* gdbarch.sh (fetch_tls_load_module_address): New architecture method.
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support. Written by John Gilmore.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #if !defined (TARGET_H)
26 #define TARGET_H
27
28 struct objfile;
29 struct ui_file;
30 struct mem_attrib;
31 struct target_ops;
32
33 /* This include file defines the interface between the main part
34 of the debugger, and the part which is target-specific, or
35 specific to the communications interface between us and the
36 target.
37
38 A TARGET is an interface between the debugger and a particular
39 kind of file or process. Targets can be STACKED in STRATA,
40 so that more than one target can potentially respond to a request.
41 In particular, memory accesses will walk down the stack of targets
42 until they find a target that is interested in handling that particular
43 address. STRATA are artificial boundaries on the stack, within
44 which particular kinds of targets live. Strata exist so that
45 people don't get confused by pushing e.g. a process target and then
46 a file target, and wondering why they can't see the current values
47 of variables any more (the file target is handling them and they
48 never get to the process target). So when you push a file target,
49 it goes into the file stratum, which is always below the process
50 stratum. */
51
52 #include "bfd.h"
53 #include "symtab.h"
54 #include "dcache.h"
55 #include "memattr.h"
56
57 enum strata
58 {
59 dummy_stratum, /* The lowest of the low */
60 file_stratum, /* Executable files, etc */
61 core_stratum, /* Core dump files */
62 download_stratum, /* Downloading of remote targets */
63 process_stratum, /* Executing processes */
64 thread_stratum /* Executing threads */
65 };
66
67 enum thread_control_capabilities
68 {
69 tc_none = 0, /* Default: can't control thread execution. */
70 tc_schedlock = 1, /* Can lock the thread scheduler. */
71 tc_switch = 2 /* Can switch the running thread on demand. */
72 };
73
74 /* Stuff for target_wait. */
75
76 /* Generally, what has the program done? */
77 enum target_waitkind
78 {
79 /* The program has exited. The exit status is in value.integer. */
80 TARGET_WAITKIND_EXITED,
81
82 /* The program has stopped with a signal. Which signal is in
83 value.sig. */
84 TARGET_WAITKIND_STOPPED,
85
86 /* The program has terminated with a signal. Which signal is in
87 value.sig. */
88 TARGET_WAITKIND_SIGNALLED,
89
90 /* The program is letting us know that it dynamically loaded something
91 (e.g. it called load(2) on AIX). */
92 TARGET_WAITKIND_LOADED,
93
94 /* The program has forked. A "related" process' ID is in
95 value.related_pid. I.e., if the child forks, value.related_pid
96 is the parent's ID. */
97
98 TARGET_WAITKIND_FORKED,
99
100 /* The program has vforked. A "related" process's ID is in
101 value.related_pid. */
102
103 TARGET_WAITKIND_VFORKED,
104
105 /* The program has exec'ed a new executable file. The new file's
106 pathname is pointed to by value.execd_pathname. */
107
108 TARGET_WAITKIND_EXECD,
109
110 /* The program has entered or returned from a system call. On
111 HP-UX, this is used in the hardware watchpoint implementation.
112 The syscall's unique integer ID number is in value.syscall_id */
113
114 TARGET_WAITKIND_SYSCALL_ENTRY,
115 TARGET_WAITKIND_SYSCALL_RETURN,
116
117 /* Nothing happened, but we stopped anyway. This perhaps should be handled
118 within target_wait, but I'm not sure target_wait should be resuming the
119 inferior. */
120 TARGET_WAITKIND_SPURIOUS,
121
122 /* An event has occured, but we should wait again.
123 Remote_async_wait() returns this when there is an event
124 on the inferior, but the rest of the world is not interested in
125 it. The inferior has not stopped, but has just sent some output
126 to the console, for instance. In this case, we want to go back
127 to the event loop and wait there for another event from the
128 inferior, rather than being stuck in the remote_async_wait()
129 function. This way the event loop is responsive to other events,
130 like for instance the user typing. */
131 TARGET_WAITKIND_IGNORE
132 };
133
134 struct target_waitstatus
135 {
136 enum target_waitkind kind;
137
138 /* Forked child pid, execd pathname, exit status or signal number. */
139 union
140 {
141 int integer;
142 enum target_signal sig;
143 int related_pid;
144 char *execd_pathname;
145 int syscall_id;
146 }
147 value;
148 };
149
150 /* Possible types of events that the inferior handler will have to
151 deal with. */
152 enum inferior_event_type
153 {
154 /* There is a request to quit the inferior, abandon it. */
155 INF_QUIT_REQ,
156 /* Process a normal inferior event which will result in target_wait
157 being called. */
158 INF_REG_EVENT,
159 /* Deal with an error on the inferior. */
160 INF_ERROR,
161 /* We are called because a timer went off. */
162 INF_TIMER,
163 /* We are called to do stuff after the inferior stops. */
164 INF_EXEC_COMPLETE,
165 /* We are called to do some stuff after the inferior stops, but we
166 are expected to reenter the proceed() and
167 handle_inferior_event() functions. This is used only in case of
168 'step n' like commands. */
169 INF_EXEC_CONTINUE
170 };
171
172 /* Return the string for a signal. */
173 extern char *target_signal_to_string (enum target_signal);
174
175 /* Return the name (SIGHUP, etc.) for a signal. */
176 extern char *target_signal_to_name (enum target_signal);
177
178 /* Given a name (SIGHUP, etc.), return its signal. */
179 enum target_signal target_signal_from_name (char *);
180 \f
181 /* Request the transfer of up to LEN 8-bit bytes of the target's
182 OBJECT. The OFFSET, for a seekable object, specifies the starting
183 point. The ANNEX can be used to provide additional data-specific
184 information to the target.
185
186 Return the number of bytes actually transfered, zero when no
187 further transfer is possible, and -1 when the transfer is not
188 supported.
189
190 NOTE: cagney/2003-10-17: The current interface does not support a
191 "retry" mechanism. Instead it assumes that at least one byte will
192 be transfered on each call.
193
194 NOTE: cagney/2003-10-17: The current interface can lead to
195 fragmented transfers. Lower target levels should not implement
196 hacks, such as enlarging the transfer, in an attempt to compensate
197 for this. Instead, the target stack should be extended so that it
198 implements supply/collect methods and a look-aside object cache.
199 With that available, the lowest target can safely and freely "push"
200 data up the stack.
201
202 NOTE: cagney/2003-10-17: Unlike the old query and the memory
203 transfer mechanisms, these methods are explicitly parameterized by
204 the target that it should be applied to.
205
206 NOTE: cagney/2003-10-17: Just like the old query and memory xfer
207 methods, these new methods perform partial transfers. The only
208 difference is that these new methods thought to include "partial"
209 in the name. The old code's failure to do this lead to much
210 confusion and duplication of effort as each target object attempted
211 to locally take responsibility for something it didn't have to
212 worry about.
213
214 NOTE: cagney/2003-10-17: With a TARGET_OBJECT_KOD object, for
215 backward compatibility with the "target_query" method that this
216 replaced, when OFFSET and LEN are both zero, return the "minimum"
217 buffer size. See "remote.c" for further information. */
218
219 enum target_object
220 {
221 /* Kernel Object Display transfer. See "kod.c" and "remote.c". */
222 TARGET_OBJECT_KOD,
223 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
224 TARGET_OBJECT_AVR,
225 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
226 TARGET_OBJECT_MEMORY,
227 /* Kernel Unwind Table. See "ia64-tdep.c". */
228 TARGET_OBJECT_UNWIND_TABLE,
229 /* Transfer auxilliary vector. */
230 TARGET_OBJECT_AUXV,
231 /* StackGhost cookie. See "sparc-tdep.c". */
232 TARGET_OBJECT_WCOOKIE
233
234 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
235 };
236
237 extern LONGEST target_read_partial (struct target_ops *ops,
238 enum target_object object,
239 const char *annex, void *buf,
240 ULONGEST offset, LONGEST len);
241
242 extern LONGEST target_write_partial (struct target_ops *ops,
243 enum target_object object,
244 const char *annex, const void *buf,
245 ULONGEST offset, LONGEST len);
246
247 /* Wrappers to perform the full transfer. */
248 extern LONGEST target_read (struct target_ops *ops,
249 enum target_object object,
250 const char *annex, void *buf,
251 ULONGEST offset, LONGEST len);
252
253 extern LONGEST target_write (struct target_ops *ops,
254 enum target_object object,
255 const char *annex, const void *buf,
256 ULONGEST offset, LONGEST len);
257
258 /* Wrappers to target read/write that perform memory transfers. They
259 throw an error if the memory transfer fails.
260
261 NOTE: cagney/2003-10-23: The naming schema is lifted from
262 "frame.h". The parameter order is lifted from get_frame_memory,
263 which in turn lifted it from read_memory. */
264
265 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
266 void *buf, LONGEST len);
267 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
268 CORE_ADDR addr, int len);
269 \f
270
271 /* If certain kinds of activity happen, target_wait should perform
272 callbacks. */
273 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
274 on TARGET_ACTIVITY_FD. */
275 extern int target_activity_fd;
276 /* Returns zero to leave the inferior alone, one to interrupt it. */
277 extern int (*target_activity_function) (void);
278 \f
279 struct thread_info; /* fwd decl for parameter list below: */
280
281 struct target_ops
282 {
283 struct target_ops *beneath; /* To the target under this one. */
284 char *to_shortname; /* Name this target type */
285 char *to_longname; /* Name for printing */
286 char *to_doc; /* Documentation. Does not include trailing
287 newline, and starts with a one-line descrip-
288 tion (probably similar to to_longname). */
289 /* Per-target scratch pad. */
290 void *to_data;
291 /* The open routine takes the rest of the parameters from the
292 command, and (if successful) pushes a new target onto the
293 stack. Targets should supply this routine, if only to provide
294 an error message. */
295 void (*to_open) (char *, int);
296 /* Old targets with a static target vector provide "to_close".
297 New re-entrant targets provide "to_xclose" and that is expected
298 to xfree everything (including the "struct target_ops"). */
299 void (*to_xclose) (struct target_ops *targ, int quitting);
300 void (*to_close) (int);
301 void (*to_attach) (char *, int);
302 void (*to_post_attach) (int);
303 void (*to_detach) (char *, int);
304 void (*to_disconnect) (char *, int);
305 void (*to_resume) (ptid_t, int, enum target_signal);
306 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
307 void (*to_fetch_registers) (int);
308 void (*to_store_registers) (int);
309 void (*to_prepare_to_store) (void);
310
311 /* Transfer LEN bytes of memory between GDB address MYADDR and
312 target address MEMADDR. If WRITE, transfer them to the target, else
313 transfer them from the target. TARGET is the target from which we
314 get this function.
315
316 Return value, N, is one of the following:
317
318 0 means that we can't handle this. If errno has been set, it is the
319 error which prevented us from doing it (FIXME: What about bfd_error?).
320
321 positive (call it N) means that we have transferred N bytes
322 starting at MEMADDR. We might be able to handle more bytes
323 beyond this length, but no promises.
324
325 negative (call its absolute value N) means that we cannot
326 transfer right at MEMADDR, but we could transfer at least
327 something at MEMADDR + N.
328
329 NOTE: cagney/2004-10-01: This has been entirely superseeded by
330 to_xfer_partial and inferior inheritance. */
331
332 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
333 int len, int write,
334 struct mem_attrib *attrib,
335 struct target_ops *target);
336
337 void (*to_files_info) (struct target_ops *);
338 int (*to_insert_breakpoint) (CORE_ADDR, char *);
339 int (*to_remove_breakpoint) (CORE_ADDR, char *);
340 int (*to_can_use_hw_breakpoint) (int, int, int);
341 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
342 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
343 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
344 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
345 int (*to_stopped_by_watchpoint) (void);
346 int to_have_continuable_watchpoint;
347 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
348 int (*to_region_size_ok_for_hw_watchpoint) (int);
349 void (*to_terminal_init) (void);
350 void (*to_terminal_inferior) (void);
351 void (*to_terminal_ours_for_output) (void);
352 void (*to_terminal_ours) (void);
353 void (*to_terminal_save_ours) (void);
354 void (*to_terminal_info) (char *, int);
355 void (*to_kill) (void);
356 void (*to_load) (char *, int);
357 int (*to_lookup_symbol) (char *, CORE_ADDR *);
358 void (*to_create_inferior) (char *, char *, char **, int);
359 void (*to_post_startup_inferior) (ptid_t);
360 void (*to_acknowledge_created_inferior) (int);
361 void (*to_insert_fork_catchpoint) (int);
362 int (*to_remove_fork_catchpoint) (int);
363 void (*to_insert_vfork_catchpoint) (int);
364 int (*to_remove_vfork_catchpoint) (int);
365 int (*to_follow_fork) (int);
366 void (*to_insert_exec_catchpoint) (int);
367 int (*to_remove_exec_catchpoint) (int);
368 int (*to_reported_exec_events_per_exec_call) (void);
369 int (*to_has_exited) (int, int, int *);
370 void (*to_mourn_inferior) (void);
371 int (*to_can_run) (void);
372 void (*to_notice_signals) (ptid_t ptid);
373 int (*to_thread_alive) (ptid_t ptid);
374 void (*to_find_new_threads) (void);
375 char *(*to_pid_to_str) (ptid_t);
376 char *(*to_extra_thread_info) (struct thread_info *);
377 void (*to_stop) (void);
378 void (*to_rcmd) (char *command, struct ui_file *output);
379 struct symtab_and_line *(*to_enable_exception_callback) (enum
380 exception_event_kind,
381 int);
382 struct exception_event_record *(*to_get_current_exception_event) (void);
383 char *(*to_pid_to_exec_file) (int pid);
384 enum strata to_stratum;
385 int to_has_all_memory;
386 int to_has_memory;
387 int to_has_stack;
388 int to_has_registers;
389 int to_has_execution;
390 int to_has_thread_control; /* control thread execution */
391 struct section_table
392 *to_sections;
393 struct section_table
394 *to_sections_end;
395 /* ASYNC target controls */
396 int (*to_can_async_p) (void);
397 int (*to_is_async_p) (void);
398 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
399 void *context);
400 int to_async_mask_value;
401 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
402 unsigned long,
403 int, int, int,
404 void *),
405 void *);
406 char * (*to_make_corefile_notes) (bfd *, int *);
407
408 /* Return the thread-local address at OFFSET in the
409 thread-local storage for the thread PTID and the shared library
410 or executable file given by OBJFILE. If that block of
411 thread-local storage hasn't been allocated yet, this function
412 may return an error. */
413 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
414 CORE_ADDR load_module_addr,
415 CORE_ADDR offset);
416
417 /* Perform partial transfers on OBJECT. See target_read_partial
418 and target_write_partial for details of each variant. One, and
419 only one, of readbuf or writebuf must be non-NULL. */
420 LONGEST (*to_xfer_partial) (struct target_ops *ops,
421 enum target_object object, const char *annex,
422 void *readbuf, const void *writebuf,
423 ULONGEST offset, LONGEST len);
424
425 int to_magic;
426 /* Need sub-structure for target machine related rather than comm related?
427 */
428 };
429
430 /* Magic number for checking ops size. If a struct doesn't end with this
431 number, somebody changed the declaration but didn't change all the
432 places that initialize one. */
433
434 #define OPS_MAGIC 3840
435
436 /* The ops structure for our "current" target process. This should
437 never be NULL. If there is no target, it points to the dummy_target. */
438
439 extern struct target_ops current_target;
440
441 /* Define easy words for doing these operations on our current target. */
442
443 #define target_shortname (current_target.to_shortname)
444 #define target_longname (current_target.to_longname)
445
446 /* Does whatever cleanup is required for a target that we are no
447 longer going to be calling. QUITTING indicates that GDB is exiting
448 and should not get hung on an error (otherwise it is important to
449 perform clean termination, even if it takes a while). This routine
450 is automatically always called when popping the target off the
451 target stack (to_beneath is undefined). Closing file descriptors
452 and freeing all memory allocated memory are typical things it
453 should do. */
454
455 void target_close (struct target_ops *targ, int quitting);
456
457 /* Attaches to a process on the target side. Arguments are as passed
458 to the `attach' command by the user. This routine can be called
459 when the target is not on the target-stack, if the target_can_run
460 routine returns 1; in that case, it must push itself onto the stack.
461 Upon exit, the target should be ready for normal operations, and
462 should be ready to deliver the status of the process immediately
463 (without waiting) to an upcoming target_wait call. */
464
465 #define target_attach(args, from_tty) \
466 (*current_target.to_attach) (args, from_tty)
467
468 /* The target_attach operation places a process under debugger control,
469 and stops the process.
470
471 This operation provides a target-specific hook that allows the
472 necessary bookkeeping to be performed after an attach completes. */
473 #define target_post_attach(pid) \
474 (*current_target.to_post_attach) (pid)
475
476 /* Takes a program previously attached to and detaches it.
477 The program may resume execution (some targets do, some don't) and will
478 no longer stop on signals, etc. We better not have left any breakpoints
479 in the program or it'll die when it hits one. ARGS is arguments
480 typed by the user (e.g. a signal to send the process). FROM_TTY
481 says whether to be verbose or not. */
482
483 extern void target_detach (char *, int);
484
485 /* Disconnect from the current target without resuming it (leaving it
486 waiting for a debugger). */
487
488 extern void target_disconnect (char *, int);
489
490 /* Resume execution of the target process PTID. STEP says whether to
491 single-step or to run free; SIGGNAL is the signal to be given to
492 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
493 pass TARGET_SIGNAL_DEFAULT. */
494
495 #define target_resume(ptid, step, siggnal) \
496 do { \
497 dcache_invalidate(target_dcache); \
498 (*current_target.to_resume) (ptid, step, siggnal); \
499 } while (0)
500
501 /* Wait for process pid to do something. PTID = -1 to wait for any
502 pid to do something. Return pid of child, or -1 in case of error;
503 store status through argument pointer STATUS. Note that it is
504 _NOT_ OK to throw_exception() out of target_wait() without popping
505 the debugging target from the stack; GDB isn't prepared to get back
506 to the prompt with a debugging target but without the frame cache,
507 stop_pc, etc., set up. */
508
509 #define target_wait(ptid, status) \
510 (*current_target.to_wait) (ptid, status)
511
512 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
513
514 #define target_fetch_registers(regno) \
515 (*current_target.to_fetch_registers) (regno)
516
517 /* Store at least register REGNO, or all regs if REGNO == -1.
518 It can store as many registers as it wants to, so target_prepare_to_store
519 must have been previously called. Calls error() if there are problems. */
520
521 #define target_store_registers(regs) \
522 (*current_target.to_store_registers) (regs)
523
524 /* Get ready to modify the registers array. On machines which store
525 individual registers, this doesn't need to do anything. On machines
526 which store all the registers in one fell swoop, this makes sure
527 that REGISTERS contains all the registers from the program being
528 debugged. */
529
530 #define target_prepare_to_store() \
531 (*current_target.to_prepare_to_store) ()
532
533 extern DCACHE *target_dcache;
534
535 extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
536 struct mem_attrib *attrib);
537
538 extern int target_read_string (CORE_ADDR, char **, int, int *);
539
540 extern int target_read_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len);
541
542 extern int target_write_memory (CORE_ADDR memaddr, const bfd_byte *myaddr,
543 int len);
544
545 extern int xfer_memory (CORE_ADDR, char *, int, int,
546 struct mem_attrib *, struct target_ops *);
547
548 extern int child_xfer_memory (CORE_ADDR, char *, int, int,
549 struct mem_attrib *, struct target_ops *);
550
551 /* Make a single attempt at transfering LEN bytes. On a successful
552 transfer, the number of bytes actually transfered is returned and
553 ERR is set to 0. When a transfer fails, -1 is returned (the number
554 of bytes actually transfered is not defined) and ERR is set to a
555 non-zero error indication. */
556
557 extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
558 int *err);
559
560 extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
561 int *err);
562
563 extern char *child_pid_to_exec_file (int);
564
565 extern char *child_core_file_to_sym_file (char *);
566
567 #if defined(CHILD_POST_ATTACH)
568 extern void child_post_attach (int);
569 #endif
570
571 extern void child_post_startup_inferior (ptid_t);
572
573 extern void child_acknowledge_created_inferior (int);
574
575 extern void child_insert_fork_catchpoint (int);
576
577 extern int child_remove_fork_catchpoint (int);
578
579 extern void child_insert_vfork_catchpoint (int);
580
581 extern int child_remove_vfork_catchpoint (int);
582
583 extern void child_acknowledge_created_inferior (int);
584
585 extern int child_follow_fork (int);
586
587 extern void child_insert_exec_catchpoint (int);
588
589 extern int child_remove_exec_catchpoint (int);
590
591 extern int child_reported_exec_events_per_exec_call (void);
592
593 extern int child_has_exited (int, int, int *);
594
595 extern int child_thread_alive (ptid_t);
596
597 /* From infrun.c. */
598
599 extern int inferior_has_forked (int pid, int *child_pid);
600
601 extern int inferior_has_vforked (int pid, int *child_pid);
602
603 extern int inferior_has_execd (int pid, char **execd_pathname);
604
605 /* From exec.c */
606
607 extern void print_section_info (struct target_ops *, bfd *);
608
609 /* Print a line about the current target. */
610
611 #define target_files_info() \
612 (*current_target.to_files_info) (&current_target)
613
614 /* Insert a breakpoint at address ADDR in the target machine. SAVE is
615 a pointer to memory allocated for saving the target contents. It
616 is guaranteed by the caller to be long enough to save the number of
617 breakpoint bytes indicated by BREAKPOINT_FROM_PC. Result is 0 for
618 success, or an errno value. */
619
620 #define target_insert_breakpoint(addr, save) \
621 (*current_target.to_insert_breakpoint) (addr, save)
622
623 /* Remove a breakpoint at address ADDR in the target machine.
624 SAVE is a pointer to the same save area
625 that was previously passed to target_insert_breakpoint.
626 Result is 0 for success, or an errno value. */
627
628 #define target_remove_breakpoint(addr, save) \
629 (*current_target.to_remove_breakpoint) (addr, save)
630
631 /* Initialize the terminal settings we record for the inferior,
632 before we actually run the inferior. */
633
634 #define target_terminal_init() \
635 (*current_target.to_terminal_init) ()
636
637 /* Put the inferior's terminal settings into effect.
638 This is preparation for starting or resuming the inferior. */
639
640 #define target_terminal_inferior() \
641 (*current_target.to_terminal_inferior) ()
642
643 /* Put some of our terminal settings into effect,
644 enough to get proper results from our output,
645 but do not change into or out of RAW mode
646 so that no input is discarded.
647
648 After doing this, either terminal_ours or terminal_inferior
649 should be called to get back to a normal state of affairs. */
650
651 #define target_terminal_ours_for_output() \
652 (*current_target.to_terminal_ours_for_output) ()
653
654 /* Put our terminal settings into effect.
655 First record the inferior's terminal settings
656 so they can be restored properly later. */
657
658 #define target_terminal_ours() \
659 (*current_target.to_terminal_ours) ()
660
661 /* Save our terminal settings.
662 This is called from TUI after entering or leaving the curses
663 mode. Since curses modifies our terminal this call is here
664 to take this change into account. */
665
666 #define target_terminal_save_ours() \
667 (*current_target.to_terminal_save_ours) ()
668
669 /* Print useful information about our terminal status, if such a thing
670 exists. */
671
672 #define target_terminal_info(arg, from_tty) \
673 (*current_target.to_terminal_info) (arg, from_tty)
674
675 /* Kill the inferior process. Make it go away. */
676
677 #define target_kill() \
678 (*current_target.to_kill) ()
679
680 /* Load an executable file into the target process. This is expected
681 to not only bring new code into the target process, but also to
682 update GDB's symbol tables to match. */
683
684 extern void target_load (char *arg, int from_tty);
685
686 /* Look up a symbol in the target's symbol table. NAME is the symbol
687 name. ADDRP is a CORE_ADDR * pointing to where the value of the
688 symbol should be returned. The result is 0 if successful, nonzero
689 if the symbol does not exist in the target environment. This
690 function should not call error() if communication with the target
691 is interrupted, since it is called from symbol reading, but should
692 return nonzero, possibly doing a complain(). */
693
694 #define target_lookup_symbol(name, addrp) \
695 (*current_target.to_lookup_symbol) (name, addrp)
696
697 /* Start an inferior process and set inferior_ptid to its pid.
698 EXEC_FILE is the file to run.
699 ALLARGS is a string containing the arguments to the program.
700 ENV is the environment vector to pass. Errors reported with error().
701 On VxWorks and various standalone systems, we ignore exec_file. */
702
703 #define target_create_inferior(exec_file, args, env, FROM_TTY) \
704 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
705
706
707 /* Some targets (such as ttrace-based HPUX) don't allow us to request
708 notification of inferior events such as fork and vork immediately
709 after the inferior is created. (This because of how gdb gets an
710 inferior created via invoking a shell to do it. In such a scenario,
711 if the shell init file has commands in it, the shell will fork and
712 exec for each of those commands, and we will see each such fork
713 event. Very bad.)
714
715 Such targets will supply an appropriate definition for this function. */
716
717 #define target_post_startup_inferior(ptid) \
718 (*current_target.to_post_startup_inferior) (ptid)
719
720 /* On some targets, the sequence of starting up an inferior requires
721 some synchronization between gdb and the new inferior process, PID. */
722
723 #define target_acknowledge_created_inferior(pid) \
724 (*current_target.to_acknowledge_created_inferior) (pid)
725
726 /* On some targets, we can catch an inferior fork or vfork event when
727 it occurs. These functions insert/remove an already-created
728 catchpoint for such events. */
729
730 #define target_insert_fork_catchpoint(pid) \
731 (*current_target.to_insert_fork_catchpoint) (pid)
732
733 #define target_remove_fork_catchpoint(pid) \
734 (*current_target.to_remove_fork_catchpoint) (pid)
735
736 #define target_insert_vfork_catchpoint(pid) \
737 (*current_target.to_insert_vfork_catchpoint) (pid)
738
739 #define target_remove_vfork_catchpoint(pid) \
740 (*current_target.to_remove_vfork_catchpoint) (pid)
741
742 /* If the inferior forks or vforks, this function will be called at
743 the next resume in order to perform any bookkeeping and fiddling
744 necessary to continue debugging either the parent or child, as
745 requested, and releasing the other. Information about the fork
746 or vfork event is available via get_last_target_status ().
747 This function returns 1 if the inferior should not be resumed
748 (i.e. there is another event pending). */
749
750 #define target_follow_fork(follow_child) \
751 (*current_target.to_follow_fork) (follow_child)
752
753 /* On some targets, we can catch an inferior exec event when it
754 occurs. These functions insert/remove an already-created
755 catchpoint for such events. */
756
757 #define target_insert_exec_catchpoint(pid) \
758 (*current_target.to_insert_exec_catchpoint) (pid)
759
760 #define target_remove_exec_catchpoint(pid) \
761 (*current_target.to_remove_exec_catchpoint) (pid)
762
763 /* Returns the number of exec events that are reported when a process
764 invokes a flavor of the exec() system call on this target, if exec
765 events are being reported. */
766
767 #define target_reported_exec_events_per_exec_call() \
768 (*current_target.to_reported_exec_events_per_exec_call) ()
769
770 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
771 exit code of PID, if any. */
772
773 #define target_has_exited(pid,wait_status,exit_status) \
774 (*current_target.to_has_exited) (pid,wait_status,exit_status)
775
776 /* The debugger has completed a blocking wait() call. There is now
777 some process event that must be processed. This function should
778 be defined by those targets that require the debugger to perform
779 cleanup or internal state changes in response to the process event. */
780
781 /* The inferior process has died. Do what is right. */
782
783 #define target_mourn_inferior() \
784 (*current_target.to_mourn_inferior) ()
785
786 /* Does target have enough data to do a run or attach command? */
787
788 #define target_can_run(t) \
789 ((t)->to_can_run) ()
790
791 /* post process changes to signal handling in the inferior. */
792
793 #define target_notice_signals(ptid) \
794 (*current_target.to_notice_signals) (ptid)
795
796 /* Check to see if a thread is still alive. */
797
798 #define target_thread_alive(ptid) \
799 (*current_target.to_thread_alive) (ptid)
800
801 /* Query for new threads and add them to the thread list. */
802
803 #define target_find_new_threads() \
804 (*current_target.to_find_new_threads) (); \
805
806 /* Make target stop in a continuable fashion. (For instance, under
807 Unix, this should act like SIGSTOP). This function is normally
808 used by GUIs to implement a stop button. */
809
810 #define target_stop current_target.to_stop
811
812 /* Send the specified COMMAND to the target's monitor
813 (shell,interpreter) for execution. The result of the query is
814 placed in OUTBUF. */
815
816 #define target_rcmd(command, outbuf) \
817 (*current_target.to_rcmd) (command, outbuf)
818
819
820 /* Get the symbol information for a breakpointable routine called when
821 an exception event occurs.
822 Intended mainly for C++, and for those
823 platforms/implementations where such a callback mechanism is available,
824 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
825 different mechanisms for debugging exceptions. */
826
827 #define target_enable_exception_callback(kind, enable) \
828 (*current_target.to_enable_exception_callback) (kind, enable)
829
830 /* Get the current exception event kind -- throw or catch, etc. */
831
832 #define target_get_current_exception_event() \
833 (*current_target.to_get_current_exception_event) ()
834
835 /* Does the target include all of memory, or only part of it? This
836 determines whether we look up the target chain for other parts of
837 memory if this target can't satisfy a request. */
838
839 #define target_has_all_memory \
840 (current_target.to_has_all_memory)
841
842 /* Does the target include memory? (Dummy targets don't.) */
843
844 #define target_has_memory \
845 (current_target.to_has_memory)
846
847 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
848 we start a process.) */
849
850 #define target_has_stack \
851 (current_target.to_has_stack)
852
853 /* Does the target have registers? (Exec files don't.) */
854
855 #define target_has_registers \
856 (current_target.to_has_registers)
857
858 /* Does the target have execution? Can we make it jump (through
859 hoops), or pop its stack a few times? FIXME: If this is to work that
860 way, it needs to check whether an inferior actually exists.
861 remote-udi.c and probably other targets can be the current target
862 when the inferior doesn't actually exist at the moment. Right now
863 this just tells us whether this target is *capable* of execution. */
864
865 #define target_has_execution \
866 (current_target.to_has_execution)
867
868 /* Can the target support the debugger control of thread execution?
869 a) Can it lock the thread scheduler?
870 b) Can it switch the currently running thread? */
871
872 #define target_can_lock_scheduler \
873 (current_target.to_has_thread_control & tc_schedlock)
874
875 #define target_can_switch_threads \
876 (current_target.to_has_thread_control & tc_switch)
877
878 /* Can the target support asynchronous execution? */
879 #define target_can_async_p() (current_target.to_can_async_p ())
880
881 /* Is the target in asynchronous execution mode? */
882 #define target_is_async_p() (current_target.to_is_async_p())
883
884 /* Put the target in async mode with the specified callback function. */
885 #define target_async(CALLBACK,CONTEXT) \
886 (current_target.to_async((CALLBACK), (CONTEXT)))
887
888 /* This is to be used ONLY within call_function_by_hand(). It provides
889 a workaround, to have inferior function calls done in sychronous
890 mode, even though the target is asynchronous. After
891 target_async_mask(0) is called, calls to target_can_async_p() will
892 return FALSE , so that target_resume() will not try to start the
893 target asynchronously. After the inferior stops, we IMMEDIATELY
894 restore the previous nature of the target, by calling
895 target_async_mask(1). After that, target_can_async_p() will return
896 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
897
898 FIXME ezannoni 1999-12-13: we won't need this once we move
899 the turning async on and off to the single execution commands,
900 from where it is done currently, in remote_resume(). */
901
902 #define target_async_mask_value \
903 (current_target.to_async_mask_value)
904
905 extern int target_async_mask (int mask);
906
907 extern void target_link (char *, CORE_ADDR *);
908
909 /* Converts a process id to a string. Usually, the string just contains
910 `process xyz', but on some systems it may contain
911 `process xyz thread abc'. */
912
913 #undef target_pid_to_str
914 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
915
916 #ifndef target_tid_to_str
917 #define target_tid_to_str(PID) \
918 target_pid_to_str (PID)
919 extern char *normal_pid_to_str (ptid_t ptid);
920 #endif
921
922 /* Return a short string describing extra information about PID,
923 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
924 is okay. */
925
926 #define target_extra_thread_info(TP) \
927 (current_target.to_extra_thread_info (TP))
928
929 /*
930 * New Objfile Event Hook:
931 *
932 * Sometimes a GDB component wants to get notified whenever a new
933 * objfile is loaded. Mainly this is used by thread-debugging
934 * implementations that need to know when symbols for the target
935 * thread implemenation are available.
936 *
937 * The old way of doing this is to define a macro 'target_new_objfile'
938 * that points to the function that you want to be called on every
939 * objfile/shlib load.
940
941 The new way is to grab the function pointer,
942 'deprecated_target_new_objfile_hook', and point it to the function
943 that you want to be called on every objfile/shlib load.
944
945 If multiple clients are willing to be cooperative, they can each
946 save a pointer to the previous value of
947 deprecated_target_new_objfile_hook before modifying it, and arrange
948 for their function to call the previous function in the chain. In
949 that way, multiple clients can receive this notification (something
950 like with signal handlers). */
951
952 extern void (*deprecated_target_new_objfile_hook) (struct objfile *);
953
954 #ifndef target_pid_or_tid_to_str
955 #define target_pid_or_tid_to_str(ID) \
956 target_pid_to_str (ID)
957 #endif
958
959 /* Attempts to find the pathname of the executable file
960 that was run to create a specified process.
961
962 The process PID must be stopped when this operation is used.
963
964 If the executable file cannot be determined, NULL is returned.
965
966 Else, a pointer to a character string containing the pathname
967 is returned. This string should be copied into a buffer by
968 the client if the string will not be immediately used, or if
969 it must persist. */
970
971 #define target_pid_to_exec_file(pid) \
972 (current_target.to_pid_to_exec_file) (pid)
973
974 /*
975 * Iterator function for target memory regions.
976 * Calls a callback function once for each memory region 'mapped'
977 * in the child process. Defined as a simple macro rather than
978 * as a function macro so that it can be tested for nullity.
979 */
980
981 #define target_find_memory_regions(FUNC, DATA) \
982 (current_target.to_find_memory_regions) (FUNC, DATA)
983
984 /*
985 * Compose corefile .note section.
986 */
987
988 #define target_make_corefile_notes(BFD, SIZE_P) \
989 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
990
991 /* Thread-local values. */
992 #define target_get_thread_local_address \
993 (current_target.to_get_thread_local_address)
994 #define target_get_thread_local_address_p() \
995 (target_get_thread_local_address != NULL)
996
997 /* Hook to call target dependent code just after inferior target process has
998 started. */
999
1000 #ifndef TARGET_CREATE_INFERIOR_HOOK
1001 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1002 #endif
1003
1004 /* Hardware watchpoint interfaces. */
1005
1006 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1007 write). */
1008
1009 #ifndef STOPPED_BY_WATCHPOINT
1010 #define STOPPED_BY_WATCHPOINT(w) \
1011 (*current_target.to_stopped_by_watchpoint) ()
1012 #endif
1013
1014 /* Non-zero if we have continuable watchpoints */
1015
1016 #ifndef HAVE_CONTINUABLE_WATCHPOINT
1017 #define HAVE_CONTINUABLE_WATCHPOINT \
1018 (current_target.to_have_continuable_watchpoint)
1019 #endif
1020
1021 /* Provide defaults for hardware watchpoint functions. */
1022
1023 /* If the *_hw_beakpoint functions have not been defined
1024 elsewhere use the definitions in the target vector. */
1025
1026 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1027 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1028 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1029 (including this one?). OTHERTYPE is who knows what... */
1030
1031 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1032 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1033 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1034 #endif
1035
1036 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1037 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1038 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
1039 #endif
1040
1041
1042 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1043 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1044 success, non-zero for failure. */
1045
1046 #ifndef target_insert_watchpoint
1047 #define target_insert_watchpoint(addr, len, type) \
1048 (*current_target.to_insert_watchpoint) (addr, len, type)
1049
1050 #define target_remove_watchpoint(addr, len, type) \
1051 (*current_target.to_remove_watchpoint) (addr, len, type)
1052 #endif
1053
1054 #ifndef target_insert_hw_breakpoint
1055 #define target_insert_hw_breakpoint(addr, save) \
1056 (*current_target.to_insert_hw_breakpoint) (addr, save)
1057
1058 #define target_remove_hw_breakpoint(addr, save) \
1059 (*current_target.to_remove_hw_breakpoint) (addr, save)
1060 #endif
1061
1062 extern int target_stopped_data_address_p (struct target_ops *);
1063
1064 #ifndef target_stopped_data_address
1065 #define target_stopped_data_address(target, x) \
1066 (*target.to_stopped_data_address) (target, x)
1067 #else
1068 /* Horrible hack to get around existing macros :-(. */
1069 #define target_stopped_data_address_p(CURRENT_TARGET) (1)
1070 #endif
1071
1072 /* This will only be defined by a target that supports catching vfork events,
1073 such as HP-UX.
1074
1075 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1076 child process after it has exec'd, causes the parent process to resume as
1077 well. To prevent the parent from running spontaneously, such targets should
1078 define this to a function that prevents that from happening. */
1079 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1080 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1081 #endif
1082
1083 /* This will only be defined by a target that supports catching vfork events,
1084 such as HP-UX.
1085
1086 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1087 process must be resumed when it delivers its exec event, before the parent
1088 vfork event will be delivered to us. */
1089
1090 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1091 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1092 #endif
1093
1094 /* Routines for maintenance of the target structures...
1095
1096 add_target: Add a target to the list of all possible targets.
1097
1098 push_target: Make this target the top of the stack of currently used
1099 targets, within its particular stratum of the stack. Result
1100 is 0 if now atop the stack, nonzero if not on top (maybe
1101 should warn user).
1102
1103 unpush_target: Remove this from the stack of currently used targets,
1104 no matter where it is on the list. Returns 0 if no
1105 change, 1 if removed from stack.
1106
1107 pop_target: Remove the top thing on the stack of current targets. */
1108
1109 extern void add_target (struct target_ops *);
1110
1111 extern int push_target (struct target_ops *);
1112
1113 extern int unpush_target (struct target_ops *);
1114
1115 extern void target_preopen (int);
1116
1117 extern void pop_target (void);
1118
1119 /* Struct section_table maps address ranges to file sections. It is
1120 mostly used with BFD files, but can be used without (e.g. for handling
1121 raw disks, or files not in formats handled by BFD). */
1122
1123 struct section_table
1124 {
1125 CORE_ADDR addr; /* Lowest address in section */
1126 CORE_ADDR endaddr; /* 1+highest address in section */
1127
1128 struct bfd_section *the_bfd_section;
1129
1130 bfd *bfd; /* BFD file pointer */
1131 };
1132
1133 /* Return the "section" containing the specified address. */
1134 struct section_table *target_section_by_addr (struct target_ops *target,
1135 CORE_ADDR addr);
1136
1137
1138 /* From mem-break.c */
1139
1140 extern int memory_remove_breakpoint (CORE_ADDR, char *);
1141
1142 extern int memory_insert_breakpoint (CORE_ADDR, char *);
1143
1144 extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1145
1146 extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1147
1148
1149 /* From target.c */
1150
1151 extern void initialize_targets (void);
1152
1153 extern void noprocess (void);
1154
1155 extern void find_default_attach (char *, int);
1156
1157 extern void find_default_create_inferior (char *, char *, char **, int);
1158
1159 extern struct target_ops *find_run_target (void);
1160
1161 extern struct target_ops *find_core_target (void);
1162
1163 extern struct target_ops *find_target_beneath (struct target_ops *);
1164
1165 extern int target_resize_to_sections (struct target_ops *target,
1166 int num_added);
1167
1168 extern void remove_target_sections (bfd *abfd);
1169
1170 \f
1171 /* Stuff that should be shared among the various remote targets. */
1172
1173 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1174 information (higher values, more information). */
1175 extern int remote_debug;
1176
1177 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1178 extern int baud_rate;
1179 /* Timeout limit for response from target. */
1180 extern int remote_timeout;
1181
1182 \f
1183 /* Functions for helping to write a native target. */
1184
1185 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1186 extern void store_waitstatus (struct target_waitstatus *, int);
1187
1188 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1189 targ_signal SIGNO has an equivalent ``host'' representation. */
1190 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1191 to the shorter target_signal_p() because it is far less ambigious.
1192 In this context ``target_signal'' refers to GDB's internal
1193 representation of the target's set of signals while ``host signal''
1194 refers to the target operating system's signal. Confused? */
1195
1196 extern int target_signal_to_host_p (enum target_signal signo);
1197
1198 /* Convert between host signal numbers and enum target_signal's.
1199 target_signal_to_host() returns 0 and prints a warning() on GDB's
1200 console if SIGNO has no equivalent host representation. */
1201 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1202 refering to the target operating system's signal numbering.
1203 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1204 gdb_signal'' would probably be better as it is refering to GDB's
1205 internal representation of a target operating system's signal. */
1206
1207 extern enum target_signal target_signal_from_host (int);
1208 extern int target_signal_to_host (enum target_signal);
1209
1210 /* Convert from a number used in a GDB command to an enum target_signal. */
1211 extern enum target_signal target_signal_from_command (int);
1212
1213 /* Any target can call this to switch to remote protocol (in remote.c). */
1214 extern void push_remote_target (char *name, int from_tty);
1215 \f
1216 /* Imported from machine dependent code */
1217
1218 /* Blank target vector entries are initialized to target_ignore. */
1219 void target_ignore (void);
1220
1221 extern struct target_ops deprecated_child_ops;
1222
1223 #endif /* !defined (TARGET_H) */
This page took 0.092057 seconds and 4 git commands to generate.