Simple unused variable removals
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "byte-vector.h"
50 #include "terminal.h"
51 #include <algorithm>
52 #include <unordered_map>
53
54 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
55
56 static void default_terminal_info (struct target_ops *, const char *, int);
57
58 static int default_watchpoint_addr_within_range (struct target_ops *,
59 CORE_ADDR, CORE_ADDR, int);
60
61 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
62 CORE_ADDR, int);
63
64 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
65
66 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
67 long lwp, long tid);
68
69 static int default_follow_fork (struct target_ops *self, int follow_child,
70 int detach_fork);
71
72 static void default_mourn_inferior (struct target_ops *self);
73
74 static int default_search_memory (struct target_ops *ops,
75 CORE_ADDR start_addr,
76 ULONGEST search_space_len,
77 const gdb_byte *pattern,
78 ULONGEST pattern_len,
79 CORE_ADDR *found_addrp);
80
81 static int default_verify_memory (struct target_ops *self,
82 const gdb_byte *data,
83 CORE_ADDR memaddr, ULONGEST size);
84
85 static struct address_space *default_thread_address_space
86 (struct target_ops *self, ptid_t ptid);
87
88 static void tcomplain (void) ATTRIBUTE_NORETURN;
89
90 static struct target_ops *find_default_run_target (const char *);
91
92 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
93 ptid_t ptid);
94
95 static int dummy_find_memory_regions (struct target_ops *self,
96 find_memory_region_ftype ignore1,
97 void *ignore2);
98
99 static char *dummy_make_corefile_notes (struct target_ops *self,
100 bfd *ignore1, int *ignore2);
101
102 static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
103
104 static enum exec_direction_kind default_execution_direction
105 (struct target_ops *self);
106
107 /* Mapping between target_info objects (which have address identity)
108 and corresponding open/factory function/callback. Each add_target
109 call adds one entry to this map, and registers a "target
110 TARGET_NAME" command that when invoked calls the factory registered
111 here. The target_info object is associated with the command via
112 the command's context. */
113 static std::unordered_map<const target_info *, target_open_ftype *>
114 target_factories;
115
116 /* The initial current target, so that there is always a semi-valid
117 current target. */
118
119 static struct target_ops *the_dummy_target;
120 static struct target_ops *the_debug_target;
121
122 /* The target stack. */
123
124 static target_stack g_target_stack;
125
126 /* Top of target stack. */
127 /* The target structure we are currently using to talk to a process
128 or file or whatever "inferior" we have. */
129
130 target_ops *
131 current_top_target ()
132 {
133 return g_target_stack.top ();
134 }
135
136 /* Command list for target. */
137
138 static struct cmd_list_element *targetlist = NULL;
139
140 /* Nonzero if we should trust readonly sections from the
141 executable when reading memory. */
142
143 static int trust_readonly = 0;
144
145 /* Nonzero if we should show true memory content including
146 memory breakpoint inserted by gdb. */
147
148 static int show_memory_breakpoints = 0;
149
150 /* These globals control whether GDB attempts to perform these
151 operations; they are useful for targets that need to prevent
152 inadvertant disruption, such as in non-stop mode. */
153
154 int may_write_registers = 1;
155
156 int may_write_memory = 1;
157
158 int may_insert_breakpoints = 1;
159
160 int may_insert_tracepoints = 1;
161
162 int may_insert_fast_tracepoints = 1;
163
164 int may_stop = 1;
165
166 /* Non-zero if we want to see trace of target level stuff. */
167
168 static unsigned int targetdebug = 0;
169
170 static void
171 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
172 {
173 if (targetdebug)
174 push_target (the_debug_target);
175 else
176 unpush_target (the_debug_target);
177 }
178
179 static void
180 show_targetdebug (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
184 }
185
186 /* The user just typed 'target' without the name of a target. */
187
188 static void
189 target_command (const char *arg, int from_tty)
190 {
191 fputs_filtered ("Argument required (target name). Try `help target'\n",
192 gdb_stdout);
193 }
194
195 #if GDB_SELF_TEST
196 namespace selftests {
197
198 /* A mock process_stratum target_ops that doesn't read/write registers
199 anywhere. */
200
201 static const target_info test_target_info = {
202 "test",
203 N_("unit tests target"),
204 N_("You should never see this"),
205 };
206
207 const target_info &
208 test_target_ops::info () const
209 {
210 return test_target_info;
211 }
212
213 } /* namespace selftests */
214 #endif /* GDB_SELF_TEST */
215
216 /* Default target_has_* methods for process_stratum targets. */
217
218 int
219 default_child_has_all_memory ()
220 {
221 /* If no inferior selected, then we can't read memory here. */
222 if (inferior_ptid == null_ptid)
223 return 0;
224
225 return 1;
226 }
227
228 int
229 default_child_has_memory ()
230 {
231 /* If no inferior selected, then we can't read memory here. */
232 if (inferior_ptid == null_ptid)
233 return 0;
234
235 return 1;
236 }
237
238 int
239 default_child_has_stack ()
240 {
241 /* If no inferior selected, there's no stack. */
242 if (inferior_ptid == null_ptid)
243 return 0;
244
245 return 1;
246 }
247
248 int
249 default_child_has_registers ()
250 {
251 /* Can't read registers from no inferior. */
252 if (inferior_ptid == null_ptid)
253 return 0;
254
255 return 1;
256 }
257
258 int
259 default_child_has_execution (ptid_t the_ptid)
260 {
261 /* If there's no thread selected, then we can't make it run through
262 hoops. */
263 if (the_ptid == null_ptid)
264 return 0;
265
266 return 1;
267 }
268
269
270 int
271 target_has_all_memory_1 (void)
272 {
273 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
274 if (t->has_all_memory ())
275 return 1;
276
277 return 0;
278 }
279
280 int
281 target_has_memory_1 (void)
282 {
283 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
284 if (t->has_memory ())
285 return 1;
286
287 return 0;
288 }
289
290 int
291 target_has_stack_1 (void)
292 {
293 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
294 if (t->has_stack ())
295 return 1;
296
297 return 0;
298 }
299
300 int
301 target_has_registers_1 (void)
302 {
303 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
304 if (t->has_registers ())
305 return 1;
306
307 return 0;
308 }
309
310 int
311 target_has_execution_1 (ptid_t the_ptid)
312 {
313 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
314 if (t->has_execution (the_ptid))
315 return 1;
316
317 return 0;
318 }
319
320 int
321 target_has_execution_current (void)
322 {
323 return target_has_execution_1 (inferior_ptid);
324 }
325
326 /* This is used to implement the various target commands. */
327
328 static void
329 open_target (const char *args, int from_tty, struct cmd_list_element *command)
330 {
331 auto *ti = static_cast<target_info *> (get_cmd_context (command));
332 target_open_ftype *func = target_factories[ti];
333
334 if (targetdebug)
335 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
336 ti->shortname);
337
338 func (args, from_tty);
339
340 if (targetdebug)
341 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
342 ti->shortname, args, from_tty);
343 }
344
345 /* See target.h. */
346
347 void
348 add_target (const target_info &t, target_open_ftype *func,
349 completer_ftype *completer)
350 {
351 struct cmd_list_element *c;
352
353 auto &func_slot = target_factories[&t];
354 if (func_slot != nullptr)
355 internal_error (__FILE__, __LINE__,
356 _("target already added (\"%s\")."), t.shortname);
357 func_slot = func;
358
359 if (targetlist == NULL)
360 add_prefix_cmd ("target", class_run, target_command, _("\
361 Connect to a target machine or process.\n\
362 The first argument is the type or protocol of the target machine.\n\
363 Remaining arguments are interpreted by the target protocol. For more\n\
364 information on the arguments for a particular protocol, type\n\
365 `help target ' followed by the protocol name."),
366 &targetlist, "target ", 0, &cmdlist);
367 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
368 set_cmd_context (c, (void *) &t);
369 set_cmd_sfunc (c, open_target);
370 if (completer != NULL)
371 set_cmd_completer (c, completer);
372 }
373
374 /* See target.h. */
375
376 void
377 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
378 {
379 struct cmd_list_element *c;
380 char *alt;
381
382 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
383 see PR cli/15104. */
384 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
385 set_cmd_sfunc (c, open_target);
386 set_cmd_context (c, (void *) &tinfo);
387 alt = xstrprintf ("target %s", tinfo.shortname);
388 deprecate_cmd (c, alt);
389 }
390
391 /* Stub functions */
392
393 void
394 target_kill (void)
395 {
396 current_top_target ()->kill ();
397 }
398
399 void
400 target_load (const char *arg, int from_tty)
401 {
402 target_dcache_invalidate ();
403 current_top_target ()->load (arg, from_tty);
404 }
405
406 /* Define it. */
407
408 target_terminal_state target_terminal::m_terminal_state
409 = target_terminal_state::is_ours;
410
411 /* See target/target.h. */
412
413 void
414 target_terminal::init (void)
415 {
416 current_top_target ()->terminal_init ();
417
418 m_terminal_state = target_terminal_state::is_ours;
419 }
420
421 /* See target/target.h. */
422
423 void
424 target_terminal::inferior (void)
425 {
426 struct ui *ui = current_ui;
427
428 /* A background resume (``run&'') should leave GDB in control of the
429 terminal. */
430 if (ui->prompt_state != PROMPT_BLOCKED)
431 return;
432
433 /* Since we always run the inferior in the main console (unless "set
434 inferior-tty" is in effect), when some UI other than the main one
435 calls target_terminal::inferior, then we leave the main UI's
436 terminal settings as is. */
437 if (ui != main_ui)
438 return;
439
440 /* If GDB is resuming the inferior in the foreground, install
441 inferior's terminal modes. */
442
443 struct inferior *inf = current_inferior ();
444
445 if (inf->terminal_state != target_terminal_state::is_inferior)
446 {
447 current_top_target ()->terminal_inferior ();
448 inf->terminal_state = target_terminal_state::is_inferior;
449 }
450
451 m_terminal_state = target_terminal_state::is_inferior;
452
453 /* If the user hit C-c before, pretend that it was hit right
454 here. */
455 if (check_quit_flag ())
456 target_pass_ctrlc ();
457 }
458
459 /* See target/target.h. */
460
461 void
462 target_terminal::restore_inferior (void)
463 {
464 struct ui *ui = current_ui;
465
466 /* See target_terminal::inferior(). */
467 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
468 return;
469
470 /* Restore the terminal settings of inferiors that were in the
471 foreground but are now ours_for_output due to a temporary
472 target_target::ours_for_output() call. */
473
474 {
475 scoped_restore_current_inferior restore_inferior;
476 struct inferior *inf;
477
478 ALL_INFERIORS (inf)
479 {
480 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
481 {
482 set_current_inferior (inf);
483 current_top_target ()->terminal_inferior ();
484 inf->terminal_state = target_terminal_state::is_inferior;
485 }
486 }
487 }
488
489 m_terminal_state = target_terminal_state::is_inferior;
490
491 /* If the user hit C-c before, pretend that it was hit right
492 here. */
493 if (check_quit_flag ())
494 target_pass_ctrlc ();
495 }
496
497 /* Switch terminal state to DESIRED_STATE, either is_ours, or
498 is_ours_for_output. */
499
500 static void
501 target_terminal_is_ours_kind (target_terminal_state desired_state)
502 {
503 scoped_restore_current_inferior restore_inferior;
504 struct inferior *inf;
505
506 /* Must do this in two passes. First, have all inferiors save the
507 current terminal settings. Then, after all inferiors have add a
508 chance to safely save the terminal settings, restore GDB's
509 terminal settings. */
510
511 ALL_INFERIORS (inf)
512 {
513 if (inf->terminal_state == target_terminal_state::is_inferior)
514 {
515 set_current_inferior (inf);
516 current_top_target ()->terminal_save_inferior ();
517 }
518 }
519
520 ALL_INFERIORS (inf)
521 {
522 /* Note we don't check is_inferior here like above because we
523 need to handle 'is_ours_for_output -> is_ours' too. Careful
524 to never transition from 'is_ours' to 'is_ours_for_output',
525 though. */
526 if (inf->terminal_state != target_terminal_state::is_ours
527 && inf->terminal_state != desired_state)
528 {
529 set_current_inferior (inf);
530 if (desired_state == target_terminal_state::is_ours)
531 current_top_target ()->terminal_ours ();
532 else if (desired_state == target_terminal_state::is_ours_for_output)
533 current_top_target ()->terminal_ours_for_output ();
534 else
535 gdb_assert_not_reached ("unhandled desired state");
536 inf->terminal_state = desired_state;
537 }
538 }
539 }
540
541 /* See target/target.h. */
542
543 void
544 target_terminal::ours ()
545 {
546 struct ui *ui = current_ui;
547
548 /* See target_terminal::inferior. */
549 if (ui != main_ui)
550 return;
551
552 if (m_terminal_state == target_terminal_state::is_ours)
553 return;
554
555 target_terminal_is_ours_kind (target_terminal_state::is_ours);
556 m_terminal_state = target_terminal_state::is_ours;
557 }
558
559 /* See target/target.h. */
560
561 void
562 target_terminal::ours_for_output ()
563 {
564 struct ui *ui = current_ui;
565
566 /* See target_terminal::inferior. */
567 if (ui != main_ui)
568 return;
569
570 if (!target_terminal::is_inferior ())
571 return;
572
573 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
574 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
575 }
576
577 /* See target/target.h. */
578
579 void
580 target_terminal::info (const char *arg, int from_tty)
581 {
582 current_top_target ()->terminal_info (arg, from_tty);
583 }
584
585 /* See target.h. */
586
587 int
588 target_supports_terminal_ours (void)
589 {
590 return current_top_target ()->supports_terminal_ours ();
591 }
592
593 static void
594 tcomplain (void)
595 {
596 error (_("You can't do that when your target is `%s'"),
597 current_top_target ()->shortname ());
598 }
599
600 void
601 noprocess (void)
602 {
603 error (_("You can't do that without a process to debug."));
604 }
605
606 static void
607 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
608 {
609 printf_unfiltered (_("No saved terminal information.\n"));
610 }
611
612 /* A default implementation for the to_get_ada_task_ptid target method.
613
614 This function builds the PTID by using both LWP and TID as part of
615 the PTID lwp and tid elements. The pid used is the pid of the
616 inferior_ptid. */
617
618 static ptid_t
619 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
620 {
621 return ptid_t (inferior_ptid.pid (), lwp, tid);
622 }
623
624 static enum exec_direction_kind
625 default_execution_direction (struct target_ops *self)
626 {
627 if (!target_can_execute_reverse)
628 return EXEC_FORWARD;
629 else if (!target_can_async_p ())
630 return EXEC_FORWARD;
631 else
632 gdb_assert_not_reached ("\
633 to_execution_direction must be implemented for reverse async");
634 }
635
636 /* See target.h. */
637
638 void
639 target_stack::push (target_ops *t)
640 {
641 /* If there's already a target at this stratum, remove it. */
642 if (m_stack[t->to_stratum] != NULL)
643 {
644 target_ops *prev = m_stack[t->to_stratum];
645 m_stack[t->to_stratum] = NULL;
646 target_close (prev);
647 }
648
649 /* Now add the new one. */
650 m_stack[t->to_stratum] = t;
651
652 if (m_top < t->to_stratum)
653 m_top = t->to_stratum;
654 }
655
656 /* See target.h. */
657
658 void
659 push_target (struct target_ops *t)
660 {
661 g_target_stack.push (t);
662 }
663
664 /* See target.h. */
665
666 int
667 unpush_target (struct target_ops *t)
668 {
669 return g_target_stack.unpush (t);
670 }
671
672 /* See target.h. */
673
674 bool
675 target_stack::unpush (target_ops *t)
676 {
677 if (t->to_stratum == dummy_stratum)
678 internal_error (__FILE__, __LINE__,
679 _("Attempt to unpush the dummy target"));
680
681 gdb_assert (t != NULL);
682
683 /* Look for the specified target. Note that a target can only occur
684 once in the target stack. */
685
686 if (m_stack[t->to_stratum] != t)
687 {
688 /* If T wasn't pushed, quit. Only open targets should be
689 closed. */
690 return false;
691 }
692
693 /* Unchain the target. */
694 m_stack[t->to_stratum] = NULL;
695
696 if (m_top == t->to_stratum)
697 m_top = t->beneath ()->to_stratum;
698
699 /* Finally close the target. Note we do this after unchaining, so
700 any target method calls from within the target_close
701 implementation don't end up in T anymore. */
702 target_close (t);
703
704 return true;
705 }
706
707 /* Unpush TARGET and assert that it worked. */
708
709 static void
710 unpush_target_and_assert (struct target_ops *target)
711 {
712 if (!unpush_target (target))
713 {
714 fprintf_unfiltered (gdb_stderr,
715 "pop_all_targets couldn't find target %s\n",
716 target->shortname ());
717 internal_error (__FILE__, __LINE__,
718 _("failed internal consistency check"));
719 }
720 }
721
722 void
723 pop_all_targets_above (enum strata above_stratum)
724 {
725 while ((int) (current_top_target ()->to_stratum) > (int) above_stratum)
726 unpush_target_and_assert (current_top_target ());
727 }
728
729 /* See target.h. */
730
731 void
732 pop_all_targets_at_and_above (enum strata stratum)
733 {
734 while ((int) (current_top_target ()->to_stratum) >= (int) stratum)
735 unpush_target_and_assert (current_top_target ());
736 }
737
738 void
739 pop_all_targets (void)
740 {
741 pop_all_targets_above (dummy_stratum);
742 }
743
744 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
745
746 int
747 target_is_pushed (struct target_ops *t)
748 {
749 return g_target_stack.is_pushed (t);
750 }
751
752 /* Default implementation of to_get_thread_local_address. */
753
754 static void
755 generic_tls_error (void)
756 {
757 throw_error (TLS_GENERIC_ERROR,
758 _("Cannot find thread-local variables on this target"));
759 }
760
761 /* Using the objfile specified in OBJFILE, find the address for the
762 current thread's thread-local storage with offset OFFSET. */
763 CORE_ADDR
764 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
765 {
766 volatile CORE_ADDR addr = 0;
767 struct target_ops *target = current_top_target ();
768
769 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
770 {
771 ptid_t ptid = inferior_ptid;
772
773 TRY
774 {
775 CORE_ADDR lm_addr;
776
777 /* Fetch the load module address for this objfile. */
778 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
779 objfile);
780
781 addr = target->get_thread_local_address (ptid, lm_addr, offset);
782 }
783 /* If an error occurred, print TLS related messages here. Otherwise,
784 throw the error to some higher catcher. */
785 CATCH (ex, RETURN_MASK_ALL)
786 {
787 int objfile_is_library = (objfile->flags & OBJF_SHARED);
788
789 switch (ex.error)
790 {
791 case TLS_NO_LIBRARY_SUPPORT_ERROR:
792 error (_("Cannot find thread-local variables "
793 "in this thread library."));
794 break;
795 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
796 if (objfile_is_library)
797 error (_("Cannot find shared library `%s' in dynamic"
798 " linker's load module list"), objfile_name (objfile));
799 else
800 error (_("Cannot find executable file `%s' in dynamic"
801 " linker's load module list"), objfile_name (objfile));
802 break;
803 case TLS_NOT_ALLOCATED_YET_ERROR:
804 if (objfile_is_library)
805 error (_("The inferior has not yet allocated storage for"
806 " thread-local variables in\n"
807 "the shared library `%s'\n"
808 "for %s"),
809 objfile_name (objfile), target_pid_to_str (ptid));
810 else
811 error (_("The inferior has not yet allocated storage for"
812 " thread-local variables in\n"
813 "the executable `%s'\n"
814 "for %s"),
815 objfile_name (objfile), target_pid_to_str (ptid));
816 break;
817 case TLS_GENERIC_ERROR:
818 if (objfile_is_library)
819 error (_("Cannot find thread-local storage for %s, "
820 "shared library %s:\n%s"),
821 target_pid_to_str (ptid),
822 objfile_name (objfile), ex.message);
823 else
824 error (_("Cannot find thread-local storage for %s, "
825 "executable file %s:\n%s"),
826 target_pid_to_str (ptid),
827 objfile_name (objfile), ex.message);
828 break;
829 default:
830 throw_exception (ex);
831 break;
832 }
833 }
834 END_CATCH
835 }
836 /* It wouldn't be wrong here to try a gdbarch method, too; finding
837 TLS is an ABI-specific thing. But we don't do that yet. */
838 else
839 error (_("Cannot find thread-local variables on this target"));
840
841 return addr;
842 }
843
844 const char *
845 target_xfer_status_to_string (enum target_xfer_status status)
846 {
847 #define CASE(X) case X: return #X
848 switch (status)
849 {
850 CASE(TARGET_XFER_E_IO);
851 CASE(TARGET_XFER_UNAVAILABLE);
852 default:
853 return "<unknown>";
854 }
855 #undef CASE
856 };
857
858
859 #undef MIN
860 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
861
862 /* target_read_string -- read a null terminated string, up to LEN bytes,
863 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
864 Set *STRING to a pointer to malloc'd memory containing the data; the caller
865 is responsible for freeing it. Return the number of bytes successfully
866 read. */
867
868 int
869 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
870 int len, int *errnop)
871 {
872 int tlen, offset, i;
873 gdb_byte buf[4];
874 int errcode = 0;
875 char *buffer;
876 int buffer_allocated;
877 char *bufptr;
878 unsigned int nbytes_read = 0;
879
880 gdb_assert (string);
881
882 /* Small for testing. */
883 buffer_allocated = 4;
884 buffer = (char *) xmalloc (buffer_allocated);
885 bufptr = buffer;
886
887 while (len > 0)
888 {
889 tlen = MIN (len, 4 - (memaddr & 3));
890 offset = memaddr & 3;
891
892 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
893 if (errcode != 0)
894 {
895 /* The transfer request might have crossed the boundary to an
896 unallocated region of memory. Retry the transfer, requesting
897 a single byte. */
898 tlen = 1;
899 offset = 0;
900 errcode = target_read_memory (memaddr, buf, 1);
901 if (errcode != 0)
902 goto done;
903 }
904
905 if (bufptr - buffer + tlen > buffer_allocated)
906 {
907 unsigned int bytes;
908
909 bytes = bufptr - buffer;
910 buffer_allocated *= 2;
911 buffer = (char *) xrealloc (buffer, buffer_allocated);
912 bufptr = buffer + bytes;
913 }
914
915 for (i = 0; i < tlen; i++)
916 {
917 *bufptr++ = buf[i + offset];
918 if (buf[i + offset] == '\000')
919 {
920 nbytes_read += i + 1;
921 goto done;
922 }
923 }
924
925 memaddr += tlen;
926 len -= tlen;
927 nbytes_read += tlen;
928 }
929 done:
930 string->reset (buffer);
931 if (errnop != NULL)
932 *errnop = errcode;
933 return nbytes_read;
934 }
935
936 struct target_section_table *
937 target_get_section_table (struct target_ops *target)
938 {
939 return target->get_section_table ();
940 }
941
942 /* Find a section containing ADDR. */
943
944 struct target_section *
945 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
946 {
947 struct target_section_table *table = target_get_section_table (target);
948 struct target_section *secp;
949
950 if (table == NULL)
951 return NULL;
952
953 for (secp = table->sections; secp < table->sections_end; secp++)
954 {
955 if (addr >= secp->addr && addr < secp->endaddr)
956 return secp;
957 }
958 return NULL;
959 }
960
961
962 /* Helper for the memory xfer routines. Checks the attributes of the
963 memory region of MEMADDR against the read or write being attempted.
964 If the access is permitted returns true, otherwise returns false.
965 REGION_P is an optional output parameter. If not-NULL, it is
966 filled with a pointer to the memory region of MEMADDR. REG_LEN
967 returns LEN trimmed to the end of the region. This is how much the
968 caller can continue requesting, if the access is permitted. A
969 single xfer request must not straddle memory region boundaries. */
970
971 static int
972 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
973 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
974 struct mem_region **region_p)
975 {
976 struct mem_region *region;
977
978 region = lookup_mem_region (memaddr);
979
980 if (region_p != NULL)
981 *region_p = region;
982
983 switch (region->attrib.mode)
984 {
985 case MEM_RO:
986 if (writebuf != NULL)
987 return 0;
988 break;
989
990 case MEM_WO:
991 if (readbuf != NULL)
992 return 0;
993 break;
994
995 case MEM_FLASH:
996 /* We only support writing to flash during "load" for now. */
997 if (writebuf != NULL)
998 error (_("Writing to flash memory forbidden in this context"));
999 break;
1000
1001 case MEM_NONE:
1002 return 0;
1003 }
1004
1005 /* region->hi == 0 means there's no upper bound. */
1006 if (memaddr + len < region->hi || region->hi == 0)
1007 *reg_len = len;
1008 else
1009 *reg_len = region->hi - memaddr;
1010
1011 return 1;
1012 }
1013
1014 /* Read memory from more than one valid target. A core file, for
1015 instance, could have some of memory but delegate other bits to
1016 the target below it. So, we must manually try all targets. */
1017
1018 enum target_xfer_status
1019 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1020 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1021 ULONGEST *xfered_len)
1022 {
1023 enum target_xfer_status res;
1024
1025 do
1026 {
1027 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1028 readbuf, writebuf, memaddr, len,
1029 xfered_len);
1030 if (res == TARGET_XFER_OK)
1031 break;
1032
1033 /* Stop if the target reports that the memory is not available. */
1034 if (res == TARGET_XFER_UNAVAILABLE)
1035 break;
1036
1037 /* We want to continue past core files to executables, but not
1038 past a running target's memory. */
1039 if (ops->has_all_memory ())
1040 break;
1041
1042 ops = ops->beneath ();
1043 }
1044 while (ops != NULL);
1045
1046 /* The cache works at the raw memory level. Make sure the cache
1047 gets updated with raw contents no matter what kind of memory
1048 object was originally being written. Note we do write-through
1049 first, so that if it fails, we don't write to the cache contents
1050 that never made it to the target. */
1051 if (writebuf != NULL
1052 && inferior_ptid != null_ptid
1053 && target_dcache_init_p ()
1054 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1055 {
1056 DCACHE *dcache = target_dcache_get ();
1057
1058 /* Note that writing to an area of memory which wasn't present
1059 in the cache doesn't cause it to be loaded in. */
1060 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1061 }
1062
1063 return res;
1064 }
1065
1066 /* Perform a partial memory transfer.
1067 For docs see target.h, to_xfer_partial. */
1068
1069 static enum target_xfer_status
1070 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1071 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1072 ULONGEST len, ULONGEST *xfered_len)
1073 {
1074 enum target_xfer_status res;
1075 ULONGEST reg_len;
1076 struct mem_region *region;
1077 struct inferior *inf;
1078
1079 /* For accesses to unmapped overlay sections, read directly from
1080 files. Must do this first, as MEMADDR may need adjustment. */
1081 if (readbuf != NULL && overlay_debugging)
1082 {
1083 struct obj_section *section = find_pc_overlay (memaddr);
1084
1085 if (pc_in_unmapped_range (memaddr, section))
1086 {
1087 struct target_section_table *table
1088 = target_get_section_table (ops);
1089 const char *section_name = section->the_bfd_section->name;
1090
1091 memaddr = overlay_mapped_address (memaddr, section);
1092 return section_table_xfer_memory_partial (readbuf, writebuf,
1093 memaddr, len, xfered_len,
1094 table->sections,
1095 table->sections_end,
1096 section_name);
1097 }
1098 }
1099
1100 /* Try the executable files, if "trust-readonly-sections" is set. */
1101 if (readbuf != NULL && trust_readonly)
1102 {
1103 struct target_section *secp;
1104 struct target_section_table *table;
1105
1106 secp = target_section_by_addr (ops, memaddr);
1107 if (secp != NULL
1108 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1109 secp->the_bfd_section)
1110 & SEC_READONLY))
1111 {
1112 table = target_get_section_table (ops);
1113 return section_table_xfer_memory_partial (readbuf, writebuf,
1114 memaddr, len, xfered_len,
1115 table->sections,
1116 table->sections_end,
1117 NULL);
1118 }
1119 }
1120
1121 /* Try GDB's internal data cache. */
1122
1123 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1124 &region))
1125 return TARGET_XFER_E_IO;
1126
1127 if (inferior_ptid != null_ptid)
1128 inf = current_inferior ();
1129 else
1130 inf = NULL;
1131
1132 if (inf != NULL
1133 && readbuf != NULL
1134 /* The dcache reads whole cache lines; that doesn't play well
1135 with reading from a trace buffer, because reading outside of
1136 the collected memory range fails. */
1137 && get_traceframe_number () == -1
1138 && (region->attrib.cache
1139 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1140 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1141 {
1142 DCACHE *dcache = target_dcache_get_or_init ();
1143
1144 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1145 reg_len, xfered_len);
1146 }
1147
1148 /* If none of those methods found the memory we wanted, fall back
1149 to a target partial transfer. Normally a single call to
1150 to_xfer_partial is enough; if it doesn't recognize an object
1151 it will call the to_xfer_partial of the next target down.
1152 But for memory this won't do. Memory is the only target
1153 object which can be read from more than one valid target.
1154 A core file, for instance, could have some of memory but
1155 delegate other bits to the target below it. So, we must
1156 manually try all targets. */
1157
1158 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1159 xfered_len);
1160
1161 /* If we still haven't got anything, return the last error. We
1162 give up. */
1163 return res;
1164 }
1165
1166 /* Perform a partial memory transfer. For docs see target.h,
1167 to_xfer_partial. */
1168
1169 static enum target_xfer_status
1170 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1171 gdb_byte *readbuf, const gdb_byte *writebuf,
1172 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1173 {
1174 enum target_xfer_status res;
1175
1176 /* Zero length requests are ok and require no work. */
1177 if (len == 0)
1178 return TARGET_XFER_EOF;
1179
1180 memaddr = address_significant (target_gdbarch (), memaddr);
1181
1182 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1183 breakpoint insns, thus hiding out from higher layers whether
1184 there are software breakpoints inserted in the code stream. */
1185 if (readbuf != NULL)
1186 {
1187 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1188 xfered_len);
1189
1190 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1191 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1192 }
1193 else
1194 {
1195 /* A large write request is likely to be partially satisfied
1196 by memory_xfer_partial_1. We will continually malloc
1197 and free a copy of the entire write request for breakpoint
1198 shadow handling even though we only end up writing a small
1199 subset of it. Cap writes to a limit specified by the target
1200 to mitigate this. */
1201 len = std::min (ops->get_memory_xfer_limit (), len);
1202
1203 gdb::byte_vector buf (writebuf, writebuf + len);
1204 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1205 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1206 xfered_len);
1207 }
1208
1209 return res;
1210 }
1211
1212 scoped_restore_tmpl<int>
1213 make_scoped_restore_show_memory_breakpoints (int show)
1214 {
1215 return make_scoped_restore (&show_memory_breakpoints, show);
1216 }
1217
1218 /* For docs see target.h, to_xfer_partial. */
1219
1220 enum target_xfer_status
1221 target_xfer_partial (struct target_ops *ops,
1222 enum target_object object, const char *annex,
1223 gdb_byte *readbuf, const gdb_byte *writebuf,
1224 ULONGEST offset, ULONGEST len,
1225 ULONGEST *xfered_len)
1226 {
1227 enum target_xfer_status retval;
1228
1229 /* Transfer is done when LEN is zero. */
1230 if (len == 0)
1231 return TARGET_XFER_EOF;
1232
1233 if (writebuf && !may_write_memory)
1234 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1235 core_addr_to_string_nz (offset), plongest (len));
1236
1237 *xfered_len = 0;
1238
1239 /* If this is a memory transfer, let the memory-specific code
1240 have a look at it instead. Memory transfers are more
1241 complicated. */
1242 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1243 || object == TARGET_OBJECT_CODE_MEMORY)
1244 retval = memory_xfer_partial (ops, object, readbuf,
1245 writebuf, offset, len, xfered_len);
1246 else if (object == TARGET_OBJECT_RAW_MEMORY)
1247 {
1248 /* Skip/avoid accessing the target if the memory region
1249 attributes block the access. Check this here instead of in
1250 raw_memory_xfer_partial as otherwise we'd end up checking
1251 this twice in the case of the memory_xfer_partial path is
1252 taken; once before checking the dcache, and another in the
1253 tail call to raw_memory_xfer_partial. */
1254 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1255 NULL))
1256 return TARGET_XFER_E_IO;
1257
1258 /* Request the normal memory object from other layers. */
1259 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1260 xfered_len);
1261 }
1262 else
1263 retval = ops->xfer_partial (object, annex, readbuf,
1264 writebuf, offset, len, xfered_len);
1265
1266 if (targetdebug)
1267 {
1268 const unsigned char *myaddr = NULL;
1269
1270 fprintf_unfiltered (gdb_stdlog,
1271 "%s:target_xfer_partial "
1272 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1273 ops->shortname (),
1274 (int) object,
1275 (annex ? annex : "(null)"),
1276 host_address_to_string (readbuf),
1277 host_address_to_string (writebuf),
1278 core_addr_to_string_nz (offset),
1279 pulongest (len), retval,
1280 pulongest (*xfered_len));
1281
1282 if (readbuf)
1283 myaddr = readbuf;
1284 if (writebuf)
1285 myaddr = writebuf;
1286 if (retval == TARGET_XFER_OK && myaddr != NULL)
1287 {
1288 int i;
1289
1290 fputs_unfiltered (", bytes =", gdb_stdlog);
1291 for (i = 0; i < *xfered_len; i++)
1292 {
1293 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1294 {
1295 if (targetdebug < 2 && i > 0)
1296 {
1297 fprintf_unfiltered (gdb_stdlog, " ...");
1298 break;
1299 }
1300 fprintf_unfiltered (gdb_stdlog, "\n");
1301 }
1302
1303 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1304 }
1305 }
1306
1307 fputc_unfiltered ('\n', gdb_stdlog);
1308 }
1309
1310 /* Check implementations of to_xfer_partial update *XFERED_LEN
1311 properly. Do assertion after printing debug messages, so that we
1312 can find more clues on assertion failure from debugging messages. */
1313 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1314 gdb_assert (*xfered_len > 0);
1315
1316 return retval;
1317 }
1318
1319 /* Read LEN bytes of target memory at address MEMADDR, placing the
1320 results in GDB's memory at MYADDR. Returns either 0 for success or
1321 -1 if any error occurs.
1322
1323 If an error occurs, no guarantee is made about the contents of the data at
1324 MYADDR. In particular, the caller should not depend upon partial reads
1325 filling the buffer with good data. There is no way for the caller to know
1326 how much good data might have been transfered anyway. Callers that can
1327 deal with partial reads should call target_read (which will retry until
1328 it makes no progress, and then return how much was transferred). */
1329
1330 int
1331 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1332 {
1333 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1334 myaddr, memaddr, len) == len)
1335 return 0;
1336 else
1337 return -1;
1338 }
1339
1340 /* See target/target.h. */
1341
1342 int
1343 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1344 {
1345 gdb_byte buf[4];
1346 int r;
1347
1348 r = target_read_memory (memaddr, buf, sizeof buf);
1349 if (r != 0)
1350 return r;
1351 *result = extract_unsigned_integer (buf, sizeof buf,
1352 gdbarch_byte_order (target_gdbarch ()));
1353 return 0;
1354 }
1355
1356 /* Like target_read_memory, but specify explicitly that this is a read
1357 from the target's raw memory. That is, this read bypasses the
1358 dcache, breakpoint shadowing, etc. */
1359
1360 int
1361 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1362 {
1363 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1364 myaddr, memaddr, len) == len)
1365 return 0;
1366 else
1367 return -1;
1368 }
1369
1370 /* Like target_read_memory, but specify explicitly that this is a read from
1371 the target's stack. This may trigger different cache behavior. */
1372
1373 int
1374 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1375 {
1376 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1377 myaddr, memaddr, len) == len)
1378 return 0;
1379 else
1380 return -1;
1381 }
1382
1383 /* Like target_read_memory, but specify explicitly that this is a read from
1384 the target's code. This may trigger different cache behavior. */
1385
1386 int
1387 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1388 {
1389 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1390 myaddr, memaddr, len) == len)
1391 return 0;
1392 else
1393 return -1;
1394 }
1395
1396 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1397 Returns either 0 for success or -1 if any error occurs. If an
1398 error occurs, no guarantee is made about how much data got written.
1399 Callers that can deal with partial writes should call
1400 target_write. */
1401
1402 int
1403 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1404 {
1405 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1406 myaddr, memaddr, len) == len)
1407 return 0;
1408 else
1409 return -1;
1410 }
1411
1412 /* Write LEN bytes from MYADDR to target raw memory at address
1413 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1414 If an error occurs, no guarantee is made about how much data got
1415 written. Callers that can deal with partial writes should call
1416 target_write. */
1417
1418 int
1419 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1420 {
1421 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1422 myaddr, memaddr, len) == len)
1423 return 0;
1424 else
1425 return -1;
1426 }
1427
1428 /* Fetch the target's memory map. */
1429
1430 std::vector<mem_region>
1431 target_memory_map (void)
1432 {
1433 std::vector<mem_region> result = current_top_target ()->memory_map ();
1434 if (result.empty ())
1435 return result;
1436
1437 std::sort (result.begin (), result.end ());
1438
1439 /* Check that regions do not overlap. Simultaneously assign
1440 a numbering for the "mem" commands to use to refer to
1441 each region. */
1442 mem_region *last_one = NULL;
1443 for (size_t ix = 0; ix < result.size (); ix++)
1444 {
1445 mem_region *this_one = &result[ix];
1446 this_one->number = ix;
1447
1448 if (last_one != NULL && last_one->hi > this_one->lo)
1449 {
1450 warning (_("Overlapping regions in memory map: ignoring"));
1451 return std::vector<mem_region> ();
1452 }
1453
1454 last_one = this_one;
1455 }
1456
1457 return result;
1458 }
1459
1460 void
1461 target_flash_erase (ULONGEST address, LONGEST length)
1462 {
1463 current_top_target ()->flash_erase (address, length);
1464 }
1465
1466 void
1467 target_flash_done (void)
1468 {
1469 current_top_target ()->flash_done ();
1470 }
1471
1472 static void
1473 show_trust_readonly (struct ui_file *file, int from_tty,
1474 struct cmd_list_element *c, const char *value)
1475 {
1476 fprintf_filtered (file,
1477 _("Mode for reading from readonly sections is %s.\n"),
1478 value);
1479 }
1480
1481 /* Target vector read/write partial wrapper functions. */
1482
1483 static enum target_xfer_status
1484 target_read_partial (struct target_ops *ops,
1485 enum target_object object,
1486 const char *annex, gdb_byte *buf,
1487 ULONGEST offset, ULONGEST len,
1488 ULONGEST *xfered_len)
1489 {
1490 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1491 xfered_len);
1492 }
1493
1494 static enum target_xfer_status
1495 target_write_partial (struct target_ops *ops,
1496 enum target_object object,
1497 const char *annex, const gdb_byte *buf,
1498 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1499 {
1500 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1501 xfered_len);
1502 }
1503
1504 /* Wrappers to perform the full transfer. */
1505
1506 /* For docs on target_read see target.h. */
1507
1508 LONGEST
1509 target_read (struct target_ops *ops,
1510 enum target_object object,
1511 const char *annex, gdb_byte *buf,
1512 ULONGEST offset, LONGEST len)
1513 {
1514 LONGEST xfered_total = 0;
1515 int unit_size = 1;
1516
1517 /* If we are reading from a memory object, find the length of an addressable
1518 unit for that architecture. */
1519 if (object == TARGET_OBJECT_MEMORY
1520 || object == TARGET_OBJECT_STACK_MEMORY
1521 || object == TARGET_OBJECT_CODE_MEMORY
1522 || object == TARGET_OBJECT_RAW_MEMORY)
1523 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1524
1525 while (xfered_total < len)
1526 {
1527 ULONGEST xfered_partial;
1528 enum target_xfer_status status;
1529
1530 status = target_read_partial (ops, object, annex,
1531 buf + xfered_total * unit_size,
1532 offset + xfered_total, len - xfered_total,
1533 &xfered_partial);
1534
1535 /* Call an observer, notifying them of the xfer progress? */
1536 if (status == TARGET_XFER_EOF)
1537 return xfered_total;
1538 else if (status == TARGET_XFER_OK)
1539 {
1540 xfered_total += xfered_partial;
1541 QUIT;
1542 }
1543 else
1544 return TARGET_XFER_E_IO;
1545
1546 }
1547 return len;
1548 }
1549
1550 /* Assuming that the entire [begin, end) range of memory cannot be
1551 read, try to read whatever subrange is possible to read.
1552
1553 The function returns, in RESULT, either zero or one memory block.
1554 If there's a readable subrange at the beginning, it is completely
1555 read and returned. Any further readable subrange will not be read.
1556 Otherwise, if there's a readable subrange at the end, it will be
1557 completely read and returned. Any readable subranges before it
1558 (obviously, not starting at the beginning), will be ignored. In
1559 other cases -- either no readable subrange, or readable subrange(s)
1560 that is neither at the beginning, or end, nothing is returned.
1561
1562 The purpose of this function is to handle a read across a boundary
1563 of accessible memory in a case when memory map is not available.
1564 The above restrictions are fine for this case, but will give
1565 incorrect results if the memory is 'patchy'. However, supporting
1566 'patchy' memory would require trying to read every single byte,
1567 and it seems unacceptable solution. Explicit memory map is
1568 recommended for this case -- and target_read_memory_robust will
1569 take care of reading multiple ranges then. */
1570
1571 static void
1572 read_whatever_is_readable (struct target_ops *ops,
1573 const ULONGEST begin, const ULONGEST end,
1574 int unit_size,
1575 std::vector<memory_read_result> *result)
1576 {
1577 ULONGEST current_begin = begin;
1578 ULONGEST current_end = end;
1579 int forward;
1580 ULONGEST xfered_len;
1581
1582 /* If we previously failed to read 1 byte, nothing can be done here. */
1583 if (end - begin <= 1)
1584 return;
1585
1586 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1587
1588 /* Check that either first or the last byte is readable, and give up
1589 if not. This heuristic is meant to permit reading accessible memory
1590 at the boundary of accessible region. */
1591 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1592 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1593 {
1594 forward = 1;
1595 ++current_begin;
1596 }
1597 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1598 buf.get () + (end - begin) - 1, end - 1, 1,
1599 &xfered_len) == TARGET_XFER_OK)
1600 {
1601 forward = 0;
1602 --current_end;
1603 }
1604 else
1605 return;
1606
1607 /* Loop invariant is that the [current_begin, current_end) was previously
1608 found to be not readable as a whole.
1609
1610 Note loop condition -- if the range has 1 byte, we can't divide the range
1611 so there's no point trying further. */
1612 while (current_end - current_begin > 1)
1613 {
1614 ULONGEST first_half_begin, first_half_end;
1615 ULONGEST second_half_begin, second_half_end;
1616 LONGEST xfer;
1617 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1618
1619 if (forward)
1620 {
1621 first_half_begin = current_begin;
1622 first_half_end = middle;
1623 second_half_begin = middle;
1624 second_half_end = current_end;
1625 }
1626 else
1627 {
1628 first_half_begin = middle;
1629 first_half_end = current_end;
1630 second_half_begin = current_begin;
1631 second_half_end = middle;
1632 }
1633
1634 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1635 buf.get () + (first_half_begin - begin) * unit_size,
1636 first_half_begin,
1637 first_half_end - first_half_begin);
1638
1639 if (xfer == first_half_end - first_half_begin)
1640 {
1641 /* This half reads up fine. So, the error must be in the
1642 other half. */
1643 current_begin = second_half_begin;
1644 current_end = second_half_end;
1645 }
1646 else
1647 {
1648 /* This half is not readable. Because we've tried one byte, we
1649 know some part of this half if actually readable. Go to the next
1650 iteration to divide again and try to read.
1651
1652 We don't handle the other half, because this function only tries
1653 to read a single readable subrange. */
1654 current_begin = first_half_begin;
1655 current_end = first_half_end;
1656 }
1657 }
1658
1659 if (forward)
1660 {
1661 /* The [begin, current_begin) range has been read. */
1662 result->emplace_back (begin, current_end, std::move (buf));
1663 }
1664 else
1665 {
1666 /* The [current_end, end) range has been read. */
1667 LONGEST region_len = end - current_end;
1668
1669 gdb::unique_xmalloc_ptr<gdb_byte> data
1670 ((gdb_byte *) xmalloc (region_len * unit_size));
1671 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1672 region_len * unit_size);
1673 result->emplace_back (current_end, end, std::move (data));
1674 }
1675 }
1676
1677 std::vector<memory_read_result>
1678 read_memory_robust (struct target_ops *ops,
1679 const ULONGEST offset, const LONGEST len)
1680 {
1681 std::vector<memory_read_result> result;
1682 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1683
1684 LONGEST xfered_total = 0;
1685 while (xfered_total < len)
1686 {
1687 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1688 LONGEST region_len;
1689
1690 /* If there is no explicit region, a fake one should be created. */
1691 gdb_assert (region);
1692
1693 if (region->hi == 0)
1694 region_len = len - xfered_total;
1695 else
1696 region_len = region->hi - offset;
1697
1698 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1699 {
1700 /* Cannot read this region. Note that we can end up here only
1701 if the region is explicitly marked inaccessible, or
1702 'inaccessible-by-default' is in effect. */
1703 xfered_total += region_len;
1704 }
1705 else
1706 {
1707 LONGEST to_read = std::min (len - xfered_total, region_len);
1708 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1709 ((gdb_byte *) xmalloc (to_read * unit_size));
1710
1711 LONGEST xfered_partial =
1712 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1713 offset + xfered_total, to_read);
1714 /* Call an observer, notifying them of the xfer progress? */
1715 if (xfered_partial <= 0)
1716 {
1717 /* Got an error reading full chunk. See if maybe we can read
1718 some subrange. */
1719 read_whatever_is_readable (ops, offset + xfered_total,
1720 offset + xfered_total + to_read,
1721 unit_size, &result);
1722 xfered_total += to_read;
1723 }
1724 else
1725 {
1726 result.emplace_back (offset + xfered_total,
1727 offset + xfered_total + xfered_partial,
1728 std::move (buffer));
1729 xfered_total += xfered_partial;
1730 }
1731 QUIT;
1732 }
1733 }
1734
1735 return result;
1736 }
1737
1738
1739 /* An alternative to target_write with progress callbacks. */
1740
1741 LONGEST
1742 target_write_with_progress (struct target_ops *ops,
1743 enum target_object object,
1744 const char *annex, const gdb_byte *buf,
1745 ULONGEST offset, LONGEST len,
1746 void (*progress) (ULONGEST, void *), void *baton)
1747 {
1748 LONGEST xfered_total = 0;
1749 int unit_size = 1;
1750
1751 /* If we are writing to a memory object, find the length of an addressable
1752 unit for that architecture. */
1753 if (object == TARGET_OBJECT_MEMORY
1754 || object == TARGET_OBJECT_STACK_MEMORY
1755 || object == TARGET_OBJECT_CODE_MEMORY
1756 || object == TARGET_OBJECT_RAW_MEMORY)
1757 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1758
1759 /* Give the progress callback a chance to set up. */
1760 if (progress)
1761 (*progress) (0, baton);
1762
1763 while (xfered_total < len)
1764 {
1765 ULONGEST xfered_partial;
1766 enum target_xfer_status status;
1767
1768 status = target_write_partial (ops, object, annex,
1769 buf + xfered_total * unit_size,
1770 offset + xfered_total, len - xfered_total,
1771 &xfered_partial);
1772
1773 if (status != TARGET_XFER_OK)
1774 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1775
1776 if (progress)
1777 (*progress) (xfered_partial, baton);
1778
1779 xfered_total += xfered_partial;
1780 QUIT;
1781 }
1782 return len;
1783 }
1784
1785 /* For docs on target_write see target.h. */
1786
1787 LONGEST
1788 target_write (struct target_ops *ops,
1789 enum target_object object,
1790 const char *annex, const gdb_byte *buf,
1791 ULONGEST offset, LONGEST len)
1792 {
1793 return target_write_with_progress (ops, object, annex, buf, offset, len,
1794 NULL, NULL);
1795 }
1796
1797 /* Help for target_read_alloc and target_read_stralloc. See their comments
1798 for details. */
1799
1800 template <typename T>
1801 gdb::optional<gdb::def_vector<T>>
1802 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1803 const char *annex)
1804 {
1805 gdb::def_vector<T> buf;
1806 size_t buf_pos = 0;
1807 const int chunk = 4096;
1808
1809 /* This function does not have a length parameter; it reads the
1810 entire OBJECT). Also, it doesn't support objects fetched partly
1811 from one target and partly from another (in a different stratum,
1812 e.g. a core file and an executable). Both reasons make it
1813 unsuitable for reading memory. */
1814 gdb_assert (object != TARGET_OBJECT_MEMORY);
1815
1816 /* Start by reading up to 4K at a time. The target will throttle
1817 this number down if necessary. */
1818 while (1)
1819 {
1820 ULONGEST xfered_len;
1821 enum target_xfer_status status;
1822
1823 buf.resize (buf_pos + chunk);
1824
1825 status = target_read_partial (ops, object, annex,
1826 (gdb_byte *) &buf[buf_pos],
1827 buf_pos, chunk,
1828 &xfered_len);
1829
1830 if (status == TARGET_XFER_EOF)
1831 {
1832 /* Read all there was. */
1833 buf.resize (buf_pos);
1834 return buf;
1835 }
1836 else if (status != TARGET_XFER_OK)
1837 {
1838 /* An error occurred. */
1839 return {};
1840 }
1841
1842 buf_pos += xfered_len;
1843
1844 QUIT;
1845 }
1846 }
1847
1848 /* See target.h */
1849
1850 gdb::optional<gdb::byte_vector>
1851 target_read_alloc (struct target_ops *ops, enum target_object object,
1852 const char *annex)
1853 {
1854 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1855 }
1856
1857 /* See target.h. */
1858
1859 gdb::optional<gdb::char_vector>
1860 target_read_stralloc (struct target_ops *ops, enum target_object object,
1861 const char *annex)
1862 {
1863 gdb::optional<gdb::char_vector> buf
1864 = target_read_alloc_1<char> (ops, object, annex);
1865
1866 if (!buf)
1867 return {};
1868
1869 if (buf->back () != '\0')
1870 buf->push_back ('\0');
1871
1872 /* Check for embedded NUL bytes; but allow trailing NULs. */
1873 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1874 it != buf->end (); it++)
1875 if (*it != '\0')
1876 {
1877 warning (_("target object %d, annex %s, "
1878 "contained unexpected null characters"),
1879 (int) object, annex ? annex : "(none)");
1880 break;
1881 }
1882
1883 return buf;
1884 }
1885
1886 /* Memory transfer methods. */
1887
1888 void
1889 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1890 LONGEST len)
1891 {
1892 /* This method is used to read from an alternate, non-current
1893 target. This read must bypass the overlay support (as symbols
1894 don't match this target), and GDB's internal cache (wrong cache
1895 for this target). */
1896 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1897 != len)
1898 memory_error (TARGET_XFER_E_IO, addr);
1899 }
1900
1901 ULONGEST
1902 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1903 int len, enum bfd_endian byte_order)
1904 {
1905 gdb_byte buf[sizeof (ULONGEST)];
1906
1907 gdb_assert (len <= sizeof (buf));
1908 get_target_memory (ops, addr, buf, len);
1909 return extract_unsigned_integer (buf, len, byte_order);
1910 }
1911
1912 /* See target.h. */
1913
1914 int
1915 target_insert_breakpoint (struct gdbarch *gdbarch,
1916 struct bp_target_info *bp_tgt)
1917 {
1918 if (!may_insert_breakpoints)
1919 {
1920 warning (_("May not insert breakpoints"));
1921 return 1;
1922 }
1923
1924 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1925 }
1926
1927 /* See target.h. */
1928
1929 int
1930 target_remove_breakpoint (struct gdbarch *gdbarch,
1931 struct bp_target_info *bp_tgt,
1932 enum remove_bp_reason reason)
1933 {
1934 /* This is kind of a weird case to handle, but the permission might
1935 have been changed after breakpoints were inserted - in which case
1936 we should just take the user literally and assume that any
1937 breakpoints should be left in place. */
1938 if (!may_insert_breakpoints)
1939 {
1940 warning (_("May not remove breakpoints"));
1941 return 1;
1942 }
1943
1944 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1945 }
1946
1947 static void
1948 info_target_command (const char *args, int from_tty)
1949 {
1950 int has_all_mem = 0;
1951
1952 if (symfile_objfile != NULL)
1953 printf_unfiltered (_("Symbols from \"%s\".\n"),
1954 objfile_name (symfile_objfile));
1955
1956 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1957 {
1958 if (!t->has_memory ())
1959 continue;
1960
1961 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1962 continue;
1963 if (has_all_mem)
1964 printf_unfiltered (_("\tWhile running this, "
1965 "GDB does not access memory from...\n"));
1966 printf_unfiltered ("%s:\n", t->longname ());
1967 t->files_info ();
1968 has_all_mem = t->has_all_memory ();
1969 }
1970 }
1971
1972 /* This function is called before any new inferior is created, e.g.
1973 by running a program, attaching, or connecting to a target.
1974 It cleans up any state from previous invocations which might
1975 change between runs. This is a subset of what target_preopen
1976 resets (things which might change between targets). */
1977
1978 void
1979 target_pre_inferior (int from_tty)
1980 {
1981 /* Clear out solib state. Otherwise the solib state of the previous
1982 inferior might have survived and is entirely wrong for the new
1983 target. This has been observed on GNU/Linux using glibc 2.3. How
1984 to reproduce:
1985
1986 bash$ ./foo&
1987 [1] 4711
1988 bash$ ./foo&
1989 [1] 4712
1990 bash$ gdb ./foo
1991 [...]
1992 (gdb) attach 4711
1993 (gdb) detach
1994 (gdb) attach 4712
1995 Cannot access memory at address 0xdeadbeef
1996 */
1997
1998 /* In some OSs, the shared library list is the same/global/shared
1999 across inferiors. If code is shared between processes, so are
2000 memory regions and features. */
2001 if (!gdbarch_has_global_solist (target_gdbarch ()))
2002 {
2003 no_shared_libraries (NULL, from_tty);
2004
2005 invalidate_target_mem_regions ();
2006
2007 target_clear_description ();
2008 }
2009
2010 /* attach_flag may be set if the previous process associated with
2011 the inferior was attached to. */
2012 current_inferior ()->attach_flag = 0;
2013
2014 current_inferior ()->highest_thread_num = 0;
2015
2016 agent_capability_invalidate ();
2017 }
2018
2019 /* Callback for iterate_over_inferiors. Gets rid of the given
2020 inferior. */
2021
2022 static int
2023 dispose_inferior (struct inferior *inf, void *args)
2024 {
2025 thread_info *thread = any_thread_of_inferior (inf);
2026 if (thread != NULL)
2027 {
2028 switch_to_thread (thread);
2029
2030 /* Core inferiors actually should be detached, not killed. */
2031 if (target_has_execution)
2032 target_kill ();
2033 else
2034 target_detach (inf, 0);
2035 }
2036
2037 return 0;
2038 }
2039
2040 /* This is to be called by the open routine before it does
2041 anything. */
2042
2043 void
2044 target_preopen (int from_tty)
2045 {
2046 dont_repeat ();
2047
2048 if (have_inferiors ())
2049 {
2050 if (!from_tty
2051 || !have_live_inferiors ()
2052 || query (_("A program is being debugged already. Kill it? ")))
2053 iterate_over_inferiors (dispose_inferior, NULL);
2054 else
2055 error (_("Program not killed."));
2056 }
2057
2058 /* Calling target_kill may remove the target from the stack. But if
2059 it doesn't (which seems like a win for UDI), remove it now. */
2060 /* Leave the exec target, though. The user may be switching from a
2061 live process to a core of the same program. */
2062 pop_all_targets_above (file_stratum);
2063
2064 target_pre_inferior (from_tty);
2065 }
2066
2067 /* See target.h. */
2068
2069 void
2070 target_detach (inferior *inf, int from_tty)
2071 {
2072 /* As long as some to_detach implementations rely on the current_inferior
2073 (either directly, or indirectly, like through target_gdbarch or by
2074 reading memory), INF needs to be the current inferior. When that
2075 requirement will become no longer true, then we can remove this
2076 assertion. */
2077 gdb_assert (inf == current_inferior ());
2078
2079 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2080 /* Don't remove global breakpoints here. They're removed on
2081 disconnection from the target. */
2082 ;
2083 else
2084 /* If we're in breakpoints-always-inserted mode, have to remove
2085 breakpoints before detaching. */
2086 remove_breakpoints_inf (current_inferior ());
2087
2088 prepare_for_detach ();
2089
2090 current_top_target ()->detach (inf, from_tty);
2091 }
2092
2093 void
2094 target_disconnect (const char *args, int from_tty)
2095 {
2096 /* If we're in breakpoints-always-inserted mode or if breakpoints
2097 are global across processes, we have to remove them before
2098 disconnecting. */
2099 remove_breakpoints ();
2100
2101 current_top_target ()->disconnect (args, from_tty);
2102 }
2103
2104 /* See target/target.h. */
2105
2106 ptid_t
2107 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2108 {
2109 return current_top_target ()->wait (ptid, status, options);
2110 }
2111
2112 /* See target.h. */
2113
2114 ptid_t
2115 default_target_wait (struct target_ops *ops,
2116 ptid_t ptid, struct target_waitstatus *status,
2117 int options)
2118 {
2119 status->kind = TARGET_WAITKIND_IGNORE;
2120 return minus_one_ptid;
2121 }
2122
2123 const char *
2124 target_pid_to_str (ptid_t ptid)
2125 {
2126 return current_top_target ()->pid_to_str (ptid);
2127 }
2128
2129 const char *
2130 target_thread_name (struct thread_info *info)
2131 {
2132 return current_top_target ()->thread_name (info);
2133 }
2134
2135 struct thread_info *
2136 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2137 int handle_len,
2138 struct inferior *inf)
2139 {
2140 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2141 handle_len, inf);
2142 }
2143
2144 void
2145 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2146 {
2147 target_dcache_invalidate ();
2148
2149 current_top_target ()->resume (ptid, step, signal);
2150
2151 registers_changed_ptid (ptid);
2152 /* We only set the internal executing state here. The user/frontend
2153 running state is set at a higher level. This also clears the
2154 thread's stop_pc as side effect. */
2155 set_executing (ptid, 1);
2156 clear_inline_frame_state (ptid);
2157 }
2158
2159 /* If true, target_commit_resume is a nop. */
2160 static int defer_target_commit_resume;
2161
2162 /* See target.h. */
2163
2164 void
2165 target_commit_resume (void)
2166 {
2167 if (defer_target_commit_resume)
2168 return;
2169
2170 current_top_target ()->commit_resume ();
2171 }
2172
2173 /* See target.h. */
2174
2175 scoped_restore_tmpl<int>
2176 make_scoped_defer_target_commit_resume ()
2177 {
2178 return make_scoped_restore (&defer_target_commit_resume, 1);
2179 }
2180
2181 void
2182 target_pass_signals (int numsigs, unsigned char *pass_signals)
2183 {
2184 current_top_target ()->pass_signals (numsigs, pass_signals);
2185 }
2186
2187 void
2188 target_program_signals (int numsigs, unsigned char *program_signals)
2189 {
2190 current_top_target ()->program_signals (numsigs, program_signals);
2191 }
2192
2193 static int
2194 default_follow_fork (struct target_ops *self, int follow_child,
2195 int detach_fork)
2196 {
2197 /* Some target returned a fork event, but did not know how to follow it. */
2198 internal_error (__FILE__, __LINE__,
2199 _("could not find a target to follow fork"));
2200 }
2201
2202 /* Look through the list of possible targets for a target that can
2203 follow forks. */
2204
2205 int
2206 target_follow_fork (int follow_child, int detach_fork)
2207 {
2208 return current_top_target ()->follow_fork (follow_child, detach_fork);
2209 }
2210
2211 /* Target wrapper for follow exec hook. */
2212
2213 void
2214 target_follow_exec (struct inferior *inf, char *execd_pathname)
2215 {
2216 current_top_target ()->follow_exec (inf, execd_pathname);
2217 }
2218
2219 static void
2220 default_mourn_inferior (struct target_ops *self)
2221 {
2222 internal_error (__FILE__, __LINE__,
2223 _("could not find a target to follow mourn inferior"));
2224 }
2225
2226 void
2227 target_mourn_inferior (ptid_t ptid)
2228 {
2229 gdb_assert (ptid == inferior_ptid);
2230 current_top_target ()->mourn_inferior ();
2231
2232 /* We no longer need to keep handles on any of the object files.
2233 Make sure to release them to avoid unnecessarily locking any
2234 of them while we're not actually debugging. */
2235 bfd_cache_close_all ();
2236 }
2237
2238 /* Look for a target which can describe architectural features, starting
2239 from TARGET. If we find one, return its description. */
2240
2241 const struct target_desc *
2242 target_read_description (struct target_ops *target)
2243 {
2244 return target->read_description ();
2245 }
2246
2247 /* This implements a basic search of memory, reading target memory and
2248 performing the search here (as opposed to performing the search in on the
2249 target side with, for example, gdbserver). */
2250
2251 int
2252 simple_search_memory (struct target_ops *ops,
2253 CORE_ADDR start_addr, ULONGEST search_space_len,
2254 const gdb_byte *pattern, ULONGEST pattern_len,
2255 CORE_ADDR *found_addrp)
2256 {
2257 /* NOTE: also defined in find.c testcase. */
2258 #define SEARCH_CHUNK_SIZE 16000
2259 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2260 /* Buffer to hold memory contents for searching. */
2261 unsigned search_buf_size;
2262
2263 search_buf_size = chunk_size + pattern_len - 1;
2264
2265 /* No point in trying to allocate a buffer larger than the search space. */
2266 if (search_space_len < search_buf_size)
2267 search_buf_size = search_space_len;
2268
2269 gdb::byte_vector search_buf (search_buf_size);
2270
2271 /* Prime the search buffer. */
2272
2273 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2274 search_buf.data (), start_addr, search_buf_size)
2275 != search_buf_size)
2276 {
2277 warning (_("Unable to access %s bytes of target "
2278 "memory at %s, halting search."),
2279 pulongest (search_buf_size), hex_string (start_addr));
2280 return -1;
2281 }
2282
2283 /* Perform the search.
2284
2285 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2286 When we've scanned N bytes we copy the trailing bytes to the start and
2287 read in another N bytes. */
2288
2289 while (search_space_len >= pattern_len)
2290 {
2291 gdb_byte *found_ptr;
2292 unsigned nr_search_bytes
2293 = std::min (search_space_len, (ULONGEST) search_buf_size);
2294
2295 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2296 pattern, pattern_len);
2297
2298 if (found_ptr != NULL)
2299 {
2300 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2301
2302 *found_addrp = found_addr;
2303 return 1;
2304 }
2305
2306 /* Not found in this chunk, skip to next chunk. */
2307
2308 /* Don't let search_space_len wrap here, it's unsigned. */
2309 if (search_space_len >= chunk_size)
2310 search_space_len -= chunk_size;
2311 else
2312 search_space_len = 0;
2313
2314 if (search_space_len >= pattern_len)
2315 {
2316 unsigned keep_len = search_buf_size - chunk_size;
2317 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2318 int nr_to_read;
2319
2320 /* Copy the trailing part of the previous iteration to the front
2321 of the buffer for the next iteration. */
2322 gdb_assert (keep_len == pattern_len - 1);
2323 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2324
2325 nr_to_read = std::min (search_space_len - keep_len,
2326 (ULONGEST) chunk_size);
2327
2328 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2329 &search_buf[keep_len], read_addr,
2330 nr_to_read) != nr_to_read)
2331 {
2332 warning (_("Unable to access %s bytes of target "
2333 "memory at %s, halting search."),
2334 plongest (nr_to_read),
2335 hex_string (read_addr));
2336 return -1;
2337 }
2338
2339 start_addr += chunk_size;
2340 }
2341 }
2342
2343 /* Not found. */
2344
2345 return 0;
2346 }
2347
2348 /* Default implementation of memory-searching. */
2349
2350 static int
2351 default_search_memory (struct target_ops *self,
2352 CORE_ADDR start_addr, ULONGEST search_space_len,
2353 const gdb_byte *pattern, ULONGEST pattern_len,
2354 CORE_ADDR *found_addrp)
2355 {
2356 /* Start over from the top of the target stack. */
2357 return simple_search_memory (current_top_target (),
2358 start_addr, search_space_len,
2359 pattern, pattern_len, found_addrp);
2360 }
2361
2362 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2363 sequence of bytes in PATTERN with length PATTERN_LEN.
2364
2365 The result is 1 if found, 0 if not found, and -1 if there was an error
2366 requiring halting of the search (e.g. memory read error).
2367 If the pattern is found the address is recorded in FOUND_ADDRP. */
2368
2369 int
2370 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2371 const gdb_byte *pattern, ULONGEST pattern_len,
2372 CORE_ADDR *found_addrp)
2373 {
2374 return current_top_target ()->search_memory (start_addr, search_space_len,
2375 pattern, pattern_len, found_addrp);
2376 }
2377
2378 /* Look through the currently pushed targets. If none of them will
2379 be able to restart the currently running process, issue an error
2380 message. */
2381
2382 void
2383 target_require_runnable (void)
2384 {
2385 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2386 {
2387 /* If this target knows how to create a new program, then
2388 assume we will still be able to after killing the current
2389 one. Either killing and mourning will not pop T, or else
2390 find_default_run_target will find it again. */
2391 if (t->can_create_inferior ())
2392 return;
2393
2394 /* Do not worry about targets at certain strata that can not
2395 create inferiors. Assume they will be pushed again if
2396 necessary, and continue to the process_stratum. */
2397 if (t->to_stratum > process_stratum)
2398 continue;
2399
2400 error (_("The \"%s\" target does not support \"run\". "
2401 "Try \"help target\" or \"continue\"."),
2402 t->shortname ());
2403 }
2404
2405 /* This function is only called if the target is running. In that
2406 case there should have been a process_stratum target and it
2407 should either know how to create inferiors, or not... */
2408 internal_error (__FILE__, __LINE__, _("No targets found"));
2409 }
2410
2411 /* Whether GDB is allowed to fall back to the default run target for
2412 "run", "attach", etc. when no target is connected yet. */
2413 static int auto_connect_native_target = 1;
2414
2415 static void
2416 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2417 struct cmd_list_element *c, const char *value)
2418 {
2419 fprintf_filtered (file,
2420 _("Whether GDB may automatically connect to the "
2421 "native target is %s.\n"),
2422 value);
2423 }
2424
2425 /* A pointer to the target that can respond to "run" or "attach".
2426 Native targets are always singletons and instantiated early at GDB
2427 startup. */
2428 static target_ops *the_native_target;
2429
2430 /* See target.h. */
2431
2432 void
2433 set_native_target (target_ops *target)
2434 {
2435 if (the_native_target != NULL)
2436 internal_error (__FILE__, __LINE__,
2437 _("native target already set (\"%s\")."),
2438 the_native_target->longname ());
2439
2440 the_native_target = target;
2441 }
2442
2443 /* See target.h. */
2444
2445 target_ops *
2446 get_native_target ()
2447 {
2448 return the_native_target;
2449 }
2450
2451 /* Look through the list of possible targets for a target that can
2452 execute a run or attach command without any other data. This is
2453 used to locate the default process stratum.
2454
2455 If DO_MESG is not NULL, the result is always valid (error() is
2456 called for errors); else, return NULL on error. */
2457
2458 static struct target_ops *
2459 find_default_run_target (const char *do_mesg)
2460 {
2461 if (auto_connect_native_target && the_native_target != NULL)
2462 return the_native_target;
2463
2464 if (do_mesg != NULL)
2465 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2466 return NULL;
2467 }
2468
2469 /* See target.h. */
2470
2471 struct target_ops *
2472 find_attach_target (void)
2473 {
2474 /* If a target on the current stack can attach, use it. */
2475 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2476 {
2477 if (t->can_attach ())
2478 return t;
2479 }
2480
2481 /* Otherwise, use the default run target for attaching. */
2482 return find_default_run_target ("attach");
2483 }
2484
2485 /* See target.h. */
2486
2487 struct target_ops *
2488 find_run_target (void)
2489 {
2490 /* If a target on the current stack can run, use it. */
2491 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2492 {
2493 if (t->can_create_inferior ())
2494 return t;
2495 }
2496
2497 /* Otherwise, use the default run target. */
2498 return find_default_run_target ("run");
2499 }
2500
2501 bool
2502 target_ops::info_proc (const char *args, enum info_proc_what what)
2503 {
2504 return false;
2505 }
2506
2507 /* Implement the "info proc" command. */
2508
2509 int
2510 target_info_proc (const char *args, enum info_proc_what what)
2511 {
2512 struct target_ops *t;
2513
2514 /* If we're already connected to something that can get us OS
2515 related data, use it. Otherwise, try using the native
2516 target. */
2517 t = find_target_at (process_stratum);
2518 if (t == NULL)
2519 t = find_default_run_target (NULL);
2520
2521 for (; t != NULL; t = t->beneath ())
2522 {
2523 if (t->info_proc (args, what))
2524 {
2525 if (targetdebug)
2526 fprintf_unfiltered (gdb_stdlog,
2527 "target_info_proc (\"%s\", %d)\n", args, what);
2528
2529 return 1;
2530 }
2531 }
2532
2533 return 0;
2534 }
2535
2536 static int
2537 find_default_supports_disable_randomization (struct target_ops *self)
2538 {
2539 struct target_ops *t;
2540
2541 t = find_default_run_target (NULL);
2542 if (t != NULL)
2543 return t->supports_disable_randomization ();
2544 return 0;
2545 }
2546
2547 int
2548 target_supports_disable_randomization (void)
2549 {
2550 return current_top_target ()->supports_disable_randomization ();
2551 }
2552
2553 /* See target/target.h. */
2554
2555 int
2556 target_supports_multi_process (void)
2557 {
2558 return current_top_target ()->supports_multi_process ();
2559 }
2560
2561 /* See target.h. */
2562
2563 gdb::optional<gdb::char_vector>
2564 target_get_osdata (const char *type)
2565 {
2566 struct target_ops *t;
2567
2568 /* If we're already connected to something that can get us OS
2569 related data, use it. Otherwise, try using the native
2570 target. */
2571 t = find_target_at (process_stratum);
2572 if (t == NULL)
2573 t = find_default_run_target ("get OS data");
2574
2575 if (!t)
2576 return {};
2577
2578 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2579 }
2580
2581 static struct address_space *
2582 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2583 {
2584 struct inferior *inf;
2585
2586 /* Fall-back to the "main" address space of the inferior. */
2587 inf = find_inferior_ptid (ptid);
2588
2589 if (inf == NULL || inf->aspace == NULL)
2590 internal_error (__FILE__, __LINE__,
2591 _("Can't determine the current "
2592 "address space of thread %s\n"),
2593 target_pid_to_str (ptid));
2594
2595 return inf->aspace;
2596 }
2597
2598 /* Determine the current address space of thread PTID. */
2599
2600 struct address_space *
2601 target_thread_address_space (ptid_t ptid)
2602 {
2603 struct address_space *aspace;
2604
2605 aspace = current_top_target ()->thread_address_space (ptid);
2606 gdb_assert (aspace != NULL);
2607
2608 return aspace;
2609 }
2610
2611 /* See target.h. */
2612
2613 target_ops *
2614 target_ops::beneath () const
2615 {
2616 return g_target_stack.find_beneath (this);
2617 }
2618
2619 void
2620 target_ops::close ()
2621 {
2622 }
2623
2624 bool
2625 target_ops::can_attach ()
2626 {
2627 return 0;
2628 }
2629
2630 void
2631 target_ops::attach (const char *, int)
2632 {
2633 gdb_assert_not_reached ("target_ops::attach called");
2634 }
2635
2636 bool
2637 target_ops::can_create_inferior ()
2638 {
2639 return 0;
2640 }
2641
2642 void
2643 target_ops::create_inferior (const char *, const std::string &,
2644 char **, int)
2645 {
2646 gdb_assert_not_reached ("target_ops::create_inferior called");
2647 }
2648
2649 bool
2650 target_ops::can_run ()
2651 {
2652 return false;
2653 }
2654
2655 int
2656 target_can_run ()
2657 {
2658 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2659 {
2660 if (t->can_run ())
2661 return 1;
2662 }
2663
2664 return 0;
2665 }
2666
2667 /* Target file operations. */
2668
2669 static struct target_ops *
2670 default_fileio_target (void)
2671 {
2672 struct target_ops *t;
2673
2674 /* If we're already connected to something that can perform
2675 file I/O, use it. Otherwise, try using the native target. */
2676 t = find_target_at (process_stratum);
2677 if (t != NULL)
2678 return t;
2679 return find_default_run_target ("file I/O");
2680 }
2681
2682 /* File handle for target file operations. */
2683
2684 struct fileio_fh_t
2685 {
2686 /* The target on which this file is open. NULL if the target is
2687 meanwhile closed while the handle is open. */
2688 target_ops *target;
2689
2690 /* The file descriptor on the target. */
2691 int target_fd;
2692
2693 /* Check whether this fileio_fh_t represents a closed file. */
2694 bool is_closed ()
2695 {
2696 return target_fd < 0;
2697 }
2698 };
2699
2700 /* Vector of currently open file handles. The value returned by
2701 target_fileio_open and passed as the FD argument to other
2702 target_fileio_* functions is an index into this vector. This
2703 vector's entries are never freed; instead, files are marked as
2704 closed, and the handle becomes available for reuse. */
2705 static std::vector<fileio_fh_t> fileio_fhandles;
2706
2707 /* Index into fileio_fhandles of the lowest handle that might be
2708 closed. This permits handle reuse without searching the whole
2709 list each time a new file is opened. */
2710 static int lowest_closed_fd;
2711
2712 /* Invalidate the target associated with open handles that were open
2713 on target TARG, since we're about to close (and maybe destroy) the
2714 target. The handles remain open from the client's perspective, but
2715 trying to do anything with them other than closing them will fail
2716 with EIO. */
2717
2718 static void
2719 fileio_handles_invalidate_target (target_ops *targ)
2720 {
2721 for (fileio_fh_t &fh : fileio_fhandles)
2722 if (fh.target == targ)
2723 fh.target = NULL;
2724 }
2725
2726 /* Acquire a target fileio file descriptor. */
2727
2728 static int
2729 acquire_fileio_fd (target_ops *target, int target_fd)
2730 {
2731 /* Search for closed handles to reuse. */
2732 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2733 {
2734 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2735
2736 if (fh.is_closed ())
2737 break;
2738 }
2739
2740 /* Push a new handle if no closed handles were found. */
2741 if (lowest_closed_fd == fileio_fhandles.size ())
2742 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2743 else
2744 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2745
2746 /* Should no longer be marked closed. */
2747 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2748
2749 /* Return its index, and start the next lookup at
2750 the next index. */
2751 return lowest_closed_fd++;
2752 }
2753
2754 /* Release a target fileio file descriptor. */
2755
2756 static void
2757 release_fileio_fd (int fd, fileio_fh_t *fh)
2758 {
2759 fh->target_fd = -1;
2760 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2761 }
2762
2763 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2764
2765 static fileio_fh_t *
2766 fileio_fd_to_fh (int fd)
2767 {
2768 return &fileio_fhandles[fd];
2769 }
2770
2771
2772 /* Default implementations of file i/o methods. We don't want these
2773 to delegate automatically, because we need to know which target
2774 supported the method, in order to call it directly from within
2775 pread/pwrite, etc. */
2776
2777 int
2778 target_ops::fileio_open (struct inferior *inf, const char *filename,
2779 int flags, int mode, int warn_if_slow,
2780 int *target_errno)
2781 {
2782 *target_errno = FILEIO_ENOSYS;
2783 return -1;
2784 }
2785
2786 int
2787 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2788 ULONGEST offset, int *target_errno)
2789 {
2790 *target_errno = FILEIO_ENOSYS;
2791 return -1;
2792 }
2793
2794 int
2795 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2796 ULONGEST offset, int *target_errno)
2797 {
2798 *target_errno = FILEIO_ENOSYS;
2799 return -1;
2800 }
2801
2802 int
2803 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2804 {
2805 *target_errno = FILEIO_ENOSYS;
2806 return -1;
2807 }
2808
2809 int
2810 target_ops::fileio_close (int fd, int *target_errno)
2811 {
2812 *target_errno = FILEIO_ENOSYS;
2813 return -1;
2814 }
2815
2816 int
2817 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2818 int *target_errno)
2819 {
2820 *target_errno = FILEIO_ENOSYS;
2821 return -1;
2822 }
2823
2824 gdb::optional<std::string>
2825 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2826 int *target_errno)
2827 {
2828 *target_errno = FILEIO_ENOSYS;
2829 return {};
2830 }
2831
2832 /* Helper for target_fileio_open and
2833 target_fileio_open_warn_if_slow. */
2834
2835 static int
2836 target_fileio_open_1 (struct inferior *inf, const char *filename,
2837 int flags, int mode, int warn_if_slow,
2838 int *target_errno)
2839 {
2840 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2841 {
2842 int fd = t->fileio_open (inf, filename, flags, mode,
2843 warn_if_slow, target_errno);
2844
2845 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2846 continue;
2847
2848 if (fd < 0)
2849 fd = -1;
2850 else
2851 fd = acquire_fileio_fd (t, fd);
2852
2853 if (targetdebug)
2854 fprintf_unfiltered (gdb_stdlog,
2855 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2856 " = %d (%d)\n",
2857 inf == NULL ? 0 : inf->num,
2858 filename, flags, mode,
2859 warn_if_slow, fd,
2860 fd != -1 ? 0 : *target_errno);
2861 return fd;
2862 }
2863
2864 *target_errno = FILEIO_ENOSYS;
2865 return -1;
2866 }
2867
2868 /* See target.h. */
2869
2870 int
2871 target_fileio_open (struct inferior *inf, const char *filename,
2872 int flags, int mode, int *target_errno)
2873 {
2874 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2875 target_errno);
2876 }
2877
2878 /* See target.h. */
2879
2880 int
2881 target_fileio_open_warn_if_slow (struct inferior *inf,
2882 const char *filename,
2883 int flags, int mode, int *target_errno)
2884 {
2885 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2886 target_errno);
2887 }
2888
2889 /* See target.h. */
2890
2891 int
2892 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2893 ULONGEST offset, int *target_errno)
2894 {
2895 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2896 int ret = -1;
2897
2898 if (fh->is_closed ())
2899 *target_errno = EBADF;
2900 else if (fh->target == NULL)
2901 *target_errno = EIO;
2902 else
2903 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2904 len, offset, target_errno);
2905
2906 if (targetdebug)
2907 fprintf_unfiltered (gdb_stdlog,
2908 "target_fileio_pwrite (%d,...,%d,%s) "
2909 "= %d (%d)\n",
2910 fd, len, pulongest (offset),
2911 ret, ret != -1 ? 0 : *target_errno);
2912 return ret;
2913 }
2914
2915 /* See target.h. */
2916
2917 int
2918 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2919 ULONGEST offset, int *target_errno)
2920 {
2921 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2922 int ret = -1;
2923
2924 if (fh->is_closed ())
2925 *target_errno = EBADF;
2926 else if (fh->target == NULL)
2927 *target_errno = EIO;
2928 else
2929 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2930 len, offset, target_errno);
2931
2932 if (targetdebug)
2933 fprintf_unfiltered (gdb_stdlog,
2934 "target_fileio_pread (%d,...,%d,%s) "
2935 "= %d (%d)\n",
2936 fd, len, pulongest (offset),
2937 ret, ret != -1 ? 0 : *target_errno);
2938 return ret;
2939 }
2940
2941 /* See target.h. */
2942
2943 int
2944 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2945 {
2946 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2947 int ret = -1;
2948
2949 if (fh->is_closed ())
2950 *target_errno = EBADF;
2951 else if (fh->target == NULL)
2952 *target_errno = EIO;
2953 else
2954 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2955
2956 if (targetdebug)
2957 fprintf_unfiltered (gdb_stdlog,
2958 "target_fileio_fstat (%d) = %d (%d)\n",
2959 fd, ret, ret != -1 ? 0 : *target_errno);
2960 return ret;
2961 }
2962
2963 /* See target.h. */
2964
2965 int
2966 target_fileio_close (int fd, int *target_errno)
2967 {
2968 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2969 int ret = -1;
2970
2971 if (fh->is_closed ())
2972 *target_errno = EBADF;
2973 else
2974 {
2975 if (fh->target != NULL)
2976 ret = fh->target->fileio_close (fh->target_fd,
2977 target_errno);
2978 else
2979 ret = 0;
2980 release_fileio_fd (fd, fh);
2981 }
2982
2983 if (targetdebug)
2984 fprintf_unfiltered (gdb_stdlog,
2985 "target_fileio_close (%d) = %d (%d)\n",
2986 fd, ret, ret != -1 ? 0 : *target_errno);
2987 return ret;
2988 }
2989
2990 /* See target.h. */
2991
2992 int
2993 target_fileio_unlink (struct inferior *inf, const char *filename,
2994 int *target_errno)
2995 {
2996 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2997 {
2998 int ret = t->fileio_unlink (inf, filename, target_errno);
2999
3000 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
3001 continue;
3002
3003 if (targetdebug)
3004 fprintf_unfiltered (gdb_stdlog,
3005 "target_fileio_unlink (%d,%s)"
3006 " = %d (%d)\n",
3007 inf == NULL ? 0 : inf->num, filename,
3008 ret, ret != -1 ? 0 : *target_errno);
3009 return ret;
3010 }
3011
3012 *target_errno = FILEIO_ENOSYS;
3013 return -1;
3014 }
3015
3016 /* See target.h. */
3017
3018 gdb::optional<std::string>
3019 target_fileio_readlink (struct inferior *inf, const char *filename,
3020 int *target_errno)
3021 {
3022 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3023 {
3024 gdb::optional<std::string> ret
3025 = t->fileio_readlink (inf, filename, target_errno);
3026
3027 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
3028 continue;
3029
3030 if (targetdebug)
3031 fprintf_unfiltered (gdb_stdlog,
3032 "target_fileio_readlink (%d,%s)"
3033 " = %s (%d)\n",
3034 inf == NULL ? 0 : inf->num,
3035 filename, ret ? ret->c_str () : "(nil)",
3036 ret ? 0 : *target_errno);
3037 return ret;
3038 }
3039
3040 *target_errno = FILEIO_ENOSYS;
3041 return {};
3042 }
3043
3044 /* Like scoped_fd, but specific to target fileio. */
3045
3046 class scoped_target_fd
3047 {
3048 public:
3049 explicit scoped_target_fd (int fd) noexcept
3050 : m_fd (fd)
3051 {
3052 }
3053
3054 ~scoped_target_fd ()
3055 {
3056 if (m_fd >= 0)
3057 {
3058 int target_errno;
3059
3060 target_fileio_close (m_fd, &target_errno);
3061 }
3062 }
3063
3064 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3065
3066 int get () const noexcept
3067 {
3068 return m_fd;
3069 }
3070
3071 private:
3072 int m_fd;
3073 };
3074
3075 /* Read target file FILENAME, in the filesystem as seen by INF. If
3076 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3077 remote targets, the remote stub). Store the result in *BUF_P and
3078 return the size of the transferred data. PADDING additional bytes
3079 are available in *BUF_P. This is a helper function for
3080 target_fileio_read_alloc; see the declaration of that function for
3081 more information. */
3082
3083 static LONGEST
3084 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3085 gdb_byte **buf_p, int padding)
3086 {
3087 size_t buf_alloc, buf_pos;
3088 gdb_byte *buf;
3089 LONGEST n;
3090 int target_errno;
3091
3092 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3093 0700, &target_errno));
3094 if (fd.get () == -1)
3095 return -1;
3096
3097 /* Start by reading up to 4K at a time. The target will throttle
3098 this number down if necessary. */
3099 buf_alloc = 4096;
3100 buf = (gdb_byte *) xmalloc (buf_alloc);
3101 buf_pos = 0;
3102 while (1)
3103 {
3104 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3105 buf_alloc - buf_pos - padding, buf_pos,
3106 &target_errno);
3107 if (n < 0)
3108 {
3109 /* An error occurred. */
3110 xfree (buf);
3111 return -1;
3112 }
3113 else if (n == 0)
3114 {
3115 /* Read all there was. */
3116 if (buf_pos == 0)
3117 xfree (buf);
3118 else
3119 *buf_p = buf;
3120 return buf_pos;
3121 }
3122
3123 buf_pos += n;
3124
3125 /* If the buffer is filling up, expand it. */
3126 if (buf_alloc < buf_pos * 2)
3127 {
3128 buf_alloc *= 2;
3129 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3130 }
3131
3132 QUIT;
3133 }
3134 }
3135
3136 /* See target.h. */
3137
3138 LONGEST
3139 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3140 gdb_byte **buf_p)
3141 {
3142 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3143 }
3144
3145 /* See target.h. */
3146
3147 gdb::unique_xmalloc_ptr<char>
3148 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3149 {
3150 gdb_byte *buffer;
3151 char *bufstr;
3152 LONGEST i, transferred;
3153
3154 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3155 bufstr = (char *) buffer;
3156
3157 if (transferred < 0)
3158 return gdb::unique_xmalloc_ptr<char> (nullptr);
3159
3160 if (transferred == 0)
3161 return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
3162
3163 bufstr[transferred] = 0;
3164
3165 /* Check for embedded NUL bytes; but allow trailing NULs. */
3166 for (i = strlen (bufstr); i < transferred; i++)
3167 if (bufstr[i] != 0)
3168 {
3169 warning (_("target file %s "
3170 "contained unexpected null characters"),
3171 filename);
3172 break;
3173 }
3174
3175 return gdb::unique_xmalloc_ptr<char> (bufstr);
3176 }
3177
3178
3179 static int
3180 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3181 CORE_ADDR addr, int len)
3182 {
3183 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3184 }
3185
3186 static int
3187 default_watchpoint_addr_within_range (struct target_ops *target,
3188 CORE_ADDR addr,
3189 CORE_ADDR start, int length)
3190 {
3191 return addr >= start && addr < start + length;
3192 }
3193
3194 static struct gdbarch *
3195 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3196 {
3197 inferior *inf = find_inferior_ptid (ptid);
3198 gdb_assert (inf != NULL);
3199 return inf->gdbarch;
3200 }
3201
3202 /* See target.h. */
3203
3204 target_ops *
3205 target_stack::find_beneath (const target_ops *t) const
3206 {
3207 /* Look for a non-empty slot at stratum levels beneath T's. */
3208 for (int stratum = t->to_stratum - 1; stratum >= 0; --stratum)
3209 if (m_stack[stratum] != NULL)
3210 return m_stack[stratum];
3211
3212 return NULL;
3213 }
3214
3215 /* See target.h. */
3216
3217 struct target_ops *
3218 find_target_at (enum strata stratum)
3219 {
3220 return g_target_stack.at (stratum);
3221 }
3222
3223 \f
3224
3225 /* See target.h */
3226
3227 void
3228 target_announce_detach (int from_tty)
3229 {
3230 pid_t pid;
3231 const char *exec_file;
3232
3233 if (!from_tty)
3234 return;
3235
3236 exec_file = get_exec_file (0);
3237 if (exec_file == NULL)
3238 exec_file = "";
3239
3240 pid = inferior_ptid.pid ();
3241 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3242 target_pid_to_str (ptid_t (pid)));
3243 gdb_flush (gdb_stdout);
3244 }
3245
3246 /* The inferior process has died. Long live the inferior! */
3247
3248 void
3249 generic_mourn_inferior (void)
3250 {
3251 inferior *inf = current_inferior ();
3252
3253 inferior_ptid = null_ptid;
3254
3255 /* Mark breakpoints uninserted in case something tries to delete a
3256 breakpoint while we delete the inferior's threads (which would
3257 fail, since the inferior is long gone). */
3258 mark_breakpoints_out ();
3259
3260 if (inf->pid != 0)
3261 exit_inferior (inf);
3262
3263 /* Note this wipes step-resume breakpoints, so needs to be done
3264 after exit_inferior, which ends up referencing the step-resume
3265 breakpoints through clear_thread_inferior_resources. */
3266 breakpoint_init_inferior (inf_exited);
3267
3268 registers_changed ();
3269
3270 reopen_exec_file ();
3271 reinit_frame_cache ();
3272
3273 if (deprecated_detach_hook)
3274 deprecated_detach_hook ();
3275 }
3276 \f
3277 /* Convert a normal process ID to a string. Returns the string in a
3278 static buffer. */
3279
3280 const char *
3281 normal_pid_to_str (ptid_t ptid)
3282 {
3283 static char buf[32];
3284
3285 xsnprintf (buf, sizeof buf, "process %d", ptid.pid ());
3286 return buf;
3287 }
3288
3289 static const char *
3290 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3291 {
3292 return normal_pid_to_str (ptid);
3293 }
3294
3295 /* Error-catcher for target_find_memory_regions. */
3296 static int
3297 dummy_find_memory_regions (struct target_ops *self,
3298 find_memory_region_ftype ignore1, void *ignore2)
3299 {
3300 error (_("Command not implemented for this target."));
3301 return 0;
3302 }
3303
3304 /* Error-catcher for target_make_corefile_notes. */
3305 static char *
3306 dummy_make_corefile_notes (struct target_ops *self,
3307 bfd *ignore1, int *ignore2)
3308 {
3309 error (_("Command not implemented for this target."));
3310 return NULL;
3311 }
3312
3313 #include "target-delegates.c"
3314
3315
3316 static const target_info dummy_target_info = {
3317 "None",
3318 N_("None"),
3319 ""
3320 };
3321
3322 dummy_target::dummy_target ()
3323 {
3324 to_stratum = dummy_stratum;
3325 }
3326
3327 debug_target::debug_target ()
3328 {
3329 to_stratum = debug_stratum;
3330 }
3331
3332 const target_info &
3333 dummy_target::info () const
3334 {
3335 return dummy_target_info;
3336 }
3337
3338 const target_info &
3339 debug_target::info () const
3340 {
3341 return beneath ()->info ();
3342 }
3343
3344 \f
3345
3346 void
3347 target_close (struct target_ops *targ)
3348 {
3349 gdb_assert (!target_is_pushed (targ));
3350
3351 fileio_handles_invalidate_target (targ);
3352
3353 targ->close ();
3354
3355 if (targetdebug)
3356 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3357 }
3358
3359 int
3360 target_thread_alive (ptid_t ptid)
3361 {
3362 return current_top_target ()->thread_alive (ptid);
3363 }
3364
3365 void
3366 target_update_thread_list (void)
3367 {
3368 current_top_target ()->update_thread_list ();
3369 }
3370
3371 void
3372 target_stop (ptid_t ptid)
3373 {
3374 if (!may_stop)
3375 {
3376 warning (_("May not interrupt or stop the target, ignoring attempt"));
3377 return;
3378 }
3379
3380 current_top_target ()->stop (ptid);
3381 }
3382
3383 void
3384 target_interrupt ()
3385 {
3386 if (!may_stop)
3387 {
3388 warning (_("May not interrupt or stop the target, ignoring attempt"));
3389 return;
3390 }
3391
3392 current_top_target ()->interrupt ();
3393 }
3394
3395 /* See target.h. */
3396
3397 void
3398 target_pass_ctrlc (void)
3399 {
3400 current_top_target ()->pass_ctrlc ();
3401 }
3402
3403 /* See target.h. */
3404
3405 void
3406 default_target_pass_ctrlc (struct target_ops *ops)
3407 {
3408 target_interrupt ();
3409 }
3410
3411 /* See target/target.h. */
3412
3413 void
3414 target_stop_and_wait (ptid_t ptid)
3415 {
3416 struct target_waitstatus status;
3417 int was_non_stop = non_stop;
3418
3419 non_stop = 1;
3420 target_stop (ptid);
3421
3422 memset (&status, 0, sizeof (status));
3423 target_wait (ptid, &status, 0);
3424
3425 non_stop = was_non_stop;
3426 }
3427
3428 /* See target/target.h. */
3429
3430 void
3431 target_continue_no_signal (ptid_t ptid)
3432 {
3433 target_resume (ptid, 0, GDB_SIGNAL_0);
3434 }
3435
3436 /* See target/target.h. */
3437
3438 void
3439 target_continue (ptid_t ptid, enum gdb_signal signal)
3440 {
3441 target_resume (ptid, 0, signal);
3442 }
3443
3444 /* Concatenate ELEM to LIST, a comma separate list, and return the
3445 result. The LIST incoming argument is released. */
3446
3447 static char *
3448 str_comma_list_concat_elem (char *list, const char *elem)
3449 {
3450 if (list == NULL)
3451 return xstrdup (elem);
3452 else
3453 return reconcat (list, list, ", ", elem, (char *) NULL);
3454 }
3455
3456 /* Helper for target_options_to_string. If OPT is present in
3457 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3458 Returns the new resulting string. OPT is removed from
3459 TARGET_OPTIONS. */
3460
3461 static char *
3462 do_option (int *target_options, char *ret,
3463 int opt, const char *opt_str)
3464 {
3465 if ((*target_options & opt) != 0)
3466 {
3467 ret = str_comma_list_concat_elem (ret, opt_str);
3468 *target_options &= ~opt;
3469 }
3470
3471 return ret;
3472 }
3473
3474 char *
3475 target_options_to_string (int target_options)
3476 {
3477 char *ret = NULL;
3478
3479 #define DO_TARG_OPTION(OPT) \
3480 ret = do_option (&target_options, ret, OPT, #OPT)
3481
3482 DO_TARG_OPTION (TARGET_WNOHANG);
3483
3484 if (target_options != 0)
3485 ret = str_comma_list_concat_elem (ret, "unknown???");
3486
3487 if (ret == NULL)
3488 ret = xstrdup ("");
3489 return ret;
3490 }
3491
3492 void
3493 target_fetch_registers (struct regcache *regcache, int regno)
3494 {
3495 current_top_target ()->fetch_registers (regcache, regno);
3496 if (targetdebug)
3497 regcache->debug_print_register ("target_fetch_registers", regno);
3498 }
3499
3500 void
3501 target_store_registers (struct regcache *regcache, int regno)
3502 {
3503 if (!may_write_registers)
3504 error (_("Writing to registers is not allowed (regno %d)"), regno);
3505
3506 current_top_target ()->store_registers (regcache, regno);
3507 if (targetdebug)
3508 {
3509 regcache->debug_print_register ("target_store_registers", regno);
3510 }
3511 }
3512
3513 int
3514 target_core_of_thread (ptid_t ptid)
3515 {
3516 return current_top_target ()->core_of_thread (ptid);
3517 }
3518
3519 int
3520 simple_verify_memory (struct target_ops *ops,
3521 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3522 {
3523 LONGEST total_xfered = 0;
3524
3525 while (total_xfered < size)
3526 {
3527 ULONGEST xfered_len;
3528 enum target_xfer_status status;
3529 gdb_byte buf[1024];
3530 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3531
3532 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3533 buf, NULL, lma + total_xfered, howmuch,
3534 &xfered_len);
3535 if (status == TARGET_XFER_OK
3536 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3537 {
3538 total_xfered += xfered_len;
3539 QUIT;
3540 }
3541 else
3542 return 0;
3543 }
3544 return 1;
3545 }
3546
3547 /* Default implementation of memory verification. */
3548
3549 static int
3550 default_verify_memory (struct target_ops *self,
3551 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3552 {
3553 /* Start over from the top of the target stack. */
3554 return simple_verify_memory (current_top_target (),
3555 data, memaddr, size);
3556 }
3557
3558 int
3559 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3560 {
3561 return current_top_target ()->verify_memory (data, memaddr, size);
3562 }
3563
3564 /* The documentation for this function is in its prototype declaration in
3565 target.h. */
3566
3567 int
3568 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3569 enum target_hw_bp_type rw)
3570 {
3571 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3572 }
3573
3574 /* The documentation for this function is in its prototype declaration in
3575 target.h. */
3576
3577 int
3578 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3579 enum target_hw_bp_type rw)
3580 {
3581 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3582 }
3583
3584 /* The documentation for this function is in its prototype declaration
3585 in target.h. */
3586
3587 int
3588 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3589 {
3590 return current_top_target ()->masked_watch_num_registers (addr, mask);
3591 }
3592
3593 /* The documentation for this function is in its prototype declaration
3594 in target.h. */
3595
3596 int
3597 target_ranged_break_num_registers (void)
3598 {
3599 return current_top_target ()->ranged_break_num_registers ();
3600 }
3601
3602 /* See target.h. */
3603
3604 struct btrace_target_info *
3605 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3606 {
3607 return current_top_target ()->enable_btrace (ptid, conf);
3608 }
3609
3610 /* See target.h. */
3611
3612 void
3613 target_disable_btrace (struct btrace_target_info *btinfo)
3614 {
3615 current_top_target ()->disable_btrace (btinfo);
3616 }
3617
3618 /* See target.h. */
3619
3620 void
3621 target_teardown_btrace (struct btrace_target_info *btinfo)
3622 {
3623 current_top_target ()->teardown_btrace (btinfo);
3624 }
3625
3626 /* See target.h. */
3627
3628 enum btrace_error
3629 target_read_btrace (struct btrace_data *btrace,
3630 struct btrace_target_info *btinfo,
3631 enum btrace_read_type type)
3632 {
3633 return current_top_target ()->read_btrace (btrace, btinfo, type);
3634 }
3635
3636 /* See target.h. */
3637
3638 const struct btrace_config *
3639 target_btrace_conf (const struct btrace_target_info *btinfo)
3640 {
3641 return current_top_target ()->btrace_conf (btinfo);
3642 }
3643
3644 /* See target.h. */
3645
3646 void
3647 target_stop_recording (void)
3648 {
3649 current_top_target ()->stop_recording ();
3650 }
3651
3652 /* See target.h. */
3653
3654 void
3655 target_save_record (const char *filename)
3656 {
3657 current_top_target ()->save_record (filename);
3658 }
3659
3660 /* See target.h. */
3661
3662 int
3663 target_supports_delete_record ()
3664 {
3665 return current_top_target ()->supports_delete_record ();
3666 }
3667
3668 /* See target.h. */
3669
3670 void
3671 target_delete_record (void)
3672 {
3673 current_top_target ()->delete_record ();
3674 }
3675
3676 /* See target.h. */
3677
3678 enum record_method
3679 target_record_method (ptid_t ptid)
3680 {
3681 return current_top_target ()->record_method (ptid);
3682 }
3683
3684 /* See target.h. */
3685
3686 int
3687 target_record_is_replaying (ptid_t ptid)
3688 {
3689 return current_top_target ()->record_is_replaying (ptid);
3690 }
3691
3692 /* See target.h. */
3693
3694 int
3695 target_record_will_replay (ptid_t ptid, int dir)
3696 {
3697 return current_top_target ()->record_will_replay (ptid, dir);
3698 }
3699
3700 /* See target.h. */
3701
3702 void
3703 target_record_stop_replaying (void)
3704 {
3705 current_top_target ()->record_stop_replaying ();
3706 }
3707
3708 /* See target.h. */
3709
3710 void
3711 target_goto_record_begin (void)
3712 {
3713 current_top_target ()->goto_record_begin ();
3714 }
3715
3716 /* See target.h. */
3717
3718 void
3719 target_goto_record_end (void)
3720 {
3721 current_top_target ()->goto_record_end ();
3722 }
3723
3724 /* See target.h. */
3725
3726 void
3727 target_goto_record (ULONGEST insn)
3728 {
3729 current_top_target ()->goto_record (insn);
3730 }
3731
3732 /* See target.h. */
3733
3734 void
3735 target_insn_history (int size, gdb_disassembly_flags flags)
3736 {
3737 current_top_target ()->insn_history (size, flags);
3738 }
3739
3740 /* See target.h. */
3741
3742 void
3743 target_insn_history_from (ULONGEST from, int size,
3744 gdb_disassembly_flags flags)
3745 {
3746 current_top_target ()->insn_history_from (from, size, flags);
3747 }
3748
3749 /* See target.h. */
3750
3751 void
3752 target_insn_history_range (ULONGEST begin, ULONGEST end,
3753 gdb_disassembly_flags flags)
3754 {
3755 current_top_target ()->insn_history_range (begin, end, flags);
3756 }
3757
3758 /* See target.h. */
3759
3760 void
3761 target_call_history (int size, record_print_flags flags)
3762 {
3763 current_top_target ()->call_history (size, flags);
3764 }
3765
3766 /* See target.h. */
3767
3768 void
3769 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3770 {
3771 current_top_target ()->call_history_from (begin, size, flags);
3772 }
3773
3774 /* See target.h. */
3775
3776 void
3777 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3778 {
3779 current_top_target ()->call_history_range (begin, end, flags);
3780 }
3781
3782 /* See target.h. */
3783
3784 const struct frame_unwind *
3785 target_get_unwinder (void)
3786 {
3787 return current_top_target ()->get_unwinder ();
3788 }
3789
3790 /* See target.h. */
3791
3792 const struct frame_unwind *
3793 target_get_tailcall_unwinder (void)
3794 {
3795 return current_top_target ()->get_tailcall_unwinder ();
3796 }
3797
3798 /* See target.h. */
3799
3800 void
3801 target_prepare_to_generate_core (void)
3802 {
3803 current_top_target ()->prepare_to_generate_core ();
3804 }
3805
3806 /* See target.h. */
3807
3808 void
3809 target_done_generating_core (void)
3810 {
3811 current_top_target ()->done_generating_core ();
3812 }
3813
3814 \f
3815
3816 static char targ_desc[] =
3817 "Names of targets and files being debugged.\nShows the entire \
3818 stack of targets currently in use (including the exec-file,\n\
3819 core-file, and process, if any), as well as the symbol file name.";
3820
3821 static void
3822 default_rcmd (struct target_ops *self, const char *command,
3823 struct ui_file *output)
3824 {
3825 error (_("\"monitor\" command not supported by this target."));
3826 }
3827
3828 static void
3829 do_monitor_command (const char *cmd, int from_tty)
3830 {
3831 target_rcmd (cmd, gdb_stdtarg);
3832 }
3833
3834 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3835 ignored. */
3836
3837 void
3838 flash_erase_command (const char *cmd, int from_tty)
3839 {
3840 /* Used to communicate termination of flash operations to the target. */
3841 bool found_flash_region = false;
3842 struct gdbarch *gdbarch = target_gdbarch ();
3843
3844 std::vector<mem_region> mem_regions = target_memory_map ();
3845
3846 /* Iterate over all memory regions. */
3847 for (const mem_region &m : mem_regions)
3848 {
3849 /* Is this a flash memory region? */
3850 if (m.attrib.mode == MEM_FLASH)
3851 {
3852 found_flash_region = true;
3853 target_flash_erase (m.lo, m.hi - m.lo);
3854
3855 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3856
3857 current_uiout->message (_("Erasing flash memory region at address "));
3858 current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
3859 current_uiout->message (", size = ");
3860 current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
3861 current_uiout->message ("\n");
3862 }
3863 }
3864
3865 /* Did we do any flash operations? If so, we need to finalize them. */
3866 if (found_flash_region)
3867 target_flash_done ();
3868 else
3869 current_uiout->message (_("No flash memory regions found.\n"));
3870 }
3871
3872 /* Print the name of each layers of our target stack. */
3873
3874 static void
3875 maintenance_print_target_stack (const char *cmd, int from_tty)
3876 {
3877 printf_filtered (_("The current target stack is:\n"));
3878
3879 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3880 {
3881 if (t->to_stratum == debug_stratum)
3882 continue;
3883 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3884 }
3885 }
3886
3887 /* See target.h. */
3888
3889 void
3890 target_async (int enable)
3891 {
3892 infrun_async (enable);
3893 current_top_target ()->async (enable);
3894 }
3895
3896 /* See target.h. */
3897
3898 void
3899 target_thread_events (int enable)
3900 {
3901 current_top_target ()->thread_events (enable);
3902 }
3903
3904 /* Controls if targets can report that they can/are async. This is
3905 just for maintainers to use when debugging gdb. */
3906 int target_async_permitted = 1;
3907
3908 /* The set command writes to this variable. If the inferior is
3909 executing, target_async_permitted is *not* updated. */
3910 static int target_async_permitted_1 = 1;
3911
3912 static void
3913 maint_set_target_async_command (const char *args, int from_tty,
3914 struct cmd_list_element *c)
3915 {
3916 if (have_live_inferiors ())
3917 {
3918 target_async_permitted_1 = target_async_permitted;
3919 error (_("Cannot change this setting while the inferior is running."));
3920 }
3921
3922 target_async_permitted = target_async_permitted_1;
3923 }
3924
3925 static void
3926 maint_show_target_async_command (struct ui_file *file, int from_tty,
3927 struct cmd_list_element *c,
3928 const char *value)
3929 {
3930 fprintf_filtered (file,
3931 _("Controlling the inferior in "
3932 "asynchronous mode is %s.\n"), value);
3933 }
3934
3935 /* Return true if the target operates in non-stop mode even with "set
3936 non-stop off". */
3937
3938 static int
3939 target_always_non_stop_p (void)
3940 {
3941 return current_top_target ()->always_non_stop_p ();
3942 }
3943
3944 /* See target.h. */
3945
3946 int
3947 target_is_non_stop_p (void)
3948 {
3949 return (non_stop
3950 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3951 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3952 && target_always_non_stop_p ()));
3953 }
3954
3955 /* Controls if targets can report that they always run in non-stop
3956 mode. This is just for maintainers to use when debugging gdb. */
3957 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3958
3959 /* The set command writes to this variable. If the inferior is
3960 executing, target_non_stop_enabled is *not* updated. */
3961 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3962
3963 /* Implementation of "maint set target-non-stop". */
3964
3965 static void
3966 maint_set_target_non_stop_command (const char *args, int from_tty,
3967 struct cmd_list_element *c)
3968 {
3969 if (have_live_inferiors ())
3970 {
3971 target_non_stop_enabled_1 = target_non_stop_enabled;
3972 error (_("Cannot change this setting while the inferior is running."));
3973 }
3974
3975 target_non_stop_enabled = target_non_stop_enabled_1;
3976 }
3977
3978 /* Implementation of "maint show target-non-stop". */
3979
3980 static void
3981 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3982 struct cmd_list_element *c,
3983 const char *value)
3984 {
3985 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3986 fprintf_filtered (file,
3987 _("Whether the target is always in non-stop mode "
3988 "is %s (currently %s).\n"), value,
3989 target_always_non_stop_p () ? "on" : "off");
3990 else
3991 fprintf_filtered (file,
3992 _("Whether the target is always in non-stop mode "
3993 "is %s.\n"), value);
3994 }
3995
3996 /* Temporary copies of permission settings. */
3997
3998 static int may_write_registers_1 = 1;
3999 static int may_write_memory_1 = 1;
4000 static int may_insert_breakpoints_1 = 1;
4001 static int may_insert_tracepoints_1 = 1;
4002 static int may_insert_fast_tracepoints_1 = 1;
4003 static int may_stop_1 = 1;
4004
4005 /* Make the user-set values match the real values again. */
4006
4007 void
4008 update_target_permissions (void)
4009 {
4010 may_write_registers_1 = may_write_registers;
4011 may_write_memory_1 = may_write_memory;
4012 may_insert_breakpoints_1 = may_insert_breakpoints;
4013 may_insert_tracepoints_1 = may_insert_tracepoints;
4014 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4015 may_stop_1 = may_stop;
4016 }
4017
4018 /* The one function handles (most of) the permission flags in the same
4019 way. */
4020
4021 static void
4022 set_target_permissions (const char *args, int from_tty,
4023 struct cmd_list_element *c)
4024 {
4025 if (target_has_execution)
4026 {
4027 update_target_permissions ();
4028 error (_("Cannot change this setting while the inferior is running."));
4029 }
4030
4031 /* Make the real values match the user-changed values. */
4032 may_write_registers = may_write_registers_1;
4033 may_insert_breakpoints = may_insert_breakpoints_1;
4034 may_insert_tracepoints = may_insert_tracepoints_1;
4035 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4036 may_stop = may_stop_1;
4037 update_observer_mode ();
4038 }
4039
4040 /* Set memory write permission independently of observer mode. */
4041
4042 static void
4043 set_write_memory_permission (const char *args, int from_tty,
4044 struct cmd_list_element *c)
4045 {
4046 /* Make the real values match the user-changed values. */
4047 may_write_memory = may_write_memory_1;
4048 update_observer_mode ();
4049 }
4050
4051 void
4052 initialize_targets (void)
4053 {
4054 the_dummy_target = new dummy_target ();
4055 push_target (the_dummy_target);
4056
4057 the_debug_target = new debug_target ();
4058
4059 add_info ("target", info_target_command, targ_desc);
4060 add_info ("files", info_target_command, targ_desc);
4061
4062 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4063 Set target debugging."), _("\
4064 Show target debugging."), _("\
4065 When non-zero, target debugging is enabled. Higher numbers are more\n\
4066 verbose."),
4067 set_targetdebug,
4068 show_targetdebug,
4069 &setdebuglist, &showdebuglist);
4070
4071 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4072 &trust_readonly, _("\
4073 Set mode for reading from readonly sections."), _("\
4074 Show mode for reading from readonly sections."), _("\
4075 When this mode is on, memory reads from readonly sections (such as .text)\n\
4076 will be read from the object file instead of from the target. This will\n\
4077 result in significant performance improvement for remote targets."),
4078 NULL,
4079 show_trust_readonly,
4080 &setlist, &showlist);
4081
4082 add_com ("monitor", class_obscure, do_monitor_command,
4083 _("Send a command to the remote monitor (remote targets only)."));
4084
4085 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4086 _("Print the name of each layer of the internal target stack."),
4087 &maintenanceprintlist);
4088
4089 add_setshow_boolean_cmd ("target-async", no_class,
4090 &target_async_permitted_1, _("\
4091 Set whether gdb controls the inferior in asynchronous mode."), _("\
4092 Show whether gdb controls the inferior in asynchronous mode."), _("\
4093 Tells gdb whether to control the inferior in asynchronous mode."),
4094 maint_set_target_async_command,
4095 maint_show_target_async_command,
4096 &maintenance_set_cmdlist,
4097 &maintenance_show_cmdlist);
4098
4099 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4100 &target_non_stop_enabled_1, _("\
4101 Set whether gdb always controls the inferior in non-stop mode."), _("\
4102 Show whether gdb always controls the inferior in non-stop mode."), _("\
4103 Tells gdb whether to control the inferior in non-stop mode."),
4104 maint_set_target_non_stop_command,
4105 maint_show_target_non_stop_command,
4106 &maintenance_set_cmdlist,
4107 &maintenance_show_cmdlist);
4108
4109 add_setshow_boolean_cmd ("may-write-registers", class_support,
4110 &may_write_registers_1, _("\
4111 Set permission to write into registers."), _("\
4112 Show permission to write into registers."), _("\
4113 When this permission is on, GDB may write into the target's registers.\n\
4114 Otherwise, any sort of write attempt will result in an error."),
4115 set_target_permissions, NULL,
4116 &setlist, &showlist);
4117
4118 add_setshow_boolean_cmd ("may-write-memory", class_support,
4119 &may_write_memory_1, _("\
4120 Set permission to write into target memory."), _("\
4121 Show permission to write into target memory."), _("\
4122 When this permission is on, GDB may write into the target's memory.\n\
4123 Otherwise, any sort of write attempt will result in an error."),
4124 set_write_memory_permission, NULL,
4125 &setlist, &showlist);
4126
4127 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4128 &may_insert_breakpoints_1, _("\
4129 Set permission to insert breakpoints in the target."), _("\
4130 Show permission to insert breakpoints in the target."), _("\
4131 When this permission is on, GDB may insert breakpoints in the program.\n\
4132 Otherwise, any sort of insertion attempt will result in an error."),
4133 set_target_permissions, NULL,
4134 &setlist, &showlist);
4135
4136 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4137 &may_insert_tracepoints_1, _("\
4138 Set permission to insert tracepoints in the target."), _("\
4139 Show permission to insert tracepoints in the target."), _("\
4140 When this permission is on, GDB may insert tracepoints in the program.\n\
4141 Otherwise, any sort of insertion attempt will result in an error."),
4142 set_target_permissions, NULL,
4143 &setlist, &showlist);
4144
4145 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4146 &may_insert_fast_tracepoints_1, _("\
4147 Set permission to insert fast tracepoints in the target."), _("\
4148 Show permission to insert fast tracepoints in the target."), _("\
4149 When this permission is on, GDB may insert fast tracepoints.\n\
4150 Otherwise, any sort of insertion attempt will result in an error."),
4151 set_target_permissions, NULL,
4152 &setlist, &showlist);
4153
4154 add_setshow_boolean_cmd ("may-interrupt", class_support,
4155 &may_stop_1, _("\
4156 Set permission to interrupt or signal the target."), _("\
4157 Show permission to interrupt or signal the target."), _("\
4158 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4159 Otherwise, any attempt to interrupt or stop will be ignored."),
4160 set_target_permissions, NULL,
4161 &setlist, &showlist);
4162
4163 add_com ("flash-erase", no_class, flash_erase_command,
4164 _("Erase all flash memory regions."));
4165
4166 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4167 &auto_connect_native_target, _("\
4168 Set whether GDB may automatically connect to the native target."), _("\
4169 Show whether GDB may automatically connect to the native target."), _("\
4170 When on, and GDB is not connected to a target yet, GDB\n\
4171 attempts \"run\" and other commands with the native target."),
4172 NULL, show_auto_connect_native_target,
4173 &setlist, &showlist);
4174 }
This page took 0.110117 seconds and 5 git commands to generate.