[ARC] Fix typo in extension instruction name.
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45
46 /* This include file defines the interface between the main part
47 of the debugger, and the part which is target-specific, or
48 specific to the communications interface between us and the
49 target.
50
51 A TARGET is an interface between the debugger and a particular
52 kind of file or process. Targets can be STACKED in STRATA,
53 so that more than one target can potentially respond to a request.
54 In particular, memory accesses will walk down the stack of targets
55 until they find a target that is interested in handling that particular
56 address. STRATA are artificial boundaries on the stack, within
57 which particular kinds of targets live. Strata exist so that
58 people don't get confused by pushing e.g. a process target and then
59 a file target, and wondering why they can't see the current values
60 of variables any more (the file target is handling them and they
61 never get to the process target). So when you push a file target,
62 it goes into the file stratum, which is always below the process
63 stratum. */
64
65 #include "target/target.h"
66 #include "target/resume.h"
67 #include "target/wait.h"
68 #include "target/waitstatus.h"
69 #include "bfd.h"
70 #include "symtab.h"
71 #include "memattr.h"
72 #include "vec.h"
73 #include "gdb_signals.h"
74 #include "btrace.h"
75 #include "command.h"
76
77 #include "break-common.h" /* For enum target_hw_bp_type. */
78
79 enum strata
80 {
81 dummy_stratum, /* The lowest of the low */
82 file_stratum, /* Executable files, etc */
83 process_stratum, /* Executing processes or core dump files */
84 thread_stratum, /* Executing threads */
85 record_stratum, /* Support record debugging */
86 arch_stratum /* Architecture overrides */
87 };
88
89 enum thread_control_capabilities
90 {
91 tc_none = 0, /* Default: can't control thread execution. */
92 tc_schedlock = 1, /* Can lock the thread scheduler. */
93 };
94
95 /* The structure below stores information about a system call.
96 It is basically used in the "catch syscall" command, and in
97 every function that gives information about a system call.
98
99 It's also good to mention that its fields represent everything
100 that we currently know about a syscall in GDB. */
101 struct syscall
102 {
103 /* The syscall number. */
104 int number;
105
106 /* The syscall name. */
107 const char *name;
108 };
109
110 /* Return a pretty printed form of target_waitstatus.
111 Space for the result is malloc'd, caller must free. */
112 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
113
114 /* Return a pretty printed form of TARGET_OPTIONS.
115 Space for the result is malloc'd, caller must free. */
116 extern char *target_options_to_string (int target_options);
117
118 /* Possible types of events that the inferior handler will have to
119 deal with. */
120 enum inferior_event_type
121 {
122 /* Process a normal inferior event which will result in target_wait
123 being called. */
124 INF_REG_EVENT,
125 /* We are called to do stuff after the inferior stops. */
126 INF_EXEC_COMPLETE,
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE,
203 /* Branch trace configuration, in XML format. */
204 TARGET_OBJECT_BTRACE_CONF,
205 /* The pathname of the executable file that was run to create
206 a specified process. ANNEX should be a string representation
207 of the process ID of the process in question, in hexadecimal
208 format. */
209 TARGET_OBJECT_EXEC_FILE,
210 /* Possible future objects: TARGET_OBJECT_FILE, ... */
211 };
212
213 /* Possible values returned by target_xfer_partial, etc. */
214
215 enum target_xfer_status
216 {
217 /* Some bytes are transferred. */
218 TARGET_XFER_OK = 1,
219
220 /* No further transfer is possible. */
221 TARGET_XFER_EOF = 0,
222
223 /* The piece of the object requested is unavailable. */
224 TARGET_XFER_UNAVAILABLE = 2,
225
226 /* Generic I/O error. Note that it's important that this is '-1',
227 as we still have target_xfer-related code returning hardcoded
228 '-1' on error. */
229 TARGET_XFER_E_IO = -1,
230
231 /* Keep list in sync with target_xfer_status_to_string. */
232 };
233
234 /* Return the string form of STATUS. */
235
236 extern const char *
237 target_xfer_status_to_string (enum target_xfer_status status);
238
239 /* Enumeration of the kinds of traceframe searches that a target may
240 be able to perform. */
241
242 enum trace_find_type
243 {
244 tfind_number,
245 tfind_pc,
246 tfind_tp,
247 tfind_range,
248 tfind_outside,
249 };
250
251 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
252 DEF_VEC_P(static_tracepoint_marker_p);
253
254 typedef enum target_xfer_status
255 target_xfer_partial_ftype (struct target_ops *ops,
256 enum target_object object,
257 const char *annex,
258 gdb_byte *readbuf,
259 const gdb_byte *writebuf,
260 ULONGEST offset,
261 ULONGEST len,
262 ULONGEST *xfered_len);
263
264 enum target_xfer_status
265 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
266 const gdb_byte *writebuf, ULONGEST memaddr,
267 LONGEST len, ULONGEST *xfered_len);
268
269 /* Request that OPS transfer up to LEN addressable units of the target's
270 OBJECT. When reading from a memory object, the size of an addressable unit
271 is architecture dependent and can be found using
272 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
273 byte long. BUF should point to a buffer large enough to hold the read data,
274 taking into account the addressable unit size. The OFFSET, for a seekable
275 object, specifies the starting point. The ANNEX can be used to provide
276 additional data-specific information to the target.
277
278 Return the number of addressable units actually transferred, or a negative
279 error code (an 'enum target_xfer_error' value) if the transfer is not
280 supported or otherwise fails. Return of a positive value less than
281 LEN indicates that no further transfer is possible. Unlike the raw
282 to_xfer_partial interface, callers of these functions do not need
283 to retry partial transfers. */
284
285 extern LONGEST target_read (struct target_ops *ops,
286 enum target_object object,
287 const char *annex, gdb_byte *buf,
288 ULONGEST offset, LONGEST len);
289
290 struct memory_read_result
291 {
292 /* First address that was read. */
293 ULONGEST begin;
294 /* Past-the-end address. */
295 ULONGEST end;
296 /* The data. */
297 gdb_byte *data;
298 };
299 typedef struct memory_read_result memory_read_result_s;
300 DEF_VEC_O(memory_read_result_s);
301
302 extern void free_memory_read_result_vector (void *);
303
304 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
305 const ULONGEST offset,
306 const LONGEST len);
307
308 /* Request that OPS transfer up to LEN addressable units from BUF to the
309 target's OBJECT. When writing to a memory object, the addressable unit
310 size is architecture dependent and can be found using
311 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
312 byte long. The OFFSET, for a seekable object, specifies the starting point.
313 The ANNEX can be used to provide additional data-specific information to
314 the target.
315
316 Return the number of addressable units actually transferred, or a negative
317 error code (an 'enum target_xfer_status' value) if the transfer is not
318 supported or otherwise fails. Return of a positive value less than
319 LEN indicates that no further transfer is possible. Unlike the raw
320 to_xfer_partial interface, callers of these functions do not need to
321 retry partial transfers. */
322
323 extern LONGEST target_write (struct target_ops *ops,
324 enum target_object object,
325 const char *annex, const gdb_byte *buf,
326 ULONGEST offset, LONGEST len);
327
328 /* Similar to target_write, except that it also calls PROGRESS with
329 the number of bytes written and the opaque BATON after every
330 successful partial write (and before the first write). This is
331 useful for progress reporting and user interaction while writing
332 data. To abort the transfer, the progress callback can throw an
333 exception. */
334
335 LONGEST target_write_with_progress (struct target_ops *ops,
336 enum target_object object,
337 const char *annex, const gdb_byte *buf,
338 ULONGEST offset, LONGEST len,
339 void (*progress) (ULONGEST, void *),
340 void *baton);
341
342 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
343 be read using OPS. The return value will be -1 if the transfer
344 fails or is not supported; 0 if the object is empty; or the length
345 of the object otherwise. If a positive value is returned, a
346 sufficiently large buffer will be allocated using xmalloc and
347 returned in *BUF_P containing the contents of the object.
348
349 This method should be used for objects sufficiently small to store
350 in a single xmalloc'd buffer, when no fixed bound on the object's
351 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
352 through this function. */
353
354 extern LONGEST target_read_alloc (struct target_ops *ops,
355 enum target_object object,
356 const char *annex, gdb_byte **buf_p);
357
358 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
359 returned as a string, allocated using xmalloc. If an error occurs
360 or the transfer is unsupported, NULL is returned. Empty objects
361 are returned as allocated but empty strings. A warning is issued
362 if the result contains any embedded NUL bytes. */
363
364 extern char *target_read_stralloc (struct target_ops *ops,
365 enum target_object object,
366 const char *annex);
367
368 /* See target_ops->to_xfer_partial. */
369 extern target_xfer_partial_ftype target_xfer_partial;
370
371 /* Wrappers to target read/write that perform memory transfers. They
372 throw an error if the memory transfer fails.
373
374 NOTE: cagney/2003-10-23: The naming schema is lifted from
375 "frame.h". The parameter order is lifted from get_frame_memory,
376 which in turn lifted it from read_memory. */
377
378 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
379 gdb_byte *buf, LONGEST len);
380 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
381 CORE_ADDR addr, int len,
382 enum bfd_endian byte_order);
383 \f
384 struct thread_info; /* fwd decl for parameter list below: */
385
386 /* The type of the callback to the to_async method. */
387
388 typedef void async_callback_ftype (enum inferior_event_type event_type,
389 void *context);
390
391 /* Normally target debug printing is purely type-based. However,
392 sometimes it is necessary to override the debug printing on a
393 per-argument basis. This macro can be used, attribute-style, to
394 name the target debug printing function for a particular method
395 argument. FUNC is the name of the function. The macro's
396 definition is empty because it is only used by the
397 make-target-delegates script. */
398
399 #define TARGET_DEBUG_PRINTER(FUNC)
400
401 /* These defines are used to mark target_ops methods. The script
402 make-target-delegates scans these and auto-generates the base
403 method implementations. There are four macros that can be used:
404
405 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
406 does nothing. This is only valid if the method return type is
407 'void'.
408
409 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
410 'tcomplain ()'. The base method simply makes this call, which is
411 assumed not to return.
412
413 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
414 base method returns this expression's value.
415
416 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
417 make-target-delegates does not generate a base method in this case,
418 but instead uses the argument function as the base method. */
419
420 #define TARGET_DEFAULT_IGNORE()
421 #define TARGET_DEFAULT_NORETURN(ARG)
422 #define TARGET_DEFAULT_RETURN(ARG)
423 #define TARGET_DEFAULT_FUNC(ARG)
424
425 struct target_ops
426 {
427 struct target_ops *beneath; /* To the target under this one. */
428 const char *to_shortname; /* Name this target type */
429 const char *to_longname; /* Name for printing */
430 const char *to_doc; /* Documentation. Does not include trailing
431 newline, and starts with a one-line descrip-
432 tion (probably similar to to_longname). */
433 /* Per-target scratch pad. */
434 void *to_data;
435 /* The open routine takes the rest of the parameters from the
436 command, and (if successful) pushes a new target onto the
437 stack. Targets should supply this routine, if only to provide
438 an error message. */
439 void (*to_open) (const char *, int);
440 /* Old targets with a static target vector provide "to_close".
441 New re-entrant targets provide "to_xclose" and that is expected
442 to xfree everything (including the "struct target_ops"). */
443 void (*to_xclose) (struct target_ops *targ);
444 void (*to_close) (struct target_ops *);
445 /* Attaches to a process on the target side. Arguments are as
446 passed to the `attach' command by the user. This routine can
447 be called when the target is not on the target-stack, if the
448 target_can_run routine returns 1; in that case, it must push
449 itself onto the stack. Upon exit, the target should be ready
450 for normal operations, and should be ready to deliver the
451 status of the process immediately (without waiting) to an
452 upcoming target_wait call. */
453 void (*to_attach) (struct target_ops *ops, const char *, int);
454 void (*to_post_attach) (struct target_ops *, int)
455 TARGET_DEFAULT_IGNORE ();
456 void (*to_detach) (struct target_ops *ops, const char *, int)
457 TARGET_DEFAULT_IGNORE ();
458 void (*to_disconnect) (struct target_ops *, const char *, int)
459 TARGET_DEFAULT_NORETURN (tcomplain ());
460 void (*to_resume) (struct target_ops *, ptid_t,
461 int TARGET_DEBUG_PRINTER (target_debug_print_step),
462 enum gdb_signal)
463 TARGET_DEFAULT_NORETURN (noprocess ());
464 ptid_t (*to_wait) (struct target_ops *,
465 ptid_t, struct target_waitstatus *,
466 int TARGET_DEBUG_PRINTER (target_debug_print_options))
467 TARGET_DEFAULT_FUNC (default_target_wait);
468 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
469 TARGET_DEFAULT_IGNORE ();
470 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
471 TARGET_DEFAULT_NORETURN (noprocess ());
472 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
473 TARGET_DEFAULT_NORETURN (noprocess ());
474
475 void (*to_files_info) (struct target_ops *)
476 TARGET_DEFAULT_IGNORE ();
477 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
478 struct bp_target_info *)
479 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
480 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
481 struct bp_target_info *)
482 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
483
484 /* Returns true if the target stopped because it executed a
485 software breakpoint. This is necessary for correct background
486 execution / non-stop mode operation, and for correct PC
487 adjustment on targets where the PC needs to be adjusted when a
488 software breakpoint triggers. In these modes, by the time GDB
489 processes a breakpoint event, the breakpoint may already be
490 done from the target, so GDB needs to be able to tell whether
491 it should ignore the event and whether it should adjust the PC.
492 See adjust_pc_after_break. */
493 int (*to_stopped_by_sw_breakpoint) (struct target_ops *)
494 TARGET_DEFAULT_RETURN (0);
495 /* Returns true if the above method is supported. */
496 int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *)
497 TARGET_DEFAULT_RETURN (0);
498
499 /* Returns true if the target stopped for a hardware breakpoint.
500 Likewise, if the target supports hardware breakpoints, this
501 method is necessary for correct background execution / non-stop
502 mode operation. Even though hardware breakpoints do not
503 require PC adjustment, GDB needs to be able to tell whether the
504 hardware breakpoint event is a delayed event for a breakpoint
505 that is already gone and should thus be ignored. */
506 int (*to_stopped_by_hw_breakpoint) (struct target_ops *)
507 TARGET_DEFAULT_RETURN (0);
508 /* Returns true if the above method is supported. */
509 int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *)
510 TARGET_DEFAULT_RETURN (0);
511
512 int (*to_can_use_hw_breakpoint) (struct target_ops *,
513 enum bptype, int, int)
514 TARGET_DEFAULT_RETURN (0);
515 int (*to_ranged_break_num_registers) (struct target_ops *)
516 TARGET_DEFAULT_RETURN (-1);
517 int (*to_insert_hw_breakpoint) (struct target_ops *,
518 struct gdbarch *, struct bp_target_info *)
519 TARGET_DEFAULT_RETURN (-1);
520 int (*to_remove_hw_breakpoint) (struct target_ops *,
521 struct gdbarch *, struct bp_target_info *)
522 TARGET_DEFAULT_RETURN (-1);
523
524 /* Documentation of what the two routines below are expected to do is
525 provided with the corresponding target_* macros. */
526 int (*to_remove_watchpoint) (struct target_ops *, CORE_ADDR, int,
527 enum target_hw_bp_type, struct expression *)
528 TARGET_DEFAULT_RETURN (-1);
529 int (*to_insert_watchpoint) (struct target_ops *, CORE_ADDR, int,
530 enum target_hw_bp_type, struct expression *)
531 TARGET_DEFAULT_RETURN (-1);
532
533 int (*to_insert_mask_watchpoint) (struct target_ops *,
534 CORE_ADDR, CORE_ADDR,
535 enum target_hw_bp_type)
536 TARGET_DEFAULT_RETURN (1);
537 int (*to_remove_mask_watchpoint) (struct target_ops *,
538 CORE_ADDR, CORE_ADDR,
539 enum target_hw_bp_type)
540 TARGET_DEFAULT_RETURN (1);
541 int (*to_stopped_by_watchpoint) (struct target_ops *)
542 TARGET_DEFAULT_RETURN (0);
543 int to_have_steppable_watchpoint;
544 int to_have_continuable_watchpoint;
545 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
546 TARGET_DEFAULT_RETURN (0);
547 int (*to_watchpoint_addr_within_range) (struct target_ops *,
548 CORE_ADDR, CORE_ADDR, int)
549 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
550
551 /* Documentation of this routine is provided with the corresponding
552 target_* macro. */
553 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
554 CORE_ADDR, int)
555 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
556
557 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
558 CORE_ADDR, int, int,
559 struct expression *)
560 TARGET_DEFAULT_RETURN (0);
561 int (*to_masked_watch_num_registers) (struct target_ops *,
562 CORE_ADDR, CORE_ADDR)
563 TARGET_DEFAULT_RETURN (-1);
564
565 /* Return 1 for sure target can do single step. Return -1 for
566 unknown. Return 0 for target can't do. */
567 int (*to_can_do_single_step) (struct target_ops *)
568 TARGET_DEFAULT_RETURN (-1);
569
570 void (*to_terminal_init) (struct target_ops *)
571 TARGET_DEFAULT_IGNORE ();
572 void (*to_terminal_inferior) (struct target_ops *)
573 TARGET_DEFAULT_IGNORE ();
574 void (*to_terminal_ours_for_output) (struct target_ops *)
575 TARGET_DEFAULT_IGNORE ();
576 void (*to_terminal_ours) (struct target_ops *)
577 TARGET_DEFAULT_IGNORE ();
578 void (*to_terminal_info) (struct target_ops *, const char *, int)
579 TARGET_DEFAULT_FUNC (default_terminal_info);
580 void (*to_kill) (struct target_ops *)
581 TARGET_DEFAULT_NORETURN (noprocess ());
582 void (*to_load) (struct target_ops *, const char *, int)
583 TARGET_DEFAULT_NORETURN (tcomplain ());
584 /* Start an inferior process and set inferior_ptid to its pid.
585 EXEC_FILE is the file to run.
586 ALLARGS is a string containing the arguments to the program.
587 ENV is the environment vector to pass. Errors reported with error().
588 On VxWorks and various standalone systems, we ignore exec_file. */
589 void (*to_create_inferior) (struct target_ops *,
590 char *, char *, char **, int);
591 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
592 TARGET_DEFAULT_IGNORE ();
593 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
594 TARGET_DEFAULT_RETURN (1);
595 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
596 TARGET_DEFAULT_RETURN (1);
597 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
598 TARGET_DEFAULT_RETURN (1);
599 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
600 TARGET_DEFAULT_RETURN (1);
601 int (*to_follow_fork) (struct target_ops *, int, int)
602 TARGET_DEFAULT_FUNC (default_follow_fork);
603 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
604 TARGET_DEFAULT_RETURN (1);
605 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
606 TARGET_DEFAULT_RETURN (1);
607 void (*to_follow_exec) (struct target_ops *, struct inferior *, char *)
608 TARGET_DEFAULT_IGNORE ();
609 int (*to_set_syscall_catchpoint) (struct target_ops *,
610 int, int, int, int, int *)
611 TARGET_DEFAULT_RETURN (1);
612 int (*to_has_exited) (struct target_ops *, int, int, int *)
613 TARGET_DEFAULT_RETURN (0);
614 void (*to_mourn_inferior) (struct target_ops *)
615 TARGET_DEFAULT_FUNC (default_mourn_inferior);
616 /* Note that to_can_run is special and can be invoked on an
617 unpushed target. Targets defining this method must also define
618 to_can_async_p and to_supports_non_stop. */
619 int (*to_can_run) (struct target_ops *)
620 TARGET_DEFAULT_RETURN (0);
621
622 /* Documentation of this routine is provided with the corresponding
623 target_* macro. */
624 void (*to_pass_signals) (struct target_ops *, int,
625 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
626 TARGET_DEFAULT_IGNORE ();
627
628 /* Documentation of this routine is provided with the
629 corresponding target_* function. */
630 void (*to_program_signals) (struct target_ops *, int,
631 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
632 TARGET_DEFAULT_IGNORE ();
633
634 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
635 TARGET_DEFAULT_RETURN (0);
636 void (*to_update_thread_list) (struct target_ops *)
637 TARGET_DEFAULT_IGNORE ();
638 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
639 TARGET_DEFAULT_FUNC (default_pid_to_str);
640 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
641 TARGET_DEFAULT_RETURN (NULL);
642 const char *(*to_thread_name) (struct target_ops *, struct thread_info *)
643 TARGET_DEFAULT_RETURN (NULL);
644 void (*to_stop) (struct target_ops *, ptid_t)
645 TARGET_DEFAULT_IGNORE ();
646 void (*to_interrupt) (struct target_ops *, ptid_t)
647 TARGET_DEFAULT_IGNORE ();
648 void (*to_check_pending_interrupt) (struct target_ops *)
649 TARGET_DEFAULT_IGNORE ();
650 void (*to_rcmd) (struct target_ops *,
651 const char *command, struct ui_file *output)
652 TARGET_DEFAULT_FUNC (default_rcmd);
653 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
654 TARGET_DEFAULT_RETURN (NULL);
655 void (*to_log_command) (struct target_ops *, const char *)
656 TARGET_DEFAULT_IGNORE ();
657 struct target_section_table *(*to_get_section_table) (struct target_ops *)
658 TARGET_DEFAULT_RETURN (NULL);
659 enum strata to_stratum;
660 int (*to_has_all_memory) (struct target_ops *);
661 int (*to_has_memory) (struct target_ops *);
662 int (*to_has_stack) (struct target_ops *);
663 int (*to_has_registers) (struct target_ops *);
664 int (*to_has_execution) (struct target_ops *, ptid_t);
665 int to_has_thread_control; /* control thread execution */
666 int to_attach_no_wait;
667 /* This method must be implemented in some situations. See the
668 comment on 'to_can_run'. */
669 int (*to_can_async_p) (struct target_ops *)
670 TARGET_DEFAULT_RETURN (0);
671 int (*to_is_async_p) (struct target_ops *)
672 TARGET_DEFAULT_RETURN (0);
673 void (*to_async) (struct target_ops *, int)
674 TARGET_DEFAULT_NORETURN (tcomplain ());
675 void (*to_thread_events) (struct target_ops *, int)
676 TARGET_DEFAULT_IGNORE ();
677 /* This method must be implemented in some situations. See the
678 comment on 'to_can_run'. */
679 int (*to_supports_non_stop) (struct target_ops *)
680 TARGET_DEFAULT_RETURN (0);
681 /* Return true if the target operates in non-stop mode even with
682 "set non-stop off". */
683 int (*to_always_non_stop_p) (struct target_ops *)
684 TARGET_DEFAULT_RETURN (0);
685 /* find_memory_regions support method for gcore */
686 int (*to_find_memory_regions) (struct target_ops *,
687 find_memory_region_ftype func, void *data)
688 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
689 /* make_corefile_notes support method for gcore */
690 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
691 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
692 /* get_bookmark support method for bookmarks */
693 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
694 TARGET_DEFAULT_NORETURN (tcomplain ());
695 /* goto_bookmark support method for bookmarks */
696 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
697 TARGET_DEFAULT_NORETURN (tcomplain ());
698 /* Return the thread-local address at OFFSET in the
699 thread-local storage for the thread PTID and the shared library
700 or executable file given by OBJFILE. If that block of
701 thread-local storage hasn't been allocated yet, this function
702 may return an error. LOAD_MODULE_ADDR may be zero for statically
703 linked multithreaded inferiors. */
704 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
705 ptid_t ptid,
706 CORE_ADDR load_module_addr,
707 CORE_ADDR offset)
708 TARGET_DEFAULT_NORETURN (generic_tls_error ());
709
710 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
711 OBJECT. The OFFSET, for a seekable object, specifies the
712 starting point. The ANNEX can be used to provide additional
713 data-specific information to the target.
714
715 Return the transferred status, error or OK (an
716 'enum target_xfer_status' value). Save the number of bytes
717 actually transferred in *XFERED_LEN if transfer is successful
718 (TARGET_XFER_OK) or the number unavailable bytes if the requested
719 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
720 smaller than LEN does not indicate the end of the object, only
721 the end of the transfer; higher level code should continue
722 transferring if desired. This is handled in target.c.
723
724 The interface does not support a "retry" mechanism. Instead it
725 assumes that at least one byte will be transfered on each
726 successful call.
727
728 NOTE: cagney/2003-10-17: The current interface can lead to
729 fragmented transfers. Lower target levels should not implement
730 hacks, such as enlarging the transfer, in an attempt to
731 compensate for this. Instead, the target stack should be
732 extended so that it implements supply/collect methods and a
733 look-aside object cache. With that available, the lowest
734 target can safely and freely "push" data up the stack.
735
736 See target_read and target_write for more information. One,
737 and only one, of readbuf or writebuf must be non-NULL. */
738
739 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
740 enum target_object object,
741 const char *annex,
742 gdb_byte *readbuf,
743 const gdb_byte *writebuf,
744 ULONGEST offset, ULONGEST len,
745 ULONGEST *xfered_len)
746 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
747
748 /* Returns the memory map for the target. A return value of NULL
749 means that no memory map is available. If a memory address
750 does not fall within any returned regions, it's assumed to be
751 RAM. The returned memory regions should not overlap.
752
753 The order of regions does not matter; target_memory_map will
754 sort regions by starting address. For that reason, this
755 function should not be called directly except via
756 target_memory_map.
757
758 This method should not cache data; if the memory map could
759 change unexpectedly, it should be invalidated, and higher
760 layers will re-fetch it. */
761 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
762 TARGET_DEFAULT_RETURN (NULL);
763
764 /* Erases the region of flash memory starting at ADDRESS, of
765 length LENGTH.
766
767 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
768 on flash block boundaries, as reported by 'to_memory_map'. */
769 void (*to_flash_erase) (struct target_ops *,
770 ULONGEST address, LONGEST length)
771 TARGET_DEFAULT_NORETURN (tcomplain ());
772
773 /* Finishes a flash memory write sequence. After this operation
774 all flash memory should be available for writing and the result
775 of reading from areas written by 'to_flash_write' should be
776 equal to what was written. */
777 void (*to_flash_done) (struct target_ops *)
778 TARGET_DEFAULT_NORETURN (tcomplain ());
779
780 /* Describe the architecture-specific features of this target. If
781 OPS doesn't have a description, this should delegate to the
782 "beneath" target. Returns the description found, or NULL if no
783 description was available. */
784 const struct target_desc *(*to_read_description) (struct target_ops *ops)
785 TARGET_DEFAULT_RETURN (NULL);
786
787 /* Build the PTID of the thread on which a given task is running,
788 based on LWP and THREAD. These values are extracted from the
789 task Private_Data section of the Ada Task Control Block, and
790 their interpretation depends on the target. */
791 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
792 long lwp, long thread)
793 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
794
795 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
796 Return 0 if *READPTR is already at the end of the buffer.
797 Return -1 if there is insufficient buffer for a whole entry.
798 Return 1 if an entry was read into *TYPEP and *VALP. */
799 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
800 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
801 TARGET_DEFAULT_FUNC (default_auxv_parse);
802
803 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
804 sequence of bytes in PATTERN with length PATTERN_LEN.
805
806 The result is 1 if found, 0 if not found, and -1 if there was an error
807 requiring halting of the search (e.g. memory read error).
808 If the pattern is found the address is recorded in FOUND_ADDRP. */
809 int (*to_search_memory) (struct target_ops *ops,
810 CORE_ADDR start_addr, ULONGEST search_space_len,
811 const gdb_byte *pattern, ULONGEST pattern_len,
812 CORE_ADDR *found_addrp)
813 TARGET_DEFAULT_FUNC (default_search_memory);
814
815 /* Can target execute in reverse? */
816 int (*to_can_execute_reverse) (struct target_ops *)
817 TARGET_DEFAULT_RETURN (0);
818
819 /* The direction the target is currently executing. Must be
820 implemented on targets that support reverse execution and async
821 mode. The default simply returns forward execution. */
822 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
823 TARGET_DEFAULT_FUNC (default_execution_direction);
824
825 /* Does this target support debugging multiple processes
826 simultaneously? */
827 int (*to_supports_multi_process) (struct target_ops *)
828 TARGET_DEFAULT_RETURN (0);
829
830 /* Does this target support enabling and disabling tracepoints while a trace
831 experiment is running? */
832 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
833 TARGET_DEFAULT_RETURN (0);
834
835 /* Does this target support disabling address space randomization? */
836 int (*to_supports_disable_randomization) (struct target_ops *);
837
838 /* Does this target support the tracenz bytecode for string collection? */
839 int (*to_supports_string_tracing) (struct target_ops *)
840 TARGET_DEFAULT_RETURN (0);
841
842 /* Does this target support evaluation of breakpoint conditions on its
843 end? */
844 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
845 TARGET_DEFAULT_RETURN (0);
846
847 /* Does this target support evaluation of breakpoint commands on its
848 end? */
849 int (*to_can_run_breakpoint_commands) (struct target_ops *)
850 TARGET_DEFAULT_RETURN (0);
851
852 /* Determine current architecture of thread PTID.
853
854 The target is supposed to determine the architecture of the code where
855 the target is currently stopped at (on Cell, if a target is in spu_run,
856 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
857 This is architecture used to perform decr_pc_after_break adjustment,
858 and also determines the frame architecture of the innermost frame.
859 ptrace operations need to operate according to target_gdbarch ().
860
861 The default implementation always returns target_gdbarch (). */
862 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
863 TARGET_DEFAULT_FUNC (default_thread_architecture);
864
865 /* Determine current address space of thread PTID.
866
867 The default implementation always returns the inferior's
868 address space. */
869 struct address_space *(*to_thread_address_space) (struct target_ops *,
870 ptid_t)
871 TARGET_DEFAULT_FUNC (default_thread_address_space);
872
873 /* Target file operations. */
874
875 /* Return nonzero if the filesystem seen by the current inferior
876 is the local filesystem, zero otherwise. */
877 int (*to_filesystem_is_local) (struct target_ops *)
878 TARGET_DEFAULT_RETURN (1);
879
880 /* Open FILENAME on the target, in the filesystem as seen by INF,
881 using FLAGS and MODE. If INF is NULL, use the filesystem seen
882 by the debugger (GDB or, for remote targets, the remote stub).
883 If WARN_IF_SLOW is nonzero, print a warning message if the file
884 is being accessed over a link that may be slow. Return a
885 target file descriptor, or -1 if an error occurs (and set
886 *TARGET_ERRNO). */
887 int (*to_fileio_open) (struct target_ops *,
888 struct inferior *inf, const char *filename,
889 int flags, int mode, int warn_if_slow,
890 int *target_errno);
891
892 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
893 Return the number of bytes written, or -1 if an error occurs
894 (and set *TARGET_ERRNO). */
895 int (*to_fileio_pwrite) (struct target_ops *,
896 int fd, const gdb_byte *write_buf, int len,
897 ULONGEST offset, int *target_errno);
898
899 /* Read up to LEN bytes FD on the target into READ_BUF.
900 Return the number of bytes read, or -1 if an error occurs
901 (and set *TARGET_ERRNO). */
902 int (*to_fileio_pread) (struct target_ops *,
903 int fd, gdb_byte *read_buf, int len,
904 ULONGEST offset, int *target_errno);
905
906 /* Get information about the file opened as FD and put it in
907 SB. Return 0 on success, or -1 if an error occurs (and set
908 *TARGET_ERRNO). */
909 int (*to_fileio_fstat) (struct target_ops *,
910 int fd, struct stat *sb, int *target_errno);
911
912 /* Close FD on the target. Return 0, or -1 if an error occurs
913 (and set *TARGET_ERRNO). */
914 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
915
916 /* Unlink FILENAME on the target, in the filesystem as seen by
917 INF. If INF is NULL, use the filesystem seen by the debugger
918 (GDB or, for remote targets, the remote stub). Return 0, or
919 -1 if an error occurs (and set *TARGET_ERRNO). */
920 int (*to_fileio_unlink) (struct target_ops *,
921 struct inferior *inf,
922 const char *filename,
923 int *target_errno);
924
925 /* Read value of symbolic link FILENAME on the target, in the
926 filesystem as seen by INF. If INF is NULL, use the filesystem
927 seen by the debugger (GDB or, for remote targets, the remote
928 stub). Return a null-terminated string allocated via xmalloc,
929 or NULL if an error occurs (and set *TARGET_ERRNO). */
930 char *(*to_fileio_readlink) (struct target_ops *,
931 struct inferior *inf,
932 const char *filename,
933 int *target_errno);
934
935
936 /* Implement the "info proc" command. */
937 void (*to_info_proc) (struct target_ops *, const char *,
938 enum info_proc_what);
939
940 /* Tracepoint-related operations. */
941
942 /* Prepare the target for a tracing run. */
943 void (*to_trace_init) (struct target_ops *)
944 TARGET_DEFAULT_NORETURN (tcomplain ());
945
946 /* Send full details of a tracepoint location to the target. */
947 void (*to_download_tracepoint) (struct target_ops *,
948 struct bp_location *location)
949 TARGET_DEFAULT_NORETURN (tcomplain ());
950
951 /* Is the target able to download tracepoint locations in current
952 state? */
953 int (*to_can_download_tracepoint) (struct target_ops *)
954 TARGET_DEFAULT_RETURN (0);
955
956 /* Send full details of a trace state variable to the target. */
957 void (*to_download_trace_state_variable) (struct target_ops *,
958 struct trace_state_variable *tsv)
959 TARGET_DEFAULT_NORETURN (tcomplain ());
960
961 /* Enable a tracepoint on the target. */
962 void (*to_enable_tracepoint) (struct target_ops *,
963 struct bp_location *location)
964 TARGET_DEFAULT_NORETURN (tcomplain ());
965
966 /* Disable a tracepoint on the target. */
967 void (*to_disable_tracepoint) (struct target_ops *,
968 struct bp_location *location)
969 TARGET_DEFAULT_NORETURN (tcomplain ());
970
971 /* Inform the target info of memory regions that are readonly
972 (such as text sections), and so it should return data from
973 those rather than look in the trace buffer. */
974 void (*to_trace_set_readonly_regions) (struct target_ops *)
975 TARGET_DEFAULT_NORETURN (tcomplain ());
976
977 /* Start a trace run. */
978 void (*to_trace_start) (struct target_ops *)
979 TARGET_DEFAULT_NORETURN (tcomplain ());
980
981 /* Get the current status of a tracing run. */
982 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
983 TARGET_DEFAULT_RETURN (-1);
984
985 void (*to_get_tracepoint_status) (struct target_ops *,
986 struct breakpoint *tp,
987 struct uploaded_tp *utp)
988 TARGET_DEFAULT_NORETURN (tcomplain ());
989
990 /* Stop a trace run. */
991 void (*to_trace_stop) (struct target_ops *)
992 TARGET_DEFAULT_NORETURN (tcomplain ());
993
994 /* Ask the target to find a trace frame of the given type TYPE,
995 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
996 number of the trace frame, and also the tracepoint number at
997 TPP. If no trace frame matches, return -1. May throw if the
998 operation fails. */
999 int (*to_trace_find) (struct target_ops *,
1000 enum trace_find_type type, int num,
1001 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1002 TARGET_DEFAULT_RETURN (-1);
1003
1004 /* Get the value of the trace state variable number TSV, returning
1005 1 if the value is known and writing the value itself into the
1006 location pointed to by VAL, else returning 0. */
1007 int (*to_get_trace_state_variable_value) (struct target_ops *,
1008 int tsv, LONGEST *val)
1009 TARGET_DEFAULT_RETURN (0);
1010
1011 int (*to_save_trace_data) (struct target_ops *, const char *filename)
1012 TARGET_DEFAULT_NORETURN (tcomplain ());
1013
1014 int (*to_upload_tracepoints) (struct target_ops *,
1015 struct uploaded_tp **utpp)
1016 TARGET_DEFAULT_RETURN (0);
1017
1018 int (*to_upload_trace_state_variables) (struct target_ops *,
1019 struct uploaded_tsv **utsvp)
1020 TARGET_DEFAULT_RETURN (0);
1021
1022 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
1023 ULONGEST offset, LONGEST len)
1024 TARGET_DEFAULT_NORETURN (tcomplain ());
1025
1026 /* Get the minimum length of instruction on which a fast tracepoint
1027 may be set on the target. If this operation is unsupported,
1028 return -1. If for some reason the minimum length cannot be
1029 determined, return 0. */
1030 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
1031 TARGET_DEFAULT_RETURN (-1);
1032
1033 /* Set the target's tracing behavior in response to unexpected
1034 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1035 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
1036 TARGET_DEFAULT_IGNORE ();
1037 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
1038 TARGET_DEFAULT_IGNORE ();
1039 /* Set the size of trace buffer in the target. */
1040 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
1041 TARGET_DEFAULT_IGNORE ();
1042
1043 /* Add/change textual notes about the trace run, returning 1 if
1044 successful, 0 otherwise. */
1045 int (*to_set_trace_notes) (struct target_ops *,
1046 const char *user, const char *notes,
1047 const char *stopnotes)
1048 TARGET_DEFAULT_RETURN (0);
1049
1050 /* Return the processor core that thread PTID was last seen on.
1051 This information is updated only when:
1052 - update_thread_list is called
1053 - thread stops
1054 If the core cannot be determined -- either for the specified
1055 thread, or right now, or in this debug session, or for this
1056 target -- return -1. */
1057 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
1058 TARGET_DEFAULT_RETURN (-1);
1059
1060 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1061 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1062 a match, 0 if there's a mismatch, and -1 if an error is
1063 encountered while reading memory. */
1064 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
1065 CORE_ADDR memaddr, ULONGEST size)
1066 TARGET_DEFAULT_FUNC (default_verify_memory);
1067
1068 /* Return the address of the start of the Thread Information Block
1069 a Windows OS specific feature. */
1070 int (*to_get_tib_address) (struct target_ops *,
1071 ptid_t ptid, CORE_ADDR *addr)
1072 TARGET_DEFAULT_NORETURN (tcomplain ());
1073
1074 /* Send the new settings of write permission variables. */
1075 void (*to_set_permissions) (struct target_ops *)
1076 TARGET_DEFAULT_IGNORE ();
1077
1078 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1079 with its details. Return 1 on success, 0 on failure. */
1080 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
1081 struct static_tracepoint_marker *marker)
1082 TARGET_DEFAULT_RETURN (0);
1083
1084 /* Return a vector of all tracepoints markers string id ID, or all
1085 markers if ID is NULL. */
1086 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
1087 TARGET_DEFAULT_NORETURN (tcomplain ());
1088
1089 /* Return a traceframe info object describing the current
1090 traceframe's contents. This method should not cache data;
1091 higher layers take care of caching, invalidating, and
1092 re-fetching when necessary. */
1093 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
1094 TARGET_DEFAULT_NORETURN (tcomplain ());
1095
1096 /* Ask the target to use or not to use agent according to USE. Return 1
1097 successful, 0 otherwise. */
1098 int (*to_use_agent) (struct target_ops *, int use)
1099 TARGET_DEFAULT_NORETURN (tcomplain ());
1100
1101 /* Is the target able to use agent in current state? */
1102 int (*to_can_use_agent) (struct target_ops *)
1103 TARGET_DEFAULT_RETURN (0);
1104
1105 /* Check whether the target supports branch tracing. */
1106 int (*to_supports_btrace) (struct target_ops *, enum btrace_format)
1107 TARGET_DEFAULT_RETURN (0);
1108
1109 /* Enable branch tracing for PTID using CONF configuration.
1110 Return a branch trace target information struct for reading and for
1111 disabling branch trace. */
1112 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1113 ptid_t ptid,
1114 const struct btrace_config *conf)
1115 TARGET_DEFAULT_NORETURN (tcomplain ());
1116
1117 /* Disable branch tracing and deallocate TINFO. */
1118 void (*to_disable_btrace) (struct target_ops *,
1119 struct btrace_target_info *tinfo)
1120 TARGET_DEFAULT_NORETURN (tcomplain ());
1121
1122 /* Disable branch tracing and deallocate TINFO. This function is similar
1123 to to_disable_btrace, except that it is called during teardown and is
1124 only allowed to perform actions that are safe. A counter-example would
1125 be attempting to talk to a remote target. */
1126 void (*to_teardown_btrace) (struct target_ops *,
1127 struct btrace_target_info *tinfo)
1128 TARGET_DEFAULT_NORETURN (tcomplain ());
1129
1130 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1131 DATA is cleared before new trace is added. */
1132 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1133 struct btrace_data *data,
1134 struct btrace_target_info *btinfo,
1135 enum btrace_read_type type)
1136 TARGET_DEFAULT_NORETURN (tcomplain ());
1137
1138 /* Get the branch trace configuration. */
1139 const struct btrace_config *(*to_btrace_conf) (struct target_ops *self,
1140 const struct btrace_target_info *)
1141 TARGET_DEFAULT_RETURN (NULL);
1142
1143 /* Stop trace recording. */
1144 void (*to_stop_recording) (struct target_ops *)
1145 TARGET_DEFAULT_IGNORE ();
1146
1147 /* Print information about the recording. */
1148 void (*to_info_record) (struct target_ops *)
1149 TARGET_DEFAULT_IGNORE ();
1150
1151 /* Save the recorded execution trace into a file. */
1152 void (*to_save_record) (struct target_ops *, const char *filename)
1153 TARGET_DEFAULT_NORETURN (tcomplain ());
1154
1155 /* Delete the recorded execution trace from the current position
1156 onwards. */
1157 void (*to_delete_record) (struct target_ops *)
1158 TARGET_DEFAULT_NORETURN (tcomplain ());
1159
1160 /* Query if the record target is currently replaying PTID. */
1161 int (*to_record_is_replaying) (struct target_ops *, ptid_t ptid)
1162 TARGET_DEFAULT_RETURN (0);
1163
1164 /* Query if the record target will replay PTID if it were resumed in
1165 execution direction DIR. */
1166 int (*to_record_will_replay) (struct target_ops *, ptid_t ptid, int dir)
1167 TARGET_DEFAULT_RETURN (0);
1168
1169 /* Stop replaying. */
1170 void (*to_record_stop_replaying) (struct target_ops *)
1171 TARGET_DEFAULT_IGNORE ();
1172
1173 /* Go to the begin of the execution trace. */
1174 void (*to_goto_record_begin) (struct target_ops *)
1175 TARGET_DEFAULT_NORETURN (tcomplain ());
1176
1177 /* Go to the end of the execution trace. */
1178 void (*to_goto_record_end) (struct target_ops *)
1179 TARGET_DEFAULT_NORETURN (tcomplain ());
1180
1181 /* Go to a specific location in the recorded execution trace. */
1182 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1183 TARGET_DEFAULT_NORETURN (tcomplain ());
1184
1185 /* Disassemble SIZE instructions in the recorded execution trace from
1186 the current position.
1187 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1188 disassemble SIZE succeeding instructions. */
1189 void (*to_insn_history) (struct target_ops *, int size, int flags)
1190 TARGET_DEFAULT_NORETURN (tcomplain ());
1191
1192 /* Disassemble SIZE instructions in the recorded execution trace around
1193 FROM.
1194 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1195 disassemble SIZE instructions after FROM. */
1196 void (*to_insn_history_from) (struct target_ops *,
1197 ULONGEST from, int size, int flags)
1198 TARGET_DEFAULT_NORETURN (tcomplain ());
1199
1200 /* Disassemble a section of the recorded execution trace from instruction
1201 BEGIN (inclusive) to instruction END (inclusive). */
1202 void (*to_insn_history_range) (struct target_ops *,
1203 ULONGEST begin, ULONGEST end, int flags)
1204 TARGET_DEFAULT_NORETURN (tcomplain ());
1205
1206 /* Print a function trace of the recorded execution trace.
1207 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1208 succeeding functions. */
1209 void (*to_call_history) (struct target_ops *, int size, int flags)
1210 TARGET_DEFAULT_NORETURN (tcomplain ());
1211
1212 /* Print a function trace of the recorded execution trace starting
1213 at function FROM.
1214 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1215 SIZE functions after FROM. */
1216 void (*to_call_history_from) (struct target_ops *,
1217 ULONGEST begin, int size, int flags)
1218 TARGET_DEFAULT_NORETURN (tcomplain ());
1219
1220 /* Print a function trace of an execution trace section from function BEGIN
1221 (inclusive) to function END (inclusive). */
1222 void (*to_call_history_range) (struct target_ops *,
1223 ULONGEST begin, ULONGEST end, int flags)
1224 TARGET_DEFAULT_NORETURN (tcomplain ());
1225
1226 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1227 non-empty annex. */
1228 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1229 TARGET_DEFAULT_RETURN (0);
1230
1231 /* Those unwinders are tried before any other arch unwinders. If
1232 SELF doesn't have unwinders, it should delegate to the
1233 "beneath" target. */
1234 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1235 TARGET_DEFAULT_RETURN (NULL);
1236
1237 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1238 TARGET_DEFAULT_RETURN (NULL);
1239
1240 /* Prepare to generate a core file. */
1241 void (*to_prepare_to_generate_core) (struct target_ops *)
1242 TARGET_DEFAULT_IGNORE ();
1243
1244 /* Cleanup after generating a core file. */
1245 void (*to_done_generating_core) (struct target_ops *)
1246 TARGET_DEFAULT_IGNORE ();
1247
1248 int to_magic;
1249 /* Need sub-structure for target machine related rather than comm related?
1250 */
1251 };
1252
1253 /* Magic number for checking ops size. If a struct doesn't end with this
1254 number, somebody changed the declaration but didn't change all the
1255 places that initialize one. */
1256
1257 #define OPS_MAGIC 3840
1258
1259 /* The ops structure for our "current" target process. This should
1260 never be NULL. If there is no target, it points to the dummy_target. */
1261
1262 extern struct target_ops current_target;
1263
1264 /* Define easy words for doing these operations on our current target. */
1265
1266 #define target_shortname (current_target.to_shortname)
1267 #define target_longname (current_target.to_longname)
1268
1269 /* Does whatever cleanup is required for a target that we are no
1270 longer going to be calling. This routine is automatically always
1271 called after popping the target off the target stack - the target's
1272 own methods are no longer available through the target vector.
1273 Closing file descriptors and freeing all memory allocated memory are
1274 typical things it should do. */
1275
1276 void target_close (struct target_ops *targ);
1277
1278 /* Find the correct target to use for "attach". If a target on the
1279 current stack supports attaching, then it is returned. Otherwise,
1280 the default run target is returned. */
1281
1282 extern struct target_ops *find_attach_target (void);
1283
1284 /* Find the correct target to use for "run". If a target on the
1285 current stack supports creating a new inferior, then it is
1286 returned. Otherwise, the default run target is returned. */
1287
1288 extern struct target_ops *find_run_target (void);
1289
1290 /* Some targets don't generate traps when attaching to the inferior,
1291 or their target_attach implementation takes care of the waiting.
1292 These targets must set to_attach_no_wait. */
1293
1294 #define target_attach_no_wait \
1295 (current_target.to_attach_no_wait)
1296
1297 /* The target_attach operation places a process under debugger control,
1298 and stops the process.
1299
1300 This operation provides a target-specific hook that allows the
1301 necessary bookkeeping to be performed after an attach completes. */
1302 #define target_post_attach(pid) \
1303 (*current_target.to_post_attach) (&current_target, pid)
1304
1305 /* Takes a program previously attached to and detaches it.
1306 The program may resume execution (some targets do, some don't) and will
1307 no longer stop on signals, etc. We better not have left any breakpoints
1308 in the program or it'll die when it hits one. ARGS is arguments
1309 typed by the user (e.g. a signal to send the process). FROM_TTY
1310 says whether to be verbose or not. */
1311
1312 extern void target_detach (const char *, int);
1313
1314 /* Disconnect from the current target without resuming it (leaving it
1315 waiting for a debugger). */
1316
1317 extern void target_disconnect (const char *, int);
1318
1319 /* Resume execution of the target process PTID (or a group of
1320 threads). STEP says whether to hardware single-step or to run free;
1321 SIGGNAL is the signal to be given to the target, or GDB_SIGNAL_0 for no
1322 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1323 PTID means `step/resume only this process id'. A wildcard PTID
1324 (all threads, or all threads of process) means `step/resume
1325 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1326 matches) resume with their 'thread->suspend.stop_signal' signal
1327 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1328 if in "no pass" state. */
1329
1330 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1331
1332 /* Wait for process pid to do something. PTID = -1 to wait for any
1333 pid to do something. Return pid of child, or -1 in case of error;
1334 store status through argument pointer STATUS. Note that it is
1335 _NOT_ OK to throw_exception() out of target_wait() without popping
1336 the debugging target from the stack; GDB isn't prepared to get back
1337 to the prompt with a debugging target but without the frame cache,
1338 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1339 options. */
1340
1341 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1342 int options);
1343
1344 /* The default target_ops::to_wait implementation. */
1345
1346 extern ptid_t default_target_wait (struct target_ops *ops,
1347 ptid_t ptid,
1348 struct target_waitstatus *status,
1349 int options);
1350
1351 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1352
1353 extern void target_fetch_registers (struct regcache *regcache, int regno);
1354
1355 /* Store at least register REGNO, or all regs if REGNO == -1.
1356 It can store as many registers as it wants to, so target_prepare_to_store
1357 must have been previously called. Calls error() if there are problems. */
1358
1359 extern void target_store_registers (struct regcache *regcache, int regs);
1360
1361 /* Get ready to modify the registers array. On machines which store
1362 individual registers, this doesn't need to do anything. On machines
1363 which store all the registers in one fell swoop, this makes sure
1364 that REGISTERS contains all the registers from the program being
1365 debugged. */
1366
1367 #define target_prepare_to_store(regcache) \
1368 (*current_target.to_prepare_to_store) (&current_target, regcache)
1369
1370 /* Determine current address space of thread PTID. */
1371
1372 struct address_space *target_thread_address_space (ptid_t);
1373
1374 /* Implement the "info proc" command. This returns one if the request
1375 was handled, and zero otherwise. It can also throw an exception if
1376 an error was encountered while attempting to handle the
1377 request. */
1378
1379 int target_info_proc (const char *, enum info_proc_what);
1380
1381 /* Returns true if this target can debug multiple processes
1382 simultaneously. */
1383
1384 #define target_supports_multi_process() \
1385 (*current_target.to_supports_multi_process) (&current_target)
1386
1387 /* Returns true if this target can disable address space randomization. */
1388
1389 int target_supports_disable_randomization (void);
1390
1391 /* Returns true if this target can enable and disable tracepoints
1392 while a trace experiment is running. */
1393
1394 #define target_supports_enable_disable_tracepoint() \
1395 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1396
1397 #define target_supports_string_tracing() \
1398 (*current_target.to_supports_string_tracing) (&current_target)
1399
1400 /* Returns true if this target can handle breakpoint conditions
1401 on its end. */
1402
1403 #define target_supports_evaluation_of_breakpoint_conditions() \
1404 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1405
1406 /* Returns true if this target can handle breakpoint commands
1407 on its end. */
1408
1409 #define target_can_run_breakpoint_commands() \
1410 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1411
1412 extern int target_read_string (CORE_ADDR, char **, int, int *);
1413
1414 /* For target_read_memory see target/target.h. */
1415
1416 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1417 ssize_t len);
1418
1419 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1420
1421 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1422
1423 /* For target_write_memory see target/target.h. */
1424
1425 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1426 ssize_t len);
1427
1428 /* Fetches the target's memory map. If one is found it is sorted
1429 and returned, after some consistency checking. Otherwise, NULL
1430 is returned. */
1431 VEC(mem_region_s) *target_memory_map (void);
1432
1433 /* Erase the specified flash region. */
1434 void target_flash_erase (ULONGEST address, LONGEST length);
1435
1436 /* Finish a sequence of flash operations. */
1437 void target_flash_done (void);
1438
1439 /* Describes a request for a memory write operation. */
1440 struct memory_write_request
1441 {
1442 /* Begining address that must be written. */
1443 ULONGEST begin;
1444 /* Past-the-end address. */
1445 ULONGEST end;
1446 /* The data to write. */
1447 gdb_byte *data;
1448 /* A callback baton for progress reporting for this request. */
1449 void *baton;
1450 };
1451 typedef struct memory_write_request memory_write_request_s;
1452 DEF_VEC_O(memory_write_request_s);
1453
1454 /* Enumeration specifying different flash preservation behaviour. */
1455 enum flash_preserve_mode
1456 {
1457 flash_preserve,
1458 flash_discard
1459 };
1460
1461 /* Write several memory blocks at once. This version can be more
1462 efficient than making several calls to target_write_memory, in
1463 particular because it can optimize accesses to flash memory.
1464
1465 Moreover, this is currently the only memory access function in gdb
1466 that supports writing to flash memory, and it should be used for
1467 all cases where access to flash memory is desirable.
1468
1469 REQUESTS is the vector (see vec.h) of memory_write_request.
1470 PRESERVE_FLASH_P indicates what to do with blocks which must be
1471 erased, but not completely rewritten.
1472 PROGRESS_CB is a function that will be periodically called to provide
1473 feedback to user. It will be called with the baton corresponding
1474 to the request currently being written. It may also be called
1475 with a NULL baton, when preserved flash sectors are being rewritten.
1476
1477 The function returns 0 on success, and error otherwise. */
1478 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1479 enum flash_preserve_mode preserve_flash_p,
1480 void (*progress_cb) (ULONGEST, void *));
1481
1482 /* Print a line about the current target. */
1483
1484 #define target_files_info() \
1485 (*current_target.to_files_info) (&current_target)
1486
1487 /* Insert a breakpoint at address BP_TGT->placed_address in
1488 the target machine. Returns 0 for success, and returns non-zero or
1489 throws an error (with a detailed failure reason error code and
1490 message) otherwise. */
1491
1492 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1493 struct bp_target_info *bp_tgt);
1494
1495 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1496 machine. Result is 0 for success, non-zero for error. */
1497
1498 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1499 struct bp_target_info *bp_tgt);
1500
1501 /* Returns true if the terminal settings of the inferior are in
1502 effect. */
1503
1504 extern int target_terminal_is_inferior (void);
1505
1506 /* Returns true if our terminal settings are in effect. */
1507
1508 extern int target_terminal_is_ours (void);
1509
1510 /* Initialize the terminal settings we record for the inferior,
1511 before we actually run the inferior. */
1512
1513 extern void target_terminal_init (void);
1514
1515 /* Put the inferior's terminal settings into effect.
1516 This is preparation for starting or resuming the inferior. */
1517
1518 extern void target_terminal_inferior (void);
1519
1520 /* Put some of our terminal settings into effect, enough to get proper
1521 results from our output, but do not change into or out of RAW mode
1522 so that no input is discarded. This is a no-op if terminal_ours
1523 was most recently called. */
1524
1525 extern void target_terminal_ours_for_output (void);
1526
1527 /* Put our terminal settings into effect.
1528 First record the inferior's terminal settings
1529 so they can be restored properly later. */
1530
1531 extern void target_terminal_ours (void);
1532
1533 /* Return true if the target stack has a non-default
1534 "to_terminal_ours" method. */
1535
1536 extern int target_supports_terminal_ours (void);
1537
1538 /* Make a cleanup that restores the state of the terminal to the current
1539 state. */
1540 extern struct cleanup *make_cleanup_restore_target_terminal (void);
1541
1542 /* Print useful information about our terminal status, if such a thing
1543 exists. */
1544
1545 #define target_terminal_info(arg, from_tty) \
1546 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1547
1548 /* Kill the inferior process. Make it go away. */
1549
1550 extern void target_kill (void);
1551
1552 /* Load an executable file into the target process. This is expected
1553 to not only bring new code into the target process, but also to
1554 update GDB's symbol tables to match.
1555
1556 ARG contains command-line arguments, to be broken down with
1557 buildargv (). The first non-switch argument is the filename to
1558 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1559 0)), which is an offset to apply to the load addresses of FILE's
1560 sections. The target may define switches, or other non-switch
1561 arguments, as it pleases. */
1562
1563 extern void target_load (const char *arg, int from_tty);
1564
1565 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1566 notification of inferior events such as fork and vork immediately
1567 after the inferior is created. (This because of how gdb gets an
1568 inferior created via invoking a shell to do it. In such a scenario,
1569 if the shell init file has commands in it, the shell will fork and
1570 exec for each of those commands, and we will see each such fork
1571 event. Very bad.)
1572
1573 Such targets will supply an appropriate definition for this function. */
1574
1575 #define target_post_startup_inferior(ptid) \
1576 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1577
1578 /* On some targets, we can catch an inferior fork or vfork event when
1579 it occurs. These functions insert/remove an already-created
1580 catchpoint for such events. They return 0 for success, 1 if the
1581 catchpoint type is not supported and -1 for failure. */
1582
1583 #define target_insert_fork_catchpoint(pid) \
1584 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1585
1586 #define target_remove_fork_catchpoint(pid) \
1587 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1588
1589 #define target_insert_vfork_catchpoint(pid) \
1590 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1591
1592 #define target_remove_vfork_catchpoint(pid) \
1593 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1594
1595 /* If the inferior forks or vforks, this function will be called at
1596 the next resume in order to perform any bookkeeping and fiddling
1597 necessary to continue debugging either the parent or child, as
1598 requested, and releasing the other. Information about the fork
1599 or vfork event is available via get_last_target_status ().
1600 This function returns 1 if the inferior should not be resumed
1601 (i.e. there is another event pending). */
1602
1603 int target_follow_fork (int follow_child, int detach_fork);
1604
1605 /* Handle the target-specific bookkeeping required when the inferior
1606 makes an exec call. INF is the exec'd inferior. */
1607
1608 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1609
1610 /* On some targets, we can catch an inferior exec event when it
1611 occurs. These functions insert/remove an already-created
1612 catchpoint for such events. They return 0 for success, 1 if the
1613 catchpoint type is not supported and -1 for failure. */
1614
1615 #define target_insert_exec_catchpoint(pid) \
1616 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1617
1618 #define target_remove_exec_catchpoint(pid) \
1619 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1620
1621 /* Syscall catch.
1622
1623 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1624 If NEEDED is zero, it means the target can disable the mechanism to
1625 catch system calls because there are no more catchpoints of this type.
1626
1627 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1628 being requested. In this case, both TABLE_SIZE and TABLE should
1629 be ignored.
1630
1631 TABLE_SIZE is the number of elements in TABLE. It only matters if
1632 ANY_COUNT is zero.
1633
1634 TABLE is an array of ints, indexed by syscall number. An element in
1635 this array is nonzero if that syscall should be caught. This argument
1636 only matters if ANY_COUNT is zero.
1637
1638 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1639 for failure. */
1640
1641 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1642 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1643 pid, needed, any_count, \
1644 table_size, table)
1645
1646 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1647 exit code of PID, if any. */
1648
1649 #define target_has_exited(pid,wait_status,exit_status) \
1650 (*current_target.to_has_exited) (&current_target, \
1651 pid,wait_status,exit_status)
1652
1653 /* The debugger has completed a blocking wait() call. There is now
1654 some process event that must be processed. This function should
1655 be defined by those targets that require the debugger to perform
1656 cleanup or internal state changes in response to the process event. */
1657
1658 /* The inferior process has died. Do what is right. */
1659
1660 void target_mourn_inferior (void);
1661
1662 /* Does target have enough data to do a run or attach command? */
1663
1664 #define target_can_run(t) \
1665 ((t)->to_can_run) (t)
1666
1667 /* Set list of signals to be handled in the target.
1668
1669 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1670 (enum gdb_signal). For every signal whose entry in this array is
1671 non-zero, the target is allowed -but not required- to skip reporting
1672 arrival of the signal to the GDB core by returning from target_wait,
1673 and to pass the signal directly to the inferior instead.
1674
1675 However, if the target is hardware single-stepping a thread that is
1676 about to receive a signal, it needs to be reported in any case, even
1677 if mentioned in a previous target_pass_signals call. */
1678
1679 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1680
1681 /* Set list of signals the target may pass to the inferior. This
1682 directly maps to the "handle SIGNAL pass/nopass" setting.
1683
1684 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1685 number (enum gdb_signal). For every signal whose entry in this
1686 array is non-zero, the target is allowed to pass the signal to the
1687 inferior. Signals not present in the array shall be silently
1688 discarded. This does not influence whether to pass signals to the
1689 inferior as a result of a target_resume call. This is useful in
1690 scenarios where the target needs to decide whether to pass or not a
1691 signal to the inferior without GDB core involvement, such as for
1692 example, when detaching (as threads may have been suspended with
1693 pending signals not reported to GDB). */
1694
1695 extern void target_program_signals (int nsig, unsigned char *program_signals);
1696
1697 /* Check to see if a thread is still alive. */
1698
1699 extern int target_thread_alive (ptid_t ptid);
1700
1701 /* Sync the target's threads with GDB's thread list. */
1702
1703 extern void target_update_thread_list (void);
1704
1705 /* Make target stop in a continuable fashion. (For instance, under
1706 Unix, this should act like SIGSTOP). Note that this function is
1707 asynchronous: it does not wait for the target to become stopped
1708 before returning. If this is the behavior you want please use
1709 target_stop_and_wait. */
1710
1711 extern void target_stop (ptid_t ptid);
1712
1713 /* Interrupt the target just like the user typed a ^C on the
1714 inferior's controlling terminal. (For instance, under Unix, this
1715 should act like SIGINT). This function is asynchronous. */
1716
1717 extern void target_interrupt (ptid_t ptid);
1718
1719 /* Some targets install their own SIGINT handler while the target is
1720 running. This method is called from the QUIT macro to give such
1721 targets a chance to process a Ctrl-C. The target may e.g., choose
1722 to interrupt the (potentially) long running operation, or give up
1723 waiting and disconnect. */
1724
1725 extern void target_check_pending_interrupt (void);
1726
1727 /* Send the specified COMMAND to the target's monitor
1728 (shell,interpreter) for execution. The result of the query is
1729 placed in OUTBUF. */
1730
1731 #define target_rcmd(command, outbuf) \
1732 (*current_target.to_rcmd) (&current_target, command, outbuf)
1733
1734
1735 /* Does the target include all of memory, or only part of it? This
1736 determines whether we look up the target chain for other parts of
1737 memory if this target can't satisfy a request. */
1738
1739 extern int target_has_all_memory_1 (void);
1740 #define target_has_all_memory target_has_all_memory_1 ()
1741
1742 /* Does the target include memory? (Dummy targets don't.) */
1743
1744 extern int target_has_memory_1 (void);
1745 #define target_has_memory target_has_memory_1 ()
1746
1747 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1748 we start a process.) */
1749
1750 extern int target_has_stack_1 (void);
1751 #define target_has_stack target_has_stack_1 ()
1752
1753 /* Does the target have registers? (Exec files don't.) */
1754
1755 extern int target_has_registers_1 (void);
1756 #define target_has_registers target_has_registers_1 ()
1757
1758 /* Does the target have execution? Can we make it jump (through
1759 hoops), or pop its stack a few times? This means that the current
1760 target is currently executing; for some targets, that's the same as
1761 whether or not the target is capable of execution, but there are
1762 also targets which can be current while not executing. In that
1763 case this will become true after to_create_inferior or
1764 to_attach. */
1765
1766 extern int target_has_execution_1 (ptid_t);
1767
1768 /* Like target_has_execution_1, but always passes inferior_ptid. */
1769
1770 extern int target_has_execution_current (void);
1771
1772 #define target_has_execution target_has_execution_current ()
1773
1774 /* Default implementations for process_stratum targets. Return true
1775 if there's a selected inferior, false otherwise. */
1776
1777 extern int default_child_has_all_memory (struct target_ops *ops);
1778 extern int default_child_has_memory (struct target_ops *ops);
1779 extern int default_child_has_stack (struct target_ops *ops);
1780 extern int default_child_has_registers (struct target_ops *ops);
1781 extern int default_child_has_execution (struct target_ops *ops,
1782 ptid_t the_ptid);
1783
1784 /* Can the target support the debugger control of thread execution?
1785 Can it lock the thread scheduler? */
1786
1787 #define target_can_lock_scheduler \
1788 (current_target.to_has_thread_control & tc_schedlock)
1789
1790 /* Controls whether async mode is permitted. */
1791 extern int target_async_permitted;
1792
1793 /* Can the target support asynchronous execution? */
1794 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1795
1796 /* Is the target in asynchronous execution mode? */
1797 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1798
1799 /* Enables/disabled async target events. */
1800 extern void target_async (int enable);
1801
1802 /* Enables/disables thread create and exit events. */
1803 extern void target_thread_events (int enable);
1804
1805 /* Whether support for controlling the target backends always in
1806 non-stop mode is enabled. */
1807 extern enum auto_boolean target_non_stop_enabled;
1808
1809 /* Is the target in non-stop mode? Some targets control the inferior
1810 in non-stop mode even with "set non-stop off". Always true if "set
1811 non-stop" is on. */
1812 extern int target_is_non_stop_p (void);
1813
1814 #define target_execution_direction() \
1815 (current_target.to_execution_direction (&current_target))
1816
1817 /* Converts a process id to a string. Usually, the string just contains
1818 `process xyz', but on some systems it may contain
1819 `process xyz thread abc'. */
1820
1821 extern char *target_pid_to_str (ptid_t ptid);
1822
1823 extern char *normal_pid_to_str (ptid_t ptid);
1824
1825 /* Return a short string describing extra information about PID,
1826 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1827 is okay. */
1828
1829 #define target_extra_thread_info(TP) \
1830 (current_target.to_extra_thread_info (&current_target, TP))
1831
1832 /* Return the thread's name, or NULL if the target is unable to determine it.
1833 The returned value must not be freed by the caller. */
1834
1835 extern const char *target_thread_name (struct thread_info *);
1836
1837 /* Attempts to find the pathname of the executable file
1838 that was run to create a specified process.
1839
1840 The process PID must be stopped when this operation is used.
1841
1842 If the executable file cannot be determined, NULL is returned.
1843
1844 Else, a pointer to a character string containing the pathname
1845 is returned. This string should be copied into a buffer by
1846 the client if the string will not be immediately used, or if
1847 it must persist. */
1848
1849 #define target_pid_to_exec_file(pid) \
1850 (current_target.to_pid_to_exec_file) (&current_target, pid)
1851
1852 /* See the to_thread_architecture description in struct target_ops. */
1853
1854 #define target_thread_architecture(ptid) \
1855 (current_target.to_thread_architecture (&current_target, ptid))
1856
1857 /*
1858 * Iterator function for target memory regions.
1859 * Calls a callback function once for each memory region 'mapped'
1860 * in the child process. Defined as a simple macro rather than
1861 * as a function macro so that it can be tested for nullity.
1862 */
1863
1864 #define target_find_memory_regions(FUNC, DATA) \
1865 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1866
1867 /*
1868 * Compose corefile .note section.
1869 */
1870
1871 #define target_make_corefile_notes(BFD, SIZE_P) \
1872 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1873
1874 /* Bookmark interfaces. */
1875 #define target_get_bookmark(ARGS, FROM_TTY) \
1876 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1877
1878 #define target_goto_bookmark(ARG, FROM_TTY) \
1879 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1880
1881 /* Hardware watchpoint interfaces. */
1882
1883 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1884 write). Only the INFERIOR_PTID task is being queried. */
1885
1886 #define target_stopped_by_watchpoint() \
1887 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1888
1889 /* Returns non-zero if the target stopped because it executed a
1890 software breakpoint instruction. */
1891
1892 #define target_stopped_by_sw_breakpoint() \
1893 ((*current_target.to_stopped_by_sw_breakpoint) (&current_target))
1894
1895 #define target_supports_stopped_by_sw_breakpoint() \
1896 ((*current_target.to_supports_stopped_by_sw_breakpoint) (&current_target))
1897
1898 #define target_stopped_by_hw_breakpoint() \
1899 ((*current_target.to_stopped_by_hw_breakpoint) (&current_target))
1900
1901 #define target_supports_stopped_by_hw_breakpoint() \
1902 ((*current_target.to_supports_stopped_by_hw_breakpoint) (&current_target))
1903
1904 /* Non-zero if we have steppable watchpoints */
1905
1906 #define target_have_steppable_watchpoint \
1907 (current_target.to_have_steppable_watchpoint)
1908
1909 /* Non-zero if we have continuable watchpoints */
1910
1911 #define target_have_continuable_watchpoint \
1912 (current_target.to_have_continuable_watchpoint)
1913
1914 /* Provide defaults for hardware watchpoint functions. */
1915
1916 /* If the *_hw_beakpoint functions have not been defined
1917 elsewhere use the definitions in the target vector. */
1918
1919 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1920 Returns negative if the target doesn't have enough hardware debug
1921 registers available. Return zero if hardware watchpoint of type
1922 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1923 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1924 CNT is the number of such watchpoints used so far, including this
1925 one. OTHERTYPE is the number of watchpoints of other types than
1926 this one used so far. */
1927
1928 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1929 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1930 TYPE, CNT, OTHERTYPE)
1931
1932 /* Returns the number of debug registers needed to watch the given
1933 memory region, or zero if not supported. */
1934
1935 #define target_region_ok_for_hw_watchpoint(addr, len) \
1936 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1937 addr, len)
1938
1939
1940 #define target_can_do_single_step() \
1941 (*current_target.to_can_do_single_step) (&current_target)
1942
1943 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1944 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1945 COND is the expression for its condition, or NULL if there's none.
1946 Returns 0 for success, 1 if the watchpoint type is not supported,
1947 -1 for failure. */
1948
1949 #define target_insert_watchpoint(addr, len, type, cond) \
1950 (*current_target.to_insert_watchpoint) (&current_target, \
1951 addr, len, type, cond)
1952
1953 #define target_remove_watchpoint(addr, len, type, cond) \
1954 (*current_target.to_remove_watchpoint) (&current_target, \
1955 addr, len, type, cond)
1956
1957 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1958 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1959 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1960 masked watchpoints are not supported, -1 for failure. */
1961
1962 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1963 enum target_hw_bp_type);
1964
1965 /* Remove a masked watchpoint at ADDR with the mask MASK.
1966 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1967 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1968 for failure. */
1969
1970 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1971 enum target_hw_bp_type);
1972
1973 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1974 the target machine. Returns 0 for success, and returns non-zero or
1975 throws an error (with a detailed failure reason error code and
1976 message) otherwise. */
1977
1978 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1979 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1980 gdbarch, bp_tgt)
1981
1982 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1983 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1984 gdbarch, bp_tgt)
1985
1986 /* Return number of debug registers needed for a ranged breakpoint,
1987 or -1 if ranged breakpoints are not supported. */
1988
1989 extern int target_ranged_break_num_registers (void);
1990
1991 /* Return non-zero if target knows the data address which triggered this
1992 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1993 INFERIOR_PTID task is being queried. */
1994 #define target_stopped_data_address(target, addr_p) \
1995 (*(target)->to_stopped_data_address) (target, addr_p)
1996
1997 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1998 LENGTH bytes beginning at START. */
1999 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2000 (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length)
2001
2002 /* Return non-zero if the target is capable of using hardware to evaluate
2003 the condition expression. In this case, if the condition is false when
2004 the watched memory location changes, execution may continue without the
2005 debugger being notified.
2006
2007 Due to limitations in the hardware implementation, it may be capable of
2008 avoiding triggering the watchpoint in some cases where the condition
2009 expression is false, but may report some false positives as well.
2010 For this reason, GDB will still evaluate the condition expression when
2011 the watchpoint triggers. */
2012 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2013 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
2014 addr, len, type, cond)
2015
2016 /* Return number of debug registers needed for a masked watchpoint,
2017 -1 if masked watchpoints are not supported or -2 if the given address
2018 and mask combination cannot be used. */
2019
2020 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2021
2022 /* Target can execute in reverse? */
2023 #define target_can_execute_reverse \
2024 current_target.to_can_execute_reverse (&current_target)
2025
2026 extern const struct target_desc *target_read_description (struct target_ops *);
2027
2028 #define target_get_ada_task_ptid(lwp, tid) \
2029 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
2030
2031 /* Utility implementation of searching memory. */
2032 extern int simple_search_memory (struct target_ops* ops,
2033 CORE_ADDR start_addr,
2034 ULONGEST search_space_len,
2035 const gdb_byte *pattern,
2036 ULONGEST pattern_len,
2037 CORE_ADDR *found_addrp);
2038
2039 /* Main entry point for searching memory. */
2040 extern int target_search_memory (CORE_ADDR start_addr,
2041 ULONGEST search_space_len,
2042 const gdb_byte *pattern,
2043 ULONGEST pattern_len,
2044 CORE_ADDR *found_addrp);
2045
2046 /* Target file operations. */
2047
2048 /* Return nonzero if the filesystem seen by the current inferior
2049 is the local filesystem, zero otherwise. */
2050 #define target_filesystem_is_local() \
2051 current_target.to_filesystem_is_local (&current_target)
2052
2053 /* Open FILENAME on the target, in the filesystem as seen by INF,
2054 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2055 by the debugger (GDB or, for remote targets, the remote stub).
2056 Return a target file descriptor, or -1 if an error occurs (and
2057 set *TARGET_ERRNO). */
2058 extern int target_fileio_open (struct inferior *inf,
2059 const char *filename, int flags,
2060 int mode, int *target_errno);
2061
2062 /* Like target_fileio_open, but print a warning message if the
2063 file is being accessed over a link that may be slow. */
2064 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2065 const char *filename,
2066 int flags,
2067 int mode,
2068 int *target_errno);
2069
2070 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2071 Return the number of bytes written, or -1 if an error occurs
2072 (and set *TARGET_ERRNO). */
2073 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2074 ULONGEST offset, int *target_errno);
2075
2076 /* Read up to LEN bytes FD on the target into READ_BUF.
2077 Return the number of bytes read, or -1 if an error occurs
2078 (and set *TARGET_ERRNO). */
2079 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2080 ULONGEST offset, int *target_errno);
2081
2082 /* Get information about the file opened as FD on the target
2083 and put it in SB. Return 0 on success, or -1 if an error
2084 occurs (and set *TARGET_ERRNO). */
2085 extern int target_fileio_fstat (int fd, struct stat *sb,
2086 int *target_errno);
2087
2088 /* Close FD on the target. Return 0, or -1 if an error occurs
2089 (and set *TARGET_ERRNO). */
2090 extern int target_fileio_close (int fd, int *target_errno);
2091
2092 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2093 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2094 for remote targets, the remote stub). Return 0, or -1 if an error
2095 occurs (and set *TARGET_ERRNO). */
2096 extern int target_fileio_unlink (struct inferior *inf,
2097 const char *filename,
2098 int *target_errno);
2099
2100 /* Read value of symbolic link FILENAME on the target, in the
2101 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2102 by the debugger (GDB or, for remote targets, the remote stub).
2103 Return a null-terminated string allocated via xmalloc, or NULL if
2104 an error occurs (and set *TARGET_ERRNO). */
2105 extern char *target_fileio_readlink (struct inferior *inf,
2106 const char *filename,
2107 int *target_errno);
2108
2109 /* Read target file FILENAME, in the filesystem as seen by INF. If
2110 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2111 remote targets, the remote stub). The return value will be -1 if
2112 the transfer fails or is not supported; 0 if the object is empty;
2113 or the length of the object otherwise. If a positive value is
2114 returned, a sufficiently large buffer will be allocated using
2115 xmalloc and returned in *BUF_P containing the contents of the
2116 object.
2117
2118 This method should be used for objects sufficiently small to store
2119 in a single xmalloc'd buffer, when no fixed bound on the object's
2120 size is known in advance. */
2121 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2122 const char *filename,
2123 gdb_byte **buf_p);
2124
2125 /* Read target file FILENAME, in the filesystem as seen by INF. If
2126 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2127 remote targets, the remote stub). The result is NUL-terminated and
2128 returned as a string, allocated using xmalloc. If an error occurs
2129 or the transfer is unsupported, NULL is returned. Empty objects
2130 are returned as allocated but empty strings. A warning is issued
2131 if the result contains any embedded NUL bytes. */
2132 extern char *target_fileio_read_stralloc (struct inferior *inf,
2133 const char *filename);
2134
2135
2136 /* Tracepoint-related operations. */
2137
2138 #define target_trace_init() \
2139 (*current_target.to_trace_init) (&current_target)
2140
2141 #define target_download_tracepoint(t) \
2142 (*current_target.to_download_tracepoint) (&current_target, t)
2143
2144 #define target_can_download_tracepoint() \
2145 (*current_target.to_can_download_tracepoint) (&current_target)
2146
2147 #define target_download_trace_state_variable(tsv) \
2148 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
2149
2150 #define target_enable_tracepoint(loc) \
2151 (*current_target.to_enable_tracepoint) (&current_target, loc)
2152
2153 #define target_disable_tracepoint(loc) \
2154 (*current_target.to_disable_tracepoint) (&current_target, loc)
2155
2156 #define target_trace_start() \
2157 (*current_target.to_trace_start) (&current_target)
2158
2159 #define target_trace_set_readonly_regions() \
2160 (*current_target.to_trace_set_readonly_regions) (&current_target)
2161
2162 #define target_get_trace_status(ts) \
2163 (*current_target.to_get_trace_status) (&current_target, ts)
2164
2165 #define target_get_tracepoint_status(tp,utp) \
2166 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
2167
2168 #define target_trace_stop() \
2169 (*current_target.to_trace_stop) (&current_target)
2170
2171 #define target_trace_find(type,num,addr1,addr2,tpp) \
2172 (*current_target.to_trace_find) (&current_target, \
2173 (type), (num), (addr1), (addr2), (tpp))
2174
2175 #define target_get_trace_state_variable_value(tsv,val) \
2176 (*current_target.to_get_trace_state_variable_value) (&current_target, \
2177 (tsv), (val))
2178
2179 #define target_save_trace_data(filename) \
2180 (*current_target.to_save_trace_data) (&current_target, filename)
2181
2182 #define target_upload_tracepoints(utpp) \
2183 (*current_target.to_upload_tracepoints) (&current_target, utpp)
2184
2185 #define target_upload_trace_state_variables(utsvp) \
2186 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
2187
2188 #define target_get_raw_trace_data(buf,offset,len) \
2189 (*current_target.to_get_raw_trace_data) (&current_target, \
2190 (buf), (offset), (len))
2191
2192 #define target_get_min_fast_tracepoint_insn_len() \
2193 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
2194
2195 #define target_set_disconnected_tracing(val) \
2196 (*current_target.to_set_disconnected_tracing) (&current_target, val)
2197
2198 #define target_set_circular_trace_buffer(val) \
2199 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
2200
2201 #define target_set_trace_buffer_size(val) \
2202 (*current_target.to_set_trace_buffer_size) (&current_target, val)
2203
2204 #define target_set_trace_notes(user,notes,stopnotes) \
2205 (*current_target.to_set_trace_notes) (&current_target, \
2206 (user), (notes), (stopnotes))
2207
2208 #define target_get_tib_address(ptid, addr) \
2209 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
2210
2211 #define target_set_permissions() \
2212 (*current_target.to_set_permissions) (&current_target)
2213
2214 #define target_static_tracepoint_marker_at(addr, marker) \
2215 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
2216 addr, marker)
2217
2218 #define target_static_tracepoint_markers_by_strid(marker_id) \
2219 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2220 marker_id)
2221
2222 #define target_traceframe_info() \
2223 (*current_target.to_traceframe_info) (&current_target)
2224
2225 #define target_use_agent(use) \
2226 (*current_target.to_use_agent) (&current_target, use)
2227
2228 #define target_can_use_agent() \
2229 (*current_target.to_can_use_agent) (&current_target)
2230
2231 #define target_augmented_libraries_svr4_read() \
2232 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2233
2234 /* Command logging facility. */
2235
2236 #define target_log_command(p) \
2237 (*current_target.to_log_command) (&current_target, p)
2238
2239
2240 extern int target_core_of_thread (ptid_t ptid);
2241
2242 /* See to_get_unwinder in struct target_ops. */
2243 extern const struct frame_unwind *target_get_unwinder (void);
2244
2245 /* See to_get_tailcall_unwinder in struct target_ops. */
2246 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2247
2248 /* This implements basic memory verification, reading target memory
2249 and performing the comparison here (as opposed to accelerated
2250 verification making use of the qCRC packet, for example). */
2251
2252 extern int simple_verify_memory (struct target_ops* ops,
2253 const gdb_byte *data,
2254 CORE_ADDR memaddr, ULONGEST size);
2255
2256 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2257 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2258 if there's a mismatch, and -1 if an error is encountered while
2259 reading memory. Throws an error if the functionality is found not
2260 to be supported by the current target. */
2261 int target_verify_memory (const gdb_byte *data,
2262 CORE_ADDR memaddr, ULONGEST size);
2263
2264 /* Routines for maintenance of the target structures...
2265
2266 complete_target_initialization: Finalize a target_ops by filling in
2267 any fields needed by the target implementation. Unnecessary for
2268 targets which are registered via add_target, as this part gets
2269 taken care of then.
2270
2271 add_target: Add a target to the list of all possible targets.
2272 This only makes sense for targets that should be activated using
2273 the "target TARGET_NAME ..." command.
2274
2275 push_target: Make this target the top of the stack of currently used
2276 targets, within its particular stratum of the stack. Result
2277 is 0 if now atop the stack, nonzero if not on top (maybe
2278 should warn user).
2279
2280 unpush_target: Remove this from the stack of currently used targets,
2281 no matter where it is on the list. Returns 0 if no
2282 change, 1 if removed from stack. */
2283
2284 extern void add_target (struct target_ops *);
2285
2286 extern void add_target_with_completer (struct target_ops *t,
2287 completer_ftype *completer);
2288
2289 extern void complete_target_initialization (struct target_ops *t);
2290
2291 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2292 for maintaining backwards compatibility when renaming targets. */
2293
2294 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2295
2296 extern void push_target (struct target_ops *);
2297
2298 extern int unpush_target (struct target_ops *);
2299
2300 extern void target_pre_inferior (int);
2301
2302 extern void target_preopen (int);
2303
2304 /* Does whatever cleanup is required to get rid of all pushed targets. */
2305 extern void pop_all_targets (void);
2306
2307 /* Like pop_all_targets, but pops only targets whose stratum is at or
2308 above STRATUM. */
2309 extern void pop_all_targets_at_and_above (enum strata stratum);
2310
2311 /* Like pop_all_targets, but pops only targets whose stratum is
2312 strictly above ABOVE_STRATUM. */
2313 extern void pop_all_targets_above (enum strata above_stratum);
2314
2315 extern int target_is_pushed (struct target_ops *t);
2316
2317 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2318 CORE_ADDR offset);
2319
2320 /* Struct target_section maps address ranges to file sections. It is
2321 mostly used with BFD files, but can be used without (e.g. for handling
2322 raw disks, or files not in formats handled by BFD). */
2323
2324 struct target_section
2325 {
2326 CORE_ADDR addr; /* Lowest address in section */
2327 CORE_ADDR endaddr; /* 1+highest address in section */
2328
2329 struct bfd_section *the_bfd_section;
2330
2331 /* The "owner" of the section.
2332 It can be any unique value. It is set by add_target_sections
2333 and used by remove_target_sections.
2334 For example, for executables it is a pointer to exec_bfd and
2335 for shlibs it is the so_list pointer. */
2336 void *owner;
2337 };
2338
2339 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2340
2341 struct target_section_table
2342 {
2343 struct target_section *sections;
2344 struct target_section *sections_end;
2345 };
2346
2347 /* Return the "section" containing the specified address. */
2348 struct target_section *target_section_by_addr (struct target_ops *target,
2349 CORE_ADDR addr);
2350
2351 /* Return the target section table this target (or the targets
2352 beneath) currently manipulate. */
2353
2354 extern struct target_section_table *target_get_section_table
2355 (struct target_ops *target);
2356
2357 /* From mem-break.c */
2358
2359 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2360 struct bp_target_info *);
2361
2362 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2363 struct bp_target_info *);
2364
2365 /* Check whether the memory at the breakpoint's placed address still
2366 contains the expected breakpoint instruction. */
2367
2368 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2369 struct bp_target_info *bp_tgt);
2370
2371 extern int default_memory_remove_breakpoint (struct gdbarch *,
2372 struct bp_target_info *);
2373
2374 extern int default_memory_insert_breakpoint (struct gdbarch *,
2375 struct bp_target_info *);
2376
2377
2378 /* From target.c */
2379
2380 extern void initialize_targets (void);
2381
2382 extern void noprocess (void) ATTRIBUTE_NORETURN;
2383
2384 extern void target_require_runnable (void);
2385
2386 extern struct target_ops *find_target_beneath (struct target_ops *);
2387
2388 /* Find the target at STRATUM. If no target is at that stratum,
2389 return NULL. */
2390
2391 struct target_ops *find_target_at (enum strata stratum);
2392
2393 /* Read OS data object of type TYPE from the target, and return it in
2394 XML format. The result is NUL-terminated and returned as a string,
2395 allocated using xmalloc. If an error occurs or the transfer is
2396 unsupported, NULL is returned. Empty objects are returned as
2397 allocated but empty strings. */
2398
2399 extern char *target_get_osdata (const char *type);
2400
2401 \f
2402 /* Stuff that should be shared among the various remote targets. */
2403
2404 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2405 information (higher values, more information). */
2406 extern int remote_debug;
2407
2408 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2409 extern int baud_rate;
2410
2411 /* Parity for serial port */
2412 extern int serial_parity;
2413
2414 /* Timeout limit for response from target. */
2415 extern int remote_timeout;
2416
2417 \f
2418
2419 /* Set the show memory breakpoints mode to show, and installs a cleanup
2420 to restore it back to the current value. */
2421 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2422
2423 extern int may_write_registers;
2424 extern int may_write_memory;
2425 extern int may_insert_breakpoints;
2426 extern int may_insert_tracepoints;
2427 extern int may_insert_fast_tracepoints;
2428 extern int may_stop;
2429
2430 extern void update_target_permissions (void);
2431
2432 \f
2433 /* Imported from machine dependent code. */
2434
2435 /* See to_supports_btrace in struct target_ops. */
2436 extern int target_supports_btrace (enum btrace_format);
2437
2438 /* See to_enable_btrace in struct target_ops. */
2439 extern struct btrace_target_info *
2440 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2441
2442 /* See to_disable_btrace in struct target_ops. */
2443 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2444
2445 /* See to_teardown_btrace in struct target_ops. */
2446 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2447
2448 /* See to_read_btrace in struct target_ops. */
2449 extern enum btrace_error target_read_btrace (struct btrace_data *,
2450 struct btrace_target_info *,
2451 enum btrace_read_type);
2452
2453 /* See to_btrace_conf in struct target_ops. */
2454 extern const struct btrace_config *
2455 target_btrace_conf (const struct btrace_target_info *);
2456
2457 /* See to_stop_recording in struct target_ops. */
2458 extern void target_stop_recording (void);
2459
2460 /* See to_save_record in struct target_ops. */
2461 extern void target_save_record (const char *filename);
2462
2463 /* Query if the target supports deleting the execution log. */
2464 extern int target_supports_delete_record (void);
2465
2466 /* See to_delete_record in struct target_ops. */
2467 extern void target_delete_record (void);
2468
2469 /* See to_record_is_replaying in struct target_ops. */
2470 extern int target_record_is_replaying (ptid_t ptid);
2471
2472 /* See to_record_will_replay in struct target_ops. */
2473 extern int target_record_will_replay (ptid_t ptid, int dir);
2474
2475 /* See to_record_stop_replaying in struct target_ops. */
2476 extern void target_record_stop_replaying (void);
2477
2478 /* See to_goto_record_begin in struct target_ops. */
2479 extern void target_goto_record_begin (void);
2480
2481 /* See to_goto_record_end in struct target_ops. */
2482 extern void target_goto_record_end (void);
2483
2484 /* See to_goto_record in struct target_ops. */
2485 extern void target_goto_record (ULONGEST insn);
2486
2487 /* See to_insn_history. */
2488 extern void target_insn_history (int size, int flags);
2489
2490 /* See to_insn_history_from. */
2491 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2492
2493 /* See to_insn_history_range. */
2494 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2495
2496 /* See to_call_history. */
2497 extern void target_call_history (int size, int flags);
2498
2499 /* See to_call_history_from. */
2500 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2501
2502 /* See to_call_history_range. */
2503 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2504
2505 /* See to_prepare_to_generate_core. */
2506 extern void target_prepare_to_generate_core (void);
2507
2508 /* See to_done_generating_core. */
2509 extern void target_done_generating_core (void);
2510
2511 #endif /* !defined (TARGET_H) */
This page took 0.084088 seconds and 4 git commands to generate.