Add missing files to previous commit (Allow Python notification of new object-file...
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #if !defined (TARGET_H)
25 #define TARGET_H
26
27 struct objfile;
28 struct ui_file;
29 struct mem_attrib;
30 struct target_ops;
31 struct bp_location;
32 struct bp_target_info;
33 struct regcache;
34 struct target_section_table;
35 struct trace_state_variable;
36 struct trace_status;
37 struct uploaded_tsv;
38 struct uploaded_tp;
39 struct static_tracepoint_marker;
40 struct traceframe_info;
41 struct expression;
42
43 /* This include file defines the interface between the main part
44 of the debugger, and the part which is target-specific, or
45 specific to the communications interface between us and the
46 target.
47
48 A TARGET is an interface between the debugger and a particular
49 kind of file or process. Targets can be STACKED in STRATA,
50 so that more than one target can potentially respond to a request.
51 In particular, memory accesses will walk down the stack of targets
52 until they find a target that is interested in handling that particular
53 address. STRATA are artificial boundaries on the stack, within
54 which particular kinds of targets live. Strata exist so that
55 people don't get confused by pushing e.g. a process target and then
56 a file target, and wondering why they can't see the current values
57 of variables any more (the file target is handling them and they
58 never get to the process target). So when you push a file target,
59 it goes into the file stratum, which is always below the process
60 stratum. */
61
62 #include "bfd.h"
63 #include "symtab.h"
64 #include "memattr.h"
65 #include "vec.h"
66 #include "gdb_signals.h"
67
68 enum strata
69 {
70 dummy_stratum, /* The lowest of the low */
71 file_stratum, /* Executable files, etc */
72 process_stratum, /* Executing processes or core dump files */
73 thread_stratum, /* Executing threads */
74 record_stratum, /* Support record debugging */
75 arch_stratum /* Architecture overrides */
76 };
77
78 enum thread_control_capabilities
79 {
80 tc_none = 0, /* Default: can't control thread execution. */
81 tc_schedlock = 1, /* Can lock the thread scheduler. */
82 };
83
84 /* Stuff for target_wait. */
85
86 /* Generally, what has the program done? */
87 enum target_waitkind
88 {
89 /* The program has exited. The exit status is in value.integer. */
90 TARGET_WAITKIND_EXITED,
91
92 /* The program has stopped with a signal. Which signal is in
93 value.sig. */
94 TARGET_WAITKIND_STOPPED,
95
96 /* The program has terminated with a signal. Which signal is in
97 value.sig. */
98 TARGET_WAITKIND_SIGNALLED,
99
100 /* The program is letting us know that it dynamically loaded something
101 (e.g. it called load(2) on AIX). */
102 TARGET_WAITKIND_LOADED,
103
104 /* The program has forked. A "related" process' PTID is in
105 value.related_pid. I.e., if the child forks, value.related_pid
106 is the parent's ID. */
107
108 TARGET_WAITKIND_FORKED,
109
110 /* The program has vforked. A "related" process's PTID is in
111 value.related_pid. */
112
113 TARGET_WAITKIND_VFORKED,
114
115 /* The program has exec'ed a new executable file. The new file's
116 pathname is pointed to by value.execd_pathname. */
117
118 TARGET_WAITKIND_EXECD,
119
120 /* The program had previously vforked, and now the child is done
121 with the shared memory region, because it exec'ed or exited.
122 Note that the event is reported to the vfork parent. This is
123 only used if GDB did not stay attached to the vfork child,
124 otherwise, a TARGET_WAITKIND_EXECD or
125 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
126 has the same effect. */
127 TARGET_WAITKIND_VFORK_DONE,
128
129 /* The program has entered or returned from a system call. On
130 HP-UX, this is used in the hardware watchpoint implementation.
131 The syscall's unique integer ID number is in value.syscall_id. */
132
133 TARGET_WAITKIND_SYSCALL_ENTRY,
134 TARGET_WAITKIND_SYSCALL_RETURN,
135
136 /* Nothing happened, but we stopped anyway. This perhaps should be handled
137 within target_wait, but I'm not sure target_wait should be resuming the
138 inferior. */
139 TARGET_WAITKIND_SPURIOUS,
140
141 /* An event has occured, but we should wait again.
142 Remote_async_wait() returns this when there is an event
143 on the inferior, but the rest of the world is not interested in
144 it. The inferior has not stopped, but has just sent some output
145 to the console, for instance. In this case, we want to go back
146 to the event loop and wait there for another event from the
147 inferior, rather than being stuck in the remote_async_wait()
148 function. sThis way the event loop is responsive to other events,
149 like for instance the user typing. */
150 TARGET_WAITKIND_IGNORE,
151
152 /* The target has run out of history information,
153 and cannot run backward any further. */
154 TARGET_WAITKIND_NO_HISTORY
155 };
156
157 struct target_waitstatus
158 {
159 enum target_waitkind kind;
160
161 /* Forked child pid, execd pathname, exit status, signal number or
162 syscall number. */
163 union
164 {
165 int integer;
166 enum target_signal sig;
167 ptid_t related_pid;
168 char *execd_pathname;
169 int syscall_number;
170 }
171 value;
172 };
173
174 /* Options that can be passed to target_wait. */
175
176 /* Return immediately if there's no event already queued. If this
177 options is not requested, target_wait blocks waiting for an
178 event. */
179 #define TARGET_WNOHANG 1
180
181 /* The structure below stores information about a system call.
182 It is basically used in the "catch syscall" command, and in
183 every function that gives information about a system call.
184
185 It's also good to mention that its fields represent everything
186 that we currently know about a syscall in GDB. */
187 struct syscall
188 {
189 /* The syscall number. */
190 int number;
191
192 /* The syscall name. */
193 const char *name;
194 };
195
196 /* Return a pretty printed form of target_waitstatus.
197 Space for the result is malloc'd, caller must free. */
198 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
199
200 /* Possible types of events that the inferior handler will have to
201 deal with. */
202 enum inferior_event_type
203 {
204 /* Process a normal inferior event which will result in target_wait
205 being called. */
206 INF_REG_EVENT,
207 /* We are called because a timer went off. */
208 INF_TIMER,
209 /* We are called to do stuff after the inferior stops. */
210 INF_EXEC_COMPLETE,
211 /* We are called to do some stuff after the inferior stops, but we
212 are expected to reenter the proceed() and
213 handle_inferior_event() functions. This is used only in case of
214 'step n' like commands. */
215 INF_EXEC_CONTINUE
216 };
217 \f
218 /* Target objects which can be transfered using target_read,
219 target_write, et cetera. */
220
221 enum target_object
222 {
223 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
224 TARGET_OBJECT_AVR,
225 /* SPU target specific transfer. See "spu-tdep.c". */
226 TARGET_OBJECT_SPU,
227 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
228 TARGET_OBJECT_MEMORY,
229 /* Memory, avoiding GDB's data cache and trusting the executable.
230 Target implementations of to_xfer_partial never need to handle
231 this object, and most callers should not use it. */
232 TARGET_OBJECT_RAW_MEMORY,
233 /* Memory known to be part of the target's stack. This is cached even
234 if it is not in a region marked as such, since it is known to be
235 "normal" RAM. */
236 TARGET_OBJECT_STACK_MEMORY,
237 /* Kernel Unwind Table. See "ia64-tdep.c". */
238 TARGET_OBJECT_UNWIND_TABLE,
239 /* Transfer auxilliary vector. */
240 TARGET_OBJECT_AUXV,
241 /* StackGhost cookie. See "sparc-tdep.c". */
242 TARGET_OBJECT_WCOOKIE,
243 /* Target memory map in XML format. */
244 TARGET_OBJECT_MEMORY_MAP,
245 /* Flash memory. This object can be used to write contents to
246 a previously erased flash memory. Using it without erasing
247 flash can have unexpected results. Addresses are physical
248 address on target, and not relative to flash start. */
249 TARGET_OBJECT_FLASH,
250 /* Available target-specific features, e.g. registers and coprocessors.
251 See "target-descriptions.c". ANNEX should never be empty. */
252 TARGET_OBJECT_AVAILABLE_FEATURES,
253 /* Currently loaded libraries, in XML format. */
254 TARGET_OBJECT_LIBRARIES,
255 /* Get OS specific data. The ANNEX specifies the type (running
256 processes, etc.). The data being transfered is expected to follow
257 the DTD specified in features/osdata.dtd. */
258 TARGET_OBJECT_OSDATA,
259 /* Extra signal info. Usually the contents of `siginfo_t' on unix
260 platforms. */
261 TARGET_OBJECT_SIGNAL_INFO,
262 /* The list of threads that are being debugged. */
263 TARGET_OBJECT_THREADS,
264 /* Collected static trace data. */
265 TARGET_OBJECT_STATIC_TRACE_DATA,
266 /* The HP-UX registers (those that can be obtained or modified by using
267 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
268 TARGET_OBJECT_HPUX_UREGS,
269 /* The HP-UX shared library linkage pointer. ANNEX should be a string
270 image of the code address whose linkage pointer we are looking for.
271
272 The size of the data transfered is always 8 bytes (the size of an
273 address on ia64). */
274 TARGET_OBJECT_HPUX_SOLIB_GOT,
275 /* Traceframe info, in XML format. */
276 TARGET_OBJECT_TRACEFRAME_INFO,
277 /* Load maps for FDPIC systems. */
278 TARGET_OBJECT_FDPIC,
279 /* Darwin dynamic linker info data. */
280 TARGET_OBJECT_DARWIN_DYLD_INFO
281 /* Possible future objects: TARGET_OBJECT_FILE, ... */
282 };
283
284 /* Enumeration of the kinds of traceframe searches that a target may
285 be able to perform. */
286
287 enum trace_find_type
288 {
289 tfind_number,
290 tfind_pc,
291 tfind_tp,
292 tfind_range,
293 tfind_outside,
294 };
295
296 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
297 DEF_VEC_P(static_tracepoint_marker_p);
298
299 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
300 OBJECT. The OFFSET, for a seekable object, specifies the
301 starting point. The ANNEX can be used to provide additional
302 data-specific information to the target.
303
304 Return the number of bytes actually transfered, or -1 if the
305 transfer is not supported or otherwise fails. Return of a positive
306 value less than LEN indicates that no further transfer is possible.
307 Unlike the raw to_xfer_partial interface, callers of these
308 functions do not need to retry partial transfers. */
309
310 extern LONGEST target_read (struct target_ops *ops,
311 enum target_object object,
312 const char *annex, gdb_byte *buf,
313 ULONGEST offset, LONGEST len);
314
315 struct memory_read_result
316 {
317 /* First address that was read. */
318 ULONGEST begin;
319 /* Past-the-end address. */
320 ULONGEST end;
321 /* The data. */
322 gdb_byte *data;
323 };
324 typedef struct memory_read_result memory_read_result_s;
325 DEF_VEC_O(memory_read_result_s);
326
327 extern void free_memory_read_result_vector (void *);
328
329 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
330 ULONGEST offset,
331 LONGEST len);
332
333 extern LONGEST target_write (struct target_ops *ops,
334 enum target_object object,
335 const char *annex, const gdb_byte *buf,
336 ULONGEST offset, LONGEST len);
337
338 /* Similar to target_write, except that it also calls PROGRESS with
339 the number of bytes written and the opaque BATON after every
340 successful partial write (and before the first write). This is
341 useful for progress reporting and user interaction while writing
342 data. To abort the transfer, the progress callback can throw an
343 exception. */
344
345 LONGEST target_write_with_progress (struct target_ops *ops,
346 enum target_object object,
347 const char *annex, const gdb_byte *buf,
348 ULONGEST offset, LONGEST len,
349 void (*progress) (ULONGEST, void *),
350 void *baton);
351
352 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
353 be read using OPS. The return value will be -1 if the transfer
354 fails or is not supported; 0 if the object is empty; or the length
355 of the object otherwise. If a positive value is returned, a
356 sufficiently large buffer will be allocated using xmalloc and
357 returned in *BUF_P containing the contents of the object.
358
359 This method should be used for objects sufficiently small to store
360 in a single xmalloc'd buffer, when no fixed bound on the object's
361 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
362 through this function. */
363
364 extern LONGEST target_read_alloc (struct target_ops *ops,
365 enum target_object object,
366 const char *annex, gdb_byte **buf_p);
367
368 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
369 returned as a string, allocated using xmalloc. If an error occurs
370 or the transfer is unsupported, NULL is returned. Empty objects
371 are returned as allocated but empty strings. A warning is issued
372 if the result contains any embedded NUL bytes. */
373
374 extern char *target_read_stralloc (struct target_ops *ops,
375 enum target_object object,
376 const char *annex);
377
378 /* Wrappers to target read/write that perform memory transfers. They
379 throw an error if the memory transfer fails.
380
381 NOTE: cagney/2003-10-23: The naming schema is lifted from
382 "frame.h". The parameter order is lifted from get_frame_memory,
383 which in turn lifted it from read_memory. */
384
385 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
386 gdb_byte *buf, LONGEST len);
387 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
388 CORE_ADDR addr, int len,
389 enum bfd_endian byte_order);
390 \f
391 struct thread_info; /* fwd decl for parameter list below: */
392
393 struct target_ops
394 {
395 struct target_ops *beneath; /* To the target under this one. */
396 char *to_shortname; /* Name this target type */
397 char *to_longname; /* Name for printing */
398 char *to_doc; /* Documentation. Does not include trailing
399 newline, and starts with a one-line descrip-
400 tion (probably similar to to_longname). */
401 /* Per-target scratch pad. */
402 void *to_data;
403 /* The open routine takes the rest of the parameters from the
404 command, and (if successful) pushes a new target onto the
405 stack. Targets should supply this routine, if only to provide
406 an error message. */
407 void (*to_open) (char *, int);
408 /* Old targets with a static target vector provide "to_close".
409 New re-entrant targets provide "to_xclose" and that is expected
410 to xfree everything (including the "struct target_ops"). */
411 void (*to_xclose) (struct target_ops *targ, int quitting);
412 void (*to_close) (int);
413 void (*to_attach) (struct target_ops *ops, char *, int);
414 void (*to_post_attach) (int);
415 void (*to_detach) (struct target_ops *ops, char *, int);
416 void (*to_disconnect) (struct target_ops *, char *, int);
417 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
418 ptid_t (*to_wait) (struct target_ops *,
419 ptid_t, struct target_waitstatus *, int);
420 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
421 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
422 void (*to_prepare_to_store) (struct regcache *);
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *);
451 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
452 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
453 int (*to_can_use_hw_breakpoint) (int, int, int);
454 int (*to_ranged_break_num_registers) (struct target_ops *);
455 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
456 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
457
458 /* Documentation of what the two routines below are expected to do is
459 provided with the corresponding target_* macros. */
460 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
461 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
462
463 int (*to_insert_mask_watchpoint) (struct target_ops *,
464 CORE_ADDR, CORE_ADDR, int);
465 int (*to_remove_mask_watchpoint) (struct target_ops *,
466 CORE_ADDR, CORE_ADDR, int);
467 int (*to_stopped_by_watchpoint) (void);
468 int to_have_steppable_watchpoint;
469 int to_have_continuable_watchpoint;
470 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
471 int (*to_watchpoint_addr_within_range) (struct target_ops *,
472 CORE_ADDR, CORE_ADDR, int);
473
474 /* Documentation of this routine is provided with the corresponding
475 target_* macro. */
476 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
477
478 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
479 struct expression *);
480 int (*to_masked_watch_num_registers) (struct target_ops *,
481 CORE_ADDR, CORE_ADDR);
482 void (*to_terminal_init) (void);
483 void (*to_terminal_inferior) (void);
484 void (*to_terminal_ours_for_output) (void);
485 void (*to_terminal_ours) (void);
486 void (*to_terminal_save_ours) (void);
487 void (*to_terminal_info) (char *, int);
488 void (*to_kill) (struct target_ops *);
489 void (*to_load) (char *, int);
490 void (*to_create_inferior) (struct target_ops *,
491 char *, char *, char **, int);
492 void (*to_post_startup_inferior) (ptid_t);
493 int (*to_insert_fork_catchpoint) (int);
494 int (*to_remove_fork_catchpoint) (int);
495 int (*to_insert_vfork_catchpoint) (int);
496 int (*to_remove_vfork_catchpoint) (int);
497 int (*to_follow_fork) (struct target_ops *, int);
498 int (*to_insert_exec_catchpoint) (int);
499 int (*to_remove_exec_catchpoint) (int);
500 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
501 int (*to_has_exited) (int, int, int *);
502 void (*to_mourn_inferior) (struct target_ops *);
503 int (*to_can_run) (void);
504
505 /* Documentation of this routine is provided with the corresponding
506 target_* macro. */
507 void (*to_pass_signals) (int, unsigned char *);
508
509 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
510 void (*to_find_new_threads) (struct target_ops *);
511 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
512 char *(*to_extra_thread_info) (struct thread_info *);
513 char *(*to_thread_name) (struct thread_info *);
514 void (*to_stop) (ptid_t);
515 void (*to_rcmd) (char *command, struct ui_file *output);
516 char *(*to_pid_to_exec_file) (int pid);
517 void (*to_log_command) (const char *);
518 struct target_section_table *(*to_get_section_table) (struct target_ops *);
519 enum strata to_stratum;
520 int (*to_has_all_memory) (struct target_ops *);
521 int (*to_has_memory) (struct target_ops *);
522 int (*to_has_stack) (struct target_ops *);
523 int (*to_has_registers) (struct target_ops *);
524 int (*to_has_execution) (struct target_ops *, ptid_t);
525 int to_has_thread_control; /* control thread execution */
526 int to_attach_no_wait;
527 /* ASYNC target controls */
528 int (*to_can_async_p) (void);
529 int (*to_is_async_p) (void);
530 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
531 int (*to_supports_non_stop) (void);
532 /* find_memory_regions support method for gcore */
533 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
534 /* make_corefile_notes support method for gcore */
535 char * (*to_make_corefile_notes) (bfd *, int *);
536 /* get_bookmark support method for bookmarks */
537 gdb_byte * (*to_get_bookmark) (char *, int);
538 /* goto_bookmark support method for bookmarks */
539 void (*to_goto_bookmark) (gdb_byte *, int);
540 /* Return the thread-local address at OFFSET in the
541 thread-local storage for the thread PTID and the shared library
542 or executable file given by OBJFILE. If that block of
543 thread-local storage hasn't been allocated yet, this function
544 may return an error. */
545 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
546 ptid_t ptid,
547 CORE_ADDR load_module_addr,
548 CORE_ADDR offset);
549
550 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
551 OBJECT. The OFFSET, for a seekable object, specifies the
552 starting point. The ANNEX can be used to provide additional
553 data-specific information to the target.
554
555 Return the number of bytes actually transfered, zero when no
556 further transfer is possible, and -1 when the transfer is not
557 supported. Return of a positive value smaller than LEN does
558 not indicate the end of the object, only the end of the
559 transfer; higher level code should continue transferring if
560 desired. This is handled in target.c.
561
562 The interface does not support a "retry" mechanism. Instead it
563 assumes that at least one byte will be transfered on each
564 successful call.
565
566 NOTE: cagney/2003-10-17: The current interface can lead to
567 fragmented transfers. Lower target levels should not implement
568 hacks, such as enlarging the transfer, in an attempt to
569 compensate for this. Instead, the target stack should be
570 extended so that it implements supply/collect methods and a
571 look-aside object cache. With that available, the lowest
572 target can safely and freely "push" data up the stack.
573
574 See target_read and target_write for more information. One,
575 and only one, of readbuf or writebuf must be non-NULL. */
576
577 LONGEST (*to_xfer_partial) (struct target_ops *ops,
578 enum target_object object, const char *annex,
579 gdb_byte *readbuf, const gdb_byte *writebuf,
580 ULONGEST offset, LONGEST len);
581
582 /* Returns the memory map for the target. A return value of NULL
583 means that no memory map is available. If a memory address
584 does not fall within any returned regions, it's assumed to be
585 RAM. The returned memory regions should not overlap.
586
587 The order of regions does not matter; target_memory_map will
588 sort regions by starting address. For that reason, this
589 function should not be called directly except via
590 target_memory_map.
591
592 This method should not cache data; if the memory map could
593 change unexpectedly, it should be invalidated, and higher
594 layers will re-fetch it. */
595 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
596
597 /* Erases the region of flash memory starting at ADDRESS, of
598 length LENGTH.
599
600 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
601 on flash block boundaries, as reported by 'to_memory_map'. */
602 void (*to_flash_erase) (struct target_ops *,
603 ULONGEST address, LONGEST length);
604
605 /* Finishes a flash memory write sequence. After this operation
606 all flash memory should be available for writing and the result
607 of reading from areas written by 'to_flash_write' should be
608 equal to what was written. */
609 void (*to_flash_done) (struct target_ops *);
610
611 /* Describe the architecture-specific features of this target.
612 Returns the description found, or NULL if no description
613 was available. */
614 const struct target_desc *(*to_read_description) (struct target_ops *ops);
615
616 /* Build the PTID of the thread on which a given task is running,
617 based on LWP and THREAD. These values are extracted from the
618 task Private_Data section of the Ada Task Control Block, and
619 their interpretation depends on the target. */
620 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
621
622 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
623 Return 0 if *READPTR is already at the end of the buffer.
624 Return -1 if there is insufficient buffer for a whole entry.
625 Return 1 if an entry was read into *TYPEP and *VALP. */
626 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
627 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
628
629 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
630 sequence of bytes in PATTERN with length PATTERN_LEN.
631
632 The result is 1 if found, 0 if not found, and -1 if there was an error
633 requiring halting of the search (e.g. memory read error).
634 If the pattern is found the address is recorded in FOUND_ADDRP. */
635 int (*to_search_memory) (struct target_ops *ops,
636 CORE_ADDR start_addr, ULONGEST search_space_len,
637 const gdb_byte *pattern, ULONGEST pattern_len,
638 CORE_ADDR *found_addrp);
639
640 /* Can target execute in reverse? */
641 int (*to_can_execute_reverse) (void);
642
643 /* The direction the target is currently executing. Must be
644 implemented on targets that support reverse execution and async
645 mode. The default simply returns forward execution. */
646 enum exec_direction_kind (*to_execution_direction) (void);
647
648 /* Does this target support debugging multiple processes
649 simultaneously? */
650 int (*to_supports_multi_process) (void);
651
652 /* Does this target support enabling and disabling tracepoints while a trace
653 experiment is running? */
654 int (*to_supports_enable_disable_tracepoint) (void);
655
656 /* Determine current architecture of thread PTID.
657
658 The target is supposed to determine the architecture of the code where
659 the target is currently stopped at (on Cell, if a target is in spu_run,
660 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
661 This is architecture used to perform decr_pc_after_break adjustment,
662 and also determines the frame architecture of the innermost frame.
663 ptrace operations need to operate according to target_gdbarch.
664
665 The default implementation always returns target_gdbarch. */
666 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
667
668 /* Determine current address space of thread PTID.
669
670 The default implementation always returns the inferior's
671 address space. */
672 struct address_space *(*to_thread_address_space) (struct target_ops *,
673 ptid_t);
674
675 /* Tracepoint-related operations. */
676
677 /* Prepare the target for a tracing run. */
678 void (*to_trace_init) (void);
679
680 /* Send full details of a tracepoint to the target. */
681 void (*to_download_tracepoint) (struct breakpoint *t);
682
683 /* Send full details of a trace state variable to the target. */
684 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
685
686 /* Enable a tracepoint on the target. */
687 void (*to_enable_tracepoint) (struct bp_location *location);
688
689 /* Disable a tracepoint on the target. */
690 void (*to_disable_tracepoint) (struct bp_location *location);
691
692 /* Inform the target info of memory regions that are readonly
693 (such as text sections), and so it should return data from
694 those rather than look in the trace buffer. */
695 void (*to_trace_set_readonly_regions) (void);
696
697 /* Start a trace run. */
698 void (*to_trace_start) (void);
699
700 /* Get the current status of a tracing run. */
701 int (*to_get_trace_status) (struct trace_status *ts);
702
703 /* Stop a trace run. */
704 void (*to_trace_stop) (void);
705
706 /* Ask the target to find a trace frame of the given type TYPE,
707 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
708 number of the trace frame, and also the tracepoint number at
709 TPP. If no trace frame matches, return -1. May throw if the
710 operation fails. */
711 int (*to_trace_find) (enum trace_find_type type, int num,
712 ULONGEST addr1, ULONGEST addr2, int *tpp);
713
714 /* Get the value of the trace state variable number TSV, returning
715 1 if the value is known and writing the value itself into the
716 location pointed to by VAL, else returning 0. */
717 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
718
719 int (*to_save_trace_data) (const char *filename);
720
721 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
722
723 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
724
725 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
726 ULONGEST offset, LONGEST len);
727
728 /* Set the target's tracing behavior in response to unexpected
729 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
730 void (*to_set_disconnected_tracing) (int val);
731 void (*to_set_circular_trace_buffer) (int val);
732
733 /* Return the processor core that thread PTID was last seen on.
734 This information is updated only when:
735 - update_thread_list is called
736 - thread stops
737 If the core cannot be determined -- either for the specified
738 thread, or right now, or in this debug session, or for this
739 target -- return -1. */
740 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
741
742 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
743 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
744 a match, 0 if there's a mismatch, and -1 if an error is
745 encountered while reading memory. */
746 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
747 CORE_ADDR memaddr, ULONGEST size);
748
749 /* Return the address of the start of the Thread Information Block
750 a Windows OS specific feature. */
751 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
752
753 /* Send the new settings of write permission variables. */
754 void (*to_set_permissions) (void);
755
756 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
757 with its details. Return 1 on success, 0 on failure. */
758 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
759 struct static_tracepoint_marker *marker);
760
761 /* Return a vector of all tracepoints markers string id ID, or all
762 markers if ID is NULL. */
763 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
764 (const char *id);
765
766 /* Return a traceframe info object describing the current
767 traceframe's contents. This method should not cache data;
768 higher layers take care of caching, invalidating, and
769 re-fetching when necessary. */
770 struct traceframe_info *(*to_traceframe_info) (void);
771
772 int to_magic;
773 /* Need sub-structure for target machine related rather than comm related?
774 */
775 };
776
777 /* Magic number for checking ops size. If a struct doesn't end with this
778 number, somebody changed the declaration but didn't change all the
779 places that initialize one. */
780
781 #define OPS_MAGIC 3840
782
783 /* The ops structure for our "current" target process. This should
784 never be NULL. If there is no target, it points to the dummy_target. */
785
786 extern struct target_ops current_target;
787
788 /* Define easy words for doing these operations on our current target. */
789
790 #define target_shortname (current_target.to_shortname)
791 #define target_longname (current_target.to_longname)
792
793 /* Does whatever cleanup is required for a target that we are no
794 longer going to be calling. QUITTING indicates that GDB is exiting
795 and should not get hung on an error (otherwise it is important to
796 perform clean termination, even if it takes a while). This routine
797 is automatically always called when popping the target off the
798 target stack (to_beneath is undefined). Closing file descriptors
799 and freeing all memory allocated memory are typical things it
800 should do. */
801
802 void target_close (struct target_ops *targ, int quitting);
803
804 /* Attaches to a process on the target side. Arguments are as passed
805 to the `attach' command by the user. This routine can be called
806 when the target is not on the target-stack, if the target_can_run
807 routine returns 1; in that case, it must push itself onto the stack.
808 Upon exit, the target should be ready for normal operations, and
809 should be ready to deliver the status of the process immediately
810 (without waiting) to an upcoming target_wait call. */
811
812 void target_attach (char *, int);
813
814 /* Some targets don't generate traps when attaching to the inferior,
815 or their target_attach implementation takes care of the waiting.
816 These targets must set to_attach_no_wait. */
817
818 #define target_attach_no_wait \
819 (current_target.to_attach_no_wait)
820
821 /* The target_attach operation places a process under debugger control,
822 and stops the process.
823
824 This operation provides a target-specific hook that allows the
825 necessary bookkeeping to be performed after an attach completes. */
826 #define target_post_attach(pid) \
827 (*current_target.to_post_attach) (pid)
828
829 /* Takes a program previously attached to and detaches it.
830 The program may resume execution (some targets do, some don't) and will
831 no longer stop on signals, etc. We better not have left any breakpoints
832 in the program or it'll die when it hits one. ARGS is arguments
833 typed by the user (e.g. a signal to send the process). FROM_TTY
834 says whether to be verbose or not. */
835
836 extern void target_detach (char *, int);
837
838 /* Disconnect from the current target without resuming it (leaving it
839 waiting for a debugger). */
840
841 extern void target_disconnect (char *, int);
842
843 /* Resume execution of the target process PTID. STEP says whether to
844 single-step or to run free; SIGGNAL is the signal to be given to
845 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
846 pass TARGET_SIGNAL_DEFAULT. */
847
848 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
849
850 /* Wait for process pid to do something. PTID = -1 to wait for any
851 pid to do something. Return pid of child, or -1 in case of error;
852 store status through argument pointer STATUS. Note that it is
853 _NOT_ OK to throw_exception() out of target_wait() without popping
854 the debugging target from the stack; GDB isn't prepared to get back
855 to the prompt with a debugging target but without the frame cache,
856 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
857 options. */
858
859 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
860 int options);
861
862 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
863
864 extern void target_fetch_registers (struct regcache *regcache, int regno);
865
866 /* Store at least register REGNO, or all regs if REGNO == -1.
867 It can store as many registers as it wants to, so target_prepare_to_store
868 must have been previously called. Calls error() if there are problems. */
869
870 extern void target_store_registers (struct regcache *regcache, int regs);
871
872 /* Get ready to modify the registers array. On machines which store
873 individual registers, this doesn't need to do anything. On machines
874 which store all the registers in one fell swoop, this makes sure
875 that REGISTERS contains all the registers from the program being
876 debugged. */
877
878 #define target_prepare_to_store(regcache) \
879 (*current_target.to_prepare_to_store) (regcache)
880
881 /* Determine current address space of thread PTID. */
882
883 struct address_space *target_thread_address_space (ptid_t);
884
885 /* Returns true if this target can debug multiple processes
886 simultaneously. */
887
888 #define target_supports_multi_process() \
889 (*current_target.to_supports_multi_process) ()
890
891 /* Returns true if this target can enable and disable tracepoints
892 while a trace experiment is running. */
893
894 #define target_supports_enable_disable_tracepoint() \
895 (*current_target.to_supports_enable_disable_tracepoint) ()
896
897 /* Invalidate all target dcaches. */
898 extern void target_dcache_invalidate (void);
899
900 extern int target_read_string (CORE_ADDR, char **, int, int *);
901
902 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
903
904 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
905
906 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
907 int len);
908
909 /* Fetches the target's memory map. If one is found it is sorted
910 and returned, after some consistency checking. Otherwise, NULL
911 is returned. */
912 VEC(mem_region_s) *target_memory_map (void);
913
914 /* Erase the specified flash region. */
915 void target_flash_erase (ULONGEST address, LONGEST length);
916
917 /* Finish a sequence of flash operations. */
918 void target_flash_done (void);
919
920 /* Describes a request for a memory write operation. */
921 struct memory_write_request
922 {
923 /* Begining address that must be written. */
924 ULONGEST begin;
925 /* Past-the-end address. */
926 ULONGEST end;
927 /* The data to write. */
928 gdb_byte *data;
929 /* A callback baton for progress reporting for this request. */
930 void *baton;
931 };
932 typedef struct memory_write_request memory_write_request_s;
933 DEF_VEC_O(memory_write_request_s);
934
935 /* Enumeration specifying different flash preservation behaviour. */
936 enum flash_preserve_mode
937 {
938 flash_preserve,
939 flash_discard
940 };
941
942 /* Write several memory blocks at once. This version can be more
943 efficient than making several calls to target_write_memory, in
944 particular because it can optimize accesses to flash memory.
945
946 Moreover, this is currently the only memory access function in gdb
947 that supports writing to flash memory, and it should be used for
948 all cases where access to flash memory is desirable.
949
950 REQUESTS is the vector (see vec.h) of memory_write_request.
951 PRESERVE_FLASH_P indicates what to do with blocks which must be
952 erased, but not completely rewritten.
953 PROGRESS_CB is a function that will be periodically called to provide
954 feedback to user. It will be called with the baton corresponding
955 to the request currently being written. It may also be called
956 with a NULL baton, when preserved flash sectors are being rewritten.
957
958 The function returns 0 on success, and error otherwise. */
959 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
960 enum flash_preserve_mode preserve_flash_p,
961 void (*progress_cb) (ULONGEST, void *));
962
963 /* From infrun.c. */
964
965 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
966
967 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
968
969 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
970
971 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
972
973 /* Print a line about the current target. */
974
975 #define target_files_info() \
976 (*current_target.to_files_info) (&current_target)
977
978 /* Insert a breakpoint at address BP_TGT->placed_address in the target
979 machine. Result is 0 for success, or an errno value. */
980
981 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
982 struct bp_target_info *bp_tgt);
983
984 /* Remove a breakpoint at address BP_TGT->placed_address in the target
985 machine. Result is 0 for success, or an errno value. */
986
987 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
988 struct bp_target_info *bp_tgt);
989
990 /* Initialize the terminal settings we record for the inferior,
991 before we actually run the inferior. */
992
993 #define target_terminal_init() \
994 (*current_target.to_terminal_init) ()
995
996 /* Put the inferior's terminal settings into effect.
997 This is preparation for starting or resuming the inferior. */
998
999 extern void target_terminal_inferior (void);
1000
1001 /* Put some of our terminal settings into effect,
1002 enough to get proper results from our output,
1003 but do not change into or out of RAW mode
1004 so that no input is discarded.
1005
1006 After doing this, either terminal_ours or terminal_inferior
1007 should be called to get back to a normal state of affairs. */
1008
1009 #define target_terminal_ours_for_output() \
1010 (*current_target.to_terminal_ours_for_output) ()
1011
1012 /* Put our terminal settings into effect.
1013 First record the inferior's terminal settings
1014 so they can be restored properly later. */
1015
1016 #define target_terminal_ours() \
1017 (*current_target.to_terminal_ours) ()
1018
1019 /* Save our terminal settings.
1020 This is called from TUI after entering or leaving the curses
1021 mode. Since curses modifies our terminal this call is here
1022 to take this change into account. */
1023
1024 #define target_terminal_save_ours() \
1025 (*current_target.to_terminal_save_ours) ()
1026
1027 /* Print useful information about our terminal status, if such a thing
1028 exists. */
1029
1030 #define target_terminal_info(arg, from_tty) \
1031 (*current_target.to_terminal_info) (arg, from_tty)
1032
1033 /* Kill the inferior process. Make it go away. */
1034
1035 extern void target_kill (void);
1036
1037 /* Load an executable file into the target process. This is expected
1038 to not only bring new code into the target process, but also to
1039 update GDB's symbol tables to match.
1040
1041 ARG contains command-line arguments, to be broken down with
1042 buildargv (). The first non-switch argument is the filename to
1043 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1044 0)), which is an offset to apply to the load addresses of FILE's
1045 sections. The target may define switches, or other non-switch
1046 arguments, as it pleases. */
1047
1048 extern void target_load (char *arg, int from_tty);
1049
1050 /* Start an inferior process and set inferior_ptid to its pid.
1051 EXEC_FILE is the file to run.
1052 ALLARGS is a string containing the arguments to the program.
1053 ENV is the environment vector to pass. Errors reported with error().
1054 On VxWorks and various standalone systems, we ignore exec_file. */
1055
1056 void target_create_inferior (char *exec_file, char *args,
1057 char **env, int from_tty);
1058
1059 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1060 notification of inferior events such as fork and vork immediately
1061 after the inferior is created. (This because of how gdb gets an
1062 inferior created via invoking a shell to do it. In such a scenario,
1063 if the shell init file has commands in it, the shell will fork and
1064 exec for each of those commands, and we will see each such fork
1065 event. Very bad.)
1066
1067 Such targets will supply an appropriate definition for this function. */
1068
1069 #define target_post_startup_inferior(ptid) \
1070 (*current_target.to_post_startup_inferior) (ptid)
1071
1072 /* On some targets, we can catch an inferior fork or vfork event when
1073 it occurs. These functions insert/remove an already-created
1074 catchpoint for such events. They return 0 for success, 1 if the
1075 catchpoint type is not supported and -1 for failure. */
1076
1077 #define target_insert_fork_catchpoint(pid) \
1078 (*current_target.to_insert_fork_catchpoint) (pid)
1079
1080 #define target_remove_fork_catchpoint(pid) \
1081 (*current_target.to_remove_fork_catchpoint) (pid)
1082
1083 #define target_insert_vfork_catchpoint(pid) \
1084 (*current_target.to_insert_vfork_catchpoint) (pid)
1085
1086 #define target_remove_vfork_catchpoint(pid) \
1087 (*current_target.to_remove_vfork_catchpoint) (pid)
1088
1089 /* If the inferior forks or vforks, this function will be called at
1090 the next resume in order to perform any bookkeeping and fiddling
1091 necessary to continue debugging either the parent or child, as
1092 requested, and releasing the other. Information about the fork
1093 or vfork event is available via get_last_target_status ().
1094 This function returns 1 if the inferior should not be resumed
1095 (i.e. there is another event pending). */
1096
1097 int target_follow_fork (int follow_child);
1098
1099 /* On some targets, we can catch an inferior exec event when it
1100 occurs. These functions insert/remove an already-created
1101 catchpoint for such events. They return 0 for success, 1 if the
1102 catchpoint type is not supported and -1 for failure. */
1103
1104 #define target_insert_exec_catchpoint(pid) \
1105 (*current_target.to_insert_exec_catchpoint) (pid)
1106
1107 #define target_remove_exec_catchpoint(pid) \
1108 (*current_target.to_remove_exec_catchpoint) (pid)
1109
1110 /* Syscall catch.
1111
1112 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1113 If NEEDED is zero, it means the target can disable the mechanism to
1114 catch system calls because there are no more catchpoints of this type.
1115
1116 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1117 being requested. In this case, both TABLE_SIZE and TABLE should
1118 be ignored.
1119
1120 TABLE_SIZE is the number of elements in TABLE. It only matters if
1121 ANY_COUNT is zero.
1122
1123 TABLE is an array of ints, indexed by syscall number. An element in
1124 this array is nonzero if that syscall should be caught. This argument
1125 only matters if ANY_COUNT is zero.
1126
1127 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1128 for failure. */
1129
1130 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1131 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1132 table_size, table)
1133
1134 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1135 exit code of PID, if any. */
1136
1137 #define target_has_exited(pid,wait_status,exit_status) \
1138 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1139
1140 /* The debugger has completed a blocking wait() call. There is now
1141 some process event that must be processed. This function should
1142 be defined by those targets that require the debugger to perform
1143 cleanup or internal state changes in response to the process event. */
1144
1145 /* The inferior process has died. Do what is right. */
1146
1147 void target_mourn_inferior (void);
1148
1149 /* Does target have enough data to do a run or attach command? */
1150
1151 #define target_can_run(t) \
1152 ((t)->to_can_run) ()
1153
1154 /* Set list of signals to be handled in the target.
1155
1156 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1157 (enum target_signal). For every signal whose entry in this array is
1158 non-zero, the target is allowed -but not required- to skip reporting
1159 arrival of the signal to the GDB core by returning from target_wait,
1160 and to pass the signal directly to the inferior instead.
1161
1162 However, if the target is hardware single-stepping a thread that is
1163 about to receive a signal, it needs to be reported in any case, even
1164 if mentioned in a previous target_pass_signals call. */
1165
1166 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1167
1168 /* Check to see if a thread is still alive. */
1169
1170 extern int target_thread_alive (ptid_t ptid);
1171
1172 /* Query for new threads and add them to the thread list. */
1173
1174 extern void target_find_new_threads (void);
1175
1176 /* Make target stop in a continuable fashion. (For instance, under
1177 Unix, this should act like SIGSTOP). This function is normally
1178 used by GUIs to implement a stop button. */
1179
1180 extern void target_stop (ptid_t ptid);
1181
1182 /* Send the specified COMMAND to the target's monitor
1183 (shell,interpreter) for execution. The result of the query is
1184 placed in OUTBUF. */
1185
1186 #define target_rcmd(command, outbuf) \
1187 (*current_target.to_rcmd) (command, outbuf)
1188
1189
1190 /* Does the target include all of memory, or only part of it? This
1191 determines whether we look up the target chain for other parts of
1192 memory if this target can't satisfy a request. */
1193
1194 extern int target_has_all_memory_1 (void);
1195 #define target_has_all_memory target_has_all_memory_1 ()
1196
1197 /* Does the target include memory? (Dummy targets don't.) */
1198
1199 extern int target_has_memory_1 (void);
1200 #define target_has_memory target_has_memory_1 ()
1201
1202 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1203 we start a process.) */
1204
1205 extern int target_has_stack_1 (void);
1206 #define target_has_stack target_has_stack_1 ()
1207
1208 /* Does the target have registers? (Exec files don't.) */
1209
1210 extern int target_has_registers_1 (void);
1211 #define target_has_registers target_has_registers_1 ()
1212
1213 /* Does the target have execution? Can we make it jump (through
1214 hoops), or pop its stack a few times? This means that the current
1215 target is currently executing; for some targets, that's the same as
1216 whether or not the target is capable of execution, but there are
1217 also targets which can be current while not executing. In that
1218 case this will become true after target_create_inferior or
1219 target_attach. */
1220
1221 extern int target_has_execution_1 (ptid_t);
1222
1223 /* Like target_has_execution_1, but always passes inferior_ptid. */
1224
1225 extern int target_has_execution_current (void);
1226
1227 #define target_has_execution target_has_execution_current ()
1228
1229 /* Default implementations for process_stratum targets. Return true
1230 if there's a selected inferior, false otherwise. */
1231
1232 extern int default_child_has_all_memory (struct target_ops *ops);
1233 extern int default_child_has_memory (struct target_ops *ops);
1234 extern int default_child_has_stack (struct target_ops *ops);
1235 extern int default_child_has_registers (struct target_ops *ops);
1236 extern int default_child_has_execution (struct target_ops *ops,
1237 ptid_t the_ptid);
1238
1239 /* Can the target support the debugger control of thread execution?
1240 Can it lock the thread scheduler? */
1241
1242 #define target_can_lock_scheduler \
1243 (current_target.to_has_thread_control & tc_schedlock)
1244
1245 /* Should the target enable async mode if it is supported? Temporary
1246 cludge until async mode is a strict superset of sync mode. */
1247 extern int target_async_permitted;
1248
1249 /* Can the target support asynchronous execution? */
1250 #define target_can_async_p() (current_target.to_can_async_p ())
1251
1252 /* Is the target in asynchronous execution mode? */
1253 #define target_is_async_p() (current_target.to_is_async_p ())
1254
1255 int target_supports_non_stop (void);
1256
1257 /* Put the target in async mode with the specified callback function. */
1258 #define target_async(CALLBACK,CONTEXT) \
1259 (current_target.to_async ((CALLBACK), (CONTEXT)))
1260
1261 #define target_execution_direction() \
1262 (current_target.to_execution_direction ())
1263
1264 /* Converts a process id to a string. Usually, the string just contains
1265 `process xyz', but on some systems it may contain
1266 `process xyz thread abc'. */
1267
1268 extern char *target_pid_to_str (ptid_t ptid);
1269
1270 extern char *normal_pid_to_str (ptid_t ptid);
1271
1272 /* Return a short string describing extra information about PID,
1273 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1274 is okay. */
1275
1276 #define target_extra_thread_info(TP) \
1277 (current_target.to_extra_thread_info (TP))
1278
1279 /* Return the thread's name. A NULL result means that the target
1280 could not determine this thread's name. */
1281
1282 extern char *target_thread_name (struct thread_info *);
1283
1284 /* Attempts to find the pathname of the executable file
1285 that was run to create a specified process.
1286
1287 The process PID must be stopped when this operation is used.
1288
1289 If the executable file cannot be determined, NULL is returned.
1290
1291 Else, a pointer to a character string containing the pathname
1292 is returned. This string should be copied into a buffer by
1293 the client if the string will not be immediately used, or if
1294 it must persist. */
1295
1296 #define target_pid_to_exec_file(pid) \
1297 (current_target.to_pid_to_exec_file) (pid)
1298
1299 /* See the to_thread_architecture description in struct target_ops. */
1300
1301 #define target_thread_architecture(ptid) \
1302 (current_target.to_thread_architecture (&current_target, ptid))
1303
1304 /*
1305 * Iterator function for target memory regions.
1306 * Calls a callback function once for each memory region 'mapped'
1307 * in the child process. Defined as a simple macro rather than
1308 * as a function macro so that it can be tested for nullity.
1309 */
1310
1311 #define target_find_memory_regions(FUNC, DATA) \
1312 (current_target.to_find_memory_regions) (FUNC, DATA)
1313
1314 /*
1315 * Compose corefile .note section.
1316 */
1317
1318 #define target_make_corefile_notes(BFD, SIZE_P) \
1319 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1320
1321 /* Bookmark interfaces. */
1322 #define target_get_bookmark(ARGS, FROM_TTY) \
1323 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1324
1325 #define target_goto_bookmark(ARG, FROM_TTY) \
1326 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1327
1328 /* Hardware watchpoint interfaces. */
1329
1330 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1331 write). Only the INFERIOR_PTID task is being queried. */
1332
1333 #define target_stopped_by_watchpoint \
1334 (*current_target.to_stopped_by_watchpoint)
1335
1336 /* Non-zero if we have steppable watchpoints */
1337
1338 #define target_have_steppable_watchpoint \
1339 (current_target.to_have_steppable_watchpoint)
1340
1341 /* Non-zero if we have continuable watchpoints */
1342
1343 #define target_have_continuable_watchpoint \
1344 (current_target.to_have_continuable_watchpoint)
1345
1346 /* Provide defaults for hardware watchpoint functions. */
1347
1348 /* If the *_hw_beakpoint functions have not been defined
1349 elsewhere use the definitions in the target vector. */
1350
1351 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1352 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1353 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1354 (including this one?). OTHERTYPE is who knows what... */
1355
1356 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1357 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1358
1359 /* Returns the number of debug registers needed to watch the given
1360 memory region, or zero if not supported. */
1361
1362 #define target_region_ok_for_hw_watchpoint(addr, len) \
1363 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1364
1365
1366 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1367 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1368 COND is the expression for its condition, or NULL if there's none.
1369 Returns 0 for success, 1 if the watchpoint type is not supported,
1370 -1 for failure. */
1371
1372 #define target_insert_watchpoint(addr, len, type, cond) \
1373 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1374
1375 #define target_remove_watchpoint(addr, len, type, cond) \
1376 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1377
1378 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1379 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1380 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1381 masked watchpoints are not supported, -1 for failure. */
1382
1383 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1384
1385 /* Remove a masked watchpoint at ADDR with the mask MASK.
1386 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1387 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1388 for failure. */
1389
1390 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1391
1392 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1393 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1394
1395 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1396 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1397
1398 /* Return number of debug registers needed for a ranged breakpoint,
1399 or -1 if ranged breakpoints are not supported. */
1400
1401 extern int target_ranged_break_num_registers (void);
1402
1403 /* Return non-zero if target knows the data address which triggered this
1404 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1405 INFERIOR_PTID task is being queried. */
1406 #define target_stopped_data_address(target, addr_p) \
1407 (*target.to_stopped_data_address) (target, addr_p)
1408
1409 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1410 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1411
1412 /* Return non-zero if the target is capable of using hardware to evaluate
1413 the condition expression. In this case, if the condition is false when
1414 the watched memory location changes, execution may continue without the
1415 debugger being notified.
1416
1417 Due to limitations in the hardware implementation, it may be capable of
1418 avoiding triggering the watchpoint in some cases where the condition
1419 expression is false, but may report some false positives as well.
1420 For this reason, GDB will still evaluate the condition expression when
1421 the watchpoint triggers. */
1422 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1423 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1424
1425 /* Return number of debug registers needed for a masked watchpoint,
1426 -1 if masked watchpoints are not supported or -2 if the given address
1427 and mask combination cannot be used. */
1428
1429 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1430
1431 /* Target can execute in reverse? */
1432 #define target_can_execute_reverse \
1433 (current_target.to_can_execute_reverse ? \
1434 current_target.to_can_execute_reverse () : 0)
1435
1436 extern const struct target_desc *target_read_description (struct target_ops *);
1437
1438 #define target_get_ada_task_ptid(lwp, tid) \
1439 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1440
1441 /* Utility implementation of searching memory. */
1442 extern int simple_search_memory (struct target_ops* ops,
1443 CORE_ADDR start_addr,
1444 ULONGEST search_space_len,
1445 const gdb_byte *pattern,
1446 ULONGEST pattern_len,
1447 CORE_ADDR *found_addrp);
1448
1449 /* Main entry point for searching memory. */
1450 extern int target_search_memory (CORE_ADDR start_addr,
1451 ULONGEST search_space_len,
1452 const gdb_byte *pattern,
1453 ULONGEST pattern_len,
1454 CORE_ADDR *found_addrp);
1455
1456 /* Tracepoint-related operations. */
1457
1458 #define target_trace_init() \
1459 (*current_target.to_trace_init) ()
1460
1461 #define target_download_tracepoint(t) \
1462 (*current_target.to_download_tracepoint) (t)
1463
1464 #define target_download_trace_state_variable(tsv) \
1465 (*current_target.to_download_trace_state_variable) (tsv)
1466
1467 #define target_enable_tracepoint(loc) \
1468 (*current_target.to_enable_tracepoint) (loc)
1469
1470 #define target_disable_tracepoint(loc) \
1471 (*current_target.to_disable_tracepoint) (loc)
1472
1473 #define target_trace_start() \
1474 (*current_target.to_trace_start) ()
1475
1476 #define target_trace_set_readonly_regions() \
1477 (*current_target.to_trace_set_readonly_regions) ()
1478
1479 #define target_get_trace_status(ts) \
1480 (*current_target.to_get_trace_status) (ts)
1481
1482 #define target_trace_stop() \
1483 (*current_target.to_trace_stop) ()
1484
1485 #define target_trace_find(type,num,addr1,addr2,tpp) \
1486 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1487
1488 #define target_get_trace_state_variable_value(tsv,val) \
1489 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1490
1491 #define target_save_trace_data(filename) \
1492 (*current_target.to_save_trace_data) (filename)
1493
1494 #define target_upload_tracepoints(utpp) \
1495 (*current_target.to_upload_tracepoints) (utpp)
1496
1497 #define target_upload_trace_state_variables(utsvp) \
1498 (*current_target.to_upload_trace_state_variables) (utsvp)
1499
1500 #define target_get_raw_trace_data(buf,offset,len) \
1501 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1502
1503 #define target_set_disconnected_tracing(val) \
1504 (*current_target.to_set_disconnected_tracing) (val)
1505
1506 #define target_set_circular_trace_buffer(val) \
1507 (*current_target.to_set_circular_trace_buffer) (val)
1508
1509 #define target_get_tib_address(ptid, addr) \
1510 (*current_target.to_get_tib_address) ((ptid), (addr))
1511
1512 #define target_set_permissions() \
1513 (*current_target.to_set_permissions) ()
1514
1515 #define target_static_tracepoint_marker_at(addr, marker) \
1516 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1517
1518 #define target_static_tracepoint_markers_by_strid(marker_id) \
1519 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1520
1521 #define target_traceframe_info() \
1522 (*current_target.to_traceframe_info) ()
1523
1524 /* Command logging facility. */
1525
1526 #define target_log_command(p) \
1527 do \
1528 if (current_target.to_log_command) \
1529 (*current_target.to_log_command) (p); \
1530 while (0)
1531
1532
1533 extern int target_core_of_thread (ptid_t ptid);
1534
1535 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1536 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1537 if there's a mismatch, and -1 if an error is encountered while
1538 reading memory. Throws an error if the functionality is found not
1539 to be supported by the current target. */
1540 int target_verify_memory (const gdb_byte *data,
1541 CORE_ADDR memaddr, ULONGEST size);
1542
1543 /* Routines for maintenance of the target structures...
1544
1545 add_target: Add a target to the list of all possible targets.
1546
1547 push_target: Make this target the top of the stack of currently used
1548 targets, within its particular stratum of the stack. Result
1549 is 0 if now atop the stack, nonzero if not on top (maybe
1550 should warn user).
1551
1552 unpush_target: Remove this from the stack of currently used targets,
1553 no matter where it is on the list. Returns 0 if no
1554 change, 1 if removed from stack.
1555
1556 pop_target: Remove the top thing on the stack of current targets. */
1557
1558 extern void add_target (struct target_ops *);
1559
1560 extern void push_target (struct target_ops *);
1561
1562 extern int unpush_target (struct target_ops *);
1563
1564 extern void target_pre_inferior (int);
1565
1566 extern void target_preopen (int);
1567
1568 extern void pop_target (void);
1569
1570 /* Does whatever cleanup is required to get rid of all pushed targets.
1571 QUITTING is propagated to target_close; it indicates that GDB is
1572 exiting and should not get hung on an error (otherwise it is
1573 important to perform clean termination, even if it takes a
1574 while). */
1575 extern void pop_all_targets (int quitting);
1576
1577 /* Like pop_all_targets, but pops only targets whose stratum is
1578 strictly above ABOVE_STRATUM. */
1579 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1580
1581 extern int target_is_pushed (struct target_ops *t);
1582
1583 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1584 CORE_ADDR offset);
1585
1586 /* Struct target_section maps address ranges to file sections. It is
1587 mostly used with BFD files, but can be used without (e.g. for handling
1588 raw disks, or files not in formats handled by BFD). */
1589
1590 struct target_section
1591 {
1592 CORE_ADDR addr; /* Lowest address in section */
1593 CORE_ADDR endaddr; /* 1+highest address in section */
1594
1595 struct bfd_section *the_bfd_section;
1596
1597 bfd *bfd; /* BFD file pointer */
1598 };
1599
1600 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1601
1602 struct target_section_table
1603 {
1604 struct target_section *sections;
1605 struct target_section *sections_end;
1606 };
1607
1608 /* Return the "section" containing the specified address. */
1609 struct target_section *target_section_by_addr (struct target_ops *target,
1610 CORE_ADDR addr);
1611
1612 /* Return the target section table this target (or the targets
1613 beneath) currently manipulate. */
1614
1615 extern struct target_section_table *target_get_section_table
1616 (struct target_ops *target);
1617
1618 /* From mem-break.c */
1619
1620 extern int memory_remove_breakpoint (struct gdbarch *,
1621 struct bp_target_info *);
1622
1623 extern int memory_insert_breakpoint (struct gdbarch *,
1624 struct bp_target_info *);
1625
1626 extern int default_memory_remove_breakpoint (struct gdbarch *,
1627 struct bp_target_info *);
1628
1629 extern int default_memory_insert_breakpoint (struct gdbarch *,
1630 struct bp_target_info *);
1631
1632
1633 /* From target.c */
1634
1635 extern void initialize_targets (void);
1636
1637 extern void noprocess (void) ATTRIBUTE_NORETURN;
1638
1639 extern void target_require_runnable (void);
1640
1641 extern void find_default_attach (struct target_ops *, char *, int);
1642
1643 extern void find_default_create_inferior (struct target_ops *,
1644 char *, char *, char **, int);
1645
1646 extern struct target_ops *find_run_target (void);
1647
1648 extern struct target_ops *find_target_beneath (struct target_ops *);
1649
1650 /* Read OS data object of type TYPE from the target, and return it in
1651 XML format. The result is NUL-terminated and returned as a string,
1652 allocated using xmalloc. If an error occurs or the transfer is
1653 unsupported, NULL is returned. Empty objects are returned as
1654 allocated but empty strings. */
1655
1656 extern char *target_get_osdata (const char *type);
1657
1658 \f
1659 /* Stuff that should be shared among the various remote targets. */
1660
1661 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1662 information (higher values, more information). */
1663 extern int remote_debug;
1664
1665 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1666 extern int baud_rate;
1667 /* Timeout limit for response from target. */
1668 extern int remote_timeout;
1669
1670 \f
1671 /* Functions for helping to write a native target. */
1672
1673 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1674 extern void store_waitstatus (struct target_waitstatus *, int);
1675
1676 /* These are in common/signals.c, but they're only used by gdb. */
1677 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1678 int);
1679 extern int default_target_signal_to_host (struct gdbarch *,
1680 enum target_signal);
1681
1682 /* Convert from a number used in a GDB command to an enum target_signal. */
1683 extern enum target_signal target_signal_from_command (int);
1684 /* End of files in common/signals.c. */
1685
1686 /* Set the show memory breakpoints mode to show, and installs a cleanup
1687 to restore it back to the current value. */
1688 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1689
1690 extern int may_write_registers;
1691 extern int may_write_memory;
1692 extern int may_insert_breakpoints;
1693 extern int may_insert_tracepoints;
1694 extern int may_insert_fast_tracepoints;
1695 extern int may_stop;
1696
1697 extern void update_target_permissions (void);
1698
1699 \f
1700 /* Imported from machine dependent code. */
1701
1702 /* Blank target vector entries are initialized to target_ignore. */
1703 void target_ignore (void);
1704
1705 #endif /* !defined (TARGET_H) */
This page took 0.065642 seconds and 4 git commands to generate.