Non-stop inferior control.
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43
44 static void target_info (char *, int);
45
46 static void maybe_kill_then_attach (char *, int);
47
48 static void kill_or_be_killed (int);
49
50 static void default_terminal_info (char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
56
57 static int nosymbol (char *, CORE_ADDR *);
58
59 static void tcomplain (void) ATTR_NORETURN;
60
61 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
62
63 static int return_zero (void);
64
65 static int return_one (void);
66
67 static int return_minus_one (void);
68
69 void target_ignore (void);
70
71 static void target_command (char *, int);
72
73 static struct target_ops *find_default_run_target (char *);
74
75 static void nosupport_runtime (void);
76
77 static LONGEST default_xfer_partial (struct target_ops *ops,
78 enum target_object object,
79 const char *annex, gdb_byte *readbuf,
80 const gdb_byte *writebuf,
81 ULONGEST offset, LONGEST len);
82
83 static LONGEST current_xfer_partial (struct target_ops *ops,
84 enum target_object object,
85 const char *annex, gdb_byte *readbuf,
86 const gdb_byte *writebuf,
87 ULONGEST offset, LONGEST len);
88
89 static LONGEST target_xfer_partial (struct target_ops *ops,
90 enum target_object object,
91 const char *annex,
92 void *readbuf, const void *writebuf,
93 ULONGEST offset, LONGEST len);
94
95 static void init_dummy_target (void);
96
97 static struct target_ops debug_target;
98
99 static void debug_to_open (char *, int);
100
101 static void debug_to_close (int);
102
103 static void debug_to_attach (char *, int);
104
105 static void debug_to_detach (char *, int);
106
107 static void debug_to_resume (ptid_t, int, enum target_signal);
108
109 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
110
111 static void debug_to_fetch_registers (struct regcache *, int);
112
113 static void debug_to_store_registers (struct regcache *, int);
114
115 static void debug_to_prepare_to_store (struct regcache *);
116
117 static void debug_to_files_info (struct target_ops *);
118
119 static int debug_to_insert_breakpoint (struct bp_target_info *);
120
121 static int debug_to_remove_breakpoint (struct bp_target_info *);
122
123 static int debug_to_can_use_hw_breakpoint (int, int, int);
124
125 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
126
127 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
128
129 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
130
131 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
132
133 static int debug_to_stopped_by_watchpoint (void);
134
135 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
136
137 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
138 CORE_ADDR, CORE_ADDR, int);
139
140 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
141
142 static void debug_to_terminal_init (void);
143
144 static void debug_to_terminal_inferior (void);
145
146 static void debug_to_terminal_ours_for_output (void);
147
148 static void debug_to_terminal_save_ours (void);
149
150 static void debug_to_terminal_ours (void);
151
152 static void debug_to_terminal_info (char *, int);
153
154 static void debug_to_kill (void);
155
156 static void debug_to_load (char *, int);
157
158 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
159
160 static void debug_to_mourn_inferior (void);
161
162 static int debug_to_can_run (void);
163
164 static void debug_to_notice_signals (ptid_t);
165
166 static int debug_to_thread_alive (ptid_t);
167
168 static void debug_to_stop (ptid_t);
169
170 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
171 wierd and mysterious ways. Putting the variable here lets those
172 wierd and mysterious ways keep building while they are being
173 converted to the inferior inheritance structure. */
174 struct target_ops deprecated_child_ops;
175
176 /* Pointer to array of target architecture structures; the size of the
177 array; the current index into the array; the allocated size of the
178 array. */
179 struct target_ops **target_structs;
180 unsigned target_struct_size;
181 unsigned target_struct_index;
182 unsigned target_struct_allocsize;
183 #define DEFAULT_ALLOCSIZE 10
184
185 /* The initial current target, so that there is always a semi-valid
186 current target. */
187
188 static struct target_ops dummy_target;
189
190 /* Top of target stack. */
191
192 static struct target_ops *target_stack;
193
194 /* The target structure we are currently using to talk to a process
195 or file or whatever "inferior" we have. */
196
197 struct target_ops current_target;
198
199 /* Command list for target. */
200
201 static struct cmd_list_element *targetlist = NULL;
202
203 /* Nonzero if we are debugging an attached outside process
204 rather than an inferior. */
205
206 int attach_flag;
207
208 /* Nonzero if we should trust readonly sections from the
209 executable when reading memory. */
210
211 static int trust_readonly = 0;
212
213 /* Nonzero if we should show true memory content including
214 memory breakpoint inserted by gdb. */
215
216 static int show_memory_breakpoints = 0;
217
218 /* Non-zero if we want to see trace of target level stuff. */
219
220 static int targetdebug = 0;
221 static void
222 show_targetdebug (struct ui_file *file, int from_tty,
223 struct cmd_list_element *c, const char *value)
224 {
225 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
226 }
227
228 static void setup_target_debug (void);
229
230 DCACHE *target_dcache;
231
232 /* The user just typed 'target' without the name of a target. */
233
234 static void
235 target_command (char *arg, int from_tty)
236 {
237 fputs_filtered ("Argument required (target name). Try `help target'\n",
238 gdb_stdout);
239 }
240
241 /* Add a possible target architecture to the list. */
242
243 void
244 add_target (struct target_ops *t)
245 {
246 /* Provide default values for all "must have" methods. */
247 if (t->to_xfer_partial == NULL)
248 t->to_xfer_partial = default_xfer_partial;
249
250 if (!target_structs)
251 {
252 target_struct_allocsize = DEFAULT_ALLOCSIZE;
253 target_structs = (struct target_ops **) xmalloc
254 (target_struct_allocsize * sizeof (*target_structs));
255 }
256 if (target_struct_size >= target_struct_allocsize)
257 {
258 target_struct_allocsize *= 2;
259 target_structs = (struct target_ops **)
260 xrealloc ((char *) target_structs,
261 target_struct_allocsize * sizeof (*target_structs));
262 }
263 target_structs[target_struct_size++] = t;
264
265 if (targetlist == NULL)
266 add_prefix_cmd ("target", class_run, target_command, _("\
267 Connect to a target machine or process.\n\
268 The first argument is the type or protocol of the target machine.\n\
269 Remaining arguments are interpreted by the target protocol. For more\n\
270 information on the arguments for a particular protocol, type\n\
271 `help target ' followed by the protocol name."),
272 &targetlist, "target ", 0, &cmdlist);
273 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
274 }
275
276 /* Stub functions */
277
278 void
279 target_ignore (void)
280 {
281 }
282
283 void
284 target_load (char *arg, int from_tty)
285 {
286 dcache_invalidate (target_dcache);
287 (*current_target.to_load) (arg, from_tty);
288 }
289
290 static int
291 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
292 struct target_ops *t)
293 {
294 errno = EIO; /* Can't read/write this location */
295 return 0; /* No bytes handled */
296 }
297
298 static void
299 tcomplain (void)
300 {
301 error (_("You can't do that when your target is `%s'"),
302 current_target.to_shortname);
303 }
304
305 void
306 noprocess (void)
307 {
308 error (_("You can't do that without a process to debug."));
309 }
310
311 static int
312 nosymbol (char *name, CORE_ADDR *addrp)
313 {
314 return 1; /* Symbol does not exist in target env */
315 }
316
317 static void
318 nosupport_runtime (void)
319 {
320 if (ptid_equal (inferior_ptid, null_ptid))
321 noprocess ();
322 else
323 error (_("No run-time support for this"));
324 }
325
326
327 static void
328 default_terminal_info (char *args, int from_tty)
329 {
330 printf_unfiltered (_("No saved terminal information.\n"));
331 }
332
333 /* This is the default target_create_inferior and target_attach function.
334 If the current target is executing, it asks whether to kill it off.
335 If this function returns without calling error(), it has killed off
336 the target, and the operation should be attempted. */
337
338 static void
339 kill_or_be_killed (int from_tty)
340 {
341 if (target_has_execution)
342 {
343 printf_unfiltered (_("You are already running a program:\n"));
344 target_files_info ();
345 if (query ("Kill it? "))
346 {
347 target_kill ();
348 if (target_has_execution)
349 error (_("Killing the program did not help."));
350 return;
351 }
352 else
353 {
354 error (_("Program not killed."));
355 }
356 }
357 tcomplain ();
358 }
359
360 static void
361 maybe_kill_then_attach (char *args, int from_tty)
362 {
363 kill_or_be_killed (from_tty);
364 target_attach (args, from_tty);
365 }
366
367 static void
368 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
369 int from_tty)
370 {
371 kill_or_be_killed (0);
372 target_create_inferior (exec, args, env, from_tty);
373 }
374
375 /* Go through the target stack from top to bottom, copying over zero
376 entries in current_target, then filling in still empty entries. In
377 effect, we are doing class inheritance through the pushed target
378 vectors.
379
380 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
381 is currently implemented, is that it discards any knowledge of
382 which target an inherited method originally belonged to.
383 Consequently, new new target methods should instead explicitly and
384 locally search the target stack for the target that can handle the
385 request. */
386
387 static void
388 update_current_target (void)
389 {
390 struct target_ops *t;
391
392 /* First, reset current's contents. */
393 memset (&current_target, 0, sizeof (current_target));
394
395 #define INHERIT(FIELD, TARGET) \
396 if (!current_target.FIELD) \
397 current_target.FIELD = (TARGET)->FIELD
398
399 for (t = target_stack; t; t = t->beneath)
400 {
401 INHERIT (to_shortname, t);
402 INHERIT (to_longname, t);
403 INHERIT (to_doc, t);
404 INHERIT (to_open, t);
405 INHERIT (to_close, t);
406 INHERIT (to_attach, t);
407 INHERIT (to_post_attach, t);
408 INHERIT (to_attach_no_wait, t);
409 INHERIT (to_detach, t);
410 /* Do not inherit to_disconnect. */
411 INHERIT (to_resume, t);
412 INHERIT (to_wait, t);
413 INHERIT (to_fetch_registers, t);
414 INHERIT (to_store_registers, t);
415 INHERIT (to_prepare_to_store, t);
416 INHERIT (deprecated_xfer_memory, t);
417 INHERIT (to_files_info, t);
418 INHERIT (to_insert_breakpoint, t);
419 INHERIT (to_remove_breakpoint, t);
420 INHERIT (to_can_use_hw_breakpoint, t);
421 INHERIT (to_insert_hw_breakpoint, t);
422 INHERIT (to_remove_hw_breakpoint, t);
423 INHERIT (to_insert_watchpoint, t);
424 INHERIT (to_remove_watchpoint, t);
425 INHERIT (to_stopped_data_address, t);
426 INHERIT (to_have_steppable_watchpoint, t);
427 INHERIT (to_have_continuable_watchpoint, t);
428 INHERIT (to_stopped_by_watchpoint, t);
429 INHERIT (to_watchpoint_addr_within_range, t);
430 INHERIT (to_region_ok_for_hw_watchpoint, t);
431 INHERIT (to_terminal_init, t);
432 INHERIT (to_terminal_inferior, t);
433 INHERIT (to_terminal_ours_for_output, t);
434 INHERIT (to_terminal_ours, t);
435 INHERIT (to_terminal_save_ours, t);
436 INHERIT (to_terminal_info, t);
437 INHERIT (to_kill, t);
438 INHERIT (to_load, t);
439 INHERIT (to_lookup_symbol, t);
440 INHERIT (to_create_inferior, t);
441 INHERIT (to_post_startup_inferior, t);
442 INHERIT (to_acknowledge_created_inferior, t);
443 INHERIT (to_insert_fork_catchpoint, t);
444 INHERIT (to_remove_fork_catchpoint, t);
445 INHERIT (to_insert_vfork_catchpoint, t);
446 INHERIT (to_remove_vfork_catchpoint, t);
447 /* Do not inherit to_follow_fork. */
448 INHERIT (to_insert_exec_catchpoint, t);
449 INHERIT (to_remove_exec_catchpoint, t);
450 INHERIT (to_has_exited, t);
451 INHERIT (to_mourn_inferior, t);
452 INHERIT (to_can_run, t);
453 INHERIT (to_notice_signals, t);
454 INHERIT (to_thread_alive, t);
455 INHERIT (to_find_new_threads, t);
456 INHERIT (to_pid_to_str, t);
457 INHERIT (to_extra_thread_info, t);
458 INHERIT (to_stop, t);
459 /* Do not inherit to_xfer_partial. */
460 INHERIT (to_rcmd, t);
461 INHERIT (to_pid_to_exec_file, t);
462 INHERIT (to_log_command, t);
463 INHERIT (to_stratum, t);
464 INHERIT (to_has_all_memory, t);
465 INHERIT (to_has_memory, t);
466 INHERIT (to_has_stack, t);
467 INHERIT (to_has_registers, t);
468 INHERIT (to_has_execution, t);
469 INHERIT (to_has_thread_control, t);
470 INHERIT (to_sections, t);
471 INHERIT (to_sections_end, t);
472 INHERIT (to_can_async_p, t);
473 INHERIT (to_is_async_p, t);
474 INHERIT (to_async, t);
475 INHERIT (to_async_mask, t);
476 INHERIT (to_find_memory_regions, t);
477 INHERIT (to_make_corefile_notes, t);
478 INHERIT (to_get_thread_local_address, t);
479 /* Do not inherit to_read_description. */
480 /* Do not inherit to_search_memory. */
481 INHERIT (to_magic, t);
482 /* Do not inherit to_memory_map. */
483 /* Do not inherit to_flash_erase. */
484 /* Do not inherit to_flash_done. */
485 }
486 #undef INHERIT
487
488 /* Clean up a target struct so it no longer has any zero pointers in
489 it. Some entries are defaulted to a method that print an error,
490 others are hard-wired to a standard recursive default. */
491
492 #define de_fault(field, value) \
493 if (!current_target.field) \
494 current_target.field = value
495
496 de_fault (to_open,
497 (void (*) (char *, int))
498 tcomplain);
499 de_fault (to_close,
500 (void (*) (int))
501 target_ignore);
502 de_fault (to_attach,
503 maybe_kill_then_attach);
504 de_fault (to_post_attach,
505 (void (*) (int))
506 target_ignore);
507 de_fault (to_detach,
508 (void (*) (char *, int))
509 target_ignore);
510 de_fault (to_resume,
511 (void (*) (ptid_t, int, enum target_signal))
512 noprocess);
513 de_fault (to_wait,
514 (ptid_t (*) (ptid_t, struct target_waitstatus *))
515 noprocess);
516 de_fault (to_fetch_registers,
517 (void (*) (struct regcache *, int))
518 target_ignore);
519 de_fault (to_store_registers,
520 (void (*) (struct regcache *, int))
521 noprocess);
522 de_fault (to_prepare_to_store,
523 (void (*) (struct regcache *))
524 noprocess);
525 de_fault (deprecated_xfer_memory,
526 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
527 nomemory);
528 de_fault (to_files_info,
529 (void (*) (struct target_ops *))
530 target_ignore);
531 de_fault (to_insert_breakpoint,
532 memory_insert_breakpoint);
533 de_fault (to_remove_breakpoint,
534 memory_remove_breakpoint);
535 de_fault (to_can_use_hw_breakpoint,
536 (int (*) (int, int, int))
537 return_zero);
538 de_fault (to_insert_hw_breakpoint,
539 (int (*) (struct bp_target_info *))
540 return_minus_one);
541 de_fault (to_remove_hw_breakpoint,
542 (int (*) (struct bp_target_info *))
543 return_minus_one);
544 de_fault (to_insert_watchpoint,
545 (int (*) (CORE_ADDR, int, int))
546 return_minus_one);
547 de_fault (to_remove_watchpoint,
548 (int (*) (CORE_ADDR, int, int))
549 return_minus_one);
550 de_fault (to_stopped_by_watchpoint,
551 (int (*) (void))
552 return_zero);
553 de_fault (to_stopped_data_address,
554 (int (*) (struct target_ops *, CORE_ADDR *))
555 return_zero);
556 de_fault (to_watchpoint_addr_within_range,
557 default_watchpoint_addr_within_range);
558 de_fault (to_region_ok_for_hw_watchpoint,
559 default_region_ok_for_hw_watchpoint);
560 de_fault (to_terminal_init,
561 (void (*) (void))
562 target_ignore);
563 de_fault (to_terminal_inferior,
564 (void (*) (void))
565 target_ignore);
566 de_fault (to_terminal_ours_for_output,
567 (void (*) (void))
568 target_ignore);
569 de_fault (to_terminal_ours,
570 (void (*) (void))
571 target_ignore);
572 de_fault (to_terminal_save_ours,
573 (void (*) (void))
574 target_ignore);
575 de_fault (to_terminal_info,
576 default_terminal_info);
577 de_fault (to_kill,
578 (void (*) (void))
579 noprocess);
580 de_fault (to_load,
581 (void (*) (char *, int))
582 tcomplain);
583 de_fault (to_lookup_symbol,
584 (int (*) (char *, CORE_ADDR *))
585 nosymbol);
586 de_fault (to_create_inferior,
587 maybe_kill_then_create_inferior);
588 de_fault (to_post_startup_inferior,
589 (void (*) (ptid_t))
590 target_ignore);
591 de_fault (to_acknowledge_created_inferior,
592 (void (*) (int))
593 target_ignore);
594 de_fault (to_insert_fork_catchpoint,
595 (void (*) (int))
596 tcomplain);
597 de_fault (to_remove_fork_catchpoint,
598 (int (*) (int))
599 tcomplain);
600 de_fault (to_insert_vfork_catchpoint,
601 (void (*) (int))
602 tcomplain);
603 de_fault (to_remove_vfork_catchpoint,
604 (int (*) (int))
605 tcomplain);
606 de_fault (to_insert_exec_catchpoint,
607 (void (*) (int))
608 tcomplain);
609 de_fault (to_remove_exec_catchpoint,
610 (int (*) (int))
611 tcomplain);
612 de_fault (to_has_exited,
613 (int (*) (int, int, int *))
614 return_zero);
615 de_fault (to_mourn_inferior,
616 (void (*) (void))
617 noprocess);
618 de_fault (to_can_run,
619 return_zero);
620 de_fault (to_notice_signals,
621 (void (*) (ptid_t))
622 target_ignore);
623 de_fault (to_thread_alive,
624 (int (*) (ptid_t))
625 return_zero);
626 de_fault (to_find_new_threads,
627 (void (*) (void))
628 target_ignore);
629 de_fault (to_extra_thread_info,
630 (char *(*) (struct thread_info *))
631 return_zero);
632 de_fault (to_stop,
633 (void (*) (ptid_t))
634 target_ignore);
635 current_target.to_xfer_partial = current_xfer_partial;
636 de_fault (to_rcmd,
637 (void (*) (char *, struct ui_file *))
638 tcomplain);
639 de_fault (to_pid_to_exec_file,
640 (char *(*) (int))
641 return_zero);
642 de_fault (to_can_async_p,
643 (int (*) (void))
644 return_zero);
645 de_fault (to_is_async_p,
646 (int (*) (void))
647 return_zero);
648 de_fault (to_async,
649 (void (*) (void (*) (enum inferior_event_type, void*), void*))
650 tcomplain);
651 de_fault (to_async_mask,
652 (int (*) (int))
653 return_one);
654 current_target.to_read_description = NULL;
655 #undef de_fault
656
657 /* Finally, position the target-stack beneath the squashed
658 "current_target". That way code looking for a non-inherited
659 target method can quickly and simply find it. */
660 current_target.beneath = target_stack;
661
662 if (targetdebug)
663 setup_target_debug ();
664 }
665
666 /* Mark OPS as a running target. This reverses the effect
667 of target_mark_exited. */
668
669 void
670 target_mark_running (struct target_ops *ops)
671 {
672 struct target_ops *t;
673
674 for (t = target_stack; t != NULL; t = t->beneath)
675 if (t == ops)
676 break;
677 if (t == NULL)
678 internal_error (__FILE__, __LINE__,
679 "Attempted to mark unpushed target \"%s\" as running",
680 ops->to_shortname);
681
682 ops->to_has_execution = 1;
683 ops->to_has_all_memory = 1;
684 ops->to_has_memory = 1;
685 ops->to_has_stack = 1;
686 ops->to_has_registers = 1;
687
688 update_current_target ();
689 }
690
691 /* Mark OPS as a non-running target. This reverses the effect
692 of target_mark_running. */
693
694 void
695 target_mark_exited (struct target_ops *ops)
696 {
697 struct target_ops *t;
698
699 for (t = target_stack; t != NULL; t = t->beneath)
700 if (t == ops)
701 break;
702 if (t == NULL)
703 internal_error (__FILE__, __LINE__,
704 "Attempted to mark unpushed target \"%s\" as running",
705 ops->to_shortname);
706
707 ops->to_has_execution = 0;
708 ops->to_has_all_memory = 0;
709 ops->to_has_memory = 0;
710 ops->to_has_stack = 0;
711 ops->to_has_registers = 0;
712
713 update_current_target ();
714 }
715
716 /* Push a new target type into the stack of the existing target accessors,
717 possibly superseding some of the existing accessors.
718
719 Result is zero if the pushed target ended up on top of the stack,
720 nonzero if at least one target is on top of it.
721
722 Rather than allow an empty stack, we always have the dummy target at
723 the bottom stratum, so we can call the function vectors without
724 checking them. */
725
726 int
727 push_target (struct target_ops *t)
728 {
729 struct target_ops **cur;
730
731 /* Check magic number. If wrong, it probably means someone changed
732 the struct definition, but not all the places that initialize one. */
733 if (t->to_magic != OPS_MAGIC)
734 {
735 fprintf_unfiltered (gdb_stderr,
736 "Magic number of %s target struct wrong\n",
737 t->to_shortname);
738 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
739 }
740
741 /* Find the proper stratum to install this target in. */
742 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
743 {
744 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
745 break;
746 }
747
748 /* If there's already targets at this stratum, remove them. */
749 /* FIXME: cagney/2003-10-15: I think this should be popping all
750 targets to CUR, and not just those at this stratum level. */
751 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
752 {
753 /* There's already something at this stratum level. Close it,
754 and un-hook it from the stack. */
755 struct target_ops *tmp = (*cur);
756 (*cur) = (*cur)->beneath;
757 tmp->beneath = NULL;
758 target_close (tmp, 0);
759 }
760
761 /* We have removed all targets in our stratum, now add the new one. */
762 t->beneath = (*cur);
763 (*cur) = t;
764
765 update_current_target ();
766
767 /* Not on top? */
768 return (t != target_stack);
769 }
770
771 /* Remove a target_ops vector from the stack, wherever it may be.
772 Return how many times it was removed (0 or 1). */
773
774 int
775 unpush_target (struct target_ops *t)
776 {
777 struct target_ops **cur;
778 struct target_ops *tmp;
779
780 /* Look for the specified target. Note that we assume that a target
781 can only occur once in the target stack. */
782
783 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
784 {
785 if ((*cur) == t)
786 break;
787 }
788
789 if ((*cur) == NULL)
790 return 0; /* Didn't find target_ops, quit now */
791
792 /* NOTE: cagney/2003-12-06: In '94 the close call was made
793 unconditional by moving it to before the above check that the
794 target was in the target stack (something about "Change the way
795 pushing and popping of targets work to support target overlays
796 and inheritance"). This doesn't make much sense - only open
797 targets should be closed. */
798 target_close (t, 0);
799
800 /* Unchain the target */
801 tmp = (*cur);
802 (*cur) = (*cur)->beneath;
803 tmp->beneath = NULL;
804
805 update_current_target ();
806
807 return 1;
808 }
809
810 void
811 pop_target (void)
812 {
813 target_close (&current_target, 0); /* Let it clean up */
814 if (unpush_target (target_stack) == 1)
815 return;
816
817 fprintf_unfiltered (gdb_stderr,
818 "pop_target couldn't find target %s\n",
819 current_target.to_shortname);
820 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
821 }
822
823 /* Using the objfile specified in OBJFILE, find the address for the
824 current thread's thread-local storage with offset OFFSET. */
825 CORE_ADDR
826 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
827 {
828 volatile CORE_ADDR addr = 0;
829
830 if (target_get_thread_local_address_p ()
831 && gdbarch_fetch_tls_load_module_address_p (current_gdbarch))
832 {
833 ptid_t ptid = inferior_ptid;
834 volatile struct gdb_exception ex;
835
836 TRY_CATCH (ex, RETURN_MASK_ALL)
837 {
838 CORE_ADDR lm_addr;
839
840 /* Fetch the load module address for this objfile. */
841 lm_addr = gdbarch_fetch_tls_load_module_address (current_gdbarch,
842 objfile);
843 /* If it's 0, throw the appropriate exception. */
844 if (lm_addr == 0)
845 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
846 _("TLS load module not found"));
847
848 addr = target_get_thread_local_address (ptid, lm_addr, offset);
849 }
850 /* If an error occurred, print TLS related messages here. Otherwise,
851 throw the error to some higher catcher. */
852 if (ex.reason < 0)
853 {
854 int objfile_is_library = (objfile->flags & OBJF_SHARED);
855
856 switch (ex.error)
857 {
858 case TLS_NO_LIBRARY_SUPPORT_ERROR:
859 error (_("Cannot find thread-local variables in this thread library."));
860 break;
861 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
862 if (objfile_is_library)
863 error (_("Cannot find shared library `%s' in dynamic"
864 " linker's load module list"), objfile->name);
865 else
866 error (_("Cannot find executable file `%s' in dynamic"
867 " linker's load module list"), objfile->name);
868 break;
869 case TLS_NOT_ALLOCATED_YET_ERROR:
870 if (objfile_is_library)
871 error (_("The inferior has not yet allocated storage for"
872 " thread-local variables in\n"
873 "the shared library `%s'\n"
874 "for %s"),
875 objfile->name, target_pid_to_str (ptid));
876 else
877 error (_("The inferior has not yet allocated storage for"
878 " thread-local variables in\n"
879 "the executable `%s'\n"
880 "for %s"),
881 objfile->name, target_pid_to_str (ptid));
882 break;
883 case TLS_GENERIC_ERROR:
884 if (objfile_is_library)
885 error (_("Cannot find thread-local storage for %s, "
886 "shared library %s:\n%s"),
887 target_pid_to_str (ptid),
888 objfile->name, ex.message);
889 else
890 error (_("Cannot find thread-local storage for %s, "
891 "executable file %s:\n%s"),
892 target_pid_to_str (ptid),
893 objfile->name, ex.message);
894 break;
895 default:
896 throw_exception (ex);
897 break;
898 }
899 }
900 }
901 /* It wouldn't be wrong here to try a gdbarch method, too; finding
902 TLS is an ABI-specific thing. But we don't do that yet. */
903 else
904 error (_("Cannot find thread-local variables on this target"));
905
906 return addr;
907 }
908
909 #undef MIN
910 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
911
912 /* target_read_string -- read a null terminated string, up to LEN bytes,
913 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
914 Set *STRING to a pointer to malloc'd memory containing the data; the caller
915 is responsible for freeing it. Return the number of bytes successfully
916 read. */
917
918 int
919 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
920 {
921 int tlen, origlen, offset, i;
922 gdb_byte buf[4];
923 int errcode = 0;
924 char *buffer;
925 int buffer_allocated;
926 char *bufptr;
927 unsigned int nbytes_read = 0;
928
929 gdb_assert (string);
930
931 /* Small for testing. */
932 buffer_allocated = 4;
933 buffer = xmalloc (buffer_allocated);
934 bufptr = buffer;
935
936 origlen = len;
937
938 while (len > 0)
939 {
940 tlen = MIN (len, 4 - (memaddr & 3));
941 offset = memaddr & 3;
942
943 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
944 if (errcode != 0)
945 {
946 /* The transfer request might have crossed the boundary to an
947 unallocated region of memory. Retry the transfer, requesting
948 a single byte. */
949 tlen = 1;
950 offset = 0;
951 errcode = target_read_memory (memaddr, buf, 1);
952 if (errcode != 0)
953 goto done;
954 }
955
956 if (bufptr - buffer + tlen > buffer_allocated)
957 {
958 unsigned int bytes;
959 bytes = bufptr - buffer;
960 buffer_allocated *= 2;
961 buffer = xrealloc (buffer, buffer_allocated);
962 bufptr = buffer + bytes;
963 }
964
965 for (i = 0; i < tlen; i++)
966 {
967 *bufptr++ = buf[i + offset];
968 if (buf[i + offset] == '\000')
969 {
970 nbytes_read += i + 1;
971 goto done;
972 }
973 }
974
975 memaddr += tlen;
976 len -= tlen;
977 nbytes_read += tlen;
978 }
979 done:
980 *string = buffer;
981 if (errnop != NULL)
982 *errnop = errcode;
983 return nbytes_read;
984 }
985
986 /* Find a section containing ADDR. */
987 struct section_table *
988 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
989 {
990 struct section_table *secp;
991 for (secp = target->to_sections;
992 secp < target->to_sections_end;
993 secp++)
994 {
995 if (addr >= secp->addr && addr < secp->endaddr)
996 return secp;
997 }
998 return NULL;
999 }
1000
1001 /* Perform a partial memory transfer. The arguments and return
1002 value are just as for target_xfer_partial. */
1003
1004 static LONGEST
1005 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
1006 ULONGEST memaddr, LONGEST len)
1007 {
1008 LONGEST res;
1009 int reg_len;
1010 struct mem_region *region;
1011
1012 /* Zero length requests are ok and require no work. */
1013 if (len == 0)
1014 return 0;
1015
1016 /* Try the executable file, if "trust-readonly-sections" is set. */
1017 if (readbuf != NULL && trust_readonly)
1018 {
1019 struct section_table *secp;
1020
1021 secp = target_section_by_addr (ops, memaddr);
1022 if (secp != NULL
1023 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1024 & SEC_READONLY))
1025 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1026 }
1027
1028 /* Likewise for accesses to unmapped overlay sections. */
1029 if (readbuf != NULL && overlay_debugging)
1030 {
1031 asection *section = find_pc_overlay (memaddr);
1032 if (pc_in_unmapped_range (memaddr, section))
1033 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1034 }
1035
1036 /* Try GDB's internal data cache. */
1037 region = lookup_mem_region (memaddr);
1038 /* region->hi == 0 means there's no upper bound. */
1039 if (memaddr + len < region->hi || region->hi == 0)
1040 reg_len = len;
1041 else
1042 reg_len = region->hi - memaddr;
1043
1044 switch (region->attrib.mode)
1045 {
1046 case MEM_RO:
1047 if (writebuf != NULL)
1048 return -1;
1049 break;
1050
1051 case MEM_WO:
1052 if (readbuf != NULL)
1053 return -1;
1054 break;
1055
1056 case MEM_FLASH:
1057 /* We only support writing to flash during "load" for now. */
1058 if (writebuf != NULL)
1059 error (_("Writing to flash memory forbidden in this context"));
1060 break;
1061
1062 case MEM_NONE:
1063 return -1;
1064 }
1065
1066 if (region->attrib.cache)
1067 {
1068 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1069 memory request will start back at current_target. */
1070 if (readbuf != NULL)
1071 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1072 reg_len, 0);
1073 else
1074 /* FIXME drow/2006-08-09: If we're going to preserve const
1075 correctness dcache_xfer_memory should take readbuf and
1076 writebuf. */
1077 res = dcache_xfer_memory (target_dcache, memaddr,
1078 (void *) writebuf,
1079 reg_len, 1);
1080 if (res <= 0)
1081 return -1;
1082 else
1083 {
1084 if (readbuf && !show_memory_breakpoints)
1085 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1086 return res;
1087 }
1088 }
1089
1090 /* If none of those methods found the memory we wanted, fall back
1091 to a target partial transfer. Normally a single call to
1092 to_xfer_partial is enough; if it doesn't recognize an object
1093 it will call the to_xfer_partial of the next target down.
1094 But for memory this won't do. Memory is the only target
1095 object which can be read from more than one valid target.
1096 A core file, for instance, could have some of memory but
1097 delegate other bits to the target below it. So, we must
1098 manually try all targets. */
1099
1100 do
1101 {
1102 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1103 readbuf, writebuf, memaddr, reg_len);
1104 if (res > 0)
1105 break;
1106
1107 /* We want to continue past core files to executables, but not
1108 past a running target's memory. */
1109 if (ops->to_has_all_memory)
1110 break;
1111
1112 ops = ops->beneath;
1113 }
1114 while (ops != NULL);
1115
1116 if (readbuf && !show_memory_breakpoints)
1117 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1118
1119 /* If we still haven't got anything, return the last error. We
1120 give up. */
1121 return res;
1122 }
1123
1124 static void
1125 restore_show_memory_breakpoints (void *arg)
1126 {
1127 show_memory_breakpoints = (uintptr_t) arg;
1128 }
1129
1130 struct cleanup *
1131 make_show_memory_breakpoints_cleanup (int show)
1132 {
1133 int current = show_memory_breakpoints;
1134 show_memory_breakpoints = show;
1135
1136 return make_cleanup (restore_show_memory_breakpoints,
1137 (void *) (uintptr_t) current);
1138 }
1139
1140 static LONGEST
1141 target_xfer_partial (struct target_ops *ops,
1142 enum target_object object, const char *annex,
1143 void *readbuf, const void *writebuf,
1144 ULONGEST offset, LONGEST len)
1145 {
1146 LONGEST retval;
1147
1148 gdb_assert (ops->to_xfer_partial != NULL);
1149
1150 /* If this is a memory transfer, let the memory-specific code
1151 have a look at it instead. Memory transfers are more
1152 complicated. */
1153 if (object == TARGET_OBJECT_MEMORY)
1154 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1155 else
1156 {
1157 enum target_object raw_object = object;
1158
1159 /* If this is a raw memory transfer, request the normal
1160 memory object from other layers. */
1161 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1162 raw_object = TARGET_OBJECT_MEMORY;
1163
1164 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1165 writebuf, offset, len);
1166 }
1167
1168 if (targetdebug)
1169 {
1170 const unsigned char *myaddr = NULL;
1171
1172 fprintf_unfiltered (gdb_stdlog,
1173 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
1174 ops->to_shortname,
1175 (int) object,
1176 (annex ? annex : "(null)"),
1177 (long) readbuf, (long) writebuf,
1178 paddr_nz (offset), paddr_d (len), paddr_d (retval));
1179
1180 if (readbuf)
1181 myaddr = readbuf;
1182 if (writebuf)
1183 myaddr = writebuf;
1184 if (retval > 0 && myaddr != NULL)
1185 {
1186 int i;
1187
1188 fputs_unfiltered (", bytes =", gdb_stdlog);
1189 for (i = 0; i < retval; i++)
1190 {
1191 if ((((long) &(myaddr[i])) & 0xf) == 0)
1192 {
1193 if (targetdebug < 2 && i > 0)
1194 {
1195 fprintf_unfiltered (gdb_stdlog, " ...");
1196 break;
1197 }
1198 fprintf_unfiltered (gdb_stdlog, "\n");
1199 }
1200
1201 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1202 }
1203 }
1204
1205 fputc_unfiltered ('\n', gdb_stdlog);
1206 }
1207 return retval;
1208 }
1209
1210 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1211 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1212 if any error occurs.
1213
1214 If an error occurs, no guarantee is made about the contents of the data at
1215 MYADDR. In particular, the caller should not depend upon partial reads
1216 filling the buffer with good data. There is no way for the caller to know
1217 how much good data might have been transfered anyway. Callers that can
1218 deal with partial reads should call target_read (which will retry until
1219 it makes no progress, and then return how much was transferred). */
1220
1221 int
1222 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1223 {
1224 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1225 myaddr, memaddr, len) == len)
1226 return 0;
1227 else
1228 return EIO;
1229 }
1230
1231 int
1232 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1233 {
1234 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1235 myaddr, memaddr, len) == len)
1236 return 0;
1237 else
1238 return EIO;
1239 }
1240
1241 /* Fetch the target's memory map. */
1242
1243 VEC(mem_region_s) *
1244 target_memory_map (void)
1245 {
1246 VEC(mem_region_s) *result;
1247 struct mem_region *last_one, *this_one;
1248 int ix;
1249 struct target_ops *t;
1250
1251 if (targetdebug)
1252 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1253
1254 for (t = current_target.beneath; t != NULL; t = t->beneath)
1255 if (t->to_memory_map != NULL)
1256 break;
1257
1258 if (t == NULL)
1259 return NULL;
1260
1261 result = t->to_memory_map (t);
1262 if (result == NULL)
1263 return NULL;
1264
1265 qsort (VEC_address (mem_region_s, result),
1266 VEC_length (mem_region_s, result),
1267 sizeof (struct mem_region), mem_region_cmp);
1268
1269 /* Check that regions do not overlap. Simultaneously assign
1270 a numbering for the "mem" commands to use to refer to
1271 each region. */
1272 last_one = NULL;
1273 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1274 {
1275 this_one->number = ix;
1276
1277 if (last_one && last_one->hi > this_one->lo)
1278 {
1279 warning (_("Overlapping regions in memory map: ignoring"));
1280 VEC_free (mem_region_s, result);
1281 return NULL;
1282 }
1283 last_one = this_one;
1284 }
1285
1286 return result;
1287 }
1288
1289 void
1290 target_flash_erase (ULONGEST address, LONGEST length)
1291 {
1292 struct target_ops *t;
1293
1294 for (t = current_target.beneath; t != NULL; t = t->beneath)
1295 if (t->to_flash_erase != NULL)
1296 {
1297 if (targetdebug)
1298 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1299 paddr (address), phex (length, 0));
1300 t->to_flash_erase (t, address, length);
1301 return;
1302 }
1303
1304 tcomplain ();
1305 }
1306
1307 void
1308 target_flash_done (void)
1309 {
1310 struct target_ops *t;
1311
1312 for (t = current_target.beneath; t != NULL; t = t->beneath)
1313 if (t->to_flash_done != NULL)
1314 {
1315 if (targetdebug)
1316 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1317 t->to_flash_done (t);
1318 return;
1319 }
1320
1321 tcomplain ();
1322 }
1323
1324 #ifndef target_stopped_data_address_p
1325 int
1326 target_stopped_data_address_p (struct target_ops *target)
1327 {
1328 if (target->to_stopped_data_address
1329 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1330 return 0;
1331 if (target->to_stopped_data_address == debug_to_stopped_data_address
1332 && (debug_target.to_stopped_data_address
1333 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1334 return 0;
1335 return 1;
1336 }
1337 #endif
1338
1339 static void
1340 show_trust_readonly (struct ui_file *file, int from_tty,
1341 struct cmd_list_element *c, const char *value)
1342 {
1343 fprintf_filtered (file, _("\
1344 Mode for reading from readonly sections is %s.\n"),
1345 value);
1346 }
1347
1348 /* More generic transfers. */
1349
1350 static LONGEST
1351 default_xfer_partial (struct target_ops *ops, enum target_object object,
1352 const char *annex, gdb_byte *readbuf,
1353 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1354 {
1355 if (object == TARGET_OBJECT_MEMORY
1356 && ops->deprecated_xfer_memory != NULL)
1357 /* If available, fall back to the target's
1358 "deprecated_xfer_memory" method. */
1359 {
1360 int xfered = -1;
1361 errno = 0;
1362 if (writebuf != NULL)
1363 {
1364 void *buffer = xmalloc (len);
1365 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1366 memcpy (buffer, writebuf, len);
1367 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1368 1/*write*/, NULL, ops);
1369 do_cleanups (cleanup);
1370 }
1371 if (readbuf != NULL)
1372 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1373 0/*read*/, NULL, ops);
1374 if (xfered > 0)
1375 return xfered;
1376 else if (xfered == 0 && errno == 0)
1377 /* "deprecated_xfer_memory" uses 0, cross checked against
1378 ERRNO as one indication of an error. */
1379 return 0;
1380 else
1381 return -1;
1382 }
1383 else if (ops->beneath != NULL)
1384 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1385 readbuf, writebuf, offset, len);
1386 else
1387 return -1;
1388 }
1389
1390 /* The xfer_partial handler for the topmost target. Unlike the default,
1391 it does not need to handle memory specially; it just passes all
1392 requests down the stack. */
1393
1394 static LONGEST
1395 current_xfer_partial (struct target_ops *ops, enum target_object object,
1396 const char *annex, gdb_byte *readbuf,
1397 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1398 {
1399 if (ops->beneath != NULL)
1400 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1401 readbuf, writebuf, offset, len);
1402 else
1403 return -1;
1404 }
1405
1406 /* Target vector read/write partial wrapper functions.
1407
1408 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1409 (inbuf, outbuf)", instead of separate read/write methods, make life
1410 easier. */
1411
1412 static LONGEST
1413 target_read_partial (struct target_ops *ops,
1414 enum target_object object,
1415 const char *annex, gdb_byte *buf,
1416 ULONGEST offset, LONGEST len)
1417 {
1418 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1419 }
1420
1421 static LONGEST
1422 target_write_partial (struct target_ops *ops,
1423 enum target_object object,
1424 const char *annex, const gdb_byte *buf,
1425 ULONGEST offset, LONGEST len)
1426 {
1427 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1428 }
1429
1430 /* Wrappers to perform the full transfer. */
1431 LONGEST
1432 target_read (struct target_ops *ops,
1433 enum target_object object,
1434 const char *annex, gdb_byte *buf,
1435 ULONGEST offset, LONGEST len)
1436 {
1437 LONGEST xfered = 0;
1438 while (xfered < len)
1439 {
1440 LONGEST xfer = target_read_partial (ops, object, annex,
1441 (gdb_byte *) buf + xfered,
1442 offset + xfered, len - xfered);
1443 /* Call an observer, notifying them of the xfer progress? */
1444 if (xfer == 0)
1445 return xfered;
1446 if (xfer < 0)
1447 return -1;
1448 xfered += xfer;
1449 QUIT;
1450 }
1451 return len;
1452 }
1453
1454 LONGEST
1455 target_read_until_error (struct target_ops *ops,
1456 enum target_object object,
1457 const char *annex, gdb_byte *buf,
1458 ULONGEST offset, LONGEST len)
1459 {
1460 LONGEST xfered = 0;
1461 while (xfered < len)
1462 {
1463 LONGEST xfer = target_read_partial (ops, object, annex,
1464 (gdb_byte *) buf + xfered,
1465 offset + xfered, len - xfered);
1466 /* Call an observer, notifying them of the xfer progress? */
1467 if (xfer == 0)
1468 return xfered;
1469 if (xfer < 0)
1470 {
1471 /* We've got an error. Try to read in smaller blocks. */
1472 ULONGEST start = offset + xfered;
1473 ULONGEST remaining = len - xfered;
1474 ULONGEST half;
1475
1476 /* If an attempt was made to read a random memory address,
1477 it's likely that the very first byte is not accessible.
1478 Try reading the first byte, to avoid doing log N tries
1479 below. */
1480 xfer = target_read_partial (ops, object, annex,
1481 (gdb_byte *) buf + xfered, start, 1);
1482 if (xfer <= 0)
1483 return xfered;
1484 start += 1;
1485 remaining -= 1;
1486 half = remaining/2;
1487
1488 while (half > 0)
1489 {
1490 xfer = target_read_partial (ops, object, annex,
1491 (gdb_byte *) buf + xfered,
1492 start, half);
1493 if (xfer == 0)
1494 return xfered;
1495 if (xfer < 0)
1496 {
1497 remaining = half;
1498 }
1499 else
1500 {
1501 /* We have successfully read the first half. So, the
1502 error must be in the second half. Adjust start and
1503 remaining to point at the second half. */
1504 xfered += xfer;
1505 start += xfer;
1506 remaining -= xfer;
1507 }
1508 half = remaining/2;
1509 }
1510
1511 return xfered;
1512 }
1513 xfered += xfer;
1514 QUIT;
1515 }
1516 return len;
1517 }
1518
1519
1520 /* An alternative to target_write with progress callbacks. */
1521
1522 LONGEST
1523 target_write_with_progress (struct target_ops *ops,
1524 enum target_object object,
1525 const char *annex, const gdb_byte *buf,
1526 ULONGEST offset, LONGEST len,
1527 void (*progress) (ULONGEST, void *), void *baton)
1528 {
1529 LONGEST xfered = 0;
1530
1531 /* Give the progress callback a chance to set up. */
1532 if (progress)
1533 (*progress) (0, baton);
1534
1535 while (xfered < len)
1536 {
1537 LONGEST xfer = target_write_partial (ops, object, annex,
1538 (gdb_byte *) buf + xfered,
1539 offset + xfered, len - xfered);
1540
1541 if (xfer == 0)
1542 return xfered;
1543 if (xfer < 0)
1544 return -1;
1545
1546 if (progress)
1547 (*progress) (xfer, baton);
1548
1549 xfered += xfer;
1550 QUIT;
1551 }
1552 return len;
1553 }
1554
1555 LONGEST
1556 target_write (struct target_ops *ops,
1557 enum target_object object,
1558 const char *annex, const gdb_byte *buf,
1559 ULONGEST offset, LONGEST len)
1560 {
1561 return target_write_with_progress (ops, object, annex, buf, offset, len,
1562 NULL, NULL);
1563 }
1564
1565 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1566 the size of the transferred data. PADDING additional bytes are
1567 available in *BUF_P. This is a helper function for
1568 target_read_alloc; see the declaration of that function for more
1569 information. */
1570
1571 static LONGEST
1572 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1573 const char *annex, gdb_byte **buf_p, int padding)
1574 {
1575 size_t buf_alloc, buf_pos;
1576 gdb_byte *buf;
1577 LONGEST n;
1578
1579 /* This function does not have a length parameter; it reads the
1580 entire OBJECT). Also, it doesn't support objects fetched partly
1581 from one target and partly from another (in a different stratum,
1582 e.g. a core file and an executable). Both reasons make it
1583 unsuitable for reading memory. */
1584 gdb_assert (object != TARGET_OBJECT_MEMORY);
1585
1586 /* Start by reading up to 4K at a time. The target will throttle
1587 this number down if necessary. */
1588 buf_alloc = 4096;
1589 buf = xmalloc (buf_alloc);
1590 buf_pos = 0;
1591 while (1)
1592 {
1593 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1594 buf_pos, buf_alloc - buf_pos - padding);
1595 if (n < 0)
1596 {
1597 /* An error occurred. */
1598 xfree (buf);
1599 return -1;
1600 }
1601 else if (n == 0)
1602 {
1603 /* Read all there was. */
1604 if (buf_pos == 0)
1605 xfree (buf);
1606 else
1607 *buf_p = buf;
1608 return buf_pos;
1609 }
1610
1611 buf_pos += n;
1612
1613 /* If the buffer is filling up, expand it. */
1614 if (buf_alloc < buf_pos * 2)
1615 {
1616 buf_alloc *= 2;
1617 buf = xrealloc (buf, buf_alloc);
1618 }
1619
1620 QUIT;
1621 }
1622 }
1623
1624 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1625 the size of the transferred data. See the declaration in "target.h"
1626 function for more information about the return value. */
1627
1628 LONGEST
1629 target_read_alloc (struct target_ops *ops, enum target_object object,
1630 const char *annex, gdb_byte **buf_p)
1631 {
1632 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1633 }
1634
1635 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1636 returned as a string, allocated using xmalloc. If an error occurs
1637 or the transfer is unsupported, NULL is returned. Empty objects
1638 are returned as allocated but empty strings. A warning is issued
1639 if the result contains any embedded NUL bytes. */
1640
1641 char *
1642 target_read_stralloc (struct target_ops *ops, enum target_object object,
1643 const char *annex)
1644 {
1645 gdb_byte *buffer;
1646 LONGEST transferred;
1647
1648 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1649
1650 if (transferred < 0)
1651 return NULL;
1652
1653 if (transferred == 0)
1654 return xstrdup ("");
1655
1656 buffer[transferred] = 0;
1657 if (strlen (buffer) < transferred)
1658 warning (_("target object %d, annex %s, "
1659 "contained unexpected null characters"),
1660 (int) object, annex ? annex : "(none)");
1661
1662 return (char *) buffer;
1663 }
1664
1665 /* Memory transfer methods. */
1666
1667 void
1668 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1669 LONGEST len)
1670 {
1671 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1672 != len)
1673 memory_error (EIO, addr);
1674 }
1675
1676 ULONGEST
1677 get_target_memory_unsigned (struct target_ops *ops,
1678 CORE_ADDR addr, int len)
1679 {
1680 gdb_byte buf[sizeof (ULONGEST)];
1681
1682 gdb_assert (len <= sizeof (buf));
1683 get_target_memory (ops, addr, buf, len);
1684 return extract_unsigned_integer (buf, len);
1685 }
1686
1687 static void
1688 target_info (char *args, int from_tty)
1689 {
1690 struct target_ops *t;
1691 int has_all_mem = 0;
1692
1693 if (symfile_objfile != NULL)
1694 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1695
1696 for (t = target_stack; t != NULL; t = t->beneath)
1697 {
1698 if (!t->to_has_memory)
1699 continue;
1700
1701 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1702 continue;
1703 if (has_all_mem)
1704 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1705 printf_unfiltered ("%s:\n", t->to_longname);
1706 (t->to_files_info) (t);
1707 has_all_mem = t->to_has_all_memory;
1708 }
1709 }
1710
1711 /* This function is called before any new inferior is created, e.g.
1712 by running a program, attaching, or connecting to a target.
1713 It cleans up any state from previous invocations which might
1714 change between runs. This is a subset of what target_preopen
1715 resets (things which might change between targets). */
1716
1717 void
1718 target_pre_inferior (int from_tty)
1719 {
1720 invalidate_target_mem_regions ();
1721
1722 target_clear_description ();
1723 }
1724
1725 /* This is to be called by the open routine before it does
1726 anything. */
1727
1728 void
1729 target_preopen (int from_tty)
1730 {
1731 dont_repeat ();
1732
1733 if (target_has_execution)
1734 {
1735 if (!from_tty
1736 || query (_("A program is being debugged already. Kill it? ")))
1737 target_kill ();
1738 else
1739 error (_("Program not killed."));
1740 }
1741
1742 /* Calling target_kill may remove the target from the stack. But if
1743 it doesn't (which seems like a win for UDI), remove it now. */
1744
1745 if (target_has_execution)
1746 pop_target ();
1747
1748 target_pre_inferior (from_tty);
1749 }
1750
1751 /* Detach a target after doing deferred register stores. */
1752
1753 void
1754 target_detach (char *args, int from_tty)
1755 {
1756 /* If we're in breakpoints-always-inserted mode, have to
1757 remove them before detaching. */
1758 remove_breakpoints ();
1759
1760 (current_target.to_detach) (args, from_tty);
1761 }
1762
1763 void
1764 target_disconnect (char *args, int from_tty)
1765 {
1766 struct target_ops *t;
1767
1768 /* If we're in breakpoints-always-inserted mode, have to
1769 remove them before disconnecting. */
1770 remove_breakpoints ();
1771
1772 for (t = current_target.beneath; t != NULL; t = t->beneath)
1773 if (t->to_disconnect != NULL)
1774 {
1775 if (targetdebug)
1776 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1777 args, from_tty);
1778 t->to_disconnect (t, args, from_tty);
1779 return;
1780 }
1781
1782 tcomplain ();
1783 }
1784
1785 void
1786 target_resume (ptid_t ptid, int step, enum target_signal signal)
1787 {
1788 dcache_invalidate (target_dcache);
1789 (*current_target.to_resume) (ptid, step, signal);
1790 set_executing (ptid, 1);
1791 set_running (ptid, 1);
1792 }
1793 /* Look through the list of possible targets for a target that can
1794 follow forks. */
1795
1796 int
1797 target_follow_fork (int follow_child)
1798 {
1799 struct target_ops *t;
1800
1801 for (t = current_target.beneath; t != NULL; t = t->beneath)
1802 {
1803 if (t->to_follow_fork != NULL)
1804 {
1805 int retval = t->to_follow_fork (t, follow_child);
1806 if (targetdebug)
1807 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1808 follow_child, retval);
1809 return retval;
1810 }
1811 }
1812
1813 /* Some target returned a fork event, but did not know how to follow it. */
1814 internal_error (__FILE__, __LINE__,
1815 "could not find a target to follow fork");
1816 }
1817
1818 /* Look for a target which can describe architectural features, starting
1819 from TARGET. If we find one, return its description. */
1820
1821 const struct target_desc *
1822 target_read_description (struct target_ops *target)
1823 {
1824 struct target_ops *t;
1825
1826 for (t = target; t != NULL; t = t->beneath)
1827 if (t->to_read_description != NULL)
1828 {
1829 const struct target_desc *tdesc;
1830
1831 tdesc = t->to_read_description (t);
1832 if (tdesc)
1833 return tdesc;
1834 }
1835
1836 return NULL;
1837 }
1838
1839 /* The default implementation of to_search_memory.
1840 This implements a basic search of memory, reading target memory and
1841 performing the search here (as opposed to performing the search in on the
1842 target side with, for example, gdbserver). */
1843
1844 int
1845 simple_search_memory (struct target_ops *ops,
1846 CORE_ADDR start_addr, ULONGEST search_space_len,
1847 const gdb_byte *pattern, ULONGEST pattern_len,
1848 CORE_ADDR *found_addrp)
1849 {
1850 /* NOTE: also defined in find.c testcase. */
1851 #define SEARCH_CHUNK_SIZE 16000
1852 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
1853 /* Buffer to hold memory contents for searching. */
1854 gdb_byte *search_buf;
1855 unsigned search_buf_size;
1856 struct cleanup *old_cleanups;
1857
1858 search_buf_size = chunk_size + pattern_len - 1;
1859
1860 /* No point in trying to allocate a buffer larger than the search space. */
1861 if (search_space_len < search_buf_size)
1862 search_buf_size = search_space_len;
1863
1864 search_buf = malloc (search_buf_size);
1865 if (search_buf == NULL)
1866 error (_("Unable to allocate memory to perform the search."));
1867 old_cleanups = make_cleanup (free_current_contents, &search_buf);
1868
1869 /* Prime the search buffer. */
1870
1871 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1872 search_buf, start_addr, search_buf_size) != search_buf_size)
1873 {
1874 warning (_("Unable to access target memory at %s, halting search."),
1875 hex_string (start_addr));
1876 do_cleanups (old_cleanups);
1877 return -1;
1878 }
1879
1880 /* Perform the search.
1881
1882 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
1883 When we've scanned N bytes we copy the trailing bytes to the start and
1884 read in another N bytes. */
1885
1886 while (search_space_len >= pattern_len)
1887 {
1888 gdb_byte *found_ptr;
1889 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
1890
1891 found_ptr = memmem (search_buf, nr_search_bytes,
1892 pattern, pattern_len);
1893
1894 if (found_ptr != NULL)
1895 {
1896 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
1897 *found_addrp = found_addr;
1898 do_cleanups (old_cleanups);
1899 return 1;
1900 }
1901
1902 /* Not found in this chunk, skip to next chunk. */
1903
1904 /* Don't let search_space_len wrap here, it's unsigned. */
1905 if (search_space_len >= chunk_size)
1906 search_space_len -= chunk_size;
1907 else
1908 search_space_len = 0;
1909
1910 if (search_space_len >= pattern_len)
1911 {
1912 unsigned keep_len = search_buf_size - chunk_size;
1913 CORE_ADDR read_addr = start_addr + keep_len;
1914 int nr_to_read;
1915
1916 /* Copy the trailing part of the previous iteration to the front
1917 of the buffer for the next iteration. */
1918 gdb_assert (keep_len == pattern_len - 1);
1919 memcpy (search_buf, search_buf + chunk_size, keep_len);
1920
1921 nr_to_read = min (search_space_len - keep_len, chunk_size);
1922
1923 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1924 search_buf + keep_len, read_addr,
1925 nr_to_read) != nr_to_read)
1926 {
1927 warning (_("Unable to access target memory at %s, halting search."),
1928 hex_string (read_addr));
1929 do_cleanups (old_cleanups);
1930 return -1;
1931 }
1932
1933 start_addr += chunk_size;
1934 }
1935 }
1936
1937 /* Not found. */
1938
1939 do_cleanups (old_cleanups);
1940 return 0;
1941 }
1942
1943 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
1944 sequence of bytes in PATTERN with length PATTERN_LEN.
1945
1946 The result is 1 if found, 0 if not found, and -1 if there was an error
1947 requiring halting of the search (e.g. memory read error).
1948 If the pattern is found the address is recorded in FOUND_ADDRP. */
1949
1950 int
1951 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
1952 const gdb_byte *pattern, ULONGEST pattern_len,
1953 CORE_ADDR *found_addrp)
1954 {
1955 struct target_ops *t;
1956 int found;
1957
1958 /* We don't use INHERIT to set current_target.to_search_memory,
1959 so we have to scan the target stack and handle targetdebug
1960 ourselves. */
1961
1962 if (targetdebug)
1963 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
1964 hex_string (start_addr));
1965
1966 for (t = current_target.beneath; t != NULL; t = t->beneath)
1967 if (t->to_search_memory != NULL)
1968 break;
1969
1970 if (t != NULL)
1971 {
1972 found = t->to_search_memory (t, start_addr, search_space_len,
1973 pattern, pattern_len, found_addrp);
1974 }
1975 else
1976 {
1977 /* If a special version of to_search_memory isn't available, use the
1978 simple version. */
1979 found = simple_search_memory (&current_target,
1980 start_addr, search_space_len,
1981 pattern, pattern_len, found_addrp);
1982 }
1983
1984 if (targetdebug)
1985 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
1986
1987 return found;
1988 }
1989
1990 /* Look through the currently pushed targets. If none of them will
1991 be able to restart the currently running process, issue an error
1992 message. */
1993
1994 void
1995 target_require_runnable (void)
1996 {
1997 struct target_ops *t;
1998
1999 for (t = target_stack; t != NULL; t = t->beneath)
2000 {
2001 /* If this target knows how to create a new program, then
2002 assume we will still be able to after killing the current
2003 one. Either killing and mourning will not pop T, or else
2004 find_default_run_target will find it again. */
2005 if (t->to_create_inferior != NULL)
2006 return;
2007
2008 /* Do not worry about thread_stratum targets that can not
2009 create inferiors. Assume they will be pushed again if
2010 necessary, and continue to the process_stratum. */
2011 if (t->to_stratum == thread_stratum)
2012 continue;
2013
2014 error (_("\
2015 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2016 t->to_shortname);
2017 }
2018
2019 /* This function is only called if the target is running. In that
2020 case there should have been a process_stratum target and it
2021 should either know how to create inferiors, or not... */
2022 internal_error (__FILE__, __LINE__, "No targets found");
2023 }
2024
2025 /* Look through the list of possible targets for a target that can
2026 execute a run or attach command without any other data. This is
2027 used to locate the default process stratum.
2028
2029 If DO_MESG is not NULL, the result is always valid (error() is
2030 called for errors); else, return NULL on error. */
2031
2032 static struct target_ops *
2033 find_default_run_target (char *do_mesg)
2034 {
2035 struct target_ops **t;
2036 struct target_ops *runable = NULL;
2037 int count;
2038
2039 count = 0;
2040
2041 for (t = target_structs; t < target_structs + target_struct_size;
2042 ++t)
2043 {
2044 if ((*t)->to_can_run && target_can_run (*t))
2045 {
2046 runable = *t;
2047 ++count;
2048 }
2049 }
2050
2051 if (count != 1)
2052 {
2053 if (do_mesg)
2054 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2055 else
2056 return NULL;
2057 }
2058
2059 return runable;
2060 }
2061
2062 void
2063 find_default_attach (char *args, int from_tty)
2064 {
2065 struct target_ops *t;
2066
2067 t = find_default_run_target ("attach");
2068 (t->to_attach) (args, from_tty);
2069 return;
2070 }
2071
2072 void
2073 find_default_create_inferior (char *exec_file, char *allargs, char **env,
2074 int from_tty)
2075 {
2076 struct target_ops *t;
2077
2078 t = find_default_run_target ("run");
2079 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
2080 return;
2081 }
2082
2083 int
2084 find_default_can_async_p (void)
2085 {
2086 struct target_ops *t;
2087
2088 /* This may be called before the target is pushed on the stack;
2089 look for the default process stratum. If there's none, gdb isn't
2090 configured with a native debugger, and target remote isn't
2091 connected yet. */
2092 t = find_default_run_target (NULL);
2093 if (t && t->to_can_async_p)
2094 return (t->to_can_async_p) ();
2095 return 0;
2096 }
2097
2098 int
2099 find_default_is_async_p (void)
2100 {
2101 struct target_ops *t;
2102
2103 /* This may be called before the target is pushed on the stack;
2104 look for the default process stratum. If there's none, gdb isn't
2105 configured with a native debugger, and target remote isn't
2106 connected yet. */
2107 t = find_default_run_target (NULL);
2108 if (t && t->to_is_async_p)
2109 return (t->to_is_async_p) ();
2110 return 0;
2111 }
2112
2113 static int
2114 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2115 {
2116 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
2117 }
2118
2119 static int
2120 default_watchpoint_addr_within_range (struct target_ops *target,
2121 CORE_ADDR addr,
2122 CORE_ADDR start, int length)
2123 {
2124 return addr >= start && addr < start + length;
2125 }
2126
2127 static int
2128 return_zero (void)
2129 {
2130 return 0;
2131 }
2132
2133 static int
2134 return_one (void)
2135 {
2136 return 1;
2137 }
2138
2139 static int
2140 return_minus_one (void)
2141 {
2142 return -1;
2143 }
2144
2145 /*
2146 * Resize the to_sections pointer. Also make sure that anyone that
2147 * was holding on to an old value of it gets updated.
2148 * Returns the old size.
2149 */
2150
2151 int
2152 target_resize_to_sections (struct target_ops *target, int num_added)
2153 {
2154 struct target_ops **t;
2155 struct section_table *old_value;
2156 int old_count;
2157
2158 old_value = target->to_sections;
2159
2160 if (target->to_sections)
2161 {
2162 old_count = target->to_sections_end - target->to_sections;
2163 target->to_sections = (struct section_table *)
2164 xrealloc ((char *) target->to_sections,
2165 (sizeof (struct section_table)) * (num_added + old_count));
2166 }
2167 else
2168 {
2169 old_count = 0;
2170 target->to_sections = (struct section_table *)
2171 xmalloc ((sizeof (struct section_table)) * num_added);
2172 }
2173 target->to_sections_end = target->to_sections + (num_added + old_count);
2174
2175 /* Check to see if anyone else was pointing to this structure.
2176 If old_value was null, then no one was. */
2177
2178 if (old_value)
2179 {
2180 for (t = target_structs; t < target_structs + target_struct_size;
2181 ++t)
2182 {
2183 if ((*t)->to_sections == old_value)
2184 {
2185 (*t)->to_sections = target->to_sections;
2186 (*t)->to_sections_end = target->to_sections_end;
2187 }
2188 }
2189 /* There is a flattened view of the target stack in current_target,
2190 so its to_sections pointer might also need updating. */
2191 if (current_target.to_sections == old_value)
2192 {
2193 current_target.to_sections = target->to_sections;
2194 current_target.to_sections_end = target->to_sections_end;
2195 }
2196 }
2197
2198 return old_count;
2199
2200 }
2201
2202 /* Remove all target sections taken from ABFD.
2203
2204 Scan the current target stack for targets whose section tables
2205 refer to sections from BFD, and remove those sections. We use this
2206 when we notice that the inferior has unloaded a shared object, for
2207 example. */
2208 void
2209 remove_target_sections (bfd *abfd)
2210 {
2211 struct target_ops **t;
2212
2213 for (t = target_structs; t < target_structs + target_struct_size; t++)
2214 {
2215 struct section_table *src, *dest;
2216
2217 dest = (*t)->to_sections;
2218 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
2219 if (src->bfd != abfd)
2220 {
2221 /* Keep this section. */
2222 if (dest < src) *dest = *src;
2223 dest++;
2224 }
2225
2226 /* If we've dropped any sections, resize the section table. */
2227 if (dest < src)
2228 target_resize_to_sections (*t, dest - src);
2229 }
2230 }
2231
2232
2233
2234
2235 /* Find a single runnable target in the stack and return it. If for
2236 some reason there is more than one, return NULL. */
2237
2238 struct target_ops *
2239 find_run_target (void)
2240 {
2241 struct target_ops **t;
2242 struct target_ops *runable = NULL;
2243 int count;
2244
2245 count = 0;
2246
2247 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2248 {
2249 if ((*t)->to_can_run && target_can_run (*t))
2250 {
2251 runable = *t;
2252 ++count;
2253 }
2254 }
2255
2256 return (count == 1 ? runable : NULL);
2257 }
2258
2259 /* Find a single core_stratum target in the list of targets and return it.
2260 If for some reason there is more than one, return NULL. */
2261
2262 struct target_ops *
2263 find_core_target (void)
2264 {
2265 struct target_ops **t;
2266 struct target_ops *runable = NULL;
2267 int count;
2268
2269 count = 0;
2270
2271 for (t = target_structs; t < target_structs + target_struct_size;
2272 ++t)
2273 {
2274 if ((*t)->to_stratum == core_stratum)
2275 {
2276 runable = *t;
2277 ++count;
2278 }
2279 }
2280
2281 return (count == 1 ? runable : NULL);
2282 }
2283
2284 /*
2285 * Find the next target down the stack from the specified target.
2286 */
2287
2288 struct target_ops *
2289 find_target_beneath (struct target_ops *t)
2290 {
2291 return t->beneath;
2292 }
2293
2294 \f
2295 /* The inferior process has died. Long live the inferior! */
2296
2297 void
2298 generic_mourn_inferior (void)
2299 {
2300 extern int show_breakpoint_hit_counts;
2301
2302 inferior_ptid = null_ptid;
2303 attach_flag = 0;
2304 breakpoint_init_inferior (inf_exited);
2305 registers_changed ();
2306
2307 reopen_exec_file ();
2308 reinit_frame_cache ();
2309
2310 /* It is confusing to the user for ignore counts to stick around
2311 from previous runs of the inferior. So clear them. */
2312 /* However, it is more confusing for the ignore counts to disappear when
2313 using hit counts. So don't clear them if we're counting hits. */
2314 if (!show_breakpoint_hit_counts)
2315 breakpoint_clear_ignore_counts ();
2316
2317 if (deprecated_detach_hook)
2318 deprecated_detach_hook ();
2319 }
2320 \f
2321 /* Helper function for child_wait and the derivatives of child_wait.
2322 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2323 translation of that in OURSTATUS. */
2324 void
2325 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2326 {
2327 if (WIFEXITED (hoststatus))
2328 {
2329 ourstatus->kind = TARGET_WAITKIND_EXITED;
2330 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2331 }
2332 else if (!WIFSTOPPED (hoststatus))
2333 {
2334 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2335 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2336 }
2337 else
2338 {
2339 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2340 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2341 }
2342 }
2343 \f
2344 /* Returns zero to leave the inferior alone, one to interrupt it. */
2345 int (*target_activity_function) (void);
2346 int target_activity_fd;
2347 \f
2348 /* Convert a normal process ID to a string. Returns the string in a
2349 static buffer. */
2350
2351 char *
2352 normal_pid_to_str (ptid_t ptid)
2353 {
2354 static char buf[32];
2355
2356 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2357 return buf;
2358 }
2359
2360 /* Error-catcher for target_find_memory_regions */
2361 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2362 {
2363 error (_("No target."));
2364 return 0;
2365 }
2366
2367 /* Error-catcher for target_make_corefile_notes */
2368 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2369 {
2370 error (_("No target."));
2371 return NULL;
2372 }
2373
2374 /* Set up the handful of non-empty slots needed by the dummy target
2375 vector. */
2376
2377 static void
2378 init_dummy_target (void)
2379 {
2380 dummy_target.to_shortname = "None";
2381 dummy_target.to_longname = "None";
2382 dummy_target.to_doc = "";
2383 dummy_target.to_attach = find_default_attach;
2384 dummy_target.to_create_inferior = find_default_create_inferior;
2385 dummy_target.to_can_async_p = find_default_can_async_p;
2386 dummy_target.to_is_async_p = find_default_is_async_p;
2387 dummy_target.to_pid_to_str = normal_pid_to_str;
2388 dummy_target.to_stratum = dummy_stratum;
2389 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2390 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2391 dummy_target.to_xfer_partial = default_xfer_partial;
2392 dummy_target.to_magic = OPS_MAGIC;
2393 }
2394 \f
2395 static void
2396 debug_to_open (char *args, int from_tty)
2397 {
2398 debug_target.to_open (args, from_tty);
2399
2400 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2401 }
2402
2403 static void
2404 debug_to_close (int quitting)
2405 {
2406 target_close (&debug_target, quitting);
2407 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2408 }
2409
2410 void
2411 target_close (struct target_ops *targ, int quitting)
2412 {
2413 if (targ->to_xclose != NULL)
2414 targ->to_xclose (targ, quitting);
2415 else if (targ->to_close != NULL)
2416 targ->to_close (quitting);
2417 }
2418
2419 static void
2420 debug_to_attach (char *args, int from_tty)
2421 {
2422 debug_target.to_attach (args, from_tty);
2423
2424 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2425 }
2426
2427
2428 static void
2429 debug_to_post_attach (int pid)
2430 {
2431 debug_target.to_post_attach (pid);
2432
2433 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2434 }
2435
2436 static void
2437 debug_to_detach (char *args, int from_tty)
2438 {
2439 debug_target.to_detach (args, from_tty);
2440
2441 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2442 }
2443
2444 static void
2445 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2446 {
2447 debug_target.to_resume (ptid, step, siggnal);
2448
2449 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2450 step ? "step" : "continue",
2451 target_signal_to_name (siggnal));
2452 }
2453
2454 static ptid_t
2455 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2456 {
2457 ptid_t retval;
2458
2459 retval = debug_target.to_wait (ptid, status);
2460
2461 fprintf_unfiltered (gdb_stdlog,
2462 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2463 PIDGET (retval));
2464 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2465 switch (status->kind)
2466 {
2467 case TARGET_WAITKIND_EXITED:
2468 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2469 status->value.integer);
2470 break;
2471 case TARGET_WAITKIND_STOPPED:
2472 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2473 target_signal_to_name (status->value.sig));
2474 break;
2475 case TARGET_WAITKIND_SIGNALLED:
2476 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2477 target_signal_to_name (status->value.sig));
2478 break;
2479 case TARGET_WAITKIND_LOADED:
2480 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2481 break;
2482 case TARGET_WAITKIND_FORKED:
2483 fprintf_unfiltered (gdb_stdlog, "forked\n");
2484 break;
2485 case TARGET_WAITKIND_VFORKED:
2486 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2487 break;
2488 case TARGET_WAITKIND_EXECD:
2489 fprintf_unfiltered (gdb_stdlog, "execd\n");
2490 break;
2491 case TARGET_WAITKIND_SPURIOUS:
2492 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2493 break;
2494 default:
2495 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2496 break;
2497 }
2498
2499 return retval;
2500 }
2501
2502 static void
2503 debug_print_register (const char * func,
2504 struct regcache *regcache, int regno)
2505 {
2506 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2507 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2508 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2509 + gdbarch_num_pseudo_regs (gdbarch)
2510 && gdbarch_register_name (gdbarch, regno) != NULL
2511 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2512 fprintf_unfiltered (gdb_stdlog, "(%s)",
2513 gdbarch_register_name (gdbarch, regno));
2514 else
2515 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2516 if (regno >= 0)
2517 {
2518 int i, size = register_size (gdbarch, regno);
2519 unsigned char buf[MAX_REGISTER_SIZE];
2520 regcache_cooked_read (regcache, regno, buf);
2521 fprintf_unfiltered (gdb_stdlog, " = ");
2522 for (i = 0; i < size; i++)
2523 {
2524 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2525 }
2526 if (size <= sizeof (LONGEST))
2527 {
2528 ULONGEST val = extract_unsigned_integer (buf, size);
2529 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2530 paddr_nz (val), paddr_d (val));
2531 }
2532 }
2533 fprintf_unfiltered (gdb_stdlog, "\n");
2534 }
2535
2536 static void
2537 debug_to_fetch_registers (struct regcache *regcache, int regno)
2538 {
2539 debug_target.to_fetch_registers (regcache, regno);
2540 debug_print_register ("target_fetch_registers", regcache, regno);
2541 }
2542
2543 static void
2544 debug_to_store_registers (struct regcache *regcache, int regno)
2545 {
2546 debug_target.to_store_registers (regcache, regno);
2547 debug_print_register ("target_store_registers", regcache, regno);
2548 fprintf_unfiltered (gdb_stdlog, "\n");
2549 }
2550
2551 static void
2552 debug_to_prepare_to_store (struct regcache *regcache)
2553 {
2554 debug_target.to_prepare_to_store (regcache);
2555
2556 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2557 }
2558
2559 static int
2560 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2561 int write, struct mem_attrib *attrib,
2562 struct target_ops *target)
2563 {
2564 int retval;
2565
2566 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2567 attrib, target);
2568
2569 fprintf_unfiltered (gdb_stdlog,
2570 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2571 (unsigned int) memaddr, /* possable truncate long long */
2572 len, write ? "write" : "read", retval);
2573
2574 if (retval > 0)
2575 {
2576 int i;
2577
2578 fputs_unfiltered (", bytes =", gdb_stdlog);
2579 for (i = 0; i < retval; i++)
2580 {
2581 if ((((long) &(myaddr[i])) & 0xf) == 0)
2582 {
2583 if (targetdebug < 2 && i > 0)
2584 {
2585 fprintf_unfiltered (gdb_stdlog, " ...");
2586 break;
2587 }
2588 fprintf_unfiltered (gdb_stdlog, "\n");
2589 }
2590
2591 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2592 }
2593 }
2594
2595 fputc_unfiltered ('\n', gdb_stdlog);
2596
2597 return retval;
2598 }
2599
2600 static void
2601 debug_to_files_info (struct target_ops *target)
2602 {
2603 debug_target.to_files_info (target);
2604
2605 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2606 }
2607
2608 static int
2609 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2610 {
2611 int retval;
2612
2613 retval = debug_target.to_insert_breakpoint (bp_tgt);
2614
2615 fprintf_unfiltered (gdb_stdlog,
2616 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2617 (unsigned long) bp_tgt->placed_address,
2618 (unsigned long) retval);
2619 return retval;
2620 }
2621
2622 static int
2623 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2624 {
2625 int retval;
2626
2627 retval = debug_target.to_remove_breakpoint (bp_tgt);
2628
2629 fprintf_unfiltered (gdb_stdlog,
2630 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2631 (unsigned long) bp_tgt->placed_address,
2632 (unsigned long) retval);
2633 return retval;
2634 }
2635
2636 static int
2637 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2638 {
2639 int retval;
2640
2641 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2642
2643 fprintf_unfiltered (gdb_stdlog,
2644 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2645 (unsigned long) type,
2646 (unsigned long) cnt,
2647 (unsigned long) from_tty,
2648 (unsigned long) retval);
2649 return retval;
2650 }
2651
2652 static int
2653 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2654 {
2655 CORE_ADDR retval;
2656
2657 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2658
2659 fprintf_unfiltered (gdb_stdlog,
2660 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2661 (unsigned long) addr,
2662 (unsigned long) len,
2663 (unsigned long) retval);
2664 return retval;
2665 }
2666
2667 static int
2668 debug_to_stopped_by_watchpoint (void)
2669 {
2670 int retval;
2671
2672 retval = debug_target.to_stopped_by_watchpoint ();
2673
2674 fprintf_unfiltered (gdb_stdlog,
2675 "STOPPED_BY_WATCHPOINT () = %ld\n",
2676 (unsigned long) retval);
2677 return retval;
2678 }
2679
2680 static int
2681 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2682 {
2683 int retval;
2684
2685 retval = debug_target.to_stopped_data_address (target, addr);
2686
2687 fprintf_unfiltered (gdb_stdlog,
2688 "target_stopped_data_address ([0x%lx]) = %ld\n",
2689 (unsigned long)*addr,
2690 (unsigned long)retval);
2691 return retval;
2692 }
2693
2694 static int
2695 debug_to_watchpoint_addr_within_range (struct target_ops *target,
2696 CORE_ADDR addr,
2697 CORE_ADDR start, int length)
2698 {
2699 int retval;
2700
2701 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
2702 start, length);
2703
2704 fprintf_filtered (gdb_stdlog,
2705 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
2706 (unsigned long) addr, (unsigned long) start, length,
2707 retval);
2708 return retval;
2709 }
2710
2711 static int
2712 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2713 {
2714 int retval;
2715
2716 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2717
2718 fprintf_unfiltered (gdb_stdlog,
2719 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2720 (unsigned long) bp_tgt->placed_address,
2721 (unsigned long) retval);
2722 return retval;
2723 }
2724
2725 static int
2726 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2727 {
2728 int retval;
2729
2730 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2731
2732 fprintf_unfiltered (gdb_stdlog,
2733 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2734 (unsigned long) bp_tgt->placed_address,
2735 (unsigned long) retval);
2736 return retval;
2737 }
2738
2739 static int
2740 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2741 {
2742 int retval;
2743
2744 retval = debug_target.to_insert_watchpoint (addr, len, type);
2745
2746 fprintf_unfiltered (gdb_stdlog,
2747 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2748 (unsigned long) addr, len, type, (unsigned long) retval);
2749 return retval;
2750 }
2751
2752 static int
2753 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2754 {
2755 int retval;
2756
2757 retval = debug_target.to_remove_watchpoint (addr, len, type);
2758
2759 fprintf_unfiltered (gdb_stdlog,
2760 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2761 (unsigned long) addr, len, type, (unsigned long) retval);
2762 return retval;
2763 }
2764
2765 static void
2766 debug_to_terminal_init (void)
2767 {
2768 debug_target.to_terminal_init ();
2769
2770 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2771 }
2772
2773 static void
2774 debug_to_terminal_inferior (void)
2775 {
2776 debug_target.to_terminal_inferior ();
2777
2778 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2779 }
2780
2781 static void
2782 debug_to_terminal_ours_for_output (void)
2783 {
2784 debug_target.to_terminal_ours_for_output ();
2785
2786 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2787 }
2788
2789 static void
2790 debug_to_terminal_ours (void)
2791 {
2792 debug_target.to_terminal_ours ();
2793
2794 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2795 }
2796
2797 static void
2798 debug_to_terminal_save_ours (void)
2799 {
2800 debug_target.to_terminal_save_ours ();
2801
2802 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2803 }
2804
2805 static void
2806 debug_to_terminal_info (char *arg, int from_tty)
2807 {
2808 debug_target.to_terminal_info (arg, from_tty);
2809
2810 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2811 from_tty);
2812 }
2813
2814 static void
2815 debug_to_kill (void)
2816 {
2817 debug_target.to_kill ();
2818
2819 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2820 }
2821
2822 static void
2823 debug_to_load (char *args, int from_tty)
2824 {
2825 debug_target.to_load (args, from_tty);
2826
2827 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2828 }
2829
2830 static int
2831 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2832 {
2833 int retval;
2834
2835 retval = debug_target.to_lookup_symbol (name, addrp);
2836
2837 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2838
2839 return retval;
2840 }
2841
2842 static void
2843 debug_to_create_inferior (char *exec_file, char *args, char **env,
2844 int from_tty)
2845 {
2846 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2847
2848 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2849 exec_file, args, from_tty);
2850 }
2851
2852 static void
2853 debug_to_post_startup_inferior (ptid_t ptid)
2854 {
2855 debug_target.to_post_startup_inferior (ptid);
2856
2857 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2858 PIDGET (ptid));
2859 }
2860
2861 static void
2862 debug_to_acknowledge_created_inferior (int pid)
2863 {
2864 debug_target.to_acknowledge_created_inferior (pid);
2865
2866 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2867 pid);
2868 }
2869
2870 static void
2871 debug_to_insert_fork_catchpoint (int pid)
2872 {
2873 debug_target.to_insert_fork_catchpoint (pid);
2874
2875 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2876 pid);
2877 }
2878
2879 static int
2880 debug_to_remove_fork_catchpoint (int pid)
2881 {
2882 int retval;
2883
2884 retval = debug_target.to_remove_fork_catchpoint (pid);
2885
2886 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2887 pid, retval);
2888
2889 return retval;
2890 }
2891
2892 static void
2893 debug_to_insert_vfork_catchpoint (int pid)
2894 {
2895 debug_target.to_insert_vfork_catchpoint (pid);
2896
2897 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2898 pid);
2899 }
2900
2901 static int
2902 debug_to_remove_vfork_catchpoint (int pid)
2903 {
2904 int retval;
2905
2906 retval = debug_target.to_remove_vfork_catchpoint (pid);
2907
2908 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2909 pid, retval);
2910
2911 return retval;
2912 }
2913
2914 static void
2915 debug_to_insert_exec_catchpoint (int pid)
2916 {
2917 debug_target.to_insert_exec_catchpoint (pid);
2918
2919 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2920 pid);
2921 }
2922
2923 static int
2924 debug_to_remove_exec_catchpoint (int pid)
2925 {
2926 int retval;
2927
2928 retval = debug_target.to_remove_exec_catchpoint (pid);
2929
2930 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2931 pid, retval);
2932
2933 return retval;
2934 }
2935
2936 static int
2937 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2938 {
2939 int has_exited;
2940
2941 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2942
2943 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2944 pid, wait_status, *exit_status, has_exited);
2945
2946 return has_exited;
2947 }
2948
2949 static void
2950 debug_to_mourn_inferior (void)
2951 {
2952 debug_target.to_mourn_inferior ();
2953
2954 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2955 }
2956
2957 static int
2958 debug_to_can_run (void)
2959 {
2960 int retval;
2961
2962 retval = debug_target.to_can_run ();
2963
2964 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2965
2966 return retval;
2967 }
2968
2969 static void
2970 debug_to_notice_signals (ptid_t ptid)
2971 {
2972 debug_target.to_notice_signals (ptid);
2973
2974 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2975 PIDGET (ptid));
2976 }
2977
2978 static int
2979 debug_to_thread_alive (ptid_t ptid)
2980 {
2981 int retval;
2982
2983 retval = debug_target.to_thread_alive (ptid);
2984
2985 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2986 PIDGET (ptid), retval);
2987
2988 return retval;
2989 }
2990
2991 static void
2992 debug_to_find_new_threads (void)
2993 {
2994 debug_target.to_find_new_threads ();
2995
2996 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2997 }
2998
2999 static void
3000 debug_to_stop (ptid_t ptid)
3001 {
3002 debug_target.to_stop (ptid);
3003
3004 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3005 target_pid_to_str (ptid));
3006 }
3007
3008 static void
3009 debug_to_rcmd (char *command,
3010 struct ui_file *outbuf)
3011 {
3012 debug_target.to_rcmd (command, outbuf);
3013 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3014 }
3015
3016 static char *
3017 debug_to_pid_to_exec_file (int pid)
3018 {
3019 char *exec_file;
3020
3021 exec_file = debug_target.to_pid_to_exec_file (pid);
3022
3023 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3024 pid, exec_file);
3025
3026 return exec_file;
3027 }
3028
3029 static void
3030 setup_target_debug (void)
3031 {
3032 memcpy (&debug_target, &current_target, sizeof debug_target);
3033
3034 current_target.to_open = debug_to_open;
3035 current_target.to_close = debug_to_close;
3036 current_target.to_attach = debug_to_attach;
3037 current_target.to_post_attach = debug_to_post_attach;
3038 current_target.to_detach = debug_to_detach;
3039 current_target.to_resume = debug_to_resume;
3040 current_target.to_wait = debug_to_wait;
3041 current_target.to_fetch_registers = debug_to_fetch_registers;
3042 current_target.to_store_registers = debug_to_store_registers;
3043 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3044 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3045 current_target.to_files_info = debug_to_files_info;
3046 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3047 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3048 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3049 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3050 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3051 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3052 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3053 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3054 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3055 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3056 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3057 current_target.to_terminal_init = debug_to_terminal_init;
3058 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3059 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3060 current_target.to_terminal_ours = debug_to_terminal_ours;
3061 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3062 current_target.to_terminal_info = debug_to_terminal_info;
3063 current_target.to_kill = debug_to_kill;
3064 current_target.to_load = debug_to_load;
3065 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3066 current_target.to_create_inferior = debug_to_create_inferior;
3067 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3068 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3069 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3070 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3071 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3072 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3073 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3074 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3075 current_target.to_has_exited = debug_to_has_exited;
3076 current_target.to_mourn_inferior = debug_to_mourn_inferior;
3077 current_target.to_can_run = debug_to_can_run;
3078 current_target.to_notice_signals = debug_to_notice_signals;
3079 current_target.to_thread_alive = debug_to_thread_alive;
3080 current_target.to_find_new_threads = debug_to_find_new_threads;
3081 current_target.to_stop = debug_to_stop;
3082 current_target.to_rcmd = debug_to_rcmd;
3083 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3084 }
3085 \f
3086
3087 static char targ_desc[] =
3088 "Names of targets and files being debugged.\n\
3089 Shows the entire stack of targets currently in use (including the exec-file,\n\
3090 core-file, and process, if any), as well as the symbol file name.";
3091
3092 static void
3093 do_monitor_command (char *cmd,
3094 int from_tty)
3095 {
3096 if ((current_target.to_rcmd
3097 == (void (*) (char *, struct ui_file *)) tcomplain)
3098 || (current_target.to_rcmd == debug_to_rcmd
3099 && (debug_target.to_rcmd
3100 == (void (*) (char *, struct ui_file *)) tcomplain)))
3101 error (_("\"monitor\" command not supported by this target."));
3102 target_rcmd (cmd, gdb_stdtarg);
3103 }
3104
3105 /* Print the name of each layers of our target stack. */
3106
3107 static void
3108 maintenance_print_target_stack (char *cmd, int from_tty)
3109 {
3110 struct target_ops *t;
3111
3112 printf_filtered (_("The current target stack is:\n"));
3113
3114 for (t = target_stack; t != NULL; t = t->beneath)
3115 {
3116 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3117 }
3118 }
3119
3120 void
3121 initialize_targets (void)
3122 {
3123 init_dummy_target ();
3124 push_target (&dummy_target);
3125
3126 add_info ("target", target_info, targ_desc);
3127 add_info ("files", target_info, targ_desc);
3128
3129 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3130 Set target debugging."), _("\
3131 Show target debugging."), _("\
3132 When non-zero, target debugging is enabled. Higher numbers are more\n\
3133 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3134 command."),
3135 NULL,
3136 show_targetdebug,
3137 &setdebuglist, &showdebuglist);
3138
3139 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3140 &trust_readonly, _("\
3141 Set mode for reading from readonly sections."), _("\
3142 Show mode for reading from readonly sections."), _("\
3143 When this mode is on, memory reads from readonly sections (such as .text)\n\
3144 will be read from the object file instead of from the target. This will\n\
3145 result in significant performance improvement for remote targets."),
3146 NULL,
3147 show_trust_readonly,
3148 &setlist, &showlist);
3149
3150 add_com ("monitor", class_obscure, do_monitor_command,
3151 _("Send a command to the remote monitor (remote targets only)."));
3152
3153 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3154 _("Print the name of each layer of the internal target stack."),
3155 &maintenanceprintlist);
3156
3157 target_dcache = dcache_init ();
3158 }
This page took 0.129802 seconds and 5 git commands to generate.