convert to_disconnect
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int)
413 TARGET_DEFAULT_NORETURN (tcomplain ());
414 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
415 TARGET_DEFAULT_NORETURN (noprocess ());
416 ptid_t (*to_wait) (struct target_ops *,
417 ptid_t, struct target_waitstatus *, int)
418 TARGET_DEFAULT_NORETURN (noprocess ());
419 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_IGNORE ();
421 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
424 TARGET_DEFAULT_NORETURN (noprocess ());
425
426 /* Transfer LEN bytes of memory between GDB address MYADDR and
427 target address MEMADDR. If WRITE, transfer them to the target, else
428 transfer them from the target. TARGET is the target from which we
429 get this function.
430
431 Return value, N, is one of the following:
432
433 0 means that we can't handle this. If errno has been set, it is the
434 error which prevented us from doing it (FIXME: What about bfd_error?).
435
436 positive (call it N) means that we have transferred N bytes
437 starting at MEMADDR. We might be able to handle more bytes
438 beyond this length, but no promises.
439
440 negative (call its absolute value N) means that we cannot
441 transfer right at MEMADDR, but we could transfer at least
442 something at MEMADDR + N.
443
444 NOTE: cagney/2004-10-01: This has been entirely superseeded by
445 to_xfer_partial and inferior inheritance. */
446
447 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
448 int len, int write,
449 struct mem_attrib *attrib,
450 struct target_ops *target);
451
452 void (*to_files_info) (struct target_ops *)
453 TARGET_DEFAULT_IGNORE ();
454 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
455 struct bp_target_info *)
456 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
457 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
458 struct bp_target_info *)
459 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
460 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
461 TARGET_DEFAULT_RETURN (0);
462 int (*to_ranged_break_num_registers) (struct target_ops *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_insert_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467 int (*to_remove_hw_breakpoint) (struct target_ops *,
468 struct gdbarch *, struct bp_target_info *)
469 TARGET_DEFAULT_RETURN (-1);
470
471 /* Documentation of what the two routines below are expected to do is
472 provided with the corresponding target_* macros. */
473 int (*to_remove_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476 int (*to_insert_watchpoint) (struct target_ops *,
477 CORE_ADDR, int, int, struct expression *)
478 TARGET_DEFAULT_RETURN (-1);
479
480 int (*to_insert_mask_watchpoint) (struct target_ops *,
481 CORE_ADDR, CORE_ADDR, int)
482 TARGET_DEFAULT_RETURN (1);
483 int (*to_remove_mask_watchpoint) (struct target_ops *,
484 CORE_ADDR, CORE_ADDR, int)
485 TARGET_DEFAULT_RETURN (1);
486 int (*to_stopped_by_watchpoint) (struct target_ops *)
487 TARGET_DEFAULT_RETURN (0);
488 int to_have_steppable_watchpoint;
489 int to_have_continuable_watchpoint;
490 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
491 TARGET_DEFAULT_RETURN (0);
492 int (*to_watchpoint_addr_within_range) (struct target_ops *,
493 CORE_ADDR, CORE_ADDR, int)
494 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
495
496 /* Documentation of this routine is provided with the corresponding
497 target_* macro. */
498 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
499 CORE_ADDR, int)
500 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
501
502 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
503 CORE_ADDR, int, int,
504 struct expression *)
505 TARGET_DEFAULT_RETURN (0);
506 int (*to_masked_watch_num_registers) (struct target_ops *,
507 CORE_ADDR, CORE_ADDR)
508 TARGET_DEFAULT_RETURN (-1);
509 void (*to_terminal_init) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_inferior) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_ours_for_output) (struct target_ops *)
514 TARGET_DEFAULT_IGNORE ();
515 void (*to_terminal_ours) (struct target_ops *)
516 TARGET_DEFAULT_IGNORE ();
517 void (*to_terminal_save_ours) (struct target_ops *)
518 TARGET_DEFAULT_IGNORE ();
519 void (*to_terminal_info) (struct target_ops *, const char *, int)
520 TARGET_DEFAULT_FUNC (default_terminal_info);
521 void (*to_kill) (struct target_ops *)
522 TARGET_DEFAULT_NORETURN (noprocess ());
523 void (*to_load) (struct target_ops *, char *, int)
524 TARGET_DEFAULT_NORETURN (tcomplain ());
525 void (*to_create_inferior) (struct target_ops *,
526 char *, char *, char **, int);
527 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
528 TARGET_DEFAULT_IGNORE ();
529 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
530 TARGET_DEFAULT_RETURN (1);
531 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
532 TARGET_DEFAULT_RETURN (1);
533 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
536 TARGET_DEFAULT_RETURN (1);
537 int (*to_follow_fork) (struct target_ops *, int, int)
538 TARGET_DEFAULT_FUNC (default_follow_fork);
539 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
540 TARGET_DEFAULT_RETURN (1);
541 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
542 TARGET_DEFAULT_RETURN (1);
543 int (*to_set_syscall_catchpoint) (struct target_ops *,
544 int, int, int, int, int *)
545 TARGET_DEFAULT_RETURN (1);
546 int (*to_has_exited) (struct target_ops *, int, int, int *)
547 TARGET_DEFAULT_RETURN (0);
548 void (*to_mourn_inferior) (struct target_ops *)
549 TARGET_DEFAULT_FUNC (default_mourn_inferior);
550 int (*to_can_run) (struct target_ops *);
551
552 /* Documentation of this routine is provided with the corresponding
553 target_* macro. */
554 void (*to_pass_signals) (struct target_ops *, int, unsigned char *)
555 TARGET_DEFAULT_IGNORE ();
556
557 /* Documentation of this routine is provided with the
558 corresponding target_* function. */
559 void (*to_program_signals) (struct target_ops *, int, unsigned char *)
560 TARGET_DEFAULT_IGNORE ();
561
562 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
563 TARGET_DEFAULT_RETURN (0);
564 void (*to_find_new_threads) (struct target_ops *)
565 TARGET_DEFAULT_IGNORE ();
566 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
567 TARGET_DEFAULT_FUNC (default_pid_to_str);
568 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
569 TARGET_DEFAULT_RETURN (0);
570 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
571 TARGET_DEFAULT_RETURN (0);
572 void (*to_stop) (struct target_ops *, ptid_t)
573 TARGET_DEFAULT_IGNORE ();
574 void (*to_rcmd) (struct target_ops *,
575 char *command, struct ui_file *output)
576 TARGET_DEFAULT_FUNC (default_rcmd);
577 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
578 TARGET_DEFAULT_RETURN (0);
579 void (*to_log_command) (struct target_ops *, const char *)
580 TARGET_DEFAULT_IGNORE ();
581 struct target_section_table *(*to_get_section_table) (struct target_ops *)
582 TARGET_DEFAULT_RETURN (0);
583 enum strata to_stratum;
584 int (*to_has_all_memory) (struct target_ops *);
585 int (*to_has_memory) (struct target_ops *);
586 int (*to_has_stack) (struct target_ops *);
587 int (*to_has_registers) (struct target_ops *);
588 int (*to_has_execution) (struct target_ops *, ptid_t);
589 int to_has_thread_control; /* control thread execution */
590 int to_attach_no_wait;
591 /* ASYNC target controls */
592 int (*to_can_async_p) (struct target_ops *)
593 TARGET_DEFAULT_FUNC (find_default_can_async_p);
594 int (*to_is_async_p) (struct target_ops *)
595 TARGET_DEFAULT_FUNC (find_default_is_async_p);
596 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
597 TARGET_DEFAULT_NORETURN (tcomplain ());
598 int (*to_supports_non_stop) (struct target_ops *);
599 /* find_memory_regions support method for gcore */
600 int (*to_find_memory_regions) (struct target_ops *,
601 find_memory_region_ftype func, void *data)
602 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
603 /* make_corefile_notes support method for gcore */
604 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
605 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
606 /* get_bookmark support method for bookmarks */
607 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
608 TARGET_DEFAULT_NORETURN (tcomplain ());
609 /* goto_bookmark support method for bookmarks */
610 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
611 TARGET_DEFAULT_NORETURN (tcomplain ());
612 /* Return the thread-local address at OFFSET in the
613 thread-local storage for the thread PTID and the shared library
614 or executable file given by OBJFILE. If that block of
615 thread-local storage hasn't been allocated yet, this function
616 may return an error. */
617 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
618 ptid_t ptid,
619 CORE_ADDR load_module_addr,
620 CORE_ADDR offset);
621
622 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
623 OBJECT. The OFFSET, for a seekable object, specifies the
624 starting point. The ANNEX can be used to provide additional
625 data-specific information to the target.
626
627 Return the transferred status, error or OK (an
628 'enum target_xfer_status' value). Save the number of bytes
629 actually transferred in *XFERED_LEN if transfer is successful
630 (TARGET_XFER_OK) or the number unavailable bytes if the requested
631 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
632 smaller than LEN does not indicate the end of the object, only
633 the end of the transfer; higher level code should continue
634 transferring if desired. This is handled in target.c.
635
636 The interface does not support a "retry" mechanism. Instead it
637 assumes that at least one byte will be transfered on each
638 successful call.
639
640 NOTE: cagney/2003-10-17: The current interface can lead to
641 fragmented transfers. Lower target levels should not implement
642 hacks, such as enlarging the transfer, in an attempt to
643 compensate for this. Instead, the target stack should be
644 extended so that it implements supply/collect methods and a
645 look-aside object cache. With that available, the lowest
646 target can safely and freely "push" data up the stack.
647
648 See target_read and target_write for more information. One,
649 and only one, of readbuf or writebuf must be non-NULL. */
650
651 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
652 enum target_object object,
653 const char *annex,
654 gdb_byte *readbuf,
655 const gdb_byte *writebuf,
656 ULONGEST offset, ULONGEST len,
657 ULONGEST *xfered_len)
658 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
659
660 /* Returns the memory map for the target. A return value of NULL
661 means that no memory map is available. If a memory address
662 does not fall within any returned regions, it's assumed to be
663 RAM. The returned memory regions should not overlap.
664
665 The order of regions does not matter; target_memory_map will
666 sort regions by starting address. For that reason, this
667 function should not be called directly except via
668 target_memory_map.
669
670 This method should not cache data; if the memory map could
671 change unexpectedly, it should be invalidated, and higher
672 layers will re-fetch it. */
673 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
674 TARGET_DEFAULT_RETURN (0);
675
676 /* Erases the region of flash memory starting at ADDRESS, of
677 length LENGTH.
678
679 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
680 on flash block boundaries, as reported by 'to_memory_map'. */
681 void (*to_flash_erase) (struct target_ops *,
682 ULONGEST address, LONGEST length)
683 TARGET_DEFAULT_NORETURN (tcomplain ());
684
685 /* Finishes a flash memory write sequence. After this operation
686 all flash memory should be available for writing and the result
687 of reading from areas written by 'to_flash_write' should be
688 equal to what was written. */
689 void (*to_flash_done) (struct target_ops *)
690 TARGET_DEFAULT_NORETURN (tcomplain ());
691
692 /* Describe the architecture-specific features of this target.
693 Returns the description found, or NULL if no description
694 was available. */
695 const struct target_desc *(*to_read_description) (struct target_ops *ops);
696
697 /* Build the PTID of the thread on which a given task is running,
698 based on LWP and THREAD. These values are extracted from the
699 task Private_Data section of the Ada Task Control Block, and
700 their interpretation depends on the target. */
701 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
702 long lwp, long thread)
703 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
704
705 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
706 Return 0 if *READPTR is already at the end of the buffer.
707 Return -1 if there is insufficient buffer for a whole entry.
708 Return 1 if an entry was read into *TYPEP and *VALP. */
709 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
710 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
711 TARGET_DEFAULT_FUNC (default_auxv_parse);
712
713 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
714 sequence of bytes in PATTERN with length PATTERN_LEN.
715
716 The result is 1 if found, 0 if not found, and -1 if there was an error
717 requiring halting of the search (e.g. memory read error).
718 If the pattern is found the address is recorded in FOUND_ADDRP. */
719 int (*to_search_memory) (struct target_ops *ops,
720 CORE_ADDR start_addr, ULONGEST search_space_len,
721 const gdb_byte *pattern, ULONGEST pattern_len,
722 CORE_ADDR *found_addrp)
723 TARGET_DEFAULT_FUNC (default_search_memory);
724
725 /* Can target execute in reverse? */
726 int (*to_can_execute_reverse) (struct target_ops *)
727 TARGET_DEFAULT_RETURN (0);
728
729 /* The direction the target is currently executing. Must be
730 implemented on targets that support reverse execution and async
731 mode. The default simply returns forward execution. */
732 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
733 TARGET_DEFAULT_FUNC (default_execution_direction);
734
735 /* Does this target support debugging multiple processes
736 simultaneously? */
737 int (*to_supports_multi_process) (struct target_ops *)
738 TARGET_DEFAULT_RETURN (0);
739
740 /* Does this target support enabling and disabling tracepoints while a trace
741 experiment is running? */
742 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
743 TARGET_DEFAULT_RETURN (0);
744
745 /* Does this target support disabling address space randomization? */
746 int (*to_supports_disable_randomization) (struct target_ops *);
747
748 /* Does this target support the tracenz bytecode for string collection? */
749 int (*to_supports_string_tracing) (struct target_ops *)
750 TARGET_DEFAULT_RETURN (0);
751
752 /* Does this target support evaluation of breakpoint conditions on its
753 end? */
754 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
755 TARGET_DEFAULT_RETURN (0);
756
757 /* Does this target support evaluation of breakpoint commands on its
758 end? */
759 int (*to_can_run_breakpoint_commands) (struct target_ops *)
760 TARGET_DEFAULT_RETURN (0);
761
762 /* Determine current architecture of thread PTID.
763
764 The target is supposed to determine the architecture of the code where
765 the target is currently stopped at (on Cell, if a target is in spu_run,
766 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
767 This is architecture used to perform decr_pc_after_break adjustment,
768 and also determines the frame architecture of the innermost frame.
769 ptrace operations need to operate according to target_gdbarch ().
770
771 The default implementation always returns target_gdbarch (). */
772 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
773 TARGET_DEFAULT_FUNC (default_thread_architecture);
774
775 /* Determine current address space of thread PTID.
776
777 The default implementation always returns the inferior's
778 address space. */
779 struct address_space *(*to_thread_address_space) (struct target_ops *,
780 ptid_t);
781
782 /* Target file operations. */
783
784 /* Open FILENAME on the target, using FLAGS and MODE. Return a
785 target file descriptor, or -1 if an error occurs (and set
786 *TARGET_ERRNO). */
787 int (*to_fileio_open) (struct target_ops *,
788 const char *filename, int flags, int mode,
789 int *target_errno);
790
791 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
792 Return the number of bytes written, or -1 if an error occurs
793 (and set *TARGET_ERRNO). */
794 int (*to_fileio_pwrite) (struct target_ops *,
795 int fd, const gdb_byte *write_buf, int len,
796 ULONGEST offset, int *target_errno);
797
798 /* Read up to LEN bytes FD on the target into READ_BUF.
799 Return the number of bytes read, or -1 if an error occurs
800 (and set *TARGET_ERRNO). */
801 int (*to_fileio_pread) (struct target_ops *,
802 int fd, gdb_byte *read_buf, int len,
803 ULONGEST offset, int *target_errno);
804
805 /* Close FD on the target. Return 0, or -1 if an error occurs
806 (and set *TARGET_ERRNO). */
807 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
808
809 /* Unlink FILENAME on the target. Return 0, or -1 if an error
810 occurs (and set *TARGET_ERRNO). */
811 int (*to_fileio_unlink) (struct target_ops *,
812 const char *filename, int *target_errno);
813
814 /* Read value of symbolic link FILENAME on the target. Return a
815 null-terminated string allocated via xmalloc, or NULL if an error
816 occurs (and set *TARGET_ERRNO). */
817 char *(*to_fileio_readlink) (struct target_ops *,
818 const char *filename, int *target_errno);
819
820
821 /* Implement the "info proc" command. */
822 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
823
824 /* Tracepoint-related operations. */
825
826 /* Prepare the target for a tracing run. */
827 void (*to_trace_init) (struct target_ops *)
828 TARGET_DEFAULT_NORETURN (tcomplain ());
829
830 /* Send full details of a tracepoint location to the target. */
831 void (*to_download_tracepoint) (struct target_ops *,
832 struct bp_location *location)
833 TARGET_DEFAULT_NORETURN (tcomplain ());
834
835 /* Is the target able to download tracepoint locations in current
836 state? */
837 int (*to_can_download_tracepoint) (struct target_ops *)
838 TARGET_DEFAULT_RETURN (0);
839
840 /* Send full details of a trace state variable to the target. */
841 void (*to_download_trace_state_variable) (struct target_ops *,
842 struct trace_state_variable *tsv)
843 TARGET_DEFAULT_NORETURN (tcomplain ());
844
845 /* Enable a tracepoint on the target. */
846 void (*to_enable_tracepoint) (struct target_ops *,
847 struct bp_location *location)
848 TARGET_DEFAULT_NORETURN (tcomplain ());
849
850 /* Disable a tracepoint on the target. */
851 void (*to_disable_tracepoint) (struct target_ops *,
852 struct bp_location *location)
853 TARGET_DEFAULT_NORETURN (tcomplain ());
854
855 /* Inform the target info of memory regions that are readonly
856 (such as text sections), and so it should return data from
857 those rather than look in the trace buffer. */
858 void (*to_trace_set_readonly_regions) (struct target_ops *)
859 TARGET_DEFAULT_NORETURN (tcomplain ());
860
861 /* Start a trace run. */
862 void (*to_trace_start) (struct target_ops *)
863 TARGET_DEFAULT_NORETURN (tcomplain ());
864
865 /* Get the current status of a tracing run. */
866 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
867 TARGET_DEFAULT_RETURN (-1);
868
869 void (*to_get_tracepoint_status) (struct target_ops *,
870 struct breakpoint *tp,
871 struct uploaded_tp *utp)
872 TARGET_DEFAULT_NORETURN (tcomplain ());
873
874 /* Stop a trace run. */
875 void (*to_trace_stop) (struct target_ops *)
876 TARGET_DEFAULT_NORETURN (tcomplain ());
877
878 /* Ask the target to find a trace frame of the given type TYPE,
879 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
880 number of the trace frame, and also the tracepoint number at
881 TPP. If no trace frame matches, return -1. May throw if the
882 operation fails. */
883 int (*to_trace_find) (struct target_ops *,
884 enum trace_find_type type, int num,
885 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
886 TARGET_DEFAULT_RETURN (-1);
887
888 /* Get the value of the trace state variable number TSV, returning
889 1 if the value is known and writing the value itself into the
890 location pointed to by VAL, else returning 0. */
891 int (*to_get_trace_state_variable_value) (struct target_ops *,
892 int tsv, LONGEST *val)
893 TARGET_DEFAULT_RETURN (0);
894
895 int (*to_save_trace_data) (struct target_ops *, const char *filename)
896 TARGET_DEFAULT_NORETURN (tcomplain ());
897
898 int (*to_upload_tracepoints) (struct target_ops *,
899 struct uploaded_tp **utpp)
900 TARGET_DEFAULT_RETURN (0);
901
902 int (*to_upload_trace_state_variables) (struct target_ops *,
903 struct uploaded_tsv **utsvp)
904 TARGET_DEFAULT_RETURN (0);
905
906 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
907 ULONGEST offset, LONGEST len)
908 TARGET_DEFAULT_NORETURN (tcomplain ());
909
910 /* Get the minimum length of instruction on which a fast tracepoint
911 may be set on the target. If this operation is unsupported,
912 return -1. If for some reason the minimum length cannot be
913 determined, return 0. */
914 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
915 TARGET_DEFAULT_RETURN (-1);
916
917 /* Set the target's tracing behavior in response to unexpected
918 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
919 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
920 TARGET_DEFAULT_IGNORE ();
921 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
922 TARGET_DEFAULT_IGNORE ();
923 /* Set the size of trace buffer in the target. */
924 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
925 TARGET_DEFAULT_IGNORE ();
926
927 /* Add/change textual notes about the trace run, returning 1 if
928 successful, 0 otherwise. */
929 int (*to_set_trace_notes) (struct target_ops *,
930 const char *user, const char *notes,
931 const char *stopnotes)
932 TARGET_DEFAULT_RETURN (0);
933
934 /* Return the processor core that thread PTID was last seen on.
935 This information is updated only when:
936 - update_thread_list is called
937 - thread stops
938 If the core cannot be determined -- either for the specified
939 thread, or right now, or in this debug session, or for this
940 target -- return -1. */
941 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
942 TARGET_DEFAULT_RETURN (-1);
943
944 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
945 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
946 a match, 0 if there's a mismatch, and -1 if an error is
947 encountered while reading memory. */
948 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
949 CORE_ADDR memaddr, ULONGEST size)
950 TARGET_DEFAULT_NORETURN (tcomplain ());
951
952 /* Return the address of the start of the Thread Information Block
953 a Windows OS specific feature. */
954 int (*to_get_tib_address) (struct target_ops *,
955 ptid_t ptid, CORE_ADDR *addr)
956 TARGET_DEFAULT_NORETURN (tcomplain ());
957
958 /* Send the new settings of write permission variables. */
959 void (*to_set_permissions) (struct target_ops *)
960 TARGET_DEFAULT_IGNORE ();
961
962 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
963 with its details. Return 1 on success, 0 on failure. */
964 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
965 struct static_tracepoint_marker *marker)
966 TARGET_DEFAULT_RETURN (0);
967
968 /* Return a vector of all tracepoints markers string id ID, or all
969 markers if ID is NULL. */
970 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
971 TARGET_DEFAULT_NORETURN (tcomplain ());
972
973 /* Return a traceframe info object describing the current
974 traceframe's contents. If the target doesn't support
975 traceframe info, return NULL. If the current traceframe is not
976 selected (the current traceframe number is -1), the target can
977 choose to return either NULL or an empty traceframe info. If
978 NULL is returned, for example in remote target, GDB will read
979 from the live inferior. If an empty traceframe info is
980 returned, for example in tfile target, which means the
981 traceframe info is available, but the requested memory is not
982 available in it. GDB will try to see if the requested memory
983 is available in the read-only sections. This method should not
984 cache data; higher layers take care of caching, invalidating,
985 and re-fetching when necessary. */
986 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
987 TARGET_DEFAULT_RETURN (0);
988
989 /* Ask the target to use or not to use agent according to USE. Return 1
990 successful, 0 otherwise. */
991 int (*to_use_agent) (struct target_ops *, int use)
992 TARGET_DEFAULT_NORETURN (tcomplain ());
993
994 /* Is the target able to use agent in current state? */
995 int (*to_can_use_agent) (struct target_ops *)
996 TARGET_DEFAULT_RETURN (0);
997
998 /* Check whether the target supports branch tracing. */
999 int (*to_supports_btrace) (struct target_ops *)
1000 TARGET_DEFAULT_RETURN (0);
1001
1002 /* Enable branch tracing for PTID and allocate a branch trace target
1003 information struct for reading and for disabling branch trace. */
1004 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1005 ptid_t ptid)
1006 TARGET_DEFAULT_NORETURN (tcomplain ());
1007
1008 /* Disable branch tracing and deallocate TINFO. */
1009 void (*to_disable_btrace) (struct target_ops *,
1010 struct btrace_target_info *tinfo)
1011 TARGET_DEFAULT_NORETURN (tcomplain ());
1012
1013 /* Disable branch tracing and deallocate TINFO. This function is similar
1014 to to_disable_btrace, except that it is called during teardown and is
1015 only allowed to perform actions that are safe. A counter-example would
1016 be attempting to talk to a remote target. */
1017 void (*to_teardown_btrace) (struct target_ops *,
1018 struct btrace_target_info *tinfo)
1019 TARGET_DEFAULT_NORETURN (tcomplain ());
1020
1021 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1022 DATA is cleared before new trace is added.
1023 The branch trace will start with the most recent block and continue
1024 towards older blocks. */
1025 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1026 VEC (btrace_block_s) **data,
1027 struct btrace_target_info *btinfo,
1028 enum btrace_read_type type)
1029 TARGET_DEFAULT_NORETURN (tcomplain ());
1030
1031 /* Stop trace recording. */
1032 void (*to_stop_recording) (struct target_ops *)
1033 TARGET_DEFAULT_IGNORE ();
1034
1035 /* Print information about the recording. */
1036 void (*to_info_record) (struct target_ops *);
1037
1038 /* Save the recorded execution trace into a file. */
1039 void (*to_save_record) (struct target_ops *, const char *filename)
1040 TARGET_DEFAULT_NORETURN (tcomplain ());
1041
1042 /* Delete the recorded execution trace from the current position onwards. */
1043 void (*to_delete_record) (struct target_ops *)
1044 TARGET_DEFAULT_NORETURN (tcomplain ());
1045
1046 /* Query if the record target is currently replaying. */
1047 int (*to_record_is_replaying) (struct target_ops *)
1048 TARGET_DEFAULT_RETURN (0);
1049
1050 /* Go to the begin of the execution trace. */
1051 void (*to_goto_record_begin) (struct target_ops *)
1052 TARGET_DEFAULT_NORETURN (tcomplain ());
1053
1054 /* Go to the end of the execution trace. */
1055 void (*to_goto_record_end) (struct target_ops *)
1056 TARGET_DEFAULT_NORETURN (tcomplain ());
1057
1058 /* Go to a specific location in the recorded execution trace. */
1059 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1060 TARGET_DEFAULT_NORETURN (tcomplain ());
1061
1062 /* Disassemble SIZE instructions in the recorded execution trace from
1063 the current position.
1064 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1065 disassemble SIZE succeeding instructions. */
1066 void (*to_insn_history) (struct target_ops *, int size, int flags)
1067 TARGET_DEFAULT_NORETURN (tcomplain ());
1068
1069 /* Disassemble SIZE instructions in the recorded execution trace around
1070 FROM.
1071 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1072 disassemble SIZE instructions after FROM. */
1073 void (*to_insn_history_from) (struct target_ops *,
1074 ULONGEST from, int size, int flags)
1075 TARGET_DEFAULT_NORETURN (tcomplain ());
1076
1077 /* Disassemble a section of the recorded execution trace from instruction
1078 BEGIN (inclusive) to instruction END (inclusive). */
1079 void (*to_insn_history_range) (struct target_ops *,
1080 ULONGEST begin, ULONGEST end, int flags)
1081 TARGET_DEFAULT_NORETURN (tcomplain ());
1082
1083 /* Print a function trace of the recorded execution trace.
1084 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1085 succeeding functions. */
1086 void (*to_call_history) (struct target_ops *, int size, int flags)
1087 TARGET_DEFAULT_NORETURN (tcomplain ());
1088
1089 /* Print a function trace of the recorded execution trace starting
1090 at function FROM.
1091 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1092 SIZE functions after FROM. */
1093 void (*to_call_history_from) (struct target_ops *,
1094 ULONGEST begin, int size, int flags)
1095 TARGET_DEFAULT_NORETURN (tcomplain ());
1096
1097 /* Print a function trace of an execution trace section from function BEGIN
1098 (inclusive) to function END (inclusive). */
1099 void (*to_call_history_range) (struct target_ops *,
1100 ULONGEST begin, ULONGEST end, int flags)
1101 TARGET_DEFAULT_NORETURN (tcomplain ());
1102
1103 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1104 non-empty annex. */
1105 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1106 TARGET_DEFAULT_RETURN (0);
1107
1108 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1109 it is not used. */
1110 const struct frame_unwind *to_get_unwinder;
1111 const struct frame_unwind *to_get_tailcall_unwinder;
1112
1113 /* Return the number of bytes by which the PC needs to be decremented
1114 after executing a breakpoint instruction.
1115 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1116 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1117 struct gdbarch *gdbarch);
1118
1119 int to_magic;
1120 /* Need sub-structure for target machine related rather than comm related?
1121 */
1122 };
1123
1124 /* Magic number for checking ops size. If a struct doesn't end with this
1125 number, somebody changed the declaration but didn't change all the
1126 places that initialize one. */
1127
1128 #define OPS_MAGIC 3840
1129
1130 /* The ops structure for our "current" target process. This should
1131 never be NULL. If there is no target, it points to the dummy_target. */
1132
1133 extern struct target_ops current_target;
1134
1135 /* Define easy words for doing these operations on our current target. */
1136
1137 #define target_shortname (current_target.to_shortname)
1138 #define target_longname (current_target.to_longname)
1139
1140 /* Does whatever cleanup is required for a target that we are no
1141 longer going to be calling. This routine is automatically always
1142 called after popping the target off the target stack - the target's
1143 own methods are no longer available through the target vector.
1144 Closing file descriptors and freeing all memory allocated memory are
1145 typical things it should do. */
1146
1147 void target_close (struct target_ops *targ);
1148
1149 /* Attaches to a process on the target side. Arguments are as passed
1150 to the `attach' command by the user. This routine can be called
1151 when the target is not on the target-stack, if the target_can_run
1152 routine returns 1; in that case, it must push itself onto the stack.
1153 Upon exit, the target should be ready for normal operations, and
1154 should be ready to deliver the status of the process immediately
1155 (without waiting) to an upcoming target_wait call. */
1156
1157 void target_attach (char *, int);
1158
1159 /* Some targets don't generate traps when attaching to the inferior,
1160 or their target_attach implementation takes care of the waiting.
1161 These targets must set to_attach_no_wait. */
1162
1163 #define target_attach_no_wait \
1164 (current_target.to_attach_no_wait)
1165
1166 /* The target_attach operation places a process under debugger control,
1167 and stops the process.
1168
1169 This operation provides a target-specific hook that allows the
1170 necessary bookkeeping to be performed after an attach completes. */
1171 #define target_post_attach(pid) \
1172 (*current_target.to_post_attach) (&current_target, pid)
1173
1174 /* Takes a program previously attached to and detaches it.
1175 The program may resume execution (some targets do, some don't) and will
1176 no longer stop on signals, etc. We better not have left any breakpoints
1177 in the program or it'll die when it hits one. ARGS is arguments
1178 typed by the user (e.g. a signal to send the process). FROM_TTY
1179 says whether to be verbose or not. */
1180
1181 extern void target_detach (const char *, int);
1182
1183 /* Disconnect from the current target without resuming it (leaving it
1184 waiting for a debugger). */
1185
1186 extern void target_disconnect (char *, int);
1187
1188 /* Resume execution of the target process PTID (or a group of
1189 threads). STEP says whether to single-step or to run free; SIGGNAL
1190 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1191 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1192 PTID means `step/resume only this process id'. A wildcard PTID
1193 (all threads, or all threads of process) means `step/resume
1194 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1195 matches) resume with their 'thread->suspend.stop_signal' signal
1196 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1197 if in "no pass" state. */
1198
1199 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1200
1201 /* Wait for process pid to do something. PTID = -1 to wait for any
1202 pid to do something. Return pid of child, or -1 in case of error;
1203 store status through argument pointer STATUS. Note that it is
1204 _NOT_ OK to throw_exception() out of target_wait() without popping
1205 the debugging target from the stack; GDB isn't prepared to get back
1206 to the prompt with a debugging target but without the frame cache,
1207 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1208 options. */
1209
1210 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1211 int options);
1212
1213 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1214
1215 extern void target_fetch_registers (struct regcache *regcache, int regno);
1216
1217 /* Store at least register REGNO, or all regs if REGNO == -1.
1218 It can store as many registers as it wants to, so target_prepare_to_store
1219 must have been previously called. Calls error() if there are problems. */
1220
1221 extern void target_store_registers (struct regcache *regcache, int regs);
1222
1223 /* Get ready to modify the registers array. On machines which store
1224 individual registers, this doesn't need to do anything. On machines
1225 which store all the registers in one fell swoop, this makes sure
1226 that REGISTERS contains all the registers from the program being
1227 debugged. */
1228
1229 #define target_prepare_to_store(regcache) \
1230 (*current_target.to_prepare_to_store) (&current_target, regcache)
1231
1232 /* Determine current address space of thread PTID. */
1233
1234 struct address_space *target_thread_address_space (ptid_t);
1235
1236 /* Implement the "info proc" command. This returns one if the request
1237 was handled, and zero otherwise. It can also throw an exception if
1238 an error was encountered while attempting to handle the
1239 request. */
1240
1241 int target_info_proc (char *, enum info_proc_what);
1242
1243 /* Returns true if this target can debug multiple processes
1244 simultaneously. */
1245
1246 #define target_supports_multi_process() \
1247 (*current_target.to_supports_multi_process) (&current_target)
1248
1249 /* Returns true if this target can disable address space randomization. */
1250
1251 int target_supports_disable_randomization (void);
1252
1253 /* Returns true if this target can enable and disable tracepoints
1254 while a trace experiment is running. */
1255
1256 #define target_supports_enable_disable_tracepoint() \
1257 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1258
1259 #define target_supports_string_tracing() \
1260 (*current_target.to_supports_string_tracing) (&current_target)
1261
1262 /* Returns true if this target can handle breakpoint conditions
1263 on its end. */
1264
1265 #define target_supports_evaluation_of_breakpoint_conditions() \
1266 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1267
1268 /* Returns true if this target can handle breakpoint commands
1269 on its end. */
1270
1271 #define target_can_run_breakpoint_commands() \
1272 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1273
1274 extern int target_read_string (CORE_ADDR, char **, int, int *);
1275
1276 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1277 ssize_t len);
1278
1279 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1280 ssize_t len);
1281
1282 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1283
1284 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1285
1286 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1287 ssize_t len);
1288
1289 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1290 ssize_t len);
1291
1292 /* Fetches the target's memory map. If one is found it is sorted
1293 and returned, after some consistency checking. Otherwise, NULL
1294 is returned. */
1295 VEC(mem_region_s) *target_memory_map (void);
1296
1297 /* Erase the specified flash region. */
1298 void target_flash_erase (ULONGEST address, LONGEST length);
1299
1300 /* Finish a sequence of flash operations. */
1301 void target_flash_done (void);
1302
1303 /* Describes a request for a memory write operation. */
1304 struct memory_write_request
1305 {
1306 /* Begining address that must be written. */
1307 ULONGEST begin;
1308 /* Past-the-end address. */
1309 ULONGEST end;
1310 /* The data to write. */
1311 gdb_byte *data;
1312 /* A callback baton for progress reporting for this request. */
1313 void *baton;
1314 };
1315 typedef struct memory_write_request memory_write_request_s;
1316 DEF_VEC_O(memory_write_request_s);
1317
1318 /* Enumeration specifying different flash preservation behaviour. */
1319 enum flash_preserve_mode
1320 {
1321 flash_preserve,
1322 flash_discard
1323 };
1324
1325 /* Write several memory blocks at once. This version can be more
1326 efficient than making several calls to target_write_memory, in
1327 particular because it can optimize accesses to flash memory.
1328
1329 Moreover, this is currently the only memory access function in gdb
1330 that supports writing to flash memory, and it should be used for
1331 all cases where access to flash memory is desirable.
1332
1333 REQUESTS is the vector (see vec.h) of memory_write_request.
1334 PRESERVE_FLASH_P indicates what to do with blocks which must be
1335 erased, but not completely rewritten.
1336 PROGRESS_CB is a function that will be periodically called to provide
1337 feedback to user. It will be called with the baton corresponding
1338 to the request currently being written. It may also be called
1339 with a NULL baton, when preserved flash sectors are being rewritten.
1340
1341 The function returns 0 on success, and error otherwise. */
1342 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1343 enum flash_preserve_mode preserve_flash_p,
1344 void (*progress_cb) (ULONGEST, void *));
1345
1346 /* Print a line about the current target. */
1347
1348 #define target_files_info() \
1349 (*current_target.to_files_info) (&current_target)
1350
1351 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1352 the target machine. Returns 0 for success, and returns non-zero or
1353 throws an error (with a detailed failure reason error code and
1354 message) otherwise. */
1355
1356 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1357 struct bp_target_info *bp_tgt);
1358
1359 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1360 machine. Result is 0 for success, non-zero for error. */
1361
1362 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1363 struct bp_target_info *bp_tgt);
1364
1365 /* Initialize the terminal settings we record for the inferior,
1366 before we actually run the inferior. */
1367
1368 #define target_terminal_init() \
1369 (*current_target.to_terminal_init) (&current_target)
1370
1371 /* Put the inferior's terminal settings into effect.
1372 This is preparation for starting or resuming the inferior. */
1373
1374 extern void target_terminal_inferior (void);
1375
1376 /* Put some of our terminal settings into effect,
1377 enough to get proper results from our output,
1378 but do not change into or out of RAW mode
1379 so that no input is discarded.
1380
1381 After doing this, either terminal_ours or terminal_inferior
1382 should be called to get back to a normal state of affairs. */
1383
1384 #define target_terminal_ours_for_output() \
1385 (*current_target.to_terminal_ours_for_output) (&current_target)
1386
1387 /* Put our terminal settings into effect.
1388 First record the inferior's terminal settings
1389 so they can be restored properly later. */
1390
1391 #define target_terminal_ours() \
1392 (*current_target.to_terminal_ours) (&current_target)
1393
1394 /* Save our terminal settings.
1395 This is called from TUI after entering or leaving the curses
1396 mode. Since curses modifies our terminal this call is here
1397 to take this change into account. */
1398
1399 #define target_terminal_save_ours() \
1400 (*current_target.to_terminal_save_ours) (&current_target)
1401
1402 /* Print useful information about our terminal status, if such a thing
1403 exists. */
1404
1405 #define target_terminal_info(arg, from_tty) \
1406 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1407
1408 /* Kill the inferior process. Make it go away. */
1409
1410 extern void target_kill (void);
1411
1412 /* Load an executable file into the target process. This is expected
1413 to not only bring new code into the target process, but also to
1414 update GDB's symbol tables to match.
1415
1416 ARG contains command-line arguments, to be broken down with
1417 buildargv (). The first non-switch argument is the filename to
1418 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1419 0)), which is an offset to apply to the load addresses of FILE's
1420 sections. The target may define switches, or other non-switch
1421 arguments, as it pleases. */
1422
1423 extern void target_load (char *arg, int from_tty);
1424
1425 /* Start an inferior process and set inferior_ptid to its pid.
1426 EXEC_FILE is the file to run.
1427 ALLARGS is a string containing the arguments to the program.
1428 ENV is the environment vector to pass. Errors reported with error().
1429 On VxWorks and various standalone systems, we ignore exec_file. */
1430
1431 void target_create_inferior (char *exec_file, char *args,
1432 char **env, int from_tty);
1433
1434 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1435 notification of inferior events such as fork and vork immediately
1436 after the inferior is created. (This because of how gdb gets an
1437 inferior created via invoking a shell to do it. In such a scenario,
1438 if the shell init file has commands in it, the shell will fork and
1439 exec for each of those commands, and we will see each such fork
1440 event. Very bad.)
1441
1442 Such targets will supply an appropriate definition for this function. */
1443
1444 #define target_post_startup_inferior(ptid) \
1445 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1446
1447 /* On some targets, we can catch an inferior fork or vfork event when
1448 it occurs. These functions insert/remove an already-created
1449 catchpoint for such events. They return 0 for success, 1 if the
1450 catchpoint type is not supported and -1 for failure. */
1451
1452 #define target_insert_fork_catchpoint(pid) \
1453 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1454
1455 #define target_remove_fork_catchpoint(pid) \
1456 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1457
1458 #define target_insert_vfork_catchpoint(pid) \
1459 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1460
1461 #define target_remove_vfork_catchpoint(pid) \
1462 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1463
1464 /* If the inferior forks or vforks, this function will be called at
1465 the next resume in order to perform any bookkeeping and fiddling
1466 necessary to continue debugging either the parent or child, as
1467 requested, and releasing the other. Information about the fork
1468 or vfork event is available via get_last_target_status ().
1469 This function returns 1 if the inferior should not be resumed
1470 (i.e. there is another event pending). */
1471
1472 int target_follow_fork (int follow_child, int detach_fork);
1473
1474 /* On some targets, we can catch an inferior exec event when it
1475 occurs. These functions insert/remove an already-created
1476 catchpoint for such events. They return 0 for success, 1 if the
1477 catchpoint type is not supported and -1 for failure. */
1478
1479 #define target_insert_exec_catchpoint(pid) \
1480 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1481
1482 #define target_remove_exec_catchpoint(pid) \
1483 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1484
1485 /* Syscall catch.
1486
1487 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1488 If NEEDED is zero, it means the target can disable the mechanism to
1489 catch system calls because there are no more catchpoints of this type.
1490
1491 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1492 being requested. In this case, both TABLE_SIZE and TABLE should
1493 be ignored.
1494
1495 TABLE_SIZE is the number of elements in TABLE. It only matters if
1496 ANY_COUNT is zero.
1497
1498 TABLE is an array of ints, indexed by syscall number. An element in
1499 this array is nonzero if that syscall should be caught. This argument
1500 only matters if ANY_COUNT is zero.
1501
1502 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1503 for failure. */
1504
1505 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1506 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1507 pid, needed, any_count, \
1508 table_size, table)
1509
1510 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1511 exit code of PID, if any. */
1512
1513 #define target_has_exited(pid,wait_status,exit_status) \
1514 (*current_target.to_has_exited) (&current_target, \
1515 pid,wait_status,exit_status)
1516
1517 /* The debugger has completed a blocking wait() call. There is now
1518 some process event that must be processed. This function should
1519 be defined by those targets that require the debugger to perform
1520 cleanup or internal state changes in response to the process event. */
1521
1522 /* The inferior process has died. Do what is right. */
1523
1524 void target_mourn_inferior (void);
1525
1526 /* Does target have enough data to do a run or attach command? */
1527
1528 #define target_can_run(t) \
1529 ((t)->to_can_run) (t)
1530
1531 /* Set list of signals to be handled in the target.
1532
1533 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1534 (enum gdb_signal). For every signal whose entry in this array is
1535 non-zero, the target is allowed -but not required- to skip reporting
1536 arrival of the signal to the GDB core by returning from target_wait,
1537 and to pass the signal directly to the inferior instead.
1538
1539 However, if the target is hardware single-stepping a thread that is
1540 about to receive a signal, it needs to be reported in any case, even
1541 if mentioned in a previous target_pass_signals call. */
1542
1543 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1544
1545 /* Set list of signals the target may pass to the inferior. This
1546 directly maps to the "handle SIGNAL pass/nopass" setting.
1547
1548 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1549 number (enum gdb_signal). For every signal whose entry in this
1550 array is non-zero, the target is allowed to pass the signal to the
1551 inferior. Signals not present in the array shall be silently
1552 discarded. This does not influence whether to pass signals to the
1553 inferior as a result of a target_resume call. This is useful in
1554 scenarios where the target needs to decide whether to pass or not a
1555 signal to the inferior without GDB core involvement, such as for
1556 example, when detaching (as threads may have been suspended with
1557 pending signals not reported to GDB). */
1558
1559 extern void target_program_signals (int nsig, unsigned char *program_signals);
1560
1561 /* Check to see if a thread is still alive. */
1562
1563 extern int target_thread_alive (ptid_t ptid);
1564
1565 /* Query for new threads and add them to the thread list. */
1566
1567 extern void target_find_new_threads (void);
1568
1569 /* Make target stop in a continuable fashion. (For instance, under
1570 Unix, this should act like SIGSTOP). This function is normally
1571 used by GUIs to implement a stop button. */
1572
1573 extern void target_stop (ptid_t ptid);
1574
1575 /* Send the specified COMMAND to the target's monitor
1576 (shell,interpreter) for execution. The result of the query is
1577 placed in OUTBUF. */
1578
1579 #define target_rcmd(command, outbuf) \
1580 (*current_target.to_rcmd) (&current_target, command, outbuf)
1581
1582
1583 /* Does the target include all of memory, or only part of it? This
1584 determines whether we look up the target chain for other parts of
1585 memory if this target can't satisfy a request. */
1586
1587 extern int target_has_all_memory_1 (void);
1588 #define target_has_all_memory target_has_all_memory_1 ()
1589
1590 /* Does the target include memory? (Dummy targets don't.) */
1591
1592 extern int target_has_memory_1 (void);
1593 #define target_has_memory target_has_memory_1 ()
1594
1595 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1596 we start a process.) */
1597
1598 extern int target_has_stack_1 (void);
1599 #define target_has_stack target_has_stack_1 ()
1600
1601 /* Does the target have registers? (Exec files don't.) */
1602
1603 extern int target_has_registers_1 (void);
1604 #define target_has_registers target_has_registers_1 ()
1605
1606 /* Does the target have execution? Can we make it jump (through
1607 hoops), or pop its stack a few times? This means that the current
1608 target is currently executing; for some targets, that's the same as
1609 whether or not the target is capable of execution, but there are
1610 also targets which can be current while not executing. In that
1611 case this will become true after target_create_inferior or
1612 target_attach. */
1613
1614 extern int target_has_execution_1 (ptid_t);
1615
1616 /* Like target_has_execution_1, but always passes inferior_ptid. */
1617
1618 extern int target_has_execution_current (void);
1619
1620 #define target_has_execution target_has_execution_current ()
1621
1622 /* Default implementations for process_stratum targets. Return true
1623 if there's a selected inferior, false otherwise. */
1624
1625 extern int default_child_has_all_memory (struct target_ops *ops);
1626 extern int default_child_has_memory (struct target_ops *ops);
1627 extern int default_child_has_stack (struct target_ops *ops);
1628 extern int default_child_has_registers (struct target_ops *ops);
1629 extern int default_child_has_execution (struct target_ops *ops,
1630 ptid_t the_ptid);
1631
1632 /* Can the target support the debugger control of thread execution?
1633 Can it lock the thread scheduler? */
1634
1635 #define target_can_lock_scheduler \
1636 (current_target.to_has_thread_control & tc_schedlock)
1637
1638 /* Should the target enable async mode if it is supported? Temporary
1639 cludge until async mode is a strict superset of sync mode. */
1640 extern int target_async_permitted;
1641
1642 /* Can the target support asynchronous execution? */
1643 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1644
1645 /* Is the target in asynchronous execution mode? */
1646 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1647
1648 int target_supports_non_stop (void);
1649
1650 /* Put the target in async mode with the specified callback function. */
1651 #define target_async(CALLBACK,CONTEXT) \
1652 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1653
1654 #define target_execution_direction() \
1655 (current_target.to_execution_direction (&current_target))
1656
1657 /* Converts a process id to a string. Usually, the string just contains
1658 `process xyz', but on some systems it may contain
1659 `process xyz thread abc'. */
1660
1661 extern char *target_pid_to_str (ptid_t ptid);
1662
1663 extern char *normal_pid_to_str (ptid_t ptid);
1664
1665 /* Return a short string describing extra information about PID,
1666 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1667 is okay. */
1668
1669 #define target_extra_thread_info(TP) \
1670 (current_target.to_extra_thread_info (&current_target, TP))
1671
1672 /* Return the thread's name. A NULL result means that the target
1673 could not determine this thread's name. */
1674
1675 extern char *target_thread_name (struct thread_info *);
1676
1677 /* Attempts to find the pathname of the executable file
1678 that was run to create a specified process.
1679
1680 The process PID must be stopped when this operation is used.
1681
1682 If the executable file cannot be determined, NULL is returned.
1683
1684 Else, a pointer to a character string containing the pathname
1685 is returned. This string should be copied into a buffer by
1686 the client if the string will not be immediately used, or if
1687 it must persist. */
1688
1689 #define target_pid_to_exec_file(pid) \
1690 (current_target.to_pid_to_exec_file) (&current_target, pid)
1691
1692 /* See the to_thread_architecture description in struct target_ops. */
1693
1694 #define target_thread_architecture(ptid) \
1695 (current_target.to_thread_architecture (&current_target, ptid))
1696
1697 /*
1698 * Iterator function for target memory regions.
1699 * Calls a callback function once for each memory region 'mapped'
1700 * in the child process. Defined as a simple macro rather than
1701 * as a function macro so that it can be tested for nullity.
1702 */
1703
1704 #define target_find_memory_regions(FUNC, DATA) \
1705 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1706
1707 /*
1708 * Compose corefile .note section.
1709 */
1710
1711 #define target_make_corefile_notes(BFD, SIZE_P) \
1712 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1713
1714 /* Bookmark interfaces. */
1715 #define target_get_bookmark(ARGS, FROM_TTY) \
1716 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1717
1718 #define target_goto_bookmark(ARG, FROM_TTY) \
1719 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1720
1721 /* Hardware watchpoint interfaces. */
1722
1723 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1724 write). Only the INFERIOR_PTID task is being queried. */
1725
1726 #define target_stopped_by_watchpoint() \
1727 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1728
1729 /* Non-zero if we have steppable watchpoints */
1730
1731 #define target_have_steppable_watchpoint \
1732 (current_target.to_have_steppable_watchpoint)
1733
1734 /* Non-zero if we have continuable watchpoints */
1735
1736 #define target_have_continuable_watchpoint \
1737 (current_target.to_have_continuable_watchpoint)
1738
1739 /* Provide defaults for hardware watchpoint functions. */
1740
1741 /* If the *_hw_beakpoint functions have not been defined
1742 elsewhere use the definitions in the target vector. */
1743
1744 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1745 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1746 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1747 (including this one?). OTHERTYPE is who knows what... */
1748
1749 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1750 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1751 TYPE, CNT, OTHERTYPE);
1752
1753 /* Returns the number of debug registers needed to watch the given
1754 memory region, or zero if not supported. */
1755
1756 #define target_region_ok_for_hw_watchpoint(addr, len) \
1757 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1758 addr, len)
1759
1760
1761 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1762 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1763 COND is the expression for its condition, or NULL if there's none.
1764 Returns 0 for success, 1 if the watchpoint type is not supported,
1765 -1 for failure. */
1766
1767 #define target_insert_watchpoint(addr, len, type, cond) \
1768 (*current_target.to_insert_watchpoint) (&current_target, \
1769 addr, len, type, cond)
1770
1771 #define target_remove_watchpoint(addr, len, type, cond) \
1772 (*current_target.to_remove_watchpoint) (&current_target, \
1773 addr, len, type, cond)
1774
1775 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1776 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1777 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1778 masked watchpoints are not supported, -1 for failure. */
1779
1780 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1781
1782 /* Remove a masked watchpoint at ADDR with the mask MASK.
1783 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1784 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1785 for failure. */
1786
1787 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1788
1789 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1790 the target machine. Returns 0 for success, and returns non-zero or
1791 throws an error (with a detailed failure reason error code and
1792 message) otherwise. */
1793
1794 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1795 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1796 gdbarch, bp_tgt)
1797
1798 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1799 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1800 gdbarch, bp_tgt)
1801
1802 /* Return number of debug registers needed for a ranged breakpoint,
1803 or -1 if ranged breakpoints are not supported. */
1804
1805 extern int target_ranged_break_num_registers (void);
1806
1807 /* Return non-zero if target knows the data address which triggered this
1808 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1809 INFERIOR_PTID task is being queried. */
1810 #define target_stopped_data_address(target, addr_p) \
1811 (*target.to_stopped_data_address) (target, addr_p)
1812
1813 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1814 LENGTH bytes beginning at START. */
1815 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1816 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1817
1818 /* Return non-zero if the target is capable of using hardware to evaluate
1819 the condition expression. In this case, if the condition is false when
1820 the watched memory location changes, execution may continue without the
1821 debugger being notified.
1822
1823 Due to limitations in the hardware implementation, it may be capable of
1824 avoiding triggering the watchpoint in some cases where the condition
1825 expression is false, but may report some false positives as well.
1826 For this reason, GDB will still evaluate the condition expression when
1827 the watchpoint triggers. */
1828 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1829 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1830 addr, len, type, cond)
1831
1832 /* Return number of debug registers needed for a masked watchpoint,
1833 -1 if masked watchpoints are not supported or -2 if the given address
1834 and mask combination cannot be used. */
1835
1836 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1837
1838 /* Target can execute in reverse? */
1839 #define target_can_execute_reverse \
1840 current_target.to_can_execute_reverse (&current_target)
1841
1842 extern const struct target_desc *target_read_description (struct target_ops *);
1843
1844 #define target_get_ada_task_ptid(lwp, tid) \
1845 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1846
1847 /* Utility implementation of searching memory. */
1848 extern int simple_search_memory (struct target_ops* ops,
1849 CORE_ADDR start_addr,
1850 ULONGEST search_space_len,
1851 const gdb_byte *pattern,
1852 ULONGEST pattern_len,
1853 CORE_ADDR *found_addrp);
1854
1855 /* Main entry point for searching memory. */
1856 extern int target_search_memory (CORE_ADDR start_addr,
1857 ULONGEST search_space_len,
1858 const gdb_byte *pattern,
1859 ULONGEST pattern_len,
1860 CORE_ADDR *found_addrp);
1861
1862 /* Target file operations. */
1863
1864 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1865 target file descriptor, or -1 if an error occurs (and set
1866 *TARGET_ERRNO). */
1867 extern int target_fileio_open (const char *filename, int flags, int mode,
1868 int *target_errno);
1869
1870 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1871 Return the number of bytes written, or -1 if an error occurs
1872 (and set *TARGET_ERRNO). */
1873 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1874 ULONGEST offset, int *target_errno);
1875
1876 /* Read up to LEN bytes FD on the target into READ_BUF.
1877 Return the number of bytes read, or -1 if an error occurs
1878 (and set *TARGET_ERRNO). */
1879 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1880 ULONGEST offset, int *target_errno);
1881
1882 /* Close FD on the target. Return 0, or -1 if an error occurs
1883 (and set *TARGET_ERRNO). */
1884 extern int target_fileio_close (int fd, int *target_errno);
1885
1886 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1887 occurs (and set *TARGET_ERRNO). */
1888 extern int target_fileio_unlink (const char *filename, int *target_errno);
1889
1890 /* Read value of symbolic link FILENAME on the target. Return a
1891 null-terminated string allocated via xmalloc, or NULL if an error
1892 occurs (and set *TARGET_ERRNO). */
1893 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1894
1895 /* Read target file FILENAME. The return value will be -1 if the transfer
1896 fails or is not supported; 0 if the object is empty; or the length
1897 of the object otherwise. If a positive value is returned, a
1898 sufficiently large buffer will be allocated using xmalloc and
1899 returned in *BUF_P containing the contents of the object.
1900
1901 This method should be used for objects sufficiently small to store
1902 in a single xmalloc'd buffer, when no fixed bound on the object's
1903 size is known in advance. */
1904 extern LONGEST target_fileio_read_alloc (const char *filename,
1905 gdb_byte **buf_p);
1906
1907 /* Read target file FILENAME. The result is NUL-terminated and
1908 returned as a string, allocated using xmalloc. If an error occurs
1909 or the transfer is unsupported, NULL is returned. Empty objects
1910 are returned as allocated but empty strings. A warning is issued
1911 if the result contains any embedded NUL bytes. */
1912 extern char *target_fileio_read_stralloc (const char *filename);
1913
1914
1915 /* Tracepoint-related operations. */
1916
1917 #define target_trace_init() \
1918 (*current_target.to_trace_init) (&current_target)
1919
1920 #define target_download_tracepoint(t) \
1921 (*current_target.to_download_tracepoint) (&current_target, t)
1922
1923 #define target_can_download_tracepoint() \
1924 (*current_target.to_can_download_tracepoint) (&current_target)
1925
1926 #define target_download_trace_state_variable(tsv) \
1927 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1928
1929 #define target_enable_tracepoint(loc) \
1930 (*current_target.to_enable_tracepoint) (&current_target, loc)
1931
1932 #define target_disable_tracepoint(loc) \
1933 (*current_target.to_disable_tracepoint) (&current_target, loc)
1934
1935 #define target_trace_start() \
1936 (*current_target.to_trace_start) (&current_target)
1937
1938 #define target_trace_set_readonly_regions() \
1939 (*current_target.to_trace_set_readonly_regions) (&current_target)
1940
1941 #define target_get_trace_status(ts) \
1942 (*current_target.to_get_trace_status) (&current_target, ts)
1943
1944 #define target_get_tracepoint_status(tp,utp) \
1945 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1946
1947 #define target_trace_stop() \
1948 (*current_target.to_trace_stop) (&current_target)
1949
1950 #define target_trace_find(type,num,addr1,addr2,tpp) \
1951 (*current_target.to_trace_find) (&current_target, \
1952 (type), (num), (addr1), (addr2), (tpp))
1953
1954 #define target_get_trace_state_variable_value(tsv,val) \
1955 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1956 (tsv), (val))
1957
1958 #define target_save_trace_data(filename) \
1959 (*current_target.to_save_trace_data) (&current_target, filename)
1960
1961 #define target_upload_tracepoints(utpp) \
1962 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1963
1964 #define target_upload_trace_state_variables(utsvp) \
1965 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1966
1967 #define target_get_raw_trace_data(buf,offset,len) \
1968 (*current_target.to_get_raw_trace_data) (&current_target, \
1969 (buf), (offset), (len))
1970
1971 #define target_get_min_fast_tracepoint_insn_len() \
1972 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1973
1974 #define target_set_disconnected_tracing(val) \
1975 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1976
1977 #define target_set_circular_trace_buffer(val) \
1978 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1979
1980 #define target_set_trace_buffer_size(val) \
1981 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1982
1983 #define target_set_trace_notes(user,notes,stopnotes) \
1984 (*current_target.to_set_trace_notes) (&current_target, \
1985 (user), (notes), (stopnotes))
1986
1987 #define target_get_tib_address(ptid, addr) \
1988 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1989
1990 #define target_set_permissions() \
1991 (*current_target.to_set_permissions) (&current_target)
1992
1993 #define target_static_tracepoint_marker_at(addr, marker) \
1994 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1995 addr, marker)
1996
1997 #define target_static_tracepoint_markers_by_strid(marker_id) \
1998 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1999 marker_id)
2000
2001 #define target_traceframe_info() \
2002 (*current_target.to_traceframe_info) (&current_target)
2003
2004 #define target_use_agent(use) \
2005 (*current_target.to_use_agent) (&current_target, use)
2006
2007 #define target_can_use_agent() \
2008 (*current_target.to_can_use_agent) (&current_target)
2009
2010 #define target_augmented_libraries_svr4_read() \
2011 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2012
2013 /* Command logging facility. */
2014
2015 #define target_log_command(p) \
2016 (*current_target.to_log_command) (&current_target, p)
2017
2018
2019 extern int target_core_of_thread (ptid_t ptid);
2020
2021 /* See to_get_unwinder in struct target_ops. */
2022 extern const struct frame_unwind *target_get_unwinder (void);
2023
2024 /* See to_get_tailcall_unwinder in struct target_ops. */
2025 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2026
2027 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2028 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2029 if there's a mismatch, and -1 if an error is encountered while
2030 reading memory. Throws an error if the functionality is found not
2031 to be supported by the current target. */
2032 int target_verify_memory (const gdb_byte *data,
2033 CORE_ADDR memaddr, ULONGEST size);
2034
2035 /* Routines for maintenance of the target structures...
2036
2037 complete_target_initialization: Finalize a target_ops by filling in
2038 any fields needed by the target implementation.
2039
2040 add_target: Add a target to the list of all possible targets.
2041
2042 push_target: Make this target the top of the stack of currently used
2043 targets, within its particular stratum of the stack. Result
2044 is 0 if now atop the stack, nonzero if not on top (maybe
2045 should warn user).
2046
2047 unpush_target: Remove this from the stack of currently used targets,
2048 no matter where it is on the list. Returns 0 if no
2049 change, 1 if removed from stack. */
2050
2051 extern void add_target (struct target_ops *);
2052
2053 extern void add_target_with_completer (struct target_ops *t,
2054 completer_ftype *completer);
2055
2056 extern void complete_target_initialization (struct target_ops *t);
2057
2058 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2059 for maintaining backwards compatibility when renaming targets. */
2060
2061 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2062
2063 extern void push_target (struct target_ops *);
2064
2065 extern int unpush_target (struct target_ops *);
2066
2067 extern void target_pre_inferior (int);
2068
2069 extern void target_preopen (int);
2070
2071 /* Does whatever cleanup is required to get rid of all pushed targets. */
2072 extern void pop_all_targets (void);
2073
2074 /* Like pop_all_targets, but pops only targets whose stratum is
2075 strictly above ABOVE_STRATUM. */
2076 extern void pop_all_targets_above (enum strata above_stratum);
2077
2078 extern int target_is_pushed (struct target_ops *t);
2079
2080 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2081 CORE_ADDR offset);
2082
2083 /* Struct target_section maps address ranges to file sections. It is
2084 mostly used with BFD files, but can be used without (e.g. for handling
2085 raw disks, or files not in formats handled by BFD). */
2086
2087 struct target_section
2088 {
2089 CORE_ADDR addr; /* Lowest address in section */
2090 CORE_ADDR endaddr; /* 1+highest address in section */
2091
2092 struct bfd_section *the_bfd_section;
2093
2094 /* The "owner" of the section.
2095 It can be any unique value. It is set by add_target_sections
2096 and used by remove_target_sections.
2097 For example, for executables it is a pointer to exec_bfd and
2098 for shlibs it is the so_list pointer. */
2099 void *owner;
2100 };
2101
2102 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2103
2104 struct target_section_table
2105 {
2106 struct target_section *sections;
2107 struct target_section *sections_end;
2108 };
2109
2110 /* Return the "section" containing the specified address. */
2111 struct target_section *target_section_by_addr (struct target_ops *target,
2112 CORE_ADDR addr);
2113
2114 /* Return the target section table this target (or the targets
2115 beneath) currently manipulate. */
2116
2117 extern struct target_section_table *target_get_section_table
2118 (struct target_ops *target);
2119
2120 /* From mem-break.c */
2121
2122 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2123 struct bp_target_info *);
2124
2125 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2126 struct bp_target_info *);
2127
2128 extern int default_memory_remove_breakpoint (struct gdbarch *,
2129 struct bp_target_info *);
2130
2131 extern int default_memory_insert_breakpoint (struct gdbarch *,
2132 struct bp_target_info *);
2133
2134
2135 /* From target.c */
2136
2137 extern void initialize_targets (void);
2138
2139 extern void noprocess (void) ATTRIBUTE_NORETURN;
2140
2141 extern void target_require_runnable (void);
2142
2143 extern void find_default_attach (struct target_ops *, char *, int);
2144
2145 extern void find_default_create_inferior (struct target_ops *,
2146 char *, char *, char **, int);
2147
2148 extern struct target_ops *find_target_beneath (struct target_ops *);
2149
2150 /* Find the target at STRATUM. If no target is at that stratum,
2151 return NULL. */
2152
2153 struct target_ops *find_target_at (enum strata stratum);
2154
2155 /* Read OS data object of type TYPE from the target, and return it in
2156 XML format. The result is NUL-terminated and returned as a string,
2157 allocated using xmalloc. If an error occurs or the transfer is
2158 unsupported, NULL is returned. Empty objects are returned as
2159 allocated but empty strings. */
2160
2161 extern char *target_get_osdata (const char *type);
2162
2163 \f
2164 /* Stuff that should be shared among the various remote targets. */
2165
2166 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2167 information (higher values, more information). */
2168 extern int remote_debug;
2169
2170 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2171 extern int baud_rate;
2172 /* Timeout limit for response from target. */
2173 extern int remote_timeout;
2174
2175 \f
2176
2177 /* Set the show memory breakpoints mode to show, and installs a cleanup
2178 to restore it back to the current value. */
2179 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2180
2181 extern int may_write_registers;
2182 extern int may_write_memory;
2183 extern int may_insert_breakpoints;
2184 extern int may_insert_tracepoints;
2185 extern int may_insert_fast_tracepoints;
2186 extern int may_stop;
2187
2188 extern void update_target_permissions (void);
2189
2190 \f
2191 /* Imported from machine dependent code. */
2192
2193 /* Blank target vector entries are initialized to target_ignore. */
2194 void target_ignore (void);
2195
2196 /* See to_supports_btrace in struct target_ops. */
2197 #define target_supports_btrace() \
2198 (current_target.to_supports_btrace (&current_target))
2199
2200 /* See to_enable_btrace in struct target_ops. */
2201 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2202
2203 /* See to_disable_btrace in struct target_ops. */
2204 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2205
2206 /* See to_teardown_btrace in struct target_ops. */
2207 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2208
2209 /* See to_read_btrace in struct target_ops. */
2210 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2211 struct btrace_target_info *,
2212 enum btrace_read_type);
2213
2214 /* See to_stop_recording in struct target_ops. */
2215 extern void target_stop_recording (void);
2216
2217 /* See to_info_record in struct target_ops. */
2218 extern void target_info_record (void);
2219
2220 /* See to_save_record in struct target_ops. */
2221 extern void target_save_record (const char *filename);
2222
2223 /* Query if the target supports deleting the execution log. */
2224 extern int target_supports_delete_record (void);
2225
2226 /* See to_delete_record in struct target_ops. */
2227 extern void target_delete_record (void);
2228
2229 /* See to_record_is_replaying in struct target_ops. */
2230 extern int target_record_is_replaying (void);
2231
2232 /* See to_goto_record_begin in struct target_ops. */
2233 extern void target_goto_record_begin (void);
2234
2235 /* See to_goto_record_end in struct target_ops. */
2236 extern void target_goto_record_end (void);
2237
2238 /* See to_goto_record in struct target_ops. */
2239 extern void target_goto_record (ULONGEST insn);
2240
2241 /* See to_insn_history. */
2242 extern void target_insn_history (int size, int flags);
2243
2244 /* See to_insn_history_from. */
2245 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2246
2247 /* See to_insn_history_range. */
2248 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2249
2250 /* See to_call_history. */
2251 extern void target_call_history (int size, int flags);
2252
2253 /* See to_call_history_from. */
2254 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2255
2256 /* See to_call_history_range. */
2257 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2258
2259 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2260 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2261 struct gdbarch *gdbarch);
2262
2263 /* See to_decr_pc_after_break. */
2264 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2265
2266 #endif /* !defined (TARGET_H) */
This page took 0.076836 seconds and 4 git commands to generate.