2004-04-21 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support. Written by John Gilmore.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #if !defined (TARGET_H)
26 #define TARGET_H
27
28 struct objfile;
29 struct ui_file;
30 struct mem_attrib;
31 struct target_ops;
32
33 /* This include file defines the interface between the main part
34 of the debugger, and the part which is target-specific, or
35 specific to the communications interface between us and the
36 target.
37
38 A TARGET is an interface between the debugger and a particular
39 kind of file or process. Targets can be STACKED in STRATA,
40 so that more than one target can potentially respond to a request.
41 In particular, memory accesses will walk down the stack of targets
42 until they find a target that is interested in handling that particular
43 address. STRATA are artificial boundaries on the stack, within
44 which particular kinds of targets live. Strata exist so that
45 people don't get confused by pushing e.g. a process target and then
46 a file target, and wondering why they can't see the current values
47 of variables any more (the file target is handling them and they
48 never get to the process target). So when you push a file target,
49 it goes into the file stratum, which is always below the process
50 stratum. */
51
52 #include "bfd.h"
53 #include "symtab.h"
54 #include "dcache.h"
55 #include "memattr.h"
56
57 enum strata
58 {
59 dummy_stratum, /* The lowest of the low */
60 file_stratum, /* Executable files, etc */
61 core_stratum, /* Core dump files */
62 download_stratum, /* Downloading of remote targets */
63 process_stratum, /* Executing processes */
64 thread_stratum /* Executing threads */
65 };
66
67 enum thread_control_capabilities
68 {
69 tc_none = 0, /* Default: can't control thread execution. */
70 tc_schedlock = 1, /* Can lock the thread scheduler. */
71 tc_switch = 2 /* Can switch the running thread on demand. */
72 };
73
74 /* Stuff for target_wait. */
75
76 /* Generally, what has the program done? */
77 enum target_waitkind
78 {
79 /* The program has exited. The exit status is in value.integer. */
80 TARGET_WAITKIND_EXITED,
81
82 /* The program has stopped with a signal. Which signal is in
83 value.sig. */
84 TARGET_WAITKIND_STOPPED,
85
86 /* The program has terminated with a signal. Which signal is in
87 value.sig. */
88 TARGET_WAITKIND_SIGNALLED,
89
90 /* The program is letting us know that it dynamically loaded something
91 (e.g. it called load(2) on AIX). */
92 TARGET_WAITKIND_LOADED,
93
94 /* The program has forked. A "related" process' ID is in
95 value.related_pid. I.e., if the child forks, value.related_pid
96 is the parent's ID. */
97
98 TARGET_WAITKIND_FORKED,
99
100 /* The program has vforked. A "related" process's ID is in
101 value.related_pid. */
102
103 TARGET_WAITKIND_VFORKED,
104
105 /* The program has exec'ed a new executable file. The new file's
106 pathname is pointed to by value.execd_pathname. */
107
108 TARGET_WAITKIND_EXECD,
109
110 /* The program has entered or returned from a system call. On
111 HP-UX, this is used in the hardware watchpoint implementation.
112 The syscall's unique integer ID number is in value.syscall_id */
113
114 TARGET_WAITKIND_SYSCALL_ENTRY,
115 TARGET_WAITKIND_SYSCALL_RETURN,
116
117 /* Nothing happened, but we stopped anyway. This perhaps should be handled
118 within target_wait, but I'm not sure target_wait should be resuming the
119 inferior. */
120 TARGET_WAITKIND_SPURIOUS,
121
122 /* An event has occured, but we should wait again.
123 Remote_async_wait() returns this when there is an event
124 on the inferior, but the rest of the world is not interested in
125 it. The inferior has not stopped, but has just sent some output
126 to the console, for instance. In this case, we want to go back
127 to the event loop and wait there for another event from the
128 inferior, rather than being stuck in the remote_async_wait()
129 function. This way the event loop is responsive to other events,
130 like for instance the user typing. */
131 TARGET_WAITKIND_IGNORE
132 };
133
134 struct target_waitstatus
135 {
136 enum target_waitkind kind;
137
138 /* Forked child pid, execd pathname, exit status or signal number. */
139 union
140 {
141 int integer;
142 enum target_signal sig;
143 int related_pid;
144 char *execd_pathname;
145 int syscall_id;
146 }
147 value;
148 };
149
150 /* Possible types of events that the inferior handler will have to
151 deal with. */
152 enum inferior_event_type
153 {
154 /* There is a request to quit the inferior, abandon it. */
155 INF_QUIT_REQ,
156 /* Process a normal inferior event which will result in target_wait
157 being called. */
158 INF_REG_EVENT,
159 /* Deal with an error on the inferior. */
160 INF_ERROR,
161 /* We are called because a timer went off. */
162 INF_TIMER,
163 /* We are called to do stuff after the inferior stops. */
164 INF_EXEC_COMPLETE,
165 /* We are called to do some stuff after the inferior stops, but we
166 are expected to reenter the proceed() and
167 handle_inferior_event() functions. This is used only in case of
168 'step n' like commands. */
169 INF_EXEC_CONTINUE
170 };
171
172 /* Return the string for a signal. */
173 extern char *target_signal_to_string (enum target_signal);
174
175 /* Return the name (SIGHUP, etc.) for a signal. */
176 extern char *target_signal_to_name (enum target_signal);
177
178 /* Given a name (SIGHUP, etc.), return its signal. */
179 enum target_signal target_signal_from_name (char *);
180 \f
181 /* Request the transfer of up to LEN 8-bit bytes of the target's
182 OBJECT. The OFFSET, for a seekable object, specifies the starting
183 point. The ANNEX can be used to provide additional data-specific
184 information to the target.
185
186 Return the number of bytes actually transfered, zero when no
187 further transfer is possible, and -1 when the transfer is not
188 supported.
189
190 NOTE: cagney/2003-10-17: The current interface does not support a
191 "retry" mechanism. Instead it assumes that at least one byte will
192 be transfered on each call.
193
194 NOTE: cagney/2003-10-17: The current interface can lead to
195 fragmented transfers. Lower target levels should not implement
196 hacks, such as enlarging the transfer, in an attempt to compensate
197 for this. Instead, the target stack should be extended so that it
198 implements supply/collect methods and a look-aside object cache.
199 With that available, the lowest target can safely and freely "push"
200 data up the stack.
201
202 NOTE: cagney/2003-10-17: Unlike the old query and the memory
203 transfer mechanisms, these methods are explicitly parameterized by
204 the target that it should be applied to.
205
206 NOTE: cagney/2003-10-17: Just like the old query and memory xfer
207 methods, these new methods perform partial transfers. The only
208 difference is that these new methods thought to include "partial"
209 in the name. The old code's failure to do this lead to much
210 confusion and duplication of effort as each target object attempted
211 to locally take responsibility for something it didn't have to
212 worry about.
213
214 NOTE: cagney/2003-10-17: With a TARGET_OBJECT_KOD object, for
215 backward compatibility with the "target_query" method that this
216 replaced, when OFFSET and LEN are both zero, return the "minimum"
217 buffer size. See "remote.c" for further information. */
218
219 enum target_object
220 {
221 /* Kernel Object Display transfer. See "kod.c" and "remote.c". */
222 TARGET_OBJECT_KOD,
223 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
224 TARGET_OBJECT_AVR,
225 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
226 TARGET_OBJECT_MEMORY,
227 /* Kernel Unwind Table. See "ia64-tdep.c". */
228 TARGET_OBJECT_UNWIND_TABLE,
229 /* Transfer auxilliary vector. */
230 TARGET_OBJECT_AUXV,
231 /* StackGhost cookie. See "sparc-tdep.c". */
232 TARGET_OBJECT_WCOOKIE
233
234 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
235 };
236
237 extern LONGEST target_read_partial (struct target_ops *ops,
238 enum target_object object,
239 const char *annex, void *buf,
240 ULONGEST offset, LONGEST len);
241
242 extern LONGEST target_write_partial (struct target_ops *ops,
243 enum target_object object,
244 const char *annex, const void *buf,
245 ULONGEST offset, LONGEST len);
246
247 /* Wrappers to perform the full transfer. */
248 extern LONGEST target_read (struct target_ops *ops,
249 enum target_object object,
250 const char *annex, void *buf,
251 ULONGEST offset, LONGEST len);
252
253 extern LONGEST target_write (struct target_ops *ops,
254 enum target_object object,
255 const char *annex, const void *buf,
256 ULONGEST offset, LONGEST len);
257
258 /* Wrappers to target read/write that perform memory transfers. They
259 throw an error if the memory transfer fails.
260
261 NOTE: cagney/2003-10-23: The naming schema is lifted from
262 "frame.h". The parameter order is lifted from get_frame_memory,
263 which in turn lifted it from read_memory. */
264
265 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
266 void *buf, LONGEST len);
267 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
268 CORE_ADDR addr, int len);
269 \f
270
271 /* If certain kinds of activity happen, target_wait should perform
272 callbacks. */
273 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
274 on TARGET_ACTIVITY_FD. */
275 extern int target_activity_fd;
276 /* Returns zero to leave the inferior alone, one to interrupt it. */
277 extern int (*target_activity_function) (void);
278 \f
279 struct thread_info; /* fwd decl for parameter list below: */
280
281 struct target_ops
282 {
283 struct target_ops *beneath; /* To the target under this one. */
284 char *to_shortname; /* Name this target type */
285 char *to_longname; /* Name for printing */
286 char *to_doc; /* Documentation. Does not include trailing
287 newline, and starts with a one-line descrip-
288 tion (probably similar to to_longname). */
289 /* Per-target scratch pad. */
290 void *to_data;
291 /* The open routine takes the rest of the parameters from the
292 command, and (if successful) pushes a new target onto the
293 stack. Targets should supply this routine, if only to provide
294 an error message. */
295 void (*to_open) (char *, int);
296 /* Old targets with a static target vector provide "to_close".
297 New re-entrant targets provide "to_xclose" and that is expected
298 to xfree everything (including the "struct target_ops"). */
299 void (*to_xclose) (struct target_ops *targ, int quitting);
300 void (*to_close) (int);
301 void (*to_attach) (char *, int);
302 void (*to_post_attach) (int);
303 void (*to_detach) (char *, int);
304 void (*to_disconnect) (char *, int);
305 void (*to_resume) (ptid_t, int, enum target_signal);
306 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
307 void (*to_post_wait) (ptid_t, int);
308 void (*to_fetch_registers) (int);
309 void (*to_store_registers) (int);
310 void (*to_prepare_to_store) (void);
311
312 /* Transfer LEN bytes of memory between GDB address MYADDR and
313 target address MEMADDR. If WRITE, transfer them to the target, else
314 transfer them from the target. TARGET is the target from which we
315 get this function.
316
317 Return value, N, is one of the following:
318
319 0 means that we can't handle this. If errno has been set, it is the
320 error which prevented us from doing it (FIXME: What about bfd_error?).
321
322 positive (call it N) means that we have transferred N bytes
323 starting at MEMADDR. We might be able to handle more bytes
324 beyond this length, but no promises.
325
326 negative (call its absolute value N) means that we cannot
327 transfer right at MEMADDR, but we could transfer at least
328 something at MEMADDR + N. */
329
330 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
331 int len, int write,
332 struct mem_attrib *attrib,
333 struct target_ops *target);
334
335 void (*to_files_info) (struct target_ops *);
336 int (*to_insert_breakpoint) (CORE_ADDR, char *);
337 int (*to_remove_breakpoint) (CORE_ADDR, char *);
338 int (*to_can_use_hw_breakpoint) (int, int, int);
339 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
340 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
341 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
342 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
343 int (*to_stopped_by_watchpoint) (void);
344 int to_have_continuable_watchpoint;
345 CORE_ADDR (*to_stopped_data_address) (void);
346 int (*to_region_size_ok_for_hw_watchpoint) (int);
347 void (*to_terminal_init) (void);
348 void (*to_terminal_inferior) (void);
349 void (*to_terminal_ours_for_output) (void);
350 void (*to_terminal_ours) (void);
351 void (*to_terminal_save_ours) (void);
352 void (*to_terminal_info) (char *, int);
353 void (*to_kill) (void);
354 void (*to_load) (char *, int);
355 int (*to_lookup_symbol) (char *, CORE_ADDR *);
356 void (*to_create_inferior) (char *, char *, char **);
357 void (*to_post_startup_inferior) (ptid_t);
358 void (*to_acknowledge_created_inferior) (int);
359 int (*to_insert_fork_catchpoint) (int);
360 int (*to_remove_fork_catchpoint) (int);
361 int (*to_insert_vfork_catchpoint) (int);
362 int (*to_remove_vfork_catchpoint) (int);
363 int (*to_follow_fork) (int);
364 int (*to_insert_exec_catchpoint) (int);
365 int (*to_remove_exec_catchpoint) (int);
366 int (*to_reported_exec_events_per_exec_call) (void);
367 int (*to_has_exited) (int, int, int *);
368 void (*to_mourn_inferior) (void);
369 int (*to_can_run) (void);
370 void (*to_notice_signals) (ptid_t ptid);
371 int (*to_thread_alive) (ptid_t ptid);
372 void (*to_find_new_threads) (void);
373 char *(*to_pid_to_str) (ptid_t);
374 char *(*to_extra_thread_info) (struct thread_info *);
375 void (*to_stop) (void);
376 void (*to_rcmd) (char *command, struct ui_file *output);
377 struct symtab_and_line *(*to_enable_exception_callback) (enum
378 exception_event_kind,
379 int);
380 struct exception_event_record *(*to_get_current_exception_event) (void);
381 char *(*to_pid_to_exec_file) (int pid);
382 enum strata to_stratum;
383 int to_has_all_memory;
384 int to_has_memory;
385 int to_has_stack;
386 int to_has_registers;
387 int to_has_execution;
388 int to_has_thread_control; /* control thread execution */
389 struct section_table
390 *to_sections;
391 struct section_table
392 *to_sections_end;
393 /* ASYNC target controls */
394 int (*to_can_async_p) (void);
395 int (*to_is_async_p) (void);
396 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
397 void *context);
398 int to_async_mask_value;
399 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
400 unsigned long,
401 int, int, int,
402 void *),
403 void *);
404 char * (*to_make_corefile_notes) (bfd *, int *);
405
406 /* Return the thread-local address at OFFSET in the
407 thread-local storage for the thread PTID and the shared library
408 or executable file given by OBJFILE. If that block of
409 thread-local storage hasn't been allocated yet, this function
410 may return an error. */
411 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
412 struct objfile *objfile,
413 CORE_ADDR offset);
414
415 /* Perform partial transfers on OBJECT. See target_read_partial
416 and target_write_partial for details of each variant. One, and
417 only one, of readbuf or writebuf must be non-NULL. */
418 LONGEST (*to_xfer_partial) (struct target_ops *ops,
419 enum target_object object, const char *annex,
420 void *readbuf, const void *writebuf,
421 ULONGEST offset, LONGEST len);
422
423 int to_magic;
424 /* Need sub-structure for target machine related rather than comm related?
425 */
426 };
427
428 /* Magic number for checking ops size. If a struct doesn't end with this
429 number, somebody changed the declaration but didn't change all the
430 places that initialize one. */
431
432 #define OPS_MAGIC 3840
433
434 /* The ops structure for our "current" target process. This should
435 never be NULL. If there is no target, it points to the dummy_target. */
436
437 extern struct target_ops current_target;
438
439 /* Define easy words for doing these operations on our current target. */
440
441 #define target_shortname (current_target.to_shortname)
442 #define target_longname (current_target.to_longname)
443
444 /* Does whatever cleanup is required for a target that we are no
445 longer going to be calling. QUITTING indicates that GDB is exiting
446 and should not get hung on an error (otherwise it is important to
447 perform clean termination, even if it takes a while). This routine
448 is automatically always called when popping the target off the
449 target stack (to_beneath is undefined). Closing file descriptors
450 and freeing all memory allocated memory are typical things it
451 should do. */
452
453 void target_close (struct target_ops *targ, int quitting);
454
455 /* Attaches to a process on the target side. Arguments are as passed
456 to the `attach' command by the user. This routine can be called
457 when the target is not on the target-stack, if the target_can_run
458 routine returns 1; in that case, it must push itself onto the stack.
459 Upon exit, the target should be ready for normal operations, and
460 should be ready to deliver the status of the process immediately
461 (without waiting) to an upcoming target_wait call. */
462
463 #define target_attach(args, from_tty) \
464 (*current_target.to_attach) (args, from_tty)
465
466 /* The target_attach operation places a process under debugger control,
467 and stops the process.
468
469 This operation provides a target-specific hook that allows the
470 necessary bookkeeping to be performed after an attach completes. */
471 #define target_post_attach(pid) \
472 (*current_target.to_post_attach) (pid)
473
474 /* Takes a program previously attached to and detaches it.
475 The program may resume execution (some targets do, some don't) and will
476 no longer stop on signals, etc. We better not have left any breakpoints
477 in the program or it'll die when it hits one. ARGS is arguments
478 typed by the user (e.g. a signal to send the process). FROM_TTY
479 says whether to be verbose or not. */
480
481 extern void target_detach (char *, int);
482
483 /* Disconnect from the current target without resuming it (leaving it
484 waiting for a debugger). */
485
486 extern void target_disconnect (char *, int);
487
488 /* Resume execution of the target process PTID. STEP says whether to
489 single-step or to run free; SIGGNAL is the signal to be given to
490 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
491 pass TARGET_SIGNAL_DEFAULT. */
492
493 #define target_resume(ptid, step, siggnal) \
494 do { \
495 dcache_invalidate(target_dcache); \
496 (*current_target.to_resume) (ptid, step, siggnal); \
497 } while (0)
498
499 /* Wait for process pid to do something. PTID = -1 to wait for any
500 pid to do something. Return pid of child, or -1 in case of error;
501 store status through argument pointer STATUS. Note that it is
502 _NOT_ OK to throw_exception() out of target_wait() without popping
503 the debugging target from the stack; GDB isn't prepared to get back
504 to the prompt with a debugging target but without the frame cache,
505 stop_pc, etc., set up. */
506
507 #define target_wait(ptid, status) \
508 (*current_target.to_wait) (ptid, status)
509
510 /* The target_wait operation waits for a process event to occur, and
511 thereby stop the process.
512
513 On some targets, certain events may happen in sequences. gdb's
514 correct response to any single event of such a sequence may require
515 knowledge of what earlier events in the sequence have been seen.
516
517 This operation provides a target-specific hook that allows the
518 necessary bookkeeping to be performed to track such sequences. */
519
520 #define target_post_wait(ptid, status) \
521 (*current_target.to_post_wait) (ptid, status)
522
523 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
524
525 #define target_fetch_registers(regno) \
526 (*current_target.to_fetch_registers) (regno)
527
528 /* Store at least register REGNO, or all regs if REGNO == -1.
529 It can store as many registers as it wants to, so target_prepare_to_store
530 must have been previously called. Calls error() if there are problems. */
531
532 #define target_store_registers(regs) \
533 (*current_target.to_store_registers) (regs)
534
535 /* Get ready to modify the registers array. On machines which store
536 individual registers, this doesn't need to do anything. On machines
537 which store all the registers in one fell swoop, this makes sure
538 that REGISTERS contains all the registers from the program being
539 debugged. */
540
541 #define target_prepare_to_store() \
542 (*current_target.to_prepare_to_store) ()
543
544 extern DCACHE *target_dcache;
545
546 extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
547 struct mem_attrib *attrib);
548
549 extern int target_read_string (CORE_ADDR, char **, int, int *);
550
551 extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
552
553 extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
554
555 extern int xfer_memory (CORE_ADDR, char *, int, int,
556 struct mem_attrib *, struct target_ops *);
557
558 extern int child_xfer_memory (CORE_ADDR, char *, int, int,
559 struct mem_attrib *, struct target_ops *);
560
561 /* Make a single attempt at transfering LEN bytes. On a successful
562 transfer, the number of bytes actually transfered is returned and
563 ERR is set to 0. When a transfer fails, -1 is returned (the number
564 of bytes actually transfered is not defined) and ERR is set to a
565 non-zero error indication. */
566
567 extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
568 int *err);
569
570 extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
571 int *err);
572
573 extern char *child_pid_to_exec_file (int);
574
575 extern char *child_core_file_to_sym_file (char *);
576
577 #if defined(CHILD_POST_ATTACH)
578 extern void child_post_attach (int);
579 #endif
580
581 extern void child_post_wait (ptid_t, int);
582
583 extern void child_post_startup_inferior (ptid_t);
584
585 extern void child_acknowledge_created_inferior (int);
586
587 extern int child_insert_fork_catchpoint (int);
588
589 extern int child_remove_fork_catchpoint (int);
590
591 extern int child_insert_vfork_catchpoint (int);
592
593 extern int child_remove_vfork_catchpoint (int);
594
595 extern void child_acknowledge_created_inferior (int);
596
597 extern int child_follow_fork (int);
598
599 extern int child_insert_exec_catchpoint (int);
600
601 extern int child_remove_exec_catchpoint (int);
602
603 extern int child_reported_exec_events_per_exec_call (void);
604
605 extern int child_has_exited (int, int, int *);
606
607 extern int child_thread_alive (ptid_t);
608
609 /* From infrun.c. */
610
611 extern int inferior_has_forked (int pid, int *child_pid);
612
613 extern int inferior_has_vforked (int pid, int *child_pid);
614
615 extern int inferior_has_execd (int pid, char **execd_pathname);
616
617 /* From exec.c */
618
619 extern void print_section_info (struct target_ops *, bfd *);
620
621 /* Print a line about the current target. */
622
623 #define target_files_info() \
624 (*current_target.to_files_info) (&current_target)
625
626 /* Insert a breakpoint at address ADDR in the target machine. SAVE is
627 a pointer to memory allocated for saving the target contents. It
628 is guaranteed by the caller to be long enough to save the number of
629 breakpoint bytes indicated by BREAKPOINT_FROM_PC. Result is 0 for
630 success, or an errno value. */
631
632 #define target_insert_breakpoint(addr, save) \
633 (*current_target.to_insert_breakpoint) (addr, save)
634
635 /* Remove a breakpoint at address ADDR in the target machine.
636 SAVE is a pointer to the same save area
637 that was previously passed to target_insert_breakpoint.
638 Result is 0 for success, or an errno value. */
639
640 #define target_remove_breakpoint(addr, save) \
641 (*current_target.to_remove_breakpoint) (addr, save)
642
643 /* Initialize the terminal settings we record for the inferior,
644 before we actually run the inferior. */
645
646 #define target_terminal_init() \
647 (*current_target.to_terminal_init) ()
648
649 /* Put the inferior's terminal settings into effect.
650 This is preparation for starting or resuming the inferior. */
651
652 #define target_terminal_inferior() \
653 (*current_target.to_terminal_inferior) ()
654
655 /* Put some of our terminal settings into effect,
656 enough to get proper results from our output,
657 but do not change into or out of RAW mode
658 so that no input is discarded.
659
660 After doing this, either terminal_ours or terminal_inferior
661 should be called to get back to a normal state of affairs. */
662
663 #define target_terminal_ours_for_output() \
664 (*current_target.to_terminal_ours_for_output) ()
665
666 /* Put our terminal settings into effect.
667 First record the inferior's terminal settings
668 so they can be restored properly later. */
669
670 #define target_terminal_ours() \
671 (*current_target.to_terminal_ours) ()
672
673 /* Save our terminal settings.
674 This is called from TUI after entering or leaving the curses
675 mode. Since curses modifies our terminal this call is here
676 to take this change into account. */
677
678 #define target_terminal_save_ours() \
679 (*current_target.to_terminal_save_ours) ()
680
681 /* Print useful information about our terminal status, if such a thing
682 exists. */
683
684 #define target_terminal_info(arg, from_tty) \
685 (*current_target.to_terminal_info) (arg, from_tty)
686
687 /* Kill the inferior process. Make it go away. */
688
689 #define target_kill() \
690 (*current_target.to_kill) ()
691
692 /* Load an executable file into the target process. This is expected
693 to not only bring new code into the target process, but also to
694 update GDB's symbol tables to match. */
695
696 extern void target_load (char *arg, int from_tty);
697
698 /* Look up a symbol in the target's symbol table. NAME is the symbol
699 name. ADDRP is a CORE_ADDR * pointing to where the value of the
700 symbol should be returned. The result is 0 if successful, nonzero
701 if the symbol does not exist in the target environment. This
702 function should not call error() if communication with the target
703 is interrupted, since it is called from symbol reading, but should
704 return nonzero, possibly doing a complain(). */
705
706 #define target_lookup_symbol(name, addrp) \
707 (*current_target.to_lookup_symbol) (name, addrp)
708
709 /* Start an inferior process and set inferior_ptid to its pid.
710 EXEC_FILE is the file to run.
711 ALLARGS is a string containing the arguments to the program.
712 ENV is the environment vector to pass. Errors reported with error().
713 On VxWorks and various standalone systems, we ignore exec_file. */
714
715 #define target_create_inferior(exec_file, args, env) \
716 (*current_target.to_create_inferior) (exec_file, args, env)
717
718
719 /* Some targets (such as ttrace-based HPUX) don't allow us to request
720 notification of inferior events such as fork and vork immediately
721 after the inferior is created. (This because of how gdb gets an
722 inferior created via invoking a shell to do it. In such a scenario,
723 if the shell init file has commands in it, the shell will fork and
724 exec for each of those commands, and we will see each such fork
725 event. Very bad.)
726
727 Such targets will supply an appropriate definition for this function. */
728
729 #define target_post_startup_inferior(ptid) \
730 (*current_target.to_post_startup_inferior) (ptid)
731
732 /* On some targets, the sequence of starting up an inferior requires
733 some synchronization between gdb and the new inferior process, PID. */
734
735 #define target_acknowledge_created_inferior(pid) \
736 (*current_target.to_acknowledge_created_inferior) (pid)
737
738 /* On some targets, we can catch an inferior fork or vfork event when
739 it occurs. These functions insert/remove an already-created
740 catchpoint for such events. */
741
742 #define target_insert_fork_catchpoint(pid) \
743 (*current_target.to_insert_fork_catchpoint) (pid)
744
745 #define target_remove_fork_catchpoint(pid) \
746 (*current_target.to_remove_fork_catchpoint) (pid)
747
748 #define target_insert_vfork_catchpoint(pid) \
749 (*current_target.to_insert_vfork_catchpoint) (pid)
750
751 #define target_remove_vfork_catchpoint(pid) \
752 (*current_target.to_remove_vfork_catchpoint) (pid)
753
754 /* If the inferior forks or vforks, this function will be called at
755 the next resume in order to perform any bookkeeping and fiddling
756 necessary to continue debugging either the parent or child, as
757 requested, and releasing the other. Information about the fork
758 or vfork event is available via get_last_target_status ().
759 This function returns 1 if the inferior should not be resumed
760 (i.e. there is another event pending). */
761
762 #define target_follow_fork(follow_child) \
763 (*current_target.to_follow_fork) (follow_child)
764
765 /* On some targets, we can catch an inferior exec event when it
766 occurs. These functions insert/remove an already-created
767 catchpoint for such events. */
768
769 #define target_insert_exec_catchpoint(pid) \
770 (*current_target.to_insert_exec_catchpoint) (pid)
771
772 #define target_remove_exec_catchpoint(pid) \
773 (*current_target.to_remove_exec_catchpoint) (pid)
774
775 /* Returns the number of exec events that are reported when a process
776 invokes a flavor of the exec() system call on this target, if exec
777 events are being reported. */
778
779 #define target_reported_exec_events_per_exec_call() \
780 (*current_target.to_reported_exec_events_per_exec_call) ()
781
782 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
783 exit code of PID, if any. */
784
785 #define target_has_exited(pid,wait_status,exit_status) \
786 (*current_target.to_has_exited) (pid,wait_status,exit_status)
787
788 /* The debugger has completed a blocking wait() call. There is now
789 some process event that must be processed. This function should
790 be defined by those targets that require the debugger to perform
791 cleanup or internal state changes in response to the process event. */
792
793 /* The inferior process has died. Do what is right. */
794
795 #define target_mourn_inferior() \
796 (*current_target.to_mourn_inferior) ()
797
798 /* Does target have enough data to do a run or attach command? */
799
800 #define target_can_run(t) \
801 ((t)->to_can_run) ()
802
803 /* post process changes to signal handling in the inferior. */
804
805 #define target_notice_signals(ptid) \
806 (*current_target.to_notice_signals) (ptid)
807
808 /* Check to see if a thread is still alive. */
809
810 #define target_thread_alive(ptid) \
811 (*current_target.to_thread_alive) (ptid)
812
813 /* Query for new threads and add them to the thread list. */
814
815 #define target_find_new_threads() \
816 (*current_target.to_find_new_threads) (); \
817
818 /* Make target stop in a continuable fashion. (For instance, under
819 Unix, this should act like SIGSTOP). This function is normally
820 used by GUIs to implement a stop button. */
821
822 #define target_stop current_target.to_stop
823
824 /* Send the specified COMMAND to the target's monitor
825 (shell,interpreter) for execution. The result of the query is
826 placed in OUTBUF. */
827
828 #define target_rcmd(command, outbuf) \
829 (*current_target.to_rcmd) (command, outbuf)
830
831
832 /* Get the symbol information for a breakpointable routine called when
833 an exception event occurs.
834 Intended mainly for C++, and for those
835 platforms/implementations where such a callback mechanism is available,
836 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
837 different mechanisms for debugging exceptions. */
838
839 #define target_enable_exception_callback(kind, enable) \
840 (*current_target.to_enable_exception_callback) (kind, enable)
841
842 /* Get the current exception event kind -- throw or catch, etc. */
843
844 #define target_get_current_exception_event() \
845 (*current_target.to_get_current_exception_event) ()
846
847 /* Does the target include all of memory, or only part of it? This
848 determines whether we look up the target chain for other parts of
849 memory if this target can't satisfy a request. */
850
851 #define target_has_all_memory \
852 (current_target.to_has_all_memory)
853
854 /* Does the target include memory? (Dummy targets don't.) */
855
856 #define target_has_memory \
857 (current_target.to_has_memory)
858
859 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
860 we start a process.) */
861
862 #define target_has_stack \
863 (current_target.to_has_stack)
864
865 /* Does the target have registers? (Exec files don't.) */
866
867 #define target_has_registers \
868 (current_target.to_has_registers)
869
870 /* Does the target have execution? Can we make it jump (through
871 hoops), or pop its stack a few times? FIXME: If this is to work that
872 way, it needs to check whether an inferior actually exists.
873 remote-udi.c and probably other targets can be the current target
874 when the inferior doesn't actually exist at the moment. Right now
875 this just tells us whether this target is *capable* of execution. */
876
877 #define target_has_execution \
878 (current_target.to_has_execution)
879
880 /* Can the target support the debugger control of thread execution?
881 a) Can it lock the thread scheduler?
882 b) Can it switch the currently running thread? */
883
884 #define target_can_lock_scheduler \
885 (current_target.to_has_thread_control & tc_schedlock)
886
887 #define target_can_switch_threads \
888 (current_target.to_has_thread_control & tc_switch)
889
890 /* Can the target support asynchronous execution? */
891 #define target_can_async_p() (current_target.to_can_async_p ())
892
893 /* Is the target in asynchronous execution mode? */
894 #define target_is_async_p() (current_target.to_is_async_p())
895
896 /* Put the target in async mode with the specified callback function. */
897 #define target_async(CALLBACK,CONTEXT) \
898 (current_target.to_async((CALLBACK), (CONTEXT)))
899
900 /* This is to be used ONLY within call_function_by_hand(). It provides
901 a workaround, to have inferior function calls done in sychronous
902 mode, even though the target is asynchronous. After
903 target_async_mask(0) is called, calls to target_can_async_p() will
904 return FALSE , so that target_resume() will not try to start the
905 target asynchronously. After the inferior stops, we IMMEDIATELY
906 restore the previous nature of the target, by calling
907 target_async_mask(1). After that, target_can_async_p() will return
908 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
909
910 FIXME ezannoni 1999-12-13: we won't need this once we move
911 the turning async on and off to the single execution commands,
912 from where it is done currently, in remote_resume(). */
913
914 #define target_async_mask_value \
915 (current_target.to_async_mask_value)
916
917 extern int target_async_mask (int mask);
918
919 extern void target_link (char *, CORE_ADDR *);
920
921 /* Converts a process id to a string. Usually, the string just contains
922 `process xyz', but on some systems it may contain
923 `process xyz thread abc'. */
924
925 #undef target_pid_to_str
926 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
927
928 #ifndef target_tid_to_str
929 #define target_tid_to_str(PID) \
930 target_pid_to_str (PID)
931 extern char *normal_pid_to_str (ptid_t ptid);
932 #endif
933
934 /* Return a short string describing extra information about PID,
935 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
936 is okay. */
937
938 #define target_extra_thread_info(TP) \
939 (current_target.to_extra_thread_info (TP))
940
941 /*
942 * New Objfile Event Hook:
943 *
944 * Sometimes a GDB component wants to get notified whenever a new
945 * objfile is loaded. Mainly this is used by thread-debugging
946 * implementations that need to know when symbols for the target
947 * thread implemenation are available.
948 *
949 * The old way of doing this is to define a macro 'target_new_objfile'
950 * that points to the function that you want to be called on every
951 * objfile/shlib load.
952
953 The new way is to grab the function pointer,
954 'deprecated_target_new_objfile_hook', and point it to the function
955 that you want to be called on every objfile/shlib load.
956
957 If multiple clients are willing to be cooperative, they can each
958 save a pointer to the previous value of
959 deprecated_target_new_objfile_hook before modifying it, and arrange
960 for their function to call the previous function in the chain. In
961 that way, multiple clients can receive this notification (something
962 like with signal handlers). */
963
964 extern void (*deprecated_target_new_objfile_hook) (struct objfile *);
965
966 #ifndef target_pid_or_tid_to_str
967 #define target_pid_or_tid_to_str(ID) \
968 target_pid_to_str (ID)
969 #endif
970
971 /* Attempts to find the pathname of the executable file
972 that was run to create a specified process.
973
974 The process PID must be stopped when this operation is used.
975
976 If the executable file cannot be determined, NULL is returned.
977
978 Else, a pointer to a character string containing the pathname
979 is returned. This string should be copied into a buffer by
980 the client if the string will not be immediately used, or if
981 it must persist. */
982
983 #define target_pid_to_exec_file(pid) \
984 (current_target.to_pid_to_exec_file) (pid)
985
986 /*
987 * Iterator function for target memory regions.
988 * Calls a callback function once for each memory region 'mapped'
989 * in the child process. Defined as a simple macro rather than
990 * as a function macro so that it can be tested for nullity.
991 */
992
993 #define target_find_memory_regions(FUNC, DATA) \
994 (current_target.to_find_memory_regions) (FUNC, DATA)
995
996 /*
997 * Compose corefile .note section.
998 */
999
1000 #define target_make_corefile_notes(BFD, SIZE_P) \
1001 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1002
1003 /* Thread-local values. */
1004 #define target_get_thread_local_address \
1005 (current_target.to_get_thread_local_address)
1006 #define target_get_thread_local_address_p() \
1007 (target_get_thread_local_address != NULL)
1008
1009 /* Hook to call target dependent code just after inferior target process has
1010 started. */
1011
1012 #ifndef TARGET_CREATE_INFERIOR_HOOK
1013 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1014 #endif
1015
1016 /* Hardware watchpoint interfaces. */
1017
1018 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1019 write). */
1020
1021 #ifndef STOPPED_BY_WATCHPOINT
1022 #define STOPPED_BY_WATCHPOINT(w) \
1023 (*current_target.to_stopped_by_watchpoint) ()
1024 #endif
1025
1026 /* Non-zero if we have continuable watchpoints */
1027
1028 #ifndef HAVE_CONTINUABLE_WATCHPOINT
1029 #define HAVE_CONTINUABLE_WATCHPOINT \
1030 (current_target.to_have_continuable_watchpoint)
1031 #endif
1032
1033 /* HP-UX supplies these operations, which respectively disable and enable
1034 the memory page-protections that are used to implement hardware watchpoints
1035 on that platform. See wait_for_inferior's use of these. */
1036
1037 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1038 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1039 #endif
1040
1041 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1042 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1043 #endif
1044
1045 /* Provide defaults for hardware watchpoint functions. */
1046
1047 /* If the *_hw_beakpoint functions have not been defined
1048 elsewhere use the definitions in the target vector. */
1049
1050 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1051 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1052 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1053 (including this one?). OTHERTYPE is who knows what... */
1054
1055 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1056 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1057 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1058 #endif
1059
1060 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1061 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1062 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
1063 #endif
1064
1065
1066 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1067 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1068 success, non-zero for failure. */
1069
1070 #ifndef target_insert_watchpoint
1071 #define target_insert_watchpoint(addr, len, type) \
1072 (*current_target.to_insert_watchpoint) (addr, len, type)
1073
1074 #define target_remove_watchpoint(addr, len, type) \
1075 (*current_target.to_remove_watchpoint) (addr, len, type)
1076 #endif
1077
1078 #ifndef target_insert_hw_breakpoint
1079 #define target_insert_hw_breakpoint(addr, save) \
1080 (*current_target.to_insert_hw_breakpoint) (addr, save)
1081
1082 #define target_remove_hw_breakpoint(addr, save) \
1083 (*current_target.to_remove_hw_breakpoint) (addr, save)
1084 #endif
1085
1086 #ifndef target_stopped_data_address
1087 #define target_stopped_data_address() \
1088 (*current_target.to_stopped_data_address) ()
1089 #endif
1090
1091 /* Sometimes gdb may pick up what appears to be a valid target address
1092 from a minimal symbol, but the value really means, essentially,
1093 "This is an index into a table which is populated when the inferior
1094 is run. Therefore, do not attempt to use this as a PC." */
1095
1096 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1097 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1098 #endif
1099
1100 /* This will only be defined by a target that supports catching vfork events,
1101 such as HP-UX.
1102
1103 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1104 child process after it has exec'd, causes the parent process to resume as
1105 well. To prevent the parent from running spontaneously, such targets should
1106 define this to a function that prevents that from happening. */
1107 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1108 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1109 #endif
1110
1111 /* This will only be defined by a target that supports catching vfork events,
1112 such as HP-UX.
1113
1114 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1115 process must be resumed when it delivers its exec event, before the parent
1116 vfork event will be delivered to us. */
1117
1118 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1119 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1120 #endif
1121
1122 /* Routines for maintenance of the target structures...
1123
1124 add_target: Add a target to the list of all possible targets.
1125
1126 push_target: Make this target the top of the stack of currently used
1127 targets, within its particular stratum of the stack. Result
1128 is 0 if now atop the stack, nonzero if not on top (maybe
1129 should warn user).
1130
1131 unpush_target: Remove this from the stack of currently used targets,
1132 no matter where it is on the list. Returns 0 if no
1133 change, 1 if removed from stack.
1134
1135 pop_target: Remove the top thing on the stack of current targets. */
1136
1137 extern void add_target (struct target_ops *);
1138
1139 extern int push_target (struct target_ops *);
1140
1141 extern int unpush_target (struct target_ops *);
1142
1143 extern void target_preopen (int);
1144
1145 extern void pop_target (void);
1146
1147 /* Struct section_table maps address ranges to file sections. It is
1148 mostly used with BFD files, but can be used without (e.g. for handling
1149 raw disks, or files not in formats handled by BFD). */
1150
1151 struct section_table
1152 {
1153 CORE_ADDR addr; /* Lowest address in section */
1154 CORE_ADDR endaddr; /* 1+highest address in section */
1155
1156 struct bfd_section *the_bfd_section;
1157
1158 bfd *bfd; /* BFD file pointer */
1159 };
1160
1161 /* Return the "section" containing the specified address. */
1162 struct section_table *target_section_by_addr (struct target_ops *target,
1163 CORE_ADDR addr);
1164
1165
1166 /* From mem-break.c */
1167
1168 extern int memory_remove_breakpoint (CORE_ADDR, char *);
1169
1170 extern int memory_insert_breakpoint (CORE_ADDR, char *);
1171
1172 extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1173
1174 extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1175
1176
1177 /* From target.c */
1178
1179 extern void initialize_targets (void);
1180
1181 extern void noprocess (void);
1182
1183 extern void find_default_attach (char *, int);
1184
1185 extern void find_default_create_inferior (char *, char *, char **);
1186
1187 extern struct target_ops *find_run_target (void);
1188
1189 extern struct target_ops *find_core_target (void);
1190
1191 extern struct target_ops *find_target_beneath (struct target_ops *);
1192
1193 extern int target_resize_to_sections (struct target_ops *target,
1194 int num_added);
1195
1196 extern void remove_target_sections (bfd *abfd);
1197
1198 \f
1199 /* Stuff that should be shared among the various remote targets. */
1200
1201 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1202 information (higher values, more information). */
1203 extern int remote_debug;
1204
1205 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1206 extern int baud_rate;
1207 /* Timeout limit for response from target. */
1208 extern int remote_timeout;
1209
1210 \f
1211 /* Functions for helping to write a native target. */
1212
1213 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1214 extern void store_waitstatus (struct target_waitstatus *, int);
1215
1216 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1217 targ_signal SIGNO has an equivalent ``host'' representation. */
1218 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1219 to the shorter target_signal_p() because it is far less ambigious.
1220 In this context ``target_signal'' refers to GDB's internal
1221 representation of the target's set of signals while ``host signal''
1222 refers to the target operating system's signal. Confused? */
1223
1224 extern int target_signal_to_host_p (enum target_signal signo);
1225
1226 /* Convert between host signal numbers and enum target_signal's.
1227 target_signal_to_host() returns 0 and prints a warning() on GDB's
1228 console if SIGNO has no equivalent host representation. */
1229 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1230 refering to the target operating system's signal numbering.
1231 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1232 gdb_signal'' would probably be better as it is refering to GDB's
1233 internal representation of a target operating system's signal. */
1234
1235 extern enum target_signal target_signal_from_host (int);
1236 extern int target_signal_to_host (enum target_signal);
1237
1238 /* Convert from a number used in a GDB command to an enum target_signal. */
1239 extern enum target_signal target_signal_from_command (int);
1240
1241 /* Any target can call this to switch to remote protocol (in remote.c). */
1242 extern void push_remote_target (char *name, int from_tty);
1243 \f
1244 /* Imported from machine dependent code */
1245
1246 /* Blank target vector entries are initialized to target_ignore. */
1247 void target_ignore (void);
1248
1249 #endif /* !defined (TARGET_H) */
This page took 0.098256 seconds and 4 git commands to generate.