fix to_open debug setting
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "dcache.h"
35 #include <signal.h>
36 #include "regcache.h"
37 #include "gdb_assert.h"
38 #include "gdbcore.h"
39 #include "exceptions.h"
40 #include "target-descriptions.h"
41 #include "gdbthread.h"
42 #include "solib.h"
43 #include "exec.h"
44 #include "inline-frame.h"
45 #include "tracepoint.h"
46 #include "gdb/fileio.h"
47 #include "agent.h"
48 #include "auxv.h"
49 #include "target-debug.h"
50
51 static void target_info (char *, int);
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static struct address_space *default_thread_address_space
85 (struct target_ops *self, ptid_t ptid);
86
87 static void tcomplain (void) ATTRIBUTE_NORETURN;
88
89 static int return_zero (struct target_ops *);
90
91 static int return_zero_has_execution (struct target_ops *, ptid_t);
92
93 static void target_command (char *, int);
94
95 static struct target_ops *find_default_run_target (char *);
96
97 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
98 ptid_t ptid);
99
100 static int dummy_find_memory_regions (struct target_ops *self,
101 find_memory_region_ftype ignore1,
102 void *ignore2);
103
104 static char *dummy_make_corefile_notes (struct target_ops *self,
105 bfd *ignore1, int *ignore2);
106
107 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
108
109 static enum exec_direction_kind default_execution_direction
110 (struct target_ops *self);
111
112 static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
113 struct gdbarch *gdbarch);
114
115 static struct target_ops debug_target;
116
117 #include "target-delegates.c"
118
119 static void init_dummy_target (void);
120
121 /* Pointer to array of target architecture structures; the size of the
122 array; the current index into the array; the allocated size of the
123 array. */
124 struct target_ops **target_structs;
125 unsigned target_struct_size;
126 unsigned target_struct_allocsize;
127 #define DEFAULT_ALLOCSIZE 10
128
129 /* The initial current target, so that there is always a semi-valid
130 current target. */
131
132 static struct target_ops dummy_target;
133
134 /* Top of target stack. */
135
136 static struct target_ops *target_stack;
137
138 /* The target structure we are currently using to talk to a process
139 or file or whatever "inferior" we have. */
140
141 struct target_ops current_target;
142
143 /* Command list for target. */
144
145 static struct cmd_list_element *targetlist = NULL;
146
147 /* Nonzero if we should trust readonly sections from the
148 executable when reading memory. */
149
150 static int trust_readonly = 0;
151
152 /* Nonzero if we should show true memory content including
153 memory breakpoint inserted by gdb. */
154
155 static int show_memory_breakpoints = 0;
156
157 /* These globals control whether GDB attempts to perform these
158 operations; they are useful for targets that need to prevent
159 inadvertant disruption, such as in non-stop mode. */
160
161 int may_write_registers = 1;
162
163 int may_write_memory = 1;
164
165 int may_insert_breakpoints = 1;
166
167 int may_insert_tracepoints = 1;
168
169 int may_insert_fast_tracepoints = 1;
170
171 int may_stop = 1;
172
173 /* Non-zero if we want to see trace of target level stuff. */
174
175 static unsigned int targetdebug = 0;
176 static void
177 show_targetdebug (struct ui_file *file, int from_tty,
178 struct cmd_list_element *c, const char *value)
179 {
180 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
181 }
182
183 static void setup_target_debug (void);
184
185 /* The user just typed 'target' without the name of a target. */
186
187 static void
188 target_command (char *arg, int from_tty)
189 {
190 fputs_filtered ("Argument required (target name). Try `help target'\n",
191 gdb_stdout);
192 }
193
194 /* Default target_has_* methods for process_stratum targets. */
195
196 int
197 default_child_has_all_memory (struct target_ops *ops)
198 {
199 /* If no inferior selected, then we can't read memory here. */
200 if (ptid_equal (inferior_ptid, null_ptid))
201 return 0;
202
203 return 1;
204 }
205
206 int
207 default_child_has_memory (struct target_ops *ops)
208 {
209 /* If no inferior selected, then we can't read memory here. */
210 if (ptid_equal (inferior_ptid, null_ptid))
211 return 0;
212
213 return 1;
214 }
215
216 int
217 default_child_has_stack (struct target_ops *ops)
218 {
219 /* If no inferior selected, there's no stack. */
220 if (ptid_equal (inferior_ptid, null_ptid))
221 return 0;
222
223 return 1;
224 }
225
226 int
227 default_child_has_registers (struct target_ops *ops)
228 {
229 /* Can't read registers from no inferior. */
230 if (ptid_equal (inferior_ptid, null_ptid))
231 return 0;
232
233 return 1;
234 }
235
236 int
237 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
238 {
239 /* If there's no thread selected, then we can't make it run through
240 hoops. */
241 if (ptid_equal (the_ptid, null_ptid))
242 return 0;
243
244 return 1;
245 }
246
247
248 int
249 target_has_all_memory_1 (void)
250 {
251 struct target_ops *t;
252
253 for (t = current_target.beneath; t != NULL; t = t->beneath)
254 if (t->to_has_all_memory (t))
255 return 1;
256
257 return 0;
258 }
259
260 int
261 target_has_memory_1 (void)
262 {
263 struct target_ops *t;
264
265 for (t = current_target.beneath; t != NULL; t = t->beneath)
266 if (t->to_has_memory (t))
267 return 1;
268
269 return 0;
270 }
271
272 int
273 target_has_stack_1 (void)
274 {
275 struct target_ops *t;
276
277 for (t = current_target.beneath; t != NULL; t = t->beneath)
278 if (t->to_has_stack (t))
279 return 1;
280
281 return 0;
282 }
283
284 int
285 target_has_registers_1 (void)
286 {
287 struct target_ops *t;
288
289 for (t = current_target.beneath; t != NULL; t = t->beneath)
290 if (t->to_has_registers (t))
291 return 1;
292
293 return 0;
294 }
295
296 int
297 target_has_execution_1 (ptid_t the_ptid)
298 {
299 struct target_ops *t;
300
301 for (t = current_target.beneath; t != NULL; t = t->beneath)
302 if (t->to_has_execution (t, the_ptid))
303 return 1;
304
305 return 0;
306 }
307
308 int
309 target_has_execution_current (void)
310 {
311 return target_has_execution_1 (inferior_ptid);
312 }
313
314 /* Complete initialization of T. This ensures that various fields in
315 T are set, if needed by the target implementation. */
316
317 void
318 complete_target_initialization (struct target_ops *t)
319 {
320 /* Provide default values for all "must have" methods. */
321
322 if (t->to_has_all_memory == NULL)
323 t->to_has_all_memory = return_zero;
324
325 if (t->to_has_memory == NULL)
326 t->to_has_memory = return_zero;
327
328 if (t->to_has_stack == NULL)
329 t->to_has_stack = return_zero;
330
331 if (t->to_has_registers == NULL)
332 t->to_has_registers = return_zero;
333
334 if (t->to_has_execution == NULL)
335 t->to_has_execution = return_zero_has_execution;
336
337 /* These methods can be called on an unpushed target and so require
338 a default implementation if the target might plausibly be the
339 default run target. */
340 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
341 && t->to_supports_non_stop != NULL));
342
343 install_delegators (t);
344 }
345
346 /* This is used to implement the various target commands. */
347
348 static void
349 open_target (char *args, int from_tty, struct cmd_list_element *command)
350 {
351 struct target_ops *ops = get_cmd_context (command);
352
353 if (targetdebug)
354 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
355 ops->to_shortname);
356
357 ops->to_open (args, from_tty);
358
359 if (targetdebug)
360 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
361 ops->to_shortname, args, from_tty);
362 }
363
364 /* Add possible target architecture T to the list and add a new
365 command 'target T->to_shortname'. Set COMPLETER as the command's
366 completer if not NULL. */
367
368 void
369 add_target_with_completer (struct target_ops *t,
370 completer_ftype *completer)
371 {
372 struct cmd_list_element *c;
373
374 complete_target_initialization (t);
375
376 if (!target_structs)
377 {
378 target_struct_allocsize = DEFAULT_ALLOCSIZE;
379 target_structs = (struct target_ops **) xmalloc
380 (target_struct_allocsize * sizeof (*target_structs));
381 }
382 if (target_struct_size >= target_struct_allocsize)
383 {
384 target_struct_allocsize *= 2;
385 target_structs = (struct target_ops **)
386 xrealloc ((char *) target_structs,
387 target_struct_allocsize * sizeof (*target_structs));
388 }
389 target_structs[target_struct_size++] = t;
390
391 if (targetlist == NULL)
392 add_prefix_cmd ("target", class_run, target_command, _("\
393 Connect to a target machine or process.\n\
394 The first argument is the type or protocol of the target machine.\n\
395 Remaining arguments are interpreted by the target protocol. For more\n\
396 information on the arguments for a particular protocol, type\n\
397 `help target ' followed by the protocol name."),
398 &targetlist, "target ", 0, &cmdlist);
399 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
400 set_cmd_sfunc (c, open_target);
401 set_cmd_context (c, t);
402 if (completer != NULL)
403 set_cmd_completer (c, completer);
404 }
405
406 /* Add a possible target architecture to the list. */
407
408 void
409 add_target (struct target_ops *t)
410 {
411 add_target_with_completer (t, NULL);
412 }
413
414 /* See target.h. */
415
416 void
417 add_deprecated_target_alias (struct target_ops *t, char *alias)
418 {
419 struct cmd_list_element *c;
420 char *alt;
421
422 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
423 see PR cli/15104. */
424 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
425 set_cmd_sfunc (c, open_target);
426 set_cmd_context (c, t);
427 alt = xstrprintf ("target %s", t->to_shortname);
428 deprecate_cmd (c, alt);
429 }
430
431 /* Stub functions */
432
433 void
434 target_kill (void)
435 {
436 current_target.to_kill (&current_target);
437 }
438
439 void
440 target_load (const char *arg, int from_tty)
441 {
442 target_dcache_invalidate ();
443 (*current_target.to_load) (&current_target, arg, from_tty);
444 }
445
446 void
447 target_terminal_inferior (void)
448 {
449 /* A background resume (``run&'') should leave GDB in control of the
450 terminal. Use target_can_async_p, not target_is_async_p, since at
451 this point the target is not async yet. However, if sync_execution
452 is not set, we know it will become async prior to resume. */
453 if (target_can_async_p () && !sync_execution)
454 return;
455
456 /* If GDB is resuming the inferior in the foreground, install
457 inferior's terminal modes. */
458 (*current_target.to_terminal_inferior) (&current_target);
459 }
460
461 /* See target.h. */
462
463 int
464 target_supports_terminal_ours (void)
465 {
466 struct target_ops *t;
467
468 for (t = current_target.beneath; t != NULL; t = t->beneath)
469 {
470 if (t->to_terminal_ours != delegate_terminal_ours
471 && t->to_terminal_ours != tdefault_terminal_ours)
472 return 1;
473 }
474
475 return 0;
476 }
477
478 static void
479 tcomplain (void)
480 {
481 error (_("You can't do that when your target is `%s'"),
482 current_target.to_shortname);
483 }
484
485 void
486 noprocess (void)
487 {
488 error (_("You can't do that without a process to debug."));
489 }
490
491 static void
492 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
493 {
494 printf_unfiltered (_("No saved terminal information.\n"));
495 }
496
497 /* A default implementation for the to_get_ada_task_ptid target method.
498
499 This function builds the PTID by using both LWP and TID as part of
500 the PTID lwp and tid elements. The pid used is the pid of the
501 inferior_ptid. */
502
503 static ptid_t
504 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
505 {
506 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
507 }
508
509 static enum exec_direction_kind
510 default_execution_direction (struct target_ops *self)
511 {
512 if (!target_can_execute_reverse)
513 return EXEC_FORWARD;
514 else if (!target_can_async_p ())
515 return EXEC_FORWARD;
516 else
517 gdb_assert_not_reached ("\
518 to_execution_direction must be implemented for reverse async");
519 }
520
521 /* Go through the target stack from top to bottom, copying over zero
522 entries in current_target, then filling in still empty entries. In
523 effect, we are doing class inheritance through the pushed target
524 vectors.
525
526 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
527 is currently implemented, is that it discards any knowledge of
528 which target an inherited method originally belonged to.
529 Consequently, new new target methods should instead explicitly and
530 locally search the target stack for the target that can handle the
531 request. */
532
533 static void
534 update_current_target (void)
535 {
536 struct target_ops *t;
537
538 /* First, reset current's contents. */
539 memset (&current_target, 0, sizeof (current_target));
540
541 /* Install the delegators. */
542 install_delegators (&current_target);
543
544 current_target.to_stratum = target_stack->to_stratum;
545
546 #define INHERIT(FIELD, TARGET) \
547 if (!current_target.FIELD) \
548 current_target.FIELD = (TARGET)->FIELD
549
550 /* Do not add any new INHERITs here. Instead, use the delegation
551 mechanism provided by make-target-delegates. */
552 for (t = target_stack; t; t = t->beneath)
553 {
554 INHERIT (to_shortname, t);
555 INHERIT (to_longname, t);
556 INHERIT (to_attach_no_wait, t);
557 INHERIT (to_have_steppable_watchpoint, t);
558 INHERIT (to_have_continuable_watchpoint, t);
559 INHERIT (to_has_thread_control, t);
560 }
561 #undef INHERIT
562
563 /* Finally, position the target-stack beneath the squashed
564 "current_target". That way code looking for a non-inherited
565 target method can quickly and simply find it. */
566 current_target.beneath = target_stack;
567
568 if (targetdebug)
569 setup_target_debug ();
570 }
571
572 /* Push a new target type into the stack of the existing target accessors,
573 possibly superseding some of the existing accessors.
574
575 Rather than allow an empty stack, we always have the dummy target at
576 the bottom stratum, so we can call the function vectors without
577 checking them. */
578
579 void
580 push_target (struct target_ops *t)
581 {
582 struct target_ops **cur;
583
584 /* Check magic number. If wrong, it probably means someone changed
585 the struct definition, but not all the places that initialize one. */
586 if (t->to_magic != OPS_MAGIC)
587 {
588 fprintf_unfiltered (gdb_stderr,
589 "Magic number of %s target struct wrong\n",
590 t->to_shortname);
591 internal_error (__FILE__, __LINE__,
592 _("failed internal consistency check"));
593 }
594
595 /* Find the proper stratum to install this target in. */
596 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
597 {
598 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
599 break;
600 }
601
602 /* If there's already targets at this stratum, remove them. */
603 /* FIXME: cagney/2003-10-15: I think this should be popping all
604 targets to CUR, and not just those at this stratum level. */
605 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
606 {
607 /* There's already something at this stratum level. Close it,
608 and un-hook it from the stack. */
609 struct target_ops *tmp = (*cur);
610
611 (*cur) = (*cur)->beneath;
612 tmp->beneath = NULL;
613 target_close (tmp);
614 }
615
616 /* We have removed all targets in our stratum, now add the new one. */
617 t->beneath = (*cur);
618 (*cur) = t;
619
620 update_current_target ();
621 }
622
623 /* Remove a target_ops vector from the stack, wherever it may be.
624 Return how many times it was removed (0 or 1). */
625
626 int
627 unpush_target (struct target_ops *t)
628 {
629 struct target_ops **cur;
630 struct target_ops *tmp;
631
632 if (t->to_stratum == dummy_stratum)
633 internal_error (__FILE__, __LINE__,
634 _("Attempt to unpush the dummy target"));
635
636 /* Look for the specified target. Note that we assume that a target
637 can only occur once in the target stack. */
638
639 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
640 {
641 if ((*cur) == t)
642 break;
643 }
644
645 /* If we don't find target_ops, quit. Only open targets should be
646 closed. */
647 if ((*cur) == NULL)
648 return 0;
649
650 /* Unchain the target. */
651 tmp = (*cur);
652 (*cur) = (*cur)->beneath;
653 tmp->beneath = NULL;
654
655 update_current_target ();
656
657 /* Finally close the target. Note we do this after unchaining, so
658 any target method calls from within the target_close
659 implementation don't end up in T anymore. */
660 target_close (t);
661
662 return 1;
663 }
664
665 void
666 pop_all_targets_above (enum strata above_stratum)
667 {
668 while ((int) (current_target.to_stratum) > (int) above_stratum)
669 {
670 if (!unpush_target (target_stack))
671 {
672 fprintf_unfiltered (gdb_stderr,
673 "pop_all_targets couldn't find target %s\n",
674 target_stack->to_shortname);
675 internal_error (__FILE__, __LINE__,
676 _("failed internal consistency check"));
677 break;
678 }
679 }
680 }
681
682 void
683 pop_all_targets (void)
684 {
685 pop_all_targets_above (dummy_stratum);
686 }
687
688 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
689
690 int
691 target_is_pushed (struct target_ops *t)
692 {
693 struct target_ops *cur;
694
695 /* Check magic number. If wrong, it probably means someone changed
696 the struct definition, but not all the places that initialize one. */
697 if (t->to_magic != OPS_MAGIC)
698 {
699 fprintf_unfiltered (gdb_stderr,
700 "Magic number of %s target struct wrong\n",
701 t->to_shortname);
702 internal_error (__FILE__, __LINE__,
703 _("failed internal consistency check"));
704 }
705
706 for (cur = target_stack; cur != NULL; cur = cur->beneath)
707 if (cur == t)
708 return 1;
709
710 return 0;
711 }
712
713 /* Default implementation of to_get_thread_local_address. */
714
715 static void
716 generic_tls_error (void)
717 {
718 throw_error (TLS_GENERIC_ERROR,
719 _("Cannot find thread-local variables on this target"));
720 }
721
722 /* Using the objfile specified in OBJFILE, find the address for the
723 current thread's thread-local storage with offset OFFSET. */
724 CORE_ADDR
725 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
726 {
727 volatile CORE_ADDR addr = 0;
728 struct target_ops *target = &current_target;
729
730 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
731 {
732 ptid_t ptid = inferior_ptid;
733 volatile struct gdb_exception ex;
734
735 TRY_CATCH (ex, RETURN_MASK_ALL)
736 {
737 CORE_ADDR lm_addr;
738
739 /* Fetch the load module address for this objfile. */
740 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
741 objfile);
742
743 addr = target->to_get_thread_local_address (target, ptid,
744 lm_addr, offset);
745 }
746 /* If an error occurred, print TLS related messages here. Otherwise,
747 throw the error to some higher catcher. */
748 if (ex.reason < 0)
749 {
750 int objfile_is_library = (objfile->flags & OBJF_SHARED);
751
752 switch (ex.error)
753 {
754 case TLS_NO_LIBRARY_SUPPORT_ERROR:
755 error (_("Cannot find thread-local variables "
756 "in this thread library."));
757 break;
758 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
759 if (objfile_is_library)
760 error (_("Cannot find shared library `%s' in dynamic"
761 " linker's load module list"), objfile_name (objfile));
762 else
763 error (_("Cannot find executable file `%s' in dynamic"
764 " linker's load module list"), objfile_name (objfile));
765 break;
766 case TLS_NOT_ALLOCATED_YET_ERROR:
767 if (objfile_is_library)
768 error (_("The inferior has not yet allocated storage for"
769 " thread-local variables in\n"
770 "the shared library `%s'\n"
771 "for %s"),
772 objfile_name (objfile), target_pid_to_str (ptid));
773 else
774 error (_("The inferior has not yet allocated storage for"
775 " thread-local variables in\n"
776 "the executable `%s'\n"
777 "for %s"),
778 objfile_name (objfile), target_pid_to_str (ptid));
779 break;
780 case TLS_GENERIC_ERROR:
781 if (objfile_is_library)
782 error (_("Cannot find thread-local storage for %s, "
783 "shared library %s:\n%s"),
784 target_pid_to_str (ptid),
785 objfile_name (objfile), ex.message);
786 else
787 error (_("Cannot find thread-local storage for %s, "
788 "executable file %s:\n%s"),
789 target_pid_to_str (ptid),
790 objfile_name (objfile), ex.message);
791 break;
792 default:
793 throw_exception (ex);
794 break;
795 }
796 }
797 }
798 /* It wouldn't be wrong here to try a gdbarch method, too; finding
799 TLS is an ABI-specific thing. But we don't do that yet. */
800 else
801 error (_("Cannot find thread-local variables on this target"));
802
803 return addr;
804 }
805
806 const char *
807 target_xfer_status_to_string (enum target_xfer_status status)
808 {
809 #define CASE(X) case X: return #X
810 switch (status)
811 {
812 CASE(TARGET_XFER_E_IO);
813 CASE(TARGET_XFER_UNAVAILABLE);
814 default:
815 return "<unknown>";
816 }
817 #undef CASE
818 };
819
820
821 #undef MIN
822 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
823
824 /* target_read_string -- read a null terminated string, up to LEN bytes,
825 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
826 Set *STRING to a pointer to malloc'd memory containing the data; the caller
827 is responsible for freeing it. Return the number of bytes successfully
828 read. */
829
830 int
831 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
832 {
833 int tlen, offset, i;
834 gdb_byte buf[4];
835 int errcode = 0;
836 char *buffer;
837 int buffer_allocated;
838 char *bufptr;
839 unsigned int nbytes_read = 0;
840
841 gdb_assert (string);
842
843 /* Small for testing. */
844 buffer_allocated = 4;
845 buffer = xmalloc (buffer_allocated);
846 bufptr = buffer;
847
848 while (len > 0)
849 {
850 tlen = MIN (len, 4 - (memaddr & 3));
851 offset = memaddr & 3;
852
853 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
854 if (errcode != 0)
855 {
856 /* The transfer request might have crossed the boundary to an
857 unallocated region of memory. Retry the transfer, requesting
858 a single byte. */
859 tlen = 1;
860 offset = 0;
861 errcode = target_read_memory (memaddr, buf, 1);
862 if (errcode != 0)
863 goto done;
864 }
865
866 if (bufptr - buffer + tlen > buffer_allocated)
867 {
868 unsigned int bytes;
869
870 bytes = bufptr - buffer;
871 buffer_allocated *= 2;
872 buffer = xrealloc (buffer, buffer_allocated);
873 bufptr = buffer + bytes;
874 }
875
876 for (i = 0; i < tlen; i++)
877 {
878 *bufptr++ = buf[i + offset];
879 if (buf[i + offset] == '\000')
880 {
881 nbytes_read += i + 1;
882 goto done;
883 }
884 }
885
886 memaddr += tlen;
887 len -= tlen;
888 nbytes_read += tlen;
889 }
890 done:
891 *string = buffer;
892 if (errnop != NULL)
893 *errnop = errcode;
894 return nbytes_read;
895 }
896
897 struct target_section_table *
898 target_get_section_table (struct target_ops *target)
899 {
900 return (*target->to_get_section_table) (target);
901 }
902
903 /* Find a section containing ADDR. */
904
905 struct target_section *
906 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
907 {
908 struct target_section_table *table = target_get_section_table (target);
909 struct target_section *secp;
910
911 if (table == NULL)
912 return NULL;
913
914 for (secp = table->sections; secp < table->sections_end; secp++)
915 {
916 if (addr >= secp->addr && addr < secp->endaddr)
917 return secp;
918 }
919 return NULL;
920 }
921
922 /* Read memory from more than one valid target. A core file, for
923 instance, could have some of memory but delegate other bits to
924 the target below it. So, we must manually try all targets. */
925
926 static enum target_xfer_status
927 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
928 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
929 ULONGEST *xfered_len)
930 {
931 enum target_xfer_status res;
932
933 do
934 {
935 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
936 readbuf, writebuf, memaddr, len,
937 xfered_len);
938 if (res == TARGET_XFER_OK)
939 break;
940
941 /* Stop if the target reports that the memory is not available. */
942 if (res == TARGET_XFER_UNAVAILABLE)
943 break;
944
945 /* We want to continue past core files to executables, but not
946 past a running target's memory. */
947 if (ops->to_has_all_memory (ops))
948 break;
949
950 ops = ops->beneath;
951 }
952 while (ops != NULL);
953
954 /* The cache works at the raw memory level. Make sure the cache
955 gets updated with raw contents no matter what kind of memory
956 object was originally being written. Note we do write-through
957 first, so that if it fails, we don't write to the cache contents
958 that never made it to the target. */
959 if (writebuf != NULL
960 && !ptid_equal (inferior_ptid, null_ptid)
961 && target_dcache_init_p ()
962 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
963 {
964 DCACHE *dcache = target_dcache_get ();
965
966 /* Note that writing to an area of memory which wasn't present
967 in the cache doesn't cause it to be loaded in. */
968 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
969 }
970
971 return res;
972 }
973
974 /* Perform a partial memory transfer.
975 For docs see target.h, to_xfer_partial. */
976
977 static enum target_xfer_status
978 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
979 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
980 ULONGEST len, ULONGEST *xfered_len)
981 {
982 enum target_xfer_status res;
983 int reg_len;
984 struct mem_region *region;
985 struct inferior *inf;
986
987 /* For accesses to unmapped overlay sections, read directly from
988 files. Must do this first, as MEMADDR may need adjustment. */
989 if (readbuf != NULL && overlay_debugging)
990 {
991 struct obj_section *section = find_pc_overlay (memaddr);
992
993 if (pc_in_unmapped_range (memaddr, section))
994 {
995 struct target_section_table *table
996 = target_get_section_table (ops);
997 const char *section_name = section->the_bfd_section->name;
998
999 memaddr = overlay_mapped_address (memaddr, section);
1000 return section_table_xfer_memory_partial (readbuf, writebuf,
1001 memaddr, len, xfered_len,
1002 table->sections,
1003 table->sections_end,
1004 section_name);
1005 }
1006 }
1007
1008 /* Try the executable files, if "trust-readonly-sections" is set. */
1009 if (readbuf != NULL && trust_readonly)
1010 {
1011 struct target_section *secp;
1012 struct target_section_table *table;
1013
1014 secp = target_section_by_addr (ops, memaddr);
1015 if (secp != NULL
1016 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1017 secp->the_bfd_section)
1018 & SEC_READONLY))
1019 {
1020 table = target_get_section_table (ops);
1021 return section_table_xfer_memory_partial (readbuf, writebuf,
1022 memaddr, len, xfered_len,
1023 table->sections,
1024 table->sections_end,
1025 NULL);
1026 }
1027 }
1028
1029 /* Try GDB's internal data cache. */
1030 region = lookup_mem_region (memaddr);
1031 /* region->hi == 0 means there's no upper bound. */
1032 if (memaddr + len < region->hi || region->hi == 0)
1033 reg_len = len;
1034 else
1035 reg_len = region->hi - memaddr;
1036
1037 switch (region->attrib.mode)
1038 {
1039 case MEM_RO:
1040 if (writebuf != NULL)
1041 return TARGET_XFER_E_IO;
1042 break;
1043
1044 case MEM_WO:
1045 if (readbuf != NULL)
1046 return TARGET_XFER_E_IO;
1047 break;
1048
1049 case MEM_FLASH:
1050 /* We only support writing to flash during "load" for now. */
1051 if (writebuf != NULL)
1052 error (_("Writing to flash memory forbidden in this context"));
1053 break;
1054
1055 case MEM_NONE:
1056 return TARGET_XFER_E_IO;
1057 }
1058
1059 if (!ptid_equal (inferior_ptid, null_ptid))
1060 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1061 else
1062 inf = NULL;
1063
1064 if (inf != NULL
1065 && readbuf != NULL
1066 /* The dcache reads whole cache lines; that doesn't play well
1067 with reading from a trace buffer, because reading outside of
1068 the collected memory range fails. */
1069 && get_traceframe_number () == -1
1070 && (region->attrib.cache
1071 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1072 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1073 {
1074 DCACHE *dcache = target_dcache_get_or_init ();
1075
1076 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1077 reg_len, xfered_len);
1078 }
1079
1080 /* If none of those methods found the memory we wanted, fall back
1081 to a target partial transfer. Normally a single call to
1082 to_xfer_partial is enough; if it doesn't recognize an object
1083 it will call the to_xfer_partial of the next target down.
1084 But for memory this won't do. Memory is the only target
1085 object which can be read from more than one valid target.
1086 A core file, for instance, could have some of memory but
1087 delegate other bits to the target below it. So, we must
1088 manually try all targets. */
1089
1090 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1091 xfered_len);
1092
1093 /* If we still haven't got anything, return the last error. We
1094 give up. */
1095 return res;
1096 }
1097
1098 /* Perform a partial memory transfer. For docs see target.h,
1099 to_xfer_partial. */
1100
1101 static enum target_xfer_status
1102 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1103 gdb_byte *readbuf, const gdb_byte *writebuf,
1104 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1105 {
1106 enum target_xfer_status res;
1107
1108 /* Zero length requests are ok and require no work. */
1109 if (len == 0)
1110 return TARGET_XFER_EOF;
1111
1112 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1113 breakpoint insns, thus hiding out from higher layers whether
1114 there are software breakpoints inserted in the code stream. */
1115 if (readbuf != NULL)
1116 {
1117 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1118 xfered_len);
1119
1120 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1121 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1122 }
1123 else
1124 {
1125 void *buf;
1126 struct cleanup *old_chain;
1127
1128 /* A large write request is likely to be partially satisfied
1129 by memory_xfer_partial_1. We will continually malloc
1130 and free a copy of the entire write request for breakpoint
1131 shadow handling even though we only end up writing a small
1132 subset of it. Cap writes to 4KB to mitigate this. */
1133 len = min (4096, len);
1134
1135 buf = xmalloc (len);
1136 old_chain = make_cleanup (xfree, buf);
1137 memcpy (buf, writebuf, len);
1138
1139 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1140 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1141 xfered_len);
1142
1143 do_cleanups (old_chain);
1144 }
1145
1146 return res;
1147 }
1148
1149 static void
1150 restore_show_memory_breakpoints (void *arg)
1151 {
1152 show_memory_breakpoints = (uintptr_t) arg;
1153 }
1154
1155 struct cleanup *
1156 make_show_memory_breakpoints_cleanup (int show)
1157 {
1158 int current = show_memory_breakpoints;
1159
1160 show_memory_breakpoints = show;
1161 return make_cleanup (restore_show_memory_breakpoints,
1162 (void *) (uintptr_t) current);
1163 }
1164
1165 /* For docs see target.h, to_xfer_partial. */
1166
1167 enum target_xfer_status
1168 target_xfer_partial (struct target_ops *ops,
1169 enum target_object object, const char *annex,
1170 gdb_byte *readbuf, const gdb_byte *writebuf,
1171 ULONGEST offset, ULONGEST len,
1172 ULONGEST *xfered_len)
1173 {
1174 enum target_xfer_status retval;
1175
1176 gdb_assert (ops->to_xfer_partial != NULL);
1177
1178 /* Transfer is done when LEN is zero. */
1179 if (len == 0)
1180 return TARGET_XFER_EOF;
1181
1182 if (writebuf && !may_write_memory)
1183 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1184 core_addr_to_string_nz (offset), plongest (len));
1185
1186 *xfered_len = 0;
1187
1188 /* If this is a memory transfer, let the memory-specific code
1189 have a look at it instead. Memory transfers are more
1190 complicated. */
1191 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1192 || object == TARGET_OBJECT_CODE_MEMORY)
1193 retval = memory_xfer_partial (ops, object, readbuf,
1194 writebuf, offset, len, xfered_len);
1195 else if (object == TARGET_OBJECT_RAW_MEMORY)
1196 {
1197 /* Request the normal memory object from other layers. */
1198 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1199 xfered_len);
1200 }
1201 else
1202 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1203 writebuf, offset, len, xfered_len);
1204
1205 if (targetdebug)
1206 {
1207 const unsigned char *myaddr = NULL;
1208
1209 fprintf_unfiltered (gdb_stdlog,
1210 "%s:target_xfer_partial "
1211 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1212 ops->to_shortname,
1213 (int) object,
1214 (annex ? annex : "(null)"),
1215 host_address_to_string (readbuf),
1216 host_address_to_string (writebuf),
1217 core_addr_to_string_nz (offset),
1218 pulongest (len), retval,
1219 pulongest (*xfered_len));
1220
1221 if (readbuf)
1222 myaddr = readbuf;
1223 if (writebuf)
1224 myaddr = writebuf;
1225 if (retval == TARGET_XFER_OK && myaddr != NULL)
1226 {
1227 int i;
1228
1229 fputs_unfiltered (", bytes =", gdb_stdlog);
1230 for (i = 0; i < *xfered_len; i++)
1231 {
1232 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1233 {
1234 if (targetdebug < 2 && i > 0)
1235 {
1236 fprintf_unfiltered (gdb_stdlog, " ...");
1237 break;
1238 }
1239 fprintf_unfiltered (gdb_stdlog, "\n");
1240 }
1241
1242 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1243 }
1244 }
1245
1246 fputc_unfiltered ('\n', gdb_stdlog);
1247 }
1248
1249 /* Check implementations of to_xfer_partial update *XFERED_LEN
1250 properly. Do assertion after printing debug messages, so that we
1251 can find more clues on assertion failure from debugging messages. */
1252 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1253 gdb_assert (*xfered_len > 0);
1254
1255 return retval;
1256 }
1257
1258 /* Read LEN bytes of target memory at address MEMADDR, placing the
1259 results in GDB's memory at MYADDR. Returns either 0 for success or
1260 TARGET_XFER_E_IO if any error occurs.
1261
1262 If an error occurs, no guarantee is made about the contents of the data at
1263 MYADDR. In particular, the caller should not depend upon partial reads
1264 filling the buffer with good data. There is no way for the caller to know
1265 how much good data might have been transfered anyway. Callers that can
1266 deal with partial reads should call target_read (which will retry until
1267 it makes no progress, and then return how much was transferred). */
1268
1269 int
1270 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1271 {
1272 /* Dispatch to the topmost target, not the flattened current_target.
1273 Memory accesses check target->to_has_(all_)memory, and the
1274 flattened target doesn't inherit those. */
1275 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1276 myaddr, memaddr, len) == len)
1277 return 0;
1278 else
1279 return TARGET_XFER_E_IO;
1280 }
1281
1282 /* Like target_read_memory, but specify explicitly that this is a read
1283 from the target's raw memory. That is, this read bypasses the
1284 dcache, breakpoint shadowing, etc. */
1285
1286 int
1287 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1288 {
1289 /* See comment in target_read_memory about why the request starts at
1290 current_target.beneath. */
1291 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1292 myaddr, memaddr, len) == len)
1293 return 0;
1294 else
1295 return TARGET_XFER_E_IO;
1296 }
1297
1298 /* Like target_read_memory, but specify explicitly that this is a read from
1299 the target's stack. This may trigger different cache behavior. */
1300
1301 int
1302 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1303 {
1304 /* See comment in target_read_memory about why the request starts at
1305 current_target.beneath. */
1306 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1307 myaddr, memaddr, len) == len)
1308 return 0;
1309 else
1310 return TARGET_XFER_E_IO;
1311 }
1312
1313 /* Like target_read_memory, but specify explicitly that this is a read from
1314 the target's code. This may trigger different cache behavior. */
1315
1316 int
1317 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1318 {
1319 /* See comment in target_read_memory about why the request starts at
1320 current_target.beneath. */
1321 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1322 myaddr, memaddr, len) == len)
1323 return 0;
1324 else
1325 return TARGET_XFER_E_IO;
1326 }
1327
1328 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1329 Returns either 0 for success or TARGET_XFER_E_IO if any
1330 error occurs. If an error occurs, no guarantee is made about how
1331 much data got written. Callers that can deal with partial writes
1332 should call target_write. */
1333
1334 int
1335 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1336 {
1337 /* See comment in target_read_memory about why the request starts at
1338 current_target.beneath. */
1339 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1340 myaddr, memaddr, len) == len)
1341 return 0;
1342 else
1343 return TARGET_XFER_E_IO;
1344 }
1345
1346 /* Write LEN bytes from MYADDR to target raw memory at address
1347 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1348 if any error occurs. If an error occurs, no guarantee is made
1349 about how much data got written. Callers that can deal with
1350 partial writes should call target_write. */
1351
1352 int
1353 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1354 {
1355 /* See comment in target_read_memory about why the request starts at
1356 current_target.beneath. */
1357 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1358 myaddr, memaddr, len) == len)
1359 return 0;
1360 else
1361 return TARGET_XFER_E_IO;
1362 }
1363
1364 /* Fetch the target's memory map. */
1365
1366 VEC(mem_region_s) *
1367 target_memory_map (void)
1368 {
1369 VEC(mem_region_s) *result;
1370 struct mem_region *last_one, *this_one;
1371 int ix;
1372 struct target_ops *t;
1373
1374 result = current_target.to_memory_map (&current_target);
1375 if (result == NULL)
1376 return NULL;
1377
1378 qsort (VEC_address (mem_region_s, result),
1379 VEC_length (mem_region_s, result),
1380 sizeof (struct mem_region), mem_region_cmp);
1381
1382 /* Check that regions do not overlap. Simultaneously assign
1383 a numbering for the "mem" commands to use to refer to
1384 each region. */
1385 last_one = NULL;
1386 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1387 {
1388 this_one->number = ix;
1389
1390 if (last_one && last_one->hi > this_one->lo)
1391 {
1392 warning (_("Overlapping regions in memory map: ignoring"));
1393 VEC_free (mem_region_s, result);
1394 return NULL;
1395 }
1396 last_one = this_one;
1397 }
1398
1399 return result;
1400 }
1401
1402 void
1403 target_flash_erase (ULONGEST address, LONGEST length)
1404 {
1405 current_target.to_flash_erase (&current_target, address, length);
1406 }
1407
1408 void
1409 target_flash_done (void)
1410 {
1411 current_target.to_flash_done (&current_target);
1412 }
1413
1414 static void
1415 show_trust_readonly (struct ui_file *file, int from_tty,
1416 struct cmd_list_element *c, const char *value)
1417 {
1418 fprintf_filtered (file,
1419 _("Mode for reading from readonly sections is %s.\n"),
1420 value);
1421 }
1422
1423 /* Target vector read/write partial wrapper functions. */
1424
1425 static enum target_xfer_status
1426 target_read_partial (struct target_ops *ops,
1427 enum target_object object,
1428 const char *annex, gdb_byte *buf,
1429 ULONGEST offset, ULONGEST len,
1430 ULONGEST *xfered_len)
1431 {
1432 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1433 xfered_len);
1434 }
1435
1436 static enum target_xfer_status
1437 target_write_partial (struct target_ops *ops,
1438 enum target_object object,
1439 const char *annex, const gdb_byte *buf,
1440 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1441 {
1442 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1443 xfered_len);
1444 }
1445
1446 /* Wrappers to perform the full transfer. */
1447
1448 /* For docs on target_read see target.h. */
1449
1450 LONGEST
1451 target_read (struct target_ops *ops,
1452 enum target_object object,
1453 const char *annex, gdb_byte *buf,
1454 ULONGEST offset, LONGEST len)
1455 {
1456 LONGEST xfered = 0;
1457
1458 while (xfered < len)
1459 {
1460 ULONGEST xfered_len;
1461 enum target_xfer_status status;
1462
1463 status = target_read_partial (ops, object, annex,
1464 (gdb_byte *) buf + xfered,
1465 offset + xfered, len - xfered,
1466 &xfered_len);
1467
1468 /* Call an observer, notifying them of the xfer progress? */
1469 if (status == TARGET_XFER_EOF)
1470 return xfered;
1471 else if (status == TARGET_XFER_OK)
1472 {
1473 xfered += xfered_len;
1474 QUIT;
1475 }
1476 else
1477 return -1;
1478
1479 }
1480 return len;
1481 }
1482
1483 /* Assuming that the entire [begin, end) range of memory cannot be
1484 read, try to read whatever subrange is possible to read.
1485
1486 The function returns, in RESULT, either zero or one memory block.
1487 If there's a readable subrange at the beginning, it is completely
1488 read and returned. Any further readable subrange will not be read.
1489 Otherwise, if there's a readable subrange at the end, it will be
1490 completely read and returned. Any readable subranges before it
1491 (obviously, not starting at the beginning), will be ignored. In
1492 other cases -- either no readable subrange, or readable subrange(s)
1493 that is neither at the beginning, or end, nothing is returned.
1494
1495 The purpose of this function is to handle a read across a boundary
1496 of accessible memory in a case when memory map is not available.
1497 The above restrictions are fine for this case, but will give
1498 incorrect results if the memory is 'patchy'. However, supporting
1499 'patchy' memory would require trying to read every single byte,
1500 and it seems unacceptable solution. Explicit memory map is
1501 recommended for this case -- and target_read_memory_robust will
1502 take care of reading multiple ranges then. */
1503
1504 static void
1505 read_whatever_is_readable (struct target_ops *ops,
1506 ULONGEST begin, ULONGEST end,
1507 VEC(memory_read_result_s) **result)
1508 {
1509 gdb_byte *buf = xmalloc (end - begin);
1510 ULONGEST current_begin = begin;
1511 ULONGEST current_end = end;
1512 int forward;
1513 memory_read_result_s r;
1514 ULONGEST xfered_len;
1515
1516 /* If we previously failed to read 1 byte, nothing can be done here. */
1517 if (end - begin <= 1)
1518 {
1519 xfree (buf);
1520 return;
1521 }
1522
1523 /* Check that either first or the last byte is readable, and give up
1524 if not. This heuristic is meant to permit reading accessible memory
1525 at the boundary of accessible region. */
1526 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1527 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1528 {
1529 forward = 1;
1530 ++current_begin;
1531 }
1532 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1533 buf + (end-begin) - 1, end - 1, 1,
1534 &xfered_len) == TARGET_XFER_OK)
1535 {
1536 forward = 0;
1537 --current_end;
1538 }
1539 else
1540 {
1541 xfree (buf);
1542 return;
1543 }
1544
1545 /* Loop invariant is that the [current_begin, current_end) was previously
1546 found to be not readable as a whole.
1547
1548 Note loop condition -- if the range has 1 byte, we can't divide the range
1549 so there's no point trying further. */
1550 while (current_end - current_begin > 1)
1551 {
1552 ULONGEST first_half_begin, first_half_end;
1553 ULONGEST second_half_begin, second_half_end;
1554 LONGEST xfer;
1555 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1556
1557 if (forward)
1558 {
1559 first_half_begin = current_begin;
1560 first_half_end = middle;
1561 second_half_begin = middle;
1562 second_half_end = current_end;
1563 }
1564 else
1565 {
1566 first_half_begin = middle;
1567 first_half_end = current_end;
1568 second_half_begin = current_begin;
1569 second_half_end = middle;
1570 }
1571
1572 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1573 buf + (first_half_begin - begin),
1574 first_half_begin,
1575 first_half_end - first_half_begin);
1576
1577 if (xfer == first_half_end - first_half_begin)
1578 {
1579 /* This half reads up fine. So, the error must be in the
1580 other half. */
1581 current_begin = second_half_begin;
1582 current_end = second_half_end;
1583 }
1584 else
1585 {
1586 /* This half is not readable. Because we've tried one byte, we
1587 know some part of this half if actually redable. Go to the next
1588 iteration to divide again and try to read.
1589
1590 We don't handle the other half, because this function only tries
1591 to read a single readable subrange. */
1592 current_begin = first_half_begin;
1593 current_end = first_half_end;
1594 }
1595 }
1596
1597 if (forward)
1598 {
1599 /* The [begin, current_begin) range has been read. */
1600 r.begin = begin;
1601 r.end = current_begin;
1602 r.data = buf;
1603 }
1604 else
1605 {
1606 /* The [current_end, end) range has been read. */
1607 LONGEST rlen = end - current_end;
1608
1609 r.data = xmalloc (rlen);
1610 memcpy (r.data, buf + current_end - begin, rlen);
1611 r.begin = current_end;
1612 r.end = end;
1613 xfree (buf);
1614 }
1615 VEC_safe_push(memory_read_result_s, (*result), &r);
1616 }
1617
1618 void
1619 free_memory_read_result_vector (void *x)
1620 {
1621 VEC(memory_read_result_s) *v = x;
1622 memory_read_result_s *current;
1623 int ix;
1624
1625 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1626 {
1627 xfree (current->data);
1628 }
1629 VEC_free (memory_read_result_s, v);
1630 }
1631
1632 VEC(memory_read_result_s) *
1633 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1634 {
1635 VEC(memory_read_result_s) *result = 0;
1636
1637 LONGEST xfered = 0;
1638 while (xfered < len)
1639 {
1640 struct mem_region *region = lookup_mem_region (offset + xfered);
1641 LONGEST rlen;
1642
1643 /* If there is no explicit region, a fake one should be created. */
1644 gdb_assert (region);
1645
1646 if (region->hi == 0)
1647 rlen = len - xfered;
1648 else
1649 rlen = region->hi - offset;
1650
1651 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1652 {
1653 /* Cannot read this region. Note that we can end up here only
1654 if the region is explicitly marked inaccessible, or
1655 'inaccessible-by-default' is in effect. */
1656 xfered += rlen;
1657 }
1658 else
1659 {
1660 LONGEST to_read = min (len - xfered, rlen);
1661 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1662
1663 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1664 (gdb_byte *) buffer,
1665 offset + xfered, to_read);
1666 /* Call an observer, notifying them of the xfer progress? */
1667 if (xfer <= 0)
1668 {
1669 /* Got an error reading full chunk. See if maybe we can read
1670 some subrange. */
1671 xfree (buffer);
1672 read_whatever_is_readable (ops, offset + xfered,
1673 offset + xfered + to_read, &result);
1674 xfered += to_read;
1675 }
1676 else
1677 {
1678 struct memory_read_result r;
1679 r.data = buffer;
1680 r.begin = offset + xfered;
1681 r.end = r.begin + xfer;
1682 VEC_safe_push (memory_read_result_s, result, &r);
1683 xfered += xfer;
1684 }
1685 QUIT;
1686 }
1687 }
1688 return result;
1689 }
1690
1691
1692 /* An alternative to target_write with progress callbacks. */
1693
1694 LONGEST
1695 target_write_with_progress (struct target_ops *ops,
1696 enum target_object object,
1697 const char *annex, const gdb_byte *buf,
1698 ULONGEST offset, LONGEST len,
1699 void (*progress) (ULONGEST, void *), void *baton)
1700 {
1701 LONGEST xfered = 0;
1702
1703 /* Give the progress callback a chance to set up. */
1704 if (progress)
1705 (*progress) (0, baton);
1706
1707 while (xfered < len)
1708 {
1709 ULONGEST xfered_len;
1710 enum target_xfer_status status;
1711
1712 status = target_write_partial (ops, object, annex,
1713 (gdb_byte *) buf + xfered,
1714 offset + xfered, len - xfered,
1715 &xfered_len);
1716
1717 if (status != TARGET_XFER_OK)
1718 return status == TARGET_XFER_EOF ? xfered : -1;
1719
1720 if (progress)
1721 (*progress) (xfered_len, baton);
1722
1723 xfered += xfered_len;
1724 QUIT;
1725 }
1726 return len;
1727 }
1728
1729 /* For docs on target_write see target.h. */
1730
1731 LONGEST
1732 target_write (struct target_ops *ops,
1733 enum target_object object,
1734 const char *annex, const gdb_byte *buf,
1735 ULONGEST offset, LONGEST len)
1736 {
1737 return target_write_with_progress (ops, object, annex, buf, offset, len,
1738 NULL, NULL);
1739 }
1740
1741 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1742 the size of the transferred data. PADDING additional bytes are
1743 available in *BUF_P. This is a helper function for
1744 target_read_alloc; see the declaration of that function for more
1745 information. */
1746
1747 static LONGEST
1748 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1749 const char *annex, gdb_byte **buf_p, int padding)
1750 {
1751 size_t buf_alloc, buf_pos;
1752 gdb_byte *buf;
1753
1754 /* This function does not have a length parameter; it reads the
1755 entire OBJECT). Also, it doesn't support objects fetched partly
1756 from one target and partly from another (in a different stratum,
1757 e.g. a core file and an executable). Both reasons make it
1758 unsuitable for reading memory. */
1759 gdb_assert (object != TARGET_OBJECT_MEMORY);
1760
1761 /* Start by reading up to 4K at a time. The target will throttle
1762 this number down if necessary. */
1763 buf_alloc = 4096;
1764 buf = xmalloc (buf_alloc);
1765 buf_pos = 0;
1766 while (1)
1767 {
1768 ULONGEST xfered_len;
1769 enum target_xfer_status status;
1770
1771 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1772 buf_pos, buf_alloc - buf_pos - padding,
1773 &xfered_len);
1774
1775 if (status == TARGET_XFER_EOF)
1776 {
1777 /* Read all there was. */
1778 if (buf_pos == 0)
1779 xfree (buf);
1780 else
1781 *buf_p = buf;
1782 return buf_pos;
1783 }
1784 else if (status != TARGET_XFER_OK)
1785 {
1786 /* An error occurred. */
1787 xfree (buf);
1788 return TARGET_XFER_E_IO;
1789 }
1790
1791 buf_pos += xfered_len;
1792
1793 /* If the buffer is filling up, expand it. */
1794 if (buf_alloc < buf_pos * 2)
1795 {
1796 buf_alloc *= 2;
1797 buf = xrealloc (buf, buf_alloc);
1798 }
1799
1800 QUIT;
1801 }
1802 }
1803
1804 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1805 the size of the transferred data. See the declaration in "target.h"
1806 function for more information about the return value. */
1807
1808 LONGEST
1809 target_read_alloc (struct target_ops *ops, enum target_object object,
1810 const char *annex, gdb_byte **buf_p)
1811 {
1812 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1813 }
1814
1815 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1816 returned as a string, allocated using xmalloc. If an error occurs
1817 or the transfer is unsupported, NULL is returned. Empty objects
1818 are returned as allocated but empty strings. A warning is issued
1819 if the result contains any embedded NUL bytes. */
1820
1821 char *
1822 target_read_stralloc (struct target_ops *ops, enum target_object object,
1823 const char *annex)
1824 {
1825 gdb_byte *buffer;
1826 char *bufstr;
1827 LONGEST i, transferred;
1828
1829 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1830 bufstr = (char *) buffer;
1831
1832 if (transferred < 0)
1833 return NULL;
1834
1835 if (transferred == 0)
1836 return xstrdup ("");
1837
1838 bufstr[transferred] = 0;
1839
1840 /* Check for embedded NUL bytes; but allow trailing NULs. */
1841 for (i = strlen (bufstr); i < transferred; i++)
1842 if (bufstr[i] != 0)
1843 {
1844 warning (_("target object %d, annex %s, "
1845 "contained unexpected null characters"),
1846 (int) object, annex ? annex : "(none)");
1847 break;
1848 }
1849
1850 return bufstr;
1851 }
1852
1853 /* Memory transfer methods. */
1854
1855 void
1856 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1857 LONGEST len)
1858 {
1859 /* This method is used to read from an alternate, non-current
1860 target. This read must bypass the overlay support (as symbols
1861 don't match this target), and GDB's internal cache (wrong cache
1862 for this target). */
1863 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1864 != len)
1865 memory_error (TARGET_XFER_E_IO, addr);
1866 }
1867
1868 ULONGEST
1869 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1870 int len, enum bfd_endian byte_order)
1871 {
1872 gdb_byte buf[sizeof (ULONGEST)];
1873
1874 gdb_assert (len <= sizeof (buf));
1875 get_target_memory (ops, addr, buf, len);
1876 return extract_unsigned_integer (buf, len, byte_order);
1877 }
1878
1879 /* See target.h. */
1880
1881 int
1882 target_insert_breakpoint (struct gdbarch *gdbarch,
1883 struct bp_target_info *bp_tgt)
1884 {
1885 if (!may_insert_breakpoints)
1886 {
1887 warning (_("May not insert breakpoints"));
1888 return 1;
1889 }
1890
1891 return current_target.to_insert_breakpoint (&current_target,
1892 gdbarch, bp_tgt);
1893 }
1894
1895 /* See target.h. */
1896
1897 int
1898 target_remove_breakpoint (struct gdbarch *gdbarch,
1899 struct bp_target_info *bp_tgt)
1900 {
1901 /* This is kind of a weird case to handle, but the permission might
1902 have been changed after breakpoints were inserted - in which case
1903 we should just take the user literally and assume that any
1904 breakpoints should be left in place. */
1905 if (!may_insert_breakpoints)
1906 {
1907 warning (_("May not remove breakpoints"));
1908 return 1;
1909 }
1910
1911 return current_target.to_remove_breakpoint (&current_target,
1912 gdbarch, bp_tgt);
1913 }
1914
1915 static void
1916 target_info (char *args, int from_tty)
1917 {
1918 struct target_ops *t;
1919 int has_all_mem = 0;
1920
1921 if (symfile_objfile != NULL)
1922 printf_unfiltered (_("Symbols from \"%s\".\n"),
1923 objfile_name (symfile_objfile));
1924
1925 for (t = target_stack; t != NULL; t = t->beneath)
1926 {
1927 if (!(*t->to_has_memory) (t))
1928 continue;
1929
1930 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1931 continue;
1932 if (has_all_mem)
1933 printf_unfiltered (_("\tWhile running this, "
1934 "GDB does not access memory from...\n"));
1935 printf_unfiltered ("%s:\n", t->to_longname);
1936 (t->to_files_info) (t);
1937 has_all_mem = (*t->to_has_all_memory) (t);
1938 }
1939 }
1940
1941 /* This function is called before any new inferior is created, e.g.
1942 by running a program, attaching, or connecting to a target.
1943 It cleans up any state from previous invocations which might
1944 change between runs. This is a subset of what target_preopen
1945 resets (things which might change between targets). */
1946
1947 void
1948 target_pre_inferior (int from_tty)
1949 {
1950 /* Clear out solib state. Otherwise the solib state of the previous
1951 inferior might have survived and is entirely wrong for the new
1952 target. This has been observed on GNU/Linux using glibc 2.3. How
1953 to reproduce:
1954
1955 bash$ ./foo&
1956 [1] 4711
1957 bash$ ./foo&
1958 [1] 4712
1959 bash$ gdb ./foo
1960 [...]
1961 (gdb) attach 4711
1962 (gdb) detach
1963 (gdb) attach 4712
1964 Cannot access memory at address 0xdeadbeef
1965 */
1966
1967 /* In some OSs, the shared library list is the same/global/shared
1968 across inferiors. If code is shared between processes, so are
1969 memory regions and features. */
1970 if (!gdbarch_has_global_solist (target_gdbarch ()))
1971 {
1972 no_shared_libraries (NULL, from_tty);
1973
1974 invalidate_target_mem_regions ();
1975
1976 target_clear_description ();
1977 }
1978
1979 agent_capability_invalidate ();
1980 }
1981
1982 /* Callback for iterate_over_inferiors. Gets rid of the given
1983 inferior. */
1984
1985 static int
1986 dispose_inferior (struct inferior *inf, void *args)
1987 {
1988 struct thread_info *thread;
1989
1990 thread = any_thread_of_process (inf->pid);
1991 if (thread)
1992 {
1993 switch_to_thread (thread->ptid);
1994
1995 /* Core inferiors actually should be detached, not killed. */
1996 if (target_has_execution)
1997 target_kill ();
1998 else
1999 target_detach (NULL, 0);
2000 }
2001
2002 return 0;
2003 }
2004
2005 /* This is to be called by the open routine before it does
2006 anything. */
2007
2008 void
2009 target_preopen (int from_tty)
2010 {
2011 dont_repeat ();
2012
2013 if (have_inferiors ())
2014 {
2015 if (!from_tty
2016 || !have_live_inferiors ()
2017 || query (_("A program is being debugged already. Kill it? ")))
2018 iterate_over_inferiors (dispose_inferior, NULL);
2019 else
2020 error (_("Program not killed."));
2021 }
2022
2023 /* Calling target_kill may remove the target from the stack. But if
2024 it doesn't (which seems like a win for UDI), remove it now. */
2025 /* Leave the exec target, though. The user may be switching from a
2026 live process to a core of the same program. */
2027 pop_all_targets_above (file_stratum);
2028
2029 target_pre_inferior (from_tty);
2030 }
2031
2032 /* Detach a target after doing deferred register stores. */
2033
2034 void
2035 target_detach (const char *args, int from_tty)
2036 {
2037 struct target_ops* t;
2038
2039 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2040 /* Don't remove global breakpoints here. They're removed on
2041 disconnection from the target. */
2042 ;
2043 else
2044 /* If we're in breakpoints-always-inserted mode, have to remove
2045 them before detaching. */
2046 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2047
2048 prepare_for_detach ();
2049
2050 current_target.to_detach (&current_target, args, from_tty);
2051 }
2052
2053 void
2054 target_disconnect (const char *args, int from_tty)
2055 {
2056 /* If we're in breakpoints-always-inserted mode or if breakpoints
2057 are global across processes, we have to remove them before
2058 disconnecting. */
2059 remove_breakpoints ();
2060
2061 current_target.to_disconnect (&current_target, args, from_tty);
2062 }
2063
2064 ptid_t
2065 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2066 {
2067 return (current_target.to_wait) (&current_target, ptid, status, options);
2068 }
2069
2070 char *
2071 target_pid_to_str (ptid_t ptid)
2072 {
2073 return (*current_target.to_pid_to_str) (&current_target, ptid);
2074 }
2075
2076 char *
2077 target_thread_name (struct thread_info *info)
2078 {
2079 return current_target.to_thread_name (&current_target, info);
2080 }
2081
2082 void
2083 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2084 {
2085 struct target_ops *t;
2086
2087 target_dcache_invalidate ();
2088
2089 current_target.to_resume (&current_target, ptid, step, signal);
2090
2091 registers_changed_ptid (ptid);
2092 /* We only set the internal executing state here. The user/frontend
2093 running state is set at a higher level. */
2094 set_executing (ptid, 1);
2095 clear_inline_frame_state (ptid);
2096 }
2097
2098 void
2099 target_pass_signals (int numsigs, unsigned char *pass_signals)
2100 {
2101 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2102 }
2103
2104 void
2105 target_program_signals (int numsigs, unsigned char *program_signals)
2106 {
2107 (*current_target.to_program_signals) (&current_target,
2108 numsigs, program_signals);
2109 }
2110
2111 static int
2112 default_follow_fork (struct target_ops *self, int follow_child,
2113 int detach_fork)
2114 {
2115 /* Some target returned a fork event, but did not know how to follow it. */
2116 internal_error (__FILE__, __LINE__,
2117 _("could not find a target to follow fork"));
2118 }
2119
2120 /* Look through the list of possible targets for a target that can
2121 follow forks. */
2122
2123 int
2124 target_follow_fork (int follow_child, int detach_fork)
2125 {
2126 return current_target.to_follow_fork (&current_target,
2127 follow_child, detach_fork);
2128 }
2129
2130 static void
2131 default_mourn_inferior (struct target_ops *self)
2132 {
2133 internal_error (__FILE__, __LINE__,
2134 _("could not find a target to follow mourn inferior"));
2135 }
2136
2137 void
2138 target_mourn_inferior (void)
2139 {
2140 current_target.to_mourn_inferior (&current_target);
2141
2142 /* We no longer need to keep handles on any of the object files.
2143 Make sure to release them to avoid unnecessarily locking any
2144 of them while we're not actually debugging. */
2145 bfd_cache_close_all ();
2146 }
2147
2148 /* Look for a target which can describe architectural features, starting
2149 from TARGET. If we find one, return its description. */
2150
2151 const struct target_desc *
2152 target_read_description (struct target_ops *target)
2153 {
2154 return target->to_read_description (target);
2155 }
2156
2157 /* This implements a basic search of memory, reading target memory and
2158 performing the search here (as opposed to performing the search in on the
2159 target side with, for example, gdbserver). */
2160
2161 int
2162 simple_search_memory (struct target_ops *ops,
2163 CORE_ADDR start_addr, ULONGEST search_space_len,
2164 const gdb_byte *pattern, ULONGEST pattern_len,
2165 CORE_ADDR *found_addrp)
2166 {
2167 /* NOTE: also defined in find.c testcase. */
2168 #define SEARCH_CHUNK_SIZE 16000
2169 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2170 /* Buffer to hold memory contents for searching. */
2171 gdb_byte *search_buf;
2172 unsigned search_buf_size;
2173 struct cleanup *old_cleanups;
2174
2175 search_buf_size = chunk_size + pattern_len - 1;
2176
2177 /* No point in trying to allocate a buffer larger than the search space. */
2178 if (search_space_len < search_buf_size)
2179 search_buf_size = search_space_len;
2180
2181 search_buf = malloc (search_buf_size);
2182 if (search_buf == NULL)
2183 error (_("Unable to allocate memory to perform the search."));
2184 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2185
2186 /* Prime the search buffer. */
2187
2188 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2189 search_buf, start_addr, search_buf_size) != search_buf_size)
2190 {
2191 warning (_("Unable to access %s bytes of target "
2192 "memory at %s, halting search."),
2193 pulongest (search_buf_size), hex_string (start_addr));
2194 do_cleanups (old_cleanups);
2195 return -1;
2196 }
2197
2198 /* Perform the search.
2199
2200 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2201 When we've scanned N bytes we copy the trailing bytes to the start and
2202 read in another N bytes. */
2203
2204 while (search_space_len >= pattern_len)
2205 {
2206 gdb_byte *found_ptr;
2207 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2208
2209 found_ptr = memmem (search_buf, nr_search_bytes,
2210 pattern, pattern_len);
2211
2212 if (found_ptr != NULL)
2213 {
2214 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2215
2216 *found_addrp = found_addr;
2217 do_cleanups (old_cleanups);
2218 return 1;
2219 }
2220
2221 /* Not found in this chunk, skip to next chunk. */
2222
2223 /* Don't let search_space_len wrap here, it's unsigned. */
2224 if (search_space_len >= chunk_size)
2225 search_space_len -= chunk_size;
2226 else
2227 search_space_len = 0;
2228
2229 if (search_space_len >= pattern_len)
2230 {
2231 unsigned keep_len = search_buf_size - chunk_size;
2232 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2233 int nr_to_read;
2234
2235 /* Copy the trailing part of the previous iteration to the front
2236 of the buffer for the next iteration. */
2237 gdb_assert (keep_len == pattern_len - 1);
2238 memcpy (search_buf, search_buf + chunk_size, keep_len);
2239
2240 nr_to_read = min (search_space_len - keep_len, chunk_size);
2241
2242 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2243 search_buf + keep_len, read_addr,
2244 nr_to_read) != nr_to_read)
2245 {
2246 warning (_("Unable to access %s bytes of target "
2247 "memory at %s, halting search."),
2248 plongest (nr_to_read),
2249 hex_string (read_addr));
2250 do_cleanups (old_cleanups);
2251 return -1;
2252 }
2253
2254 start_addr += chunk_size;
2255 }
2256 }
2257
2258 /* Not found. */
2259
2260 do_cleanups (old_cleanups);
2261 return 0;
2262 }
2263
2264 /* Default implementation of memory-searching. */
2265
2266 static int
2267 default_search_memory (struct target_ops *self,
2268 CORE_ADDR start_addr, ULONGEST search_space_len,
2269 const gdb_byte *pattern, ULONGEST pattern_len,
2270 CORE_ADDR *found_addrp)
2271 {
2272 /* Start over from the top of the target stack. */
2273 return simple_search_memory (current_target.beneath,
2274 start_addr, search_space_len,
2275 pattern, pattern_len, found_addrp);
2276 }
2277
2278 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2279 sequence of bytes in PATTERN with length PATTERN_LEN.
2280
2281 The result is 1 if found, 0 if not found, and -1 if there was an error
2282 requiring halting of the search (e.g. memory read error).
2283 If the pattern is found the address is recorded in FOUND_ADDRP. */
2284
2285 int
2286 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2287 const gdb_byte *pattern, ULONGEST pattern_len,
2288 CORE_ADDR *found_addrp)
2289 {
2290 return current_target.to_search_memory (&current_target, start_addr,
2291 search_space_len,
2292 pattern, pattern_len, found_addrp);
2293 }
2294
2295 /* Look through the currently pushed targets. If none of them will
2296 be able to restart the currently running process, issue an error
2297 message. */
2298
2299 void
2300 target_require_runnable (void)
2301 {
2302 struct target_ops *t;
2303
2304 for (t = target_stack; t != NULL; t = t->beneath)
2305 {
2306 /* If this target knows how to create a new program, then
2307 assume we will still be able to after killing the current
2308 one. Either killing and mourning will not pop T, or else
2309 find_default_run_target will find it again. */
2310 if (t->to_create_inferior != NULL)
2311 return;
2312
2313 /* Do not worry about targets at certain strata that can not
2314 create inferiors. Assume they will be pushed again if
2315 necessary, and continue to the process_stratum. */
2316 if (t->to_stratum == thread_stratum
2317 || t->to_stratum == record_stratum
2318 || t->to_stratum == arch_stratum)
2319 continue;
2320
2321 error (_("The \"%s\" target does not support \"run\". "
2322 "Try \"help target\" or \"continue\"."),
2323 t->to_shortname);
2324 }
2325
2326 /* This function is only called if the target is running. In that
2327 case there should have been a process_stratum target and it
2328 should either know how to create inferiors, or not... */
2329 internal_error (__FILE__, __LINE__, _("No targets found"));
2330 }
2331
2332 /* Whether GDB is allowed to fall back to the default run target for
2333 "run", "attach", etc. when no target is connected yet. */
2334 static int auto_connect_native_target = 1;
2335
2336 static void
2337 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2338 struct cmd_list_element *c, const char *value)
2339 {
2340 fprintf_filtered (file,
2341 _("Whether GDB may automatically connect to the "
2342 "native target is %s.\n"),
2343 value);
2344 }
2345
2346 /* Look through the list of possible targets for a target that can
2347 execute a run or attach command without any other data. This is
2348 used to locate the default process stratum.
2349
2350 If DO_MESG is not NULL, the result is always valid (error() is
2351 called for errors); else, return NULL on error. */
2352
2353 static struct target_ops *
2354 find_default_run_target (char *do_mesg)
2355 {
2356 struct target_ops *runable = NULL;
2357
2358 if (auto_connect_native_target)
2359 {
2360 struct target_ops **t;
2361 int count = 0;
2362
2363 for (t = target_structs; t < target_structs + target_struct_size;
2364 ++t)
2365 {
2366 if ((*t)->to_can_run != delegate_can_run && target_can_run (*t))
2367 {
2368 runable = *t;
2369 ++count;
2370 }
2371 }
2372
2373 if (count != 1)
2374 runable = NULL;
2375 }
2376
2377 if (runable == NULL)
2378 {
2379 if (do_mesg)
2380 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2381 else
2382 return NULL;
2383 }
2384
2385 return runable;
2386 }
2387
2388 /* See target.h. */
2389
2390 struct target_ops *
2391 find_attach_target (void)
2392 {
2393 struct target_ops *t;
2394
2395 /* If a target on the current stack can attach, use it. */
2396 for (t = current_target.beneath; t != NULL; t = t->beneath)
2397 {
2398 if (t->to_attach != NULL)
2399 break;
2400 }
2401
2402 /* Otherwise, use the default run target for attaching. */
2403 if (t == NULL)
2404 t = find_default_run_target ("attach");
2405
2406 return t;
2407 }
2408
2409 /* See target.h. */
2410
2411 struct target_ops *
2412 find_run_target (void)
2413 {
2414 struct target_ops *t;
2415
2416 /* If a target on the current stack can attach, use it. */
2417 for (t = current_target.beneath; t != NULL; t = t->beneath)
2418 {
2419 if (t->to_create_inferior != NULL)
2420 break;
2421 }
2422
2423 /* Otherwise, use the default run target. */
2424 if (t == NULL)
2425 t = find_default_run_target ("run");
2426
2427 return t;
2428 }
2429
2430 /* Implement the "info proc" command. */
2431
2432 int
2433 target_info_proc (const char *args, enum info_proc_what what)
2434 {
2435 struct target_ops *t;
2436
2437 /* If we're already connected to something that can get us OS
2438 related data, use it. Otherwise, try using the native
2439 target. */
2440 if (current_target.to_stratum >= process_stratum)
2441 t = current_target.beneath;
2442 else
2443 t = find_default_run_target (NULL);
2444
2445 for (; t != NULL; t = t->beneath)
2446 {
2447 if (t->to_info_proc != NULL)
2448 {
2449 t->to_info_proc (t, args, what);
2450
2451 if (targetdebug)
2452 fprintf_unfiltered (gdb_stdlog,
2453 "target_info_proc (\"%s\", %d)\n", args, what);
2454
2455 return 1;
2456 }
2457 }
2458
2459 return 0;
2460 }
2461
2462 static int
2463 find_default_supports_disable_randomization (struct target_ops *self)
2464 {
2465 struct target_ops *t;
2466
2467 t = find_default_run_target (NULL);
2468 if (t && t->to_supports_disable_randomization)
2469 return (t->to_supports_disable_randomization) (t);
2470 return 0;
2471 }
2472
2473 int
2474 target_supports_disable_randomization (void)
2475 {
2476 struct target_ops *t;
2477
2478 for (t = &current_target; t != NULL; t = t->beneath)
2479 if (t->to_supports_disable_randomization)
2480 return t->to_supports_disable_randomization (t);
2481
2482 return 0;
2483 }
2484
2485 char *
2486 target_get_osdata (const char *type)
2487 {
2488 struct target_ops *t;
2489
2490 /* If we're already connected to something that can get us OS
2491 related data, use it. Otherwise, try using the native
2492 target. */
2493 if (current_target.to_stratum >= process_stratum)
2494 t = current_target.beneath;
2495 else
2496 t = find_default_run_target ("get OS data");
2497
2498 if (!t)
2499 return NULL;
2500
2501 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2502 }
2503
2504 static struct address_space *
2505 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2506 {
2507 struct inferior *inf;
2508
2509 /* Fall-back to the "main" address space of the inferior. */
2510 inf = find_inferior_pid (ptid_get_pid (ptid));
2511
2512 if (inf == NULL || inf->aspace == NULL)
2513 internal_error (__FILE__, __LINE__,
2514 _("Can't determine the current "
2515 "address space of thread %s\n"),
2516 target_pid_to_str (ptid));
2517
2518 return inf->aspace;
2519 }
2520
2521 /* Determine the current address space of thread PTID. */
2522
2523 struct address_space *
2524 target_thread_address_space (ptid_t ptid)
2525 {
2526 struct address_space *aspace;
2527
2528 aspace = current_target.to_thread_address_space (&current_target, ptid);
2529 gdb_assert (aspace != NULL);
2530
2531 return aspace;
2532 }
2533
2534
2535 /* Target file operations. */
2536
2537 static struct target_ops *
2538 default_fileio_target (void)
2539 {
2540 /* If we're already connected to something that can perform
2541 file I/O, use it. Otherwise, try using the native target. */
2542 if (current_target.to_stratum >= process_stratum)
2543 return current_target.beneath;
2544 else
2545 return find_default_run_target ("file I/O");
2546 }
2547
2548 /* Open FILENAME on the target, using FLAGS and MODE. Return a
2549 target file descriptor, or -1 if an error occurs (and set
2550 *TARGET_ERRNO). */
2551 int
2552 target_fileio_open (const char *filename, int flags, int mode,
2553 int *target_errno)
2554 {
2555 struct target_ops *t;
2556
2557 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2558 {
2559 if (t->to_fileio_open != NULL)
2560 {
2561 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
2562
2563 if (targetdebug)
2564 fprintf_unfiltered (gdb_stdlog,
2565 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2566 filename, flags, mode,
2567 fd, fd != -1 ? 0 : *target_errno);
2568 return fd;
2569 }
2570 }
2571
2572 *target_errno = FILEIO_ENOSYS;
2573 return -1;
2574 }
2575
2576 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2577 Return the number of bytes written, or -1 if an error occurs
2578 (and set *TARGET_ERRNO). */
2579 int
2580 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2581 ULONGEST offset, int *target_errno)
2582 {
2583 struct target_ops *t;
2584
2585 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2586 {
2587 if (t->to_fileio_pwrite != NULL)
2588 {
2589 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
2590 target_errno);
2591
2592 if (targetdebug)
2593 fprintf_unfiltered (gdb_stdlog,
2594 "target_fileio_pwrite (%d,...,%d,%s) "
2595 "= %d (%d)\n",
2596 fd, len, pulongest (offset),
2597 ret, ret != -1 ? 0 : *target_errno);
2598 return ret;
2599 }
2600 }
2601
2602 *target_errno = FILEIO_ENOSYS;
2603 return -1;
2604 }
2605
2606 /* Read up to LEN bytes FD on the target into READ_BUF.
2607 Return the number of bytes read, or -1 if an error occurs
2608 (and set *TARGET_ERRNO). */
2609 int
2610 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2611 ULONGEST offset, int *target_errno)
2612 {
2613 struct target_ops *t;
2614
2615 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2616 {
2617 if (t->to_fileio_pread != NULL)
2618 {
2619 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
2620 target_errno);
2621
2622 if (targetdebug)
2623 fprintf_unfiltered (gdb_stdlog,
2624 "target_fileio_pread (%d,...,%d,%s) "
2625 "= %d (%d)\n",
2626 fd, len, pulongest (offset),
2627 ret, ret != -1 ? 0 : *target_errno);
2628 return ret;
2629 }
2630 }
2631
2632 *target_errno = FILEIO_ENOSYS;
2633 return -1;
2634 }
2635
2636 /* Close FD on the target. Return 0, or -1 if an error occurs
2637 (and set *TARGET_ERRNO). */
2638 int
2639 target_fileio_close (int fd, int *target_errno)
2640 {
2641 struct target_ops *t;
2642
2643 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2644 {
2645 if (t->to_fileio_close != NULL)
2646 {
2647 int ret = t->to_fileio_close (t, fd, target_errno);
2648
2649 if (targetdebug)
2650 fprintf_unfiltered (gdb_stdlog,
2651 "target_fileio_close (%d) = %d (%d)\n",
2652 fd, ret, ret != -1 ? 0 : *target_errno);
2653 return ret;
2654 }
2655 }
2656
2657 *target_errno = FILEIO_ENOSYS;
2658 return -1;
2659 }
2660
2661 /* Unlink FILENAME on the target. Return 0, or -1 if an error
2662 occurs (and set *TARGET_ERRNO). */
2663 int
2664 target_fileio_unlink (const char *filename, int *target_errno)
2665 {
2666 struct target_ops *t;
2667
2668 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2669 {
2670 if (t->to_fileio_unlink != NULL)
2671 {
2672 int ret = t->to_fileio_unlink (t, filename, target_errno);
2673
2674 if (targetdebug)
2675 fprintf_unfiltered (gdb_stdlog,
2676 "target_fileio_unlink (%s) = %d (%d)\n",
2677 filename, ret, ret != -1 ? 0 : *target_errno);
2678 return ret;
2679 }
2680 }
2681
2682 *target_errno = FILEIO_ENOSYS;
2683 return -1;
2684 }
2685
2686 /* Read value of symbolic link FILENAME on the target. Return a
2687 null-terminated string allocated via xmalloc, or NULL if an error
2688 occurs (and set *TARGET_ERRNO). */
2689 char *
2690 target_fileio_readlink (const char *filename, int *target_errno)
2691 {
2692 struct target_ops *t;
2693
2694 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2695 {
2696 if (t->to_fileio_readlink != NULL)
2697 {
2698 char *ret = t->to_fileio_readlink (t, filename, target_errno);
2699
2700 if (targetdebug)
2701 fprintf_unfiltered (gdb_stdlog,
2702 "target_fileio_readlink (%s) = %s (%d)\n",
2703 filename, ret? ret : "(nil)",
2704 ret? 0 : *target_errno);
2705 return ret;
2706 }
2707 }
2708
2709 *target_errno = FILEIO_ENOSYS;
2710 return NULL;
2711 }
2712
2713 static void
2714 target_fileio_close_cleanup (void *opaque)
2715 {
2716 int fd = *(int *) opaque;
2717 int target_errno;
2718
2719 target_fileio_close (fd, &target_errno);
2720 }
2721
2722 /* Read target file FILENAME. Store the result in *BUF_P and
2723 return the size of the transferred data. PADDING additional bytes are
2724 available in *BUF_P. This is a helper function for
2725 target_fileio_read_alloc; see the declaration of that function for more
2726 information. */
2727
2728 static LONGEST
2729 target_fileio_read_alloc_1 (const char *filename,
2730 gdb_byte **buf_p, int padding)
2731 {
2732 struct cleanup *close_cleanup;
2733 size_t buf_alloc, buf_pos;
2734 gdb_byte *buf;
2735 LONGEST n;
2736 int fd;
2737 int target_errno;
2738
2739 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2740 if (fd == -1)
2741 return -1;
2742
2743 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2744
2745 /* Start by reading up to 4K at a time. The target will throttle
2746 this number down if necessary. */
2747 buf_alloc = 4096;
2748 buf = xmalloc (buf_alloc);
2749 buf_pos = 0;
2750 while (1)
2751 {
2752 n = target_fileio_pread (fd, &buf[buf_pos],
2753 buf_alloc - buf_pos - padding, buf_pos,
2754 &target_errno);
2755 if (n < 0)
2756 {
2757 /* An error occurred. */
2758 do_cleanups (close_cleanup);
2759 xfree (buf);
2760 return -1;
2761 }
2762 else if (n == 0)
2763 {
2764 /* Read all there was. */
2765 do_cleanups (close_cleanup);
2766 if (buf_pos == 0)
2767 xfree (buf);
2768 else
2769 *buf_p = buf;
2770 return buf_pos;
2771 }
2772
2773 buf_pos += n;
2774
2775 /* If the buffer is filling up, expand it. */
2776 if (buf_alloc < buf_pos * 2)
2777 {
2778 buf_alloc *= 2;
2779 buf = xrealloc (buf, buf_alloc);
2780 }
2781
2782 QUIT;
2783 }
2784 }
2785
2786 /* Read target file FILENAME. Store the result in *BUF_P and return
2787 the size of the transferred data. See the declaration in "target.h"
2788 function for more information about the return value. */
2789
2790 LONGEST
2791 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2792 {
2793 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2794 }
2795
2796 /* Read target file FILENAME. The result is NUL-terminated and
2797 returned as a string, allocated using xmalloc. If an error occurs
2798 or the transfer is unsupported, NULL is returned. Empty objects
2799 are returned as allocated but empty strings. A warning is issued
2800 if the result contains any embedded NUL bytes. */
2801
2802 char *
2803 target_fileio_read_stralloc (const char *filename)
2804 {
2805 gdb_byte *buffer;
2806 char *bufstr;
2807 LONGEST i, transferred;
2808
2809 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2810 bufstr = (char *) buffer;
2811
2812 if (transferred < 0)
2813 return NULL;
2814
2815 if (transferred == 0)
2816 return xstrdup ("");
2817
2818 bufstr[transferred] = 0;
2819
2820 /* Check for embedded NUL bytes; but allow trailing NULs. */
2821 for (i = strlen (bufstr); i < transferred; i++)
2822 if (bufstr[i] != 0)
2823 {
2824 warning (_("target file %s "
2825 "contained unexpected null characters"),
2826 filename);
2827 break;
2828 }
2829
2830 return bufstr;
2831 }
2832
2833
2834 static int
2835 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2836 CORE_ADDR addr, int len)
2837 {
2838 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2839 }
2840
2841 static int
2842 default_watchpoint_addr_within_range (struct target_ops *target,
2843 CORE_ADDR addr,
2844 CORE_ADDR start, int length)
2845 {
2846 return addr >= start && addr < start + length;
2847 }
2848
2849 static struct gdbarch *
2850 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2851 {
2852 return target_gdbarch ();
2853 }
2854
2855 static int
2856 return_zero (struct target_ops *ignore)
2857 {
2858 return 0;
2859 }
2860
2861 static int
2862 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
2863 {
2864 return 0;
2865 }
2866
2867 /*
2868 * Find the next target down the stack from the specified target.
2869 */
2870
2871 struct target_ops *
2872 find_target_beneath (struct target_ops *t)
2873 {
2874 return t->beneath;
2875 }
2876
2877 /* See target.h. */
2878
2879 struct target_ops *
2880 find_target_at (enum strata stratum)
2881 {
2882 struct target_ops *t;
2883
2884 for (t = current_target.beneath; t != NULL; t = t->beneath)
2885 if (t->to_stratum == stratum)
2886 return t;
2887
2888 return NULL;
2889 }
2890
2891 \f
2892 /* The inferior process has died. Long live the inferior! */
2893
2894 void
2895 generic_mourn_inferior (void)
2896 {
2897 ptid_t ptid;
2898
2899 ptid = inferior_ptid;
2900 inferior_ptid = null_ptid;
2901
2902 /* Mark breakpoints uninserted in case something tries to delete a
2903 breakpoint while we delete the inferior's threads (which would
2904 fail, since the inferior is long gone). */
2905 mark_breakpoints_out ();
2906
2907 if (!ptid_equal (ptid, null_ptid))
2908 {
2909 int pid = ptid_get_pid (ptid);
2910 exit_inferior (pid);
2911 }
2912
2913 /* Note this wipes step-resume breakpoints, so needs to be done
2914 after exit_inferior, which ends up referencing the step-resume
2915 breakpoints through clear_thread_inferior_resources. */
2916 breakpoint_init_inferior (inf_exited);
2917
2918 registers_changed ();
2919
2920 reopen_exec_file ();
2921 reinit_frame_cache ();
2922
2923 if (deprecated_detach_hook)
2924 deprecated_detach_hook ();
2925 }
2926 \f
2927 /* Convert a normal process ID to a string. Returns the string in a
2928 static buffer. */
2929
2930 char *
2931 normal_pid_to_str (ptid_t ptid)
2932 {
2933 static char buf[32];
2934
2935 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2936 return buf;
2937 }
2938
2939 static char *
2940 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
2941 {
2942 return normal_pid_to_str (ptid);
2943 }
2944
2945 /* Error-catcher for target_find_memory_regions. */
2946 static int
2947 dummy_find_memory_regions (struct target_ops *self,
2948 find_memory_region_ftype ignore1, void *ignore2)
2949 {
2950 error (_("Command not implemented for this target."));
2951 return 0;
2952 }
2953
2954 /* Error-catcher for target_make_corefile_notes. */
2955 static char *
2956 dummy_make_corefile_notes (struct target_ops *self,
2957 bfd *ignore1, int *ignore2)
2958 {
2959 error (_("Command not implemented for this target."));
2960 return NULL;
2961 }
2962
2963 /* Set up the handful of non-empty slots needed by the dummy target
2964 vector. */
2965
2966 static void
2967 init_dummy_target (void)
2968 {
2969 dummy_target.to_shortname = "None";
2970 dummy_target.to_longname = "None";
2971 dummy_target.to_doc = "";
2972 dummy_target.to_supports_disable_randomization
2973 = find_default_supports_disable_randomization;
2974 dummy_target.to_stratum = dummy_stratum;
2975 dummy_target.to_has_all_memory = return_zero;
2976 dummy_target.to_has_memory = return_zero;
2977 dummy_target.to_has_stack = return_zero;
2978 dummy_target.to_has_registers = return_zero;
2979 dummy_target.to_has_execution = return_zero_has_execution;
2980 dummy_target.to_magic = OPS_MAGIC;
2981
2982 install_dummy_methods (&dummy_target);
2983 }
2984 \f
2985
2986 void
2987 target_close (struct target_ops *targ)
2988 {
2989 gdb_assert (!target_is_pushed (targ));
2990
2991 if (targ->to_xclose != NULL)
2992 targ->to_xclose (targ);
2993 else if (targ->to_close != NULL)
2994 targ->to_close (targ);
2995
2996 if (targetdebug)
2997 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
2998 }
2999
3000 int
3001 target_thread_alive (ptid_t ptid)
3002 {
3003 return current_target.to_thread_alive (&current_target, ptid);
3004 }
3005
3006 void
3007 target_find_new_threads (void)
3008 {
3009 current_target.to_find_new_threads (&current_target);
3010 }
3011
3012 void
3013 target_stop (ptid_t ptid)
3014 {
3015 if (!may_stop)
3016 {
3017 warning (_("May not interrupt or stop the target, ignoring attempt"));
3018 return;
3019 }
3020
3021 (*current_target.to_stop) (&current_target, ptid);
3022 }
3023
3024 /* Concatenate ELEM to LIST, a comma separate list, and return the
3025 result. The LIST incoming argument is released. */
3026
3027 static char *
3028 str_comma_list_concat_elem (char *list, const char *elem)
3029 {
3030 if (list == NULL)
3031 return xstrdup (elem);
3032 else
3033 return reconcat (list, list, ", ", elem, (char *) NULL);
3034 }
3035
3036 /* Helper for target_options_to_string. If OPT is present in
3037 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3038 Returns the new resulting string. OPT is removed from
3039 TARGET_OPTIONS. */
3040
3041 static char *
3042 do_option (int *target_options, char *ret,
3043 int opt, char *opt_str)
3044 {
3045 if ((*target_options & opt) != 0)
3046 {
3047 ret = str_comma_list_concat_elem (ret, opt_str);
3048 *target_options &= ~opt;
3049 }
3050
3051 return ret;
3052 }
3053
3054 char *
3055 target_options_to_string (int target_options)
3056 {
3057 char *ret = NULL;
3058
3059 #define DO_TARG_OPTION(OPT) \
3060 ret = do_option (&target_options, ret, OPT, #OPT)
3061
3062 DO_TARG_OPTION (TARGET_WNOHANG);
3063
3064 if (target_options != 0)
3065 ret = str_comma_list_concat_elem (ret, "unknown???");
3066
3067 if (ret == NULL)
3068 ret = xstrdup ("");
3069 return ret;
3070 }
3071
3072 static void
3073 debug_print_register (const char * func,
3074 struct regcache *regcache, int regno)
3075 {
3076 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3077
3078 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3079 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3080 && gdbarch_register_name (gdbarch, regno) != NULL
3081 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3082 fprintf_unfiltered (gdb_stdlog, "(%s)",
3083 gdbarch_register_name (gdbarch, regno));
3084 else
3085 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3086 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3087 {
3088 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3089 int i, size = register_size (gdbarch, regno);
3090 gdb_byte buf[MAX_REGISTER_SIZE];
3091
3092 regcache_raw_collect (regcache, regno, buf);
3093 fprintf_unfiltered (gdb_stdlog, " = ");
3094 for (i = 0; i < size; i++)
3095 {
3096 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3097 }
3098 if (size <= sizeof (LONGEST))
3099 {
3100 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3101
3102 fprintf_unfiltered (gdb_stdlog, " %s %s",
3103 core_addr_to_string_nz (val), plongest (val));
3104 }
3105 }
3106 fprintf_unfiltered (gdb_stdlog, "\n");
3107 }
3108
3109 void
3110 target_fetch_registers (struct regcache *regcache, int regno)
3111 {
3112 current_target.to_fetch_registers (&current_target, regcache, regno);
3113 if (targetdebug)
3114 debug_print_register ("target_fetch_registers", regcache, regno);
3115 }
3116
3117 void
3118 target_store_registers (struct regcache *regcache, int regno)
3119 {
3120 struct target_ops *t;
3121
3122 if (!may_write_registers)
3123 error (_("Writing to registers is not allowed (regno %d)"), regno);
3124
3125 current_target.to_store_registers (&current_target, regcache, regno);
3126 if (targetdebug)
3127 {
3128 debug_print_register ("target_store_registers", regcache, regno);
3129 }
3130 }
3131
3132 int
3133 target_core_of_thread (ptid_t ptid)
3134 {
3135 return current_target.to_core_of_thread (&current_target, ptid);
3136 }
3137
3138 int
3139 simple_verify_memory (struct target_ops *ops,
3140 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3141 {
3142 LONGEST total_xfered = 0;
3143
3144 while (total_xfered < size)
3145 {
3146 ULONGEST xfered_len;
3147 enum target_xfer_status status;
3148 gdb_byte buf[1024];
3149 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3150
3151 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3152 buf, NULL, lma + total_xfered, howmuch,
3153 &xfered_len);
3154 if (status == TARGET_XFER_OK
3155 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3156 {
3157 total_xfered += xfered_len;
3158 QUIT;
3159 }
3160 else
3161 return 0;
3162 }
3163 return 1;
3164 }
3165
3166 /* Default implementation of memory verification. */
3167
3168 static int
3169 default_verify_memory (struct target_ops *self,
3170 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3171 {
3172 /* Start over from the top of the target stack. */
3173 return simple_verify_memory (current_target.beneath,
3174 data, memaddr, size);
3175 }
3176
3177 int
3178 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3179 {
3180 return current_target.to_verify_memory (&current_target,
3181 data, memaddr, size);
3182 }
3183
3184 /* The documentation for this function is in its prototype declaration in
3185 target.h. */
3186
3187 int
3188 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3189 {
3190 return current_target.to_insert_mask_watchpoint (&current_target,
3191 addr, mask, rw);
3192 }
3193
3194 /* The documentation for this function is in its prototype declaration in
3195 target.h. */
3196
3197 int
3198 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3199 {
3200 return current_target.to_remove_mask_watchpoint (&current_target,
3201 addr, mask, rw);
3202 }
3203
3204 /* The documentation for this function is in its prototype declaration
3205 in target.h. */
3206
3207 int
3208 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3209 {
3210 return current_target.to_masked_watch_num_registers (&current_target,
3211 addr, mask);
3212 }
3213
3214 /* The documentation for this function is in its prototype declaration
3215 in target.h. */
3216
3217 int
3218 target_ranged_break_num_registers (void)
3219 {
3220 return current_target.to_ranged_break_num_registers (&current_target);
3221 }
3222
3223 /* See target.h. */
3224
3225 struct btrace_target_info *
3226 target_enable_btrace (ptid_t ptid)
3227 {
3228 return current_target.to_enable_btrace (&current_target, ptid);
3229 }
3230
3231 /* See target.h. */
3232
3233 void
3234 target_disable_btrace (struct btrace_target_info *btinfo)
3235 {
3236 current_target.to_disable_btrace (&current_target, btinfo);
3237 }
3238
3239 /* See target.h. */
3240
3241 void
3242 target_teardown_btrace (struct btrace_target_info *btinfo)
3243 {
3244 current_target.to_teardown_btrace (&current_target, btinfo);
3245 }
3246
3247 /* See target.h. */
3248
3249 enum btrace_error
3250 target_read_btrace (VEC (btrace_block_s) **btrace,
3251 struct btrace_target_info *btinfo,
3252 enum btrace_read_type type)
3253 {
3254 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3255 }
3256
3257 /* See target.h. */
3258
3259 void
3260 target_stop_recording (void)
3261 {
3262 current_target.to_stop_recording (&current_target);
3263 }
3264
3265 /* See target.h. */
3266
3267 void
3268 target_save_record (const char *filename)
3269 {
3270 current_target.to_save_record (&current_target, filename);
3271 }
3272
3273 /* See target.h. */
3274
3275 int
3276 target_supports_delete_record (void)
3277 {
3278 struct target_ops *t;
3279
3280 for (t = current_target.beneath; t != NULL; t = t->beneath)
3281 if (t->to_delete_record != delegate_delete_record
3282 && t->to_delete_record != tdefault_delete_record)
3283 return 1;
3284
3285 return 0;
3286 }
3287
3288 /* See target.h. */
3289
3290 void
3291 target_delete_record (void)
3292 {
3293 current_target.to_delete_record (&current_target);
3294 }
3295
3296 /* See target.h. */
3297
3298 int
3299 target_record_is_replaying (void)
3300 {
3301 return current_target.to_record_is_replaying (&current_target);
3302 }
3303
3304 /* See target.h. */
3305
3306 void
3307 target_goto_record_begin (void)
3308 {
3309 current_target.to_goto_record_begin (&current_target);
3310 }
3311
3312 /* See target.h. */
3313
3314 void
3315 target_goto_record_end (void)
3316 {
3317 current_target.to_goto_record_end (&current_target);
3318 }
3319
3320 /* See target.h. */
3321
3322 void
3323 target_goto_record (ULONGEST insn)
3324 {
3325 current_target.to_goto_record (&current_target, insn);
3326 }
3327
3328 /* See target.h. */
3329
3330 void
3331 target_insn_history (int size, int flags)
3332 {
3333 current_target.to_insn_history (&current_target, size, flags);
3334 }
3335
3336 /* See target.h. */
3337
3338 void
3339 target_insn_history_from (ULONGEST from, int size, int flags)
3340 {
3341 current_target.to_insn_history_from (&current_target, from, size, flags);
3342 }
3343
3344 /* See target.h. */
3345
3346 void
3347 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3348 {
3349 current_target.to_insn_history_range (&current_target, begin, end, flags);
3350 }
3351
3352 /* See target.h. */
3353
3354 void
3355 target_call_history (int size, int flags)
3356 {
3357 current_target.to_call_history (&current_target, size, flags);
3358 }
3359
3360 /* See target.h. */
3361
3362 void
3363 target_call_history_from (ULONGEST begin, int size, int flags)
3364 {
3365 current_target.to_call_history_from (&current_target, begin, size, flags);
3366 }
3367
3368 /* See target.h. */
3369
3370 void
3371 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3372 {
3373 current_target.to_call_history_range (&current_target, begin, end, flags);
3374 }
3375
3376 /* See target.h. */
3377
3378 const struct frame_unwind *
3379 target_get_unwinder (void)
3380 {
3381 return current_target.to_get_unwinder (&current_target);
3382 }
3383
3384 /* See target.h. */
3385
3386 const struct frame_unwind *
3387 target_get_tailcall_unwinder (void)
3388 {
3389 return current_target.to_get_tailcall_unwinder (&current_target);
3390 }
3391
3392 /* Default implementation of to_decr_pc_after_break. */
3393
3394 static CORE_ADDR
3395 default_target_decr_pc_after_break (struct target_ops *ops,
3396 struct gdbarch *gdbarch)
3397 {
3398 return gdbarch_decr_pc_after_break (gdbarch);
3399 }
3400
3401 /* See target.h. */
3402
3403 CORE_ADDR
3404 target_decr_pc_after_break (struct gdbarch *gdbarch)
3405 {
3406 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
3407 }
3408
3409 /* See target.h. */
3410
3411 void
3412 target_prepare_to_generate_core (void)
3413 {
3414 current_target.to_prepare_to_generate_core (&current_target);
3415 }
3416
3417 /* See target.h. */
3418
3419 void
3420 target_done_generating_core (void)
3421 {
3422 current_target.to_done_generating_core (&current_target);
3423 }
3424
3425 static void
3426 setup_target_debug (void)
3427 {
3428 memcpy (&debug_target, &current_target, sizeof debug_target);
3429
3430 init_debug_target (&current_target);
3431 }
3432 \f
3433
3434 static char targ_desc[] =
3435 "Names of targets and files being debugged.\nShows the entire \
3436 stack of targets currently in use (including the exec-file,\n\
3437 core-file, and process, if any), as well as the symbol file name.";
3438
3439 static void
3440 default_rcmd (struct target_ops *self, const char *command,
3441 struct ui_file *output)
3442 {
3443 error (_("\"monitor\" command not supported by this target."));
3444 }
3445
3446 static void
3447 do_monitor_command (char *cmd,
3448 int from_tty)
3449 {
3450 target_rcmd (cmd, gdb_stdtarg);
3451 }
3452
3453 /* Print the name of each layers of our target stack. */
3454
3455 static void
3456 maintenance_print_target_stack (char *cmd, int from_tty)
3457 {
3458 struct target_ops *t;
3459
3460 printf_filtered (_("The current target stack is:\n"));
3461
3462 for (t = target_stack; t != NULL; t = t->beneath)
3463 {
3464 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3465 }
3466 }
3467
3468 /* Controls if targets can report that they can/are async. This is
3469 just for maintainers to use when debugging gdb. */
3470 int target_async_permitted = 1;
3471
3472 /* The set command writes to this variable. If the inferior is
3473 executing, target_async_permitted is *not* updated. */
3474 static int target_async_permitted_1 = 1;
3475
3476 static void
3477 maint_set_target_async_command (char *args, int from_tty,
3478 struct cmd_list_element *c)
3479 {
3480 if (have_live_inferiors ())
3481 {
3482 target_async_permitted_1 = target_async_permitted;
3483 error (_("Cannot change this setting while the inferior is running."));
3484 }
3485
3486 target_async_permitted = target_async_permitted_1;
3487 }
3488
3489 static void
3490 maint_show_target_async_command (struct ui_file *file, int from_tty,
3491 struct cmd_list_element *c,
3492 const char *value)
3493 {
3494 fprintf_filtered (file,
3495 _("Controlling the inferior in "
3496 "asynchronous mode is %s.\n"), value);
3497 }
3498
3499 /* Temporary copies of permission settings. */
3500
3501 static int may_write_registers_1 = 1;
3502 static int may_write_memory_1 = 1;
3503 static int may_insert_breakpoints_1 = 1;
3504 static int may_insert_tracepoints_1 = 1;
3505 static int may_insert_fast_tracepoints_1 = 1;
3506 static int may_stop_1 = 1;
3507
3508 /* Make the user-set values match the real values again. */
3509
3510 void
3511 update_target_permissions (void)
3512 {
3513 may_write_registers_1 = may_write_registers;
3514 may_write_memory_1 = may_write_memory;
3515 may_insert_breakpoints_1 = may_insert_breakpoints;
3516 may_insert_tracepoints_1 = may_insert_tracepoints;
3517 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3518 may_stop_1 = may_stop;
3519 }
3520
3521 /* The one function handles (most of) the permission flags in the same
3522 way. */
3523
3524 static void
3525 set_target_permissions (char *args, int from_tty,
3526 struct cmd_list_element *c)
3527 {
3528 if (target_has_execution)
3529 {
3530 update_target_permissions ();
3531 error (_("Cannot change this setting while the inferior is running."));
3532 }
3533
3534 /* Make the real values match the user-changed values. */
3535 may_write_registers = may_write_registers_1;
3536 may_insert_breakpoints = may_insert_breakpoints_1;
3537 may_insert_tracepoints = may_insert_tracepoints_1;
3538 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3539 may_stop = may_stop_1;
3540 update_observer_mode ();
3541 }
3542
3543 /* Set memory write permission independently of observer mode. */
3544
3545 static void
3546 set_write_memory_permission (char *args, int from_tty,
3547 struct cmd_list_element *c)
3548 {
3549 /* Make the real values match the user-changed values. */
3550 may_write_memory = may_write_memory_1;
3551 update_observer_mode ();
3552 }
3553
3554
3555 void
3556 initialize_targets (void)
3557 {
3558 init_dummy_target ();
3559 push_target (&dummy_target);
3560
3561 add_info ("target", target_info, targ_desc);
3562 add_info ("files", target_info, targ_desc);
3563
3564 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3565 Set target debugging."), _("\
3566 Show target debugging."), _("\
3567 When non-zero, target debugging is enabled. Higher numbers are more\n\
3568 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3569 command."),
3570 NULL,
3571 show_targetdebug,
3572 &setdebuglist, &showdebuglist);
3573
3574 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3575 &trust_readonly, _("\
3576 Set mode for reading from readonly sections."), _("\
3577 Show mode for reading from readonly sections."), _("\
3578 When this mode is on, memory reads from readonly sections (such as .text)\n\
3579 will be read from the object file instead of from the target. This will\n\
3580 result in significant performance improvement for remote targets."),
3581 NULL,
3582 show_trust_readonly,
3583 &setlist, &showlist);
3584
3585 add_com ("monitor", class_obscure, do_monitor_command,
3586 _("Send a command to the remote monitor (remote targets only)."));
3587
3588 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3589 _("Print the name of each layer of the internal target stack."),
3590 &maintenanceprintlist);
3591
3592 add_setshow_boolean_cmd ("target-async", no_class,
3593 &target_async_permitted_1, _("\
3594 Set whether gdb controls the inferior in asynchronous mode."), _("\
3595 Show whether gdb controls the inferior in asynchronous mode."), _("\
3596 Tells gdb whether to control the inferior in asynchronous mode."),
3597 maint_set_target_async_command,
3598 maint_show_target_async_command,
3599 &maintenance_set_cmdlist,
3600 &maintenance_show_cmdlist);
3601
3602 add_setshow_boolean_cmd ("may-write-registers", class_support,
3603 &may_write_registers_1, _("\
3604 Set permission to write into registers."), _("\
3605 Show permission to write into registers."), _("\
3606 When this permission is on, GDB may write into the target's registers.\n\
3607 Otherwise, any sort of write attempt will result in an error."),
3608 set_target_permissions, NULL,
3609 &setlist, &showlist);
3610
3611 add_setshow_boolean_cmd ("may-write-memory", class_support,
3612 &may_write_memory_1, _("\
3613 Set permission to write into target memory."), _("\
3614 Show permission to write into target memory."), _("\
3615 When this permission is on, GDB may write into the target's memory.\n\
3616 Otherwise, any sort of write attempt will result in an error."),
3617 set_write_memory_permission, NULL,
3618 &setlist, &showlist);
3619
3620 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3621 &may_insert_breakpoints_1, _("\
3622 Set permission to insert breakpoints in the target."), _("\
3623 Show permission to insert breakpoints in the target."), _("\
3624 When this permission is on, GDB may insert breakpoints in the program.\n\
3625 Otherwise, any sort of insertion attempt will result in an error."),
3626 set_target_permissions, NULL,
3627 &setlist, &showlist);
3628
3629 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3630 &may_insert_tracepoints_1, _("\
3631 Set permission to insert tracepoints in the target."), _("\
3632 Show permission to insert tracepoints in the target."), _("\
3633 When this permission is on, GDB may insert tracepoints in the program.\n\
3634 Otherwise, any sort of insertion attempt will result in an error."),
3635 set_target_permissions, NULL,
3636 &setlist, &showlist);
3637
3638 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3639 &may_insert_fast_tracepoints_1, _("\
3640 Set permission to insert fast tracepoints in the target."), _("\
3641 Show permission to insert fast tracepoints in the target."), _("\
3642 When this permission is on, GDB may insert fast tracepoints.\n\
3643 Otherwise, any sort of insertion attempt will result in an error."),
3644 set_target_permissions, NULL,
3645 &setlist, &showlist);
3646
3647 add_setshow_boolean_cmd ("may-interrupt", class_support,
3648 &may_stop_1, _("\
3649 Set permission to interrupt or signal the target."), _("\
3650 Show permission to interrupt or signal the target."), _("\
3651 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3652 Otherwise, any attempt to interrupt or stop will be ignored."),
3653 set_target_permissions, NULL,
3654 &setlist, &showlist);
3655
3656 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3657 &auto_connect_native_target, _("\
3658 Set whether GDB may automatically connect to the native target."), _("\
3659 Show whether GDB may automatically connect to the native target."), _("\
3660 When on, and GDB is not connected to a target yet, GDB\n\
3661 attempts \"run\" and other commands with the native target."),
3662 NULL, show_auto_connect_native_target,
3663 &setlist, &showlist);
3664 }
This page took 0.135424 seconds and 5 git commands to generate.