convert to_get_bookmark
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_save_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_info) (struct target_ops *, const char *, int)
514 TARGET_DEFAULT_FUNC (default_terminal_info);
515 void (*to_kill) (struct target_ops *);
516 void (*to_load) (struct target_ops *, char *, int)
517 TARGET_DEFAULT_NORETURN (tcomplain ());
518 void (*to_create_inferior) (struct target_ops *,
519 char *, char *, char **, int);
520 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
521 TARGET_DEFAULT_IGNORE ();
522 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
523 TARGET_DEFAULT_RETURN (1);
524 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
525 TARGET_DEFAULT_RETURN (1);
526 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
527 TARGET_DEFAULT_RETURN (1);
528 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_follow_fork) (struct target_ops *, int, int);
531 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
532 TARGET_DEFAULT_RETURN (1);
533 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_set_syscall_catchpoint) (struct target_ops *,
536 int, int, int, int, int *)
537 TARGET_DEFAULT_RETURN (1);
538 int (*to_has_exited) (struct target_ops *, int, int, int *)
539 TARGET_DEFAULT_RETURN (0);
540 void (*to_mourn_inferior) (struct target_ops *);
541 int (*to_can_run) (struct target_ops *);
542
543 /* Documentation of this routine is provided with the corresponding
544 target_* macro. */
545 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
546
547 /* Documentation of this routine is provided with the
548 corresponding target_* function. */
549 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
550
551 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
552 void (*to_find_new_threads) (struct target_ops *);
553 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
554 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
555 TARGET_DEFAULT_RETURN (0);
556 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
557 TARGET_DEFAULT_RETURN (0);
558 void (*to_stop) (struct target_ops *, ptid_t);
559 void (*to_rcmd) (struct target_ops *,
560 char *command, struct ui_file *output)
561 TARGET_DEFAULT_FUNC (default_rcmd);
562 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
563 TARGET_DEFAULT_RETURN (0);
564 void (*to_log_command) (struct target_ops *, const char *)
565 TARGET_DEFAULT_IGNORE ();
566 struct target_section_table *(*to_get_section_table) (struct target_ops *);
567 enum strata to_stratum;
568 int (*to_has_all_memory) (struct target_ops *);
569 int (*to_has_memory) (struct target_ops *);
570 int (*to_has_stack) (struct target_ops *);
571 int (*to_has_registers) (struct target_ops *);
572 int (*to_has_execution) (struct target_ops *, ptid_t);
573 int to_has_thread_control; /* control thread execution */
574 int to_attach_no_wait;
575 /* ASYNC target controls */
576 int (*to_can_async_p) (struct target_ops *)
577 TARGET_DEFAULT_FUNC (find_default_can_async_p);
578 int (*to_is_async_p) (struct target_ops *)
579 TARGET_DEFAULT_FUNC (find_default_is_async_p);
580 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
581 TARGET_DEFAULT_NORETURN (tcomplain ());
582 int (*to_supports_non_stop) (struct target_ops *);
583 /* find_memory_regions support method for gcore */
584 int (*to_find_memory_regions) (struct target_ops *,
585 find_memory_region_ftype func, void *data)
586 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
587 /* make_corefile_notes support method for gcore */
588 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
589 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
590 /* get_bookmark support method for bookmarks */
591 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
592 TARGET_DEFAULT_NORETURN (tcomplain ());
593 /* goto_bookmark support method for bookmarks */
594 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
595 /* Return the thread-local address at OFFSET in the
596 thread-local storage for the thread PTID and the shared library
597 or executable file given by OBJFILE. If that block of
598 thread-local storage hasn't been allocated yet, this function
599 may return an error. */
600 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
601 ptid_t ptid,
602 CORE_ADDR load_module_addr,
603 CORE_ADDR offset);
604
605 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
606 OBJECT. The OFFSET, for a seekable object, specifies the
607 starting point. The ANNEX can be used to provide additional
608 data-specific information to the target.
609
610 Return the transferred status, error or OK (an
611 'enum target_xfer_status' value). Save the number of bytes
612 actually transferred in *XFERED_LEN if transfer is successful
613 (TARGET_XFER_OK) or the number unavailable bytes if the requested
614 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
615 smaller than LEN does not indicate the end of the object, only
616 the end of the transfer; higher level code should continue
617 transferring if desired. This is handled in target.c.
618
619 The interface does not support a "retry" mechanism. Instead it
620 assumes that at least one byte will be transfered on each
621 successful call.
622
623 NOTE: cagney/2003-10-17: The current interface can lead to
624 fragmented transfers. Lower target levels should not implement
625 hacks, such as enlarging the transfer, in an attempt to
626 compensate for this. Instead, the target stack should be
627 extended so that it implements supply/collect methods and a
628 look-aside object cache. With that available, the lowest
629 target can safely and freely "push" data up the stack.
630
631 See target_read and target_write for more information. One,
632 and only one, of readbuf or writebuf must be non-NULL. */
633
634 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
635 enum target_object object,
636 const char *annex,
637 gdb_byte *readbuf,
638 const gdb_byte *writebuf,
639 ULONGEST offset, ULONGEST len,
640 ULONGEST *xfered_len)
641 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
642
643 /* Returns the memory map for the target. A return value of NULL
644 means that no memory map is available. If a memory address
645 does not fall within any returned regions, it's assumed to be
646 RAM. The returned memory regions should not overlap.
647
648 The order of regions does not matter; target_memory_map will
649 sort regions by starting address. For that reason, this
650 function should not be called directly except via
651 target_memory_map.
652
653 This method should not cache data; if the memory map could
654 change unexpectedly, it should be invalidated, and higher
655 layers will re-fetch it. */
656 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
657
658 /* Erases the region of flash memory starting at ADDRESS, of
659 length LENGTH.
660
661 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
662 on flash block boundaries, as reported by 'to_memory_map'. */
663 void (*to_flash_erase) (struct target_ops *,
664 ULONGEST address, LONGEST length);
665
666 /* Finishes a flash memory write sequence. After this operation
667 all flash memory should be available for writing and the result
668 of reading from areas written by 'to_flash_write' should be
669 equal to what was written. */
670 void (*to_flash_done) (struct target_ops *);
671
672 /* Describe the architecture-specific features of this target.
673 Returns the description found, or NULL if no description
674 was available. */
675 const struct target_desc *(*to_read_description) (struct target_ops *ops);
676
677 /* Build the PTID of the thread on which a given task is running,
678 based on LWP and THREAD. These values are extracted from the
679 task Private_Data section of the Ada Task Control Block, and
680 their interpretation depends on the target. */
681 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
682 long lwp, long thread);
683
684 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
685 Return 0 if *READPTR is already at the end of the buffer.
686 Return -1 if there is insufficient buffer for a whole entry.
687 Return 1 if an entry was read into *TYPEP and *VALP. */
688 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
689 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
690
691 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
692 sequence of bytes in PATTERN with length PATTERN_LEN.
693
694 The result is 1 if found, 0 if not found, and -1 if there was an error
695 requiring halting of the search (e.g. memory read error).
696 If the pattern is found the address is recorded in FOUND_ADDRP. */
697 int (*to_search_memory) (struct target_ops *ops,
698 CORE_ADDR start_addr, ULONGEST search_space_len,
699 const gdb_byte *pattern, ULONGEST pattern_len,
700 CORE_ADDR *found_addrp);
701
702 /* Can target execute in reverse? */
703 int (*to_can_execute_reverse) (struct target_ops *);
704
705 /* The direction the target is currently executing. Must be
706 implemented on targets that support reverse execution and async
707 mode. The default simply returns forward execution. */
708 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
709
710 /* Does this target support debugging multiple processes
711 simultaneously? */
712 int (*to_supports_multi_process) (struct target_ops *);
713
714 /* Does this target support enabling and disabling tracepoints while a trace
715 experiment is running? */
716 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
717
718 /* Does this target support disabling address space randomization? */
719 int (*to_supports_disable_randomization) (struct target_ops *);
720
721 /* Does this target support the tracenz bytecode for string collection? */
722 int (*to_supports_string_tracing) (struct target_ops *);
723
724 /* Does this target support evaluation of breakpoint conditions on its
725 end? */
726 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
727
728 /* Does this target support evaluation of breakpoint commands on its
729 end? */
730 int (*to_can_run_breakpoint_commands) (struct target_ops *);
731
732 /* Determine current architecture of thread PTID.
733
734 The target is supposed to determine the architecture of the code where
735 the target is currently stopped at (on Cell, if a target is in spu_run,
736 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
737 This is architecture used to perform decr_pc_after_break adjustment,
738 and also determines the frame architecture of the innermost frame.
739 ptrace operations need to operate according to target_gdbarch ().
740
741 The default implementation always returns target_gdbarch (). */
742 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
743
744 /* Determine current address space of thread PTID.
745
746 The default implementation always returns the inferior's
747 address space. */
748 struct address_space *(*to_thread_address_space) (struct target_ops *,
749 ptid_t);
750
751 /* Target file operations. */
752
753 /* Open FILENAME on the target, using FLAGS and MODE. Return a
754 target file descriptor, or -1 if an error occurs (and set
755 *TARGET_ERRNO). */
756 int (*to_fileio_open) (struct target_ops *,
757 const char *filename, int flags, int mode,
758 int *target_errno);
759
760 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
761 Return the number of bytes written, or -1 if an error occurs
762 (and set *TARGET_ERRNO). */
763 int (*to_fileio_pwrite) (struct target_ops *,
764 int fd, const gdb_byte *write_buf, int len,
765 ULONGEST offset, int *target_errno);
766
767 /* Read up to LEN bytes FD on the target into READ_BUF.
768 Return the number of bytes read, or -1 if an error occurs
769 (and set *TARGET_ERRNO). */
770 int (*to_fileio_pread) (struct target_ops *,
771 int fd, gdb_byte *read_buf, int len,
772 ULONGEST offset, int *target_errno);
773
774 /* Close FD on the target. Return 0, or -1 if an error occurs
775 (and set *TARGET_ERRNO). */
776 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
777
778 /* Unlink FILENAME on the target. Return 0, or -1 if an error
779 occurs (and set *TARGET_ERRNO). */
780 int (*to_fileio_unlink) (struct target_ops *,
781 const char *filename, int *target_errno);
782
783 /* Read value of symbolic link FILENAME on the target. Return a
784 null-terminated string allocated via xmalloc, or NULL if an error
785 occurs (and set *TARGET_ERRNO). */
786 char *(*to_fileio_readlink) (struct target_ops *,
787 const char *filename, int *target_errno);
788
789
790 /* Implement the "info proc" command. */
791 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
792
793 /* Tracepoint-related operations. */
794
795 /* Prepare the target for a tracing run. */
796 void (*to_trace_init) (struct target_ops *);
797
798 /* Send full details of a tracepoint location to the target. */
799 void (*to_download_tracepoint) (struct target_ops *,
800 struct bp_location *location);
801
802 /* Is the target able to download tracepoint locations in current
803 state? */
804 int (*to_can_download_tracepoint) (struct target_ops *);
805
806 /* Send full details of a trace state variable to the target. */
807 void (*to_download_trace_state_variable) (struct target_ops *,
808 struct trace_state_variable *tsv);
809
810 /* Enable a tracepoint on the target. */
811 void (*to_enable_tracepoint) (struct target_ops *,
812 struct bp_location *location);
813
814 /* Disable a tracepoint on the target. */
815 void (*to_disable_tracepoint) (struct target_ops *,
816 struct bp_location *location);
817
818 /* Inform the target info of memory regions that are readonly
819 (such as text sections), and so it should return data from
820 those rather than look in the trace buffer. */
821 void (*to_trace_set_readonly_regions) (struct target_ops *);
822
823 /* Start a trace run. */
824 void (*to_trace_start) (struct target_ops *);
825
826 /* Get the current status of a tracing run. */
827 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
828
829 void (*to_get_tracepoint_status) (struct target_ops *,
830 struct breakpoint *tp,
831 struct uploaded_tp *utp);
832
833 /* Stop a trace run. */
834 void (*to_trace_stop) (struct target_ops *);
835
836 /* Ask the target to find a trace frame of the given type TYPE,
837 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
838 number of the trace frame, and also the tracepoint number at
839 TPP. If no trace frame matches, return -1. May throw if the
840 operation fails. */
841 int (*to_trace_find) (struct target_ops *,
842 enum trace_find_type type, int num,
843 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
844
845 /* Get the value of the trace state variable number TSV, returning
846 1 if the value is known and writing the value itself into the
847 location pointed to by VAL, else returning 0. */
848 int (*to_get_trace_state_variable_value) (struct target_ops *,
849 int tsv, LONGEST *val);
850
851 int (*to_save_trace_data) (struct target_ops *, const char *filename);
852
853 int (*to_upload_tracepoints) (struct target_ops *,
854 struct uploaded_tp **utpp);
855
856 int (*to_upload_trace_state_variables) (struct target_ops *,
857 struct uploaded_tsv **utsvp);
858
859 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
860 ULONGEST offset, LONGEST len);
861
862 /* Get the minimum length of instruction on which a fast tracepoint
863 may be set on the target. If this operation is unsupported,
864 return -1. If for some reason the minimum length cannot be
865 determined, return 0. */
866 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
867
868 /* Set the target's tracing behavior in response to unexpected
869 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
870 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
871 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
872 /* Set the size of trace buffer in the target. */
873 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
874
875 /* Add/change textual notes about the trace run, returning 1 if
876 successful, 0 otherwise. */
877 int (*to_set_trace_notes) (struct target_ops *,
878 const char *user, const char *notes,
879 const char *stopnotes);
880
881 /* Return the processor core that thread PTID was last seen on.
882 This information is updated only when:
883 - update_thread_list is called
884 - thread stops
885 If the core cannot be determined -- either for the specified
886 thread, or right now, or in this debug session, or for this
887 target -- return -1. */
888 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
889
890 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
891 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
892 a match, 0 if there's a mismatch, and -1 if an error is
893 encountered while reading memory. */
894 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
895 CORE_ADDR memaddr, ULONGEST size);
896
897 /* Return the address of the start of the Thread Information Block
898 a Windows OS specific feature. */
899 int (*to_get_tib_address) (struct target_ops *,
900 ptid_t ptid, CORE_ADDR *addr);
901
902 /* Send the new settings of write permission variables. */
903 void (*to_set_permissions) (struct target_ops *);
904
905 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
906 with its details. Return 1 on success, 0 on failure. */
907 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
908 struct static_tracepoint_marker *marker);
909
910 /* Return a vector of all tracepoints markers string id ID, or all
911 markers if ID is NULL. */
912 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
913 (struct target_ops *, const char *id);
914
915 /* Return a traceframe info object describing the current
916 traceframe's contents. If the target doesn't support
917 traceframe info, return NULL. If the current traceframe is not
918 selected (the current traceframe number is -1), the target can
919 choose to return either NULL or an empty traceframe info. If
920 NULL is returned, for example in remote target, GDB will read
921 from the live inferior. If an empty traceframe info is
922 returned, for example in tfile target, which means the
923 traceframe info is available, but the requested memory is not
924 available in it. GDB will try to see if the requested memory
925 is available in the read-only sections. This method should not
926 cache data; higher layers take care of caching, invalidating,
927 and re-fetching when necessary. */
928 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
929
930 /* Ask the target to use or not to use agent according to USE. Return 1
931 successful, 0 otherwise. */
932 int (*to_use_agent) (struct target_ops *, int use);
933
934 /* Is the target able to use agent in current state? */
935 int (*to_can_use_agent) (struct target_ops *);
936
937 /* Check whether the target supports branch tracing. */
938 int (*to_supports_btrace) (struct target_ops *)
939 TARGET_DEFAULT_RETURN (0);
940
941 /* Enable branch tracing for PTID and allocate a branch trace target
942 information struct for reading and for disabling branch trace. */
943 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
944 ptid_t ptid);
945
946 /* Disable branch tracing and deallocate TINFO. */
947 void (*to_disable_btrace) (struct target_ops *,
948 struct btrace_target_info *tinfo);
949
950 /* Disable branch tracing and deallocate TINFO. This function is similar
951 to to_disable_btrace, except that it is called during teardown and is
952 only allowed to perform actions that are safe. A counter-example would
953 be attempting to talk to a remote target. */
954 void (*to_teardown_btrace) (struct target_ops *,
955 struct btrace_target_info *tinfo);
956
957 /* Read branch trace data for the thread indicated by BTINFO into DATA.
958 DATA is cleared before new trace is added.
959 The branch trace will start with the most recent block and continue
960 towards older blocks. */
961 enum btrace_error (*to_read_btrace) (struct target_ops *self,
962 VEC (btrace_block_s) **data,
963 struct btrace_target_info *btinfo,
964 enum btrace_read_type type);
965
966 /* Stop trace recording. */
967 void (*to_stop_recording) (struct target_ops *);
968
969 /* Print information about the recording. */
970 void (*to_info_record) (struct target_ops *);
971
972 /* Save the recorded execution trace into a file. */
973 void (*to_save_record) (struct target_ops *, const char *filename);
974
975 /* Delete the recorded execution trace from the current position onwards. */
976 void (*to_delete_record) (struct target_ops *);
977
978 /* Query if the record target is currently replaying. */
979 int (*to_record_is_replaying) (struct target_ops *);
980
981 /* Go to the begin of the execution trace. */
982 void (*to_goto_record_begin) (struct target_ops *);
983
984 /* Go to the end of the execution trace. */
985 void (*to_goto_record_end) (struct target_ops *);
986
987 /* Go to a specific location in the recorded execution trace. */
988 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
989
990 /* Disassemble SIZE instructions in the recorded execution trace from
991 the current position.
992 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
993 disassemble SIZE succeeding instructions. */
994 void (*to_insn_history) (struct target_ops *, int size, int flags);
995
996 /* Disassemble SIZE instructions in the recorded execution trace around
997 FROM.
998 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
999 disassemble SIZE instructions after FROM. */
1000 void (*to_insn_history_from) (struct target_ops *,
1001 ULONGEST from, int size, int flags);
1002
1003 /* Disassemble a section of the recorded execution trace from instruction
1004 BEGIN (inclusive) to instruction END (inclusive). */
1005 void (*to_insn_history_range) (struct target_ops *,
1006 ULONGEST begin, ULONGEST end, int flags);
1007
1008 /* Print a function trace of the recorded execution trace.
1009 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1010 succeeding functions. */
1011 void (*to_call_history) (struct target_ops *, int size, int flags);
1012
1013 /* Print a function trace of the recorded execution trace starting
1014 at function FROM.
1015 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1016 SIZE functions after FROM. */
1017 void (*to_call_history_from) (struct target_ops *,
1018 ULONGEST begin, int size, int flags);
1019
1020 /* Print a function trace of an execution trace section from function BEGIN
1021 (inclusive) to function END (inclusive). */
1022 void (*to_call_history_range) (struct target_ops *,
1023 ULONGEST begin, ULONGEST end, int flags);
1024
1025 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1026 non-empty annex. */
1027 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
1028
1029 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1030 it is not used. */
1031 const struct frame_unwind *to_get_unwinder;
1032 const struct frame_unwind *to_get_tailcall_unwinder;
1033
1034 /* Return the number of bytes by which the PC needs to be decremented
1035 after executing a breakpoint instruction.
1036 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1037 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1038 struct gdbarch *gdbarch);
1039
1040 int to_magic;
1041 /* Need sub-structure for target machine related rather than comm related?
1042 */
1043 };
1044
1045 /* Magic number for checking ops size. If a struct doesn't end with this
1046 number, somebody changed the declaration but didn't change all the
1047 places that initialize one. */
1048
1049 #define OPS_MAGIC 3840
1050
1051 /* The ops structure for our "current" target process. This should
1052 never be NULL. If there is no target, it points to the dummy_target. */
1053
1054 extern struct target_ops current_target;
1055
1056 /* Define easy words for doing these operations on our current target. */
1057
1058 #define target_shortname (current_target.to_shortname)
1059 #define target_longname (current_target.to_longname)
1060
1061 /* Does whatever cleanup is required for a target that we are no
1062 longer going to be calling. This routine is automatically always
1063 called after popping the target off the target stack - the target's
1064 own methods are no longer available through the target vector.
1065 Closing file descriptors and freeing all memory allocated memory are
1066 typical things it should do. */
1067
1068 void target_close (struct target_ops *targ);
1069
1070 /* Attaches to a process on the target side. Arguments are as passed
1071 to the `attach' command by the user. This routine can be called
1072 when the target is not on the target-stack, if the target_can_run
1073 routine returns 1; in that case, it must push itself onto the stack.
1074 Upon exit, the target should be ready for normal operations, and
1075 should be ready to deliver the status of the process immediately
1076 (without waiting) to an upcoming target_wait call. */
1077
1078 void target_attach (char *, int);
1079
1080 /* Some targets don't generate traps when attaching to the inferior,
1081 or their target_attach implementation takes care of the waiting.
1082 These targets must set to_attach_no_wait. */
1083
1084 #define target_attach_no_wait \
1085 (current_target.to_attach_no_wait)
1086
1087 /* The target_attach operation places a process under debugger control,
1088 and stops the process.
1089
1090 This operation provides a target-specific hook that allows the
1091 necessary bookkeeping to be performed after an attach completes. */
1092 #define target_post_attach(pid) \
1093 (*current_target.to_post_attach) (&current_target, pid)
1094
1095 /* Takes a program previously attached to and detaches it.
1096 The program may resume execution (some targets do, some don't) and will
1097 no longer stop on signals, etc. We better not have left any breakpoints
1098 in the program or it'll die when it hits one. ARGS is arguments
1099 typed by the user (e.g. a signal to send the process). FROM_TTY
1100 says whether to be verbose or not. */
1101
1102 extern void target_detach (const char *, int);
1103
1104 /* Disconnect from the current target without resuming it (leaving it
1105 waiting for a debugger). */
1106
1107 extern void target_disconnect (char *, int);
1108
1109 /* Resume execution of the target process PTID (or a group of
1110 threads). STEP says whether to single-step or to run free; SIGGNAL
1111 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1112 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1113 PTID means `step/resume only this process id'. A wildcard PTID
1114 (all threads, or all threads of process) means `step/resume
1115 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1116 matches) resume with their 'thread->suspend.stop_signal' signal
1117 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1118 if in "no pass" state. */
1119
1120 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1121
1122 /* Wait for process pid to do something. PTID = -1 to wait for any
1123 pid to do something. Return pid of child, or -1 in case of error;
1124 store status through argument pointer STATUS. Note that it is
1125 _NOT_ OK to throw_exception() out of target_wait() without popping
1126 the debugging target from the stack; GDB isn't prepared to get back
1127 to the prompt with a debugging target but without the frame cache,
1128 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1129 options. */
1130
1131 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1132 int options);
1133
1134 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1135
1136 extern void target_fetch_registers (struct regcache *regcache, int regno);
1137
1138 /* Store at least register REGNO, or all regs if REGNO == -1.
1139 It can store as many registers as it wants to, so target_prepare_to_store
1140 must have been previously called. Calls error() if there are problems. */
1141
1142 extern void target_store_registers (struct regcache *regcache, int regs);
1143
1144 /* Get ready to modify the registers array. On machines which store
1145 individual registers, this doesn't need to do anything. On machines
1146 which store all the registers in one fell swoop, this makes sure
1147 that REGISTERS contains all the registers from the program being
1148 debugged. */
1149
1150 #define target_prepare_to_store(regcache) \
1151 (*current_target.to_prepare_to_store) (&current_target, regcache)
1152
1153 /* Determine current address space of thread PTID. */
1154
1155 struct address_space *target_thread_address_space (ptid_t);
1156
1157 /* Implement the "info proc" command. This returns one if the request
1158 was handled, and zero otherwise. It can also throw an exception if
1159 an error was encountered while attempting to handle the
1160 request. */
1161
1162 int target_info_proc (char *, enum info_proc_what);
1163
1164 /* Returns true if this target can debug multiple processes
1165 simultaneously. */
1166
1167 #define target_supports_multi_process() \
1168 (*current_target.to_supports_multi_process) (&current_target)
1169
1170 /* Returns true if this target can disable address space randomization. */
1171
1172 int target_supports_disable_randomization (void);
1173
1174 /* Returns true if this target can enable and disable tracepoints
1175 while a trace experiment is running. */
1176
1177 #define target_supports_enable_disable_tracepoint() \
1178 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1179
1180 #define target_supports_string_tracing() \
1181 (*current_target.to_supports_string_tracing) (&current_target)
1182
1183 /* Returns true if this target can handle breakpoint conditions
1184 on its end. */
1185
1186 #define target_supports_evaluation_of_breakpoint_conditions() \
1187 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1188
1189 /* Returns true if this target can handle breakpoint commands
1190 on its end. */
1191
1192 #define target_can_run_breakpoint_commands() \
1193 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1194
1195 extern int target_read_string (CORE_ADDR, char **, int, int *);
1196
1197 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1198 ssize_t len);
1199
1200 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1201 ssize_t len);
1202
1203 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1204
1205 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1206
1207 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1208 ssize_t len);
1209
1210 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1211 ssize_t len);
1212
1213 /* Fetches the target's memory map. If one is found it is sorted
1214 and returned, after some consistency checking. Otherwise, NULL
1215 is returned. */
1216 VEC(mem_region_s) *target_memory_map (void);
1217
1218 /* Erase the specified flash region. */
1219 void target_flash_erase (ULONGEST address, LONGEST length);
1220
1221 /* Finish a sequence of flash operations. */
1222 void target_flash_done (void);
1223
1224 /* Describes a request for a memory write operation. */
1225 struct memory_write_request
1226 {
1227 /* Begining address that must be written. */
1228 ULONGEST begin;
1229 /* Past-the-end address. */
1230 ULONGEST end;
1231 /* The data to write. */
1232 gdb_byte *data;
1233 /* A callback baton for progress reporting for this request. */
1234 void *baton;
1235 };
1236 typedef struct memory_write_request memory_write_request_s;
1237 DEF_VEC_O(memory_write_request_s);
1238
1239 /* Enumeration specifying different flash preservation behaviour. */
1240 enum flash_preserve_mode
1241 {
1242 flash_preserve,
1243 flash_discard
1244 };
1245
1246 /* Write several memory blocks at once. This version can be more
1247 efficient than making several calls to target_write_memory, in
1248 particular because it can optimize accesses to flash memory.
1249
1250 Moreover, this is currently the only memory access function in gdb
1251 that supports writing to flash memory, and it should be used for
1252 all cases where access to flash memory is desirable.
1253
1254 REQUESTS is the vector (see vec.h) of memory_write_request.
1255 PRESERVE_FLASH_P indicates what to do with blocks which must be
1256 erased, but not completely rewritten.
1257 PROGRESS_CB is a function that will be periodically called to provide
1258 feedback to user. It will be called with the baton corresponding
1259 to the request currently being written. It may also be called
1260 with a NULL baton, when preserved flash sectors are being rewritten.
1261
1262 The function returns 0 on success, and error otherwise. */
1263 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1264 enum flash_preserve_mode preserve_flash_p,
1265 void (*progress_cb) (ULONGEST, void *));
1266
1267 /* Print a line about the current target. */
1268
1269 #define target_files_info() \
1270 (*current_target.to_files_info) (&current_target)
1271
1272 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1273 the target machine. Returns 0 for success, and returns non-zero or
1274 throws an error (with a detailed failure reason error code and
1275 message) otherwise. */
1276
1277 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1278 struct bp_target_info *bp_tgt);
1279
1280 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1281 machine. Result is 0 for success, non-zero for error. */
1282
1283 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1284 struct bp_target_info *bp_tgt);
1285
1286 /* Initialize the terminal settings we record for the inferior,
1287 before we actually run the inferior. */
1288
1289 #define target_terminal_init() \
1290 (*current_target.to_terminal_init) (&current_target)
1291
1292 /* Put the inferior's terminal settings into effect.
1293 This is preparation for starting or resuming the inferior. */
1294
1295 extern void target_terminal_inferior (void);
1296
1297 /* Put some of our terminal settings into effect,
1298 enough to get proper results from our output,
1299 but do not change into or out of RAW mode
1300 so that no input is discarded.
1301
1302 After doing this, either terminal_ours or terminal_inferior
1303 should be called to get back to a normal state of affairs. */
1304
1305 #define target_terminal_ours_for_output() \
1306 (*current_target.to_terminal_ours_for_output) (&current_target)
1307
1308 /* Put our terminal settings into effect.
1309 First record the inferior's terminal settings
1310 so they can be restored properly later. */
1311
1312 #define target_terminal_ours() \
1313 (*current_target.to_terminal_ours) (&current_target)
1314
1315 /* Save our terminal settings.
1316 This is called from TUI after entering or leaving the curses
1317 mode. Since curses modifies our terminal this call is here
1318 to take this change into account. */
1319
1320 #define target_terminal_save_ours() \
1321 (*current_target.to_terminal_save_ours) (&current_target)
1322
1323 /* Print useful information about our terminal status, if such a thing
1324 exists. */
1325
1326 #define target_terminal_info(arg, from_tty) \
1327 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1328
1329 /* Kill the inferior process. Make it go away. */
1330
1331 extern void target_kill (void);
1332
1333 /* Load an executable file into the target process. This is expected
1334 to not only bring new code into the target process, but also to
1335 update GDB's symbol tables to match.
1336
1337 ARG contains command-line arguments, to be broken down with
1338 buildargv (). The first non-switch argument is the filename to
1339 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1340 0)), which is an offset to apply to the load addresses of FILE's
1341 sections. The target may define switches, or other non-switch
1342 arguments, as it pleases. */
1343
1344 extern void target_load (char *arg, int from_tty);
1345
1346 /* Start an inferior process and set inferior_ptid to its pid.
1347 EXEC_FILE is the file to run.
1348 ALLARGS is a string containing the arguments to the program.
1349 ENV is the environment vector to pass. Errors reported with error().
1350 On VxWorks and various standalone systems, we ignore exec_file. */
1351
1352 void target_create_inferior (char *exec_file, char *args,
1353 char **env, int from_tty);
1354
1355 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1356 notification of inferior events such as fork and vork immediately
1357 after the inferior is created. (This because of how gdb gets an
1358 inferior created via invoking a shell to do it. In such a scenario,
1359 if the shell init file has commands in it, the shell will fork and
1360 exec for each of those commands, and we will see each such fork
1361 event. Very bad.)
1362
1363 Such targets will supply an appropriate definition for this function. */
1364
1365 #define target_post_startup_inferior(ptid) \
1366 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1367
1368 /* On some targets, we can catch an inferior fork or vfork event when
1369 it occurs. These functions insert/remove an already-created
1370 catchpoint for such events. They return 0 for success, 1 if the
1371 catchpoint type is not supported and -1 for failure. */
1372
1373 #define target_insert_fork_catchpoint(pid) \
1374 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1375
1376 #define target_remove_fork_catchpoint(pid) \
1377 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1378
1379 #define target_insert_vfork_catchpoint(pid) \
1380 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1381
1382 #define target_remove_vfork_catchpoint(pid) \
1383 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1384
1385 /* If the inferior forks or vforks, this function will be called at
1386 the next resume in order to perform any bookkeeping and fiddling
1387 necessary to continue debugging either the parent or child, as
1388 requested, and releasing the other. Information about the fork
1389 or vfork event is available via get_last_target_status ().
1390 This function returns 1 if the inferior should not be resumed
1391 (i.e. there is another event pending). */
1392
1393 int target_follow_fork (int follow_child, int detach_fork);
1394
1395 /* On some targets, we can catch an inferior exec event when it
1396 occurs. These functions insert/remove an already-created
1397 catchpoint for such events. They return 0 for success, 1 if the
1398 catchpoint type is not supported and -1 for failure. */
1399
1400 #define target_insert_exec_catchpoint(pid) \
1401 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1402
1403 #define target_remove_exec_catchpoint(pid) \
1404 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1405
1406 /* Syscall catch.
1407
1408 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1409 If NEEDED is zero, it means the target can disable the mechanism to
1410 catch system calls because there are no more catchpoints of this type.
1411
1412 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1413 being requested. In this case, both TABLE_SIZE and TABLE should
1414 be ignored.
1415
1416 TABLE_SIZE is the number of elements in TABLE. It only matters if
1417 ANY_COUNT is zero.
1418
1419 TABLE is an array of ints, indexed by syscall number. An element in
1420 this array is nonzero if that syscall should be caught. This argument
1421 only matters if ANY_COUNT is zero.
1422
1423 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1424 for failure. */
1425
1426 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1427 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1428 pid, needed, any_count, \
1429 table_size, table)
1430
1431 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1432 exit code of PID, if any. */
1433
1434 #define target_has_exited(pid,wait_status,exit_status) \
1435 (*current_target.to_has_exited) (&current_target, \
1436 pid,wait_status,exit_status)
1437
1438 /* The debugger has completed a blocking wait() call. There is now
1439 some process event that must be processed. This function should
1440 be defined by those targets that require the debugger to perform
1441 cleanup or internal state changes in response to the process event. */
1442
1443 /* The inferior process has died. Do what is right. */
1444
1445 void target_mourn_inferior (void);
1446
1447 /* Does target have enough data to do a run or attach command? */
1448
1449 #define target_can_run(t) \
1450 ((t)->to_can_run) (t)
1451
1452 /* Set list of signals to be handled in the target.
1453
1454 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1455 (enum gdb_signal). For every signal whose entry in this array is
1456 non-zero, the target is allowed -but not required- to skip reporting
1457 arrival of the signal to the GDB core by returning from target_wait,
1458 and to pass the signal directly to the inferior instead.
1459
1460 However, if the target is hardware single-stepping a thread that is
1461 about to receive a signal, it needs to be reported in any case, even
1462 if mentioned in a previous target_pass_signals call. */
1463
1464 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1465
1466 /* Set list of signals the target may pass to the inferior. This
1467 directly maps to the "handle SIGNAL pass/nopass" setting.
1468
1469 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1470 number (enum gdb_signal). For every signal whose entry in this
1471 array is non-zero, the target is allowed to pass the signal to the
1472 inferior. Signals not present in the array shall be silently
1473 discarded. This does not influence whether to pass signals to the
1474 inferior as a result of a target_resume call. This is useful in
1475 scenarios where the target needs to decide whether to pass or not a
1476 signal to the inferior without GDB core involvement, such as for
1477 example, when detaching (as threads may have been suspended with
1478 pending signals not reported to GDB). */
1479
1480 extern void target_program_signals (int nsig, unsigned char *program_signals);
1481
1482 /* Check to see if a thread is still alive. */
1483
1484 extern int target_thread_alive (ptid_t ptid);
1485
1486 /* Query for new threads and add them to the thread list. */
1487
1488 extern void target_find_new_threads (void);
1489
1490 /* Make target stop in a continuable fashion. (For instance, under
1491 Unix, this should act like SIGSTOP). This function is normally
1492 used by GUIs to implement a stop button. */
1493
1494 extern void target_stop (ptid_t ptid);
1495
1496 /* Send the specified COMMAND to the target's monitor
1497 (shell,interpreter) for execution. The result of the query is
1498 placed in OUTBUF. */
1499
1500 #define target_rcmd(command, outbuf) \
1501 (*current_target.to_rcmd) (&current_target, command, outbuf)
1502
1503
1504 /* Does the target include all of memory, or only part of it? This
1505 determines whether we look up the target chain for other parts of
1506 memory if this target can't satisfy a request. */
1507
1508 extern int target_has_all_memory_1 (void);
1509 #define target_has_all_memory target_has_all_memory_1 ()
1510
1511 /* Does the target include memory? (Dummy targets don't.) */
1512
1513 extern int target_has_memory_1 (void);
1514 #define target_has_memory target_has_memory_1 ()
1515
1516 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1517 we start a process.) */
1518
1519 extern int target_has_stack_1 (void);
1520 #define target_has_stack target_has_stack_1 ()
1521
1522 /* Does the target have registers? (Exec files don't.) */
1523
1524 extern int target_has_registers_1 (void);
1525 #define target_has_registers target_has_registers_1 ()
1526
1527 /* Does the target have execution? Can we make it jump (through
1528 hoops), or pop its stack a few times? This means that the current
1529 target is currently executing; for some targets, that's the same as
1530 whether or not the target is capable of execution, but there are
1531 also targets which can be current while not executing. In that
1532 case this will become true after target_create_inferior or
1533 target_attach. */
1534
1535 extern int target_has_execution_1 (ptid_t);
1536
1537 /* Like target_has_execution_1, but always passes inferior_ptid. */
1538
1539 extern int target_has_execution_current (void);
1540
1541 #define target_has_execution target_has_execution_current ()
1542
1543 /* Default implementations for process_stratum targets. Return true
1544 if there's a selected inferior, false otherwise. */
1545
1546 extern int default_child_has_all_memory (struct target_ops *ops);
1547 extern int default_child_has_memory (struct target_ops *ops);
1548 extern int default_child_has_stack (struct target_ops *ops);
1549 extern int default_child_has_registers (struct target_ops *ops);
1550 extern int default_child_has_execution (struct target_ops *ops,
1551 ptid_t the_ptid);
1552
1553 /* Can the target support the debugger control of thread execution?
1554 Can it lock the thread scheduler? */
1555
1556 #define target_can_lock_scheduler \
1557 (current_target.to_has_thread_control & tc_schedlock)
1558
1559 /* Should the target enable async mode if it is supported? Temporary
1560 cludge until async mode is a strict superset of sync mode. */
1561 extern int target_async_permitted;
1562
1563 /* Can the target support asynchronous execution? */
1564 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1565
1566 /* Is the target in asynchronous execution mode? */
1567 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1568
1569 int target_supports_non_stop (void);
1570
1571 /* Put the target in async mode with the specified callback function. */
1572 #define target_async(CALLBACK,CONTEXT) \
1573 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1574
1575 #define target_execution_direction() \
1576 (current_target.to_execution_direction (&current_target))
1577
1578 /* Converts a process id to a string. Usually, the string just contains
1579 `process xyz', but on some systems it may contain
1580 `process xyz thread abc'. */
1581
1582 extern char *target_pid_to_str (ptid_t ptid);
1583
1584 extern char *normal_pid_to_str (ptid_t ptid);
1585
1586 /* Return a short string describing extra information about PID,
1587 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1588 is okay. */
1589
1590 #define target_extra_thread_info(TP) \
1591 (current_target.to_extra_thread_info (&current_target, TP))
1592
1593 /* Return the thread's name. A NULL result means that the target
1594 could not determine this thread's name. */
1595
1596 extern char *target_thread_name (struct thread_info *);
1597
1598 /* Attempts to find the pathname of the executable file
1599 that was run to create a specified process.
1600
1601 The process PID must be stopped when this operation is used.
1602
1603 If the executable file cannot be determined, NULL is returned.
1604
1605 Else, a pointer to a character string containing the pathname
1606 is returned. This string should be copied into a buffer by
1607 the client if the string will not be immediately used, or if
1608 it must persist. */
1609
1610 #define target_pid_to_exec_file(pid) \
1611 (current_target.to_pid_to_exec_file) (&current_target, pid)
1612
1613 /* See the to_thread_architecture description in struct target_ops. */
1614
1615 #define target_thread_architecture(ptid) \
1616 (current_target.to_thread_architecture (&current_target, ptid))
1617
1618 /*
1619 * Iterator function for target memory regions.
1620 * Calls a callback function once for each memory region 'mapped'
1621 * in the child process. Defined as a simple macro rather than
1622 * as a function macro so that it can be tested for nullity.
1623 */
1624
1625 #define target_find_memory_regions(FUNC, DATA) \
1626 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1627
1628 /*
1629 * Compose corefile .note section.
1630 */
1631
1632 #define target_make_corefile_notes(BFD, SIZE_P) \
1633 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1634
1635 /* Bookmark interfaces. */
1636 #define target_get_bookmark(ARGS, FROM_TTY) \
1637 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1638
1639 #define target_goto_bookmark(ARG, FROM_TTY) \
1640 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1641
1642 /* Hardware watchpoint interfaces. */
1643
1644 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1645 write). Only the INFERIOR_PTID task is being queried. */
1646
1647 #define target_stopped_by_watchpoint() \
1648 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1649
1650 /* Non-zero if we have steppable watchpoints */
1651
1652 #define target_have_steppable_watchpoint \
1653 (current_target.to_have_steppable_watchpoint)
1654
1655 /* Non-zero if we have continuable watchpoints */
1656
1657 #define target_have_continuable_watchpoint \
1658 (current_target.to_have_continuable_watchpoint)
1659
1660 /* Provide defaults for hardware watchpoint functions. */
1661
1662 /* If the *_hw_beakpoint functions have not been defined
1663 elsewhere use the definitions in the target vector. */
1664
1665 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1666 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1667 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1668 (including this one?). OTHERTYPE is who knows what... */
1669
1670 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1671 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1672 TYPE, CNT, OTHERTYPE);
1673
1674 /* Returns the number of debug registers needed to watch the given
1675 memory region, or zero if not supported. */
1676
1677 #define target_region_ok_for_hw_watchpoint(addr, len) \
1678 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1679 addr, len)
1680
1681
1682 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1683 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1684 COND is the expression for its condition, or NULL if there's none.
1685 Returns 0 for success, 1 if the watchpoint type is not supported,
1686 -1 for failure. */
1687
1688 #define target_insert_watchpoint(addr, len, type, cond) \
1689 (*current_target.to_insert_watchpoint) (&current_target, \
1690 addr, len, type, cond)
1691
1692 #define target_remove_watchpoint(addr, len, type, cond) \
1693 (*current_target.to_remove_watchpoint) (&current_target, \
1694 addr, len, type, cond)
1695
1696 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1697 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1698 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1699 masked watchpoints are not supported, -1 for failure. */
1700
1701 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1702
1703 /* Remove a masked watchpoint at ADDR with the mask MASK.
1704 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1705 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1706 for failure. */
1707
1708 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1709
1710 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1711 the target machine. Returns 0 for success, and returns non-zero or
1712 throws an error (with a detailed failure reason error code and
1713 message) otherwise. */
1714
1715 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1716 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1717 gdbarch, bp_tgt)
1718
1719 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1720 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1721 gdbarch, bp_tgt)
1722
1723 /* Return number of debug registers needed for a ranged breakpoint,
1724 or -1 if ranged breakpoints are not supported. */
1725
1726 extern int target_ranged_break_num_registers (void);
1727
1728 /* Return non-zero if target knows the data address which triggered this
1729 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1730 INFERIOR_PTID task is being queried. */
1731 #define target_stopped_data_address(target, addr_p) \
1732 (*target.to_stopped_data_address) (target, addr_p)
1733
1734 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1735 LENGTH bytes beginning at START. */
1736 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1737 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1738
1739 /* Return non-zero if the target is capable of using hardware to evaluate
1740 the condition expression. In this case, if the condition is false when
1741 the watched memory location changes, execution may continue without the
1742 debugger being notified.
1743
1744 Due to limitations in the hardware implementation, it may be capable of
1745 avoiding triggering the watchpoint in some cases where the condition
1746 expression is false, but may report some false positives as well.
1747 For this reason, GDB will still evaluate the condition expression when
1748 the watchpoint triggers. */
1749 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1750 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1751 addr, len, type, cond)
1752
1753 /* Return number of debug registers needed for a masked watchpoint,
1754 -1 if masked watchpoints are not supported or -2 if the given address
1755 and mask combination cannot be used. */
1756
1757 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1758
1759 /* Target can execute in reverse? */
1760 #define target_can_execute_reverse \
1761 (current_target.to_can_execute_reverse ? \
1762 current_target.to_can_execute_reverse (&current_target) : 0)
1763
1764 extern const struct target_desc *target_read_description (struct target_ops *);
1765
1766 #define target_get_ada_task_ptid(lwp, tid) \
1767 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1768
1769 /* Utility implementation of searching memory. */
1770 extern int simple_search_memory (struct target_ops* ops,
1771 CORE_ADDR start_addr,
1772 ULONGEST search_space_len,
1773 const gdb_byte *pattern,
1774 ULONGEST pattern_len,
1775 CORE_ADDR *found_addrp);
1776
1777 /* Main entry point for searching memory. */
1778 extern int target_search_memory (CORE_ADDR start_addr,
1779 ULONGEST search_space_len,
1780 const gdb_byte *pattern,
1781 ULONGEST pattern_len,
1782 CORE_ADDR *found_addrp);
1783
1784 /* Target file operations. */
1785
1786 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1787 target file descriptor, or -1 if an error occurs (and set
1788 *TARGET_ERRNO). */
1789 extern int target_fileio_open (const char *filename, int flags, int mode,
1790 int *target_errno);
1791
1792 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1793 Return the number of bytes written, or -1 if an error occurs
1794 (and set *TARGET_ERRNO). */
1795 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1796 ULONGEST offset, int *target_errno);
1797
1798 /* Read up to LEN bytes FD on the target into READ_BUF.
1799 Return the number of bytes read, or -1 if an error occurs
1800 (and set *TARGET_ERRNO). */
1801 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1802 ULONGEST offset, int *target_errno);
1803
1804 /* Close FD on the target. Return 0, or -1 if an error occurs
1805 (and set *TARGET_ERRNO). */
1806 extern int target_fileio_close (int fd, int *target_errno);
1807
1808 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1809 occurs (and set *TARGET_ERRNO). */
1810 extern int target_fileio_unlink (const char *filename, int *target_errno);
1811
1812 /* Read value of symbolic link FILENAME on the target. Return a
1813 null-terminated string allocated via xmalloc, or NULL if an error
1814 occurs (and set *TARGET_ERRNO). */
1815 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1816
1817 /* Read target file FILENAME. The return value will be -1 if the transfer
1818 fails or is not supported; 0 if the object is empty; or the length
1819 of the object otherwise. If a positive value is returned, a
1820 sufficiently large buffer will be allocated using xmalloc and
1821 returned in *BUF_P containing the contents of the object.
1822
1823 This method should be used for objects sufficiently small to store
1824 in a single xmalloc'd buffer, when no fixed bound on the object's
1825 size is known in advance. */
1826 extern LONGEST target_fileio_read_alloc (const char *filename,
1827 gdb_byte **buf_p);
1828
1829 /* Read target file FILENAME. The result is NUL-terminated and
1830 returned as a string, allocated using xmalloc. If an error occurs
1831 or the transfer is unsupported, NULL is returned. Empty objects
1832 are returned as allocated but empty strings. A warning is issued
1833 if the result contains any embedded NUL bytes. */
1834 extern char *target_fileio_read_stralloc (const char *filename);
1835
1836
1837 /* Tracepoint-related operations. */
1838
1839 #define target_trace_init() \
1840 (*current_target.to_trace_init) (&current_target)
1841
1842 #define target_download_tracepoint(t) \
1843 (*current_target.to_download_tracepoint) (&current_target, t)
1844
1845 #define target_can_download_tracepoint() \
1846 (*current_target.to_can_download_tracepoint) (&current_target)
1847
1848 #define target_download_trace_state_variable(tsv) \
1849 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1850
1851 #define target_enable_tracepoint(loc) \
1852 (*current_target.to_enable_tracepoint) (&current_target, loc)
1853
1854 #define target_disable_tracepoint(loc) \
1855 (*current_target.to_disable_tracepoint) (&current_target, loc)
1856
1857 #define target_trace_start() \
1858 (*current_target.to_trace_start) (&current_target)
1859
1860 #define target_trace_set_readonly_regions() \
1861 (*current_target.to_trace_set_readonly_regions) (&current_target)
1862
1863 #define target_get_trace_status(ts) \
1864 (*current_target.to_get_trace_status) (&current_target, ts)
1865
1866 #define target_get_tracepoint_status(tp,utp) \
1867 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1868
1869 #define target_trace_stop() \
1870 (*current_target.to_trace_stop) (&current_target)
1871
1872 #define target_trace_find(type,num,addr1,addr2,tpp) \
1873 (*current_target.to_trace_find) (&current_target, \
1874 (type), (num), (addr1), (addr2), (tpp))
1875
1876 #define target_get_trace_state_variable_value(tsv,val) \
1877 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1878 (tsv), (val))
1879
1880 #define target_save_trace_data(filename) \
1881 (*current_target.to_save_trace_data) (&current_target, filename)
1882
1883 #define target_upload_tracepoints(utpp) \
1884 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1885
1886 #define target_upload_trace_state_variables(utsvp) \
1887 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1888
1889 #define target_get_raw_trace_data(buf,offset,len) \
1890 (*current_target.to_get_raw_trace_data) (&current_target, \
1891 (buf), (offset), (len))
1892
1893 #define target_get_min_fast_tracepoint_insn_len() \
1894 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1895
1896 #define target_set_disconnected_tracing(val) \
1897 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1898
1899 #define target_set_circular_trace_buffer(val) \
1900 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1901
1902 #define target_set_trace_buffer_size(val) \
1903 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1904
1905 #define target_set_trace_notes(user,notes,stopnotes) \
1906 (*current_target.to_set_trace_notes) (&current_target, \
1907 (user), (notes), (stopnotes))
1908
1909 #define target_get_tib_address(ptid, addr) \
1910 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1911
1912 #define target_set_permissions() \
1913 (*current_target.to_set_permissions) (&current_target)
1914
1915 #define target_static_tracepoint_marker_at(addr, marker) \
1916 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1917 addr, marker)
1918
1919 #define target_static_tracepoint_markers_by_strid(marker_id) \
1920 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1921 marker_id)
1922
1923 #define target_traceframe_info() \
1924 (*current_target.to_traceframe_info) (&current_target)
1925
1926 #define target_use_agent(use) \
1927 (*current_target.to_use_agent) (&current_target, use)
1928
1929 #define target_can_use_agent() \
1930 (*current_target.to_can_use_agent) (&current_target)
1931
1932 #define target_augmented_libraries_svr4_read() \
1933 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1934
1935 /* Command logging facility. */
1936
1937 #define target_log_command(p) \
1938 (*current_target.to_log_command) (&current_target, p)
1939
1940
1941 extern int target_core_of_thread (ptid_t ptid);
1942
1943 /* See to_get_unwinder in struct target_ops. */
1944 extern const struct frame_unwind *target_get_unwinder (void);
1945
1946 /* See to_get_tailcall_unwinder in struct target_ops. */
1947 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1948
1949 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1950 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1951 if there's a mismatch, and -1 if an error is encountered while
1952 reading memory. Throws an error if the functionality is found not
1953 to be supported by the current target. */
1954 int target_verify_memory (const gdb_byte *data,
1955 CORE_ADDR memaddr, ULONGEST size);
1956
1957 /* Routines for maintenance of the target structures...
1958
1959 complete_target_initialization: Finalize a target_ops by filling in
1960 any fields needed by the target implementation.
1961
1962 add_target: Add a target to the list of all possible targets.
1963
1964 push_target: Make this target the top of the stack of currently used
1965 targets, within its particular stratum of the stack. Result
1966 is 0 if now atop the stack, nonzero if not on top (maybe
1967 should warn user).
1968
1969 unpush_target: Remove this from the stack of currently used targets,
1970 no matter where it is on the list. Returns 0 if no
1971 change, 1 if removed from stack. */
1972
1973 extern void add_target (struct target_ops *);
1974
1975 extern void add_target_with_completer (struct target_ops *t,
1976 completer_ftype *completer);
1977
1978 extern void complete_target_initialization (struct target_ops *t);
1979
1980 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1981 for maintaining backwards compatibility when renaming targets. */
1982
1983 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1984
1985 extern void push_target (struct target_ops *);
1986
1987 extern int unpush_target (struct target_ops *);
1988
1989 extern void target_pre_inferior (int);
1990
1991 extern void target_preopen (int);
1992
1993 /* Does whatever cleanup is required to get rid of all pushed targets. */
1994 extern void pop_all_targets (void);
1995
1996 /* Like pop_all_targets, but pops only targets whose stratum is
1997 strictly above ABOVE_STRATUM. */
1998 extern void pop_all_targets_above (enum strata above_stratum);
1999
2000 extern int target_is_pushed (struct target_ops *t);
2001
2002 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2003 CORE_ADDR offset);
2004
2005 /* Struct target_section maps address ranges to file sections. It is
2006 mostly used with BFD files, but can be used without (e.g. for handling
2007 raw disks, or files not in formats handled by BFD). */
2008
2009 struct target_section
2010 {
2011 CORE_ADDR addr; /* Lowest address in section */
2012 CORE_ADDR endaddr; /* 1+highest address in section */
2013
2014 struct bfd_section *the_bfd_section;
2015
2016 /* The "owner" of the section.
2017 It can be any unique value. It is set by add_target_sections
2018 and used by remove_target_sections.
2019 For example, for executables it is a pointer to exec_bfd and
2020 for shlibs it is the so_list pointer. */
2021 void *owner;
2022 };
2023
2024 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2025
2026 struct target_section_table
2027 {
2028 struct target_section *sections;
2029 struct target_section *sections_end;
2030 };
2031
2032 /* Return the "section" containing the specified address. */
2033 struct target_section *target_section_by_addr (struct target_ops *target,
2034 CORE_ADDR addr);
2035
2036 /* Return the target section table this target (or the targets
2037 beneath) currently manipulate. */
2038
2039 extern struct target_section_table *target_get_section_table
2040 (struct target_ops *target);
2041
2042 /* From mem-break.c */
2043
2044 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2045 struct bp_target_info *);
2046
2047 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2048 struct bp_target_info *);
2049
2050 extern int default_memory_remove_breakpoint (struct gdbarch *,
2051 struct bp_target_info *);
2052
2053 extern int default_memory_insert_breakpoint (struct gdbarch *,
2054 struct bp_target_info *);
2055
2056
2057 /* From target.c */
2058
2059 extern void initialize_targets (void);
2060
2061 extern void noprocess (void) ATTRIBUTE_NORETURN;
2062
2063 extern void target_require_runnable (void);
2064
2065 extern void find_default_attach (struct target_ops *, char *, int);
2066
2067 extern void find_default_create_inferior (struct target_ops *,
2068 char *, char *, char **, int);
2069
2070 extern struct target_ops *find_target_beneath (struct target_ops *);
2071
2072 /* Find the target at STRATUM. If no target is at that stratum,
2073 return NULL. */
2074
2075 struct target_ops *find_target_at (enum strata stratum);
2076
2077 /* Read OS data object of type TYPE from the target, and return it in
2078 XML format. The result is NUL-terminated and returned as a string,
2079 allocated using xmalloc. If an error occurs or the transfer is
2080 unsupported, NULL is returned. Empty objects are returned as
2081 allocated but empty strings. */
2082
2083 extern char *target_get_osdata (const char *type);
2084
2085 \f
2086 /* Stuff that should be shared among the various remote targets. */
2087
2088 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2089 information (higher values, more information). */
2090 extern int remote_debug;
2091
2092 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2093 extern int baud_rate;
2094 /* Timeout limit for response from target. */
2095 extern int remote_timeout;
2096
2097 \f
2098
2099 /* Set the show memory breakpoints mode to show, and installs a cleanup
2100 to restore it back to the current value. */
2101 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2102
2103 extern int may_write_registers;
2104 extern int may_write_memory;
2105 extern int may_insert_breakpoints;
2106 extern int may_insert_tracepoints;
2107 extern int may_insert_fast_tracepoints;
2108 extern int may_stop;
2109
2110 extern void update_target_permissions (void);
2111
2112 \f
2113 /* Imported from machine dependent code. */
2114
2115 /* Blank target vector entries are initialized to target_ignore. */
2116 void target_ignore (void);
2117
2118 /* See to_supports_btrace in struct target_ops. */
2119 #define target_supports_btrace() \
2120 (current_target.to_supports_btrace (&current_target))
2121
2122 /* See to_enable_btrace in struct target_ops. */
2123 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2124
2125 /* See to_disable_btrace in struct target_ops. */
2126 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2127
2128 /* See to_teardown_btrace in struct target_ops. */
2129 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2130
2131 /* See to_read_btrace in struct target_ops. */
2132 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2133 struct btrace_target_info *,
2134 enum btrace_read_type);
2135
2136 /* See to_stop_recording in struct target_ops. */
2137 extern void target_stop_recording (void);
2138
2139 /* See to_info_record in struct target_ops. */
2140 extern void target_info_record (void);
2141
2142 /* See to_save_record in struct target_ops. */
2143 extern void target_save_record (const char *filename);
2144
2145 /* Query if the target supports deleting the execution log. */
2146 extern int target_supports_delete_record (void);
2147
2148 /* See to_delete_record in struct target_ops. */
2149 extern void target_delete_record (void);
2150
2151 /* See to_record_is_replaying in struct target_ops. */
2152 extern int target_record_is_replaying (void);
2153
2154 /* See to_goto_record_begin in struct target_ops. */
2155 extern void target_goto_record_begin (void);
2156
2157 /* See to_goto_record_end in struct target_ops. */
2158 extern void target_goto_record_end (void);
2159
2160 /* See to_goto_record in struct target_ops. */
2161 extern void target_goto_record (ULONGEST insn);
2162
2163 /* See to_insn_history. */
2164 extern void target_insn_history (int size, int flags);
2165
2166 /* See to_insn_history_from. */
2167 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2168
2169 /* See to_insn_history_range. */
2170 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2171
2172 /* See to_call_history. */
2173 extern void target_call_history (int size, int flags);
2174
2175 /* See to_call_history_from. */
2176 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2177
2178 /* See to_call_history_range. */
2179 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2180
2181 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2182 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2183 struct gdbarch *gdbarch);
2184
2185 /* See to_decr_pc_after_break. */
2186 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2187
2188 #endif /* !defined (TARGET_H) */
This page took 0.076954 seconds and 4 git commands to generate.