* config/mcore/tm-mcore.h: Remove file.
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Cygnus Support. Written by John Gilmore.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #if !defined (TARGET_H)
24 #define TARGET_H
25
26 /* This include file defines the interface between the main part
27 of the debugger, and the part which is target-specific, or
28 specific to the communications interface between us and the
29 target.
30
31 A TARGET is an interface between the debugger and a particular
32 kind of file or process. Targets can be STACKED in STRATA,
33 so that more than one target can potentially respond to a request.
34 In particular, memory accesses will walk down the stack of targets
35 until they find a target that is interested in handling that particular
36 address. STRATA are artificial boundaries on the stack, within
37 which particular kinds of targets live. Strata exist so that
38 people don't get confused by pushing e.g. a process target and then
39 a file target, and wondering why they can't see the current values
40 of variables any more (the file target is handling them and they
41 never get to the process target). So when you push a file target,
42 it goes into the file stratum, which is always below the process
43 stratum. */
44
45 #include "bfd.h"
46 #include "symtab.h"
47 #include "dcache.h"
48 #include "memattr.h"
49
50 enum strata
51 {
52 dummy_stratum, /* The lowest of the low */
53 file_stratum, /* Executable files, etc */
54 core_stratum, /* Core dump files */
55 download_stratum, /* Downloading of remote targets */
56 process_stratum, /* Executing processes */
57 thread_stratum /* Executing threads */
58 };
59
60 enum thread_control_capabilities
61 {
62 tc_none = 0, /* Default: can't control thread execution. */
63 tc_schedlock = 1, /* Can lock the thread scheduler. */
64 tc_switch = 2 /* Can switch the running thread on demand. */
65 };
66
67 /* Stuff for target_wait. */
68
69 /* Generally, what has the program done? */
70 enum target_waitkind
71 {
72 /* The program has exited. The exit status is in value.integer. */
73 TARGET_WAITKIND_EXITED,
74
75 /* The program has stopped with a signal. Which signal is in
76 value.sig. */
77 TARGET_WAITKIND_STOPPED,
78
79 /* The program has terminated with a signal. Which signal is in
80 value.sig. */
81 TARGET_WAITKIND_SIGNALLED,
82
83 /* The program is letting us know that it dynamically loaded something
84 (e.g. it called load(2) on AIX). */
85 TARGET_WAITKIND_LOADED,
86
87 /* The program has forked. A "related" process' ID is in
88 value.related_pid. I.e., if the child forks, value.related_pid
89 is the parent's ID. */
90
91 TARGET_WAITKIND_FORKED,
92
93 /* The program has vforked. A "related" process's ID is in
94 value.related_pid. */
95
96 TARGET_WAITKIND_VFORKED,
97
98 /* The program has exec'ed a new executable file. The new file's
99 pathname is pointed to by value.execd_pathname. */
100
101 TARGET_WAITKIND_EXECD,
102
103 /* The program has entered or returned from a system call. On
104 HP-UX, this is used in the hardware watchpoint implementation.
105 The syscall's unique integer ID number is in value.syscall_id */
106
107 TARGET_WAITKIND_SYSCALL_ENTRY,
108 TARGET_WAITKIND_SYSCALL_RETURN,
109
110 /* Nothing happened, but we stopped anyway. This perhaps should be handled
111 within target_wait, but I'm not sure target_wait should be resuming the
112 inferior. */
113 TARGET_WAITKIND_SPURIOUS,
114
115 /* This is used for target async and extended-async
116 only. Remote_async_wait() returns this when there is an event
117 on the inferior, but the rest of the world is not interested in
118 it. The inferior has not stopped, but has just sent some output
119 to the console, for instance. In this case, we want to go back
120 to the event loop and wait there for another event from the
121 inferior, rather than being stuck in the remote_async_wait()
122 function. This way the event loop is responsive to other events,
123 like for instance the user typing. */
124 TARGET_WAITKIND_IGNORE
125 };
126
127 struct target_waitstatus
128 {
129 enum target_waitkind kind;
130
131 /* Forked child pid, execd pathname, exit status or signal number. */
132 union
133 {
134 int integer;
135 enum target_signal sig;
136 int related_pid;
137 char *execd_pathname;
138 int syscall_id;
139 }
140 value;
141 };
142
143 /* Possible types of events that the inferior handler will have to
144 deal with. */
145 enum inferior_event_type
146 {
147 /* There is a request to quit the inferior, abandon it. */
148 INF_QUIT_REQ,
149 /* Process a normal inferior event which will result in target_wait
150 being called. */
151 INF_REG_EVENT,
152 /* Deal with an error on the inferior. */
153 INF_ERROR,
154 /* We are called because a timer went off. */
155 INF_TIMER,
156 /* We are called to do stuff after the inferior stops. */
157 INF_EXEC_COMPLETE,
158 /* We are called to do some stuff after the inferior stops, but we
159 are expected to reenter the proceed() and
160 handle_inferior_event() functions. This is used only in case of
161 'step n' like commands. */
162 INF_EXEC_CONTINUE
163 };
164
165 /* Return the string for a signal. */
166 extern char *target_signal_to_string (enum target_signal);
167
168 /* Return the name (SIGHUP, etc.) for a signal. */
169 extern char *target_signal_to_name (enum target_signal);
170
171 /* Given a name (SIGHUP, etc.), return its signal. */
172 enum target_signal target_signal_from_name (char *);
173 \f
174
175 /* If certain kinds of activity happen, target_wait should perform
176 callbacks. */
177 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
178 on TARGET_ACTIVITY_FD. */
179 extern int target_activity_fd;
180 /* Returns zero to leave the inferior alone, one to interrupt it. */
181 extern int (*target_activity_function) (void);
182 \f
183 struct thread_info; /* fwd decl for parameter list below: */
184
185 struct target_ops
186 {
187 char *to_shortname; /* Name this target type */
188 char *to_longname; /* Name for printing */
189 char *to_doc; /* Documentation. Does not include trailing
190 newline, and starts with a one-line descrip-
191 tion (probably similar to to_longname). */
192 void (*to_open) (char *, int);
193 void (*to_close) (int);
194 void (*to_attach) (char *, int);
195 void (*to_post_attach) (int);
196 void (*to_require_attach) (char *, int);
197 void (*to_detach) (char *, int);
198 void (*to_require_detach) (int, char *, int);
199 void (*to_resume) (ptid_t, int, enum target_signal);
200 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
201 void (*to_post_wait) (ptid_t, int);
202 void (*to_fetch_registers) (int);
203 void (*to_store_registers) (int);
204 void (*to_prepare_to_store) (void);
205
206 /* Transfer LEN bytes of memory between GDB address MYADDR and
207 target address MEMADDR. If WRITE, transfer them to the target, else
208 transfer them from the target. TARGET is the target from which we
209 get this function.
210
211 Return value, N, is one of the following:
212
213 0 means that we can't handle this. If errno has been set, it is the
214 error which prevented us from doing it (FIXME: What about bfd_error?).
215
216 positive (call it N) means that we have transferred N bytes
217 starting at MEMADDR. We might be able to handle more bytes
218 beyond this length, but no promises.
219
220 negative (call its absolute value N) means that we cannot
221 transfer right at MEMADDR, but we could transfer at least
222 something at MEMADDR + N. */
223
224 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
225 int len, int write,
226 struct mem_attrib *attrib,
227 struct target_ops *target);
228
229 #if 0
230 /* Enable this after 4.12. */
231
232 /* Search target memory. Start at STARTADDR and take LEN bytes of
233 target memory, and them with MASK, and compare to DATA. If they
234 match, set *ADDR_FOUND to the address we found it at, store the data
235 we found at LEN bytes starting at DATA_FOUND, and return. If
236 not, add INCREMENT to the search address and keep trying until
237 the search address is outside of the range [LORANGE,HIRANGE).
238
239 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
240 return. */
241
242 void (*to_search) (int len, char *data, char *mask,
243 CORE_ADDR startaddr, int increment,
244 CORE_ADDR lorange, CORE_ADDR hirange,
245 CORE_ADDR * addr_found, char *data_found);
246
247 #define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
248 (*current_target.to_search) (len, data, mask, startaddr, increment, \
249 lorange, hirange, addr_found, data_found)
250 #endif /* 0 */
251
252 void (*to_files_info) (struct target_ops *);
253 int (*to_insert_breakpoint) (CORE_ADDR, char *);
254 int (*to_remove_breakpoint) (CORE_ADDR, char *);
255 void (*to_terminal_init) (void);
256 void (*to_terminal_inferior) (void);
257 void (*to_terminal_ours_for_output) (void);
258 void (*to_terminal_ours) (void);
259 void (*to_terminal_info) (char *, int);
260 void (*to_kill) (void);
261 void (*to_load) (char *, int);
262 int (*to_lookup_symbol) (char *, CORE_ADDR *);
263 void (*to_create_inferior) (char *, char *, char **);
264 void (*to_post_startup_inferior) (ptid_t);
265 void (*to_acknowledge_created_inferior) (int);
266 void (*to_clone_and_follow_inferior) (int, int *);
267 void (*to_post_follow_inferior_by_clone) (void);
268 int (*to_insert_fork_catchpoint) (int);
269 int (*to_remove_fork_catchpoint) (int);
270 int (*to_insert_vfork_catchpoint) (int);
271 int (*to_remove_vfork_catchpoint) (int);
272 int (*to_has_forked) (int, int *);
273 int (*to_has_vforked) (int, int *);
274 int (*to_can_follow_vfork_prior_to_exec) (void);
275 void (*to_post_follow_vfork) (int, int, int, int);
276 int (*to_insert_exec_catchpoint) (int);
277 int (*to_remove_exec_catchpoint) (int);
278 int (*to_has_execd) (int, char **);
279 int (*to_reported_exec_events_per_exec_call) (void);
280 int (*to_has_syscall_event) (int, enum target_waitkind *, int *);
281 int (*to_has_exited) (int, int, int *);
282 void (*to_mourn_inferior) (void);
283 int (*to_can_run) (void);
284 void (*to_notice_signals) (ptid_t ptid);
285 int (*to_thread_alive) (ptid_t ptid);
286 void (*to_find_new_threads) (void);
287 char *(*to_pid_to_str) (ptid_t);
288 char *(*to_extra_thread_info) (struct thread_info *);
289 void (*to_stop) (void);
290 int (*to_query) (int /*char */ , char *, char *, int *);
291 void (*to_rcmd) (char *command, struct ui_file *output);
292 struct symtab_and_line *(*to_enable_exception_callback) (enum
293 exception_event_kind,
294 int);
295 struct exception_event_record *(*to_get_current_exception_event) (void);
296 char *(*to_pid_to_exec_file) (int pid);
297 enum strata to_stratum;
298 struct target_ops
299 *DONT_USE; /* formerly to_next */
300 int to_has_all_memory;
301 int to_has_memory;
302 int to_has_stack;
303 int to_has_registers;
304 int to_has_execution;
305 int to_has_thread_control; /* control thread execution */
306 struct section_table
307 *to_sections;
308 struct section_table
309 *to_sections_end;
310 /* ASYNC target controls */
311 int (*to_can_async_p) (void);
312 int (*to_is_async_p) (void);
313 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
314 void *context);
315 int to_async_mask_value;
316 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
317 unsigned long,
318 int, int, int,
319 void *),
320 void *);
321 char * (*to_make_corefile_notes) (bfd *, int *);
322 int to_magic;
323 /* Need sub-structure for target machine related rather than comm related?
324 */
325 };
326
327 /* Magic number for checking ops size. If a struct doesn't end with this
328 number, somebody changed the declaration but didn't change all the
329 places that initialize one. */
330
331 #define OPS_MAGIC 3840
332
333 /* The ops structure for our "current" target process. This should
334 never be NULL. If there is no target, it points to the dummy_target. */
335
336 extern struct target_ops current_target;
337
338 /* An item on the target stack. */
339
340 struct target_stack_item
341 {
342 struct target_stack_item *next;
343 struct target_ops *target_ops;
344 };
345
346 /* The target stack. */
347
348 extern struct target_stack_item *target_stack;
349
350 /* Define easy words for doing these operations on our current target. */
351
352 #define target_shortname (current_target.to_shortname)
353 #define target_longname (current_target.to_longname)
354
355 /* The open routine takes the rest of the parameters from the command,
356 and (if successful) pushes a new target onto the stack.
357 Targets should supply this routine, if only to provide an error message. */
358
359 #define target_open(name, from_tty) \
360 do { \
361 dcache_invalidate (target_dcache); \
362 (*current_target.to_open) (name, from_tty); \
363 } while (0)
364
365 /* Does whatever cleanup is required for a target that we are no longer
366 going to be calling. Argument says whether we are quitting gdb and
367 should not get hung in case of errors, or whether we want a clean
368 termination even if it takes a while. This routine is automatically
369 always called just before a routine is popped off the target stack.
370 Closing file descriptors and freeing memory are typical things it should
371 do. */
372
373 #define target_close(quitting) \
374 (*current_target.to_close) (quitting)
375
376 /* Attaches to a process on the target side. Arguments are as passed
377 to the `attach' command by the user. This routine can be called
378 when the target is not on the target-stack, if the target_can_run
379 routine returns 1; in that case, it must push itself onto the stack.
380 Upon exit, the target should be ready for normal operations, and
381 should be ready to deliver the status of the process immediately
382 (without waiting) to an upcoming target_wait call. */
383
384 #define target_attach(args, from_tty) \
385 (*current_target.to_attach) (args, from_tty)
386
387 /* The target_attach operation places a process under debugger control,
388 and stops the process.
389
390 This operation provides a target-specific hook that allows the
391 necessary bookkeeping to be performed after an attach completes. */
392 #define target_post_attach(pid) \
393 (*current_target.to_post_attach) (pid)
394
395 /* Attaches to a process on the target side, if not already attached.
396 (If already attached, takes no action.)
397
398 This operation can be used to follow the child process of a fork.
399 On some targets, such child processes of an original inferior process
400 are automatically under debugger control, and thus do not require an
401 actual attach operation. */
402
403 #define target_require_attach(args, from_tty) \
404 (*current_target.to_require_attach) (args, from_tty)
405
406 /* Takes a program previously attached to and detaches it.
407 The program may resume execution (some targets do, some don't) and will
408 no longer stop on signals, etc. We better not have left any breakpoints
409 in the program or it'll die when it hits one. ARGS is arguments
410 typed by the user (e.g. a signal to send the process). FROM_TTY
411 says whether to be verbose or not. */
412
413 extern void target_detach (char *, int);
414
415 /* Detaches from a process on the target side, if not already dettached.
416 (If already detached, takes no action.)
417
418 This operation can be used to follow the parent process of a fork.
419 On some targets, such child processes of an original inferior process
420 are automatically under debugger control, and thus do require an actual
421 detach operation.
422
423 PID is the process id of the child to detach from.
424 ARGS is arguments typed by the user (e.g. a signal to send the process).
425 FROM_TTY says whether to be verbose or not. */
426
427 #define target_require_detach(pid, args, from_tty) \
428 (*current_target.to_require_detach) (pid, args, from_tty)
429
430 /* Resume execution of the target process PTID. STEP says whether to
431 single-step or to run free; SIGGNAL is the signal to be given to
432 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
433 pass TARGET_SIGNAL_DEFAULT. */
434
435 #define target_resume(ptid, step, siggnal) \
436 do { \
437 dcache_invalidate(target_dcache); \
438 (*current_target.to_resume) (ptid, step, siggnal); \
439 } while (0)
440
441 /* Wait for process pid to do something. PTID = -1 to wait for any
442 pid to do something. Return pid of child, or -1 in case of error;
443 store status through argument pointer STATUS. Note that it is
444 _NOT_ OK to throw_exception() out of target_wait() without popping
445 the debugging target from the stack; GDB isn't prepared to get back
446 to the prompt with a debugging target but without the frame cache,
447 stop_pc, etc., set up. */
448
449 #define target_wait(ptid, status) \
450 (*current_target.to_wait) (ptid, status)
451
452 /* The target_wait operation waits for a process event to occur, and
453 thereby stop the process.
454
455 On some targets, certain events may happen in sequences. gdb's
456 correct response to any single event of such a sequence may require
457 knowledge of what earlier events in the sequence have been seen.
458
459 This operation provides a target-specific hook that allows the
460 necessary bookkeeping to be performed to track such sequences. */
461
462 #define target_post_wait(ptid, status) \
463 (*current_target.to_post_wait) (ptid, status)
464
465 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
466
467 #define target_fetch_registers(regno) \
468 (*current_target.to_fetch_registers) (regno)
469
470 /* Store at least register REGNO, or all regs if REGNO == -1.
471 It can store as many registers as it wants to, so target_prepare_to_store
472 must have been previously called. Calls error() if there are problems. */
473
474 #define target_store_registers(regs) \
475 (*current_target.to_store_registers) (regs)
476
477 /* Get ready to modify the registers array. On machines which store
478 individual registers, this doesn't need to do anything. On machines
479 which store all the registers in one fell swoop, this makes sure
480 that REGISTERS contains all the registers from the program being
481 debugged. */
482
483 #define target_prepare_to_store() \
484 (*current_target.to_prepare_to_store) ()
485
486 extern DCACHE *target_dcache;
487
488 extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
489 struct mem_attrib *attrib);
490
491 extern int target_read_string (CORE_ADDR, char **, int, int *);
492
493 extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
494
495 extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
496
497 extern int xfer_memory (CORE_ADDR, char *, int, int,
498 struct mem_attrib *, struct target_ops *);
499
500 extern int child_xfer_memory (CORE_ADDR, char *, int, int,
501 struct mem_attrib *, struct target_ops *);
502
503 /* Make a single attempt at transfering LEN bytes. On a successful
504 transfer, the number of bytes actually transfered is returned and
505 ERR is set to 0. When a transfer fails, -1 is returned (the number
506 of bytes actually transfered is not defined) and ERR is set to a
507 non-zero error indication. */
508
509 extern int
510 target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
511
512 extern int
513 target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
514
515 extern char *child_pid_to_exec_file (int);
516
517 extern char *child_core_file_to_sym_file (char *);
518
519 #if defined(CHILD_POST_ATTACH)
520 extern void child_post_attach (int);
521 #endif
522
523 extern void child_post_wait (ptid_t, int);
524
525 extern void child_post_startup_inferior (ptid_t);
526
527 extern void child_acknowledge_created_inferior (int);
528
529 extern void child_clone_and_follow_inferior (int, int *);
530
531 extern void child_post_follow_inferior_by_clone (void);
532
533 extern int child_insert_fork_catchpoint (int);
534
535 extern int child_remove_fork_catchpoint (int);
536
537 extern int child_insert_vfork_catchpoint (int);
538
539 extern int child_remove_vfork_catchpoint (int);
540
541 extern int child_has_forked (int, int *);
542
543 extern int child_has_vforked (int, int *);
544
545 extern void child_acknowledge_created_inferior (int);
546
547 extern int child_can_follow_vfork_prior_to_exec (void);
548
549 extern void child_post_follow_vfork (int, int, int, int);
550
551 extern int child_insert_exec_catchpoint (int);
552
553 extern int child_remove_exec_catchpoint (int);
554
555 extern int child_has_execd (int, char **);
556
557 extern int child_reported_exec_events_per_exec_call (void);
558
559 extern int child_has_syscall_event (int, enum target_waitkind *, int *);
560
561 extern int child_has_exited (int, int, int *);
562
563 extern int child_thread_alive (ptid_t);
564
565 /* From exec.c */
566
567 extern void print_section_info (struct target_ops *, bfd *);
568
569 /* Print a line about the current target. */
570
571 #define target_files_info() \
572 (*current_target.to_files_info) (&current_target)
573
574 /* Insert a breakpoint at address ADDR in the target machine.
575 SAVE is a pointer to memory allocated for saving the
576 target contents. It is guaranteed by the caller to be long enough
577 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
578 an errno value. */
579
580 #define target_insert_breakpoint(addr, save) \
581 (*current_target.to_insert_breakpoint) (addr, save)
582
583 /* Remove a breakpoint at address ADDR in the target machine.
584 SAVE is a pointer to the same save area
585 that was previously passed to target_insert_breakpoint.
586 Result is 0 for success, or an errno value. */
587
588 #define target_remove_breakpoint(addr, save) \
589 (*current_target.to_remove_breakpoint) (addr, save)
590
591 /* Initialize the terminal settings we record for the inferior,
592 before we actually run the inferior. */
593
594 #define target_terminal_init() \
595 (*current_target.to_terminal_init) ()
596
597 /* Put the inferior's terminal settings into effect.
598 This is preparation for starting or resuming the inferior. */
599
600 #define target_terminal_inferior() \
601 (*current_target.to_terminal_inferior) ()
602
603 /* Put some of our terminal settings into effect,
604 enough to get proper results from our output,
605 but do not change into or out of RAW mode
606 so that no input is discarded.
607
608 After doing this, either terminal_ours or terminal_inferior
609 should be called to get back to a normal state of affairs. */
610
611 #define target_terminal_ours_for_output() \
612 (*current_target.to_terminal_ours_for_output) ()
613
614 /* Put our terminal settings into effect.
615 First record the inferior's terminal settings
616 so they can be restored properly later. */
617
618 #define target_terminal_ours() \
619 (*current_target.to_terminal_ours) ()
620
621 /* Print useful information about our terminal status, if such a thing
622 exists. */
623
624 #define target_terminal_info(arg, from_tty) \
625 (*current_target.to_terminal_info) (arg, from_tty)
626
627 /* Kill the inferior process. Make it go away. */
628
629 #define target_kill() \
630 (*current_target.to_kill) ()
631
632 /* Load an executable file into the target process. This is expected
633 to not only bring new code into the target process, but also to
634 update GDB's symbol tables to match. */
635
636 extern void target_load (char *arg, int from_tty);
637
638 /* Look up a symbol in the target's symbol table. NAME is the symbol
639 name. ADDRP is a CORE_ADDR * pointing to where the value of the
640 symbol should be returned. The result is 0 if successful, nonzero
641 if the symbol does not exist in the target environment. This
642 function should not call error() if communication with the target
643 is interrupted, since it is called from symbol reading, but should
644 return nonzero, possibly doing a complain(). */
645
646 #define target_lookup_symbol(name, addrp) \
647 (*current_target.to_lookup_symbol) (name, addrp)
648
649 /* Start an inferior process and set inferior_ptid to its pid.
650 EXEC_FILE is the file to run.
651 ALLARGS is a string containing the arguments to the program.
652 ENV is the environment vector to pass. Errors reported with error().
653 On VxWorks and various standalone systems, we ignore exec_file. */
654
655 #define target_create_inferior(exec_file, args, env) \
656 (*current_target.to_create_inferior) (exec_file, args, env)
657
658
659 /* Some targets (such as ttrace-based HPUX) don't allow us to request
660 notification of inferior events such as fork and vork immediately
661 after the inferior is created. (This because of how gdb gets an
662 inferior created via invoking a shell to do it. In such a scenario,
663 if the shell init file has commands in it, the shell will fork and
664 exec for each of those commands, and we will see each such fork
665 event. Very bad.)
666
667 Such targets will supply an appropriate definition for this function. */
668
669 #define target_post_startup_inferior(ptid) \
670 (*current_target.to_post_startup_inferior) (ptid)
671
672 /* On some targets, the sequence of starting up an inferior requires
673 some synchronization between gdb and the new inferior process, PID. */
674
675 #define target_acknowledge_created_inferior(pid) \
676 (*current_target.to_acknowledge_created_inferior) (pid)
677
678 /* An inferior process has been created via a fork() or similar
679 system call. This function will clone the debugger, then ensure
680 that CHILD_PID is attached to by that debugger.
681
682 FOLLOWED_CHILD is set TRUE on return *for the clone debugger only*,
683 and FALSE otherwise. (The original and clone debuggers can use this
684 to determine which they are, if need be.)
685
686 (This is not a terribly useful feature without a GUI to prevent
687 the two debuggers from competing for shell input.) */
688
689 #define target_clone_and_follow_inferior(child_pid,followed_child) \
690 (*current_target.to_clone_and_follow_inferior) (child_pid, followed_child)
691
692 /* This operation is intended to be used as the last in a sequence of
693 steps taken when following both parent and child of a fork. This
694 is used by a clone of the debugger, which will follow the child.
695
696 The original debugger has detached from this process, and the
697 clone has attached to it.
698
699 On some targets, this requires a bit of cleanup to make it work
700 correctly. */
701
702 #define target_post_follow_inferior_by_clone() \
703 (*current_target.to_post_follow_inferior_by_clone) ()
704
705 /* On some targets, we can catch an inferior fork or vfork event when
706 it occurs. These functions insert/remove an already-created
707 catchpoint for such events. */
708
709 #define target_insert_fork_catchpoint(pid) \
710 (*current_target.to_insert_fork_catchpoint) (pid)
711
712 #define target_remove_fork_catchpoint(pid) \
713 (*current_target.to_remove_fork_catchpoint) (pid)
714
715 #define target_insert_vfork_catchpoint(pid) \
716 (*current_target.to_insert_vfork_catchpoint) (pid)
717
718 #define target_remove_vfork_catchpoint(pid) \
719 (*current_target.to_remove_vfork_catchpoint) (pid)
720
721 /* Returns TRUE if PID has invoked the fork() system call. And,
722 also sets CHILD_PID to the process id of the other ("child")
723 inferior process that was created by that call. */
724
725 #define target_has_forked(pid,child_pid) \
726 (*current_target.to_has_forked) (pid,child_pid)
727
728 /* Returns TRUE if PID has invoked the vfork() system call. And,
729 also sets CHILD_PID to the process id of the other ("child")
730 inferior process that was created by that call. */
731
732 #define target_has_vforked(pid,child_pid) \
733 (*current_target.to_has_vforked) (pid,child_pid)
734
735 /* Some platforms (such as pre-10.20 HP-UX) don't allow us to do
736 anything to a vforked child before it subsequently calls exec().
737 On such platforms, we say that the debugger cannot "follow" the
738 child until it has vforked.
739
740 This function should be defined to return 1 by those targets
741 which can allow the debugger to immediately follow a vforked
742 child, and 0 if they cannot. */
743
744 #define target_can_follow_vfork_prior_to_exec() \
745 (*current_target.to_can_follow_vfork_prior_to_exec) ()
746
747 /* An inferior process has been created via a vfork() system call.
748 The debugger has followed the parent, the child, or both. The
749 process of setting up for that follow may have required some
750 target-specific trickery to track the sequence of reported events.
751 If so, this function should be defined by those targets that
752 require the debugger to perform cleanup or initialization after
753 the vfork follow. */
754
755 #define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
756 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
757
758 /* On some targets, we can catch an inferior exec event when it
759 occurs. These functions insert/remove an already-created
760 catchpoint for such events. */
761
762 #define target_insert_exec_catchpoint(pid) \
763 (*current_target.to_insert_exec_catchpoint) (pid)
764
765 #define target_remove_exec_catchpoint(pid) \
766 (*current_target.to_remove_exec_catchpoint) (pid)
767
768 /* Returns TRUE if PID has invoked a flavor of the exec() system call.
769 And, also sets EXECD_PATHNAME to the pathname of the executable
770 file that was passed to exec(), and is now being executed. */
771
772 #define target_has_execd(pid,execd_pathname) \
773 (*current_target.to_has_execd) (pid,execd_pathname)
774
775 /* Returns the number of exec events that are reported when a process
776 invokes a flavor of the exec() system call on this target, if exec
777 events are being reported. */
778
779 #define target_reported_exec_events_per_exec_call() \
780 (*current_target.to_reported_exec_events_per_exec_call) ()
781
782 /* Returns TRUE if PID has reported a syscall event. And, also sets
783 KIND to the appropriate TARGET_WAITKIND_, and sets SYSCALL_ID to
784 the unique integer ID of the syscall. */
785
786 #define target_has_syscall_event(pid,kind,syscall_id) \
787 (*current_target.to_has_syscall_event) (pid,kind,syscall_id)
788
789 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
790 exit code of PID, if any. */
791
792 #define target_has_exited(pid,wait_status,exit_status) \
793 (*current_target.to_has_exited) (pid,wait_status,exit_status)
794
795 /* The debugger has completed a blocking wait() call. There is now
796 some process event that must be processed. This function should
797 be defined by those targets that require the debugger to perform
798 cleanup or internal state changes in response to the process event. */
799
800 /* The inferior process has died. Do what is right. */
801
802 #define target_mourn_inferior() \
803 (*current_target.to_mourn_inferior) ()
804
805 /* Does target have enough data to do a run or attach command? */
806
807 #define target_can_run(t) \
808 ((t)->to_can_run) ()
809
810 /* post process changes to signal handling in the inferior. */
811
812 #define target_notice_signals(ptid) \
813 (*current_target.to_notice_signals) (ptid)
814
815 /* Check to see if a thread is still alive. */
816
817 #define target_thread_alive(ptid) \
818 (*current_target.to_thread_alive) (ptid)
819
820 /* Query for new threads and add them to the thread list. */
821
822 #define target_find_new_threads() \
823 (*current_target.to_find_new_threads) (); \
824
825 /* Make target stop in a continuable fashion. (For instance, under
826 Unix, this should act like SIGSTOP). This function is normally
827 used by GUIs to implement a stop button. */
828
829 #define target_stop current_target.to_stop
830
831 /* Queries the target side for some information. The first argument is a
832 letter specifying the type of the query, which is used to determine who
833 should process it. The second argument is a string that specifies which
834 information is desired and the third is a buffer that carries back the
835 response from the target side. The fourth parameter is the size of the
836 output buffer supplied. */
837
838 #define target_query(query_type, query, resp_buffer, bufffer_size) \
839 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
840
841 /* Send the specified COMMAND to the target's monitor
842 (shell,interpreter) for execution. The result of the query is
843 placed in OUTBUF. */
844
845 #define target_rcmd(command, outbuf) \
846 (*current_target.to_rcmd) (command, outbuf)
847
848
849 /* Get the symbol information for a breakpointable routine called when
850 an exception event occurs.
851 Intended mainly for C++, and for those
852 platforms/implementations where such a callback mechanism is available,
853 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
854 different mechanisms for debugging exceptions. */
855
856 #define target_enable_exception_callback(kind, enable) \
857 (*current_target.to_enable_exception_callback) (kind, enable)
858
859 /* Get the current exception event kind -- throw or catch, etc. */
860
861 #define target_get_current_exception_event() \
862 (*current_target.to_get_current_exception_event) ()
863
864 /* Pointer to next target in the chain, e.g. a core file and an exec file. */
865
866 #define target_next \
867 (current_target.to_next)
868
869 /* Does the target include all of memory, or only part of it? This
870 determines whether we look up the target chain for other parts of
871 memory if this target can't satisfy a request. */
872
873 #define target_has_all_memory \
874 (current_target.to_has_all_memory)
875
876 /* Does the target include memory? (Dummy targets don't.) */
877
878 #define target_has_memory \
879 (current_target.to_has_memory)
880
881 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
882 we start a process.) */
883
884 #define target_has_stack \
885 (current_target.to_has_stack)
886
887 /* Does the target have registers? (Exec files don't.) */
888
889 #define target_has_registers \
890 (current_target.to_has_registers)
891
892 /* Does the target have execution? Can we make it jump (through
893 hoops), or pop its stack a few times? FIXME: If this is to work that
894 way, it needs to check whether an inferior actually exists.
895 remote-udi.c and probably other targets can be the current target
896 when the inferior doesn't actually exist at the moment. Right now
897 this just tells us whether this target is *capable* of execution. */
898
899 #define target_has_execution \
900 (current_target.to_has_execution)
901
902 /* Can the target support the debugger control of thread execution?
903 a) Can it lock the thread scheduler?
904 b) Can it switch the currently running thread? */
905
906 #define target_can_lock_scheduler \
907 (current_target.to_has_thread_control & tc_schedlock)
908
909 #define target_can_switch_threads \
910 (current_target.to_has_thread_control & tc_switch)
911
912 /* Can the target support asynchronous execution? */
913 #define target_can_async_p() (current_target.to_can_async_p ())
914
915 /* Is the target in asynchronous execution mode? */
916 #define target_is_async_p() (current_target.to_is_async_p())
917
918 /* Put the target in async mode with the specified callback function. */
919 #define target_async(CALLBACK,CONTEXT) \
920 (current_target.to_async((CALLBACK), (CONTEXT)))
921
922 /* This is to be used ONLY within run_stack_dummy(). It
923 provides a workaround, to have inferior function calls done in
924 sychronous mode, even though the target is asynchronous. After
925 target_async_mask(0) is called, calls to target_can_async_p() will
926 return FALSE , so that target_resume() will not try to start the
927 target asynchronously. After the inferior stops, we IMMEDIATELY
928 restore the previous nature of the target, by calling
929 target_async_mask(1). After that, target_can_async_p() will return
930 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
931
932 FIXME ezannoni 1999-12-13: we won't need this once we move
933 the turning async on and off to the single execution commands,
934 from where it is done currently, in remote_resume(). */
935
936 #define target_async_mask_value \
937 (current_target.to_async_mask_value)
938
939 extern int target_async_mask (int mask);
940
941 extern void target_link (char *, CORE_ADDR *);
942
943 /* Converts a process id to a string. Usually, the string just contains
944 `process xyz', but on some systems it may contain
945 `process xyz thread abc'. */
946
947 #undef target_pid_to_str
948 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
949
950 #ifndef target_tid_to_str
951 #define target_tid_to_str(PID) \
952 target_pid_to_str (PID)
953 extern char *normal_pid_to_str (ptid_t ptid);
954 #endif
955
956 /* Return a short string describing extra information about PID,
957 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
958 is okay. */
959
960 #define target_extra_thread_info(TP) \
961 (current_target.to_extra_thread_info (TP))
962
963 /*
964 * New Objfile Event Hook:
965 *
966 * Sometimes a GDB component wants to get notified whenever a new
967 * objfile is loaded. Mainly this is used by thread-debugging
968 * implementations that need to know when symbols for the target
969 * thread implemenation are available.
970 *
971 * The old way of doing this is to define a macro 'target_new_objfile'
972 * that points to the function that you want to be called on every
973 * objfile/shlib load.
974 *
975 * The new way is to grab the function pointer, 'target_new_objfile_hook',
976 * and point it to the function that you want to be called on every
977 * objfile/shlib load.
978 *
979 * If multiple clients are willing to be cooperative, they can each
980 * save a pointer to the previous value of target_new_objfile_hook
981 * before modifying it, and arrange for their function to call the
982 * previous function in the chain. In that way, multiple clients
983 * can receive this notification (something like with signal handlers).
984 */
985
986 extern void (*target_new_objfile_hook) (struct objfile *);
987
988 #ifndef target_pid_or_tid_to_str
989 #define target_pid_or_tid_to_str(ID) \
990 target_pid_to_str (ID)
991 #endif
992
993 /* Attempts to find the pathname of the executable file
994 that was run to create a specified process.
995
996 The process PID must be stopped when this operation is used.
997
998 If the executable file cannot be determined, NULL is returned.
999
1000 Else, a pointer to a character string containing the pathname
1001 is returned. This string should be copied into a buffer by
1002 the client if the string will not be immediately used, or if
1003 it must persist. */
1004
1005 #define target_pid_to_exec_file(pid) \
1006 (current_target.to_pid_to_exec_file) (pid)
1007
1008 /*
1009 * Iterator function for target memory regions.
1010 * Calls a callback function once for each memory region 'mapped'
1011 * in the child process. Defined as a simple macro rather than
1012 * as a function macro so that it can be tested for nullity.
1013 */
1014
1015 #define target_find_memory_regions(FUNC, DATA) \
1016 (current_target.to_find_memory_regions) (FUNC, DATA)
1017
1018 /*
1019 * Compose corefile .note section.
1020 */
1021
1022 #define target_make_corefile_notes(BFD, SIZE_P) \
1023 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1024
1025 /* Hook to call target-dependent code after reading in a new symbol table. */
1026
1027 #ifndef TARGET_SYMFILE_POSTREAD
1028 #define TARGET_SYMFILE_POSTREAD(OBJFILE)
1029 #endif
1030
1031 /* Hook to call target dependent code just after inferior target process has
1032 started. */
1033
1034 #ifndef TARGET_CREATE_INFERIOR_HOOK
1035 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1036 #endif
1037
1038 /* Hardware watchpoint interfaces. */
1039
1040 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1041 write). */
1042
1043 #ifndef STOPPED_BY_WATCHPOINT
1044 #define STOPPED_BY_WATCHPOINT(w) 0
1045 #endif
1046
1047 /* HP-UX supplies these operations, which respectively disable and enable
1048 the memory page-protections that are used to implement hardware watchpoints
1049 on that platform. See wait_for_inferior's use of these. */
1050
1051 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1052 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1053 #endif
1054
1055 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1056 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1057 #endif
1058
1059 /* Provide defaults for systems that don't support hardware watchpoints. */
1060
1061 #ifndef TARGET_HAS_HARDWARE_WATCHPOINTS
1062
1063 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1064 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1065 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1066 (including this one?). OTHERTYPE is who knows what... */
1067
1068 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) 0
1069
1070 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1071 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1072 ((LONGEST)(byte_count) <= REGISTER_SIZE)
1073 #endif
1074
1075
1076 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1077 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1078 success, non-zero for failure. */
1079
1080 #define target_remove_watchpoint(ADDR,LEN,TYPE) -1
1081 #define target_insert_watchpoint(ADDR,LEN,TYPE) -1
1082
1083 #endif /* TARGET_HAS_HARDWARE_WATCHPOINTS */
1084
1085 #ifndef target_insert_hw_breakpoint
1086 #define target_remove_hw_breakpoint(ADDR,SHADOW) -1
1087 #define target_insert_hw_breakpoint(ADDR,SHADOW) -1
1088 #endif
1089
1090 #ifndef target_stopped_data_address
1091 #define target_stopped_data_address() 0
1092 #endif
1093
1094 /* If defined, then we need to decr pc by this much after a hardware break-
1095 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1096
1097 #ifndef DECR_PC_AFTER_HW_BREAK
1098 #define DECR_PC_AFTER_HW_BREAK 0
1099 #endif
1100
1101 /* Sometimes gdb may pick up what appears to be a valid target address
1102 from a minimal symbol, but the value really means, essentially,
1103 "This is an index into a table which is populated when the inferior
1104 is run. Therefore, do not attempt to use this as a PC." */
1105
1106 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1107 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1108 #endif
1109
1110 /* This will only be defined by a target that supports catching vfork events,
1111 such as HP-UX.
1112
1113 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1114 child process after it has exec'd, causes the parent process to resume as
1115 well. To prevent the parent from running spontaneously, such targets should
1116 define this to a function that prevents that from happening. */
1117 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1118 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1119 #endif
1120
1121 /* This will only be defined by a target that supports catching vfork events,
1122 such as HP-UX.
1123
1124 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1125 process must be resumed when it delivers its exec event, before the parent
1126 vfork event will be delivered to us. */
1127
1128 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1129 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1130 #endif
1131
1132 /* Routines for maintenance of the target structures...
1133
1134 add_target: Add a target to the list of all possible targets.
1135
1136 push_target: Make this target the top of the stack of currently used
1137 targets, within its particular stratum of the stack. Result
1138 is 0 if now atop the stack, nonzero if not on top (maybe
1139 should warn user).
1140
1141 unpush_target: Remove this from the stack of currently used targets,
1142 no matter where it is on the list. Returns 0 if no
1143 change, 1 if removed from stack.
1144
1145 pop_target: Remove the top thing on the stack of current targets. */
1146
1147 extern void add_target (struct target_ops *);
1148
1149 extern int push_target (struct target_ops *);
1150
1151 extern int unpush_target (struct target_ops *);
1152
1153 extern void target_preopen (int);
1154
1155 extern void pop_target (void);
1156
1157 /* Struct section_table maps address ranges to file sections. It is
1158 mostly used with BFD files, but can be used without (e.g. for handling
1159 raw disks, or files not in formats handled by BFD). */
1160
1161 struct section_table
1162 {
1163 CORE_ADDR addr; /* Lowest address in section */
1164 CORE_ADDR endaddr; /* 1+highest address in section */
1165
1166 sec_ptr the_bfd_section;
1167
1168 bfd *bfd; /* BFD file pointer */
1169 };
1170
1171 /* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1172 Returns 0 if OK, 1 on error. */
1173
1174 extern int
1175 build_section_table (bfd *, struct section_table **, struct section_table **);
1176
1177 /* From mem-break.c */
1178
1179 extern int memory_remove_breakpoint (CORE_ADDR, char *);
1180
1181 extern int memory_insert_breakpoint (CORE_ADDR, char *);
1182
1183 extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1184
1185 extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1186
1187 extern const unsigned char *memory_breakpoint_from_pc (CORE_ADDR *pcptr,
1188 int *lenptr);
1189
1190
1191 /* From target.c */
1192
1193 extern void initialize_targets (void);
1194
1195 extern void noprocess (void);
1196
1197 extern void find_default_attach (char *, int);
1198
1199 extern void find_default_require_attach (char *, int);
1200
1201 extern void find_default_require_detach (int, char *, int);
1202
1203 extern void find_default_create_inferior (char *, char *, char **);
1204
1205 extern void find_default_clone_and_follow_inferior (int, int *);
1206
1207 extern struct target_ops *find_run_target (void);
1208
1209 extern struct target_ops *find_core_target (void);
1210
1211 extern struct target_ops *find_target_beneath (struct target_ops *);
1212
1213 extern int
1214 target_resize_to_sections (struct target_ops *target, int num_added);
1215
1216 extern void remove_target_sections (bfd *abfd);
1217
1218 \f
1219 /* Stuff that should be shared among the various remote targets. */
1220
1221 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1222 information (higher values, more information). */
1223 extern int remote_debug;
1224
1225 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1226 extern int baud_rate;
1227 /* Timeout limit for response from target. */
1228 extern int remote_timeout;
1229
1230 \f
1231 /* Functions for helping to write a native target. */
1232
1233 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1234 extern void store_waitstatus (struct target_waitstatus *, int);
1235
1236 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1237 targ_signal SIGNO has an equivalent ``host'' representation. */
1238 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1239 to the shorter target_signal_p() because it is far less ambigious.
1240 In this context ``target_signal'' refers to GDB's internal
1241 representation of the target's set of signals while ``host signal''
1242 refers to the target operating system's signal. Confused? */
1243
1244 extern int target_signal_to_host_p (enum target_signal signo);
1245
1246 /* Convert between host signal numbers and enum target_signal's.
1247 target_signal_to_host() returns 0 and prints a warning() on GDB's
1248 console if SIGNO has no equivalent host representation. */
1249 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1250 refering to the target operating system's signal numbering.
1251 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1252 gdb_signal'' would probably be better as it is refering to GDB's
1253 internal representation of a target operating system's signal. */
1254
1255 extern enum target_signal target_signal_from_host (int);
1256 extern int target_signal_to_host (enum target_signal);
1257
1258 /* Convert from a number used in a GDB command to an enum target_signal. */
1259 extern enum target_signal target_signal_from_command (int);
1260
1261 /* Any target can call this to switch to remote protocol (in remote.c). */
1262 extern void push_remote_target (char *name, int from_tty);
1263 \f
1264 /* Imported from machine dependent code */
1265
1266 /* Blank target vector entries are initialized to target_ignore. */
1267 void target_ignore (void);
1268
1269 #endif /* !defined (TARGET_H) */
This page took 0.055185 seconds and 4 git commands to generate.