2003-10-22 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support. Written by John Gilmore.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #if !defined (TARGET_H)
26 #define TARGET_H
27
28 struct objfile;
29 struct ui_file;
30 struct mem_attrib;
31 struct target_ops;
32
33 /* This include file defines the interface between the main part
34 of the debugger, and the part which is target-specific, or
35 specific to the communications interface between us and the
36 target.
37
38 A TARGET is an interface between the debugger and a particular
39 kind of file or process. Targets can be STACKED in STRATA,
40 so that more than one target can potentially respond to a request.
41 In particular, memory accesses will walk down the stack of targets
42 until they find a target that is interested in handling that particular
43 address. STRATA are artificial boundaries on the stack, within
44 which particular kinds of targets live. Strata exist so that
45 people don't get confused by pushing e.g. a process target and then
46 a file target, and wondering why they can't see the current values
47 of variables any more (the file target is handling them and they
48 never get to the process target). So when you push a file target,
49 it goes into the file stratum, which is always below the process
50 stratum. */
51
52 #include "bfd.h"
53 #include "symtab.h"
54 #include "dcache.h"
55 #include "memattr.h"
56
57 enum strata
58 {
59 dummy_stratum, /* The lowest of the low */
60 file_stratum, /* Executable files, etc */
61 core_stratum, /* Core dump files */
62 download_stratum, /* Downloading of remote targets */
63 process_stratum, /* Executing processes */
64 thread_stratum /* Executing threads */
65 };
66
67 enum thread_control_capabilities
68 {
69 tc_none = 0, /* Default: can't control thread execution. */
70 tc_schedlock = 1, /* Can lock the thread scheduler. */
71 tc_switch = 2 /* Can switch the running thread on demand. */
72 };
73
74 /* Stuff for target_wait. */
75
76 /* Generally, what has the program done? */
77 enum target_waitkind
78 {
79 /* The program has exited. The exit status is in value.integer. */
80 TARGET_WAITKIND_EXITED,
81
82 /* The program has stopped with a signal. Which signal is in
83 value.sig. */
84 TARGET_WAITKIND_STOPPED,
85
86 /* The program has terminated with a signal. Which signal is in
87 value.sig. */
88 TARGET_WAITKIND_SIGNALLED,
89
90 /* The program is letting us know that it dynamically loaded something
91 (e.g. it called load(2) on AIX). */
92 TARGET_WAITKIND_LOADED,
93
94 /* The program has forked. A "related" process' ID is in
95 value.related_pid. I.e., if the child forks, value.related_pid
96 is the parent's ID. */
97
98 TARGET_WAITKIND_FORKED,
99
100 /* The program has vforked. A "related" process's ID is in
101 value.related_pid. */
102
103 TARGET_WAITKIND_VFORKED,
104
105 /* The program has exec'ed a new executable file. The new file's
106 pathname is pointed to by value.execd_pathname. */
107
108 TARGET_WAITKIND_EXECD,
109
110 /* The program has entered or returned from a system call. On
111 HP-UX, this is used in the hardware watchpoint implementation.
112 The syscall's unique integer ID number is in value.syscall_id */
113
114 TARGET_WAITKIND_SYSCALL_ENTRY,
115 TARGET_WAITKIND_SYSCALL_RETURN,
116
117 /* Nothing happened, but we stopped anyway. This perhaps should be handled
118 within target_wait, but I'm not sure target_wait should be resuming the
119 inferior. */
120 TARGET_WAITKIND_SPURIOUS,
121
122 /* An event has occured, but we should wait again.
123 Remote_async_wait() returns this when there is an event
124 on the inferior, but the rest of the world is not interested in
125 it. The inferior has not stopped, but has just sent some output
126 to the console, for instance. In this case, we want to go back
127 to the event loop and wait there for another event from the
128 inferior, rather than being stuck in the remote_async_wait()
129 function. This way the event loop is responsive to other events,
130 like for instance the user typing. */
131 TARGET_WAITKIND_IGNORE
132 };
133
134 struct target_waitstatus
135 {
136 enum target_waitkind kind;
137
138 /* Forked child pid, execd pathname, exit status or signal number. */
139 union
140 {
141 int integer;
142 enum target_signal sig;
143 int related_pid;
144 char *execd_pathname;
145 int syscall_id;
146 }
147 value;
148 };
149
150 /* Possible types of events that the inferior handler will have to
151 deal with. */
152 enum inferior_event_type
153 {
154 /* There is a request to quit the inferior, abandon it. */
155 INF_QUIT_REQ,
156 /* Process a normal inferior event which will result in target_wait
157 being called. */
158 INF_REG_EVENT,
159 /* Deal with an error on the inferior. */
160 INF_ERROR,
161 /* We are called because a timer went off. */
162 INF_TIMER,
163 /* We are called to do stuff after the inferior stops. */
164 INF_EXEC_COMPLETE,
165 /* We are called to do some stuff after the inferior stops, but we
166 are expected to reenter the proceed() and
167 handle_inferior_event() functions. This is used only in case of
168 'step n' like commands. */
169 INF_EXEC_CONTINUE
170 };
171
172 /* Return the string for a signal. */
173 extern char *target_signal_to_string (enum target_signal);
174
175 /* Return the name (SIGHUP, etc.) for a signal. */
176 extern char *target_signal_to_name (enum target_signal);
177
178 /* Given a name (SIGHUP, etc.), return its signal. */
179 enum target_signal target_signal_from_name (char *);
180 \f
181 /* Request the transfer of up to LEN 8-bit bytes of the target's
182 OBJECT. The OFFSET, for a seekable object, specifies the starting
183 point. The ANNEX can be used to provide additional data-specific
184 information to the target.
185
186 Return the number of bytes actually transfered, zero when no
187 further transfer is possible, and -1 when the transfer is not
188 supported.
189
190 NOTE: cagney/2003-10-17: The current interface does not support a
191 "retry" mechanism. Instead it assumes that at least one byte will
192 be transfered on each call.
193
194 NOTE: cagney/2003-10-17: The current interface can lead to
195 fragmented transfers. Lower target levels should not implement
196 hacks, such as enlarging the transfer, in an attempt to compensate
197 for this. Instead, the target stack should be extended so that it
198 implements supply/collect methods and a look-aside object cache.
199 With that available, the lowest target can safely and freely "push"
200 data up the stack.
201
202 NOTE: cagney/2003-10-17: Unlike the old query and the memory
203 transfer mechanisms, these methods are explicitly parameterized by
204 the target that it should be applied to.
205
206 NOTE: cagney/2003-10-17: Just like the old query and memory xfer
207 methods, these new methods perform partial transfers. The only
208 difference is that these new methods thought to include "partial"
209 in the name. The old code's failure to do this lead to much
210 confusion and duplication of effort as each target object attempted
211 to locally take responsibility for something it didn't have to
212 worry about.
213
214 NOTE: cagney/2003-10-17: For backward compatibility with the
215 "target_query" method that this replaced, when BUF, OFFSET and LEN
216 are NULL/zero, return the "minimum" buffer size. See "remote.c"
217 for further information. */
218
219 enum target_object
220 {
221 /* Kernel Object Display transfer. See "kod.c" and "remote.c". */
222 TARGET_OBJECT_KOD,
223 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
224 TARGET_OBJECT_AVR,
225 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
226 TARGET_OBJECT_MEMORY
227 /* Possible future ojbects: TARGET_OJBECT_FILE, TARGET_OBJECT_PROC,
228 TARGET_OBJECT_AUXV, ... */
229 };
230
231 extern LONGEST target_read_partial (struct target_ops *ops,
232 enum target_object object,
233 const char *annex, void *buf,
234 ULONGEST offset, LONGEST len);
235
236 extern LONGEST target_write_partial (struct target_ops *ops,
237 enum target_object object,
238 const char *annex, const void *buf,
239 ULONGEST offset, LONGEST len);
240
241 /* Wrappers to perform the full transfer. */
242 extern LONGEST target_read (struct target_ops *ops,
243 enum target_object object,
244 const char *annex, void *buf,
245 ULONGEST offset, LONGEST len);
246
247 extern LONGEST target_write (struct target_ops *ops,
248 enum target_object object,
249 const char *annex, const void *buf,
250 ULONGEST offset, LONGEST len);
251 \f
252
253 /* If certain kinds of activity happen, target_wait should perform
254 callbacks. */
255 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
256 on TARGET_ACTIVITY_FD. */
257 extern int target_activity_fd;
258 /* Returns zero to leave the inferior alone, one to interrupt it. */
259 extern int (*target_activity_function) (void);
260 \f
261 struct thread_info; /* fwd decl for parameter list below: */
262
263 struct target_ops
264 {
265 struct target_ops *beneath; /* To the target under this one. */
266 char *to_shortname; /* Name this target type */
267 char *to_longname; /* Name for printing */
268 char *to_doc; /* Documentation. Does not include trailing
269 newline, and starts with a one-line descrip-
270 tion (probably similar to to_longname). */
271 /* The open routine takes the rest of the parameters from the
272 command, and (if successful) pushes a new target onto the
273 stack. Targets should supply this routine, if only to provide
274 an error message. */
275 void (*to_open) (char *, int);
276 /* Old targets with a static target vector provide "to_close".
277 New re-entrant targets provide "to_xclose" and that is expected
278 to xfree everything (including the "struct target_ops"). */
279 void (*to_xclose) (struct target_ops *targ, int quitting);
280 void (*to_close) (int);
281 void (*to_attach) (char *, int);
282 void (*to_post_attach) (int);
283 void (*to_detach) (char *, int);
284 void (*to_disconnect) (char *, int);
285 void (*to_resume) (ptid_t, int, enum target_signal);
286 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
287 void (*to_post_wait) (ptid_t, int);
288 void (*to_fetch_registers) (int);
289 void (*to_store_registers) (int);
290 void (*to_prepare_to_store) (void);
291
292 /* Transfer LEN bytes of memory between GDB address MYADDR and
293 target address MEMADDR. If WRITE, transfer them to the target, else
294 transfer them from the target. TARGET is the target from which we
295 get this function.
296
297 Return value, N, is one of the following:
298
299 0 means that we can't handle this. If errno has been set, it is the
300 error which prevented us from doing it (FIXME: What about bfd_error?).
301
302 positive (call it N) means that we have transferred N bytes
303 starting at MEMADDR. We might be able to handle more bytes
304 beyond this length, but no promises.
305
306 negative (call its absolute value N) means that we cannot
307 transfer right at MEMADDR, but we could transfer at least
308 something at MEMADDR + N. */
309
310 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
311 int len, int write,
312 struct mem_attrib *attrib,
313 struct target_ops *target);
314
315 void (*to_files_info) (struct target_ops *);
316 int (*to_insert_breakpoint) (CORE_ADDR, char *);
317 int (*to_remove_breakpoint) (CORE_ADDR, char *);
318 int (*to_can_use_hw_breakpoint) (int, int, int);
319 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
320 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
321 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
322 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
323 int (*to_stopped_by_watchpoint) (void);
324 int to_have_continuable_watchpoint;
325 CORE_ADDR (*to_stopped_data_address) (void);
326 int (*to_region_size_ok_for_hw_watchpoint) (int);
327 void (*to_terminal_init) (void);
328 void (*to_terminal_inferior) (void);
329 void (*to_terminal_ours_for_output) (void);
330 void (*to_terminal_ours) (void);
331 void (*to_terminal_save_ours) (void);
332 void (*to_terminal_info) (char *, int);
333 void (*to_kill) (void);
334 void (*to_load) (char *, int);
335 int (*to_lookup_symbol) (char *, CORE_ADDR *);
336 void (*to_create_inferior) (char *, char *, char **);
337 void (*to_post_startup_inferior) (ptid_t);
338 void (*to_acknowledge_created_inferior) (int);
339 int (*to_insert_fork_catchpoint) (int);
340 int (*to_remove_fork_catchpoint) (int);
341 int (*to_insert_vfork_catchpoint) (int);
342 int (*to_remove_vfork_catchpoint) (int);
343 int (*to_follow_fork) (int);
344 int (*to_insert_exec_catchpoint) (int);
345 int (*to_remove_exec_catchpoint) (int);
346 int (*to_reported_exec_events_per_exec_call) (void);
347 int (*to_has_exited) (int, int, int *);
348 void (*to_mourn_inferior) (void);
349 int (*to_can_run) (void);
350 void (*to_notice_signals) (ptid_t ptid);
351 int (*to_thread_alive) (ptid_t ptid);
352 void (*to_find_new_threads) (void);
353 char *(*to_pid_to_str) (ptid_t);
354 char *(*to_extra_thread_info) (struct thread_info *);
355 void (*to_stop) (void);
356 void (*to_rcmd) (char *command, struct ui_file *output);
357 struct symtab_and_line *(*to_enable_exception_callback) (enum
358 exception_event_kind,
359 int);
360 struct exception_event_record *(*to_get_current_exception_event) (void);
361 char *(*to_pid_to_exec_file) (int pid);
362 enum strata to_stratum;
363 int to_has_all_memory;
364 int to_has_memory;
365 int to_has_stack;
366 int to_has_registers;
367 int to_has_execution;
368 int to_has_thread_control; /* control thread execution */
369 struct section_table
370 *to_sections;
371 struct section_table
372 *to_sections_end;
373 /* ASYNC target controls */
374 int (*to_can_async_p) (void);
375 int (*to_is_async_p) (void);
376 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
377 void *context);
378 int to_async_mask_value;
379 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
380 unsigned long,
381 int, int, int,
382 void *),
383 void *);
384 char * (*to_make_corefile_notes) (bfd *, int *);
385
386 /* Return the thread-local address at OFFSET in the
387 thread-local storage for the thread PTID and the shared library
388 or executable file given by OBJFILE. If that block of
389 thread-local storage hasn't been allocated yet, this function
390 may return an error. */
391 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
392 struct objfile *objfile,
393 CORE_ADDR offset);
394
395 /* See above. */
396 LONGEST (*to_read_partial) (struct target_ops *ops,
397 enum target_object object,
398 const char *annex, void *buf,
399 ULONGEST offset, LONGEST len);
400 LONGEST (*to_write_partial) (struct target_ops *ops,
401 enum target_object object,
402 const char *annex, const void *buf,
403 ULONGEST offset, LONGEST len);
404
405 int to_magic;
406 /* Need sub-structure for target machine related rather than comm related?
407 */
408 };
409
410 /* Magic number for checking ops size. If a struct doesn't end with this
411 number, somebody changed the declaration but didn't change all the
412 places that initialize one. */
413
414 #define OPS_MAGIC 3840
415
416 /* The ops structure for our "current" target process. This should
417 never be NULL. If there is no target, it points to the dummy_target. */
418
419 extern struct target_ops current_target;
420
421 /* Define easy words for doing these operations on our current target. */
422
423 #define target_shortname (current_target.to_shortname)
424 #define target_longname (current_target.to_longname)
425
426 /* Does whatever cleanup is required for a target that we are no
427 longer going to be calling. QUITTING indicates that GDB is exiting
428 and should not get hung on an error (otherwise it is important to
429 perform clean termination, even if it takes a while). This routine
430 is automatically always called when popping the target off the
431 target stack (to_beneath is undefined). Closing file descriptors
432 and freeing all memory allocated memory are typical things it
433 should do. */
434
435 void target_close (struct target_ops *targ, int quitting);
436
437 /* Attaches to a process on the target side. Arguments are as passed
438 to the `attach' command by the user. This routine can be called
439 when the target is not on the target-stack, if the target_can_run
440 routine returns 1; in that case, it must push itself onto the stack.
441 Upon exit, the target should be ready for normal operations, and
442 should be ready to deliver the status of the process immediately
443 (without waiting) to an upcoming target_wait call. */
444
445 #define target_attach(args, from_tty) \
446 (*current_target.to_attach) (args, from_tty)
447
448 /* The target_attach operation places a process under debugger control,
449 and stops the process.
450
451 This operation provides a target-specific hook that allows the
452 necessary bookkeeping to be performed after an attach completes. */
453 #define target_post_attach(pid) \
454 (*current_target.to_post_attach) (pid)
455
456 /* Takes a program previously attached to and detaches it.
457 The program may resume execution (some targets do, some don't) and will
458 no longer stop on signals, etc. We better not have left any breakpoints
459 in the program or it'll die when it hits one. ARGS is arguments
460 typed by the user (e.g. a signal to send the process). FROM_TTY
461 says whether to be verbose or not. */
462
463 extern void target_detach (char *, int);
464
465 /* Disconnect from the current target without resuming it (leaving it
466 waiting for a debugger). */
467
468 extern void target_disconnect (char *, int);
469
470 /* Resume execution of the target process PTID. STEP says whether to
471 single-step or to run free; SIGGNAL is the signal to be given to
472 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
473 pass TARGET_SIGNAL_DEFAULT. */
474
475 #define target_resume(ptid, step, siggnal) \
476 do { \
477 dcache_invalidate(target_dcache); \
478 (*current_target.to_resume) (ptid, step, siggnal); \
479 } while (0)
480
481 /* Wait for process pid to do something. PTID = -1 to wait for any
482 pid to do something. Return pid of child, or -1 in case of error;
483 store status through argument pointer STATUS. Note that it is
484 _NOT_ OK to throw_exception() out of target_wait() without popping
485 the debugging target from the stack; GDB isn't prepared to get back
486 to the prompt with a debugging target but without the frame cache,
487 stop_pc, etc., set up. */
488
489 #define target_wait(ptid, status) \
490 (*current_target.to_wait) (ptid, status)
491
492 /* The target_wait operation waits for a process event to occur, and
493 thereby stop the process.
494
495 On some targets, certain events may happen in sequences. gdb's
496 correct response to any single event of such a sequence may require
497 knowledge of what earlier events in the sequence have been seen.
498
499 This operation provides a target-specific hook that allows the
500 necessary bookkeeping to be performed to track such sequences. */
501
502 #define target_post_wait(ptid, status) \
503 (*current_target.to_post_wait) (ptid, status)
504
505 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
506
507 #define target_fetch_registers(regno) \
508 (*current_target.to_fetch_registers) (regno)
509
510 /* Store at least register REGNO, or all regs if REGNO == -1.
511 It can store as many registers as it wants to, so target_prepare_to_store
512 must have been previously called. Calls error() if there are problems. */
513
514 #define target_store_registers(regs) \
515 (*current_target.to_store_registers) (regs)
516
517 /* Get ready to modify the registers array. On machines which store
518 individual registers, this doesn't need to do anything. On machines
519 which store all the registers in one fell swoop, this makes sure
520 that REGISTERS contains all the registers from the program being
521 debugged. */
522
523 #define target_prepare_to_store() \
524 (*current_target.to_prepare_to_store) ()
525
526 extern DCACHE *target_dcache;
527
528 extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
529 struct mem_attrib *attrib);
530
531 extern int target_read_string (CORE_ADDR, char **, int, int *);
532
533 extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
534
535 extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
536
537 extern int xfer_memory (CORE_ADDR, char *, int, int,
538 struct mem_attrib *, struct target_ops *);
539
540 extern int child_xfer_memory (CORE_ADDR, char *, int, int,
541 struct mem_attrib *, struct target_ops *);
542
543 /* Make a single attempt at transfering LEN bytes. On a successful
544 transfer, the number of bytes actually transfered is returned and
545 ERR is set to 0. When a transfer fails, -1 is returned (the number
546 of bytes actually transfered is not defined) and ERR is set to a
547 non-zero error indication. */
548
549 extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
550 int *err);
551
552 extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
553 int *err);
554
555 extern char *child_pid_to_exec_file (int);
556
557 extern char *child_core_file_to_sym_file (char *);
558
559 #if defined(CHILD_POST_ATTACH)
560 extern void child_post_attach (int);
561 #endif
562
563 extern void child_post_wait (ptid_t, int);
564
565 extern void child_post_startup_inferior (ptid_t);
566
567 extern void child_acknowledge_created_inferior (int);
568
569 extern int child_insert_fork_catchpoint (int);
570
571 extern int child_remove_fork_catchpoint (int);
572
573 extern int child_insert_vfork_catchpoint (int);
574
575 extern int child_remove_vfork_catchpoint (int);
576
577 extern void child_acknowledge_created_inferior (int);
578
579 extern int child_follow_fork (int);
580
581 extern int child_insert_exec_catchpoint (int);
582
583 extern int child_remove_exec_catchpoint (int);
584
585 extern int child_reported_exec_events_per_exec_call (void);
586
587 extern int child_has_exited (int, int, int *);
588
589 extern int child_thread_alive (ptid_t);
590
591 /* From infrun.c. */
592
593 extern int inferior_has_forked (int pid, int *child_pid);
594
595 extern int inferior_has_vforked (int pid, int *child_pid);
596
597 extern int inferior_has_execd (int pid, char **execd_pathname);
598
599 /* From exec.c */
600
601 extern void print_section_info (struct target_ops *, bfd *);
602
603 /* Print a line about the current target. */
604
605 #define target_files_info() \
606 (*current_target.to_files_info) (&current_target)
607
608 /* Insert a breakpoint at address ADDR in the target machine. SAVE is
609 a pointer to memory allocated for saving the target contents. It
610 is guaranteed by the caller to be long enough to save the number of
611 breakpoint bytes indicated by BREAKPOINT_FROM_PC. Result is 0 for
612 success, or an errno value. */
613
614 #define target_insert_breakpoint(addr, save) \
615 (*current_target.to_insert_breakpoint) (addr, save)
616
617 /* Remove a breakpoint at address ADDR in the target machine.
618 SAVE is a pointer to the same save area
619 that was previously passed to target_insert_breakpoint.
620 Result is 0 for success, or an errno value. */
621
622 #define target_remove_breakpoint(addr, save) \
623 (*current_target.to_remove_breakpoint) (addr, save)
624
625 /* Initialize the terminal settings we record for the inferior,
626 before we actually run the inferior. */
627
628 #define target_terminal_init() \
629 (*current_target.to_terminal_init) ()
630
631 /* Put the inferior's terminal settings into effect.
632 This is preparation for starting or resuming the inferior. */
633
634 #define target_terminal_inferior() \
635 (*current_target.to_terminal_inferior) ()
636
637 /* Put some of our terminal settings into effect,
638 enough to get proper results from our output,
639 but do not change into or out of RAW mode
640 so that no input is discarded.
641
642 After doing this, either terminal_ours or terminal_inferior
643 should be called to get back to a normal state of affairs. */
644
645 #define target_terminal_ours_for_output() \
646 (*current_target.to_terminal_ours_for_output) ()
647
648 /* Put our terminal settings into effect.
649 First record the inferior's terminal settings
650 so they can be restored properly later. */
651
652 #define target_terminal_ours() \
653 (*current_target.to_terminal_ours) ()
654
655 /* Save our terminal settings.
656 This is called from TUI after entering or leaving the curses
657 mode. Since curses modifies our terminal this call is here
658 to take this change into account. */
659
660 #define target_terminal_save_ours() \
661 (*current_target.to_terminal_save_ours) ()
662
663 /* Print useful information about our terminal status, if such a thing
664 exists. */
665
666 #define target_terminal_info(arg, from_tty) \
667 (*current_target.to_terminal_info) (arg, from_tty)
668
669 /* Kill the inferior process. Make it go away. */
670
671 #define target_kill() \
672 (*current_target.to_kill) ()
673
674 /* Load an executable file into the target process. This is expected
675 to not only bring new code into the target process, but also to
676 update GDB's symbol tables to match. */
677
678 extern void target_load (char *arg, int from_tty);
679
680 /* Look up a symbol in the target's symbol table. NAME is the symbol
681 name. ADDRP is a CORE_ADDR * pointing to where the value of the
682 symbol should be returned. The result is 0 if successful, nonzero
683 if the symbol does not exist in the target environment. This
684 function should not call error() if communication with the target
685 is interrupted, since it is called from symbol reading, but should
686 return nonzero, possibly doing a complain(). */
687
688 #define target_lookup_symbol(name, addrp) \
689 (*current_target.to_lookup_symbol) (name, addrp)
690
691 /* Start an inferior process and set inferior_ptid to its pid.
692 EXEC_FILE is the file to run.
693 ALLARGS is a string containing the arguments to the program.
694 ENV is the environment vector to pass. Errors reported with error().
695 On VxWorks and various standalone systems, we ignore exec_file. */
696
697 #define target_create_inferior(exec_file, args, env) \
698 (*current_target.to_create_inferior) (exec_file, args, env)
699
700
701 /* Some targets (such as ttrace-based HPUX) don't allow us to request
702 notification of inferior events such as fork and vork immediately
703 after the inferior is created. (This because of how gdb gets an
704 inferior created via invoking a shell to do it. In such a scenario,
705 if the shell init file has commands in it, the shell will fork and
706 exec for each of those commands, and we will see each such fork
707 event. Very bad.)
708
709 Such targets will supply an appropriate definition for this function. */
710
711 #define target_post_startup_inferior(ptid) \
712 (*current_target.to_post_startup_inferior) (ptid)
713
714 /* On some targets, the sequence of starting up an inferior requires
715 some synchronization between gdb and the new inferior process, PID. */
716
717 #define target_acknowledge_created_inferior(pid) \
718 (*current_target.to_acknowledge_created_inferior) (pid)
719
720 /* On some targets, we can catch an inferior fork or vfork event when
721 it occurs. These functions insert/remove an already-created
722 catchpoint for such events. */
723
724 #define target_insert_fork_catchpoint(pid) \
725 (*current_target.to_insert_fork_catchpoint) (pid)
726
727 #define target_remove_fork_catchpoint(pid) \
728 (*current_target.to_remove_fork_catchpoint) (pid)
729
730 #define target_insert_vfork_catchpoint(pid) \
731 (*current_target.to_insert_vfork_catchpoint) (pid)
732
733 #define target_remove_vfork_catchpoint(pid) \
734 (*current_target.to_remove_vfork_catchpoint) (pid)
735
736 /* If the inferior forks or vforks, this function will be called at
737 the next resume in order to perform any bookkeeping and fiddling
738 necessary to continue debugging either the parent or child, as
739 requested, and releasing the other. Information about the fork
740 or vfork event is available via get_last_target_status ().
741 This function returns 1 if the inferior should not be resumed
742 (i.e. there is another event pending). */
743
744 #define target_follow_fork(follow_child) \
745 (*current_target.to_follow_fork) (follow_child)
746
747 /* On some targets, we can catch an inferior exec event when it
748 occurs. These functions insert/remove an already-created
749 catchpoint for such events. */
750
751 #define target_insert_exec_catchpoint(pid) \
752 (*current_target.to_insert_exec_catchpoint) (pid)
753
754 #define target_remove_exec_catchpoint(pid) \
755 (*current_target.to_remove_exec_catchpoint) (pid)
756
757 /* Returns the number of exec events that are reported when a process
758 invokes a flavor of the exec() system call on this target, if exec
759 events are being reported. */
760
761 #define target_reported_exec_events_per_exec_call() \
762 (*current_target.to_reported_exec_events_per_exec_call) ()
763
764 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
765 exit code of PID, if any. */
766
767 #define target_has_exited(pid,wait_status,exit_status) \
768 (*current_target.to_has_exited) (pid,wait_status,exit_status)
769
770 /* The debugger has completed a blocking wait() call. There is now
771 some process event that must be processed. This function should
772 be defined by those targets that require the debugger to perform
773 cleanup or internal state changes in response to the process event. */
774
775 /* The inferior process has died. Do what is right. */
776
777 #define target_mourn_inferior() \
778 (*current_target.to_mourn_inferior) ()
779
780 /* Does target have enough data to do a run or attach command? */
781
782 #define target_can_run(t) \
783 ((t)->to_can_run) ()
784
785 /* post process changes to signal handling in the inferior. */
786
787 #define target_notice_signals(ptid) \
788 (*current_target.to_notice_signals) (ptid)
789
790 /* Check to see if a thread is still alive. */
791
792 #define target_thread_alive(ptid) \
793 (*current_target.to_thread_alive) (ptid)
794
795 /* Query for new threads and add them to the thread list. */
796
797 #define target_find_new_threads() \
798 (*current_target.to_find_new_threads) (); \
799
800 /* Make target stop in a continuable fashion. (For instance, under
801 Unix, this should act like SIGSTOP). This function is normally
802 used by GUIs to implement a stop button. */
803
804 #define target_stop current_target.to_stop
805
806 /* Send the specified COMMAND to the target's monitor
807 (shell,interpreter) for execution. The result of the query is
808 placed in OUTBUF. */
809
810 #define target_rcmd(command, outbuf) \
811 (*current_target.to_rcmd) (command, outbuf)
812
813
814 /* Get the symbol information for a breakpointable routine called when
815 an exception event occurs.
816 Intended mainly for C++, and for those
817 platforms/implementations where such a callback mechanism is available,
818 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
819 different mechanisms for debugging exceptions. */
820
821 #define target_enable_exception_callback(kind, enable) \
822 (*current_target.to_enable_exception_callback) (kind, enable)
823
824 /* Get the current exception event kind -- throw or catch, etc. */
825
826 #define target_get_current_exception_event() \
827 (*current_target.to_get_current_exception_event) ()
828
829 /* Does the target include all of memory, or only part of it? This
830 determines whether we look up the target chain for other parts of
831 memory if this target can't satisfy a request. */
832
833 #define target_has_all_memory \
834 (current_target.to_has_all_memory)
835
836 /* Does the target include memory? (Dummy targets don't.) */
837
838 #define target_has_memory \
839 (current_target.to_has_memory)
840
841 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
842 we start a process.) */
843
844 #define target_has_stack \
845 (current_target.to_has_stack)
846
847 /* Does the target have registers? (Exec files don't.) */
848
849 #define target_has_registers \
850 (current_target.to_has_registers)
851
852 /* Does the target have execution? Can we make it jump (through
853 hoops), or pop its stack a few times? FIXME: If this is to work that
854 way, it needs to check whether an inferior actually exists.
855 remote-udi.c and probably other targets can be the current target
856 when the inferior doesn't actually exist at the moment. Right now
857 this just tells us whether this target is *capable* of execution. */
858
859 #define target_has_execution \
860 (current_target.to_has_execution)
861
862 /* Can the target support the debugger control of thread execution?
863 a) Can it lock the thread scheduler?
864 b) Can it switch the currently running thread? */
865
866 #define target_can_lock_scheduler \
867 (current_target.to_has_thread_control & tc_schedlock)
868
869 #define target_can_switch_threads \
870 (current_target.to_has_thread_control & tc_switch)
871
872 /* Can the target support asynchronous execution? */
873 #define target_can_async_p() (current_target.to_can_async_p ())
874
875 /* Is the target in asynchronous execution mode? */
876 #define target_is_async_p() (current_target.to_is_async_p())
877
878 /* Put the target in async mode with the specified callback function. */
879 #define target_async(CALLBACK,CONTEXT) \
880 (current_target.to_async((CALLBACK), (CONTEXT)))
881
882 /* This is to be used ONLY within call_function_by_hand(). It provides
883 a workaround, to have inferior function calls done in sychronous
884 mode, even though the target is asynchronous. After
885 target_async_mask(0) is called, calls to target_can_async_p() will
886 return FALSE , so that target_resume() will not try to start the
887 target asynchronously. After the inferior stops, we IMMEDIATELY
888 restore the previous nature of the target, by calling
889 target_async_mask(1). After that, target_can_async_p() will return
890 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
891
892 FIXME ezannoni 1999-12-13: we won't need this once we move
893 the turning async on and off to the single execution commands,
894 from where it is done currently, in remote_resume(). */
895
896 #define target_async_mask_value \
897 (current_target.to_async_mask_value)
898
899 extern int target_async_mask (int mask);
900
901 extern void target_link (char *, CORE_ADDR *);
902
903 /* Converts a process id to a string. Usually, the string just contains
904 `process xyz', but on some systems it may contain
905 `process xyz thread abc'. */
906
907 #undef target_pid_to_str
908 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
909
910 #ifndef target_tid_to_str
911 #define target_tid_to_str(PID) \
912 target_pid_to_str (PID)
913 extern char *normal_pid_to_str (ptid_t ptid);
914 #endif
915
916 /* Return a short string describing extra information about PID,
917 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
918 is okay. */
919
920 #define target_extra_thread_info(TP) \
921 (current_target.to_extra_thread_info (TP))
922
923 /*
924 * New Objfile Event Hook:
925 *
926 * Sometimes a GDB component wants to get notified whenever a new
927 * objfile is loaded. Mainly this is used by thread-debugging
928 * implementations that need to know when symbols for the target
929 * thread implemenation are available.
930 *
931 * The old way of doing this is to define a macro 'target_new_objfile'
932 * that points to the function that you want to be called on every
933 * objfile/shlib load.
934 *
935 * The new way is to grab the function pointer, 'target_new_objfile_hook',
936 * and point it to the function that you want to be called on every
937 * objfile/shlib load.
938 *
939 * If multiple clients are willing to be cooperative, they can each
940 * save a pointer to the previous value of target_new_objfile_hook
941 * before modifying it, and arrange for their function to call the
942 * previous function in the chain. In that way, multiple clients
943 * can receive this notification (something like with signal handlers).
944 */
945
946 extern void (*target_new_objfile_hook) (struct objfile *);
947
948 #ifndef target_pid_or_tid_to_str
949 #define target_pid_or_tid_to_str(ID) \
950 target_pid_to_str (ID)
951 #endif
952
953 /* Attempts to find the pathname of the executable file
954 that was run to create a specified process.
955
956 The process PID must be stopped when this operation is used.
957
958 If the executable file cannot be determined, NULL is returned.
959
960 Else, a pointer to a character string containing the pathname
961 is returned. This string should be copied into a buffer by
962 the client if the string will not be immediately used, or if
963 it must persist. */
964
965 #define target_pid_to_exec_file(pid) \
966 (current_target.to_pid_to_exec_file) (pid)
967
968 /*
969 * Iterator function for target memory regions.
970 * Calls a callback function once for each memory region 'mapped'
971 * in the child process. Defined as a simple macro rather than
972 * as a function macro so that it can be tested for nullity.
973 */
974
975 #define target_find_memory_regions(FUNC, DATA) \
976 (current_target.to_find_memory_regions) (FUNC, DATA)
977
978 /*
979 * Compose corefile .note section.
980 */
981
982 #define target_make_corefile_notes(BFD, SIZE_P) \
983 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
984
985 /* Thread-local values. */
986 #define target_get_thread_local_address \
987 (current_target.to_get_thread_local_address)
988 #define target_get_thread_local_address_p() \
989 (target_get_thread_local_address != NULL)
990
991 /* Hook to call target dependent code just after inferior target process has
992 started. */
993
994 #ifndef TARGET_CREATE_INFERIOR_HOOK
995 #define TARGET_CREATE_INFERIOR_HOOK(PID)
996 #endif
997
998 /* Hardware watchpoint interfaces. */
999
1000 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1001 write). */
1002
1003 #ifndef STOPPED_BY_WATCHPOINT
1004 #define STOPPED_BY_WATCHPOINT(w) \
1005 (*current_target.to_stopped_by_watchpoint) ()
1006 #endif
1007
1008 /* Non-zero if we have continuable watchpoints */
1009
1010 #ifndef HAVE_CONTINUABLE_WATCHPOINT
1011 #define HAVE_CONTINUABLE_WATCHPOINT \
1012 (current_target.to_have_continuable_watchpoint)
1013 #endif
1014
1015 /* HP-UX supplies these operations, which respectively disable and enable
1016 the memory page-protections that are used to implement hardware watchpoints
1017 on that platform. See wait_for_inferior's use of these. */
1018
1019 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1020 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1021 #endif
1022
1023 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1024 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1025 #endif
1026
1027 /* Provide defaults for hardware watchpoint functions. */
1028
1029 /* If the *_hw_beakpoint functions have not been defined
1030 elsewhere use the definitions in the target vector. */
1031
1032 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1033 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1034 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1035 (including this one?). OTHERTYPE is who knows what... */
1036
1037 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1038 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1039 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1040 #endif
1041
1042 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1043 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1044 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
1045 #endif
1046
1047
1048 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1049 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1050 success, non-zero for failure. */
1051
1052 #ifndef target_insert_watchpoint
1053 #define target_insert_watchpoint(addr, len, type) \
1054 (*current_target.to_insert_watchpoint) (addr, len, type)
1055
1056 #define target_remove_watchpoint(addr, len, type) \
1057 (*current_target.to_remove_watchpoint) (addr, len, type)
1058 #endif
1059
1060 #ifndef target_insert_hw_breakpoint
1061 #define target_insert_hw_breakpoint(addr, save) \
1062 (*current_target.to_insert_hw_breakpoint) (addr, save)
1063
1064 #define target_remove_hw_breakpoint(addr, save) \
1065 (*current_target.to_remove_hw_breakpoint) (addr, save)
1066 #endif
1067
1068 #ifndef target_stopped_data_address
1069 #define target_stopped_data_address() \
1070 (*current_target.to_stopped_data_address) ()
1071 #endif
1072
1073 /* If defined, then we need to decr pc by this much after a hardware break-
1074 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1075
1076 #ifndef DECR_PC_AFTER_HW_BREAK
1077 #define DECR_PC_AFTER_HW_BREAK 0
1078 #endif
1079
1080 /* Sometimes gdb may pick up what appears to be a valid target address
1081 from a minimal symbol, but the value really means, essentially,
1082 "This is an index into a table which is populated when the inferior
1083 is run. Therefore, do not attempt to use this as a PC." */
1084
1085 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1086 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1087 #endif
1088
1089 /* This will only be defined by a target that supports catching vfork events,
1090 such as HP-UX.
1091
1092 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1093 child process after it has exec'd, causes the parent process to resume as
1094 well. To prevent the parent from running spontaneously, such targets should
1095 define this to a function that prevents that from happening. */
1096 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1097 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1098 #endif
1099
1100 /* This will only be defined by a target that supports catching vfork events,
1101 such as HP-UX.
1102
1103 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1104 process must be resumed when it delivers its exec event, before the parent
1105 vfork event will be delivered to us. */
1106
1107 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1108 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1109 #endif
1110
1111 /* Routines for maintenance of the target structures...
1112
1113 add_target: Add a target to the list of all possible targets.
1114
1115 push_target: Make this target the top of the stack of currently used
1116 targets, within its particular stratum of the stack. Result
1117 is 0 if now atop the stack, nonzero if not on top (maybe
1118 should warn user).
1119
1120 unpush_target: Remove this from the stack of currently used targets,
1121 no matter where it is on the list. Returns 0 if no
1122 change, 1 if removed from stack.
1123
1124 pop_target: Remove the top thing on the stack of current targets. */
1125
1126 extern void add_target (struct target_ops *);
1127
1128 extern int push_target (struct target_ops *);
1129
1130 extern int unpush_target (struct target_ops *);
1131
1132 extern void target_preopen (int);
1133
1134 extern void pop_target (void);
1135
1136 /* Struct section_table maps address ranges to file sections. It is
1137 mostly used with BFD files, but can be used without (e.g. for handling
1138 raw disks, or files not in formats handled by BFD). */
1139
1140 struct section_table
1141 {
1142 CORE_ADDR addr; /* Lowest address in section */
1143 CORE_ADDR endaddr; /* 1+highest address in section */
1144
1145 sec_ptr the_bfd_section;
1146
1147 bfd *bfd; /* BFD file pointer */
1148 };
1149
1150 /* Return the "section" containing the specified address. */
1151 struct section_table *target_section_by_addr (struct target_ops *target,
1152 CORE_ADDR addr);
1153
1154
1155 /* From mem-break.c */
1156
1157 extern int memory_remove_breakpoint (CORE_ADDR, char *);
1158
1159 extern int memory_insert_breakpoint (CORE_ADDR, char *);
1160
1161 extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1162
1163 extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1164
1165
1166 /* From target.c */
1167
1168 extern void initialize_targets (void);
1169
1170 extern void noprocess (void);
1171
1172 extern void find_default_attach (char *, int);
1173
1174 extern void find_default_create_inferior (char *, char *, char **);
1175
1176 extern struct target_ops *find_run_target (void);
1177
1178 extern struct target_ops *find_core_target (void);
1179
1180 extern struct target_ops *find_target_beneath (struct target_ops *);
1181
1182 extern int target_resize_to_sections (struct target_ops *target,
1183 int num_added);
1184
1185 extern void remove_target_sections (bfd *abfd);
1186
1187 \f
1188 /* Stuff that should be shared among the various remote targets. */
1189
1190 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1191 information (higher values, more information). */
1192 extern int remote_debug;
1193
1194 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1195 extern int baud_rate;
1196 /* Timeout limit for response from target. */
1197 extern int remote_timeout;
1198
1199 \f
1200 /* Functions for helping to write a native target. */
1201
1202 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1203 extern void store_waitstatus (struct target_waitstatus *, int);
1204
1205 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1206 targ_signal SIGNO has an equivalent ``host'' representation. */
1207 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1208 to the shorter target_signal_p() because it is far less ambigious.
1209 In this context ``target_signal'' refers to GDB's internal
1210 representation of the target's set of signals while ``host signal''
1211 refers to the target operating system's signal. Confused? */
1212
1213 extern int target_signal_to_host_p (enum target_signal signo);
1214
1215 /* Convert between host signal numbers and enum target_signal's.
1216 target_signal_to_host() returns 0 and prints a warning() on GDB's
1217 console if SIGNO has no equivalent host representation. */
1218 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1219 refering to the target operating system's signal numbering.
1220 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1221 gdb_signal'' would probably be better as it is refering to GDB's
1222 internal representation of a target operating system's signal. */
1223
1224 extern enum target_signal target_signal_from_host (int);
1225 extern int target_signal_to_host (enum target_signal);
1226
1227 /* Convert from a number used in a GDB command to an enum target_signal. */
1228 extern enum target_signal target_signal_from_command (int);
1229
1230 /* Any target can call this to switch to remote protocol (in remote.c). */
1231 extern void push_remote_target (char *name, int from_tty);
1232 \f
1233 /* Imported from machine dependent code */
1234
1235 /* Blank target vector entries are initialized to target_ignore. */
1236 void target_ignore (void);
1237
1238 #endif /* !defined (TARGET_H) */
This page took 0.084152 seconds and 4 git commands to generate.