2011-05-26 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #if !defined (TARGET_H)
25 #define TARGET_H
26
27 struct objfile;
28 struct ui_file;
29 struct mem_attrib;
30 struct target_ops;
31 struct bp_location;
32 struct bp_target_info;
33 struct regcache;
34 struct target_section_table;
35 struct trace_state_variable;
36 struct trace_status;
37 struct uploaded_tsv;
38 struct uploaded_tp;
39 struct static_tracepoint_marker;
40 struct traceframe_info;
41 struct expression;
42
43 /* This include file defines the interface between the main part
44 of the debugger, and the part which is target-specific, or
45 specific to the communications interface between us and the
46 target.
47
48 A TARGET is an interface between the debugger and a particular
49 kind of file or process. Targets can be STACKED in STRATA,
50 so that more than one target can potentially respond to a request.
51 In particular, memory accesses will walk down the stack of targets
52 until they find a target that is interested in handling that particular
53 address. STRATA are artificial boundaries on the stack, within
54 which particular kinds of targets live. Strata exist so that
55 people don't get confused by pushing e.g. a process target and then
56 a file target, and wondering why they can't see the current values
57 of variables any more (the file target is handling them and they
58 never get to the process target). So when you push a file target,
59 it goes into the file stratum, which is always below the process
60 stratum. */
61
62 #include "bfd.h"
63 #include "symtab.h"
64 #include "memattr.h"
65 #include "vec.h"
66 #include "gdb_signals.h"
67
68 enum strata
69 {
70 dummy_stratum, /* The lowest of the low */
71 file_stratum, /* Executable files, etc */
72 process_stratum, /* Executing processes or core dump files */
73 thread_stratum, /* Executing threads */
74 record_stratum, /* Support record debugging */
75 arch_stratum /* Architecture overrides */
76 };
77
78 enum thread_control_capabilities
79 {
80 tc_none = 0, /* Default: can't control thread execution. */
81 tc_schedlock = 1, /* Can lock the thread scheduler. */
82 };
83
84 /* Stuff for target_wait. */
85
86 /* Generally, what has the program done? */
87 enum target_waitkind
88 {
89 /* The program has exited. The exit status is in value.integer. */
90 TARGET_WAITKIND_EXITED,
91
92 /* The program has stopped with a signal. Which signal is in
93 value.sig. */
94 TARGET_WAITKIND_STOPPED,
95
96 /* The program has terminated with a signal. Which signal is in
97 value.sig. */
98 TARGET_WAITKIND_SIGNALLED,
99
100 /* The program is letting us know that it dynamically loaded something
101 (e.g. it called load(2) on AIX). */
102 TARGET_WAITKIND_LOADED,
103
104 /* The program has forked. A "related" process' PTID is in
105 value.related_pid. I.e., if the child forks, value.related_pid
106 is the parent's ID. */
107
108 TARGET_WAITKIND_FORKED,
109
110 /* The program has vforked. A "related" process's PTID is in
111 value.related_pid. */
112
113 TARGET_WAITKIND_VFORKED,
114
115 /* The program has exec'ed a new executable file. The new file's
116 pathname is pointed to by value.execd_pathname. */
117
118 TARGET_WAITKIND_EXECD,
119
120 /* The program had previously vforked, and now the child is done
121 with the shared memory region, because it exec'ed or exited.
122 Note that the event is reported to the vfork parent. This is
123 only used if GDB did not stay attached to the vfork child,
124 otherwise, a TARGET_WAITKIND_EXECD or
125 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
126 has the same effect. */
127 TARGET_WAITKIND_VFORK_DONE,
128
129 /* The program has entered or returned from a system call. On
130 HP-UX, this is used in the hardware watchpoint implementation.
131 The syscall's unique integer ID number is in value.syscall_id. */
132
133 TARGET_WAITKIND_SYSCALL_ENTRY,
134 TARGET_WAITKIND_SYSCALL_RETURN,
135
136 /* Nothing happened, but we stopped anyway. This perhaps should be handled
137 within target_wait, but I'm not sure target_wait should be resuming the
138 inferior. */
139 TARGET_WAITKIND_SPURIOUS,
140
141 /* An event has occured, but we should wait again.
142 Remote_async_wait() returns this when there is an event
143 on the inferior, but the rest of the world is not interested in
144 it. The inferior has not stopped, but has just sent some output
145 to the console, for instance. In this case, we want to go back
146 to the event loop and wait there for another event from the
147 inferior, rather than being stuck in the remote_async_wait()
148 function. sThis way the event loop is responsive to other events,
149 like for instance the user typing. */
150 TARGET_WAITKIND_IGNORE,
151
152 /* The target has run out of history information,
153 and cannot run backward any further. */
154 TARGET_WAITKIND_NO_HISTORY
155 };
156
157 struct target_waitstatus
158 {
159 enum target_waitkind kind;
160
161 /* Forked child pid, execd pathname, exit status, signal number or
162 syscall number. */
163 union
164 {
165 int integer;
166 enum target_signal sig;
167 ptid_t related_pid;
168 char *execd_pathname;
169 int syscall_number;
170 }
171 value;
172 };
173
174 /* Options that can be passed to target_wait. */
175
176 /* Return immediately if there's no event already queued. If this
177 options is not requested, target_wait blocks waiting for an
178 event. */
179 #define TARGET_WNOHANG 1
180
181 /* The structure below stores information about a system call.
182 It is basically used in the "catch syscall" command, and in
183 every function that gives information about a system call.
184
185 It's also good to mention that its fields represent everything
186 that we currently know about a syscall in GDB. */
187 struct syscall
188 {
189 /* The syscall number. */
190 int number;
191
192 /* The syscall name. */
193 const char *name;
194 };
195
196 /* Return a pretty printed form of target_waitstatus.
197 Space for the result is malloc'd, caller must free. */
198 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
199
200 /* Possible types of events that the inferior handler will have to
201 deal with. */
202 enum inferior_event_type
203 {
204 /* There is a request to quit the inferior, abandon it. */
205 INF_QUIT_REQ,
206 /* Process a normal inferior event which will result in target_wait
207 being called. */
208 INF_REG_EVENT,
209 /* Deal with an error on the inferior. */
210 INF_ERROR,
211 /* We are called because a timer went off. */
212 INF_TIMER,
213 /* We are called to do stuff after the inferior stops. */
214 INF_EXEC_COMPLETE,
215 /* We are called to do some stuff after the inferior stops, but we
216 are expected to reenter the proceed() and
217 handle_inferior_event() functions. This is used only in case of
218 'step n' like commands. */
219 INF_EXEC_CONTINUE
220 };
221 \f
222 /* Target objects which can be transfered using target_read,
223 target_write, et cetera. */
224
225 enum target_object
226 {
227 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
228 TARGET_OBJECT_AVR,
229 /* SPU target specific transfer. See "spu-tdep.c". */
230 TARGET_OBJECT_SPU,
231 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
232 TARGET_OBJECT_MEMORY,
233 /* Memory, avoiding GDB's data cache and trusting the executable.
234 Target implementations of to_xfer_partial never need to handle
235 this object, and most callers should not use it. */
236 TARGET_OBJECT_RAW_MEMORY,
237 /* Memory known to be part of the target's stack. This is cached even
238 if it is not in a region marked as such, since it is known to be
239 "normal" RAM. */
240 TARGET_OBJECT_STACK_MEMORY,
241 /* Kernel Unwind Table. See "ia64-tdep.c". */
242 TARGET_OBJECT_UNWIND_TABLE,
243 /* Transfer auxilliary vector. */
244 TARGET_OBJECT_AUXV,
245 /* StackGhost cookie. See "sparc-tdep.c". */
246 TARGET_OBJECT_WCOOKIE,
247 /* Target memory map in XML format. */
248 TARGET_OBJECT_MEMORY_MAP,
249 /* Flash memory. This object can be used to write contents to
250 a previously erased flash memory. Using it without erasing
251 flash can have unexpected results. Addresses are physical
252 address on target, and not relative to flash start. */
253 TARGET_OBJECT_FLASH,
254 /* Available target-specific features, e.g. registers and coprocessors.
255 See "target-descriptions.c". ANNEX should never be empty. */
256 TARGET_OBJECT_AVAILABLE_FEATURES,
257 /* Currently loaded libraries, in XML format. */
258 TARGET_OBJECT_LIBRARIES,
259 /* Get OS specific data. The ANNEX specifies the type (running
260 processes, etc.). The data being transfered is expected to follow
261 the DTD specified in features/osdata.dtd. */
262 TARGET_OBJECT_OSDATA,
263 /* Extra signal info. Usually the contents of `siginfo_t' on unix
264 platforms. */
265 TARGET_OBJECT_SIGNAL_INFO,
266 /* The list of threads that are being debugged. */
267 TARGET_OBJECT_THREADS,
268 /* Collected static trace data. */
269 TARGET_OBJECT_STATIC_TRACE_DATA,
270 /* The HP-UX registers (those that can be obtained or modified by using
271 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
272 TARGET_OBJECT_HPUX_UREGS,
273 /* The HP-UX shared library linkage pointer. ANNEX should be a string
274 image of the code address whose linkage pointer we are looking for.
275
276 The size of the data transfered is always 8 bytes (the size of an
277 address on ia64). */
278 TARGET_OBJECT_HPUX_SOLIB_GOT,
279 /* Traceframe info, in XML format. */
280 TARGET_OBJECT_TRACEFRAME_INFO,
281 /* Possible future objects: TARGET_OBJECT_FILE, ... */
282 };
283
284 /* Enumeration of the kinds of traceframe searches that a target may
285 be able to perform. */
286
287 enum trace_find_type
288 {
289 tfind_number,
290 tfind_pc,
291 tfind_tp,
292 tfind_range,
293 tfind_outside,
294 };
295
296 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
297 DEF_VEC_P(static_tracepoint_marker_p);
298
299 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
300 OBJECT. The OFFSET, for a seekable object, specifies the
301 starting point. The ANNEX can be used to provide additional
302 data-specific information to the target.
303
304 Return the number of bytes actually transfered, or -1 if the
305 transfer is not supported or otherwise fails. Return of a positive
306 value less than LEN indicates that no further transfer is possible.
307 Unlike the raw to_xfer_partial interface, callers of these
308 functions do not need to retry partial transfers. */
309
310 extern LONGEST target_read (struct target_ops *ops,
311 enum target_object object,
312 const char *annex, gdb_byte *buf,
313 ULONGEST offset, LONGEST len);
314
315 struct memory_read_result
316 {
317 /* First address that was read. */
318 ULONGEST begin;
319 /* Past-the-end address. */
320 ULONGEST end;
321 /* The data. */
322 gdb_byte *data;
323 };
324 typedef struct memory_read_result memory_read_result_s;
325 DEF_VEC_O(memory_read_result_s);
326
327 extern void free_memory_read_result_vector (void *);
328
329 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
330 ULONGEST offset,
331 LONGEST len);
332
333 extern LONGEST target_write (struct target_ops *ops,
334 enum target_object object,
335 const char *annex, const gdb_byte *buf,
336 ULONGEST offset, LONGEST len);
337
338 /* Similar to target_write, except that it also calls PROGRESS with
339 the number of bytes written and the opaque BATON after every
340 successful partial write (and before the first write). This is
341 useful for progress reporting and user interaction while writing
342 data. To abort the transfer, the progress callback can throw an
343 exception. */
344
345 LONGEST target_write_with_progress (struct target_ops *ops,
346 enum target_object object,
347 const char *annex, const gdb_byte *buf,
348 ULONGEST offset, LONGEST len,
349 void (*progress) (ULONGEST, void *),
350 void *baton);
351
352 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
353 be read using OPS. The return value will be -1 if the transfer
354 fails or is not supported; 0 if the object is empty; or the length
355 of the object otherwise. If a positive value is returned, a
356 sufficiently large buffer will be allocated using xmalloc and
357 returned in *BUF_P containing the contents of the object.
358
359 This method should be used for objects sufficiently small to store
360 in a single xmalloc'd buffer, when no fixed bound on the object's
361 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
362 through this function. */
363
364 extern LONGEST target_read_alloc (struct target_ops *ops,
365 enum target_object object,
366 const char *annex, gdb_byte **buf_p);
367
368 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
369 returned as a string, allocated using xmalloc. If an error occurs
370 or the transfer is unsupported, NULL is returned. Empty objects
371 are returned as allocated but empty strings. A warning is issued
372 if the result contains any embedded NUL bytes. */
373
374 extern char *target_read_stralloc (struct target_ops *ops,
375 enum target_object object,
376 const char *annex);
377
378 /* Wrappers to target read/write that perform memory transfers. They
379 throw an error if the memory transfer fails.
380
381 NOTE: cagney/2003-10-23: The naming schema is lifted from
382 "frame.h". The parameter order is lifted from get_frame_memory,
383 which in turn lifted it from read_memory. */
384
385 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
386 gdb_byte *buf, LONGEST len);
387 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
388 CORE_ADDR addr, int len,
389 enum bfd_endian byte_order);
390 \f
391 struct thread_info; /* fwd decl for parameter list below: */
392
393 struct target_ops
394 {
395 struct target_ops *beneath; /* To the target under this one. */
396 char *to_shortname; /* Name this target type */
397 char *to_longname; /* Name for printing */
398 char *to_doc; /* Documentation. Does not include trailing
399 newline, and starts with a one-line descrip-
400 tion (probably similar to to_longname). */
401 /* Per-target scratch pad. */
402 void *to_data;
403 /* The open routine takes the rest of the parameters from the
404 command, and (if successful) pushes a new target onto the
405 stack. Targets should supply this routine, if only to provide
406 an error message. */
407 void (*to_open) (char *, int);
408 /* Old targets with a static target vector provide "to_close".
409 New re-entrant targets provide "to_xclose" and that is expected
410 to xfree everything (including the "struct target_ops"). */
411 void (*to_xclose) (struct target_ops *targ, int quitting);
412 void (*to_close) (int);
413 void (*to_attach) (struct target_ops *ops, char *, int);
414 void (*to_post_attach) (int);
415 void (*to_detach) (struct target_ops *ops, char *, int);
416 void (*to_disconnect) (struct target_ops *, char *, int);
417 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
418 ptid_t (*to_wait) (struct target_ops *,
419 ptid_t, struct target_waitstatus *, int);
420 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
421 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
422 void (*to_prepare_to_store) (struct regcache *);
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *);
451 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
452 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
453 int (*to_can_use_hw_breakpoint) (int, int, int);
454 int (*to_ranged_break_num_registers) (struct target_ops *);
455 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
456 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
457
458 /* Documentation of what the two routines below are expected to do is
459 provided with the corresponding target_* macros. */
460 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
461 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
462
463 int (*to_insert_mask_watchpoint) (struct target_ops *,
464 CORE_ADDR, CORE_ADDR, int);
465 int (*to_remove_mask_watchpoint) (struct target_ops *,
466 CORE_ADDR, CORE_ADDR, int);
467 int (*to_stopped_by_watchpoint) (void);
468 int to_have_steppable_watchpoint;
469 int to_have_continuable_watchpoint;
470 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
471 int (*to_watchpoint_addr_within_range) (struct target_ops *,
472 CORE_ADDR, CORE_ADDR, int);
473
474 /* Documentation of this routine is provided with the corresponding
475 target_* macro. */
476 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
477
478 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
479 struct expression *);
480 int (*to_masked_watch_num_registers) (struct target_ops *,
481 CORE_ADDR, CORE_ADDR);
482 void (*to_terminal_init) (void);
483 void (*to_terminal_inferior) (void);
484 void (*to_terminal_ours_for_output) (void);
485 void (*to_terminal_ours) (void);
486 void (*to_terminal_save_ours) (void);
487 void (*to_terminal_info) (char *, int);
488 void (*to_kill) (struct target_ops *);
489 void (*to_load) (char *, int);
490 void (*to_create_inferior) (struct target_ops *,
491 char *, char *, char **, int);
492 void (*to_post_startup_inferior) (ptid_t);
493 int (*to_insert_fork_catchpoint) (int);
494 int (*to_remove_fork_catchpoint) (int);
495 int (*to_insert_vfork_catchpoint) (int);
496 int (*to_remove_vfork_catchpoint) (int);
497 int (*to_follow_fork) (struct target_ops *, int);
498 int (*to_insert_exec_catchpoint) (int);
499 int (*to_remove_exec_catchpoint) (int);
500 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
501 int (*to_has_exited) (int, int, int *);
502 void (*to_mourn_inferior) (struct target_ops *);
503 int (*to_can_run) (void);
504
505 /* Documentation of this routine is provided with the corresponding
506 target_* macro. */
507 void (*to_pass_signals) (int, unsigned char *);
508
509 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
510 void (*to_find_new_threads) (struct target_ops *);
511 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
512 char *(*to_extra_thread_info) (struct thread_info *);
513 char *(*to_thread_name) (struct thread_info *);
514 void (*to_stop) (ptid_t);
515 void (*to_rcmd) (char *command, struct ui_file *output);
516 char *(*to_pid_to_exec_file) (int pid);
517 void (*to_log_command) (const char *);
518 struct target_section_table *(*to_get_section_table) (struct target_ops *);
519 enum strata to_stratum;
520 int (*to_has_all_memory) (struct target_ops *);
521 int (*to_has_memory) (struct target_ops *);
522 int (*to_has_stack) (struct target_ops *);
523 int (*to_has_registers) (struct target_ops *);
524 int (*to_has_execution) (struct target_ops *, ptid_t);
525 int to_has_thread_control; /* control thread execution */
526 int to_attach_no_wait;
527 /* ASYNC target controls */
528 int (*to_can_async_p) (void);
529 int (*to_is_async_p) (void);
530 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
531 int (*to_async_mask) (int);
532 int (*to_supports_non_stop) (void);
533 /* find_memory_regions support method for gcore */
534 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
535 /* make_corefile_notes support method for gcore */
536 char * (*to_make_corefile_notes) (bfd *, int *);
537 /* get_bookmark support method for bookmarks */
538 gdb_byte * (*to_get_bookmark) (char *, int);
539 /* goto_bookmark support method for bookmarks */
540 void (*to_goto_bookmark) (gdb_byte *, int);
541 /* Return the thread-local address at OFFSET in the
542 thread-local storage for the thread PTID and the shared library
543 or executable file given by OBJFILE. If that block of
544 thread-local storage hasn't been allocated yet, this function
545 may return an error. */
546 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
547 ptid_t ptid,
548 CORE_ADDR load_module_addr,
549 CORE_ADDR offset);
550
551 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
552 OBJECT. The OFFSET, for a seekable object, specifies the
553 starting point. The ANNEX can be used to provide additional
554 data-specific information to the target.
555
556 Return the number of bytes actually transfered, zero when no
557 further transfer is possible, and -1 when the transfer is not
558 supported. Return of a positive value smaller than LEN does
559 not indicate the end of the object, only the end of the
560 transfer; higher level code should continue transferring if
561 desired. This is handled in target.c.
562
563 The interface does not support a "retry" mechanism. Instead it
564 assumes that at least one byte will be transfered on each
565 successful call.
566
567 NOTE: cagney/2003-10-17: The current interface can lead to
568 fragmented transfers. Lower target levels should not implement
569 hacks, such as enlarging the transfer, in an attempt to
570 compensate for this. Instead, the target stack should be
571 extended so that it implements supply/collect methods and a
572 look-aside object cache. With that available, the lowest
573 target can safely and freely "push" data up the stack.
574
575 See target_read and target_write for more information. One,
576 and only one, of readbuf or writebuf must be non-NULL. */
577
578 LONGEST (*to_xfer_partial) (struct target_ops *ops,
579 enum target_object object, const char *annex,
580 gdb_byte *readbuf, const gdb_byte *writebuf,
581 ULONGEST offset, LONGEST len);
582
583 /* Returns the memory map for the target. A return value of NULL
584 means that no memory map is available. If a memory address
585 does not fall within any returned regions, it's assumed to be
586 RAM. The returned memory regions should not overlap.
587
588 The order of regions does not matter; target_memory_map will
589 sort regions by starting address. For that reason, this
590 function should not be called directly except via
591 target_memory_map.
592
593 This method should not cache data; if the memory map could
594 change unexpectedly, it should be invalidated, and higher
595 layers will re-fetch it. */
596 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
597
598 /* Erases the region of flash memory starting at ADDRESS, of
599 length LENGTH.
600
601 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
602 on flash block boundaries, as reported by 'to_memory_map'. */
603 void (*to_flash_erase) (struct target_ops *,
604 ULONGEST address, LONGEST length);
605
606 /* Finishes a flash memory write sequence. After this operation
607 all flash memory should be available for writing and the result
608 of reading from areas written by 'to_flash_write' should be
609 equal to what was written. */
610 void (*to_flash_done) (struct target_ops *);
611
612 /* Describe the architecture-specific features of this target.
613 Returns the description found, or NULL if no description
614 was available. */
615 const struct target_desc *(*to_read_description) (struct target_ops *ops);
616
617 /* Build the PTID of the thread on which a given task is running,
618 based on LWP and THREAD. These values are extracted from the
619 task Private_Data section of the Ada Task Control Block, and
620 their interpretation depends on the target. */
621 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
622
623 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
624 Return 0 if *READPTR is already at the end of the buffer.
625 Return -1 if there is insufficient buffer for a whole entry.
626 Return 1 if an entry was read into *TYPEP and *VALP. */
627 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
628 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
629
630 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
631 sequence of bytes in PATTERN with length PATTERN_LEN.
632
633 The result is 1 if found, 0 if not found, and -1 if there was an error
634 requiring halting of the search (e.g. memory read error).
635 If the pattern is found the address is recorded in FOUND_ADDRP. */
636 int (*to_search_memory) (struct target_ops *ops,
637 CORE_ADDR start_addr, ULONGEST search_space_len,
638 const gdb_byte *pattern, ULONGEST pattern_len,
639 CORE_ADDR *found_addrp);
640
641 /* Can target execute in reverse? */
642 int (*to_can_execute_reverse) (void);
643
644 /* The direction the target is currently executing. Must be
645 implemented on targets that support reverse execution and async
646 mode. The default simply returns forward execution. */
647 enum exec_direction_kind (*to_execution_direction) (void);
648
649 /* Does this target support debugging multiple processes
650 simultaneously? */
651 int (*to_supports_multi_process) (void);
652
653 /* Does this target support enabling and disabling tracepoints while a trace
654 experiment is running? */
655 int (*to_supports_enable_disable_tracepoint) (void);
656
657 /* Determine current architecture of thread PTID.
658
659 The target is supposed to determine the architecture of the code where
660 the target is currently stopped at (on Cell, if a target is in spu_run,
661 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
662 This is architecture used to perform decr_pc_after_break adjustment,
663 and also determines the frame architecture of the innermost frame.
664 ptrace operations need to operate according to target_gdbarch.
665
666 The default implementation always returns target_gdbarch. */
667 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
668
669 /* Determine current address space of thread PTID.
670
671 The default implementation always returns the inferior's
672 address space. */
673 struct address_space *(*to_thread_address_space) (struct target_ops *,
674 ptid_t);
675
676 /* Tracepoint-related operations. */
677
678 /* Prepare the target for a tracing run. */
679 void (*to_trace_init) (void);
680
681 /* Send full details of a tracepoint to the target. */
682 void (*to_download_tracepoint) (struct breakpoint *t);
683
684 /* Send full details of a trace state variable to the target. */
685 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
686
687 /* Enable a tracepoint on the target. */
688 void (*to_enable_tracepoint) (struct bp_location *location);
689
690 /* Disable a tracepoint on the target. */
691 void (*to_disable_tracepoint) (struct bp_location *location);
692
693 /* Inform the target info of memory regions that are readonly
694 (such as text sections), and so it should return data from
695 those rather than look in the trace buffer. */
696 void (*to_trace_set_readonly_regions) (void);
697
698 /* Start a trace run. */
699 void (*to_trace_start) (void);
700
701 /* Get the current status of a tracing run. */
702 int (*to_get_trace_status) (struct trace_status *ts);
703
704 /* Stop a trace run. */
705 void (*to_trace_stop) (void);
706
707 /* Ask the target to find a trace frame of the given type TYPE,
708 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
709 number of the trace frame, and also the tracepoint number at
710 TPP. If no trace frame matches, return -1. May throw if the
711 operation fails. */
712 int (*to_trace_find) (enum trace_find_type type, int num,
713 ULONGEST addr1, ULONGEST addr2, int *tpp);
714
715 /* Get the value of the trace state variable number TSV, returning
716 1 if the value is known and writing the value itself into the
717 location pointed to by VAL, else returning 0. */
718 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
719
720 int (*to_save_trace_data) (const char *filename);
721
722 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
723
724 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
725
726 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
727 ULONGEST offset, LONGEST len);
728
729 /* Set the target's tracing behavior in response to unexpected
730 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
731 void (*to_set_disconnected_tracing) (int val);
732 void (*to_set_circular_trace_buffer) (int val);
733
734 /* Return the processor core that thread PTID was last seen on.
735 This information is updated only when:
736 - update_thread_list is called
737 - thread stops
738 If the core cannot be determined -- either for the specified
739 thread, or right now, or in this debug session, or for this
740 target -- return -1. */
741 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
742
743 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
744 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
745 a match, 0 if there's a mismatch, and -1 if an error is
746 encountered while reading memory. */
747 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
748 CORE_ADDR memaddr, ULONGEST size);
749
750 /* Return the address of the start of the Thread Information Block
751 a Windows OS specific feature. */
752 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
753
754 /* Send the new settings of write permission variables. */
755 void (*to_set_permissions) (void);
756
757 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
758 with its details. Return 1 on success, 0 on failure. */
759 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
760 struct static_tracepoint_marker *marker);
761
762 /* Return a vector of all tracepoints markers string id ID, or all
763 markers if ID is NULL. */
764 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
765 (const char *id);
766
767 /* Return a traceframe info object describing the current
768 traceframe's contents. This method should not cache data;
769 higher layers take care of caching, invalidating, and
770 re-fetching when necessary. */
771 struct traceframe_info *(*to_traceframe_info) (void);
772
773 int to_magic;
774 /* Need sub-structure for target machine related rather than comm related?
775 */
776 };
777
778 /* Magic number for checking ops size. If a struct doesn't end with this
779 number, somebody changed the declaration but didn't change all the
780 places that initialize one. */
781
782 #define OPS_MAGIC 3840
783
784 /* The ops structure for our "current" target process. This should
785 never be NULL. If there is no target, it points to the dummy_target. */
786
787 extern struct target_ops current_target;
788
789 /* Define easy words for doing these operations on our current target. */
790
791 #define target_shortname (current_target.to_shortname)
792 #define target_longname (current_target.to_longname)
793
794 /* Does whatever cleanup is required for a target that we are no
795 longer going to be calling. QUITTING indicates that GDB is exiting
796 and should not get hung on an error (otherwise it is important to
797 perform clean termination, even if it takes a while). This routine
798 is automatically always called when popping the target off the
799 target stack (to_beneath is undefined). Closing file descriptors
800 and freeing all memory allocated memory are typical things it
801 should do. */
802
803 void target_close (struct target_ops *targ, int quitting);
804
805 /* Attaches to a process on the target side. Arguments are as passed
806 to the `attach' command by the user. This routine can be called
807 when the target is not on the target-stack, if the target_can_run
808 routine returns 1; in that case, it must push itself onto the stack.
809 Upon exit, the target should be ready for normal operations, and
810 should be ready to deliver the status of the process immediately
811 (without waiting) to an upcoming target_wait call. */
812
813 void target_attach (char *, int);
814
815 /* Some targets don't generate traps when attaching to the inferior,
816 or their target_attach implementation takes care of the waiting.
817 These targets must set to_attach_no_wait. */
818
819 #define target_attach_no_wait \
820 (current_target.to_attach_no_wait)
821
822 /* The target_attach operation places a process under debugger control,
823 and stops the process.
824
825 This operation provides a target-specific hook that allows the
826 necessary bookkeeping to be performed after an attach completes. */
827 #define target_post_attach(pid) \
828 (*current_target.to_post_attach) (pid)
829
830 /* Takes a program previously attached to and detaches it.
831 The program may resume execution (some targets do, some don't) and will
832 no longer stop on signals, etc. We better not have left any breakpoints
833 in the program or it'll die when it hits one. ARGS is arguments
834 typed by the user (e.g. a signal to send the process). FROM_TTY
835 says whether to be verbose or not. */
836
837 extern void target_detach (char *, int);
838
839 /* Disconnect from the current target without resuming it (leaving it
840 waiting for a debugger). */
841
842 extern void target_disconnect (char *, int);
843
844 /* Resume execution of the target process PTID. STEP says whether to
845 single-step or to run free; SIGGNAL is the signal to be given to
846 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
847 pass TARGET_SIGNAL_DEFAULT. */
848
849 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
850
851 /* Wait for process pid to do something. PTID = -1 to wait for any
852 pid to do something. Return pid of child, or -1 in case of error;
853 store status through argument pointer STATUS. Note that it is
854 _NOT_ OK to throw_exception() out of target_wait() without popping
855 the debugging target from the stack; GDB isn't prepared to get back
856 to the prompt with a debugging target but without the frame cache,
857 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
858 options. */
859
860 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
861 int options);
862
863 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
864
865 extern void target_fetch_registers (struct regcache *regcache, int regno);
866
867 /* Store at least register REGNO, or all regs if REGNO == -1.
868 It can store as many registers as it wants to, so target_prepare_to_store
869 must have been previously called. Calls error() if there are problems. */
870
871 extern void target_store_registers (struct regcache *regcache, int regs);
872
873 /* Get ready to modify the registers array. On machines which store
874 individual registers, this doesn't need to do anything. On machines
875 which store all the registers in one fell swoop, this makes sure
876 that REGISTERS contains all the registers from the program being
877 debugged. */
878
879 #define target_prepare_to_store(regcache) \
880 (*current_target.to_prepare_to_store) (regcache)
881
882 /* Determine current address space of thread PTID. */
883
884 struct address_space *target_thread_address_space (ptid_t);
885
886 /* Returns true if this target can debug multiple processes
887 simultaneously. */
888
889 #define target_supports_multi_process() \
890 (*current_target.to_supports_multi_process) ()
891
892 /* Returns true if this target can enable and disable tracepoints
893 while a trace experiment is running. */
894
895 #define target_supports_enable_disable_tracepoint() \
896 (*current_target.to_supports_enable_disable_tracepoint) ()
897
898 /* Invalidate all target dcaches. */
899 extern void target_dcache_invalidate (void);
900
901 extern int target_read_string (CORE_ADDR, char **, int, int *);
902
903 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
904
905 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
906
907 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
908 int len);
909
910 /* Fetches the target's memory map. If one is found it is sorted
911 and returned, after some consistency checking. Otherwise, NULL
912 is returned. */
913 VEC(mem_region_s) *target_memory_map (void);
914
915 /* Erase the specified flash region. */
916 void target_flash_erase (ULONGEST address, LONGEST length);
917
918 /* Finish a sequence of flash operations. */
919 void target_flash_done (void);
920
921 /* Describes a request for a memory write operation. */
922 struct memory_write_request
923 {
924 /* Begining address that must be written. */
925 ULONGEST begin;
926 /* Past-the-end address. */
927 ULONGEST end;
928 /* The data to write. */
929 gdb_byte *data;
930 /* A callback baton for progress reporting for this request. */
931 void *baton;
932 };
933 typedef struct memory_write_request memory_write_request_s;
934 DEF_VEC_O(memory_write_request_s);
935
936 /* Enumeration specifying different flash preservation behaviour. */
937 enum flash_preserve_mode
938 {
939 flash_preserve,
940 flash_discard
941 };
942
943 /* Write several memory blocks at once. This version can be more
944 efficient than making several calls to target_write_memory, in
945 particular because it can optimize accesses to flash memory.
946
947 Moreover, this is currently the only memory access function in gdb
948 that supports writing to flash memory, and it should be used for
949 all cases where access to flash memory is desirable.
950
951 REQUESTS is the vector (see vec.h) of memory_write_request.
952 PRESERVE_FLASH_P indicates what to do with blocks which must be
953 erased, but not completely rewritten.
954 PROGRESS_CB is a function that will be periodically called to provide
955 feedback to user. It will be called with the baton corresponding
956 to the request currently being written. It may also be called
957 with a NULL baton, when preserved flash sectors are being rewritten.
958
959 The function returns 0 on success, and error otherwise. */
960 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
961 enum flash_preserve_mode preserve_flash_p,
962 void (*progress_cb) (ULONGEST, void *));
963
964 /* From infrun.c. */
965
966 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
967
968 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
969
970 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
971
972 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
973
974 /* Print a line about the current target. */
975
976 #define target_files_info() \
977 (*current_target.to_files_info) (&current_target)
978
979 /* Insert a breakpoint at address BP_TGT->placed_address in the target
980 machine. Result is 0 for success, or an errno value. */
981
982 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
983 struct bp_target_info *bp_tgt);
984
985 /* Remove a breakpoint at address BP_TGT->placed_address in the target
986 machine. Result is 0 for success, or an errno value. */
987
988 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
989 struct bp_target_info *bp_tgt);
990
991 /* Initialize the terminal settings we record for the inferior,
992 before we actually run the inferior. */
993
994 #define target_terminal_init() \
995 (*current_target.to_terminal_init) ()
996
997 /* Put the inferior's terminal settings into effect.
998 This is preparation for starting or resuming the inferior. */
999
1000 extern void target_terminal_inferior (void);
1001
1002 /* Put some of our terminal settings into effect,
1003 enough to get proper results from our output,
1004 but do not change into or out of RAW mode
1005 so that no input is discarded.
1006
1007 After doing this, either terminal_ours or terminal_inferior
1008 should be called to get back to a normal state of affairs. */
1009
1010 #define target_terminal_ours_for_output() \
1011 (*current_target.to_terminal_ours_for_output) ()
1012
1013 /* Put our terminal settings into effect.
1014 First record the inferior's terminal settings
1015 so they can be restored properly later. */
1016
1017 #define target_terminal_ours() \
1018 (*current_target.to_terminal_ours) ()
1019
1020 /* Save our terminal settings.
1021 This is called from TUI after entering or leaving the curses
1022 mode. Since curses modifies our terminal this call is here
1023 to take this change into account. */
1024
1025 #define target_terminal_save_ours() \
1026 (*current_target.to_terminal_save_ours) ()
1027
1028 /* Print useful information about our terminal status, if such a thing
1029 exists. */
1030
1031 #define target_terminal_info(arg, from_tty) \
1032 (*current_target.to_terminal_info) (arg, from_tty)
1033
1034 /* Kill the inferior process. Make it go away. */
1035
1036 extern void target_kill (void);
1037
1038 /* Load an executable file into the target process. This is expected
1039 to not only bring new code into the target process, but also to
1040 update GDB's symbol tables to match.
1041
1042 ARG contains command-line arguments, to be broken down with
1043 buildargv (). The first non-switch argument is the filename to
1044 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1045 0)), which is an offset to apply to the load addresses of FILE's
1046 sections. The target may define switches, or other non-switch
1047 arguments, as it pleases. */
1048
1049 extern void target_load (char *arg, int from_tty);
1050
1051 /* Start an inferior process and set inferior_ptid to its pid.
1052 EXEC_FILE is the file to run.
1053 ALLARGS is a string containing the arguments to the program.
1054 ENV is the environment vector to pass. Errors reported with error().
1055 On VxWorks and various standalone systems, we ignore exec_file. */
1056
1057 void target_create_inferior (char *exec_file, char *args,
1058 char **env, int from_tty);
1059
1060 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1061 notification of inferior events such as fork and vork immediately
1062 after the inferior is created. (This because of how gdb gets an
1063 inferior created via invoking a shell to do it. In such a scenario,
1064 if the shell init file has commands in it, the shell will fork and
1065 exec for each of those commands, and we will see each such fork
1066 event. Very bad.)
1067
1068 Such targets will supply an appropriate definition for this function. */
1069
1070 #define target_post_startup_inferior(ptid) \
1071 (*current_target.to_post_startup_inferior) (ptid)
1072
1073 /* On some targets, we can catch an inferior fork or vfork event when
1074 it occurs. These functions insert/remove an already-created
1075 catchpoint for such events. They return 0 for success, 1 if the
1076 catchpoint type is not supported and -1 for failure. */
1077
1078 #define target_insert_fork_catchpoint(pid) \
1079 (*current_target.to_insert_fork_catchpoint) (pid)
1080
1081 #define target_remove_fork_catchpoint(pid) \
1082 (*current_target.to_remove_fork_catchpoint) (pid)
1083
1084 #define target_insert_vfork_catchpoint(pid) \
1085 (*current_target.to_insert_vfork_catchpoint) (pid)
1086
1087 #define target_remove_vfork_catchpoint(pid) \
1088 (*current_target.to_remove_vfork_catchpoint) (pid)
1089
1090 /* If the inferior forks or vforks, this function will be called at
1091 the next resume in order to perform any bookkeeping and fiddling
1092 necessary to continue debugging either the parent or child, as
1093 requested, and releasing the other. Information about the fork
1094 or vfork event is available via get_last_target_status ().
1095 This function returns 1 if the inferior should not be resumed
1096 (i.e. there is another event pending). */
1097
1098 int target_follow_fork (int follow_child);
1099
1100 /* On some targets, we can catch an inferior exec event when it
1101 occurs. These functions insert/remove an already-created
1102 catchpoint for such events. They return 0 for success, 1 if the
1103 catchpoint type is not supported and -1 for failure. */
1104
1105 #define target_insert_exec_catchpoint(pid) \
1106 (*current_target.to_insert_exec_catchpoint) (pid)
1107
1108 #define target_remove_exec_catchpoint(pid) \
1109 (*current_target.to_remove_exec_catchpoint) (pid)
1110
1111 /* Syscall catch.
1112
1113 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1114 If NEEDED is zero, it means the target can disable the mechanism to
1115 catch system calls because there are no more catchpoints of this type.
1116
1117 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1118 being requested. In this case, both TABLE_SIZE and TABLE should
1119 be ignored.
1120
1121 TABLE_SIZE is the number of elements in TABLE. It only matters if
1122 ANY_COUNT is zero.
1123
1124 TABLE is an array of ints, indexed by syscall number. An element in
1125 this array is nonzero if that syscall should be caught. This argument
1126 only matters if ANY_COUNT is zero.
1127
1128 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1129 for failure. */
1130
1131 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1132 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1133 table_size, table)
1134
1135 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1136 exit code of PID, if any. */
1137
1138 #define target_has_exited(pid,wait_status,exit_status) \
1139 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1140
1141 /* The debugger has completed a blocking wait() call. There is now
1142 some process event that must be processed. This function should
1143 be defined by those targets that require the debugger to perform
1144 cleanup or internal state changes in response to the process event. */
1145
1146 /* The inferior process has died. Do what is right. */
1147
1148 void target_mourn_inferior (void);
1149
1150 /* Does target have enough data to do a run or attach command? */
1151
1152 #define target_can_run(t) \
1153 ((t)->to_can_run) ()
1154
1155 /* Set list of signals to be handled in the target.
1156
1157 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1158 (enum target_signal). For every signal whose entry in this array is
1159 non-zero, the target is allowed -but not required- to skip reporting
1160 arrival of the signal to the GDB core by returning from target_wait,
1161 and to pass the signal directly to the inferior instead.
1162
1163 However, if the target is hardware single-stepping a thread that is
1164 about to receive a signal, it needs to be reported in any case, even
1165 if mentioned in a previous target_pass_signals call. */
1166
1167 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1168
1169 /* Check to see if a thread is still alive. */
1170
1171 extern int target_thread_alive (ptid_t ptid);
1172
1173 /* Query for new threads and add them to the thread list. */
1174
1175 extern void target_find_new_threads (void);
1176
1177 /* Make target stop in a continuable fashion. (For instance, under
1178 Unix, this should act like SIGSTOP). This function is normally
1179 used by GUIs to implement a stop button. */
1180
1181 extern void target_stop (ptid_t ptid);
1182
1183 /* Send the specified COMMAND to the target's monitor
1184 (shell,interpreter) for execution. The result of the query is
1185 placed in OUTBUF. */
1186
1187 #define target_rcmd(command, outbuf) \
1188 (*current_target.to_rcmd) (command, outbuf)
1189
1190
1191 /* Does the target include all of memory, or only part of it? This
1192 determines whether we look up the target chain for other parts of
1193 memory if this target can't satisfy a request. */
1194
1195 extern int target_has_all_memory_1 (void);
1196 #define target_has_all_memory target_has_all_memory_1 ()
1197
1198 /* Does the target include memory? (Dummy targets don't.) */
1199
1200 extern int target_has_memory_1 (void);
1201 #define target_has_memory target_has_memory_1 ()
1202
1203 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1204 we start a process.) */
1205
1206 extern int target_has_stack_1 (void);
1207 #define target_has_stack target_has_stack_1 ()
1208
1209 /* Does the target have registers? (Exec files don't.) */
1210
1211 extern int target_has_registers_1 (void);
1212 #define target_has_registers target_has_registers_1 ()
1213
1214 /* Does the target have execution? Can we make it jump (through
1215 hoops), or pop its stack a few times? This means that the current
1216 target is currently executing; for some targets, that's the same as
1217 whether or not the target is capable of execution, but there are
1218 also targets which can be current while not executing. In that
1219 case this will become true after target_create_inferior or
1220 target_attach. */
1221
1222 extern int target_has_execution_1 (ptid_t);
1223
1224 /* Like target_has_execution_1, but always passes inferior_ptid. */
1225
1226 extern int target_has_execution_current (void);
1227
1228 #define target_has_execution target_has_execution_current ()
1229
1230 /* Default implementations for process_stratum targets. Return true
1231 if there's a selected inferior, false otherwise. */
1232
1233 extern int default_child_has_all_memory (struct target_ops *ops);
1234 extern int default_child_has_memory (struct target_ops *ops);
1235 extern int default_child_has_stack (struct target_ops *ops);
1236 extern int default_child_has_registers (struct target_ops *ops);
1237 extern int default_child_has_execution (struct target_ops *ops,
1238 ptid_t the_ptid);
1239
1240 /* Can the target support the debugger control of thread execution?
1241 Can it lock the thread scheduler? */
1242
1243 #define target_can_lock_scheduler \
1244 (current_target.to_has_thread_control & tc_schedlock)
1245
1246 /* Should the target enable async mode if it is supported? Temporary
1247 cludge until async mode is a strict superset of sync mode. */
1248 extern int target_async_permitted;
1249
1250 /* Can the target support asynchronous execution? */
1251 #define target_can_async_p() (current_target.to_can_async_p ())
1252
1253 /* Is the target in asynchronous execution mode? */
1254 #define target_is_async_p() (current_target.to_is_async_p ())
1255
1256 int target_supports_non_stop (void);
1257
1258 /* Put the target in async mode with the specified callback function. */
1259 #define target_async(CALLBACK,CONTEXT) \
1260 (current_target.to_async ((CALLBACK), (CONTEXT)))
1261
1262 /* This is to be used ONLY within call_function_by_hand(). It provides
1263 a workaround, to have inferior function calls done in sychronous
1264 mode, even though the target is asynchronous. After
1265 target_async_mask(0) is called, calls to target_can_async_p() will
1266 return FALSE , so that target_resume() will not try to start the
1267 target asynchronously. After the inferior stops, we IMMEDIATELY
1268 restore the previous nature of the target, by calling
1269 target_async_mask(1). After that, target_can_async_p() will return
1270 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1271
1272 FIXME ezannoni 1999-12-13: we won't need this once we move
1273 the turning async on and off to the single execution commands,
1274 from where it is done currently, in remote_resume(). */
1275
1276 #define target_async_mask(MASK) \
1277 (current_target.to_async_mask (MASK))
1278
1279 #define target_execution_direction() \
1280 (current_target.to_execution_direction ())
1281
1282 /* Converts a process id to a string. Usually, the string just contains
1283 `process xyz', but on some systems it may contain
1284 `process xyz thread abc'. */
1285
1286 extern char *target_pid_to_str (ptid_t ptid);
1287
1288 extern char *normal_pid_to_str (ptid_t ptid);
1289
1290 /* Return a short string describing extra information about PID,
1291 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1292 is okay. */
1293
1294 #define target_extra_thread_info(TP) \
1295 (current_target.to_extra_thread_info (TP))
1296
1297 /* Return the thread's name. A NULL result means that the target
1298 could not determine this thread's name. */
1299
1300 extern char *target_thread_name (struct thread_info *);
1301
1302 /* Attempts to find the pathname of the executable file
1303 that was run to create a specified process.
1304
1305 The process PID must be stopped when this operation is used.
1306
1307 If the executable file cannot be determined, NULL is returned.
1308
1309 Else, a pointer to a character string containing the pathname
1310 is returned. This string should be copied into a buffer by
1311 the client if the string will not be immediately used, or if
1312 it must persist. */
1313
1314 #define target_pid_to_exec_file(pid) \
1315 (current_target.to_pid_to_exec_file) (pid)
1316
1317 /* See the to_thread_architecture description in struct target_ops. */
1318
1319 #define target_thread_architecture(ptid) \
1320 (current_target.to_thread_architecture (&current_target, ptid))
1321
1322 /*
1323 * Iterator function for target memory regions.
1324 * Calls a callback function once for each memory region 'mapped'
1325 * in the child process. Defined as a simple macro rather than
1326 * as a function macro so that it can be tested for nullity.
1327 */
1328
1329 #define target_find_memory_regions(FUNC, DATA) \
1330 (current_target.to_find_memory_regions) (FUNC, DATA)
1331
1332 /*
1333 * Compose corefile .note section.
1334 */
1335
1336 #define target_make_corefile_notes(BFD, SIZE_P) \
1337 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1338
1339 /* Bookmark interfaces. */
1340 #define target_get_bookmark(ARGS, FROM_TTY) \
1341 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1342
1343 #define target_goto_bookmark(ARG, FROM_TTY) \
1344 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1345
1346 /* Hardware watchpoint interfaces. */
1347
1348 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1349 write). Only the INFERIOR_PTID task is being queried. */
1350
1351 #define target_stopped_by_watchpoint \
1352 (*current_target.to_stopped_by_watchpoint)
1353
1354 /* Non-zero if we have steppable watchpoints */
1355
1356 #define target_have_steppable_watchpoint \
1357 (current_target.to_have_steppable_watchpoint)
1358
1359 /* Non-zero if we have continuable watchpoints */
1360
1361 #define target_have_continuable_watchpoint \
1362 (current_target.to_have_continuable_watchpoint)
1363
1364 /* Provide defaults for hardware watchpoint functions. */
1365
1366 /* If the *_hw_beakpoint functions have not been defined
1367 elsewhere use the definitions in the target vector. */
1368
1369 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1370 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1371 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1372 (including this one?). OTHERTYPE is who knows what... */
1373
1374 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1375 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1376
1377 /* Returns the number of debug registers needed to watch the given
1378 memory region, or zero if not supported. */
1379
1380 #define target_region_ok_for_hw_watchpoint(addr, len) \
1381 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1382
1383
1384 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1385 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1386 COND is the expression for its condition, or NULL if there's none.
1387 Returns 0 for success, 1 if the watchpoint type is not supported,
1388 -1 for failure. */
1389
1390 #define target_insert_watchpoint(addr, len, type, cond) \
1391 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1392
1393 #define target_remove_watchpoint(addr, len, type, cond) \
1394 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1395
1396 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1397 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1398 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1399 masked watchpoints are not supported, -1 for failure. */
1400
1401 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1402
1403 /* Remove a masked watchpoint at ADDR with the mask MASK.
1404 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1405 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1406 for failure. */
1407
1408 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1409
1410 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1411 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1412
1413 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1414 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1415
1416 /* Return number of debug registers needed for a ranged breakpoint,
1417 or -1 if ranged breakpoints are not supported. */
1418
1419 extern int target_ranged_break_num_registers (void);
1420
1421 /* Return non-zero if target knows the data address which triggered this
1422 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1423 INFERIOR_PTID task is being queried. */
1424 #define target_stopped_data_address(target, addr_p) \
1425 (*target.to_stopped_data_address) (target, addr_p)
1426
1427 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1428 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1429
1430 /* Return non-zero if the target is capable of using hardware to evaluate
1431 the condition expression. In this case, if the condition is false when
1432 the watched memory location changes, execution may continue without the
1433 debugger being notified.
1434
1435 Due to limitations in the hardware implementation, it may be capable of
1436 avoiding triggering the watchpoint in some cases where the condition
1437 expression is false, but may report some false positives as well.
1438 For this reason, GDB will still evaluate the condition expression when
1439 the watchpoint triggers. */
1440 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1441 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1442
1443 /* Return number of debug registers needed for a masked watchpoint,
1444 -1 if masked watchpoints are not supported or -2 if the given address
1445 and mask combination cannot be used. */
1446
1447 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1448
1449 /* Target can execute in reverse? */
1450 #define target_can_execute_reverse \
1451 (current_target.to_can_execute_reverse ? \
1452 current_target.to_can_execute_reverse () : 0)
1453
1454 extern const struct target_desc *target_read_description (struct target_ops *);
1455
1456 #define target_get_ada_task_ptid(lwp, tid) \
1457 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1458
1459 /* Utility implementation of searching memory. */
1460 extern int simple_search_memory (struct target_ops* ops,
1461 CORE_ADDR start_addr,
1462 ULONGEST search_space_len,
1463 const gdb_byte *pattern,
1464 ULONGEST pattern_len,
1465 CORE_ADDR *found_addrp);
1466
1467 /* Main entry point for searching memory. */
1468 extern int target_search_memory (CORE_ADDR start_addr,
1469 ULONGEST search_space_len,
1470 const gdb_byte *pattern,
1471 ULONGEST pattern_len,
1472 CORE_ADDR *found_addrp);
1473
1474 /* Tracepoint-related operations. */
1475
1476 #define target_trace_init() \
1477 (*current_target.to_trace_init) ()
1478
1479 #define target_download_tracepoint(t) \
1480 (*current_target.to_download_tracepoint) (t)
1481
1482 #define target_download_trace_state_variable(tsv) \
1483 (*current_target.to_download_trace_state_variable) (tsv)
1484
1485 #define target_enable_tracepoint(loc) \
1486 (*current_target.to_enable_tracepoint) (loc)
1487
1488 #define target_disable_tracepoint(loc) \
1489 (*current_target.to_disable_tracepoint) (loc)
1490
1491 #define target_trace_start() \
1492 (*current_target.to_trace_start) ()
1493
1494 #define target_trace_set_readonly_regions() \
1495 (*current_target.to_trace_set_readonly_regions) ()
1496
1497 #define target_get_trace_status(ts) \
1498 (*current_target.to_get_trace_status) (ts)
1499
1500 #define target_trace_stop() \
1501 (*current_target.to_trace_stop) ()
1502
1503 #define target_trace_find(type,num,addr1,addr2,tpp) \
1504 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1505
1506 #define target_get_trace_state_variable_value(tsv,val) \
1507 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1508
1509 #define target_save_trace_data(filename) \
1510 (*current_target.to_save_trace_data) (filename)
1511
1512 #define target_upload_tracepoints(utpp) \
1513 (*current_target.to_upload_tracepoints) (utpp)
1514
1515 #define target_upload_trace_state_variables(utsvp) \
1516 (*current_target.to_upload_trace_state_variables) (utsvp)
1517
1518 #define target_get_raw_trace_data(buf,offset,len) \
1519 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1520
1521 #define target_set_disconnected_tracing(val) \
1522 (*current_target.to_set_disconnected_tracing) (val)
1523
1524 #define target_set_circular_trace_buffer(val) \
1525 (*current_target.to_set_circular_trace_buffer) (val)
1526
1527 #define target_get_tib_address(ptid, addr) \
1528 (*current_target.to_get_tib_address) ((ptid), (addr))
1529
1530 #define target_set_permissions() \
1531 (*current_target.to_set_permissions) ()
1532
1533 #define target_static_tracepoint_marker_at(addr, marker) \
1534 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1535
1536 #define target_static_tracepoint_markers_by_strid(marker_id) \
1537 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1538
1539 #define target_traceframe_info() \
1540 (*current_target.to_traceframe_info) ()
1541
1542 /* Command logging facility. */
1543
1544 #define target_log_command(p) \
1545 do \
1546 if (current_target.to_log_command) \
1547 (*current_target.to_log_command) (p); \
1548 while (0)
1549
1550
1551 extern int target_core_of_thread (ptid_t ptid);
1552
1553 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1554 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1555 if there's a mismatch, and -1 if an error is encountered while
1556 reading memory. Throws an error if the functionality is found not
1557 to be supported by the current target. */
1558 int target_verify_memory (const gdb_byte *data,
1559 CORE_ADDR memaddr, ULONGEST size);
1560
1561 /* Routines for maintenance of the target structures...
1562
1563 add_target: Add a target to the list of all possible targets.
1564
1565 push_target: Make this target the top of the stack of currently used
1566 targets, within its particular stratum of the stack. Result
1567 is 0 if now atop the stack, nonzero if not on top (maybe
1568 should warn user).
1569
1570 unpush_target: Remove this from the stack of currently used targets,
1571 no matter where it is on the list. Returns 0 if no
1572 change, 1 if removed from stack.
1573
1574 pop_target: Remove the top thing on the stack of current targets. */
1575
1576 extern void add_target (struct target_ops *);
1577
1578 extern void push_target (struct target_ops *);
1579
1580 extern int unpush_target (struct target_ops *);
1581
1582 extern void target_pre_inferior (int);
1583
1584 extern void target_preopen (int);
1585
1586 extern void pop_target (void);
1587
1588 /* Does whatever cleanup is required to get rid of all pushed targets.
1589 QUITTING is propagated to target_close; it indicates that GDB is
1590 exiting and should not get hung on an error (otherwise it is
1591 important to perform clean termination, even if it takes a
1592 while). */
1593 extern void pop_all_targets (int quitting);
1594
1595 /* Like pop_all_targets, but pops only targets whose stratum is
1596 strictly above ABOVE_STRATUM. */
1597 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1598
1599 extern int target_is_pushed (struct target_ops *t);
1600
1601 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1602 CORE_ADDR offset);
1603
1604 /* Struct target_section maps address ranges to file sections. It is
1605 mostly used with BFD files, but can be used without (e.g. for handling
1606 raw disks, or files not in formats handled by BFD). */
1607
1608 struct target_section
1609 {
1610 CORE_ADDR addr; /* Lowest address in section */
1611 CORE_ADDR endaddr; /* 1+highest address in section */
1612
1613 struct bfd_section *the_bfd_section;
1614
1615 bfd *bfd; /* BFD file pointer */
1616 };
1617
1618 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1619
1620 struct target_section_table
1621 {
1622 struct target_section *sections;
1623 struct target_section *sections_end;
1624 };
1625
1626 /* Return the "section" containing the specified address. */
1627 struct target_section *target_section_by_addr (struct target_ops *target,
1628 CORE_ADDR addr);
1629
1630 /* Return the target section table this target (or the targets
1631 beneath) currently manipulate. */
1632
1633 extern struct target_section_table *target_get_section_table
1634 (struct target_ops *target);
1635
1636 /* From mem-break.c */
1637
1638 extern int memory_remove_breakpoint (struct gdbarch *,
1639 struct bp_target_info *);
1640
1641 extern int memory_insert_breakpoint (struct gdbarch *,
1642 struct bp_target_info *);
1643
1644 extern int default_memory_remove_breakpoint (struct gdbarch *,
1645 struct bp_target_info *);
1646
1647 extern int default_memory_insert_breakpoint (struct gdbarch *,
1648 struct bp_target_info *);
1649
1650
1651 /* From target.c */
1652
1653 extern void initialize_targets (void);
1654
1655 extern void noprocess (void) ATTRIBUTE_NORETURN;
1656
1657 extern void target_require_runnable (void);
1658
1659 extern void find_default_attach (struct target_ops *, char *, int);
1660
1661 extern void find_default_create_inferior (struct target_ops *,
1662 char *, char *, char **, int);
1663
1664 extern struct target_ops *find_run_target (void);
1665
1666 extern struct target_ops *find_target_beneath (struct target_ops *);
1667
1668 /* Read OS data object of type TYPE from the target, and return it in
1669 XML format. The result is NUL-terminated and returned as a string,
1670 allocated using xmalloc. If an error occurs or the transfer is
1671 unsupported, NULL is returned. Empty objects are returned as
1672 allocated but empty strings. */
1673
1674 extern char *target_get_osdata (const char *type);
1675
1676 \f
1677 /* Stuff that should be shared among the various remote targets. */
1678
1679 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1680 information (higher values, more information). */
1681 extern int remote_debug;
1682
1683 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1684 extern int baud_rate;
1685 /* Timeout limit for response from target. */
1686 extern int remote_timeout;
1687
1688 \f
1689 /* Functions for helping to write a native target. */
1690
1691 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1692 extern void store_waitstatus (struct target_waitstatus *, int);
1693
1694 /* These are in common/signals.c, but they're only used by gdb. */
1695 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1696 int);
1697 extern int default_target_signal_to_host (struct gdbarch *,
1698 enum target_signal);
1699
1700 /* Convert from a number used in a GDB command to an enum target_signal. */
1701 extern enum target_signal target_signal_from_command (int);
1702 /* End of files in common/signals.c. */
1703
1704 /* Set the show memory breakpoints mode to show, and installs a cleanup
1705 to restore it back to the current value. */
1706 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1707
1708 extern int may_write_registers;
1709 extern int may_write_memory;
1710 extern int may_insert_breakpoints;
1711 extern int may_insert_tracepoints;
1712 extern int may_insert_fast_tracepoints;
1713 extern int may_stop;
1714
1715 extern void update_target_permissions (void);
1716
1717 \f
1718 /* Imported from machine dependent code. */
1719
1720 /* Blank target vector entries are initialized to target_ignore. */
1721 void target_ignore (void);
1722
1723 #endif /* !defined (TARGET_H) */
This page took 0.071864 seconds and 4 git commands to generate.