convert to_supports_string_tracing
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (struct target_ops *, const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
56 CORE_ADDR, int);
57
58 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
59
60 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
61 long lwp, long tid);
62
63 static void tcomplain (void) ATTRIBUTE_NORETURN;
64
65 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
66
67 static int return_zero (void);
68
69 static int return_minus_one (void);
70
71 static void *return_null (void);
72
73 void target_ignore (void);
74
75 static void target_command (char *, int);
76
77 static struct target_ops *find_default_run_target (char *);
78
79 static target_xfer_partial_ftype default_xfer_partial;
80
81 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
82 ptid_t ptid);
83
84 static int dummy_find_memory_regions (struct target_ops *self,
85 find_memory_region_ftype ignore1,
86 void *ignore2);
87
88 static char *dummy_make_corefile_notes (struct target_ops *self,
89 bfd *ignore1, int *ignore2);
90
91 static int find_default_can_async_p (struct target_ops *ignore);
92
93 static int find_default_is_async_p (struct target_ops *ignore);
94
95 static enum exec_direction_kind default_execution_direction
96 (struct target_ops *self);
97
98 #include "target-delegates.c"
99
100 static void init_dummy_target (void);
101
102 static struct target_ops debug_target;
103
104 static void debug_to_open (char *, int);
105
106 static void debug_to_prepare_to_store (struct target_ops *self,
107 struct regcache *);
108
109 static void debug_to_files_info (struct target_ops *);
110
111 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
112 struct bp_target_info *);
113
114 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
118 int, int, int);
119
120 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
121 struct gdbarch *,
122 struct bp_target_info *);
123
124 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
125 struct gdbarch *,
126 struct bp_target_info *);
127
128 static int debug_to_insert_watchpoint (struct target_ops *self,
129 CORE_ADDR, int, int,
130 struct expression *);
131
132 static int debug_to_remove_watchpoint (struct target_ops *self,
133 CORE_ADDR, int, int,
134 struct expression *);
135
136 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
137
138 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
139 CORE_ADDR, CORE_ADDR, int);
140
141 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
142 CORE_ADDR, int);
143
144 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
145 CORE_ADDR, int, int,
146 struct expression *);
147
148 static void debug_to_terminal_init (struct target_ops *self);
149
150 static void debug_to_terminal_inferior (struct target_ops *self);
151
152 static void debug_to_terminal_ours_for_output (struct target_ops *self);
153
154 static void debug_to_terminal_save_ours (struct target_ops *self);
155
156 static void debug_to_terminal_ours (struct target_ops *self);
157
158 static void debug_to_load (struct target_ops *self, char *, int);
159
160 static int debug_to_can_run (struct target_ops *self);
161
162 static void debug_to_stop (struct target_ops *self, ptid_t);
163
164 /* Pointer to array of target architecture structures; the size of the
165 array; the current index into the array; the allocated size of the
166 array. */
167 struct target_ops **target_structs;
168 unsigned target_struct_size;
169 unsigned target_struct_allocsize;
170 #define DEFAULT_ALLOCSIZE 10
171
172 /* The initial current target, so that there is always a semi-valid
173 current target. */
174
175 static struct target_ops dummy_target;
176
177 /* Top of target stack. */
178
179 static struct target_ops *target_stack;
180
181 /* The target structure we are currently using to talk to a process
182 or file or whatever "inferior" we have. */
183
184 struct target_ops current_target;
185
186 /* Command list for target. */
187
188 static struct cmd_list_element *targetlist = NULL;
189
190 /* Nonzero if we should trust readonly sections from the
191 executable when reading memory. */
192
193 static int trust_readonly = 0;
194
195 /* Nonzero if we should show true memory content including
196 memory breakpoint inserted by gdb. */
197
198 static int show_memory_breakpoints = 0;
199
200 /* These globals control whether GDB attempts to perform these
201 operations; they are useful for targets that need to prevent
202 inadvertant disruption, such as in non-stop mode. */
203
204 int may_write_registers = 1;
205
206 int may_write_memory = 1;
207
208 int may_insert_breakpoints = 1;
209
210 int may_insert_tracepoints = 1;
211
212 int may_insert_fast_tracepoints = 1;
213
214 int may_stop = 1;
215
216 /* Non-zero if we want to see trace of target level stuff. */
217
218 static unsigned int targetdebug = 0;
219 static void
220 show_targetdebug (struct ui_file *file, int from_tty,
221 struct cmd_list_element *c, const char *value)
222 {
223 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
224 }
225
226 static void setup_target_debug (void);
227
228 /* The user just typed 'target' without the name of a target. */
229
230 static void
231 target_command (char *arg, int from_tty)
232 {
233 fputs_filtered ("Argument required (target name). Try `help target'\n",
234 gdb_stdout);
235 }
236
237 /* Default target_has_* methods for process_stratum targets. */
238
239 int
240 default_child_has_all_memory (struct target_ops *ops)
241 {
242 /* If no inferior selected, then we can't read memory here. */
243 if (ptid_equal (inferior_ptid, null_ptid))
244 return 0;
245
246 return 1;
247 }
248
249 int
250 default_child_has_memory (struct target_ops *ops)
251 {
252 /* If no inferior selected, then we can't read memory here. */
253 if (ptid_equal (inferior_ptid, null_ptid))
254 return 0;
255
256 return 1;
257 }
258
259 int
260 default_child_has_stack (struct target_ops *ops)
261 {
262 /* If no inferior selected, there's no stack. */
263 if (ptid_equal (inferior_ptid, null_ptid))
264 return 0;
265
266 return 1;
267 }
268
269 int
270 default_child_has_registers (struct target_ops *ops)
271 {
272 /* Can't read registers from no inferior. */
273 if (ptid_equal (inferior_ptid, null_ptid))
274 return 0;
275
276 return 1;
277 }
278
279 int
280 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
281 {
282 /* If there's no thread selected, then we can't make it run through
283 hoops. */
284 if (ptid_equal (the_ptid, null_ptid))
285 return 0;
286
287 return 1;
288 }
289
290
291 int
292 target_has_all_memory_1 (void)
293 {
294 struct target_ops *t;
295
296 for (t = current_target.beneath; t != NULL; t = t->beneath)
297 if (t->to_has_all_memory (t))
298 return 1;
299
300 return 0;
301 }
302
303 int
304 target_has_memory_1 (void)
305 {
306 struct target_ops *t;
307
308 for (t = current_target.beneath; t != NULL; t = t->beneath)
309 if (t->to_has_memory (t))
310 return 1;
311
312 return 0;
313 }
314
315 int
316 target_has_stack_1 (void)
317 {
318 struct target_ops *t;
319
320 for (t = current_target.beneath; t != NULL; t = t->beneath)
321 if (t->to_has_stack (t))
322 return 1;
323
324 return 0;
325 }
326
327 int
328 target_has_registers_1 (void)
329 {
330 struct target_ops *t;
331
332 for (t = current_target.beneath; t != NULL; t = t->beneath)
333 if (t->to_has_registers (t))
334 return 1;
335
336 return 0;
337 }
338
339 int
340 target_has_execution_1 (ptid_t the_ptid)
341 {
342 struct target_ops *t;
343
344 for (t = current_target.beneath; t != NULL; t = t->beneath)
345 if (t->to_has_execution (t, the_ptid))
346 return 1;
347
348 return 0;
349 }
350
351 int
352 target_has_execution_current (void)
353 {
354 return target_has_execution_1 (inferior_ptid);
355 }
356
357 /* Complete initialization of T. This ensures that various fields in
358 T are set, if needed by the target implementation. */
359
360 void
361 complete_target_initialization (struct target_ops *t)
362 {
363 /* Provide default values for all "must have" methods. */
364 if (t->to_xfer_partial == NULL)
365 t->to_xfer_partial = default_xfer_partial;
366
367 if (t->to_has_all_memory == NULL)
368 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
369
370 if (t->to_has_memory == NULL)
371 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
372
373 if (t->to_has_stack == NULL)
374 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
375
376 if (t->to_has_registers == NULL)
377 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
378
379 if (t->to_has_execution == NULL)
380 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
381
382 install_delegators (t);
383 }
384
385 /* Add possible target architecture T to the list and add a new
386 command 'target T->to_shortname'. Set COMPLETER as the command's
387 completer if not NULL. */
388
389 void
390 add_target_with_completer (struct target_ops *t,
391 completer_ftype *completer)
392 {
393 struct cmd_list_element *c;
394
395 complete_target_initialization (t);
396
397 if (!target_structs)
398 {
399 target_struct_allocsize = DEFAULT_ALLOCSIZE;
400 target_structs = (struct target_ops **) xmalloc
401 (target_struct_allocsize * sizeof (*target_structs));
402 }
403 if (target_struct_size >= target_struct_allocsize)
404 {
405 target_struct_allocsize *= 2;
406 target_structs = (struct target_ops **)
407 xrealloc ((char *) target_structs,
408 target_struct_allocsize * sizeof (*target_structs));
409 }
410 target_structs[target_struct_size++] = t;
411
412 if (targetlist == NULL)
413 add_prefix_cmd ("target", class_run, target_command, _("\
414 Connect to a target machine or process.\n\
415 The first argument is the type or protocol of the target machine.\n\
416 Remaining arguments are interpreted by the target protocol. For more\n\
417 information on the arguments for a particular protocol, type\n\
418 `help target ' followed by the protocol name."),
419 &targetlist, "target ", 0, &cmdlist);
420 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
421 &targetlist);
422 if (completer != NULL)
423 set_cmd_completer (c, completer);
424 }
425
426 /* Add a possible target architecture to the list. */
427
428 void
429 add_target (struct target_ops *t)
430 {
431 add_target_with_completer (t, NULL);
432 }
433
434 /* See target.h. */
435
436 void
437 add_deprecated_target_alias (struct target_ops *t, char *alias)
438 {
439 struct cmd_list_element *c;
440 char *alt;
441
442 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
443 see PR cli/15104. */
444 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
445 alt = xstrprintf ("target %s", t->to_shortname);
446 deprecate_cmd (c, alt);
447 }
448
449 /* Stub functions */
450
451 void
452 target_ignore (void)
453 {
454 }
455
456 void
457 target_kill (void)
458 {
459 struct target_ops *t;
460
461 for (t = current_target.beneath; t != NULL; t = t->beneath)
462 if (t->to_kill != NULL)
463 {
464 if (targetdebug)
465 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
466
467 t->to_kill (t);
468 return;
469 }
470
471 noprocess ();
472 }
473
474 void
475 target_load (char *arg, int from_tty)
476 {
477 target_dcache_invalidate ();
478 (*current_target.to_load) (&current_target, arg, from_tty);
479 }
480
481 void
482 target_create_inferior (char *exec_file, char *args,
483 char **env, int from_tty)
484 {
485 struct target_ops *t;
486
487 for (t = current_target.beneath; t != NULL; t = t->beneath)
488 {
489 if (t->to_create_inferior != NULL)
490 {
491 t->to_create_inferior (t, exec_file, args, env, from_tty);
492 if (targetdebug)
493 fprintf_unfiltered (gdb_stdlog,
494 "target_create_inferior (%s, %s, xxx, %d)\n",
495 exec_file, args, from_tty);
496 return;
497 }
498 }
499
500 internal_error (__FILE__, __LINE__,
501 _("could not find a target to create inferior"));
502 }
503
504 void
505 target_terminal_inferior (void)
506 {
507 /* A background resume (``run&'') should leave GDB in control of the
508 terminal. Use target_can_async_p, not target_is_async_p, since at
509 this point the target is not async yet. However, if sync_execution
510 is not set, we know it will become async prior to resume. */
511 if (target_can_async_p () && !sync_execution)
512 return;
513
514 /* If GDB is resuming the inferior in the foreground, install
515 inferior's terminal modes. */
516 (*current_target.to_terminal_inferior) (&current_target);
517 }
518
519 static int
520 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
521 struct target_ops *t)
522 {
523 errno = EIO; /* Can't read/write this location. */
524 return 0; /* No bytes handled. */
525 }
526
527 static void
528 tcomplain (void)
529 {
530 error (_("You can't do that when your target is `%s'"),
531 current_target.to_shortname);
532 }
533
534 void
535 noprocess (void)
536 {
537 error (_("You can't do that without a process to debug."));
538 }
539
540 static void
541 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
542 {
543 printf_unfiltered (_("No saved terminal information.\n"));
544 }
545
546 /* A default implementation for the to_get_ada_task_ptid target method.
547
548 This function builds the PTID by using both LWP and TID as part of
549 the PTID lwp and tid elements. The pid used is the pid of the
550 inferior_ptid. */
551
552 static ptid_t
553 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
554 {
555 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
556 }
557
558 static enum exec_direction_kind
559 default_execution_direction (struct target_ops *self)
560 {
561 if (!target_can_execute_reverse)
562 return EXEC_FORWARD;
563 else if (!target_can_async_p ())
564 return EXEC_FORWARD;
565 else
566 gdb_assert_not_reached ("\
567 to_execution_direction must be implemented for reverse async");
568 }
569
570 /* Go through the target stack from top to bottom, copying over zero
571 entries in current_target, then filling in still empty entries. In
572 effect, we are doing class inheritance through the pushed target
573 vectors.
574
575 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
576 is currently implemented, is that it discards any knowledge of
577 which target an inherited method originally belonged to.
578 Consequently, new new target methods should instead explicitly and
579 locally search the target stack for the target that can handle the
580 request. */
581
582 static void
583 update_current_target (void)
584 {
585 struct target_ops *t;
586
587 /* First, reset current's contents. */
588 memset (&current_target, 0, sizeof (current_target));
589
590 /* Install the delegators. */
591 install_delegators (&current_target);
592
593 #define INHERIT(FIELD, TARGET) \
594 if (!current_target.FIELD) \
595 current_target.FIELD = (TARGET)->FIELD
596
597 for (t = target_stack; t; t = t->beneath)
598 {
599 INHERIT (to_shortname, t);
600 INHERIT (to_longname, t);
601 INHERIT (to_doc, t);
602 /* Do not inherit to_open. */
603 /* Do not inherit to_close. */
604 /* Do not inherit to_attach. */
605 /* Do not inherit to_post_attach. */
606 INHERIT (to_attach_no_wait, t);
607 /* Do not inherit to_detach. */
608 /* Do not inherit to_disconnect. */
609 /* Do not inherit to_resume. */
610 /* Do not inherit to_wait. */
611 /* Do not inherit to_fetch_registers. */
612 /* Do not inherit to_store_registers. */
613 /* Do not inherit to_prepare_to_store. */
614 INHERIT (deprecated_xfer_memory, t);
615 /* Do not inherit to_files_info. */
616 /* Do not inherit to_insert_breakpoint. */
617 /* Do not inherit to_remove_breakpoint. */
618 /* Do not inherit to_can_use_hw_breakpoint. */
619 /* Do not inherit to_insert_hw_breakpoint. */
620 /* Do not inherit to_remove_hw_breakpoint. */
621 /* Do not inherit to_ranged_break_num_registers. */
622 /* Do not inherit to_insert_watchpoint. */
623 /* Do not inherit to_remove_watchpoint. */
624 /* Do not inherit to_insert_mask_watchpoint. */
625 /* Do not inherit to_remove_mask_watchpoint. */
626 /* Do not inherit to_stopped_data_address. */
627 INHERIT (to_have_steppable_watchpoint, t);
628 INHERIT (to_have_continuable_watchpoint, t);
629 /* Do not inherit to_stopped_by_watchpoint. */
630 /* Do not inherit to_watchpoint_addr_within_range. */
631 /* Do not inherit to_region_ok_for_hw_watchpoint. */
632 /* Do not inherit to_can_accel_watchpoint_condition. */
633 /* Do not inherit to_masked_watch_num_registers. */
634 /* Do not inherit to_terminal_init. */
635 /* Do not inherit to_terminal_inferior. */
636 /* Do not inherit to_terminal_ours_for_output. */
637 /* Do not inherit to_terminal_ours. */
638 /* Do not inherit to_terminal_save_ours. */
639 /* Do not inherit to_terminal_info. */
640 /* Do not inherit to_kill. */
641 /* Do not inherit to_load. */
642 /* Do no inherit to_create_inferior. */
643 /* Do not inherit to_post_startup_inferior. */
644 /* Do not inherit to_insert_fork_catchpoint. */
645 /* Do not inherit to_remove_fork_catchpoint. */
646 /* Do not inherit to_insert_vfork_catchpoint. */
647 /* Do not inherit to_remove_vfork_catchpoint. */
648 /* Do not inherit to_follow_fork. */
649 /* Do not inherit to_insert_exec_catchpoint. */
650 /* Do not inherit to_remove_exec_catchpoint. */
651 /* Do not inherit to_set_syscall_catchpoint. */
652 /* Do not inherit to_has_exited. */
653 /* Do not inherit to_mourn_inferior. */
654 INHERIT (to_can_run, t);
655 /* Do not inherit to_pass_signals. */
656 /* Do not inherit to_program_signals. */
657 /* Do not inherit to_thread_alive. */
658 /* Do not inherit to_find_new_threads. */
659 /* Do not inherit to_pid_to_str. */
660 /* Do not inherit to_extra_thread_info. */
661 /* Do not inherit to_thread_name. */
662 INHERIT (to_stop, t);
663 /* Do not inherit to_xfer_partial. */
664 /* Do not inherit to_rcmd. */
665 /* Do not inherit to_pid_to_exec_file. */
666 /* Do not inherit to_log_command. */
667 INHERIT (to_stratum, t);
668 /* Do not inherit to_has_all_memory. */
669 /* Do not inherit to_has_memory. */
670 /* Do not inherit to_has_stack. */
671 /* Do not inherit to_has_registers. */
672 /* Do not inherit to_has_execution. */
673 INHERIT (to_has_thread_control, t);
674 /* Do not inherit to_can_async_p. */
675 /* Do not inherit to_is_async_p. */
676 /* Do not inherit to_async. */
677 /* Do not inherit to_find_memory_regions. */
678 /* Do not inherit to_make_corefile_notes. */
679 /* Do not inherit to_get_bookmark. */
680 /* Do not inherit to_goto_bookmark. */
681 /* Do not inherit to_get_thread_local_address. */
682 /* Do not inherit to_can_execute_reverse. */
683 /* Do not inherit to_execution_direction. */
684 /* Do not inherit to_thread_architecture. */
685 /* Do not inherit to_read_description. */
686 /* Do not inherit to_get_ada_task_ptid. */
687 /* Do not inherit to_search_memory. */
688 /* Do not inherit to_supports_multi_process. */
689 /* Do not inherit to_supports_enable_disable_tracepoint. */
690 /* Do not inherit to_supports_string_tracing. */
691 INHERIT (to_trace_init, t);
692 INHERIT (to_download_tracepoint, t);
693 INHERIT (to_can_download_tracepoint, t);
694 INHERIT (to_download_trace_state_variable, t);
695 INHERIT (to_enable_tracepoint, t);
696 INHERIT (to_disable_tracepoint, t);
697 INHERIT (to_trace_set_readonly_regions, t);
698 INHERIT (to_trace_start, t);
699 INHERIT (to_get_trace_status, t);
700 INHERIT (to_get_tracepoint_status, t);
701 INHERIT (to_trace_stop, t);
702 INHERIT (to_trace_find, t);
703 INHERIT (to_get_trace_state_variable_value, t);
704 INHERIT (to_save_trace_data, t);
705 INHERIT (to_upload_tracepoints, t);
706 INHERIT (to_upload_trace_state_variables, t);
707 INHERIT (to_get_raw_trace_data, t);
708 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
709 INHERIT (to_set_disconnected_tracing, t);
710 INHERIT (to_set_circular_trace_buffer, t);
711 INHERIT (to_set_trace_buffer_size, t);
712 INHERIT (to_set_trace_notes, t);
713 INHERIT (to_get_tib_address, t);
714 INHERIT (to_set_permissions, t);
715 INHERIT (to_static_tracepoint_marker_at, t);
716 INHERIT (to_static_tracepoint_markers_by_strid, t);
717 INHERIT (to_traceframe_info, t);
718 INHERIT (to_use_agent, t);
719 INHERIT (to_can_use_agent, t);
720 INHERIT (to_augmented_libraries_svr4_read, t);
721 INHERIT (to_magic, t);
722 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
723 INHERIT (to_can_run_breakpoint_commands, t);
724 /* Do not inherit to_memory_map. */
725 /* Do not inherit to_flash_erase. */
726 /* Do not inherit to_flash_done. */
727 }
728 #undef INHERIT
729
730 /* Clean up a target struct so it no longer has any zero pointers in
731 it. Some entries are defaulted to a method that print an error,
732 others are hard-wired to a standard recursive default. */
733
734 #define de_fault(field, value) \
735 if (!current_target.field) \
736 current_target.field = value
737
738 de_fault (to_open,
739 (void (*) (char *, int))
740 tcomplain);
741 de_fault (to_close,
742 (void (*) (struct target_ops *))
743 target_ignore);
744 de_fault (deprecated_xfer_memory,
745 (int (*) (CORE_ADDR, gdb_byte *, int, int,
746 struct mem_attrib *, struct target_ops *))
747 nomemory);
748 de_fault (to_can_run,
749 (int (*) (struct target_ops *))
750 return_zero);
751 de_fault (to_stop,
752 (void (*) (struct target_ops *, ptid_t))
753 target_ignore);
754 current_target.to_read_description = NULL;
755 de_fault (to_trace_init,
756 (void (*) (struct target_ops *))
757 tcomplain);
758 de_fault (to_download_tracepoint,
759 (void (*) (struct target_ops *, struct bp_location *))
760 tcomplain);
761 de_fault (to_can_download_tracepoint,
762 (int (*) (struct target_ops *))
763 return_zero);
764 de_fault (to_download_trace_state_variable,
765 (void (*) (struct target_ops *, struct trace_state_variable *))
766 tcomplain);
767 de_fault (to_enable_tracepoint,
768 (void (*) (struct target_ops *, struct bp_location *))
769 tcomplain);
770 de_fault (to_disable_tracepoint,
771 (void (*) (struct target_ops *, struct bp_location *))
772 tcomplain);
773 de_fault (to_trace_set_readonly_regions,
774 (void (*) (struct target_ops *))
775 tcomplain);
776 de_fault (to_trace_start,
777 (void (*) (struct target_ops *))
778 tcomplain);
779 de_fault (to_get_trace_status,
780 (int (*) (struct target_ops *, struct trace_status *))
781 return_minus_one);
782 de_fault (to_get_tracepoint_status,
783 (void (*) (struct target_ops *, struct breakpoint *,
784 struct uploaded_tp *))
785 tcomplain);
786 de_fault (to_trace_stop,
787 (void (*) (struct target_ops *))
788 tcomplain);
789 de_fault (to_trace_find,
790 (int (*) (struct target_ops *,
791 enum trace_find_type, int, CORE_ADDR, CORE_ADDR, int *))
792 return_minus_one);
793 de_fault (to_get_trace_state_variable_value,
794 (int (*) (struct target_ops *, int, LONGEST *))
795 return_zero);
796 de_fault (to_save_trace_data,
797 (int (*) (struct target_ops *, const char *))
798 tcomplain);
799 de_fault (to_upload_tracepoints,
800 (int (*) (struct target_ops *, struct uploaded_tp **))
801 return_zero);
802 de_fault (to_upload_trace_state_variables,
803 (int (*) (struct target_ops *, struct uploaded_tsv **))
804 return_zero);
805 de_fault (to_get_raw_trace_data,
806 (LONGEST (*) (struct target_ops *, gdb_byte *, ULONGEST, LONGEST))
807 tcomplain);
808 de_fault (to_get_min_fast_tracepoint_insn_len,
809 (int (*) (struct target_ops *))
810 return_minus_one);
811 de_fault (to_set_disconnected_tracing,
812 (void (*) (struct target_ops *, int))
813 target_ignore);
814 de_fault (to_set_circular_trace_buffer,
815 (void (*) (struct target_ops *, int))
816 target_ignore);
817 de_fault (to_set_trace_buffer_size,
818 (void (*) (struct target_ops *, LONGEST))
819 target_ignore);
820 de_fault (to_set_trace_notes,
821 (int (*) (struct target_ops *,
822 const char *, const char *, const char *))
823 return_zero);
824 de_fault (to_get_tib_address,
825 (int (*) (struct target_ops *, ptid_t, CORE_ADDR *))
826 tcomplain);
827 de_fault (to_set_permissions,
828 (void (*) (struct target_ops *))
829 target_ignore);
830 de_fault (to_static_tracepoint_marker_at,
831 (int (*) (struct target_ops *,
832 CORE_ADDR, struct static_tracepoint_marker *))
833 return_zero);
834 de_fault (to_static_tracepoint_markers_by_strid,
835 (VEC(static_tracepoint_marker_p) * (*) (struct target_ops *,
836 const char *))
837 tcomplain);
838 de_fault (to_traceframe_info,
839 (struct traceframe_info * (*) (struct target_ops *))
840 return_null);
841 de_fault (to_supports_evaluation_of_breakpoint_conditions,
842 (int (*) (struct target_ops *))
843 return_zero);
844 de_fault (to_can_run_breakpoint_commands,
845 (int (*) (struct target_ops *))
846 return_zero);
847 de_fault (to_use_agent,
848 (int (*) (struct target_ops *, int))
849 tcomplain);
850 de_fault (to_can_use_agent,
851 (int (*) (struct target_ops *))
852 return_zero);
853 de_fault (to_augmented_libraries_svr4_read,
854 (int (*) (struct target_ops *))
855 return_zero);
856
857 #undef de_fault
858
859 /* Finally, position the target-stack beneath the squashed
860 "current_target". That way code looking for a non-inherited
861 target method can quickly and simply find it. */
862 current_target.beneath = target_stack;
863
864 if (targetdebug)
865 setup_target_debug ();
866 }
867
868 /* Push a new target type into the stack of the existing target accessors,
869 possibly superseding some of the existing accessors.
870
871 Rather than allow an empty stack, we always have the dummy target at
872 the bottom stratum, so we can call the function vectors without
873 checking them. */
874
875 void
876 push_target (struct target_ops *t)
877 {
878 struct target_ops **cur;
879
880 /* Check magic number. If wrong, it probably means someone changed
881 the struct definition, but not all the places that initialize one. */
882 if (t->to_magic != OPS_MAGIC)
883 {
884 fprintf_unfiltered (gdb_stderr,
885 "Magic number of %s target struct wrong\n",
886 t->to_shortname);
887 internal_error (__FILE__, __LINE__,
888 _("failed internal consistency check"));
889 }
890
891 /* Find the proper stratum to install this target in. */
892 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
893 {
894 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
895 break;
896 }
897
898 /* If there's already targets at this stratum, remove them. */
899 /* FIXME: cagney/2003-10-15: I think this should be popping all
900 targets to CUR, and not just those at this stratum level. */
901 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
902 {
903 /* There's already something at this stratum level. Close it,
904 and un-hook it from the stack. */
905 struct target_ops *tmp = (*cur);
906
907 (*cur) = (*cur)->beneath;
908 tmp->beneath = NULL;
909 target_close (tmp);
910 }
911
912 /* We have removed all targets in our stratum, now add the new one. */
913 t->beneath = (*cur);
914 (*cur) = t;
915
916 update_current_target ();
917 }
918
919 /* Remove a target_ops vector from the stack, wherever it may be.
920 Return how many times it was removed (0 or 1). */
921
922 int
923 unpush_target (struct target_ops *t)
924 {
925 struct target_ops **cur;
926 struct target_ops *tmp;
927
928 if (t->to_stratum == dummy_stratum)
929 internal_error (__FILE__, __LINE__,
930 _("Attempt to unpush the dummy target"));
931
932 /* Look for the specified target. Note that we assume that a target
933 can only occur once in the target stack. */
934
935 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
936 {
937 if ((*cur) == t)
938 break;
939 }
940
941 /* If we don't find target_ops, quit. Only open targets should be
942 closed. */
943 if ((*cur) == NULL)
944 return 0;
945
946 /* Unchain the target. */
947 tmp = (*cur);
948 (*cur) = (*cur)->beneath;
949 tmp->beneath = NULL;
950
951 update_current_target ();
952
953 /* Finally close the target. Note we do this after unchaining, so
954 any target method calls from within the target_close
955 implementation don't end up in T anymore. */
956 target_close (t);
957
958 return 1;
959 }
960
961 void
962 pop_all_targets_above (enum strata above_stratum)
963 {
964 while ((int) (current_target.to_stratum) > (int) above_stratum)
965 {
966 if (!unpush_target (target_stack))
967 {
968 fprintf_unfiltered (gdb_stderr,
969 "pop_all_targets couldn't find target %s\n",
970 target_stack->to_shortname);
971 internal_error (__FILE__, __LINE__,
972 _("failed internal consistency check"));
973 break;
974 }
975 }
976 }
977
978 void
979 pop_all_targets (void)
980 {
981 pop_all_targets_above (dummy_stratum);
982 }
983
984 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
985
986 int
987 target_is_pushed (struct target_ops *t)
988 {
989 struct target_ops **cur;
990
991 /* Check magic number. If wrong, it probably means someone changed
992 the struct definition, but not all the places that initialize one. */
993 if (t->to_magic != OPS_MAGIC)
994 {
995 fprintf_unfiltered (gdb_stderr,
996 "Magic number of %s target struct wrong\n",
997 t->to_shortname);
998 internal_error (__FILE__, __LINE__,
999 _("failed internal consistency check"));
1000 }
1001
1002 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1003 if (*cur == t)
1004 return 1;
1005
1006 return 0;
1007 }
1008
1009 /* Using the objfile specified in OBJFILE, find the address for the
1010 current thread's thread-local storage with offset OFFSET. */
1011 CORE_ADDR
1012 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1013 {
1014 volatile CORE_ADDR addr = 0;
1015 struct target_ops *target;
1016
1017 for (target = current_target.beneath;
1018 target != NULL;
1019 target = target->beneath)
1020 {
1021 if (target->to_get_thread_local_address != NULL)
1022 break;
1023 }
1024
1025 if (target != NULL
1026 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1027 {
1028 ptid_t ptid = inferior_ptid;
1029 volatile struct gdb_exception ex;
1030
1031 TRY_CATCH (ex, RETURN_MASK_ALL)
1032 {
1033 CORE_ADDR lm_addr;
1034
1035 /* Fetch the load module address for this objfile. */
1036 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1037 objfile);
1038 /* If it's 0, throw the appropriate exception. */
1039 if (lm_addr == 0)
1040 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1041 _("TLS load module not found"));
1042
1043 addr = target->to_get_thread_local_address (target, ptid,
1044 lm_addr, offset);
1045 }
1046 /* If an error occurred, print TLS related messages here. Otherwise,
1047 throw the error to some higher catcher. */
1048 if (ex.reason < 0)
1049 {
1050 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1051
1052 switch (ex.error)
1053 {
1054 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1055 error (_("Cannot find thread-local variables "
1056 "in this thread library."));
1057 break;
1058 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1059 if (objfile_is_library)
1060 error (_("Cannot find shared library `%s' in dynamic"
1061 " linker's load module list"), objfile_name (objfile));
1062 else
1063 error (_("Cannot find executable file `%s' in dynamic"
1064 " linker's load module list"), objfile_name (objfile));
1065 break;
1066 case TLS_NOT_ALLOCATED_YET_ERROR:
1067 if (objfile_is_library)
1068 error (_("The inferior has not yet allocated storage for"
1069 " thread-local variables in\n"
1070 "the shared library `%s'\n"
1071 "for %s"),
1072 objfile_name (objfile), target_pid_to_str (ptid));
1073 else
1074 error (_("The inferior has not yet allocated storage for"
1075 " thread-local variables in\n"
1076 "the executable `%s'\n"
1077 "for %s"),
1078 objfile_name (objfile), target_pid_to_str (ptid));
1079 break;
1080 case TLS_GENERIC_ERROR:
1081 if (objfile_is_library)
1082 error (_("Cannot find thread-local storage for %s, "
1083 "shared library %s:\n%s"),
1084 target_pid_to_str (ptid),
1085 objfile_name (objfile), ex.message);
1086 else
1087 error (_("Cannot find thread-local storage for %s, "
1088 "executable file %s:\n%s"),
1089 target_pid_to_str (ptid),
1090 objfile_name (objfile), ex.message);
1091 break;
1092 default:
1093 throw_exception (ex);
1094 break;
1095 }
1096 }
1097 }
1098 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1099 TLS is an ABI-specific thing. But we don't do that yet. */
1100 else
1101 error (_("Cannot find thread-local variables on this target"));
1102
1103 return addr;
1104 }
1105
1106 const char *
1107 target_xfer_status_to_string (enum target_xfer_status err)
1108 {
1109 #define CASE(X) case X: return #X
1110 switch (err)
1111 {
1112 CASE(TARGET_XFER_E_IO);
1113 CASE(TARGET_XFER_E_UNAVAILABLE);
1114 default:
1115 return "<unknown>";
1116 }
1117 #undef CASE
1118 };
1119
1120
1121 #undef MIN
1122 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1123
1124 /* target_read_string -- read a null terminated string, up to LEN bytes,
1125 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1126 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1127 is responsible for freeing it. Return the number of bytes successfully
1128 read. */
1129
1130 int
1131 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1132 {
1133 int tlen, offset, i;
1134 gdb_byte buf[4];
1135 int errcode = 0;
1136 char *buffer;
1137 int buffer_allocated;
1138 char *bufptr;
1139 unsigned int nbytes_read = 0;
1140
1141 gdb_assert (string);
1142
1143 /* Small for testing. */
1144 buffer_allocated = 4;
1145 buffer = xmalloc (buffer_allocated);
1146 bufptr = buffer;
1147
1148 while (len > 0)
1149 {
1150 tlen = MIN (len, 4 - (memaddr & 3));
1151 offset = memaddr & 3;
1152
1153 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1154 if (errcode != 0)
1155 {
1156 /* The transfer request might have crossed the boundary to an
1157 unallocated region of memory. Retry the transfer, requesting
1158 a single byte. */
1159 tlen = 1;
1160 offset = 0;
1161 errcode = target_read_memory (memaddr, buf, 1);
1162 if (errcode != 0)
1163 goto done;
1164 }
1165
1166 if (bufptr - buffer + tlen > buffer_allocated)
1167 {
1168 unsigned int bytes;
1169
1170 bytes = bufptr - buffer;
1171 buffer_allocated *= 2;
1172 buffer = xrealloc (buffer, buffer_allocated);
1173 bufptr = buffer + bytes;
1174 }
1175
1176 for (i = 0; i < tlen; i++)
1177 {
1178 *bufptr++ = buf[i + offset];
1179 if (buf[i + offset] == '\000')
1180 {
1181 nbytes_read += i + 1;
1182 goto done;
1183 }
1184 }
1185
1186 memaddr += tlen;
1187 len -= tlen;
1188 nbytes_read += tlen;
1189 }
1190 done:
1191 *string = buffer;
1192 if (errnop != NULL)
1193 *errnop = errcode;
1194 return nbytes_read;
1195 }
1196
1197 struct target_section_table *
1198 target_get_section_table (struct target_ops *target)
1199 {
1200 struct target_ops *t;
1201
1202 if (targetdebug)
1203 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1204
1205 for (t = target; t != NULL; t = t->beneath)
1206 if (t->to_get_section_table != NULL)
1207 return (*t->to_get_section_table) (t);
1208
1209 return NULL;
1210 }
1211
1212 /* Find a section containing ADDR. */
1213
1214 struct target_section *
1215 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1216 {
1217 struct target_section_table *table = target_get_section_table (target);
1218 struct target_section *secp;
1219
1220 if (table == NULL)
1221 return NULL;
1222
1223 for (secp = table->sections; secp < table->sections_end; secp++)
1224 {
1225 if (addr >= secp->addr && addr < secp->endaddr)
1226 return secp;
1227 }
1228 return NULL;
1229 }
1230
1231 /* Read memory from the live target, even if currently inspecting a
1232 traceframe. The return is the same as that of target_read. */
1233
1234 static enum target_xfer_status
1235 target_read_live_memory (enum target_object object,
1236 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1237 ULONGEST *xfered_len)
1238 {
1239 enum target_xfer_status ret;
1240 struct cleanup *cleanup;
1241
1242 /* Switch momentarily out of tfind mode so to access live memory.
1243 Note that this must not clear global state, such as the frame
1244 cache, which must still remain valid for the previous traceframe.
1245 We may be _building_ the frame cache at this point. */
1246 cleanup = make_cleanup_restore_traceframe_number ();
1247 set_traceframe_number (-1);
1248
1249 ret = target_xfer_partial (current_target.beneath, object, NULL,
1250 myaddr, NULL, memaddr, len, xfered_len);
1251
1252 do_cleanups (cleanup);
1253 return ret;
1254 }
1255
1256 /* Using the set of read-only target sections of OPS, read live
1257 read-only memory. Note that the actual reads start from the
1258 top-most target again.
1259
1260 For interface/parameters/return description see target.h,
1261 to_xfer_partial. */
1262
1263 static enum target_xfer_status
1264 memory_xfer_live_readonly_partial (struct target_ops *ops,
1265 enum target_object object,
1266 gdb_byte *readbuf, ULONGEST memaddr,
1267 ULONGEST len, ULONGEST *xfered_len)
1268 {
1269 struct target_section *secp;
1270 struct target_section_table *table;
1271
1272 secp = target_section_by_addr (ops, memaddr);
1273 if (secp != NULL
1274 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1275 secp->the_bfd_section)
1276 & SEC_READONLY))
1277 {
1278 struct target_section *p;
1279 ULONGEST memend = memaddr + len;
1280
1281 table = target_get_section_table (ops);
1282
1283 for (p = table->sections; p < table->sections_end; p++)
1284 {
1285 if (memaddr >= p->addr)
1286 {
1287 if (memend <= p->endaddr)
1288 {
1289 /* Entire transfer is within this section. */
1290 return target_read_live_memory (object, memaddr,
1291 readbuf, len, xfered_len);
1292 }
1293 else if (memaddr >= p->endaddr)
1294 {
1295 /* This section ends before the transfer starts. */
1296 continue;
1297 }
1298 else
1299 {
1300 /* This section overlaps the transfer. Just do half. */
1301 len = p->endaddr - memaddr;
1302 return target_read_live_memory (object, memaddr,
1303 readbuf, len, xfered_len);
1304 }
1305 }
1306 }
1307 }
1308
1309 return TARGET_XFER_EOF;
1310 }
1311
1312 /* Read memory from more than one valid target. A core file, for
1313 instance, could have some of memory but delegate other bits to
1314 the target below it. So, we must manually try all targets. */
1315
1316 static enum target_xfer_status
1317 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1318 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1319 ULONGEST *xfered_len)
1320 {
1321 enum target_xfer_status res;
1322
1323 do
1324 {
1325 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1326 readbuf, writebuf, memaddr, len,
1327 xfered_len);
1328 if (res == TARGET_XFER_OK)
1329 break;
1330
1331 /* Stop if the target reports that the memory is not available. */
1332 if (res == TARGET_XFER_E_UNAVAILABLE)
1333 break;
1334
1335 /* We want to continue past core files to executables, but not
1336 past a running target's memory. */
1337 if (ops->to_has_all_memory (ops))
1338 break;
1339
1340 ops = ops->beneath;
1341 }
1342 while (ops != NULL);
1343
1344 return res;
1345 }
1346
1347 /* Perform a partial memory transfer.
1348 For docs see target.h, to_xfer_partial. */
1349
1350 static enum target_xfer_status
1351 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1352 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1353 ULONGEST len, ULONGEST *xfered_len)
1354 {
1355 enum target_xfer_status res;
1356 int reg_len;
1357 struct mem_region *region;
1358 struct inferior *inf;
1359
1360 /* For accesses to unmapped overlay sections, read directly from
1361 files. Must do this first, as MEMADDR may need adjustment. */
1362 if (readbuf != NULL && overlay_debugging)
1363 {
1364 struct obj_section *section = find_pc_overlay (memaddr);
1365
1366 if (pc_in_unmapped_range (memaddr, section))
1367 {
1368 struct target_section_table *table
1369 = target_get_section_table (ops);
1370 const char *section_name = section->the_bfd_section->name;
1371
1372 memaddr = overlay_mapped_address (memaddr, section);
1373 return section_table_xfer_memory_partial (readbuf, writebuf,
1374 memaddr, len, xfered_len,
1375 table->sections,
1376 table->sections_end,
1377 section_name);
1378 }
1379 }
1380
1381 /* Try the executable files, if "trust-readonly-sections" is set. */
1382 if (readbuf != NULL && trust_readonly)
1383 {
1384 struct target_section *secp;
1385 struct target_section_table *table;
1386
1387 secp = target_section_by_addr (ops, memaddr);
1388 if (secp != NULL
1389 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1390 secp->the_bfd_section)
1391 & SEC_READONLY))
1392 {
1393 table = target_get_section_table (ops);
1394 return section_table_xfer_memory_partial (readbuf, writebuf,
1395 memaddr, len, xfered_len,
1396 table->sections,
1397 table->sections_end,
1398 NULL);
1399 }
1400 }
1401
1402 /* If reading unavailable memory in the context of traceframes, and
1403 this address falls within a read-only section, fallback to
1404 reading from live memory. */
1405 if (readbuf != NULL && get_traceframe_number () != -1)
1406 {
1407 VEC(mem_range_s) *available;
1408
1409 /* If we fail to get the set of available memory, then the
1410 target does not support querying traceframe info, and so we
1411 attempt reading from the traceframe anyway (assuming the
1412 target implements the old QTro packet then). */
1413 if (traceframe_available_memory (&available, memaddr, len))
1414 {
1415 struct cleanup *old_chain;
1416
1417 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1418
1419 if (VEC_empty (mem_range_s, available)
1420 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1421 {
1422 /* Don't read into the traceframe's available
1423 memory. */
1424 if (!VEC_empty (mem_range_s, available))
1425 {
1426 LONGEST oldlen = len;
1427
1428 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1429 gdb_assert (len <= oldlen);
1430 }
1431
1432 do_cleanups (old_chain);
1433
1434 /* This goes through the topmost target again. */
1435 res = memory_xfer_live_readonly_partial (ops, object,
1436 readbuf, memaddr,
1437 len, xfered_len);
1438 if (res == TARGET_XFER_OK)
1439 return TARGET_XFER_OK;
1440 else
1441 {
1442 /* No use trying further, we know some memory starting
1443 at MEMADDR isn't available. */
1444 *xfered_len = len;
1445 return TARGET_XFER_E_UNAVAILABLE;
1446 }
1447 }
1448
1449 /* Don't try to read more than how much is available, in
1450 case the target implements the deprecated QTro packet to
1451 cater for older GDBs (the target's knowledge of read-only
1452 sections may be outdated by now). */
1453 len = VEC_index (mem_range_s, available, 0)->length;
1454
1455 do_cleanups (old_chain);
1456 }
1457 }
1458
1459 /* Try GDB's internal data cache. */
1460 region = lookup_mem_region (memaddr);
1461 /* region->hi == 0 means there's no upper bound. */
1462 if (memaddr + len < region->hi || region->hi == 0)
1463 reg_len = len;
1464 else
1465 reg_len = region->hi - memaddr;
1466
1467 switch (region->attrib.mode)
1468 {
1469 case MEM_RO:
1470 if (writebuf != NULL)
1471 return TARGET_XFER_E_IO;
1472 break;
1473
1474 case MEM_WO:
1475 if (readbuf != NULL)
1476 return TARGET_XFER_E_IO;
1477 break;
1478
1479 case MEM_FLASH:
1480 /* We only support writing to flash during "load" for now. */
1481 if (writebuf != NULL)
1482 error (_("Writing to flash memory forbidden in this context"));
1483 break;
1484
1485 case MEM_NONE:
1486 return TARGET_XFER_E_IO;
1487 }
1488
1489 if (!ptid_equal (inferior_ptid, null_ptid))
1490 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1491 else
1492 inf = NULL;
1493
1494 if (inf != NULL
1495 /* The dcache reads whole cache lines; that doesn't play well
1496 with reading from a trace buffer, because reading outside of
1497 the collected memory range fails. */
1498 && get_traceframe_number () == -1
1499 && (region->attrib.cache
1500 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1501 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1502 {
1503 DCACHE *dcache = target_dcache_get_or_init ();
1504 int l;
1505
1506 if (readbuf != NULL)
1507 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1508 else
1509 /* FIXME drow/2006-08-09: If we're going to preserve const
1510 correctness dcache_xfer_memory should take readbuf and
1511 writebuf. */
1512 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1513 reg_len, 1);
1514 if (l <= 0)
1515 return TARGET_XFER_E_IO;
1516 else
1517 {
1518 *xfered_len = (ULONGEST) l;
1519 return TARGET_XFER_OK;
1520 }
1521 }
1522
1523 /* If none of those methods found the memory we wanted, fall back
1524 to a target partial transfer. Normally a single call to
1525 to_xfer_partial is enough; if it doesn't recognize an object
1526 it will call the to_xfer_partial of the next target down.
1527 But for memory this won't do. Memory is the only target
1528 object which can be read from more than one valid target.
1529 A core file, for instance, could have some of memory but
1530 delegate other bits to the target below it. So, we must
1531 manually try all targets. */
1532
1533 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1534 xfered_len);
1535
1536 /* Make sure the cache gets updated no matter what - if we are writing
1537 to the stack. Even if this write is not tagged as such, we still need
1538 to update the cache. */
1539
1540 if (res == TARGET_XFER_OK
1541 && inf != NULL
1542 && writebuf != NULL
1543 && target_dcache_init_p ()
1544 && !region->attrib.cache
1545 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1546 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1547 {
1548 DCACHE *dcache = target_dcache_get ();
1549
1550 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1551 }
1552
1553 /* If we still haven't got anything, return the last error. We
1554 give up. */
1555 return res;
1556 }
1557
1558 /* Perform a partial memory transfer. For docs see target.h,
1559 to_xfer_partial. */
1560
1561 static enum target_xfer_status
1562 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1563 gdb_byte *readbuf, const gdb_byte *writebuf,
1564 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1565 {
1566 enum target_xfer_status res;
1567
1568 /* Zero length requests are ok and require no work. */
1569 if (len == 0)
1570 return TARGET_XFER_EOF;
1571
1572 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1573 breakpoint insns, thus hiding out from higher layers whether
1574 there are software breakpoints inserted in the code stream. */
1575 if (readbuf != NULL)
1576 {
1577 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1578 xfered_len);
1579
1580 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1581 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1582 }
1583 else
1584 {
1585 void *buf;
1586 struct cleanup *old_chain;
1587
1588 /* A large write request is likely to be partially satisfied
1589 by memory_xfer_partial_1. We will continually malloc
1590 and free a copy of the entire write request for breakpoint
1591 shadow handling even though we only end up writing a small
1592 subset of it. Cap writes to 4KB to mitigate this. */
1593 len = min (4096, len);
1594
1595 buf = xmalloc (len);
1596 old_chain = make_cleanup (xfree, buf);
1597 memcpy (buf, writebuf, len);
1598
1599 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1600 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1601 xfered_len);
1602
1603 do_cleanups (old_chain);
1604 }
1605
1606 return res;
1607 }
1608
1609 static void
1610 restore_show_memory_breakpoints (void *arg)
1611 {
1612 show_memory_breakpoints = (uintptr_t) arg;
1613 }
1614
1615 struct cleanup *
1616 make_show_memory_breakpoints_cleanup (int show)
1617 {
1618 int current = show_memory_breakpoints;
1619
1620 show_memory_breakpoints = show;
1621 return make_cleanup (restore_show_memory_breakpoints,
1622 (void *) (uintptr_t) current);
1623 }
1624
1625 /* For docs see target.h, to_xfer_partial. */
1626
1627 enum target_xfer_status
1628 target_xfer_partial (struct target_ops *ops,
1629 enum target_object object, const char *annex,
1630 gdb_byte *readbuf, const gdb_byte *writebuf,
1631 ULONGEST offset, ULONGEST len,
1632 ULONGEST *xfered_len)
1633 {
1634 enum target_xfer_status retval;
1635
1636 gdb_assert (ops->to_xfer_partial != NULL);
1637
1638 /* Transfer is done when LEN is zero. */
1639 if (len == 0)
1640 return TARGET_XFER_EOF;
1641
1642 if (writebuf && !may_write_memory)
1643 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1644 core_addr_to_string_nz (offset), plongest (len));
1645
1646 *xfered_len = 0;
1647
1648 /* If this is a memory transfer, let the memory-specific code
1649 have a look at it instead. Memory transfers are more
1650 complicated. */
1651 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1652 || object == TARGET_OBJECT_CODE_MEMORY)
1653 retval = memory_xfer_partial (ops, object, readbuf,
1654 writebuf, offset, len, xfered_len);
1655 else if (object == TARGET_OBJECT_RAW_MEMORY)
1656 {
1657 /* Request the normal memory object from other layers. */
1658 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1659 xfered_len);
1660 }
1661 else
1662 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1663 writebuf, offset, len, xfered_len);
1664
1665 if (targetdebug)
1666 {
1667 const unsigned char *myaddr = NULL;
1668
1669 fprintf_unfiltered (gdb_stdlog,
1670 "%s:target_xfer_partial "
1671 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1672 ops->to_shortname,
1673 (int) object,
1674 (annex ? annex : "(null)"),
1675 host_address_to_string (readbuf),
1676 host_address_to_string (writebuf),
1677 core_addr_to_string_nz (offset),
1678 pulongest (len), retval,
1679 pulongest (*xfered_len));
1680
1681 if (readbuf)
1682 myaddr = readbuf;
1683 if (writebuf)
1684 myaddr = writebuf;
1685 if (retval == TARGET_XFER_OK && myaddr != NULL)
1686 {
1687 int i;
1688
1689 fputs_unfiltered (", bytes =", gdb_stdlog);
1690 for (i = 0; i < *xfered_len; i++)
1691 {
1692 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1693 {
1694 if (targetdebug < 2 && i > 0)
1695 {
1696 fprintf_unfiltered (gdb_stdlog, " ...");
1697 break;
1698 }
1699 fprintf_unfiltered (gdb_stdlog, "\n");
1700 }
1701
1702 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1703 }
1704 }
1705
1706 fputc_unfiltered ('\n', gdb_stdlog);
1707 }
1708
1709 /* Check implementations of to_xfer_partial update *XFERED_LEN
1710 properly. Do assertion after printing debug messages, so that we
1711 can find more clues on assertion failure from debugging messages. */
1712 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1713 gdb_assert (*xfered_len > 0);
1714
1715 return retval;
1716 }
1717
1718 /* Read LEN bytes of target memory at address MEMADDR, placing the
1719 results in GDB's memory at MYADDR. Returns either 0 for success or
1720 TARGET_XFER_E_IO if any error occurs.
1721
1722 If an error occurs, no guarantee is made about the contents of the data at
1723 MYADDR. In particular, the caller should not depend upon partial reads
1724 filling the buffer with good data. There is no way for the caller to know
1725 how much good data might have been transfered anyway. Callers that can
1726 deal with partial reads should call target_read (which will retry until
1727 it makes no progress, and then return how much was transferred). */
1728
1729 int
1730 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1731 {
1732 /* Dispatch to the topmost target, not the flattened current_target.
1733 Memory accesses check target->to_has_(all_)memory, and the
1734 flattened target doesn't inherit those. */
1735 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1736 myaddr, memaddr, len) == len)
1737 return 0;
1738 else
1739 return TARGET_XFER_E_IO;
1740 }
1741
1742 /* Like target_read_memory, but specify explicitly that this is a read
1743 from the target's raw memory. That is, this read bypasses the
1744 dcache, breakpoint shadowing, etc. */
1745
1746 int
1747 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1748 {
1749 /* See comment in target_read_memory about why the request starts at
1750 current_target.beneath. */
1751 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1752 myaddr, memaddr, len) == len)
1753 return 0;
1754 else
1755 return TARGET_XFER_E_IO;
1756 }
1757
1758 /* Like target_read_memory, but specify explicitly that this is a read from
1759 the target's stack. This may trigger different cache behavior. */
1760
1761 int
1762 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1763 {
1764 /* See comment in target_read_memory about why the request starts at
1765 current_target.beneath. */
1766 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1767 myaddr, memaddr, len) == len)
1768 return 0;
1769 else
1770 return TARGET_XFER_E_IO;
1771 }
1772
1773 /* Like target_read_memory, but specify explicitly that this is a read from
1774 the target's code. This may trigger different cache behavior. */
1775
1776 int
1777 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1778 {
1779 /* See comment in target_read_memory about why the request starts at
1780 current_target.beneath. */
1781 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1782 myaddr, memaddr, len) == len)
1783 return 0;
1784 else
1785 return TARGET_XFER_E_IO;
1786 }
1787
1788 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1789 Returns either 0 for success or TARGET_XFER_E_IO if any
1790 error occurs. If an error occurs, no guarantee is made about how
1791 much data got written. Callers that can deal with partial writes
1792 should call target_write. */
1793
1794 int
1795 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1796 {
1797 /* See comment in target_read_memory about why the request starts at
1798 current_target.beneath. */
1799 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1800 myaddr, memaddr, len) == len)
1801 return 0;
1802 else
1803 return TARGET_XFER_E_IO;
1804 }
1805
1806 /* Write LEN bytes from MYADDR to target raw memory at address
1807 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1808 if any error occurs. If an error occurs, no guarantee is made
1809 about how much data got written. Callers that can deal with
1810 partial writes should call target_write. */
1811
1812 int
1813 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1814 {
1815 /* See comment in target_read_memory about why the request starts at
1816 current_target.beneath. */
1817 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1818 myaddr, memaddr, len) == len)
1819 return 0;
1820 else
1821 return TARGET_XFER_E_IO;
1822 }
1823
1824 /* Fetch the target's memory map. */
1825
1826 VEC(mem_region_s) *
1827 target_memory_map (void)
1828 {
1829 VEC(mem_region_s) *result;
1830 struct mem_region *last_one, *this_one;
1831 int ix;
1832 struct target_ops *t;
1833
1834 if (targetdebug)
1835 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1836
1837 for (t = current_target.beneath; t != NULL; t = t->beneath)
1838 if (t->to_memory_map != NULL)
1839 break;
1840
1841 if (t == NULL)
1842 return NULL;
1843
1844 result = t->to_memory_map (t);
1845 if (result == NULL)
1846 return NULL;
1847
1848 qsort (VEC_address (mem_region_s, result),
1849 VEC_length (mem_region_s, result),
1850 sizeof (struct mem_region), mem_region_cmp);
1851
1852 /* Check that regions do not overlap. Simultaneously assign
1853 a numbering for the "mem" commands to use to refer to
1854 each region. */
1855 last_one = NULL;
1856 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1857 {
1858 this_one->number = ix;
1859
1860 if (last_one && last_one->hi > this_one->lo)
1861 {
1862 warning (_("Overlapping regions in memory map: ignoring"));
1863 VEC_free (mem_region_s, result);
1864 return NULL;
1865 }
1866 last_one = this_one;
1867 }
1868
1869 return result;
1870 }
1871
1872 void
1873 target_flash_erase (ULONGEST address, LONGEST length)
1874 {
1875 struct target_ops *t;
1876
1877 for (t = current_target.beneath; t != NULL; t = t->beneath)
1878 if (t->to_flash_erase != NULL)
1879 {
1880 if (targetdebug)
1881 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1882 hex_string (address), phex (length, 0));
1883 t->to_flash_erase (t, address, length);
1884 return;
1885 }
1886
1887 tcomplain ();
1888 }
1889
1890 void
1891 target_flash_done (void)
1892 {
1893 struct target_ops *t;
1894
1895 for (t = current_target.beneath; t != NULL; t = t->beneath)
1896 if (t->to_flash_done != NULL)
1897 {
1898 if (targetdebug)
1899 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1900 t->to_flash_done (t);
1901 return;
1902 }
1903
1904 tcomplain ();
1905 }
1906
1907 static void
1908 show_trust_readonly (struct ui_file *file, int from_tty,
1909 struct cmd_list_element *c, const char *value)
1910 {
1911 fprintf_filtered (file,
1912 _("Mode for reading from readonly sections is %s.\n"),
1913 value);
1914 }
1915
1916 /* More generic transfers. */
1917
1918 static enum target_xfer_status
1919 default_xfer_partial (struct target_ops *ops, enum target_object object,
1920 const char *annex, gdb_byte *readbuf,
1921 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1922 ULONGEST *xfered_len)
1923 {
1924 if (object == TARGET_OBJECT_MEMORY
1925 && ops->deprecated_xfer_memory != NULL)
1926 /* If available, fall back to the target's
1927 "deprecated_xfer_memory" method. */
1928 {
1929 int xfered = -1;
1930
1931 errno = 0;
1932 if (writebuf != NULL)
1933 {
1934 void *buffer = xmalloc (len);
1935 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1936
1937 memcpy (buffer, writebuf, len);
1938 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1939 1/*write*/, NULL, ops);
1940 do_cleanups (cleanup);
1941 }
1942 if (readbuf != NULL)
1943 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1944 0/*read*/, NULL, ops);
1945 if (xfered > 0)
1946 {
1947 *xfered_len = (ULONGEST) xfered;
1948 return TARGET_XFER_E_IO;
1949 }
1950 else if (xfered == 0 && errno == 0)
1951 /* "deprecated_xfer_memory" uses 0, cross checked against
1952 ERRNO as one indication of an error. */
1953 return TARGET_XFER_EOF;
1954 else
1955 return TARGET_XFER_E_IO;
1956 }
1957 else
1958 {
1959 gdb_assert (ops->beneath != NULL);
1960 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1961 readbuf, writebuf, offset, len,
1962 xfered_len);
1963 }
1964 }
1965
1966 /* Target vector read/write partial wrapper functions. */
1967
1968 static enum target_xfer_status
1969 target_read_partial (struct target_ops *ops,
1970 enum target_object object,
1971 const char *annex, gdb_byte *buf,
1972 ULONGEST offset, ULONGEST len,
1973 ULONGEST *xfered_len)
1974 {
1975 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1976 xfered_len);
1977 }
1978
1979 static enum target_xfer_status
1980 target_write_partial (struct target_ops *ops,
1981 enum target_object object,
1982 const char *annex, const gdb_byte *buf,
1983 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1984 {
1985 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1986 xfered_len);
1987 }
1988
1989 /* Wrappers to perform the full transfer. */
1990
1991 /* For docs on target_read see target.h. */
1992
1993 LONGEST
1994 target_read (struct target_ops *ops,
1995 enum target_object object,
1996 const char *annex, gdb_byte *buf,
1997 ULONGEST offset, LONGEST len)
1998 {
1999 LONGEST xfered = 0;
2000
2001 while (xfered < len)
2002 {
2003 ULONGEST xfered_len;
2004 enum target_xfer_status status;
2005
2006 status = target_read_partial (ops, object, annex,
2007 (gdb_byte *) buf + xfered,
2008 offset + xfered, len - xfered,
2009 &xfered_len);
2010
2011 /* Call an observer, notifying them of the xfer progress? */
2012 if (status == TARGET_XFER_EOF)
2013 return xfered;
2014 else if (status == TARGET_XFER_OK)
2015 {
2016 xfered += xfered_len;
2017 QUIT;
2018 }
2019 else
2020 return -1;
2021
2022 }
2023 return len;
2024 }
2025
2026 /* Assuming that the entire [begin, end) range of memory cannot be
2027 read, try to read whatever subrange is possible to read.
2028
2029 The function returns, in RESULT, either zero or one memory block.
2030 If there's a readable subrange at the beginning, it is completely
2031 read and returned. Any further readable subrange will not be read.
2032 Otherwise, if there's a readable subrange at the end, it will be
2033 completely read and returned. Any readable subranges before it
2034 (obviously, not starting at the beginning), will be ignored. In
2035 other cases -- either no readable subrange, or readable subrange(s)
2036 that is neither at the beginning, or end, nothing is returned.
2037
2038 The purpose of this function is to handle a read across a boundary
2039 of accessible memory in a case when memory map is not available.
2040 The above restrictions are fine for this case, but will give
2041 incorrect results if the memory is 'patchy'. However, supporting
2042 'patchy' memory would require trying to read every single byte,
2043 and it seems unacceptable solution. Explicit memory map is
2044 recommended for this case -- and target_read_memory_robust will
2045 take care of reading multiple ranges then. */
2046
2047 static void
2048 read_whatever_is_readable (struct target_ops *ops,
2049 ULONGEST begin, ULONGEST end,
2050 VEC(memory_read_result_s) **result)
2051 {
2052 gdb_byte *buf = xmalloc (end - begin);
2053 ULONGEST current_begin = begin;
2054 ULONGEST current_end = end;
2055 int forward;
2056 memory_read_result_s r;
2057 ULONGEST xfered_len;
2058
2059 /* If we previously failed to read 1 byte, nothing can be done here. */
2060 if (end - begin <= 1)
2061 {
2062 xfree (buf);
2063 return;
2064 }
2065
2066 /* Check that either first or the last byte is readable, and give up
2067 if not. This heuristic is meant to permit reading accessible memory
2068 at the boundary of accessible region. */
2069 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2070 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
2071 {
2072 forward = 1;
2073 ++current_begin;
2074 }
2075 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2076 buf + (end-begin) - 1, end - 1, 1,
2077 &xfered_len) == TARGET_XFER_OK)
2078 {
2079 forward = 0;
2080 --current_end;
2081 }
2082 else
2083 {
2084 xfree (buf);
2085 return;
2086 }
2087
2088 /* Loop invariant is that the [current_begin, current_end) was previously
2089 found to be not readable as a whole.
2090
2091 Note loop condition -- if the range has 1 byte, we can't divide the range
2092 so there's no point trying further. */
2093 while (current_end - current_begin > 1)
2094 {
2095 ULONGEST first_half_begin, first_half_end;
2096 ULONGEST second_half_begin, second_half_end;
2097 LONGEST xfer;
2098 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2099
2100 if (forward)
2101 {
2102 first_half_begin = current_begin;
2103 first_half_end = middle;
2104 second_half_begin = middle;
2105 second_half_end = current_end;
2106 }
2107 else
2108 {
2109 first_half_begin = middle;
2110 first_half_end = current_end;
2111 second_half_begin = current_begin;
2112 second_half_end = middle;
2113 }
2114
2115 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2116 buf + (first_half_begin - begin),
2117 first_half_begin,
2118 first_half_end - first_half_begin);
2119
2120 if (xfer == first_half_end - first_half_begin)
2121 {
2122 /* This half reads up fine. So, the error must be in the
2123 other half. */
2124 current_begin = second_half_begin;
2125 current_end = second_half_end;
2126 }
2127 else
2128 {
2129 /* This half is not readable. Because we've tried one byte, we
2130 know some part of this half if actually redable. Go to the next
2131 iteration to divide again and try to read.
2132
2133 We don't handle the other half, because this function only tries
2134 to read a single readable subrange. */
2135 current_begin = first_half_begin;
2136 current_end = first_half_end;
2137 }
2138 }
2139
2140 if (forward)
2141 {
2142 /* The [begin, current_begin) range has been read. */
2143 r.begin = begin;
2144 r.end = current_begin;
2145 r.data = buf;
2146 }
2147 else
2148 {
2149 /* The [current_end, end) range has been read. */
2150 LONGEST rlen = end - current_end;
2151
2152 r.data = xmalloc (rlen);
2153 memcpy (r.data, buf + current_end - begin, rlen);
2154 r.begin = current_end;
2155 r.end = end;
2156 xfree (buf);
2157 }
2158 VEC_safe_push(memory_read_result_s, (*result), &r);
2159 }
2160
2161 void
2162 free_memory_read_result_vector (void *x)
2163 {
2164 VEC(memory_read_result_s) *v = x;
2165 memory_read_result_s *current;
2166 int ix;
2167
2168 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2169 {
2170 xfree (current->data);
2171 }
2172 VEC_free (memory_read_result_s, v);
2173 }
2174
2175 VEC(memory_read_result_s) *
2176 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2177 {
2178 VEC(memory_read_result_s) *result = 0;
2179
2180 LONGEST xfered = 0;
2181 while (xfered < len)
2182 {
2183 struct mem_region *region = lookup_mem_region (offset + xfered);
2184 LONGEST rlen;
2185
2186 /* If there is no explicit region, a fake one should be created. */
2187 gdb_assert (region);
2188
2189 if (region->hi == 0)
2190 rlen = len - xfered;
2191 else
2192 rlen = region->hi - offset;
2193
2194 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2195 {
2196 /* Cannot read this region. Note that we can end up here only
2197 if the region is explicitly marked inaccessible, or
2198 'inaccessible-by-default' is in effect. */
2199 xfered += rlen;
2200 }
2201 else
2202 {
2203 LONGEST to_read = min (len - xfered, rlen);
2204 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2205
2206 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2207 (gdb_byte *) buffer,
2208 offset + xfered, to_read);
2209 /* Call an observer, notifying them of the xfer progress? */
2210 if (xfer <= 0)
2211 {
2212 /* Got an error reading full chunk. See if maybe we can read
2213 some subrange. */
2214 xfree (buffer);
2215 read_whatever_is_readable (ops, offset + xfered,
2216 offset + xfered + to_read, &result);
2217 xfered += to_read;
2218 }
2219 else
2220 {
2221 struct memory_read_result r;
2222 r.data = buffer;
2223 r.begin = offset + xfered;
2224 r.end = r.begin + xfer;
2225 VEC_safe_push (memory_read_result_s, result, &r);
2226 xfered += xfer;
2227 }
2228 QUIT;
2229 }
2230 }
2231 return result;
2232 }
2233
2234
2235 /* An alternative to target_write with progress callbacks. */
2236
2237 LONGEST
2238 target_write_with_progress (struct target_ops *ops,
2239 enum target_object object,
2240 const char *annex, const gdb_byte *buf,
2241 ULONGEST offset, LONGEST len,
2242 void (*progress) (ULONGEST, void *), void *baton)
2243 {
2244 LONGEST xfered = 0;
2245
2246 /* Give the progress callback a chance to set up. */
2247 if (progress)
2248 (*progress) (0, baton);
2249
2250 while (xfered < len)
2251 {
2252 ULONGEST xfered_len;
2253 enum target_xfer_status status;
2254
2255 status = target_write_partial (ops, object, annex,
2256 (gdb_byte *) buf + xfered,
2257 offset + xfered, len - xfered,
2258 &xfered_len);
2259
2260 if (status == TARGET_XFER_EOF)
2261 return xfered;
2262 if (TARGET_XFER_STATUS_ERROR_P (status))
2263 return -1;
2264
2265 gdb_assert (status == TARGET_XFER_OK);
2266 if (progress)
2267 (*progress) (xfered_len, baton);
2268
2269 xfered += xfered_len;
2270 QUIT;
2271 }
2272 return len;
2273 }
2274
2275 /* For docs on target_write see target.h. */
2276
2277 LONGEST
2278 target_write (struct target_ops *ops,
2279 enum target_object object,
2280 const char *annex, const gdb_byte *buf,
2281 ULONGEST offset, LONGEST len)
2282 {
2283 return target_write_with_progress (ops, object, annex, buf, offset, len,
2284 NULL, NULL);
2285 }
2286
2287 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2288 the size of the transferred data. PADDING additional bytes are
2289 available in *BUF_P. This is a helper function for
2290 target_read_alloc; see the declaration of that function for more
2291 information. */
2292
2293 static LONGEST
2294 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2295 const char *annex, gdb_byte **buf_p, int padding)
2296 {
2297 size_t buf_alloc, buf_pos;
2298 gdb_byte *buf;
2299
2300 /* This function does not have a length parameter; it reads the
2301 entire OBJECT). Also, it doesn't support objects fetched partly
2302 from one target and partly from another (in a different stratum,
2303 e.g. a core file and an executable). Both reasons make it
2304 unsuitable for reading memory. */
2305 gdb_assert (object != TARGET_OBJECT_MEMORY);
2306
2307 /* Start by reading up to 4K at a time. The target will throttle
2308 this number down if necessary. */
2309 buf_alloc = 4096;
2310 buf = xmalloc (buf_alloc);
2311 buf_pos = 0;
2312 while (1)
2313 {
2314 ULONGEST xfered_len;
2315 enum target_xfer_status status;
2316
2317 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2318 buf_pos, buf_alloc - buf_pos - padding,
2319 &xfered_len);
2320
2321 if (status == TARGET_XFER_EOF)
2322 {
2323 /* Read all there was. */
2324 if (buf_pos == 0)
2325 xfree (buf);
2326 else
2327 *buf_p = buf;
2328 return buf_pos;
2329 }
2330 else if (status != TARGET_XFER_OK)
2331 {
2332 /* An error occurred. */
2333 xfree (buf);
2334 return TARGET_XFER_E_IO;
2335 }
2336
2337 buf_pos += xfered_len;
2338
2339 /* If the buffer is filling up, expand it. */
2340 if (buf_alloc < buf_pos * 2)
2341 {
2342 buf_alloc *= 2;
2343 buf = xrealloc (buf, buf_alloc);
2344 }
2345
2346 QUIT;
2347 }
2348 }
2349
2350 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2351 the size of the transferred data. See the declaration in "target.h"
2352 function for more information about the return value. */
2353
2354 LONGEST
2355 target_read_alloc (struct target_ops *ops, enum target_object object,
2356 const char *annex, gdb_byte **buf_p)
2357 {
2358 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2359 }
2360
2361 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2362 returned as a string, allocated using xmalloc. If an error occurs
2363 or the transfer is unsupported, NULL is returned. Empty objects
2364 are returned as allocated but empty strings. A warning is issued
2365 if the result contains any embedded NUL bytes. */
2366
2367 char *
2368 target_read_stralloc (struct target_ops *ops, enum target_object object,
2369 const char *annex)
2370 {
2371 gdb_byte *buffer;
2372 char *bufstr;
2373 LONGEST i, transferred;
2374
2375 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2376 bufstr = (char *) buffer;
2377
2378 if (transferred < 0)
2379 return NULL;
2380
2381 if (transferred == 0)
2382 return xstrdup ("");
2383
2384 bufstr[transferred] = 0;
2385
2386 /* Check for embedded NUL bytes; but allow trailing NULs. */
2387 for (i = strlen (bufstr); i < transferred; i++)
2388 if (bufstr[i] != 0)
2389 {
2390 warning (_("target object %d, annex %s, "
2391 "contained unexpected null characters"),
2392 (int) object, annex ? annex : "(none)");
2393 break;
2394 }
2395
2396 return bufstr;
2397 }
2398
2399 /* Memory transfer methods. */
2400
2401 void
2402 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2403 LONGEST len)
2404 {
2405 /* This method is used to read from an alternate, non-current
2406 target. This read must bypass the overlay support (as symbols
2407 don't match this target), and GDB's internal cache (wrong cache
2408 for this target). */
2409 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2410 != len)
2411 memory_error (TARGET_XFER_E_IO, addr);
2412 }
2413
2414 ULONGEST
2415 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2416 int len, enum bfd_endian byte_order)
2417 {
2418 gdb_byte buf[sizeof (ULONGEST)];
2419
2420 gdb_assert (len <= sizeof (buf));
2421 get_target_memory (ops, addr, buf, len);
2422 return extract_unsigned_integer (buf, len, byte_order);
2423 }
2424
2425 /* See target.h. */
2426
2427 int
2428 target_insert_breakpoint (struct gdbarch *gdbarch,
2429 struct bp_target_info *bp_tgt)
2430 {
2431 if (!may_insert_breakpoints)
2432 {
2433 warning (_("May not insert breakpoints"));
2434 return 1;
2435 }
2436
2437 return current_target.to_insert_breakpoint (&current_target,
2438 gdbarch, bp_tgt);
2439 }
2440
2441 /* See target.h. */
2442
2443 int
2444 target_remove_breakpoint (struct gdbarch *gdbarch,
2445 struct bp_target_info *bp_tgt)
2446 {
2447 /* This is kind of a weird case to handle, but the permission might
2448 have been changed after breakpoints were inserted - in which case
2449 we should just take the user literally and assume that any
2450 breakpoints should be left in place. */
2451 if (!may_insert_breakpoints)
2452 {
2453 warning (_("May not remove breakpoints"));
2454 return 1;
2455 }
2456
2457 return current_target.to_remove_breakpoint (&current_target,
2458 gdbarch, bp_tgt);
2459 }
2460
2461 static void
2462 target_info (char *args, int from_tty)
2463 {
2464 struct target_ops *t;
2465 int has_all_mem = 0;
2466
2467 if (symfile_objfile != NULL)
2468 printf_unfiltered (_("Symbols from \"%s\".\n"),
2469 objfile_name (symfile_objfile));
2470
2471 for (t = target_stack; t != NULL; t = t->beneath)
2472 {
2473 if (!(*t->to_has_memory) (t))
2474 continue;
2475
2476 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2477 continue;
2478 if (has_all_mem)
2479 printf_unfiltered (_("\tWhile running this, "
2480 "GDB does not access memory from...\n"));
2481 printf_unfiltered ("%s:\n", t->to_longname);
2482 (t->to_files_info) (t);
2483 has_all_mem = (*t->to_has_all_memory) (t);
2484 }
2485 }
2486
2487 /* This function is called before any new inferior is created, e.g.
2488 by running a program, attaching, or connecting to a target.
2489 It cleans up any state from previous invocations which might
2490 change between runs. This is a subset of what target_preopen
2491 resets (things which might change between targets). */
2492
2493 void
2494 target_pre_inferior (int from_tty)
2495 {
2496 /* Clear out solib state. Otherwise the solib state of the previous
2497 inferior might have survived and is entirely wrong for the new
2498 target. This has been observed on GNU/Linux using glibc 2.3. How
2499 to reproduce:
2500
2501 bash$ ./foo&
2502 [1] 4711
2503 bash$ ./foo&
2504 [1] 4712
2505 bash$ gdb ./foo
2506 [...]
2507 (gdb) attach 4711
2508 (gdb) detach
2509 (gdb) attach 4712
2510 Cannot access memory at address 0xdeadbeef
2511 */
2512
2513 /* In some OSs, the shared library list is the same/global/shared
2514 across inferiors. If code is shared between processes, so are
2515 memory regions and features. */
2516 if (!gdbarch_has_global_solist (target_gdbarch ()))
2517 {
2518 no_shared_libraries (NULL, from_tty);
2519
2520 invalidate_target_mem_regions ();
2521
2522 target_clear_description ();
2523 }
2524
2525 agent_capability_invalidate ();
2526 }
2527
2528 /* Callback for iterate_over_inferiors. Gets rid of the given
2529 inferior. */
2530
2531 static int
2532 dispose_inferior (struct inferior *inf, void *args)
2533 {
2534 struct thread_info *thread;
2535
2536 thread = any_thread_of_process (inf->pid);
2537 if (thread)
2538 {
2539 switch_to_thread (thread->ptid);
2540
2541 /* Core inferiors actually should be detached, not killed. */
2542 if (target_has_execution)
2543 target_kill ();
2544 else
2545 target_detach (NULL, 0);
2546 }
2547
2548 return 0;
2549 }
2550
2551 /* This is to be called by the open routine before it does
2552 anything. */
2553
2554 void
2555 target_preopen (int from_tty)
2556 {
2557 dont_repeat ();
2558
2559 if (have_inferiors ())
2560 {
2561 if (!from_tty
2562 || !have_live_inferiors ()
2563 || query (_("A program is being debugged already. Kill it? ")))
2564 iterate_over_inferiors (dispose_inferior, NULL);
2565 else
2566 error (_("Program not killed."));
2567 }
2568
2569 /* Calling target_kill may remove the target from the stack. But if
2570 it doesn't (which seems like a win for UDI), remove it now. */
2571 /* Leave the exec target, though. The user may be switching from a
2572 live process to a core of the same program. */
2573 pop_all_targets_above (file_stratum);
2574
2575 target_pre_inferior (from_tty);
2576 }
2577
2578 /* Detach a target after doing deferred register stores. */
2579
2580 void
2581 target_detach (const char *args, int from_tty)
2582 {
2583 struct target_ops* t;
2584
2585 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2586 /* Don't remove global breakpoints here. They're removed on
2587 disconnection from the target. */
2588 ;
2589 else
2590 /* If we're in breakpoints-always-inserted mode, have to remove
2591 them before detaching. */
2592 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2593
2594 prepare_for_detach ();
2595
2596 current_target.to_detach (&current_target, args, from_tty);
2597 if (targetdebug)
2598 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2599 args, from_tty);
2600 }
2601
2602 void
2603 target_disconnect (char *args, int from_tty)
2604 {
2605 struct target_ops *t;
2606
2607 /* If we're in breakpoints-always-inserted mode or if breakpoints
2608 are global across processes, we have to remove them before
2609 disconnecting. */
2610 remove_breakpoints ();
2611
2612 for (t = current_target.beneath; t != NULL; t = t->beneath)
2613 if (t->to_disconnect != NULL)
2614 {
2615 if (targetdebug)
2616 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2617 args, from_tty);
2618 t->to_disconnect (t, args, from_tty);
2619 return;
2620 }
2621
2622 tcomplain ();
2623 }
2624
2625 ptid_t
2626 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2627 {
2628 struct target_ops *t;
2629 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2630 status, options);
2631
2632 if (targetdebug)
2633 {
2634 char *status_string;
2635 char *options_string;
2636
2637 status_string = target_waitstatus_to_string (status);
2638 options_string = target_options_to_string (options);
2639 fprintf_unfiltered (gdb_stdlog,
2640 "target_wait (%d, status, options={%s})"
2641 " = %d, %s\n",
2642 ptid_get_pid (ptid), options_string,
2643 ptid_get_pid (retval), status_string);
2644 xfree (status_string);
2645 xfree (options_string);
2646 }
2647
2648 return retval;
2649 }
2650
2651 char *
2652 target_pid_to_str (ptid_t ptid)
2653 {
2654 struct target_ops *t;
2655
2656 for (t = current_target.beneath; t != NULL; t = t->beneath)
2657 {
2658 if (t->to_pid_to_str != NULL)
2659 return (*t->to_pid_to_str) (t, ptid);
2660 }
2661
2662 return normal_pid_to_str (ptid);
2663 }
2664
2665 char *
2666 target_thread_name (struct thread_info *info)
2667 {
2668 return current_target.to_thread_name (&current_target, info);
2669 }
2670
2671 void
2672 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2673 {
2674 struct target_ops *t;
2675
2676 target_dcache_invalidate ();
2677
2678 current_target.to_resume (&current_target, ptid, step, signal);
2679 if (targetdebug)
2680 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2681 ptid_get_pid (ptid),
2682 step ? "step" : "continue",
2683 gdb_signal_to_name (signal));
2684
2685 registers_changed_ptid (ptid);
2686 set_executing (ptid, 1);
2687 set_running (ptid, 1);
2688 clear_inline_frame_state (ptid);
2689 }
2690
2691 void
2692 target_pass_signals (int numsigs, unsigned char *pass_signals)
2693 {
2694 struct target_ops *t;
2695
2696 for (t = current_target.beneath; t != NULL; t = t->beneath)
2697 {
2698 if (t->to_pass_signals != NULL)
2699 {
2700 if (targetdebug)
2701 {
2702 int i;
2703
2704 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2705 numsigs);
2706
2707 for (i = 0; i < numsigs; i++)
2708 if (pass_signals[i])
2709 fprintf_unfiltered (gdb_stdlog, " %s",
2710 gdb_signal_to_name (i));
2711
2712 fprintf_unfiltered (gdb_stdlog, " })\n");
2713 }
2714
2715 (*t->to_pass_signals) (t, numsigs, pass_signals);
2716 return;
2717 }
2718 }
2719 }
2720
2721 void
2722 target_program_signals (int numsigs, unsigned char *program_signals)
2723 {
2724 struct target_ops *t;
2725
2726 for (t = current_target.beneath; t != NULL; t = t->beneath)
2727 {
2728 if (t->to_program_signals != NULL)
2729 {
2730 if (targetdebug)
2731 {
2732 int i;
2733
2734 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2735 numsigs);
2736
2737 for (i = 0; i < numsigs; i++)
2738 if (program_signals[i])
2739 fprintf_unfiltered (gdb_stdlog, " %s",
2740 gdb_signal_to_name (i));
2741
2742 fprintf_unfiltered (gdb_stdlog, " })\n");
2743 }
2744
2745 (*t->to_program_signals) (t, numsigs, program_signals);
2746 return;
2747 }
2748 }
2749 }
2750
2751 /* Look through the list of possible targets for a target that can
2752 follow forks. */
2753
2754 int
2755 target_follow_fork (int follow_child, int detach_fork)
2756 {
2757 struct target_ops *t;
2758
2759 for (t = current_target.beneath; t != NULL; t = t->beneath)
2760 {
2761 if (t->to_follow_fork != NULL)
2762 {
2763 int retval = t->to_follow_fork (t, follow_child, detach_fork);
2764
2765 if (targetdebug)
2766 fprintf_unfiltered (gdb_stdlog,
2767 "target_follow_fork (%d, %d) = %d\n",
2768 follow_child, detach_fork, retval);
2769 return retval;
2770 }
2771 }
2772
2773 /* Some target returned a fork event, but did not know how to follow it. */
2774 internal_error (__FILE__, __LINE__,
2775 _("could not find a target to follow fork"));
2776 }
2777
2778 void
2779 target_mourn_inferior (void)
2780 {
2781 struct target_ops *t;
2782
2783 for (t = current_target.beneath; t != NULL; t = t->beneath)
2784 {
2785 if (t->to_mourn_inferior != NULL)
2786 {
2787 t->to_mourn_inferior (t);
2788 if (targetdebug)
2789 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2790
2791 /* We no longer need to keep handles on any of the object files.
2792 Make sure to release them to avoid unnecessarily locking any
2793 of them while we're not actually debugging. */
2794 bfd_cache_close_all ();
2795
2796 return;
2797 }
2798 }
2799
2800 internal_error (__FILE__, __LINE__,
2801 _("could not find a target to follow mourn inferior"));
2802 }
2803
2804 /* Look for a target which can describe architectural features, starting
2805 from TARGET. If we find one, return its description. */
2806
2807 const struct target_desc *
2808 target_read_description (struct target_ops *target)
2809 {
2810 struct target_ops *t;
2811
2812 for (t = target; t != NULL; t = t->beneath)
2813 if (t->to_read_description != NULL)
2814 {
2815 const struct target_desc *tdesc;
2816
2817 tdesc = t->to_read_description (t);
2818 if (tdesc)
2819 return tdesc;
2820 }
2821
2822 return NULL;
2823 }
2824
2825 /* The default implementation of to_search_memory.
2826 This implements a basic search of memory, reading target memory and
2827 performing the search here (as opposed to performing the search in on the
2828 target side with, for example, gdbserver). */
2829
2830 int
2831 simple_search_memory (struct target_ops *ops,
2832 CORE_ADDR start_addr, ULONGEST search_space_len,
2833 const gdb_byte *pattern, ULONGEST pattern_len,
2834 CORE_ADDR *found_addrp)
2835 {
2836 /* NOTE: also defined in find.c testcase. */
2837 #define SEARCH_CHUNK_SIZE 16000
2838 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2839 /* Buffer to hold memory contents for searching. */
2840 gdb_byte *search_buf;
2841 unsigned search_buf_size;
2842 struct cleanup *old_cleanups;
2843
2844 search_buf_size = chunk_size + pattern_len - 1;
2845
2846 /* No point in trying to allocate a buffer larger than the search space. */
2847 if (search_space_len < search_buf_size)
2848 search_buf_size = search_space_len;
2849
2850 search_buf = malloc (search_buf_size);
2851 if (search_buf == NULL)
2852 error (_("Unable to allocate memory to perform the search."));
2853 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2854
2855 /* Prime the search buffer. */
2856
2857 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2858 search_buf, start_addr, search_buf_size) != search_buf_size)
2859 {
2860 warning (_("Unable to access %s bytes of target "
2861 "memory at %s, halting search."),
2862 pulongest (search_buf_size), hex_string (start_addr));
2863 do_cleanups (old_cleanups);
2864 return -1;
2865 }
2866
2867 /* Perform the search.
2868
2869 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2870 When we've scanned N bytes we copy the trailing bytes to the start and
2871 read in another N bytes. */
2872
2873 while (search_space_len >= pattern_len)
2874 {
2875 gdb_byte *found_ptr;
2876 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2877
2878 found_ptr = memmem (search_buf, nr_search_bytes,
2879 pattern, pattern_len);
2880
2881 if (found_ptr != NULL)
2882 {
2883 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2884
2885 *found_addrp = found_addr;
2886 do_cleanups (old_cleanups);
2887 return 1;
2888 }
2889
2890 /* Not found in this chunk, skip to next chunk. */
2891
2892 /* Don't let search_space_len wrap here, it's unsigned. */
2893 if (search_space_len >= chunk_size)
2894 search_space_len -= chunk_size;
2895 else
2896 search_space_len = 0;
2897
2898 if (search_space_len >= pattern_len)
2899 {
2900 unsigned keep_len = search_buf_size - chunk_size;
2901 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2902 int nr_to_read;
2903
2904 /* Copy the trailing part of the previous iteration to the front
2905 of the buffer for the next iteration. */
2906 gdb_assert (keep_len == pattern_len - 1);
2907 memcpy (search_buf, search_buf + chunk_size, keep_len);
2908
2909 nr_to_read = min (search_space_len - keep_len, chunk_size);
2910
2911 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2912 search_buf + keep_len, read_addr,
2913 nr_to_read) != nr_to_read)
2914 {
2915 warning (_("Unable to access %s bytes of target "
2916 "memory at %s, halting search."),
2917 plongest (nr_to_read),
2918 hex_string (read_addr));
2919 do_cleanups (old_cleanups);
2920 return -1;
2921 }
2922
2923 start_addr += chunk_size;
2924 }
2925 }
2926
2927 /* Not found. */
2928
2929 do_cleanups (old_cleanups);
2930 return 0;
2931 }
2932
2933 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2934 sequence of bytes in PATTERN with length PATTERN_LEN.
2935
2936 The result is 1 if found, 0 if not found, and -1 if there was an error
2937 requiring halting of the search (e.g. memory read error).
2938 If the pattern is found the address is recorded in FOUND_ADDRP. */
2939
2940 int
2941 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2942 const gdb_byte *pattern, ULONGEST pattern_len,
2943 CORE_ADDR *found_addrp)
2944 {
2945 struct target_ops *t;
2946 int found;
2947
2948 /* We don't use INHERIT to set current_target.to_search_memory,
2949 so we have to scan the target stack and handle targetdebug
2950 ourselves. */
2951
2952 if (targetdebug)
2953 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2954 hex_string (start_addr));
2955
2956 for (t = current_target.beneath; t != NULL; t = t->beneath)
2957 if (t->to_search_memory != NULL)
2958 break;
2959
2960 if (t != NULL)
2961 {
2962 found = t->to_search_memory (t, start_addr, search_space_len,
2963 pattern, pattern_len, found_addrp);
2964 }
2965 else
2966 {
2967 /* If a special version of to_search_memory isn't available, use the
2968 simple version. */
2969 found = simple_search_memory (current_target.beneath,
2970 start_addr, search_space_len,
2971 pattern, pattern_len, found_addrp);
2972 }
2973
2974 if (targetdebug)
2975 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2976
2977 return found;
2978 }
2979
2980 /* Look through the currently pushed targets. If none of them will
2981 be able to restart the currently running process, issue an error
2982 message. */
2983
2984 void
2985 target_require_runnable (void)
2986 {
2987 struct target_ops *t;
2988
2989 for (t = target_stack; t != NULL; t = t->beneath)
2990 {
2991 /* If this target knows how to create a new program, then
2992 assume we will still be able to after killing the current
2993 one. Either killing and mourning will not pop T, or else
2994 find_default_run_target will find it again. */
2995 if (t->to_create_inferior != NULL)
2996 return;
2997
2998 /* Do not worry about thread_stratum targets that can not
2999 create inferiors. Assume they will be pushed again if
3000 necessary, and continue to the process_stratum. */
3001 if (t->to_stratum == thread_stratum
3002 || t->to_stratum == arch_stratum)
3003 continue;
3004
3005 error (_("The \"%s\" target does not support \"run\". "
3006 "Try \"help target\" or \"continue\"."),
3007 t->to_shortname);
3008 }
3009
3010 /* This function is only called if the target is running. In that
3011 case there should have been a process_stratum target and it
3012 should either know how to create inferiors, or not... */
3013 internal_error (__FILE__, __LINE__, _("No targets found"));
3014 }
3015
3016 /* Look through the list of possible targets for a target that can
3017 execute a run or attach command without any other data. This is
3018 used to locate the default process stratum.
3019
3020 If DO_MESG is not NULL, the result is always valid (error() is
3021 called for errors); else, return NULL on error. */
3022
3023 static struct target_ops *
3024 find_default_run_target (char *do_mesg)
3025 {
3026 struct target_ops **t;
3027 struct target_ops *runable = NULL;
3028 int count;
3029
3030 count = 0;
3031
3032 for (t = target_structs; t < target_structs + target_struct_size;
3033 ++t)
3034 {
3035 if ((*t)->to_can_run && target_can_run (*t))
3036 {
3037 runable = *t;
3038 ++count;
3039 }
3040 }
3041
3042 if (count != 1)
3043 {
3044 if (do_mesg)
3045 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3046 else
3047 return NULL;
3048 }
3049
3050 return runable;
3051 }
3052
3053 void
3054 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3055 {
3056 struct target_ops *t;
3057
3058 t = find_default_run_target ("attach");
3059 (t->to_attach) (t, args, from_tty);
3060 return;
3061 }
3062
3063 void
3064 find_default_create_inferior (struct target_ops *ops,
3065 char *exec_file, char *allargs, char **env,
3066 int from_tty)
3067 {
3068 struct target_ops *t;
3069
3070 t = find_default_run_target ("run");
3071 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3072 return;
3073 }
3074
3075 static int
3076 find_default_can_async_p (struct target_ops *ignore)
3077 {
3078 struct target_ops *t;
3079
3080 /* This may be called before the target is pushed on the stack;
3081 look for the default process stratum. If there's none, gdb isn't
3082 configured with a native debugger, and target remote isn't
3083 connected yet. */
3084 t = find_default_run_target (NULL);
3085 if (t && t->to_can_async_p != delegate_can_async_p)
3086 return (t->to_can_async_p) (t);
3087 return 0;
3088 }
3089
3090 static int
3091 find_default_is_async_p (struct target_ops *ignore)
3092 {
3093 struct target_ops *t;
3094
3095 /* This may be called before the target is pushed on the stack;
3096 look for the default process stratum. If there's none, gdb isn't
3097 configured with a native debugger, and target remote isn't
3098 connected yet. */
3099 t = find_default_run_target (NULL);
3100 if (t && t->to_is_async_p != delegate_is_async_p)
3101 return (t->to_is_async_p) (t);
3102 return 0;
3103 }
3104
3105 static int
3106 find_default_supports_non_stop (struct target_ops *self)
3107 {
3108 struct target_ops *t;
3109
3110 t = find_default_run_target (NULL);
3111 if (t && t->to_supports_non_stop)
3112 return (t->to_supports_non_stop) (t);
3113 return 0;
3114 }
3115
3116 int
3117 target_supports_non_stop (void)
3118 {
3119 struct target_ops *t;
3120
3121 for (t = &current_target; t != NULL; t = t->beneath)
3122 if (t->to_supports_non_stop)
3123 return t->to_supports_non_stop (t);
3124
3125 return 0;
3126 }
3127
3128 /* Implement the "info proc" command. */
3129
3130 int
3131 target_info_proc (char *args, enum info_proc_what what)
3132 {
3133 struct target_ops *t;
3134
3135 /* If we're already connected to something that can get us OS
3136 related data, use it. Otherwise, try using the native
3137 target. */
3138 if (current_target.to_stratum >= process_stratum)
3139 t = current_target.beneath;
3140 else
3141 t = find_default_run_target (NULL);
3142
3143 for (; t != NULL; t = t->beneath)
3144 {
3145 if (t->to_info_proc != NULL)
3146 {
3147 t->to_info_proc (t, args, what);
3148
3149 if (targetdebug)
3150 fprintf_unfiltered (gdb_stdlog,
3151 "target_info_proc (\"%s\", %d)\n", args, what);
3152
3153 return 1;
3154 }
3155 }
3156
3157 return 0;
3158 }
3159
3160 static int
3161 find_default_supports_disable_randomization (struct target_ops *self)
3162 {
3163 struct target_ops *t;
3164
3165 t = find_default_run_target (NULL);
3166 if (t && t->to_supports_disable_randomization)
3167 return (t->to_supports_disable_randomization) (t);
3168 return 0;
3169 }
3170
3171 int
3172 target_supports_disable_randomization (void)
3173 {
3174 struct target_ops *t;
3175
3176 for (t = &current_target; t != NULL; t = t->beneath)
3177 if (t->to_supports_disable_randomization)
3178 return t->to_supports_disable_randomization (t);
3179
3180 return 0;
3181 }
3182
3183 char *
3184 target_get_osdata (const char *type)
3185 {
3186 struct target_ops *t;
3187
3188 /* If we're already connected to something that can get us OS
3189 related data, use it. Otherwise, try using the native
3190 target. */
3191 if (current_target.to_stratum >= process_stratum)
3192 t = current_target.beneath;
3193 else
3194 t = find_default_run_target ("get OS data");
3195
3196 if (!t)
3197 return NULL;
3198
3199 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3200 }
3201
3202 /* Determine the current address space of thread PTID. */
3203
3204 struct address_space *
3205 target_thread_address_space (ptid_t ptid)
3206 {
3207 struct address_space *aspace;
3208 struct inferior *inf;
3209 struct target_ops *t;
3210
3211 for (t = current_target.beneath; t != NULL; t = t->beneath)
3212 {
3213 if (t->to_thread_address_space != NULL)
3214 {
3215 aspace = t->to_thread_address_space (t, ptid);
3216 gdb_assert (aspace);
3217
3218 if (targetdebug)
3219 fprintf_unfiltered (gdb_stdlog,
3220 "target_thread_address_space (%s) = %d\n",
3221 target_pid_to_str (ptid),
3222 address_space_num (aspace));
3223 return aspace;
3224 }
3225 }
3226
3227 /* Fall-back to the "main" address space of the inferior. */
3228 inf = find_inferior_pid (ptid_get_pid (ptid));
3229
3230 if (inf == NULL || inf->aspace == NULL)
3231 internal_error (__FILE__, __LINE__,
3232 _("Can't determine the current "
3233 "address space of thread %s\n"),
3234 target_pid_to_str (ptid));
3235
3236 return inf->aspace;
3237 }
3238
3239
3240 /* Target file operations. */
3241
3242 static struct target_ops *
3243 default_fileio_target (void)
3244 {
3245 /* If we're already connected to something that can perform
3246 file I/O, use it. Otherwise, try using the native target. */
3247 if (current_target.to_stratum >= process_stratum)
3248 return current_target.beneath;
3249 else
3250 return find_default_run_target ("file I/O");
3251 }
3252
3253 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3254 target file descriptor, or -1 if an error occurs (and set
3255 *TARGET_ERRNO). */
3256 int
3257 target_fileio_open (const char *filename, int flags, int mode,
3258 int *target_errno)
3259 {
3260 struct target_ops *t;
3261
3262 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3263 {
3264 if (t->to_fileio_open != NULL)
3265 {
3266 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
3267
3268 if (targetdebug)
3269 fprintf_unfiltered (gdb_stdlog,
3270 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3271 filename, flags, mode,
3272 fd, fd != -1 ? 0 : *target_errno);
3273 return fd;
3274 }
3275 }
3276
3277 *target_errno = FILEIO_ENOSYS;
3278 return -1;
3279 }
3280
3281 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3282 Return the number of bytes written, or -1 if an error occurs
3283 (and set *TARGET_ERRNO). */
3284 int
3285 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3286 ULONGEST offset, int *target_errno)
3287 {
3288 struct target_ops *t;
3289
3290 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3291 {
3292 if (t->to_fileio_pwrite != NULL)
3293 {
3294 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
3295 target_errno);
3296
3297 if (targetdebug)
3298 fprintf_unfiltered (gdb_stdlog,
3299 "target_fileio_pwrite (%d,...,%d,%s) "
3300 "= %d (%d)\n",
3301 fd, len, pulongest (offset),
3302 ret, ret != -1 ? 0 : *target_errno);
3303 return ret;
3304 }
3305 }
3306
3307 *target_errno = FILEIO_ENOSYS;
3308 return -1;
3309 }
3310
3311 /* Read up to LEN bytes FD on the target into READ_BUF.
3312 Return the number of bytes read, or -1 if an error occurs
3313 (and set *TARGET_ERRNO). */
3314 int
3315 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3316 ULONGEST offset, int *target_errno)
3317 {
3318 struct target_ops *t;
3319
3320 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3321 {
3322 if (t->to_fileio_pread != NULL)
3323 {
3324 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
3325 target_errno);
3326
3327 if (targetdebug)
3328 fprintf_unfiltered (gdb_stdlog,
3329 "target_fileio_pread (%d,...,%d,%s) "
3330 "= %d (%d)\n",
3331 fd, len, pulongest (offset),
3332 ret, ret != -1 ? 0 : *target_errno);
3333 return ret;
3334 }
3335 }
3336
3337 *target_errno = FILEIO_ENOSYS;
3338 return -1;
3339 }
3340
3341 /* Close FD on the target. Return 0, or -1 if an error occurs
3342 (and set *TARGET_ERRNO). */
3343 int
3344 target_fileio_close (int fd, int *target_errno)
3345 {
3346 struct target_ops *t;
3347
3348 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3349 {
3350 if (t->to_fileio_close != NULL)
3351 {
3352 int ret = t->to_fileio_close (t, fd, target_errno);
3353
3354 if (targetdebug)
3355 fprintf_unfiltered (gdb_stdlog,
3356 "target_fileio_close (%d) = %d (%d)\n",
3357 fd, ret, ret != -1 ? 0 : *target_errno);
3358 return ret;
3359 }
3360 }
3361
3362 *target_errno = FILEIO_ENOSYS;
3363 return -1;
3364 }
3365
3366 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3367 occurs (and set *TARGET_ERRNO). */
3368 int
3369 target_fileio_unlink (const char *filename, int *target_errno)
3370 {
3371 struct target_ops *t;
3372
3373 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3374 {
3375 if (t->to_fileio_unlink != NULL)
3376 {
3377 int ret = t->to_fileio_unlink (t, filename, target_errno);
3378
3379 if (targetdebug)
3380 fprintf_unfiltered (gdb_stdlog,
3381 "target_fileio_unlink (%s) = %d (%d)\n",
3382 filename, ret, ret != -1 ? 0 : *target_errno);
3383 return ret;
3384 }
3385 }
3386
3387 *target_errno = FILEIO_ENOSYS;
3388 return -1;
3389 }
3390
3391 /* Read value of symbolic link FILENAME on the target. Return a
3392 null-terminated string allocated via xmalloc, or NULL if an error
3393 occurs (and set *TARGET_ERRNO). */
3394 char *
3395 target_fileio_readlink (const char *filename, int *target_errno)
3396 {
3397 struct target_ops *t;
3398
3399 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3400 {
3401 if (t->to_fileio_readlink != NULL)
3402 {
3403 char *ret = t->to_fileio_readlink (t, filename, target_errno);
3404
3405 if (targetdebug)
3406 fprintf_unfiltered (gdb_stdlog,
3407 "target_fileio_readlink (%s) = %s (%d)\n",
3408 filename, ret? ret : "(nil)",
3409 ret? 0 : *target_errno);
3410 return ret;
3411 }
3412 }
3413
3414 *target_errno = FILEIO_ENOSYS;
3415 return NULL;
3416 }
3417
3418 static void
3419 target_fileio_close_cleanup (void *opaque)
3420 {
3421 int fd = *(int *) opaque;
3422 int target_errno;
3423
3424 target_fileio_close (fd, &target_errno);
3425 }
3426
3427 /* Read target file FILENAME. Store the result in *BUF_P and
3428 return the size of the transferred data. PADDING additional bytes are
3429 available in *BUF_P. This is a helper function for
3430 target_fileio_read_alloc; see the declaration of that function for more
3431 information. */
3432
3433 static LONGEST
3434 target_fileio_read_alloc_1 (const char *filename,
3435 gdb_byte **buf_p, int padding)
3436 {
3437 struct cleanup *close_cleanup;
3438 size_t buf_alloc, buf_pos;
3439 gdb_byte *buf;
3440 LONGEST n;
3441 int fd;
3442 int target_errno;
3443
3444 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3445 if (fd == -1)
3446 return -1;
3447
3448 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3449
3450 /* Start by reading up to 4K at a time. The target will throttle
3451 this number down if necessary. */
3452 buf_alloc = 4096;
3453 buf = xmalloc (buf_alloc);
3454 buf_pos = 0;
3455 while (1)
3456 {
3457 n = target_fileio_pread (fd, &buf[buf_pos],
3458 buf_alloc - buf_pos - padding, buf_pos,
3459 &target_errno);
3460 if (n < 0)
3461 {
3462 /* An error occurred. */
3463 do_cleanups (close_cleanup);
3464 xfree (buf);
3465 return -1;
3466 }
3467 else if (n == 0)
3468 {
3469 /* Read all there was. */
3470 do_cleanups (close_cleanup);
3471 if (buf_pos == 0)
3472 xfree (buf);
3473 else
3474 *buf_p = buf;
3475 return buf_pos;
3476 }
3477
3478 buf_pos += n;
3479
3480 /* If the buffer is filling up, expand it. */
3481 if (buf_alloc < buf_pos * 2)
3482 {
3483 buf_alloc *= 2;
3484 buf = xrealloc (buf, buf_alloc);
3485 }
3486
3487 QUIT;
3488 }
3489 }
3490
3491 /* Read target file FILENAME. Store the result in *BUF_P and return
3492 the size of the transferred data. See the declaration in "target.h"
3493 function for more information about the return value. */
3494
3495 LONGEST
3496 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3497 {
3498 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3499 }
3500
3501 /* Read target file FILENAME. The result is NUL-terminated and
3502 returned as a string, allocated using xmalloc. If an error occurs
3503 or the transfer is unsupported, NULL is returned. Empty objects
3504 are returned as allocated but empty strings. A warning is issued
3505 if the result contains any embedded NUL bytes. */
3506
3507 char *
3508 target_fileio_read_stralloc (const char *filename)
3509 {
3510 gdb_byte *buffer;
3511 char *bufstr;
3512 LONGEST i, transferred;
3513
3514 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3515 bufstr = (char *) buffer;
3516
3517 if (transferred < 0)
3518 return NULL;
3519
3520 if (transferred == 0)
3521 return xstrdup ("");
3522
3523 bufstr[transferred] = 0;
3524
3525 /* Check for embedded NUL bytes; but allow trailing NULs. */
3526 for (i = strlen (bufstr); i < transferred; i++)
3527 if (bufstr[i] != 0)
3528 {
3529 warning (_("target file %s "
3530 "contained unexpected null characters"),
3531 filename);
3532 break;
3533 }
3534
3535 return bufstr;
3536 }
3537
3538
3539 static int
3540 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3541 CORE_ADDR addr, int len)
3542 {
3543 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3544 }
3545
3546 static int
3547 default_watchpoint_addr_within_range (struct target_ops *target,
3548 CORE_ADDR addr,
3549 CORE_ADDR start, int length)
3550 {
3551 return addr >= start && addr < start + length;
3552 }
3553
3554 static struct gdbarch *
3555 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3556 {
3557 return target_gdbarch ();
3558 }
3559
3560 static int
3561 return_zero (void)
3562 {
3563 return 0;
3564 }
3565
3566 static int
3567 return_minus_one (void)
3568 {
3569 return -1;
3570 }
3571
3572 static void *
3573 return_null (void)
3574 {
3575 return 0;
3576 }
3577
3578 /*
3579 * Find the next target down the stack from the specified target.
3580 */
3581
3582 struct target_ops *
3583 find_target_beneath (struct target_ops *t)
3584 {
3585 return t->beneath;
3586 }
3587
3588 /* See target.h. */
3589
3590 struct target_ops *
3591 find_target_at (enum strata stratum)
3592 {
3593 struct target_ops *t;
3594
3595 for (t = current_target.beneath; t != NULL; t = t->beneath)
3596 if (t->to_stratum == stratum)
3597 return t;
3598
3599 return NULL;
3600 }
3601
3602 \f
3603 /* The inferior process has died. Long live the inferior! */
3604
3605 void
3606 generic_mourn_inferior (void)
3607 {
3608 ptid_t ptid;
3609
3610 ptid = inferior_ptid;
3611 inferior_ptid = null_ptid;
3612
3613 /* Mark breakpoints uninserted in case something tries to delete a
3614 breakpoint while we delete the inferior's threads (which would
3615 fail, since the inferior is long gone). */
3616 mark_breakpoints_out ();
3617
3618 if (!ptid_equal (ptid, null_ptid))
3619 {
3620 int pid = ptid_get_pid (ptid);
3621 exit_inferior (pid);
3622 }
3623
3624 /* Note this wipes step-resume breakpoints, so needs to be done
3625 after exit_inferior, which ends up referencing the step-resume
3626 breakpoints through clear_thread_inferior_resources. */
3627 breakpoint_init_inferior (inf_exited);
3628
3629 registers_changed ();
3630
3631 reopen_exec_file ();
3632 reinit_frame_cache ();
3633
3634 if (deprecated_detach_hook)
3635 deprecated_detach_hook ();
3636 }
3637 \f
3638 /* Convert a normal process ID to a string. Returns the string in a
3639 static buffer. */
3640
3641 char *
3642 normal_pid_to_str (ptid_t ptid)
3643 {
3644 static char buf[32];
3645
3646 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3647 return buf;
3648 }
3649
3650 static char *
3651 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3652 {
3653 return normal_pid_to_str (ptid);
3654 }
3655
3656 /* Error-catcher for target_find_memory_regions. */
3657 static int
3658 dummy_find_memory_regions (struct target_ops *self,
3659 find_memory_region_ftype ignore1, void *ignore2)
3660 {
3661 error (_("Command not implemented for this target."));
3662 return 0;
3663 }
3664
3665 /* Error-catcher for target_make_corefile_notes. */
3666 static char *
3667 dummy_make_corefile_notes (struct target_ops *self,
3668 bfd *ignore1, int *ignore2)
3669 {
3670 error (_("Command not implemented for this target."));
3671 return NULL;
3672 }
3673
3674 /* Set up the handful of non-empty slots needed by the dummy target
3675 vector. */
3676
3677 static void
3678 init_dummy_target (void)
3679 {
3680 dummy_target.to_shortname = "None";
3681 dummy_target.to_longname = "None";
3682 dummy_target.to_doc = "";
3683 dummy_target.to_create_inferior = find_default_create_inferior;
3684 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3685 dummy_target.to_supports_disable_randomization
3686 = find_default_supports_disable_randomization;
3687 dummy_target.to_pid_to_str = dummy_pid_to_str;
3688 dummy_target.to_stratum = dummy_stratum;
3689 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3690 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3691 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3692 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3693 dummy_target.to_has_execution
3694 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3695 dummy_target.to_magic = OPS_MAGIC;
3696
3697 install_dummy_methods (&dummy_target);
3698 }
3699 \f
3700 static void
3701 debug_to_open (char *args, int from_tty)
3702 {
3703 debug_target.to_open (args, from_tty);
3704
3705 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3706 }
3707
3708 void
3709 target_close (struct target_ops *targ)
3710 {
3711 gdb_assert (!target_is_pushed (targ));
3712
3713 if (targ->to_xclose != NULL)
3714 targ->to_xclose (targ);
3715 else if (targ->to_close != NULL)
3716 targ->to_close (targ);
3717
3718 if (targetdebug)
3719 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3720 }
3721
3722 void
3723 target_attach (char *args, int from_tty)
3724 {
3725 current_target.to_attach (&current_target, args, from_tty);
3726 if (targetdebug)
3727 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3728 args, from_tty);
3729 }
3730
3731 int
3732 target_thread_alive (ptid_t ptid)
3733 {
3734 struct target_ops *t;
3735
3736 for (t = current_target.beneath; t != NULL; t = t->beneath)
3737 {
3738 if (t->to_thread_alive != NULL)
3739 {
3740 int retval;
3741
3742 retval = t->to_thread_alive (t, ptid);
3743 if (targetdebug)
3744 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3745 ptid_get_pid (ptid), retval);
3746
3747 return retval;
3748 }
3749 }
3750
3751 return 0;
3752 }
3753
3754 void
3755 target_find_new_threads (void)
3756 {
3757 struct target_ops *t;
3758
3759 for (t = current_target.beneath; t != NULL; t = t->beneath)
3760 {
3761 if (t->to_find_new_threads != NULL)
3762 {
3763 t->to_find_new_threads (t);
3764 if (targetdebug)
3765 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3766
3767 return;
3768 }
3769 }
3770 }
3771
3772 void
3773 target_stop (ptid_t ptid)
3774 {
3775 if (!may_stop)
3776 {
3777 warning (_("May not interrupt or stop the target, ignoring attempt"));
3778 return;
3779 }
3780
3781 (*current_target.to_stop) (&current_target, ptid);
3782 }
3783
3784 static void
3785 debug_to_post_attach (struct target_ops *self, int pid)
3786 {
3787 debug_target.to_post_attach (&debug_target, pid);
3788
3789 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3790 }
3791
3792 /* Concatenate ELEM to LIST, a comma separate list, and return the
3793 result. The LIST incoming argument is released. */
3794
3795 static char *
3796 str_comma_list_concat_elem (char *list, const char *elem)
3797 {
3798 if (list == NULL)
3799 return xstrdup (elem);
3800 else
3801 return reconcat (list, list, ", ", elem, (char *) NULL);
3802 }
3803
3804 /* Helper for target_options_to_string. If OPT is present in
3805 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3806 Returns the new resulting string. OPT is removed from
3807 TARGET_OPTIONS. */
3808
3809 static char *
3810 do_option (int *target_options, char *ret,
3811 int opt, char *opt_str)
3812 {
3813 if ((*target_options & opt) != 0)
3814 {
3815 ret = str_comma_list_concat_elem (ret, opt_str);
3816 *target_options &= ~opt;
3817 }
3818
3819 return ret;
3820 }
3821
3822 char *
3823 target_options_to_string (int target_options)
3824 {
3825 char *ret = NULL;
3826
3827 #define DO_TARG_OPTION(OPT) \
3828 ret = do_option (&target_options, ret, OPT, #OPT)
3829
3830 DO_TARG_OPTION (TARGET_WNOHANG);
3831
3832 if (target_options != 0)
3833 ret = str_comma_list_concat_elem (ret, "unknown???");
3834
3835 if (ret == NULL)
3836 ret = xstrdup ("");
3837 return ret;
3838 }
3839
3840 static void
3841 debug_print_register (const char * func,
3842 struct regcache *regcache, int regno)
3843 {
3844 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3845
3846 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3847 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3848 && gdbarch_register_name (gdbarch, regno) != NULL
3849 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3850 fprintf_unfiltered (gdb_stdlog, "(%s)",
3851 gdbarch_register_name (gdbarch, regno));
3852 else
3853 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3854 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3855 {
3856 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3857 int i, size = register_size (gdbarch, regno);
3858 gdb_byte buf[MAX_REGISTER_SIZE];
3859
3860 regcache_raw_collect (regcache, regno, buf);
3861 fprintf_unfiltered (gdb_stdlog, " = ");
3862 for (i = 0; i < size; i++)
3863 {
3864 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3865 }
3866 if (size <= sizeof (LONGEST))
3867 {
3868 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3869
3870 fprintf_unfiltered (gdb_stdlog, " %s %s",
3871 core_addr_to_string_nz (val), plongest (val));
3872 }
3873 }
3874 fprintf_unfiltered (gdb_stdlog, "\n");
3875 }
3876
3877 void
3878 target_fetch_registers (struct regcache *regcache, int regno)
3879 {
3880 struct target_ops *t;
3881
3882 for (t = current_target.beneath; t != NULL; t = t->beneath)
3883 {
3884 if (t->to_fetch_registers != NULL)
3885 {
3886 t->to_fetch_registers (t, regcache, regno);
3887 if (targetdebug)
3888 debug_print_register ("target_fetch_registers", regcache, regno);
3889 return;
3890 }
3891 }
3892 }
3893
3894 void
3895 target_store_registers (struct regcache *regcache, int regno)
3896 {
3897 struct target_ops *t;
3898
3899 if (!may_write_registers)
3900 error (_("Writing to registers is not allowed (regno %d)"), regno);
3901
3902 current_target.to_store_registers (&current_target, regcache, regno);
3903 if (targetdebug)
3904 {
3905 debug_print_register ("target_store_registers", regcache, regno);
3906 }
3907 }
3908
3909 int
3910 target_core_of_thread (ptid_t ptid)
3911 {
3912 struct target_ops *t;
3913
3914 for (t = current_target.beneath; t != NULL; t = t->beneath)
3915 {
3916 if (t->to_core_of_thread != NULL)
3917 {
3918 int retval = t->to_core_of_thread (t, ptid);
3919
3920 if (targetdebug)
3921 fprintf_unfiltered (gdb_stdlog,
3922 "target_core_of_thread (%d) = %d\n",
3923 ptid_get_pid (ptid), retval);
3924 return retval;
3925 }
3926 }
3927
3928 return -1;
3929 }
3930
3931 int
3932 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3933 {
3934 struct target_ops *t;
3935
3936 for (t = current_target.beneath; t != NULL; t = t->beneath)
3937 {
3938 if (t->to_verify_memory != NULL)
3939 {
3940 int retval = t->to_verify_memory (t, data, memaddr, size);
3941
3942 if (targetdebug)
3943 fprintf_unfiltered (gdb_stdlog,
3944 "target_verify_memory (%s, %s) = %d\n",
3945 paddress (target_gdbarch (), memaddr),
3946 pulongest (size),
3947 retval);
3948 return retval;
3949 }
3950 }
3951
3952 tcomplain ();
3953 }
3954
3955 /* The documentation for this function is in its prototype declaration in
3956 target.h. */
3957
3958 int
3959 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3960 {
3961 struct target_ops *t;
3962
3963 for (t = current_target.beneath; t != NULL; t = t->beneath)
3964 if (t->to_insert_mask_watchpoint != NULL)
3965 {
3966 int ret;
3967
3968 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
3969
3970 if (targetdebug)
3971 fprintf_unfiltered (gdb_stdlog, "\
3972 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3973 core_addr_to_string (addr),
3974 core_addr_to_string (mask), rw, ret);
3975
3976 return ret;
3977 }
3978
3979 return 1;
3980 }
3981
3982 /* The documentation for this function is in its prototype declaration in
3983 target.h. */
3984
3985 int
3986 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3987 {
3988 struct target_ops *t;
3989
3990 for (t = current_target.beneath; t != NULL; t = t->beneath)
3991 if (t->to_remove_mask_watchpoint != NULL)
3992 {
3993 int ret;
3994
3995 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
3996
3997 if (targetdebug)
3998 fprintf_unfiltered (gdb_stdlog, "\
3999 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4000 core_addr_to_string (addr),
4001 core_addr_to_string (mask), rw, ret);
4002
4003 return ret;
4004 }
4005
4006 return 1;
4007 }
4008
4009 /* The documentation for this function is in its prototype declaration
4010 in target.h. */
4011
4012 int
4013 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4014 {
4015 struct target_ops *t;
4016
4017 for (t = current_target.beneath; t != NULL; t = t->beneath)
4018 if (t->to_masked_watch_num_registers != NULL)
4019 return t->to_masked_watch_num_registers (t, addr, mask);
4020
4021 return -1;
4022 }
4023
4024 /* The documentation for this function is in its prototype declaration
4025 in target.h. */
4026
4027 int
4028 target_ranged_break_num_registers (void)
4029 {
4030 struct target_ops *t;
4031
4032 for (t = current_target.beneath; t != NULL; t = t->beneath)
4033 if (t->to_ranged_break_num_registers != NULL)
4034 return t->to_ranged_break_num_registers (t);
4035
4036 return -1;
4037 }
4038
4039 /* See target.h. */
4040
4041 struct btrace_target_info *
4042 target_enable_btrace (ptid_t ptid)
4043 {
4044 struct target_ops *t;
4045
4046 for (t = current_target.beneath; t != NULL; t = t->beneath)
4047 if (t->to_enable_btrace != NULL)
4048 return t->to_enable_btrace (t, ptid);
4049
4050 tcomplain ();
4051 return NULL;
4052 }
4053
4054 /* See target.h. */
4055
4056 void
4057 target_disable_btrace (struct btrace_target_info *btinfo)
4058 {
4059 struct target_ops *t;
4060
4061 for (t = current_target.beneath; t != NULL; t = t->beneath)
4062 if (t->to_disable_btrace != NULL)
4063 {
4064 t->to_disable_btrace (t, btinfo);
4065 return;
4066 }
4067
4068 tcomplain ();
4069 }
4070
4071 /* See target.h. */
4072
4073 void
4074 target_teardown_btrace (struct btrace_target_info *btinfo)
4075 {
4076 struct target_ops *t;
4077
4078 for (t = current_target.beneath; t != NULL; t = t->beneath)
4079 if (t->to_teardown_btrace != NULL)
4080 {
4081 t->to_teardown_btrace (t, btinfo);
4082 return;
4083 }
4084
4085 tcomplain ();
4086 }
4087
4088 /* See target.h. */
4089
4090 enum btrace_error
4091 target_read_btrace (VEC (btrace_block_s) **btrace,
4092 struct btrace_target_info *btinfo,
4093 enum btrace_read_type type)
4094 {
4095 struct target_ops *t;
4096
4097 for (t = current_target.beneath; t != NULL; t = t->beneath)
4098 if (t->to_read_btrace != NULL)
4099 return t->to_read_btrace (t, btrace, btinfo, type);
4100
4101 tcomplain ();
4102 return BTRACE_ERR_NOT_SUPPORTED;
4103 }
4104
4105 /* See target.h. */
4106
4107 void
4108 target_stop_recording (void)
4109 {
4110 struct target_ops *t;
4111
4112 for (t = current_target.beneath; t != NULL; t = t->beneath)
4113 if (t->to_stop_recording != NULL)
4114 {
4115 t->to_stop_recording (t);
4116 return;
4117 }
4118
4119 /* This is optional. */
4120 }
4121
4122 /* See target.h. */
4123
4124 void
4125 target_info_record (void)
4126 {
4127 struct target_ops *t;
4128
4129 for (t = current_target.beneath; t != NULL; t = t->beneath)
4130 if (t->to_info_record != NULL)
4131 {
4132 t->to_info_record (t);
4133 return;
4134 }
4135
4136 tcomplain ();
4137 }
4138
4139 /* See target.h. */
4140
4141 void
4142 target_save_record (const char *filename)
4143 {
4144 struct target_ops *t;
4145
4146 for (t = current_target.beneath; t != NULL; t = t->beneath)
4147 if (t->to_save_record != NULL)
4148 {
4149 t->to_save_record (t, filename);
4150 return;
4151 }
4152
4153 tcomplain ();
4154 }
4155
4156 /* See target.h. */
4157
4158 int
4159 target_supports_delete_record (void)
4160 {
4161 struct target_ops *t;
4162
4163 for (t = current_target.beneath; t != NULL; t = t->beneath)
4164 if (t->to_delete_record != NULL)
4165 return 1;
4166
4167 return 0;
4168 }
4169
4170 /* See target.h. */
4171
4172 void
4173 target_delete_record (void)
4174 {
4175 struct target_ops *t;
4176
4177 for (t = current_target.beneath; t != NULL; t = t->beneath)
4178 if (t->to_delete_record != NULL)
4179 {
4180 t->to_delete_record (t);
4181 return;
4182 }
4183
4184 tcomplain ();
4185 }
4186
4187 /* See target.h. */
4188
4189 int
4190 target_record_is_replaying (void)
4191 {
4192 struct target_ops *t;
4193
4194 for (t = current_target.beneath; t != NULL; t = t->beneath)
4195 if (t->to_record_is_replaying != NULL)
4196 return t->to_record_is_replaying (t);
4197
4198 return 0;
4199 }
4200
4201 /* See target.h. */
4202
4203 void
4204 target_goto_record_begin (void)
4205 {
4206 struct target_ops *t;
4207
4208 for (t = current_target.beneath; t != NULL; t = t->beneath)
4209 if (t->to_goto_record_begin != NULL)
4210 {
4211 t->to_goto_record_begin (t);
4212 return;
4213 }
4214
4215 tcomplain ();
4216 }
4217
4218 /* See target.h. */
4219
4220 void
4221 target_goto_record_end (void)
4222 {
4223 struct target_ops *t;
4224
4225 for (t = current_target.beneath; t != NULL; t = t->beneath)
4226 if (t->to_goto_record_end != NULL)
4227 {
4228 t->to_goto_record_end (t);
4229 return;
4230 }
4231
4232 tcomplain ();
4233 }
4234
4235 /* See target.h. */
4236
4237 void
4238 target_goto_record (ULONGEST insn)
4239 {
4240 struct target_ops *t;
4241
4242 for (t = current_target.beneath; t != NULL; t = t->beneath)
4243 if (t->to_goto_record != NULL)
4244 {
4245 t->to_goto_record (t, insn);
4246 return;
4247 }
4248
4249 tcomplain ();
4250 }
4251
4252 /* See target.h. */
4253
4254 void
4255 target_insn_history (int size, int flags)
4256 {
4257 struct target_ops *t;
4258
4259 for (t = current_target.beneath; t != NULL; t = t->beneath)
4260 if (t->to_insn_history != NULL)
4261 {
4262 t->to_insn_history (t, size, flags);
4263 return;
4264 }
4265
4266 tcomplain ();
4267 }
4268
4269 /* See target.h. */
4270
4271 void
4272 target_insn_history_from (ULONGEST from, int size, int flags)
4273 {
4274 struct target_ops *t;
4275
4276 for (t = current_target.beneath; t != NULL; t = t->beneath)
4277 if (t->to_insn_history_from != NULL)
4278 {
4279 t->to_insn_history_from (t, from, size, flags);
4280 return;
4281 }
4282
4283 tcomplain ();
4284 }
4285
4286 /* See target.h. */
4287
4288 void
4289 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4290 {
4291 struct target_ops *t;
4292
4293 for (t = current_target.beneath; t != NULL; t = t->beneath)
4294 if (t->to_insn_history_range != NULL)
4295 {
4296 t->to_insn_history_range (t, begin, end, flags);
4297 return;
4298 }
4299
4300 tcomplain ();
4301 }
4302
4303 /* See target.h. */
4304
4305 void
4306 target_call_history (int size, int flags)
4307 {
4308 struct target_ops *t;
4309
4310 for (t = current_target.beneath; t != NULL; t = t->beneath)
4311 if (t->to_call_history != NULL)
4312 {
4313 t->to_call_history (t, size, flags);
4314 return;
4315 }
4316
4317 tcomplain ();
4318 }
4319
4320 /* See target.h. */
4321
4322 void
4323 target_call_history_from (ULONGEST begin, int size, int flags)
4324 {
4325 struct target_ops *t;
4326
4327 for (t = current_target.beneath; t != NULL; t = t->beneath)
4328 if (t->to_call_history_from != NULL)
4329 {
4330 t->to_call_history_from (t, begin, size, flags);
4331 return;
4332 }
4333
4334 tcomplain ();
4335 }
4336
4337 /* See target.h. */
4338
4339 void
4340 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4341 {
4342 struct target_ops *t;
4343
4344 for (t = current_target.beneath; t != NULL; t = t->beneath)
4345 if (t->to_call_history_range != NULL)
4346 {
4347 t->to_call_history_range (t, begin, end, flags);
4348 return;
4349 }
4350
4351 tcomplain ();
4352 }
4353
4354 static void
4355 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
4356 {
4357 debug_target.to_prepare_to_store (&debug_target, regcache);
4358
4359 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4360 }
4361
4362 /* See target.h. */
4363
4364 const struct frame_unwind *
4365 target_get_unwinder (void)
4366 {
4367 struct target_ops *t;
4368
4369 for (t = current_target.beneath; t != NULL; t = t->beneath)
4370 if (t->to_get_unwinder != NULL)
4371 return t->to_get_unwinder;
4372
4373 return NULL;
4374 }
4375
4376 /* See target.h. */
4377
4378 const struct frame_unwind *
4379 target_get_tailcall_unwinder (void)
4380 {
4381 struct target_ops *t;
4382
4383 for (t = current_target.beneath; t != NULL; t = t->beneath)
4384 if (t->to_get_tailcall_unwinder != NULL)
4385 return t->to_get_tailcall_unwinder;
4386
4387 return NULL;
4388 }
4389
4390 /* See target.h. */
4391
4392 CORE_ADDR
4393 forward_target_decr_pc_after_break (struct target_ops *ops,
4394 struct gdbarch *gdbarch)
4395 {
4396 for (; ops != NULL; ops = ops->beneath)
4397 if (ops->to_decr_pc_after_break != NULL)
4398 return ops->to_decr_pc_after_break (ops, gdbarch);
4399
4400 return gdbarch_decr_pc_after_break (gdbarch);
4401 }
4402
4403 /* See target.h. */
4404
4405 CORE_ADDR
4406 target_decr_pc_after_break (struct gdbarch *gdbarch)
4407 {
4408 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
4409 }
4410
4411 static int
4412 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4413 int write, struct mem_attrib *attrib,
4414 struct target_ops *target)
4415 {
4416 int retval;
4417
4418 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4419 attrib, target);
4420
4421 fprintf_unfiltered (gdb_stdlog,
4422 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4423 paddress (target_gdbarch (), memaddr), len,
4424 write ? "write" : "read", retval);
4425
4426 if (retval > 0)
4427 {
4428 int i;
4429
4430 fputs_unfiltered (", bytes =", gdb_stdlog);
4431 for (i = 0; i < retval; i++)
4432 {
4433 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4434 {
4435 if (targetdebug < 2 && i > 0)
4436 {
4437 fprintf_unfiltered (gdb_stdlog, " ...");
4438 break;
4439 }
4440 fprintf_unfiltered (gdb_stdlog, "\n");
4441 }
4442
4443 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4444 }
4445 }
4446
4447 fputc_unfiltered ('\n', gdb_stdlog);
4448
4449 return retval;
4450 }
4451
4452 static void
4453 debug_to_files_info (struct target_ops *target)
4454 {
4455 debug_target.to_files_info (target);
4456
4457 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4458 }
4459
4460 static int
4461 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4462 struct bp_target_info *bp_tgt)
4463 {
4464 int retval;
4465
4466 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4467
4468 fprintf_unfiltered (gdb_stdlog,
4469 "target_insert_breakpoint (%s, xxx) = %ld\n",
4470 core_addr_to_string (bp_tgt->placed_address),
4471 (unsigned long) retval);
4472 return retval;
4473 }
4474
4475 static int
4476 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4477 struct bp_target_info *bp_tgt)
4478 {
4479 int retval;
4480
4481 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4482
4483 fprintf_unfiltered (gdb_stdlog,
4484 "target_remove_breakpoint (%s, xxx) = %ld\n",
4485 core_addr_to_string (bp_tgt->placed_address),
4486 (unsigned long) retval);
4487 return retval;
4488 }
4489
4490 static int
4491 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4492 int type, int cnt, int from_tty)
4493 {
4494 int retval;
4495
4496 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4497 type, cnt, from_tty);
4498
4499 fprintf_unfiltered (gdb_stdlog,
4500 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4501 (unsigned long) type,
4502 (unsigned long) cnt,
4503 (unsigned long) from_tty,
4504 (unsigned long) retval);
4505 return retval;
4506 }
4507
4508 static int
4509 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4510 CORE_ADDR addr, int len)
4511 {
4512 CORE_ADDR retval;
4513
4514 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4515 addr, len);
4516
4517 fprintf_unfiltered (gdb_stdlog,
4518 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4519 core_addr_to_string (addr), (unsigned long) len,
4520 core_addr_to_string (retval));
4521 return retval;
4522 }
4523
4524 static int
4525 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4526 CORE_ADDR addr, int len, int rw,
4527 struct expression *cond)
4528 {
4529 int retval;
4530
4531 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4532 addr, len,
4533 rw, cond);
4534
4535 fprintf_unfiltered (gdb_stdlog,
4536 "target_can_accel_watchpoint_condition "
4537 "(%s, %d, %d, %s) = %ld\n",
4538 core_addr_to_string (addr), len, rw,
4539 host_address_to_string (cond), (unsigned long) retval);
4540 return retval;
4541 }
4542
4543 static int
4544 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4545 {
4546 int retval;
4547
4548 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4549
4550 fprintf_unfiltered (gdb_stdlog,
4551 "target_stopped_by_watchpoint () = %ld\n",
4552 (unsigned long) retval);
4553 return retval;
4554 }
4555
4556 static int
4557 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4558 {
4559 int retval;
4560
4561 retval = debug_target.to_stopped_data_address (target, addr);
4562
4563 fprintf_unfiltered (gdb_stdlog,
4564 "target_stopped_data_address ([%s]) = %ld\n",
4565 core_addr_to_string (*addr),
4566 (unsigned long)retval);
4567 return retval;
4568 }
4569
4570 static int
4571 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4572 CORE_ADDR addr,
4573 CORE_ADDR start, int length)
4574 {
4575 int retval;
4576
4577 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4578 start, length);
4579
4580 fprintf_filtered (gdb_stdlog,
4581 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4582 core_addr_to_string (addr), core_addr_to_string (start),
4583 length, retval);
4584 return retval;
4585 }
4586
4587 static int
4588 debug_to_insert_hw_breakpoint (struct target_ops *self,
4589 struct gdbarch *gdbarch,
4590 struct bp_target_info *bp_tgt)
4591 {
4592 int retval;
4593
4594 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4595 gdbarch, bp_tgt);
4596
4597 fprintf_unfiltered (gdb_stdlog,
4598 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4599 core_addr_to_string (bp_tgt->placed_address),
4600 (unsigned long) retval);
4601 return retval;
4602 }
4603
4604 static int
4605 debug_to_remove_hw_breakpoint (struct target_ops *self,
4606 struct gdbarch *gdbarch,
4607 struct bp_target_info *bp_tgt)
4608 {
4609 int retval;
4610
4611 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4612 gdbarch, bp_tgt);
4613
4614 fprintf_unfiltered (gdb_stdlog,
4615 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4616 core_addr_to_string (bp_tgt->placed_address),
4617 (unsigned long) retval);
4618 return retval;
4619 }
4620
4621 static int
4622 debug_to_insert_watchpoint (struct target_ops *self,
4623 CORE_ADDR addr, int len, int type,
4624 struct expression *cond)
4625 {
4626 int retval;
4627
4628 retval = debug_target.to_insert_watchpoint (&debug_target,
4629 addr, len, type, cond);
4630
4631 fprintf_unfiltered (gdb_stdlog,
4632 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4633 core_addr_to_string (addr), len, type,
4634 host_address_to_string (cond), (unsigned long) retval);
4635 return retval;
4636 }
4637
4638 static int
4639 debug_to_remove_watchpoint (struct target_ops *self,
4640 CORE_ADDR addr, int len, int type,
4641 struct expression *cond)
4642 {
4643 int retval;
4644
4645 retval = debug_target.to_remove_watchpoint (&debug_target,
4646 addr, len, type, cond);
4647
4648 fprintf_unfiltered (gdb_stdlog,
4649 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4650 core_addr_to_string (addr), len, type,
4651 host_address_to_string (cond), (unsigned long) retval);
4652 return retval;
4653 }
4654
4655 static void
4656 debug_to_terminal_init (struct target_ops *self)
4657 {
4658 debug_target.to_terminal_init (&debug_target);
4659
4660 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4661 }
4662
4663 static void
4664 debug_to_terminal_inferior (struct target_ops *self)
4665 {
4666 debug_target.to_terminal_inferior (&debug_target);
4667
4668 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4669 }
4670
4671 static void
4672 debug_to_terminal_ours_for_output (struct target_ops *self)
4673 {
4674 debug_target.to_terminal_ours_for_output (&debug_target);
4675
4676 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4677 }
4678
4679 static void
4680 debug_to_terminal_ours (struct target_ops *self)
4681 {
4682 debug_target.to_terminal_ours (&debug_target);
4683
4684 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4685 }
4686
4687 static void
4688 debug_to_terminal_save_ours (struct target_ops *self)
4689 {
4690 debug_target.to_terminal_save_ours (&debug_target);
4691
4692 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4693 }
4694
4695 static void
4696 debug_to_terminal_info (struct target_ops *self,
4697 const char *arg, int from_tty)
4698 {
4699 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4700
4701 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4702 from_tty);
4703 }
4704
4705 static void
4706 debug_to_load (struct target_ops *self, char *args, int from_tty)
4707 {
4708 debug_target.to_load (&debug_target, args, from_tty);
4709
4710 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4711 }
4712
4713 static void
4714 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4715 {
4716 debug_target.to_post_startup_inferior (&debug_target, ptid);
4717
4718 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4719 ptid_get_pid (ptid));
4720 }
4721
4722 static int
4723 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4724 {
4725 int retval;
4726
4727 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4728
4729 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4730 pid, retval);
4731
4732 return retval;
4733 }
4734
4735 static int
4736 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4737 {
4738 int retval;
4739
4740 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4741
4742 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4743 pid, retval);
4744
4745 return retval;
4746 }
4747
4748 static int
4749 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4750 {
4751 int retval;
4752
4753 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4754
4755 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4756 pid, retval);
4757
4758 return retval;
4759 }
4760
4761 static int
4762 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4763 {
4764 int retval;
4765
4766 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4767
4768 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4769 pid, retval);
4770
4771 return retval;
4772 }
4773
4774 static int
4775 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4776 {
4777 int retval;
4778
4779 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4780
4781 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4782 pid, retval);
4783
4784 return retval;
4785 }
4786
4787 static int
4788 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4789 {
4790 int retval;
4791
4792 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4793
4794 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4795 pid, retval);
4796
4797 return retval;
4798 }
4799
4800 static int
4801 debug_to_has_exited (struct target_ops *self,
4802 int pid, int wait_status, int *exit_status)
4803 {
4804 int has_exited;
4805
4806 has_exited = debug_target.to_has_exited (&debug_target,
4807 pid, wait_status, exit_status);
4808
4809 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4810 pid, wait_status, *exit_status, has_exited);
4811
4812 return has_exited;
4813 }
4814
4815 static int
4816 debug_to_can_run (struct target_ops *self)
4817 {
4818 int retval;
4819
4820 retval = debug_target.to_can_run (&debug_target);
4821
4822 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4823
4824 return retval;
4825 }
4826
4827 static struct gdbarch *
4828 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4829 {
4830 struct gdbarch *retval;
4831
4832 retval = debug_target.to_thread_architecture (ops, ptid);
4833
4834 fprintf_unfiltered (gdb_stdlog,
4835 "target_thread_architecture (%s) = %s [%s]\n",
4836 target_pid_to_str (ptid),
4837 host_address_to_string (retval),
4838 gdbarch_bfd_arch_info (retval)->printable_name);
4839 return retval;
4840 }
4841
4842 static void
4843 debug_to_stop (struct target_ops *self, ptid_t ptid)
4844 {
4845 debug_target.to_stop (&debug_target, ptid);
4846
4847 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4848 target_pid_to_str (ptid));
4849 }
4850
4851 static void
4852 debug_to_rcmd (struct target_ops *self, char *command,
4853 struct ui_file *outbuf)
4854 {
4855 debug_target.to_rcmd (&debug_target, command, outbuf);
4856 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4857 }
4858
4859 static char *
4860 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4861 {
4862 char *exec_file;
4863
4864 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4865
4866 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4867 pid, exec_file);
4868
4869 return exec_file;
4870 }
4871
4872 static void
4873 setup_target_debug (void)
4874 {
4875 memcpy (&debug_target, &current_target, sizeof debug_target);
4876
4877 current_target.to_open = debug_to_open;
4878 current_target.to_post_attach = debug_to_post_attach;
4879 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4880 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4881 current_target.to_files_info = debug_to_files_info;
4882 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4883 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4884 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4885 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4886 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4887 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4888 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4889 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4890 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4891 current_target.to_watchpoint_addr_within_range
4892 = debug_to_watchpoint_addr_within_range;
4893 current_target.to_region_ok_for_hw_watchpoint
4894 = debug_to_region_ok_for_hw_watchpoint;
4895 current_target.to_can_accel_watchpoint_condition
4896 = debug_to_can_accel_watchpoint_condition;
4897 current_target.to_terminal_init = debug_to_terminal_init;
4898 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4899 current_target.to_terminal_ours_for_output
4900 = debug_to_terminal_ours_for_output;
4901 current_target.to_terminal_ours = debug_to_terminal_ours;
4902 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4903 current_target.to_terminal_info = debug_to_terminal_info;
4904 current_target.to_load = debug_to_load;
4905 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4906 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4907 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4908 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4909 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4910 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4911 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4912 current_target.to_has_exited = debug_to_has_exited;
4913 current_target.to_can_run = debug_to_can_run;
4914 current_target.to_stop = debug_to_stop;
4915 current_target.to_rcmd = debug_to_rcmd;
4916 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4917 current_target.to_thread_architecture = debug_to_thread_architecture;
4918 }
4919 \f
4920
4921 static char targ_desc[] =
4922 "Names of targets and files being debugged.\nShows the entire \
4923 stack of targets currently in use (including the exec-file,\n\
4924 core-file, and process, if any), as well as the symbol file name.";
4925
4926 static void
4927 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4928 {
4929 error (_("\"monitor\" command not supported by this target."));
4930 }
4931
4932 static void
4933 do_monitor_command (char *cmd,
4934 int from_tty)
4935 {
4936 target_rcmd (cmd, gdb_stdtarg);
4937 }
4938
4939 /* Print the name of each layers of our target stack. */
4940
4941 static void
4942 maintenance_print_target_stack (char *cmd, int from_tty)
4943 {
4944 struct target_ops *t;
4945
4946 printf_filtered (_("The current target stack is:\n"));
4947
4948 for (t = target_stack; t != NULL; t = t->beneath)
4949 {
4950 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4951 }
4952 }
4953
4954 /* Controls if async mode is permitted. */
4955 int target_async_permitted = 0;
4956
4957 /* The set command writes to this variable. If the inferior is
4958 executing, target_async_permitted is *not* updated. */
4959 static int target_async_permitted_1 = 0;
4960
4961 static void
4962 set_target_async_command (char *args, int from_tty,
4963 struct cmd_list_element *c)
4964 {
4965 if (have_live_inferiors ())
4966 {
4967 target_async_permitted_1 = target_async_permitted;
4968 error (_("Cannot change this setting while the inferior is running."));
4969 }
4970
4971 target_async_permitted = target_async_permitted_1;
4972 }
4973
4974 static void
4975 show_target_async_command (struct ui_file *file, int from_tty,
4976 struct cmd_list_element *c,
4977 const char *value)
4978 {
4979 fprintf_filtered (file,
4980 _("Controlling the inferior in "
4981 "asynchronous mode is %s.\n"), value);
4982 }
4983
4984 /* Temporary copies of permission settings. */
4985
4986 static int may_write_registers_1 = 1;
4987 static int may_write_memory_1 = 1;
4988 static int may_insert_breakpoints_1 = 1;
4989 static int may_insert_tracepoints_1 = 1;
4990 static int may_insert_fast_tracepoints_1 = 1;
4991 static int may_stop_1 = 1;
4992
4993 /* Make the user-set values match the real values again. */
4994
4995 void
4996 update_target_permissions (void)
4997 {
4998 may_write_registers_1 = may_write_registers;
4999 may_write_memory_1 = may_write_memory;
5000 may_insert_breakpoints_1 = may_insert_breakpoints;
5001 may_insert_tracepoints_1 = may_insert_tracepoints;
5002 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
5003 may_stop_1 = may_stop;
5004 }
5005
5006 /* The one function handles (most of) the permission flags in the same
5007 way. */
5008
5009 static void
5010 set_target_permissions (char *args, int from_tty,
5011 struct cmd_list_element *c)
5012 {
5013 if (target_has_execution)
5014 {
5015 update_target_permissions ();
5016 error (_("Cannot change this setting while the inferior is running."));
5017 }
5018
5019 /* Make the real values match the user-changed values. */
5020 may_write_registers = may_write_registers_1;
5021 may_insert_breakpoints = may_insert_breakpoints_1;
5022 may_insert_tracepoints = may_insert_tracepoints_1;
5023 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
5024 may_stop = may_stop_1;
5025 update_observer_mode ();
5026 }
5027
5028 /* Set memory write permission independently of observer mode. */
5029
5030 static void
5031 set_write_memory_permission (char *args, int from_tty,
5032 struct cmd_list_element *c)
5033 {
5034 /* Make the real values match the user-changed values. */
5035 may_write_memory = may_write_memory_1;
5036 update_observer_mode ();
5037 }
5038
5039
5040 void
5041 initialize_targets (void)
5042 {
5043 init_dummy_target ();
5044 push_target (&dummy_target);
5045
5046 add_info ("target", target_info, targ_desc);
5047 add_info ("files", target_info, targ_desc);
5048
5049 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5050 Set target debugging."), _("\
5051 Show target debugging."), _("\
5052 When non-zero, target debugging is enabled. Higher numbers are more\n\
5053 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5054 command."),
5055 NULL,
5056 show_targetdebug,
5057 &setdebuglist, &showdebuglist);
5058
5059 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5060 &trust_readonly, _("\
5061 Set mode for reading from readonly sections."), _("\
5062 Show mode for reading from readonly sections."), _("\
5063 When this mode is on, memory reads from readonly sections (such as .text)\n\
5064 will be read from the object file instead of from the target. This will\n\
5065 result in significant performance improvement for remote targets."),
5066 NULL,
5067 show_trust_readonly,
5068 &setlist, &showlist);
5069
5070 add_com ("monitor", class_obscure, do_monitor_command,
5071 _("Send a command to the remote monitor (remote targets only)."));
5072
5073 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5074 _("Print the name of each layer of the internal target stack."),
5075 &maintenanceprintlist);
5076
5077 add_setshow_boolean_cmd ("target-async", no_class,
5078 &target_async_permitted_1, _("\
5079 Set whether gdb controls the inferior in asynchronous mode."), _("\
5080 Show whether gdb controls the inferior in asynchronous mode."), _("\
5081 Tells gdb whether to control the inferior in asynchronous mode."),
5082 set_target_async_command,
5083 show_target_async_command,
5084 &setlist,
5085 &showlist);
5086
5087 add_setshow_boolean_cmd ("may-write-registers", class_support,
5088 &may_write_registers_1, _("\
5089 Set permission to write into registers."), _("\
5090 Show permission to write into registers."), _("\
5091 When this permission is on, GDB may write into the target's registers.\n\
5092 Otherwise, any sort of write attempt will result in an error."),
5093 set_target_permissions, NULL,
5094 &setlist, &showlist);
5095
5096 add_setshow_boolean_cmd ("may-write-memory", class_support,
5097 &may_write_memory_1, _("\
5098 Set permission to write into target memory."), _("\
5099 Show permission to write into target memory."), _("\
5100 When this permission is on, GDB may write into the target's memory.\n\
5101 Otherwise, any sort of write attempt will result in an error."),
5102 set_write_memory_permission, NULL,
5103 &setlist, &showlist);
5104
5105 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5106 &may_insert_breakpoints_1, _("\
5107 Set permission to insert breakpoints in the target."), _("\
5108 Show permission to insert breakpoints in the target."), _("\
5109 When this permission is on, GDB may insert breakpoints in the program.\n\
5110 Otherwise, any sort of insertion attempt will result in an error."),
5111 set_target_permissions, NULL,
5112 &setlist, &showlist);
5113
5114 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5115 &may_insert_tracepoints_1, _("\
5116 Set permission to insert tracepoints in the target."), _("\
5117 Show permission to insert tracepoints in the target."), _("\
5118 When this permission is on, GDB may insert tracepoints in the program.\n\
5119 Otherwise, any sort of insertion attempt will result in an error."),
5120 set_target_permissions, NULL,
5121 &setlist, &showlist);
5122
5123 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5124 &may_insert_fast_tracepoints_1, _("\
5125 Set permission to insert fast tracepoints in the target."), _("\
5126 Show permission to insert fast tracepoints in the target."), _("\
5127 When this permission is on, GDB may insert fast tracepoints.\n\
5128 Otherwise, any sort of insertion attempt will result in an error."),
5129 set_target_permissions, NULL,
5130 &setlist, &showlist);
5131
5132 add_setshow_boolean_cmd ("may-interrupt", class_support,
5133 &may_stop_1, _("\
5134 Set permission to interrupt or signal the target."), _("\
5135 Show permission to interrupt or signal the target."), _("\
5136 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5137 Otherwise, any attempt to interrupt or stop will be ignored."),
5138 set_target_permissions, NULL,
5139 &setlist, &showlist);
5140 }
This page took 0.212965 seconds and 5 git commands to generate.