog,
4227 "target_stopped_by_watchpoint () = %ld\n",
4228 (unsigned long) retval);
4229 return retval;
4230 }
4231
4232 static int
4233 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4234 {
4235 int retval;
4236
4237 retval = debug_target.to_stopped_data_address (target, addr);
4238
4239 fprintf_unfiltered (gdb_stdlog,
4240 "target_stopped_data_address ([%s]) = %ld\n",
4241 core_addr_to_string (*addr),
4242 (unsigned long)retval);
4243 return retval;
4244 }
4245
4246 static int
4247 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4248 CORE_ADDR addr,
4249 CORE_ADDR start, int length)
4250 {
4251 int retval;
4252
4253 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4254 start, length);
4255
4256 fprintf_filtered (gdb_stdlog,
4257 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4258 core_addr_to_string (addr), core_addr_to_string (start),
4259 length, retval);
4260 return retval;
4261 }
4262
4263 static int
4264 debug_to_insert_hw_breakpoint (struct gdbarch *gdbarch,
4265 struct bp_target_info *bp_tgt)
4266 {
4267 int retval;
4268
4269 retval = debug_target.to_insert_hw_breakpoint (gdbarch, bp_tgt);
4270
4271 fprintf_unfiltered (gdb_stdlog,
4272 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4273 core_addr_to_string (bp_tgt->placed_address),
4274 (unsigned long) retval);
4275 return retval;
4276 }
4277
4278 static int
4279 debug_to_remove_hw_breakpoint (struct gdbarch *gdbarch,
4280 struct bp_target_info *bp_tgt)
4281 {
4282 int retval;
4283
4284 retval = debug_target.to_remove_hw_breakpoint (gdbarch, bp_tgt);
4285
4286 fprintf_unfiltered (gdb_stdlog,
4287 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4288 core_addr_to_string (bp_tgt->placed_address),
4289 (unsigned long) retval);
4290 return retval;
4291 }
4292
4293 static int
4294 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type,
4295 struct expression *cond)
4296 {
4297 int retval;
4298
4299 retval = debug_target.to_insert_watchpoint (addr, len, type, cond);
4300
4301 fprintf_unfiltered (gdb_stdlog,
4302 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4303 core_addr_to_string (addr), len, type,
4304 host_address_to_string (cond), (unsigned long) retval);
4305 return retval;
4306 }
4307
4308 static int
4309 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type,
4310 struct expression *cond)
4311 {
4312 int retval;
4313
4314 retval = debug_target.to_remove_watchpoint (addr, len, type, cond);
4315
4316 fprintf_unfiltered (gdb_stdlog,
4317 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4318 core_addr_to_string (addr), len, type,
4319 host_address_to_string (cond), (unsigned long) retval);
4320 return retval;
4321 }
4322
4323 static void
4324 debug_to_terminal_init (void)
4325 {
4326 debug_target.to_terminal_init ();
4327
4328 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4329 }
4330
4331 static void
4332 debug_to_terminal_inferior (void)
4333 {
4334 debug_target.to_terminal_inferior ();
4335
4336 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4337 }
4338
4339 static void
4340 debug_to_terminal_ours_for_output (void)
4341 {
4342 debug_target.to_terminal_ours_for_output ();
4343
4344 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4345 }
4346
4347 static void
4348 debug_to_terminal_ours (void)
4349 {
4350 debug_target.to_terminal_ours ();
4351
4352 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4353 }
4354
4355 static void
4356 debug_to_terminal_save_ours (void)
4357 {
4358 debug_target.to_terminal_save_ours ();
4359
4360 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4361 }
4362
4363 static void
4364 debug_to_terminal_info (char *arg, int from_tty)
4365 {
4366 debug_target.to_terminal_info (arg, from_tty);
4367
4368 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4369 from_tty);
4370 }
4371
4372 static void
4373 debug_to_load (char *args, int from_tty)
4374 {
4375 debug_target.to_load (args, from_tty);
4376
4377 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4378 }
4379
4380 static void
4381 debug_to_post_startup_inferior (ptid_t ptid)
4382 {
4383 debug_target.to_post_startup_inferior (ptid);
4384
4385 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4386 PIDGET (ptid));
4387 }
4388
4389 static int
4390 debug_to_insert_fork_catchpoint (int pid)
4391 {
4392 int retval;
4393
4394 retval = debug_target.to_insert_fork_catchpoint (pid);
4395
4396 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4397 pid, retval);
4398
4399 return retval;
4400 }
4401
4402 static int
4403 debug_to_remove_fork_catchpoint (int pid)
4404 {
4405 int retval;
4406
4407 retval = debug_target.to_remove_fork_catchpoint (pid);
4408
4409 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4410 pid, retval);
4411
4412 return retval;
4413 }
4414
4415 static int
4416 debug_to_insert_vfork_catchpoint (int pid)
4417 {
4418 int retval;
4419
4420 retval = debug_target.to_insert_vfork_catchpoint (pid);
4421
4422 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4423 pid, retval);
4424
4425 return retval;
4426 }
4427
4428 static int
4429 debug_to_remove_vfork_catchpoint (int pid)
4430 {
4431 int retval;
4432
4433 retval = debug_target.to_remove_vfork_catchpoint (pid);
4434
4435 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4436 pid, retval);
4437
4438 return retval;
4439 }
4440
4441 static int
4442 debug_to_insert_exec_catchpoint (int pid)
4443 {
4444 int retval;
4445
4446 retval = debug_target.to_insert_exec_catchpoint (pid);
4447
4448 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4449 pid, retval);
4450
4451 return retval;
4452 }
4453
4454 static int
4455 debug_to_remove_exec_catchpoint (int pid)
4456 {
4457 int retval;
4458
4459 retval = debug_target.to_remove_exec_catchpoint (pid);
4460
4461 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4462 pid, retval);
4463
4464 return retval;
4465 }
4466
4467 static int
4468 debug_to_has_exited (int pid, int wait_status, int *exit_status)
4469 {
4470 int has_exited;
4471
4472 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
4473
4474 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4475 pid, wait_status, *exit_status, has_exited);
4476
4477 return has_exited;
4478 }
4479
4480 static int
4481 debug_to_can_run (void)
4482 {
4483 int retval;
4484
4485 retval = debug_target.to_can_run ();
4486
4487 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4488
4489 return retval;
4490 }
4491
4492 static struct gdbarch *
4493 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4494 {
4495 struct gdbarch *retval;
4496
4497 retval = debug_target.to_thread_architecture (ops, ptid);
4498
4499 fprintf_unfiltered (gdb_stdlog,
4500 "target_thread_architecture (%s) = %s [%s]\n",
4501 target_pid_to_str (ptid),
4502 host_address_to_string (retval),
4503 gdbarch_bfd_arch_info (retval)->printable_name);
4504 return retval;
4505 }
4506
4507 static void
4508 debug_to_stop (ptid_t ptid)
4509 {
4510 debug_target.to_stop (ptid);
4511
4512 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4513 target_pid_to_str (ptid));
4514 }
4515
4516 static void
4517 debug_to_rcmd (char *command,
4518 struct ui_file *outbuf)
4519 {
4520 debug_target.to_rcmd (command, outbuf);
4521 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4522 }
4523
4524 static char *
4525 debug_to_pid_to_exec_file (int pid)
4526 {
4527 char *exec_file;
4528
4529 exec_file = debug_target.to_pid_to_exec_file (pid);
4530
4531 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4532 pid, exec_file);
4533
4534 return exec_file;
4535 }
4536
4537 static void
4538 setup_target_debug (void)
4539 {
4540 memcpy (&debug_target, &current_target, sizeof debug_target);
4541
4542 current_target.to_open = debug_to_open;
4543 current_target.to_post_attach = debug_to_post_attach;
4544 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4545 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4546 current_target.to_files_info = debug_to_files_info;
4547 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4548 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4549 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4550 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4551 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4552 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4553 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4554 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4555 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4556 current_target.to_watchpoint_addr_within_range
4557 = debug_to_watchpoint_addr_within_range;
4558 current_target.to_region_ok_for_hw_watchpoint
4559 = debug_to_region_ok_for_hw_watchpoint;
4560 current_target.to_can_accel_watchpoint_condition
4561 = debug_to_can_accel_watchpoint_condition;
4562 current_target.to_terminal_init = debug_to_terminal_init;
4563 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4564 current_target.to_terminal_ours_for_output
4565 = debug_to_terminal_ours_for_output;
4566 current_target.to_terminal_ours = debug_to_terminal_ours;
4567 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4568 current_target.to_terminal_info = debug_to_terminal_info;
4569 current_target.to_load = debug_to_load;
4570 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4571 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4572 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4573 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4574 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4575 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4576 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4577 current_target.to_has_exited = debug_to_has_exited;
4578 current_target.to_can_run = debug_to_can_run;
4579 current_target.to_stop = debug_to_stop;
4580 current_target.to_rcmd = debug_to_rcmd;
4581 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4582 current_target.to_thread_architecture = debug_to_thread_architecture;
4583 }
4584 \f
4585
4586 static char targ_desc[] =
4587 "Names of targets and files being debugged.\nShows the entire \
4588 stack of targets currently in use (including the exec-file,\n\
4589 core-file, and process, if any), as well as the symbol file name.";
4590
4591 static void
4592 do_monitor_command (char *cmd,
4593 int from_tty)
4594 {
4595 if ((current_target.to_rcmd
4596 == (void (*) (char *, struct ui_file *)) tcomplain)
4597 || (current_target.to_rcmd == debug_to_rcmd
4598 && (debug_target.to_rcmd
4599 == (void (*) (char *, struct ui_file *)) tcomplain)))
4600 error (_("\"monitor\" command not supported by this target."));
4601 target_rcmd (cmd, gdb_stdtarg);
4602 }
4603
4604 /* Print the name of each layers of our target stack. */
4605
4606 static void
4607 maintenance_print_target_stack (char *cmd, int from_tty)
4608 {
4609 struct target_ops *t;
4610
4611 printf_filtered (_("The current target stack is:\n"));
4612
4613 for (t = target_stack; t != NULL; t = t->beneath)
4614 {
4615 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4616 }
4617 }
4618
4619 /* Controls if async mode is permitted. */
4620 int target_async_permitted = 0;
4621
4622 /* The set command writes to this variable. If the inferior is
4623 executing, linux_nat_async_permitted is *not* updated. */
4624 static int target_async_permitted_1 = 0;
4625
4626 static void
4627 set_maintenance_target_async_permitted (char *args, int from_tty,
4628 struct cmd_list_element *c)
4629 {
4630 if (have_live_inferiors ())
4631 {
4632 target_async_permitted_1 = target_async_permitted;
4633 error (_("Cannot change this setting while the inferior is running."));
4634 }
4635
4636 target_async_permitted = target_async_permitted_1;
4637 }
4638
4639 static void
4640 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
4641 struct cmd_list_element *c,
4642 const char *value)
4643 {
4644 fprintf_filtered (file,
4645 _("Controlling the inferior in "
4646 "asynchronous mode is %s.\n"), value);
4647 }
4648
4649 /* Temporary copies of permission settings. */
4650
4651 static int may_write_registers_1 = 1;
4652 static int may_write_memory_1 = 1;
4653 static int may_insert_breakpoints_1 = 1;
4654 static int may_insert_tracepoints_1 = 1;
4655 static int may_insert_fast_tracepoints_1 = 1;
4656 static int may_stop_1 = 1;
4657
4658 /* Make the user-set values match the real values again. */
4659
4660 void
4661 update_target_permissions (void)
4662 {
4663 may_write_registers_1 = may_write_registers;
4664 may_write_memory_1 = may_write_memory;
4665 may_insert_breakpoints_1 = may_insert_breakpoints;
4666 may_insert_tracepoints_1 = may_insert_tracepoints;
4667 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4668 may_stop_1 = may_stop;
4669 }
4670
4671 /* The one function handles (most of) the permission flags in the same
4672 way. */
4673
4674 static void
4675 set_target_permissions (char *args, int from_tty,
4676 struct cmd_list_element *c)
4677 {
4678 if (target_has_execution)
4679 {
4680 update_target_permissions ();
4681 error (_("Cannot change this setting while the inferior is running."));
4682 }
4683
4684 /* Make the real values match the user-changed values. */
4685 may_write_registers = may_write_registers_1;
4686 may_insert_breakpoints = may_insert_breakpoints_1;
4687 may_insert_tracepoints = may_insert_tracepoints_1;
4688 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4689 may_stop = may_stop_1;
4690 update_observer_mode ();
4691 }
4692
4693 /* Set memory write permission independently of observer mode. */
4694
4695 static void
4696 set_write_memory_permission (char *args, int from_tty,
4697 struct cmd_list_element *c)
4698 {
4699 /* Make the real values match the user-changed values. */
4700 may_write_memory = may_write_memory_1;
4701 update_observer_mode ();
4702 }
4703
4704
4705 void
4706 initialize_targets (void)
4707 {
4708 init_dummy_target ();
4709 push_target (&dummy_target);
4710
4711 add_info ("target", target_info, targ_desc);
4712 add_info ("files", target_info, targ_desc);
4713
4714 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4715 Set target debugging."), _("\
4716 Show target debugging."), _("\
4717 When non-zero, target debugging is enabled. Higher numbers are more\n\
4718 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4719 command."),
4720 NULL,
4721 show_targetdebug,
4722 &setdebuglist, &showdebuglist);
4723
4724 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4725 &trust_readonly, _("\
4726 Set mode for reading from readonly sections."), _("\
4727 Show mode for reading from readonly sections."), _("\
4728 When this mode is on, memory reads from readonly sections (such as .text)\n\
4729 will be read from the object file instead of from the target. This will\n\
4730 result in significant performance improvement for remote targets."),
4731 NULL,
4732 show_trust_readonly,
4733 &setlist, &showlist);
4734
4735 add_com ("monitor", class_obscure, do_monitor_command,
4736 _("Send a command to the remote monitor (remote targets only)."));
4737
4738 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4739 _("Print the name of each layer of the internal target stack."),
4740 &maintenanceprintlist);
4741
4742 add_setshow_boolean_cmd ("target-async", no_class,
4743 &target_async_permitted_1, _("\
4744 Set whether gdb controls the inferior in asynchronous mode."), _("\
4745 Show whether gdb controls the inferior in asynchronous mode."), _("\
4746 Tells gdb whether to control the inferior in asynchronous mode."),
4747 set_maintenance_target_async_permitted,
4748 show_maintenance_target_async_permitted,
4749 &setlist,
4750 &showlist);
4751
4752 add_setshow_boolean_cmd ("stack-cache", class_support,
4753 &stack_cache_enabled_p_1, _("\
4754 Set cache use for stack access."), _("\
4755 Show cache use for stack access."), _("\
4756 When on, use the data cache for all stack access, regardless of any\n\
4757 configured memory regions. This improves remote performance significantly.\n\
4758 By default, caching for stack access is on."),
4759 set_stack_cache_enabled_p,
4760 show_stack_cache_enabled_p,
4761 &setlist, &showlist);
4762
4763 add_setshow_boolean_cmd ("may-write-registers", class_support,
4764 &may_write_registers_1, _("\
4765 Set permission to write into registers."), _("\
4766 Show permission to write into registers."), _("\
4767 When this permission is on, GDB may write into the target's registers.\n\
4768 Otherwise, any sort of write attempt will result in an error."),
4769 set_target_permissions, NULL,
4770 &setlist, &showlist);
4771
4772 add_setshow_boolean_cmd ("may-write-memory", class_support,
4773 &may_write_memory_1, _("\
4774 Set permission to write into target memory."), _("\
4775 Show permission to write into target memory."), _("\
4776 When this permission is on, GDB may write into the target's memory.\n\
4777 Otherwise, any sort of write attempt will result in an error."),
4778 set_write_memory_permission, NULL,
4779 &setlist, &showlist);
4780
4781 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4782 &may_insert_breakpoints_1, _("\
4783 Set permission to insert breakpoints in the target."), _("\
4784 Show permission to insert breakpoints in the target."), _("\
4785 When this permission is on, GDB may insert breakpoints in the program.\n\
4786 Otherwise, any sort of insertion attempt will result in an error."),
4787 set_target_permissions, NULL,
4788 &setlist, &showlist);
4789
4790 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4791 &may_insert_tracepoints_1, _("\
4792 Set permission to insert tracepoints in the target."), _("\
4793 Show permission to insert tracepoints in the target."), _("\
4794 When this permission is on, GDB may insert tracepoints in the program.\n\
4795 Otherwise, any sort of insertion attempt will result in an error."),
4796 set_target_permissions, NULL,
4797 &setlist, &showlist);
4798
4799 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4800 &may_insert_fast_tracepoints_1, _("\
4801 Set permission to insert fast tracepoints in the target."), _("\
4802 Show permission to insert fast tracepoints in the target."), _("\
4803 When this permission is on, GDB may insert fast tracepoints.\n\
4804 Otherwise, any sort of insertion attempt will result in an error."),
4805 set_target_permissions, NULL,
4806 &setlist, &showlist);
4807
4808 add_setshow_boolean_cmd ("may-interrupt", class_support,
4809 &may_stop_1, _("\
4810 Set permission to interrupt or signal the target."), _("\
4811 Show permission to interrupt or signal the target."), _("\
4812 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4813 Otherwise, any attempt to interrupt or stop will be ignored."),
4814 set_target_permissions, NULL,
4815 &setlist, &showlist);
4816
4817
4818 target_dcache = dcache_init ();
4819 }
This page took 0.206306 seconds and 5 git commands to generate.