* target.h (struct target_ops): Remove to_notice_signals;
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #if !defined (TARGET_H)
25 #define TARGET_H
26
27 struct objfile;
28 struct ui_file;
29 struct mem_attrib;
30 struct target_ops;
31 struct bp_target_info;
32 struct regcache;
33 struct target_section_table;
34 struct trace_state_variable;
35 struct trace_status;
36 struct uploaded_tsv;
37 struct uploaded_tp;
38 struct static_tracepoint_marker;
39 struct traceframe_info;
40 struct expression;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "bfd.h"
62 #include "symtab.h"
63 #include "memattr.h"
64 #include "vec.h"
65 #include "gdb_signals.h"
66
67 enum strata
68 {
69 dummy_stratum, /* The lowest of the low */
70 file_stratum, /* Executable files, etc */
71 process_stratum, /* Executing processes or core dump files */
72 thread_stratum, /* Executing threads */
73 record_stratum, /* Support record debugging */
74 arch_stratum /* Architecture overrides */
75 };
76
77 enum thread_control_capabilities
78 {
79 tc_none = 0, /* Default: can't control thread execution. */
80 tc_schedlock = 1, /* Can lock the thread scheduler. */
81 };
82
83 /* Stuff for target_wait. */
84
85 /* Generally, what has the program done? */
86 enum target_waitkind
87 {
88 /* The program has exited. The exit status is in value.integer. */
89 TARGET_WAITKIND_EXITED,
90
91 /* The program has stopped with a signal. Which signal is in
92 value.sig. */
93 TARGET_WAITKIND_STOPPED,
94
95 /* The program has terminated with a signal. Which signal is in
96 value.sig. */
97 TARGET_WAITKIND_SIGNALLED,
98
99 /* The program is letting us know that it dynamically loaded something
100 (e.g. it called load(2) on AIX). */
101 TARGET_WAITKIND_LOADED,
102
103 /* The program has forked. A "related" process' PTID is in
104 value.related_pid. I.e., if the child forks, value.related_pid
105 is the parent's ID. */
106
107 TARGET_WAITKIND_FORKED,
108
109 /* The program has vforked. A "related" process's PTID is in
110 value.related_pid. */
111
112 TARGET_WAITKIND_VFORKED,
113
114 /* The program has exec'ed a new executable file. The new file's
115 pathname is pointed to by value.execd_pathname. */
116
117 TARGET_WAITKIND_EXECD,
118
119 /* The program had previously vforked, and now the child is done
120 with the shared memory region, because it exec'ed or exited.
121 Note that the event is reported to the vfork parent. This is
122 only used if GDB did not stay attached to the vfork child,
123 otherwise, a TARGET_WAITKIND_EXECD or
124 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
125 has the same effect. */
126 TARGET_WAITKIND_VFORK_DONE,
127
128 /* The program has entered or returned from a system call. On
129 HP-UX, this is used in the hardware watchpoint implementation.
130 The syscall's unique integer ID number is in value.syscall_id. */
131
132 TARGET_WAITKIND_SYSCALL_ENTRY,
133 TARGET_WAITKIND_SYSCALL_RETURN,
134
135 /* Nothing happened, but we stopped anyway. This perhaps should be handled
136 within target_wait, but I'm not sure target_wait should be resuming the
137 inferior. */
138 TARGET_WAITKIND_SPURIOUS,
139
140 /* An event has occured, but we should wait again.
141 Remote_async_wait() returns this when there is an event
142 on the inferior, but the rest of the world is not interested in
143 it. The inferior has not stopped, but has just sent some output
144 to the console, for instance. In this case, we want to go back
145 to the event loop and wait there for another event from the
146 inferior, rather than being stuck in the remote_async_wait()
147 function. sThis way the event loop is responsive to other events,
148 like for instance the user typing. */
149 TARGET_WAITKIND_IGNORE,
150
151 /* The target has run out of history information,
152 and cannot run backward any further. */
153 TARGET_WAITKIND_NO_HISTORY
154 };
155
156 struct target_waitstatus
157 {
158 enum target_waitkind kind;
159
160 /* Forked child pid, execd pathname, exit status, signal number or
161 syscall number. */
162 union
163 {
164 int integer;
165 enum target_signal sig;
166 ptid_t related_pid;
167 char *execd_pathname;
168 int syscall_number;
169 }
170 value;
171 };
172
173 /* Options that can be passed to target_wait. */
174
175 /* Return immediately if there's no event already queued. If this
176 options is not requested, target_wait blocks waiting for an
177 event. */
178 #define TARGET_WNOHANG 1
179
180 /* The structure below stores information about a system call.
181 It is basically used in the "catch syscall" command, and in
182 every function that gives information about a system call.
183
184 It's also good to mention that its fields represent everything
185 that we currently know about a syscall in GDB. */
186 struct syscall
187 {
188 /* The syscall number. */
189 int number;
190
191 /* The syscall name. */
192 const char *name;
193 };
194
195 /* Return a pretty printed form of target_waitstatus.
196 Space for the result is malloc'd, caller must free. */
197 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
198
199 /* Possible types of events that the inferior handler will have to
200 deal with. */
201 enum inferior_event_type
202 {
203 /* There is a request to quit the inferior, abandon it. */
204 INF_QUIT_REQ,
205 /* Process a normal inferior event which will result in target_wait
206 being called. */
207 INF_REG_EVENT,
208 /* Deal with an error on the inferior. */
209 INF_ERROR,
210 /* We are called because a timer went off. */
211 INF_TIMER,
212 /* We are called to do stuff after the inferior stops. */
213 INF_EXEC_COMPLETE,
214 /* We are called to do some stuff after the inferior stops, but we
215 are expected to reenter the proceed() and
216 handle_inferior_event() functions. This is used only in case of
217 'step n' like commands. */
218 INF_EXEC_CONTINUE
219 };
220 \f
221 /* Target objects which can be transfered using target_read,
222 target_write, et cetera. */
223
224 enum target_object
225 {
226 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
227 TARGET_OBJECT_AVR,
228 /* SPU target specific transfer. See "spu-tdep.c". */
229 TARGET_OBJECT_SPU,
230 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
231 TARGET_OBJECT_MEMORY,
232 /* Memory, avoiding GDB's data cache and trusting the executable.
233 Target implementations of to_xfer_partial never need to handle
234 this object, and most callers should not use it. */
235 TARGET_OBJECT_RAW_MEMORY,
236 /* Memory known to be part of the target's stack. This is cached even
237 if it is not in a region marked as such, since it is known to be
238 "normal" RAM. */
239 TARGET_OBJECT_STACK_MEMORY,
240 /* Kernel Unwind Table. See "ia64-tdep.c". */
241 TARGET_OBJECT_UNWIND_TABLE,
242 /* Transfer auxilliary vector. */
243 TARGET_OBJECT_AUXV,
244 /* StackGhost cookie. See "sparc-tdep.c". */
245 TARGET_OBJECT_WCOOKIE,
246 /* Target memory map in XML format. */
247 TARGET_OBJECT_MEMORY_MAP,
248 /* Flash memory. This object can be used to write contents to
249 a previously erased flash memory. Using it without erasing
250 flash can have unexpected results. Addresses are physical
251 address on target, and not relative to flash start. */
252 TARGET_OBJECT_FLASH,
253 /* Available target-specific features, e.g. registers and coprocessors.
254 See "target-descriptions.c". ANNEX should never be empty. */
255 TARGET_OBJECT_AVAILABLE_FEATURES,
256 /* Currently loaded libraries, in XML format. */
257 TARGET_OBJECT_LIBRARIES,
258 /* Get OS specific data. The ANNEX specifies the type (running
259 processes, etc.). The data being transfered is expected to follow
260 the DTD specified in features/osdata.dtd. */
261 TARGET_OBJECT_OSDATA,
262 /* Extra signal info. Usually the contents of `siginfo_t' on unix
263 platforms. */
264 TARGET_OBJECT_SIGNAL_INFO,
265 /* The list of threads that are being debugged. */
266 TARGET_OBJECT_THREADS,
267 /* Collected static trace data. */
268 TARGET_OBJECT_STATIC_TRACE_DATA,
269 /* The HP-UX registers (those that can be obtained or modified by using
270 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
271 TARGET_OBJECT_HPUX_UREGS,
272 /* The HP-UX shared library linkage pointer. ANNEX should be a string
273 image of the code address whose linkage pointer we are looking for.
274
275 The size of the data transfered is always 8 bytes (the size of an
276 address on ia64). */
277 TARGET_OBJECT_HPUX_SOLIB_GOT,
278 /* Traceframe info, in XML format. */
279 TARGET_OBJECT_TRACEFRAME_INFO,
280 /* Possible future objects: TARGET_OBJECT_FILE, ... */
281 };
282
283 /* Enumeration of the kinds of traceframe searches that a target may
284 be able to perform. */
285
286 enum trace_find_type
287 {
288 tfind_number,
289 tfind_pc,
290 tfind_tp,
291 tfind_range,
292 tfind_outside,
293 };
294
295 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
296 DEF_VEC_P(static_tracepoint_marker_p);
297
298 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
299 OBJECT. The OFFSET, for a seekable object, specifies the
300 starting point. The ANNEX can be used to provide additional
301 data-specific information to the target.
302
303 Return the number of bytes actually transfered, or -1 if the
304 transfer is not supported or otherwise fails. Return of a positive
305 value less than LEN indicates that no further transfer is possible.
306 Unlike the raw to_xfer_partial interface, callers of these
307 functions do not need to retry partial transfers. */
308
309 extern LONGEST target_read (struct target_ops *ops,
310 enum target_object object,
311 const char *annex, gdb_byte *buf,
312 ULONGEST offset, LONGEST len);
313
314 struct memory_read_result
315 {
316 /* First address that was read. */
317 ULONGEST begin;
318 /* Past-the-end address. */
319 ULONGEST end;
320 /* The data. */
321 gdb_byte *data;
322 };
323 typedef struct memory_read_result memory_read_result_s;
324 DEF_VEC_O(memory_read_result_s);
325
326 extern void free_memory_read_result_vector (void *);
327
328 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
329 ULONGEST offset,
330 LONGEST len);
331
332 extern LONGEST target_write (struct target_ops *ops,
333 enum target_object object,
334 const char *annex, const gdb_byte *buf,
335 ULONGEST offset, LONGEST len);
336
337 /* Similar to target_write, except that it also calls PROGRESS with
338 the number of bytes written and the opaque BATON after every
339 successful partial write (and before the first write). This is
340 useful for progress reporting and user interaction while writing
341 data. To abort the transfer, the progress callback can throw an
342 exception. */
343
344 LONGEST target_write_with_progress (struct target_ops *ops,
345 enum target_object object,
346 const char *annex, const gdb_byte *buf,
347 ULONGEST offset, LONGEST len,
348 void (*progress) (ULONGEST, void *),
349 void *baton);
350
351 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
352 be read using OPS. The return value will be -1 if the transfer
353 fails or is not supported; 0 if the object is empty; or the length
354 of the object otherwise. If a positive value is returned, a
355 sufficiently large buffer will be allocated using xmalloc and
356 returned in *BUF_P containing the contents of the object.
357
358 This method should be used for objects sufficiently small to store
359 in a single xmalloc'd buffer, when no fixed bound on the object's
360 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
361 through this function. */
362
363 extern LONGEST target_read_alloc (struct target_ops *ops,
364 enum target_object object,
365 const char *annex, gdb_byte **buf_p);
366
367 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
368 returned as a string, allocated using xmalloc. If an error occurs
369 or the transfer is unsupported, NULL is returned. Empty objects
370 are returned as allocated but empty strings. A warning is issued
371 if the result contains any embedded NUL bytes. */
372
373 extern char *target_read_stralloc (struct target_ops *ops,
374 enum target_object object,
375 const char *annex);
376
377 /* Wrappers to target read/write that perform memory transfers. They
378 throw an error if the memory transfer fails.
379
380 NOTE: cagney/2003-10-23: The naming schema is lifted from
381 "frame.h". The parameter order is lifted from get_frame_memory,
382 which in turn lifted it from read_memory. */
383
384 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
385 gdb_byte *buf, LONGEST len);
386 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
387 CORE_ADDR addr, int len,
388 enum bfd_endian byte_order);
389 \f
390 struct thread_info; /* fwd decl for parameter list below: */
391
392 struct target_ops
393 {
394 struct target_ops *beneath; /* To the target under this one. */
395 char *to_shortname; /* Name this target type */
396 char *to_longname; /* Name for printing */
397 char *to_doc; /* Documentation. Does not include trailing
398 newline, and starts with a one-line descrip-
399 tion (probably similar to to_longname). */
400 /* Per-target scratch pad. */
401 void *to_data;
402 /* The open routine takes the rest of the parameters from the
403 command, and (if successful) pushes a new target onto the
404 stack. Targets should supply this routine, if only to provide
405 an error message. */
406 void (*to_open) (char *, int);
407 /* Old targets with a static target vector provide "to_close".
408 New re-entrant targets provide "to_xclose" and that is expected
409 to xfree everything (including the "struct target_ops"). */
410 void (*to_xclose) (struct target_ops *targ, int quitting);
411 void (*to_close) (int);
412 void (*to_attach) (struct target_ops *ops, char *, int);
413 void (*to_post_attach) (int);
414 void (*to_detach) (struct target_ops *ops, char *, int);
415 void (*to_disconnect) (struct target_ops *, char *, int);
416 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
417 ptid_t (*to_wait) (struct target_ops *,
418 ptid_t, struct target_waitstatus *, int);
419 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
420 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
421 void (*to_prepare_to_store) (struct regcache *);
422
423 /* Transfer LEN bytes of memory between GDB address MYADDR and
424 target address MEMADDR. If WRITE, transfer them to the target, else
425 transfer them from the target. TARGET is the target from which we
426 get this function.
427
428 Return value, N, is one of the following:
429
430 0 means that we can't handle this. If errno has been set, it is the
431 error which prevented us from doing it (FIXME: What about bfd_error?).
432
433 positive (call it N) means that we have transferred N bytes
434 starting at MEMADDR. We might be able to handle more bytes
435 beyond this length, but no promises.
436
437 negative (call its absolute value N) means that we cannot
438 transfer right at MEMADDR, but we could transfer at least
439 something at MEMADDR + N.
440
441 NOTE: cagney/2004-10-01: This has been entirely superseeded by
442 to_xfer_partial and inferior inheritance. */
443
444 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
445 int len, int write,
446 struct mem_attrib *attrib,
447 struct target_ops *target);
448
449 void (*to_files_info) (struct target_ops *);
450 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
451 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
452 int (*to_can_use_hw_breakpoint) (int, int, int);
453 int (*to_ranged_break_num_registers) (struct target_ops *);
454 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
455 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
456
457 /* Documentation of what the two routines below are expected to do is
458 provided with the corresponding target_* macros. */
459 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
460 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
461
462 int (*to_stopped_by_watchpoint) (void);
463 int to_have_steppable_watchpoint;
464 int to_have_continuable_watchpoint;
465 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
466 int (*to_watchpoint_addr_within_range) (struct target_ops *,
467 CORE_ADDR, CORE_ADDR, int);
468
469 /* Documentation of this routine is provided with the corresponding
470 target_* macro. */
471 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
472
473 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
474 struct expression *);
475 void (*to_terminal_init) (void);
476 void (*to_terminal_inferior) (void);
477 void (*to_terminal_ours_for_output) (void);
478 void (*to_terminal_ours) (void);
479 void (*to_terminal_save_ours) (void);
480 void (*to_terminal_info) (char *, int);
481 void (*to_kill) (struct target_ops *);
482 void (*to_load) (char *, int);
483 void (*to_create_inferior) (struct target_ops *,
484 char *, char *, char **, int);
485 void (*to_post_startup_inferior) (ptid_t);
486 int (*to_insert_fork_catchpoint) (int);
487 int (*to_remove_fork_catchpoint) (int);
488 int (*to_insert_vfork_catchpoint) (int);
489 int (*to_remove_vfork_catchpoint) (int);
490 int (*to_follow_fork) (struct target_ops *, int);
491 int (*to_insert_exec_catchpoint) (int);
492 int (*to_remove_exec_catchpoint) (int);
493 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
494 int (*to_has_exited) (int, int, int *);
495 void (*to_mourn_inferior) (struct target_ops *);
496 int (*to_can_run) (void);
497
498 /* Documentation of this routine is provided with the corresponding
499 target_* macro. */
500 void (*to_pass_signals) (int, unsigned char *);
501
502 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
503 void (*to_find_new_threads) (struct target_ops *);
504 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
505 char *(*to_extra_thread_info) (struct thread_info *);
506 char *(*to_thread_name) (struct thread_info *);
507 void (*to_stop) (ptid_t);
508 void (*to_rcmd) (char *command, struct ui_file *output);
509 char *(*to_pid_to_exec_file) (int pid);
510 void (*to_log_command) (const char *);
511 struct target_section_table *(*to_get_section_table) (struct target_ops *);
512 enum strata to_stratum;
513 int (*to_has_all_memory) (struct target_ops *);
514 int (*to_has_memory) (struct target_ops *);
515 int (*to_has_stack) (struct target_ops *);
516 int (*to_has_registers) (struct target_ops *);
517 int (*to_has_execution) (struct target_ops *, ptid_t);
518 int to_has_thread_control; /* control thread execution */
519 int to_attach_no_wait;
520 /* ASYNC target controls */
521 int (*to_can_async_p) (void);
522 int (*to_is_async_p) (void);
523 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
524 int (*to_async_mask) (int);
525 int (*to_supports_non_stop) (void);
526 /* find_memory_regions support method for gcore */
527 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
528 /* make_corefile_notes support method for gcore */
529 char * (*to_make_corefile_notes) (bfd *, int *);
530 /* get_bookmark support method for bookmarks */
531 gdb_byte * (*to_get_bookmark) (char *, int);
532 /* goto_bookmark support method for bookmarks */
533 void (*to_goto_bookmark) (gdb_byte *, int);
534 /* Return the thread-local address at OFFSET in the
535 thread-local storage for the thread PTID and the shared library
536 or executable file given by OBJFILE. If that block of
537 thread-local storage hasn't been allocated yet, this function
538 may return an error. */
539 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
540 ptid_t ptid,
541 CORE_ADDR load_module_addr,
542 CORE_ADDR offset);
543
544 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
545 OBJECT. The OFFSET, for a seekable object, specifies the
546 starting point. The ANNEX can be used to provide additional
547 data-specific information to the target.
548
549 Return the number of bytes actually transfered, zero when no
550 further transfer is possible, and -1 when the transfer is not
551 supported. Return of a positive value smaller than LEN does
552 not indicate the end of the object, only the end of the
553 transfer; higher level code should continue transferring if
554 desired. This is handled in target.c.
555
556 The interface does not support a "retry" mechanism. Instead it
557 assumes that at least one byte will be transfered on each
558 successful call.
559
560 NOTE: cagney/2003-10-17: The current interface can lead to
561 fragmented transfers. Lower target levels should not implement
562 hacks, such as enlarging the transfer, in an attempt to
563 compensate for this. Instead, the target stack should be
564 extended so that it implements supply/collect methods and a
565 look-aside object cache. With that available, the lowest
566 target can safely and freely "push" data up the stack.
567
568 See target_read and target_write for more information. One,
569 and only one, of readbuf or writebuf must be non-NULL. */
570
571 LONGEST (*to_xfer_partial) (struct target_ops *ops,
572 enum target_object object, const char *annex,
573 gdb_byte *readbuf, const gdb_byte *writebuf,
574 ULONGEST offset, LONGEST len);
575
576 /* Returns the memory map for the target. A return value of NULL
577 means that no memory map is available. If a memory address
578 does not fall within any returned regions, it's assumed to be
579 RAM. The returned memory regions should not overlap.
580
581 The order of regions does not matter; target_memory_map will
582 sort regions by starting address. For that reason, this
583 function should not be called directly except via
584 target_memory_map.
585
586 This method should not cache data; if the memory map could
587 change unexpectedly, it should be invalidated, and higher
588 layers will re-fetch it. */
589 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
590
591 /* Erases the region of flash memory starting at ADDRESS, of
592 length LENGTH.
593
594 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
595 on flash block boundaries, as reported by 'to_memory_map'. */
596 void (*to_flash_erase) (struct target_ops *,
597 ULONGEST address, LONGEST length);
598
599 /* Finishes a flash memory write sequence. After this operation
600 all flash memory should be available for writing and the result
601 of reading from areas written by 'to_flash_write' should be
602 equal to what was written. */
603 void (*to_flash_done) (struct target_ops *);
604
605 /* Describe the architecture-specific features of this target.
606 Returns the description found, or NULL if no description
607 was available. */
608 const struct target_desc *(*to_read_description) (struct target_ops *ops);
609
610 /* Build the PTID of the thread on which a given task is running,
611 based on LWP and THREAD. These values are extracted from the
612 task Private_Data section of the Ada Task Control Block, and
613 their interpretation depends on the target. */
614 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
615
616 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
617 Return 0 if *READPTR is already at the end of the buffer.
618 Return -1 if there is insufficient buffer for a whole entry.
619 Return 1 if an entry was read into *TYPEP and *VALP. */
620 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
621 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
622
623 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
624 sequence of bytes in PATTERN with length PATTERN_LEN.
625
626 The result is 1 if found, 0 if not found, and -1 if there was an error
627 requiring halting of the search (e.g. memory read error).
628 If the pattern is found the address is recorded in FOUND_ADDRP. */
629 int (*to_search_memory) (struct target_ops *ops,
630 CORE_ADDR start_addr, ULONGEST search_space_len,
631 const gdb_byte *pattern, ULONGEST pattern_len,
632 CORE_ADDR *found_addrp);
633
634 /* Can target execute in reverse? */
635 int (*to_can_execute_reverse) (void);
636
637 /* Does this target support debugging multiple processes
638 simultaneously? */
639 int (*to_supports_multi_process) (void);
640
641 /* Determine current architecture of thread PTID.
642
643 The target is supposed to determine the architecture of the code where
644 the target is currently stopped at (on Cell, if a target is in spu_run,
645 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
646 This is architecture used to perform decr_pc_after_break adjustment,
647 and also determines the frame architecture of the innermost frame.
648 ptrace operations need to operate according to target_gdbarch.
649
650 The default implementation always returns target_gdbarch. */
651 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
652
653 /* Determine current address space of thread PTID.
654
655 The default implementation always returns the inferior's
656 address space. */
657 struct address_space *(*to_thread_address_space) (struct target_ops *,
658 ptid_t);
659
660 /* Tracepoint-related operations. */
661
662 /* Prepare the target for a tracing run. */
663 void (*to_trace_init) (void);
664
665 /* Send full details of a tracepoint to the target. */
666 void (*to_download_tracepoint) (struct breakpoint *t);
667
668 /* Send full details of a trace state variable to the target. */
669 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
670
671 /* Inform the target info of memory regions that are readonly
672 (such as text sections), and so it should return data from
673 those rather than look in the trace buffer. */
674 void (*to_trace_set_readonly_regions) (void);
675
676 /* Start a trace run. */
677 void (*to_trace_start) (void);
678
679 /* Get the current status of a tracing run. */
680 int (*to_get_trace_status) (struct trace_status *ts);
681
682 /* Stop a trace run. */
683 void (*to_trace_stop) (void);
684
685 /* Ask the target to find a trace frame of the given type TYPE,
686 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
687 number of the trace frame, and also the tracepoint number at
688 TPP. If no trace frame matches, return -1. May throw if the
689 operation fails. */
690 int (*to_trace_find) (enum trace_find_type type, int num,
691 ULONGEST addr1, ULONGEST addr2, int *tpp);
692
693 /* Get the value of the trace state variable number TSV, returning
694 1 if the value is known and writing the value itself into the
695 location pointed to by VAL, else returning 0. */
696 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
697
698 int (*to_save_trace_data) (const char *filename);
699
700 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
701
702 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
703
704 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
705 ULONGEST offset, LONGEST len);
706
707 /* Set the target's tracing behavior in response to unexpected
708 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
709 void (*to_set_disconnected_tracing) (int val);
710 void (*to_set_circular_trace_buffer) (int val);
711
712 /* Return the processor core that thread PTID was last seen on.
713 This information is updated only when:
714 - update_thread_list is called
715 - thread stops
716 If the core cannot be determined -- either for the specified
717 thread, or right now, or in this debug session, or for this
718 target -- return -1. */
719 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
720
721 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
722 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
723 a match, 0 if there's a mismatch, and -1 if an error is
724 encountered while reading memory. */
725 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
726 CORE_ADDR memaddr, ULONGEST size);
727
728 /* Return the address of the start of the Thread Information Block
729 a Windows OS specific feature. */
730 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
731
732 /* Send the new settings of write permission variables. */
733 void (*to_set_permissions) (void);
734
735 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
736 with its details. Return 1 on success, 0 on failure. */
737 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
738 struct static_tracepoint_marker *marker);
739
740 /* Return a vector of all tracepoints markers string id ID, or all
741 markers if ID is NULL. */
742 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
743 (const char *id);
744
745 /* Return a traceframe info object describing the current
746 traceframe's contents. This method should not cache data;
747 higher layers take care of caching, invalidating, and
748 re-fetching when necessary. */
749 struct traceframe_info *(*to_traceframe_info) (void);
750
751 int to_magic;
752 /* Need sub-structure for target machine related rather than comm related?
753 */
754 };
755
756 /* Magic number for checking ops size. If a struct doesn't end with this
757 number, somebody changed the declaration but didn't change all the
758 places that initialize one. */
759
760 #define OPS_MAGIC 3840
761
762 /* The ops structure for our "current" target process. This should
763 never be NULL. If there is no target, it points to the dummy_target. */
764
765 extern struct target_ops current_target;
766
767 /* Define easy words for doing these operations on our current target. */
768
769 #define target_shortname (current_target.to_shortname)
770 #define target_longname (current_target.to_longname)
771
772 /* Does whatever cleanup is required for a target that we are no
773 longer going to be calling. QUITTING indicates that GDB is exiting
774 and should not get hung on an error (otherwise it is important to
775 perform clean termination, even if it takes a while). This routine
776 is automatically always called when popping the target off the
777 target stack (to_beneath is undefined). Closing file descriptors
778 and freeing all memory allocated memory are typical things it
779 should do. */
780
781 void target_close (struct target_ops *targ, int quitting);
782
783 /* Attaches to a process on the target side. Arguments are as passed
784 to the `attach' command by the user. This routine can be called
785 when the target is not on the target-stack, if the target_can_run
786 routine returns 1; in that case, it must push itself onto the stack.
787 Upon exit, the target should be ready for normal operations, and
788 should be ready to deliver the status of the process immediately
789 (without waiting) to an upcoming target_wait call. */
790
791 void target_attach (char *, int);
792
793 /* Some targets don't generate traps when attaching to the inferior,
794 or their target_attach implementation takes care of the waiting.
795 These targets must set to_attach_no_wait. */
796
797 #define target_attach_no_wait \
798 (current_target.to_attach_no_wait)
799
800 /* The target_attach operation places a process under debugger control,
801 and stops the process.
802
803 This operation provides a target-specific hook that allows the
804 necessary bookkeeping to be performed after an attach completes. */
805 #define target_post_attach(pid) \
806 (*current_target.to_post_attach) (pid)
807
808 /* Takes a program previously attached to and detaches it.
809 The program may resume execution (some targets do, some don't) and will
810 no longer stop on signals, etc. We better not have left any breakpoints
811 in the program or it'll die when it hits one. ARGS is arguments
812 typed by the user (e.g. a signal to send the process). FROM_TTY
813 says whether to be verbose or not. */
814
815 extern void target_detach (char *, int);
816
817 /* Disconnect from the current target without resuming it (leaving it
818 waiting for a debugger). */
819
820 extern void target_disconnect (char *, int);
821
822 /* Resume execution of the target process PTID. STEP says whether to
823 single-step or to run free; SIGGNAL is the signal to be given to
824 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
825 pass TARGET_SIGNAL_DEFAULT. */
826
827 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
828
829 /* Wait for process pid to do something. PTID = -1 to wait for any
830 pid to do something. Return pid of child, or -1 in case of error;
831 store status through argument pointer STATUS. Note that it is
832 _NOT_ OK to throw_exception() out of target_wait() without popping
833 the debugging target from the stack; GDB isn't prepared to get back
834 to the prompt with a debugging target but without the frame cache,
835 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
836 options. */
837
838 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
839 int options);
840
841 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
842
843 extern void target_fetch_registers (struct regcache *regcache, int regno);
844
845 /* Store at least register REGNO, or all regs if REGNO == -1.
846 It can store as many registers as it wants to, so target_prepare_to_store
847 must have been previously called. Calls error() if there are problems. */
848
849 extern void target_store_registers (struct regcache *regcache, int regs);
850
851 /* Get ready to modify the registers array. On machines which store
852 individual registers, this doesn't need to do anything. On machines
853 which store all the registers in one fell swoop, this makes sure
854 that REGISTERS contains all the registers from the program being
855 debugged. */
856
857 #define target_prepare_to_store(regcache) \
858 (*current_target.to_prepare_to_store) (regcache)
859
860 /* Determine current address space of thread PTID. */
861
862 struct address_space *target_thread_address_space (ptid_t);
863
864 /* Returns true if this target can debug multiple processes
865 simultaneously. */
866
867 #define target_supports_multi_process() \
868 (*current_target.to_supports_multi_process) ()
869
870 /* Invalidate all target dcaches. */
871 extern void target_dcache_invalidate (void);
872
873 extern int target_read_string (CORE_ADDR, char **, int, int *);
874
875 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
876
877 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
878
879 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
880 int len);
881
882 /* Fetches the target's memory map. If one is found it is sorted
883 and returned, after some consistency checking. Otherwise, NULL
884 is returned. */
885 VEC(mem_region_s) *target_memory_map (void);
886
887 /* Erase the specified flash region. */
888 void target_flash_erase (ULONGEST address, LONGEST length);
889
890 /* Finish a sequence of flash operations. */
891 void target_flash_done (void);
892
893 /* Describes a request for a memory write operation. */
894 struct memory_write_request
895 {
896 /* Begining address that must be written. */
897 ULONGEST begin;
898 /* Past-the-end address. */
899 ULONGEST end;
900 /* The data to write. */
901 gdb_byte *data;
902 /* A callback baton for progress reporting for this request. */
903 void *baton;
904 };
905 typedef struct memory_write_request memory_write_request_s;
906 DEF_VEC_O(memory_write_request_s);
907
908 /* Enumeration specifying different flash preservation behaviour. */
909 enum flash_preserve_mode
910 {
911 flash_preserve,
912 flash_discard
913 };
914
915 /* Write several memory blocks at once. This version can be more
916 efficient than making several calls to target_write_memory, in
917 particular because it can optimize accesses to flash memory.
918
919 Moreover, this is currently the only memory access function in gdb
920 that supports writing to flash memory, and it should be used for
921 all cases where access to flash memory is desirable.
922
923 REQUESTS is the vector (see vec.h) of memory_write_request.
924 PRESERVE_FLASH_P indicates what to do with blocks which must be
925 erased, but not completely rewritten.
926 PROGRESS_CB is a function that will be periodically called to provide
927 feedback to user. It will be called with the baton corresponding
928 to the request currently being written. It may also be called
929 with a NULL baton, when preserved flash sectors are being rewritten.
930
931 The function returns 0 on success, and error otherwise. */
932 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
933 enum flash_preserve_mode preserve_flash_p,
934 void (*progress_cb) (ULONGEST, void *));
935
936 /* From infrun.c. */
937
938 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
939
940 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
941
942 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
943
944 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
945
946 /* Print a line about the current target. */
947
948 #define target_files_info() \
949 (*current_target.to_files_info) (&current_target)
950
951 /* Insert a breakpoint at address BP_TGT->placed_address in the target
952 machine. Result is 0 for success, or an errno value. */
953
954 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
955 struct bp_target_info *bp_tgt);
956
957 /* Remove a breakpoint at address BP_TGT->placed_address in the target
958 machine. Result is 0 for success, or an errno value. */
959
960 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
961 struct bp_target_info *bp_tgt);
962
963 /* Initialize the terminal settings we record for the inferior,
964 before we actually run the inferior. */
965
966 #define target_terminal_init() \
967 (*current_target.to_terminal_init) ()
968
969 /* Put the inferior's terminal settings into effect.
970 This is preparation for starting or resuming the inferior. */
971
972 extern void target_terminal_inferior (void);
973
974 /* Put some of our terminal settings into effect,
975 enough to get proper results from our output,
976 but do not change into or out of RAW mode
977 so that no input is discarded.
978
979 After doing this, either terminal_ours or terminal_inferior
980 should be called to get back to a normal state of affairs. */
981
982 #define target_terminal_ours_for_output() \
983 (*current_target.to_terminal_ours_for_output) ()
984
985 /* Put our terminal settings into effect.
986 First record the inferior's terminal settings
987 so they can be restored properly later. */
988
989 #define target_terminal_ours() \
990 (*current_target.to_terminal_ours) ()
991
992 /* Save our terminal settings.
993 This is called from TUI after entering or leaving the curses
994 mode. Since curses modifies our terminal this call is here
995 to take this change into account. */
996
997 #define target_terminal_save_ours() \
998 (*current_target.to_terminal_save_ours) ()
999
1000 /* Print useful information about our terminal status, if such a thing
1001 exists. */
1002
1003 #define target_terminal_info(arg, from_tty) \
1004 (*current_target.to_terminal_info) (arg, from_tty)
1005
1006 /* Kill the inferior process. Make it go away. */
1007
1008 extern void target_kill (void);
1009
1010 /* Load an executable file into the target process. This is expected
1011 to not only bring new code into the target process, but also to
1012 update GDB's symbol tables to match.
1013
1014 ARG contains command-line arguments, to be broken down with
1015 buildargv (). The first non-switch argument is the filename to
1016 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1017 0)), which is an offset to apply to the load addresses of FILE's
1018 sections. The target may define switches, or other non-switch
1019 arguments, as it pleases. */
1020
1021 extern void target_load (char *arg, int from_tty);
1022
1023 /* Start an inferior process and set inferior_ptid to its pid.
1024 EXEC_FILE is the file to run.
1025 ALLARGS is a string containing the arguments to the program.
1026 ENV is the environment vector to pass. Errors reported with error().
1027 On VxWorks and various standalone systems, we ignore exec_file. */
1028
1029 void target_create_inferior (char *exec_file, char *args,
1030 char **env, int from_tty);
1031
1032 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1033 notification of inferior events such as fork and vork immediately
1034 after the inferior is created. (This because of how gdb gets an
1035 inferior created via invoking a shell to do it. In such a scenario,
1036 if the shell init file has commands in it, the shell will fork and
1037 exec for each of those commands, and we will see each such fork
1038 event. Very bad.)
1039
1040 Such targets will supply an appropriate definition for this function. */
1041
1042 #define target_post_startup_inferior(ptid) \
1043 (*current_target.to_post_startup_inferior) (ptid)
1044
1045 /* On some targets, we can catch an inferior fork or vfork event when
1046 it occurs. These functions insert/remove an already-created
1047 catchpoint for such events. They return 0 for success, 1 if the
1048 catchpoint type is not supported and -1 for failure. */
1049
1050 #define target_insert_fork_catchpoint(pid) \
1051 (*current_target.to_insert_fork_catchpoint) (pid)
1052
1053 #define target_remove_fork_catchpoint(pid) \
1054 (*current_target.to_remove_fork_catchpoint) (pid)
1055
1056 #define target_insert_vfork_catchpoint(pid) \
1057 (*current_target.to_insert_vfork_catchpoint) (pid)
1058
1059 #define target_remove_vfork_catchpoint(pid) \
1060 (*current_target.to_remove_vfork_catchpoint) (pid)
1061
1062 /* If the inferior forks or vforks, this function will be called at
1063 the next resume in order to perform any bookkeeping and fiddling
1064 necessary to continue debugging either the parent or child, as
1065 requested, and releasing the other. Information about the fork
1066 or vfork event is available via get_last_target_status ().
1067 This function returns 1 if the inferior should not be resumed
1068 (i.e. there is another event pending). */
1069
1070 int target_follow_fork (int follow_child);
1071
1072 /* On some targets, we can catch an inferior exec event when it
1073 occurs. These functions insert/remove an already-created
1074 catchpoint for such events. They return 0 for success, 1 if the
1075 catchpoint type is not supported and -1 for failure. */
1076
1077 #define target_insert_exec_catchpoint(pid) \
1078 (*current_target.to_insert_exec_catchpoint) (pid)
1079
1080 #define target_remove_exec_catchpoint(pid) \
1081 (*current_target.to_remove_exec_catchpoint) (pid)
1082
1083 /* Syscall catch.
1084
1085 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1086 If NEEDED is zero, it means the target can disable the mechanism to
1087 catch system calls because there are no more catchpoints of this type.
1088
1089 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1090 being requested. In this case, both TABLE_SIZE and TABLE should
1091 be ignored.
1092
1093 TABLE_SIZE is the number of elements in TABLE. It only matters if
1094 ANY_COUNT is zero.
1095
1096 TABLE is an array of ints, indexed by syscall number. An element in
1097 this array is nonzero if that syscall should be caught. This argument
1098 only matters if ANY_COUNT is zero.
1099
1100 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1101 for failure. */
1102
1103 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1104 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1105 table_size, table)
1106
1107 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1108 exit code of PID, if any. */
1109
1110 #define target_has_exited(pid,wait_status,exit_status) \
1111 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1112
1113 /* The debugger has completed a blocking wait() call. There is now
1114 some process event that must be processed. This function should
1115 be defined by those targets that require the debugger to perform
1116 cleanup or internal state changes in response to the process event. */
1117
1118 /* The inferior process has died. Do what is right. */
1119
1120 void target_mourn_inferior (void);
1121
1122 /* Does target have enough data to do a run or attach command? */
1123
1124 #define target_can_run(t) \
1125 ((t)->to_can_run) ()
1126
1127 /* Set list of signals to be handled in the target.
1128
1129 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1130 (enum target_signal). For every signal whose entry in this array is
1131 non-zero, the target is allowed -but not required- to skip reporting
1132 arrival of the signal to the GDB core by returning from target_wait,
1133 and to pass the signal directly to the inferior instead.
1134
1135 However, if the target is hardware single-stepping a thread that is
1136 about to receive a signal, it needs to be reported in any case, even
1137 if mentioned in a previous target_pass_signals call. */
1138
1139 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1140
1141 /* Check to see if a thread is still alive. */
1142
1143 extern int target_thread_alive (ptid_t ptid);
1144
1145 /* Query for new threads and add them to the thread list. */
1146
1147 extern void target_find_new_threads (void);
1148
1149 /* Make target stop in a continuable fashion. (For instance, under
1150 Unix, this should act like SIGSTOP). This function is normally
1151 used by GUIs to implement a stop button. */
1152
1153 extern void target_stop (ptid_t ptid);
1154
1155 /* Send the specified COMMAND to the target's monitor
1156 (shell,interpreter) for execution. The result of the query is
1157 placed in OUTBUF. */
1158
1159 #define target_rcmd(command, outbuf) \
1160 (*current_target.to_rcmd) (command, outbuf)
1161
1162
1163 /* Does the target include all of memory, or only part of it? This
1164 determines whether we look up the target chain for other parts of
1165 memory if this target can't satisfy a request. */
1166
1167 extern int target_has_all_memory_1 (void);
1168 #define target_has_all_memory target_has_all_memory_1 ()
1169
1170 /* Does the target include memory? (Dummy targets don't.) */
1171
1172 extern int target_has_memory_1 (void);
1173 #define target_has_memory target_has_memory_1 ()
1174
1175 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1176 we start a process.) */
1177
1178 extern int target_has_stack_1 (void);
1179 #define target_has_stack target_has_stack_1 ()
1180
1181 /* Does the target have registers? (Exec files don't.) */
1182
1183 extern int target_has_registers_1 (void);
1184 #define target_has_registers target_has_registers_1 ()
1185
1186 /* Does the target have execution? Can we make it jump (through
1187 hoops), or pop its stack a few times? This means that the current
1188 target is currently executing; for some targets, that's the same as
1189 whether or not the target is capable of execution, but there are
1190 also targets which can be current while not executing. In that
1191 case this will become true after target_create_inferior or
1192 target_attach. */
1193
1194 extern int target_has_execution_1 (ptid_t);
1195
1196 /* Like target_has_execution_1, but always passes inferior_ptid. */
1197
1198 extern int target_has_execution_current (void);
1199
1200 #define target_has_execution target_has_execution_current ()
1201
1202 /* Default implementations for process_stratum targets. Return true
1203 if there's a selected inferior, false otherwise. */
1204
1205 extern int default_child_has_all_memory (struct target_ops *ops);
1206 extern int default_child_has_memory (struct target_ops *ops);
1207 extern int default_child_has_stack (struct target_ops *ops);
1208 extern int default_child_has_registers (struct target_ops *ops);
1209 extern int default_child_has_execution (struct target_ops *ops,
1210 ptid_t the_ptid);
1211
1212 /* Can the target support the debugger control of thread execution?
1213 Can it lock the thread scheduler? */
1214
1215 #define target_can_lock_scheduler \
1216 (current_target.to_has_thread_control & tc_schedlock)
1217
1218 /* Should the target enable async mode if it is supported? Temporary
1219 cludge until async mode is a strict superset of sync mode. */
1220 extern int target_async_permitted;
1221
1222 /* Can the target support asynchronous execution? */
1223 #define target_can_async_p() (current_target.to_can_async_p ())
1224
1225 /* Is the target in asynchronous execution mode? */
1226 #define target_is_async_p() (current_target.to_is_async_p ())
1227
1228 int target_supports_non_stop (void);
1229
1230 /* Put the target in async mode with the specified callback function. */
1231 #define target_async(CALLBACK,CONTEXT) \
1232 (current_target.to_async ((CALLBACK), (CONTEXT)))
1233
1234 /* This is to be used ONLY within call_function_by_hand(). It provides
1235 a workaround, to have inferior function calls done in sychronous
1236 mode, even though the target is asynchronous. After
1237 target_async_mask(0) is called, calls to target_can_async_p() will
1238 return FALSE , so that target_resume() will not try to start the
1239 target asynchronously. After the inferior stops, we IMMEDIATELY
1240 restore the previous nature of the target, by calling
1241 target_async_mask(1). After that, target_can_async_p() will return
1242 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1243
1244 FIXME ezannoni 1999-12-13: we won't need this once we move
1245 the turning async on and off to the single execution commands,
1246 from where it is done currently, in remote_resume(). */
1247
1248 #define target_async_mask(MASK) \
1249 (current_target.to_async_mask (MASK))
1250
1251 /* Converts a process id to a string. Usually, the string just contains
1252 `process xyz', but on some systems it may contain
1253 `process xyz thread abc'. */
1254
1255 extern char *target_pid_to_str (ptid_t ptid);
1256
1257 extern char *normal_pid_to_str (ptid_t ptid);
1258
1259 /* Return a short string describing extra information about PID,
1260 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1261 is okay. */
1262
1263 #define target_extra_thread_info(TP) \
1264 (current_target.to_extra_thread_info (TP))
1265
1266 /* Return the thread's name. A NULL result means that the target
1267 could not determine this thread's name. */
1268
1269 extern char *target_thread_name (struct thread_info *);
1270
1271 /* Attempts to find the pathname of the executable file
1272 that was run to create a specified process.
1273
1274 The process PID must be stopped when this operation is used.
1275
1276 If the executable file cannot be determined, NULL is returned.
1277
1278 Else, a pointer to a character string containing the pathname
1279 is returned. This string should be copied into a buffer by
1280 the client if the string will not be immediately used, or if
1281 it must persist. */
1282
1283 #define target_pid_to_exec_file(pid) \
1284 (current_target.to_pid_to_exec_file) (pid)
1285
1286 /* See the to_thread_architecture description in struct target_ops. */
1287
1288 #define target_thread_architecture(ptid) \
1289 (current_target.to_thread_architecture (&current_target, ptid))
1290
1291 /*
1292 * Iterator function for target memory regions.
1293 * Calls a callback function once for each memory region 'mapped'
1294 * in the child process. Defined as a simple macro rather than
1295 * as a function macro so that it can be tested for nullity.
1296 */
1297
1298 #define target_find_memory_regions(FUNC, DATA) \
1299 (current_target.to_find_memory_regions) (FUNC, DATA)
1300
1301 /*
1302 * Compose corefile .note section.
1303 */
1304
1305 #define target_make_corefile_notes(BFD, SIZE_P) \
1306 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1307
1308 /* Bookmark interfaces. */
1309 #define target_get_bookmark(ARGS, FROM_TTY) \
1310 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1311
1312 #define target_goto_bookmark(ARG, FROM_TTY) \
1313 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1314
1315 /* Hardware watchpoint interfaces. */
1316
1317 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1318 write). Only the INFERIOR_PTID task is being queried. */
1319
1320 #define target_stopped_by_watchpoint \
1321 (*current_target.to_stopped_by_watchpoint)
1322
1323 /* Non-zero if we have steppable watchpoints */
1324
1325 #define target_have_steppable_watchpoint \
1326 (current_target.to_have_steppable_watchpoint)
1327
1328 /* Non-zero if we have continuable watchpoints */
1329
1330 #define target_have_continuable_watchpoint \
1331 (current_target.to_have_continuable_watchpoint)
1332
1333 /* Provide defaults for hardware watchpoint functions. */
1334
1335 /* If the *_hw_beakpoint functions have not been defined
1336 elsewhere use the definitions in the target vector. */
1337
1338 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1339 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1340 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1341 (including this one?). OTHERTYPE is who knows what... */
1342
1343 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1344 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1345
1346 /* Returns the number of debug registers needed to watch the given
1347 memory region, or zero if not supported. */
1348
1349 #define target_region_ok_for_hw_watchpoint(addr, len) \
1350 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1351
1352
1353 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1354 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1355 COND is the expression for its condition, or NULL if there's none.
1356 Returns 0 for success, 1 if the watchpoint type is not supported,
1357 -1 for failure. */
1358
1359 #define target_insert_watchpoint(addr, len, type, cond) \
1360 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1361
1362 #define target_remove_watchpoint(addr, len, type, cond) \
1363 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1364
1365 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1366 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1367
1368 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1369 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1370
1371 /* Return number of debug registers needed for a ranged breakpoint,
1372 or -1 if ranged breakpoints are not supported. */
1373
1374 extern int target_ranged_break_num_registers (void);
1375
1376 /* Return non-zero if target knows the data address which triggered this
1377 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1378 INFERIOR_PTID task is being queried. */
1379 #define target_stopped_data_address(target, addr_p) \
1380 (*target.to_stopped_data_address) (target, addr_p)
1381
1382 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1383 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1384
1385 /* Return non-zero if the target is capable of using hardware to evaluate
1386 the condition expression. In this case, if the condition is false when
1387 the watched memory location changes, execution may continue without the
1388 debugger being notified.
1389
1390 Due to limitations in the hardware implementation, it may be capable of
1391 avoiding triggering the watchpoint in some cases where the condition
1392 expression is false, but may report some false positives as well.
1393 For this reason, GDB will still evaluate the condition expression when
1394 the watchpoint triggers. */
1395 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1396 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1397
1398 /* Target can execute in reverse? */
1399 #define target_can_execute_reverse \
1400 (current_target.to_can_execute_reverse ? \
1401 current_target.to_can_execute_reverse () : 0)
1402
1403 extern const struct target_desc *target_read_description (struct target_ops *);
1404
1405 #define target_get_ada_task_ptid(lwp, tid) \
1406 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1407
1408 /* Utility implementation of searching memory. */
1409 extern int simple_search_memory (struct target_ops* ops,
1410 CORE_ADDR start_addr,
1411 ULONGEST search_space_len,
1412 const gdb_byte *pattern,
1413 ULONGEST pattern_len,
1414 CORE_ADDR *found_addrp);
1415
1416 /* Main entry point for searching memory. */
1417 extern int target_search_memory (CORE_ADDR start_addr,
1418 ULONGEST search_space_len,
1419 const gdb_byte *pattern,
1420 ULONGEST pattern_len,
1421 CORE_ADDR *found_addrp);
1422
1423 /* Tracepoint-related operations. */
1424
1425 #define target_trace_init() \
1426 (*current_target.to_trace_init) ()
1427
1428 #define target_download_tracepoint(t) \
1429 (*current_target.to_download_tracepoint) (t)
1430
1431 #define target_download_trace_state_variable(tsv) \
1432 (*current_target.to_download_trace_state_variable) (tsv)
1433
1434 #define target_trace_start() \
1435 (*current_target.to_trace_start) ()
1436
1437 #define target_trace_set_readonly_regions() \
1438 (*current_target.to_trace_set_readonly_regions) ()
1439
1440 #define target_get_trace_status(ts) \
1441 (*current_target.to_get_trace_status) (ts)
1442
1443 #define target_trace_stop() \
1444 (*current_target.to_trace_stop) ()
1445
1446 #define target_trace_find(type,num,addr1,addr2,tpp) \
1447 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1448
1449 #define target_get_trace_state_variable_value(tsv,val) \
1450 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1451
1452 #define target_save_trace_data(filename) \
1453 (*current_target.to_save_trace_data) (filename)
1454
1455 #define target_upload_tracepoints(utpp) \
1456 (*current_target.to_upload_tracepoints) (utpp)
1457
1458 #define target_upload_trace_state_variables(utsvp) \
1459 (*current_target.to_upload_trace_state_variables) (utsvp)
1460
1461 #define target_get_raw_trace_data(buf,offset,len) \
1462 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1463
1464 #define target_set_disconnected_tracing(val) \
1465 (*current_target.to_set_disconnected_tracing) (val)
1466
1467 #define target_set_circular_trace_buffer(val) \
1468 (*current_target.to_set_circular_trace_buffer) (val)
1469
1470 #define target_get_tib_address(ptid, addr) \
1471 (*current_target.to_get_tib_address) ((ptid), (addr))
1472
1473 #define target_set_permissions() \
1474 (*current_target.to_set_permissions) ()
1475
1476 #define target_static_tracepoint_marker_at(addr, marker) \
1477 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1478
1479 #define target_static_tracepoint_markers_by_strid(marker_id) \
1480 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1481
1482 #define target_traceframe_info() \
1483 (*current_target.to_traceframe_info) ()
1484
1485 /* Command logging facility. */
1486
1487 #define target_log_command(p) \
1488 do \
1489 if (current_target.to_log_command) \
1490 (*current_target.to_log_command) (p); \
1491 while (0)
1492
1493
1494 extern int target_core_of_thread (ptid_t ptid);
1495
1496 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1497 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1498 if there's a mismatch, and -1 if an error is encountered while
1499 reading memory. Throws an error if the functionality is found not
1500 to be supported by the current target. */
1501 int target_verify_memory (const gdb_byte *data,
1502 CORE_ADDR memaddr, ULONGEST size);
1503
1504 /* Routines for maintenance of the target structures...
1505
1506 add_target: Add a target to the list of all possible targets.
1507
1508 push_target: Make this target the top of the stack of currently used
1509 targets, within its particular stratum of the stack. Result
1510 is 0 if now atop the stack, nonzero if not on top (maybe
1511 should warn user).
1512
1513 unpush_target: Remove this from the stack of currently used targets,
1514 no matter where it is on the list. Returns 0 if no
1515 change, 1 if removed from stack.
1516
1517 pop_target: Remove the top thing on the stack of current targets. */
1518
1519 extern void add_target (struct target_ops *);
1520
1521 extern void push_target (struct target_ops *);
1522
1523 extern int unpush_target (struct target_ops *);
1524
1525 extern void target_pre_inferior (int);
1526
1527 extern void target_preopen (int);
1528
1529 extern void pop_target (void);
1530
1531 /* Does whatever cleanup is required to get rid of all pushed targets.
1532 QUITTING is propagated to target_close; it indicates that GDB is
1533 exiting and should not get hung on an error (otherwise it is
1534 important to perform clean termination, even if it takes a
1535 while). */
1536 extern void pop_all_targets (int quitting);
1537
1538 /* Like pop_all_targets, but pops only targets whose stratum is
1539 strictly above ABOVE_STRATUM. */
1540 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1541
1542 extern int target_is_pushed (struct target_ops *t);
1543
1544 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1545 CORE_ADDR offset);
1546
1547 /* Struct target_section maps address ranges to file sections. It is
1548 mostly used with BFD files, but can be used without (e.g. for handling
1549 raw disks, or files not in formats handled by BFD). */
1550
1551 struct target_section
1552 {
1553 CORE_ADDR addr; /* Lowest address in section */
1554 CORE_ADDR endaddr; /* 1+highest address in section */
1555
1556 struct bfd_section *the_bfd_section;
1557
1558 bfd *bfd; /* BFD file pointer */
1559 };
1560
1561 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1562
1563 struct target_section_table
1564 {
1565 struct target_section *sections;
1566 struct target_section *sections_end;
1567 };
1568
1569 /* Return the "section" containing the specified address. */
1570 struct target_section *target_section_by_addr (struct target_ops *target,
1571 CORE_ADDR addr);
1572
1573 /* Return the target section table this target (or the targets
1574 beneath) currently manipulate. */
1575
1576 extern struct target_section_table *target_get_section_table
1577 (struct target_ops *target);
1578
1579 /* From mem-break.c */
1580
1581 extern int memory_remove_breakpoint (struct gdbarch *,
1582 struct bp_target_info *);
1583
1584 extern int memory_insert_breakpoint (struct gdbarch *,
1585 struct bp_target_info *);
1586
1587 extern int default_memory_remove_breakpoint (struct gdbarch *,
1588 struct bp_target_info *);
1589
1590 extern int default_memory_insert_breakpoint (struct gdbarch *,
1591 struct bp_target_info *);
1592
1593
1594 /* From target.c */
1595
1596 extern void initialize_targets (void);
1597
1598 extern void noprocess (void) ATTRIBUTE_NORETURN;
1599
1600 extern void target_require_runnable (void);
1601
1602 extern void find_default_attach (struct target_ops *, char *, int);
1603
1604 extern void find_default_create_inferior (struct target_ops *,
1605 char *, char *, char **, int);
1606
1607 extern struct target_ops *find_run_target (void);
1608
1609 extern struct target_ops *find_target_beneath (struct target_ops *);
1610
1611 /* Read OS data object of type TYPE from the target, and return it in
1612 XML format. The result is NUL-terminated and returned as a string,
1613 allocated using xmalloc. If an error occurs or the transfer is
1614 unsupported, NULL is returned. Empty objects are returned as
1615 allocated but empty strings. */
1616
1617 extern char *target_get_osdata (const char *type);
1618
1619 \f
1620 /* Stuff that should be shared among the various remote targets. */
1621
1622 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1623 information (higher values, more information). */
1624 extern int remote_debug;
1625
1626 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1627 extern int baud_rate;
1628 /* Timeout limit for response from target. */
1629 extern int remote_timeout;
1630
1631 \f
1632 /* Functions for helping to write a native target. */
1633
1634 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1635 extern void store_waitstatus (struct target_waitstatus *, int);
1636
1637 /* These are in common/signals.c, but they're only used by gdb. */
1638 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1639 int);
1640 extern int default_target_signal_to_host (struct gdbarch *,
1641 enum target_signal);
1642
1643 /* Convert from a number used in a GDB command to an enum target_signal. */
1644 extern enum target_signal target_signal_from_command (int);
1645 /* End of files in common/signals.c. */
1646
1647 /* Set the show memory breakpoints mode to show, and installs a cleanup
1648 to restore it back to the current value. */
1649 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1650
1651 extern int may_write_registers;
1652 extern int may_write_memory;
1653 extern int may_insert_breakpoints;
1654 extern int may_insert_tracepoints;
1655 extern int may_insert_fast_tracepoints;
1656 extern int may_stop;
1657
1658 extern void update_target_permissions (void);
1659
1660 \f
1661 /* Imported from machine dependent code. */
1662
1663 /* Blank target vector entries are initialized to target_ignore. */
1664 void target_ignore (void);
1665
1666 #endif /* !defined (TARGET_H) */
This page took 0.06466 seconds and 4 git commands to generate.