target: add to_record_will_replay target method
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45
46 /* This include file defines the interface between the main part
47 of the debugger, and the part which is target-specific, or
48 specific to the communications interface between us and the
49 target.
50
51 A TARGET is an interface between the debugger and a particular
52 kind of file or process. Targets can be STACKED in STRATA,
53 so that more than one target can potentially respond to a request.
54 In particular, memory accesses will walk down the stack of targets
55 until they find a target that is interested in handling that particular
56 address. STRATA are artificial boundaries on the stack, within
57 which particular kinds of targets live. Strata exist so that
58 people don't get confused by pushing e.g. a process target and then
59 a file target, and wondering why they can't see the current values
60 of variables any more (the file target is handling them and they
61 never get to the process target). So when you push a file target,
62 it goes into the file stratum, which is always below the process
63 stratum. */
64
65 #include "target/target.h"
66 #include "target/resume.h"
67 #include "target/wait.h"
68 #include "target/waitstatus.h"
69 #include "bfd.h"
70 #include "symtab.h"
71 #include "memattr.h"
72 #include "vec.h"
73 #include "gdb_signals.h"
74 #include "btrace.h"
75 #include "command.h"
76
77 #include "break-common.h" /* For enum target_hw_bp_type. */
78
79 enum strata
80 {
81 dummy_stratum, /* The lowest of the low */
82 file_stratum, /* Executable files, etc */
83 process_stratum, /* Executing processes or core dump files */
84 thread_stratum, /* Executing threads */
85 record_stratum, /* Support record debugging */
86 arch_stratum /* Architecture overrides */
87 };
88
89 enum thread_control_capabilities
90 {
91 tc_none = 0, /* Default: can't control thread execution. */
92 tc_schedlock = 1, /* Can lock the thread scheduler. */
93 };
94
95 /* The structure below stores information about a system call.
96 It is basically used in the "catch syscall" command, and in
97 every function that gives information about a system call.
98
99 It's also good to mention that its fields represent everything
100 that we currently know about a syscall in GDB. */
101 struct syscall
102 {
103 /* The syscall number. */
104 int number;
105
106 /* The syscall name. */
107 const char *name;
108 };
109
110 /* Return a pretty printed form of target_waitstatus.
111 Space for the result is malloc'd, caller must free. */
112 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
113
114 /* Return a pretty printed form of TARGET_OPTIONS.
115 Space for the result is malloc'd, caller must free. */
116 extern char *target_options_to_string (int target_options);
117
118 /* Possible types of events that the inferior handler will have to
119 deal with. */
120 enum inferior_event_type
121 {
122 /* Process a normal inferior event which will result in target_wait
123 being called. */
124 INF_REG_EVENT,
125 /* We are called to do stuff after the inferior stops. */
126 INF_EXEC_COMPLETE,
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE,
203 /* Branch trace configuration, in XML format. */
204 TARGET_OBJECT_BTRACE_CONF,
205 /* The pathname of the executable file that was run to create
206 a specified process. ANNEX should be a string representation
207 of the process ID of the process in question, in hexadecimal
208 format. */
209 TARGET_OBJECT_EXEC_FILE,
210 /* Possible future objects: TARGET_OBJECT_FILE, ... */
211 };
212
213 /* Possible values returned by target_xfer_partial, etc. */
214
215 enum target_xfer_status
216 {
217 /* Some bytes are transferred. */
218 TARGET_XFER_OK = 1,
219
220 /* No further transfer is possible. */
221 TARGET_XFER_EOF = 0,
222
223 /* The piece of the object requested is unavailable. */
224 TARGET_XFER_UNAVAILABLE = 2,
225
226 /* Generic I/O error. Note that it's important that this is '-1',
227 as we still have target_xfer-related code returning hardcoded
228 '-1' on error. */
229 TARGET_XFER_E_IO = -1,
230
231 /* Keep list in sync with target_xfer_status_to_string. */
232 };
233
234 /* Return the string form of STATUS. */
235
236 extern const char *
237 target_xfer_status_to_string (enum target_xfer_status status);
238
239 /* Enumeration of the kinds of traceframe searches that a target may
240 be able to perform. */
241
242 enum trace_find_type
243 {
244 tfind_number,
245 tfind_pc,
246 tfind_tp,
247 tfind_range,
248 tfind_outside,
249 };
250
251 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
252 DEF_VEC_P(static_tracepoint_marker_p);
253
254 typedef enum target_xfer_status
255 target_xfer_partial_ftype (struct target_ops *ops,
256 enum target_object object,
257 const char *annex,
258 gdb_byte *readbuf,
259 const gdb_byte *writebuf,
260 ULONGEST offset,
261 ULONGEST len,
262 ULONGEST *xfered_len);
263
264 enum target_xfer_status
265 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
266 const gdb_byte *writebuf, ULONGEST memaddr,
267 LONGEST len, ULONGEST *xfered_len);
268
269 /* Request that OPS transfer up to LEN addressable units of the target's
270 OBJECT. When reading from a memory object, the size of an addressable unit
271 is architecture dependent and can be found using
272 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
273 byte long. BUF should point to a buffer large enough to hold the read data,
274 taking into account the addressable unit size. The OFFSET, for a seekable
275 object, specifies the starting point. The ANNEX can be used to provide
276 additional data-specific information to the target.
277
278 Return the number of addressable units actually transferred, or a negative
279 error code (an 'enum target_xfer_error' value) if the transfer is not
280 supported or otherwise fails. Return of a positive value less than
281 LEN indicates that no further transfer is possible. Unlike the raw
282 to_xfer_partial interface, callers of these functions do not need
283 to retry partial transfers. */
284
285 extern LONGEST target_read (struct target_ops *ops,
286 enum target_object object,
287 const char *annex, gdb_byte *buf,
288 ULONGEST offset, LONGEST len);
289
290 struct memory_read_result
291 {
292 /* First address that was read. */
293 ULONGEST begin;
294 /* Past-the-end address. */
295 ULONGEST end;
296 /* The data. */
297 gdb_byte *data;
298 };
299 typedef struct memory_read_result memory_read_result_s;
300 DEF_VEC_O(memory_read_result_s);
301
302 extern void free_memory_read_result_vector (void *);
303
304 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
305 const ULONGEST offset,
306 const LONGEST len);
307
308 /* Request that OPS transfer up to LEN addressable units from BUF to the
309 target's OBJECT. When writing to a memory object, the addressable unit
310 size is architecture dependent and can be found using
311 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
312 byte long. The OFFSET, for a seekable object, specifies the starting point.
313 The ANNEX can be used to provide additional data-specific information to
314 the target.
315
316 Return the number of addressable units actually transferred, or a negative
317 error code (an 'enum target_xfer_status' value) if the transfer is not
318 supported or otherwise fails. Return of a positive value less than
319 LEN indicates that no further transfer is possible. Unlike the raw
320 to_xfer_partial interface, callers of these functions do not need to
321 retry partial transfers. */
322
323 extern LONGEST target_write (struct target_ops *ops,
324 enum target_object object,
325 const char *annex, const gdb_byte *buf,
326 ULONGEST offset, LONGEST len);
327
328 /* Similar to target_write, except that it also calls PROGRESS with
329 the number of bytes written and the opaque BATON after every
330 successful partial write (and before the first write). This is
331 useful for progress reporting and user interaction while writing
332 data. To abort the transfer, the progress callback can throw an
333 exception. */
334
335 LONGEST target_write_with_progress (struct target_ops *ops,
336 enum target_object object,
337 const char *annex, const gdb_byte *buf,
338 ULONGEST offset, LONGEST len,
339 void (*progress) (ULONGEST, void *),
340 void *baton);
341
342 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
343 be read using OPS. The return value will be -1 if the transfer
344 fails or is not supported; 0 if the object is empty; or the length
345 of the object otherwise. If a positive value is returned, a
346 sufficiently large buffer will be allocated using xmalloc and
347 returned in *BUF_P containing the contents of the object.
348
349 This method should be used for objects sufficiently small to store
350 in a single xmalloc'd buffer, when no fixed bound on the object's
351 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
352 through this function. */
353
354 extern LONGEST target_read_alloc (struct target_ops *ops,
355 enum target_object object,
356 const char *annex, gdb_byte **buf_p);
357
358 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
359 returned as a string, allocated using xmalloc. If an error occurs
360 or the transfer is unsupported, NULL is returned. Empty objects
361 are returned as allocated but empty strings. A warning is issued
362 if the result contains any embedded NUL bytes. */
363
364 extern char *target_read_stralloc (struct target_ops *ops,
365 enum target_object object,
366 const char *annex);
367
368 /* See target_ops->to_xfer_partial. */
369 extern target_xfer_partial_ftype target_xfer_partial;
370
371 /* Wrappers to target read/write that perform memory transfers. They
372 throw an error if the memory transfer fails.
373
374 NOTE: cagney/2003-10-23: The naming schema is lifted from
375 "frame.h". The parameter order is lifted from get_frame_memory,
376 which in turn lifted it from read_memory. */
377
378 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
379 gdb_byte *buf, LONGEST len);
380 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
381 CORE_ADDR addr, int len,
382 enum bfd_endian byte_order);
383 \f
384 struct thread_info; /* fwd decl for parameter list below: */
385
386 /* The type of the callback to the to_async method. */
387
388 typedef void async_callback_ftype (enum inferior_event_type event_type,
389 void *context);
390
391 /* Normally target debug printing is purely type-based. However,
392 sometimes it is necessary to override the debug printing on a
393 per-argument basis. This macro can be used, attribute-style, to
394 name the target debug printing function for a particular method
395 argument. FUNC is the name of the function. The macro's
396 definition is empty because it is only used by the
397 make-target-delegates script. */
398
399 #define TARGET_DEBUG_PRINTER(FUNC)
400
401 /* These defines are used to mark target_ops methods. The script
402 make-target-delegates scans these and auto-generates the base
403 method implementations. There are four macros that can be used:
404
405 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
406 does nothing. This is only valid if the method return type is
407 'void'.
408
409 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
410 'tcomplain ()'. The base method simply makes this call, which is
411 assumed not to return.
412
413 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
414 base method returns this expression's value.
415
416 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
417 make-target-delegates does not generate a base method in this case,
418 but instead uses the argument function as the base method. */
419
420 #define TARGET_DEFAULT_IGNORE()
421 #define TARGET_DEFAULT_NORETURN(ARG)
422 #define TARGET_DEFAULT_RETURN(ARG)
423 #define TARGET_DEFAULT_FUNC(ARG)
424
425 struct target_ops
426 {
427 struct target_ops *beneath; /* To the target under this one. */
428 const char *to_shortname; /* Name this target type */
429 const char *to_longname; /* Name for printing */
430 const char *to_doc; /* Documentation. Does not include trailing
431 newline, and starts with a one-line descrip-
432 tion (probably similar to to_longname). */
433 /* Per-target scratch pad. */
434 void *to_data;
435 /* The open routine takes the rest of the parameters from the
436 command, and (if successful) pushes a new target onto the
437 stack. Targets should supply this routine, if only to provide
438 an error message. */
439 void (*to_open) (const char *, int);
440 /* Old targets with a static target vector provide "to_close".
441 New re-entrant targets provide "to_xclose" and that is expected
442 to xfree everything (including the "struct target_ops"). */
443 void (*to_xclose) (struct target_ops *targ);
444 void (*to_close) (struct target_ops *);
445 /* Attaches to a process on the target side. Arguments are as
446 passed to the `attach' command by the user. This routine can
447 be called when the target is not on the target-stack, if the
448 target_can_run routine returns 1; in that case, it must push
449 itself onto the stack. Upon exit, the target should be ready
450 for normal operations, and should be ready to deliver the
451 status of the process immediately (without waiting) to an
452 upcoming target_wait call. */
453 void (*to_attach) (struct target_ops *ops, const char *, int);
454 void (*to_post_attach) (struct target_ops *, int)
455 TARGET_DEFAULT_IGNORE ();
456 void (*to_detach) (struct target_ops *ops, const char *, int)
457 TARGET_DEFAULT_IGNORE ();
458 void (*to_disconnect) (struct target_ops *, const char *, int)
459 TARGET_DEFAULT_NORETURN (tcomplain ());
460 void (*to_resume) (struct target_ops *, ptid_t,
461 int TARGET_DEBUG_PRINTER (target_debug_print_step),
462 enum gdb_signal)
463 TARGET_DEFAULT_NORETURN (noprocess ());
464 ptid_t (*to_wait) (struct target_ops *,
465 ptid_t, struct target_waitstatus *,
466 int TARGET_DEBUG_PRINTER (target_debug_print_options))
467 TARGET_DEFAULT_FUNC (default_target_wait);
468 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
469 TARGET_DEFAULT_IGNORE ();
470 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
471 TARGET_DEFAULT_NORETURN (noprocess ());
472 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
473 TARGET_DEFAULT_NORETURN (noprocess ());
474
475 void (*to_files_info) (struct target_ops *)
476 TARGET_DEFAULT_IGNORE ();
477 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
478 struct bp_target_info *)
479 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
480 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
481 struct bp_target_info *)
482 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
483
484 /* Returns true if the target stopped because it executed a
485 software breakpoint. This is necessary for correct background
486 execution / non-stop mode operation, and for correct PC
487 adjustment on targets where the PC needs to be adjusted when a
488 software breakpoint triggers. In these modes, by the time GDB
489 processes a breakpoint event, the breakpoint may already be
490 done from the target, so GDB needs to be able to tell whether
491 it should ignore the event and whether it should adjust the PC.
492 See adjust_pc_after_break. */
493 int (*to_stopped_by_sw_breakpoint) (struct target_ops *)
494 TARGET_DEFAULT_RETURN (0);
495 /* Returns true if the above method is supported. */
496 int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *)
497 TARGET_DEFAULT_RETURN (0);
498
499 /* Returns true if the target stopped for a hardware breakpoint.
500 Likewise, if the target supports hardware breakpoints, this
501 method is necessary for correct background execution / non-stop
502 mode operation. Even though hardware breakpoints do not
503 require PC adjustment, GDB needs to be able to tell whether the
504 hardware breakpoint event is a delayed event for a breakpoint
505 that is already gone and should thus be ignored. */
506 int (*to_stopped_by_hw_breakpoint) (struct target_ops *)
507 TARGET_DEFAULT_RETURN (0);
508 /* Returns true if the above method is supported. */
509 int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *)
510 TARGET_DEFAULT_RETURN (0);
511
512 int (*to_can_use_hw_breakpoint) (struct target_ops *,
513 enum bptype, int, int)
514 TARGET_DEFAULT_RETURN (0);
515 int (*to_ranged_break_num_registers) (struct target_ops *)
516 TARGET_DEFAULT_RETURN (-1);
517 int (*to_insert_hw_breakpoint) (struct target_ops *,
518 struct gdbarch *, struct bp_target_info *)
519 TARGET_DEFAULT_RETURN (-1);
520 int (*to_remove_hw_breakpoint) (struct target_ops *,
521 struct gdbarch *, struct bp_target_info *)
522 TARGET_DEFAULT_RETURN (-1);
523
524 /* Documentation of what the two routines below are expected to do is
525 provided with the corresponding target_* macros. */
526 int (*to_remove_watchpoint) (struct target_ops *, CORE_ADDR, int,
527 enum target_hw_bp_type, struct expression *)
528 TARGET_DEFAULT_RETURN (-1);
529 int (*to_insert_watchpoint) (struct target_ops *, CORE_ADDR, int,
530 enum target_hw_bp_type, struct expression *)
531 TARGET_DEFAULT_RETURN (-1);
532
533 int (*to_insert_mask_watchpoint) (struct target_ops *,
534 CORE_ADDR, CORE_ADDR, int)
535 TARGET_DEFAULT_RETURN (1);
536 int (*to_remove_mask_watchpoint) (struct target_ops *,
537 CORE_ADDR, CORE_ADDR, int)
538 TARGET_DEFAULT_RETURN (1);
539 int (*to_stopped_by_watchpoint) (struct target_ops *)
540 TARGET_DEFAULT_RETURN (0);
541 int to_have_steppable_watchpoint;
542 int to_have_continuable_watchpoint;
543 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
544 TARGET_DEFAULT_RETURN (0);
545 int (*to_watchpoint_addr_within_range) (struct target_ops *,
546 CORE_ADDR, CORE_ADDR, int)
547 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
548
549 /* Documentation of this routine is provided with the corresponding
550 target_* macro. */
551 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
552 CORE_ADDR, int)
553 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
554
555 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
556 CORE_ADDR, int, int,
557 struct expression *)
558 TARGET_DEFAULT_RETURN (0);
559 int (*to_masked_watch_num_registers) (struct target_ops *,
560 CORE_ADDR, CORE_ADDR)
561 TARGET_DEFAULT_RETURN (-1);
562
563 /* Return 1 for sure target can do single step. Return -1 for
564 unknown. Return 0 for target can't do. */
565 int (*to_can_do_single_step) (struct target_ops *)
566 TARGET_DEFAULT_RETURN (-1);
567
568 void (*to_terminal_init) (struct target_ops *)
569 TARGET_DEFAULT_IGNORE ();
570 void (*to_terminal_inferior) (struct target_ops *)
571 TARGET_DEFAULT_IGNORE ();
572 void (*to_terminal_ours_for_output) (struct target_ops *)
573 TARGET_DEFAULT_IGNORE ();
574 void (*to_terminal_ours) (struct target_ops *)
575 TARGET_DEFAULT_IGNORE ();
576 void (*to_terminal_info) (struct target_ops *, const char *, int)
577 TARGET_DEFAULT_FUNC (default_terminal_info);
578 void (*to_kill) (struct target_ops *)
579 TARGET_DEFAULT_NORETURN (noprocess ());
580 void (*to_load) (struct target_ops *, const char *, int)
581 TARGET_DEFAULT_NORETURN (tcomplain ());
582 /* Start an inferior process and set inferior_ptid to its pid.
583 EXEC_FILE is the file to run.
584 ALLARGS is a string containing the arguments to the program.
585 ENV is the environment vector to pass. Errors reported with error().
586 On VxWorks and various standalone systems, we ignore exec_file. */
587 void (*to_create_inferior) (struct target_ops *,
588 char *, char *, char **, int);
589 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
590 TARGET_DEFAULT_IGNORE ();
591 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
592 TARGET_DEFAULT_RETURN (1);
593 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
594 TARGET_DEFAULT_RETURN (1);
595 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
596 TARGET_DEFAULT_RETURN (1);
597 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
598 TARGET_DEFAULT_RETURN (1);
599 int (*to_follow_fork) (struct target_ops *, int, int)
600 TARGET_DEFAULT_FUNC (default_follow_fork);
601 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
602 TARGET_DEFAULT_RETURN (1);
603 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
604 TARGET_DEFAULT_RETURN (1);
605 void (*to_follow_exec) (struct target_ops *, struct inferior *, char *)
606 TARGET_DEFAULT_IGNORE ();
607 int (*to_set_syscall_catchpoint) (struct target_ops *,
608 int, int, int, int, int *)
609 TARGET_DEFAULT_RETURN (1);
610 int (*to_has_exited) (struct target_ops *, int, int, int *)
611 TARGET_DEFAULT_RETURN (0);
612 void (*to_mourn_inferior) (struct target_ops *)
613 TARGET_DEFAULT_FUNC (default_mourn_inferior);
614 /* Note that to_can_run is special and can be invoked on an
615 unpushed target. Targets defining this method must also define
616 to_can_async_p and to_supports_non_stop. */
617 int (*to_can_run) (struct target_ops *)
618 TARGET_DEFAULT_RETURN (0);
619
620 /* Documentation of this routine is provided with the corresponding
621 target_* macro. */
622 void (*to_pass_signals) (struct target_ops *, int,
623 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
624 TARGET_DEFAULT_IGNORE ();
625
626 /* Documentation of this routine is provided with the
627 corresponding target_* function. */
628 void (*to_program_signals) (struct target_ops *, int,
629 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
630 TARGET_DEFAULT_IGNORE ();
631
632 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
633 TARGET_DEFAULT_RETURN (0);
634 void (*to_update_thread_list) (struct target_ops *)
635 TARGET_DEFAULT_IGNORE ();
636 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
637 TARGET_DEFAULT_FUNC (default_pid_to_str);
638 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
639 TARGET_DEFAULT_RETURN (NULL);
640 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
641 TARGET_DEFAULT_RETURN (NULL);
642 void (*to_stop) (struct target_ops *, ptid_t)
643 TARGET_DEFAULT_IGNORE ();
644 void (*to_interrupt) (struct target_ops *, ptid_t)
645 TARGET_DEFAULT_IGNORE ();
646 void (*to_check_pending_interrupt) (struct target_ops *)
647 TARGET_DEFAULT_IGNORE ();
648 void (*to_rcmd) (struct target_ops *,
649 const char *command, struct ui_file *output)
650 TARGET_DEFAULT_FUNC (default_rcmd);
651 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
652 TARGET_DEFAULT_RETURN (NULL);
653 void (*to_log_command) (struct target_ops *, const char *)
654 TARGET_DEFAULT_IGNORE ();
655 struct target_section_table *(*to_get_section_table) (struct target_ops *)
656 TARGET_DEFAULT_RETURN (NULL);
657 enum strata to_stratum;
658 int (*to_has_all_memory) (struct target_ops *);
659 int (*to_has_memory) (struct target_ops *);
660 int (*to_has_stack) (struct target_ops *);
661 int (*to_has_registers) (struct target_ops *);
662 int (*to_has_execution) (struct target_ops *, ptid_t);
663 int to_has_thread_control; /* control thread execution */
664 int to_attach_no_wait;
665 /* This method must be implemented in some situations. See the
666 comment on 'to_can_run'. */
667 int (*to_can_async_p) (struct target_ops *)
668 TARGET_DEFAULT_RETURN (0);
669 int (*to_is_async_p) (struct target_ops *)
670 TARGET_DEFAULT_RETURN (0);
671 void (*to_async) (struct target_ops *, int)
672 TARGET_DEFAULT_NORETURN (tcomplain ());
673 /* This method must be implemented in some situations. See the
674 comment on 'to_can_run'. */
675 int (*to_supports_non_stop) (struct target_ops *)
676 TARGET_DEFAULT_RETURN (0);
677 /* Return true if the target operates in non-stop mode even with
678 "set non-stop off". */
679 int (*to_always_non_stop_p) (struct target_ops *)
680 TARGET_DEFAULT_RETURN (0);
681 /* find_memory_regions support method for gcore */
682 int (*to_find_memory_regions) (struct target_ops *,
683 find_memory_region_ftype func, void *data)
684 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
685 /* make_corefile_notes support method for gcore */
686 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
687 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
688 /* get_bookmark support method for bookmarks */
689 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
690 TARGET_DEFAULT_NORETURN (tcomplain ());
691 /* goto_bookmark support method for bookmarks */
692 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
693 TARGET_DEFAULT_NORETURN (tcomplain ());
694 /* Return the thread-local address at OFFSET in the
695 thread-local storage for the thread PTID and the shared library
696 or executable file given by OBJFILE. If that block of
697 thread-local storage hasn't been allocated yet, this function
698 may return an error. LOAD_MODULE_ADDR may be zero for statically
699 linked multithreaded inferiors. */
700 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
701 ptid_t ptid,
702 CORE_ADDR load_module_addr,
703 CORE_ADDR offset)
704 TARGET_DEFAULT_NORETURN (generic_tls_error ());
705
706 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
707 OBJECT. The OFFSET, for a seekable object, specifies the
708 starting point. The ANNEX can be used to provide additional
709 data-specific information to the target.
710
711 Return the transferred status, error or OK (an
712 'enum target_xfer_status' value). Save the number of bytes
713 actually transferred in *XFERED_LEN if transfer is successful
714 (TARGET_XFER_OK) or the number unavailable bytes if the requested
715 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
716 smaller than LEN does not indicate the end of the object, only
717 the end of the transfer; higher level code should continue
718 transferring if desired. This is handled in target.c.
719
720 The interface does not support a "retry" mechanism. Instead it
721 assumes that at least one byte will be transfered on each
722 successful call.
723
724 NOTE: cagney/2003-10-17: The current interface can lead to
725 fragmented transfers. Lower target levels should not implement
726 hacks, such as enlarging the transfer, in an attempt to
727 compensate for this. Instead, the target stack should be
728 extended so that it implements supply/collect methods and a
729 look-aside object cache. With that available, the lowest
730 target can safely and freely "push" data up the stack.
731
732 See target_read and target_write for more information. One,
733 and only one, of readbuf or writebuf must be non-NULL. */
734
735 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
736 enum target_object object,
737 const char *annex,
738 gdb_byte *readbuf,
739 const gdb_byte *writebuf,
740 ULONGEST offset, ULONGEST len,
741 ULONGEST *xfered_len)
742 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
743
744 /* Returns the memory map for the target. A return value of NULL
745 means that no memory map is available. If a memory address
746 does not fall within any returned regions, it's assumed to be
747 RAM. The returned memory regions should not overlap.
748
749 The order of regions does not matter; target_memory_map will
750 sort regions by starting address. For that reason, this
751 function should not be called directly except via
752 target_memory_map.
753
754 This method should not cache data; if the memory map could
755 change unexpectedly, it should be invalidated, and higher
756 layers will re-fetch it. */
757 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
758 TARGET_DEFAULT_RETURN (NULL);
759
760 /* Erases the region of flash memory starting at ADDRESS, of
761 length LENGTH.
762
763 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
764 on flash block boundaries, as reported by 'to_memory_map'. */
765 void (*to_flash_erase) (struct target_ops *,
766 ULONGEST address, LONGEST length)
767 TARGET_DEFAULT_NORETURN (tcomplain ());
768
769 /* Finishes a flash memory write sequence. After this operation
770 all flash memory should be available for writing and the result
771 of reading from areas written by 'to_flash_write' should be
772 equal to what was written. */
773 void (*to_flash_done) (struct target_ops *)
774 TARGET_DEFAULT_NORETURN (tcomplain ());
775
776 /* Describe the architecture-specific features of this target. If
777 OPS doesn't have a description, this should delegate to the
778 "beneath" target. Returns the description found, or NULL if no
779 description was available. */
780 const struct target_desc *(*to_read_description) (struct target_ops *ops)
781 TARGET_DEFAULT_RETURN (NULL);
782
783 /* Build the PTID of the thread on which a given task is running,
784 based on LWP and THREAD. These values are extracted from the
785 task Private_Data section of the Ada Task Control Block, and
786 their interpretation depends on the target. */
787 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
788 long lwp, long thread)
789 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
790
791 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
792 Return 0 if *READPTR is already at the end of the buffer.
793 Return -1 if there is insufficient buffer for a whole entry.
794 Return 1 if an entry was read into *TYPEP and *VALP. */
795 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
796 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
797 TARGET_DEFAULT_FUNC (default_auxv_parse);
798
799 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
800 sequence of bytes in PATTERN with length PATTERN_LEN.
801
802 The result is 1 if found, 0 if not found, and -1 if there was an error
803 requiring halting of the search (e.g. memory read error).
804 If the pattern is found the address is recorded in FOUND_ADDRP. */
805 int (*to_search_memory) (struct target_ops *ops,
806 CORE_ADDR start_addr, ULONGEST search_space_len,
807 const gdb_byte *pattern, ULONGEST pattern_len,
808 CORE_ADDR *found_addrp)
809 TARGET_DEFAULT_FUNC (default_search_memory);
810
811 /* Can target execute in reverse? */
812 int (*to_can_execute_reverse) (struct target_ops *)
813 TARGET_DEFAULT_RETURN (0);
814
815 /* The direction the target is currently executing. Must be
816 implemented on targets that support reverse execution and async
817 mode. The default simply returns forward execution. */
818 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
819 TARGET_DEFAULT_FUNC (default_execution_direction);
820
821 /* Does this target support debugging multiple processes
822 simultaneously? */
823 int (*to_supports_multi_process) (struct target_ops *)
824 TARGET_DEFAULT_RETURN (0);
825
826 /* Does this target support enabling and disabling tracepoints while a trace
827 experiment is running? */
828 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
829 TARGET_DEFAULT_RETURN (0);
830
831 /* Does this target support disabling address space randomization? */
832 int (*to_supports_disable_randomization) (struct target_ops *);
833
834 /* Does this target support the tracenz bytecode for string collection? */
835 int (*to_supports_string_tracing) (struct target_ops *)
836 TARGET_DEFAULT_RETURN (0);
837
838 /* Does this target support evaluation of breakpoint conditions on its
839 end? */
840 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
841 TARGET_DEFAULT_RETURN (0);
842
843 /* Does this target support evaluation of breakpoint commands on its
844 end? */
845 int (*to_can_run_breakpoint_commands) (struct target_ops *)
846 TARGET_DEFAULT_RETURN (0);
847
848 /* Determine current architecture of thread PTID.
849
850 The target is supposed to determine the architecture of the code where
851 the target is currently stopped at (on Cell, if a target is in spu_run,
852 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
853 This is architecture used to perform decr_pc_after_break adjustment,
854 and also determines the frame architecture of the innermost frame.
855 ptrace operations need to operate according to target_gdbarch ().
856
857 The default implementation always returns target_gdbarch (). */
858 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
859 TARGET_DEFAULT_FUNC (default_thread_architecture);
860
861 /* Determine current address space of thread PTID.
862
863 The default implementation always returns the inferior's
864 address space. */
865 struct address_space *(*to_thread_address_space) (struct target_ops *,
866 ptid_t)
867 TARGET_DEFAULT_FUNC (default_thread_address_space);
868
869 /* Target file operations. */
870
871 /* Return nonzero if the filesystem seen by the current inferior
872 is the local filesystem, zero otherwise. */
873 int (*to_filesystem_is_local) (struct target_ops *)
874 TARGET_DEFAULT_RETURN (1);
875
876 /* Open FILENAME on the target, in the filesystem as seen by INF,
877 using FLAGS and MODE. If INF is NULL, use the filesystem seen
878 by the debugger (GDB or, for remote targets, the remote stub).
879 If WARN_IF_SLOW is nonzero, print a warning message if the file
880 is being accessed over a link that may be slow. Return a
881 target file descriptor, or -1 if an error occurs (and set
882 *TARGET_ERRNO). */
883 int (*to_fileio_open) (struct target_ops *,
884 struct inferior *inf, const char *filename,
885 int flags, int mode, int warn_if_slow,
886 int *target_errno);
887
888 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
889 Return the number of bytes written, or -1 if an error occurs
890 (and set *TARGET_ERRNO). */
891 int (*to_fileio_pwrite) (struct target_ops *,
892 int fd, const gdb_byte *write_buf, int len,
893 ULONGEST offset, int *target_errno);
894
895 /* Read up to LEN bytes FD on the target into READ_BUF.
896 Return the number of bytes read, or -1 if an error occurs
897 (and set *TARGET_ERRNO). */
898 int (*to_fileio_pread) (struct target_ops *,
899 int fd, gdb_byte *read_buf, int len,
900 ULONGEST offset, int *target_errno);
901
902 /* Get information about the file opened as FD and put it in
903 SB. Return 0 on success, or -1 if an error occurs (and set
904 *TARGET_ERRNO). */
905 int (*to_fileio_fstat) (struct target_ops *,
906 int fd, struct stat *sb, int *target_errno);
907
908 /* Close FD on the target. Return 0, or -1 if an error occurs
909 (and set *TARGET_ERRNO). */
910 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
911
912 /* Unlink FILENAME on the target, in the filesystem as seen by
913 INF. If INF is NULL, use the filesystem seen by the debugger
914 (GDB or, for remote targets, the remote stub). Return 0, or
915 -1 if an error occurs (and set *TARGET_ERRNO). */
916 int (*to_fileio_unlink) (struct target_ops *,
917 struct inferior *inf,
918 const char *filename,
919 int *target_errno);
920
921 /* Read value of symbolic link FILENAME on the target, in the
922 filesystem as seen by INF. If INF is NULL, use the filesystem
923 seen by the debugger (GDB or, for remote targets, the remote
924 stub). Return a null-terminated string allocated via xmalloc,
925 or NULL if an error occurs (and set *TARGET_ERRNO). */
926 char *(*to_fileio_readlink) (struct target_ops *,
927 struct inferior *inf,
928 const char *filename,
929 int *target_errno);
930
931
932 /* Implement the "info proc" command. */
933 void (*to_info_proc) (struct target_ops *, const char *,
934 enum info_proc_what);
935
936 /* Tracepoint-related operations. */
937
938 /* Prepare the target for a tracing run. */
939 void (*to_trace_init) (struct target_ops *)
940 TARGET_DEFAULT_NORETURN (tcomplain ());
941
942 /* Send full details of a tracepoint location to the target. */
943 void (*to_download_tracepoint) (struct target_ops *,
944 struct bp_location *location)
945 TARGET_DEFAULT_NORETURN (tcomplain ());
946
947 /* Is the target able to download tracepoint locations in current
948 state? */
949 int (*to_can_download_tracepoint) (struct target_ops *)
950 TARGET_DEFAULT_RETURN (0);
951
952 /* Send full details of a trace state variable to the target. */
953 void (*to_download_trace_state_variable) (struct target_ops *,
954 struct trace_state_variable *tsv)
955 TARGET_DEFAULT_NORETURN (tcomplain ());
956
957 /* Enable a tracepoint on the target. */
958 void (*to_enable_tracepoint) (struct target_ops *,
959 struct bp_location *location)
960 TARGET_DEFAULT_NORETURN (tcomplain ());
961
962 /* Disable a tracepoint on the target. */
963 void (*to_disable_tracepoint) (struct target_ops *,
964 struct bp_location *location)
965 TARGET_DEFAULT_NORETURN (tcomplain ());
966
967 /* Inform the target info of memory regions that are readonly
968 (such as text sections), and so it should return data from
969 those rather than look in the trace buffer. */
970 void (*to_trace_set_readonly_regions) (struct target_ops *)
971 TARGET_DEFAULT_NORETURN (tcomplain ());
972
973 /* Start a trace run. */
974 void (*to_trace_start) (struct target_ops *)
975 TARGET_DEFAULT_NORETURN (tcomplain ());
976
977 /* Get the current status of a tracing run. */
978 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
979 TARGET_DEFAULT_RETURN (-1);
980
981 void (*to_get_tracepoint_status) (struct target_ops *,
982 struct breakpoint *tp,
983 struct uploaded_tp *utp)
984 TARGET_DEFAULT_NORETURN (tcomplain ());
985
986 /* Stop a trace run. */
987 void (*to_trace_stop) (struct target_ops *)
988 TARGET_DEFAULT_NORETURN (tcomplain ());
989
990 /* Ask the target to find a trace frame of the given type TYPE,
991 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
992 number of the trace frame, and also the tracepoint number at
993 TPP. If no trace frame matches, return -1. May throw if the
994 operation fails. */
995 int (*to_trace_find) (struct target_ops *,
996 enum trace_find_type type, int num,
997 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
998 TARGET_DEFAULT_RETURN (-1);
999
1000 /* Get the value of the trace state variable number TSV, returning
1001 1 if the value is known and writing the value itself into the
1002 location pointed to by VAL, else returning 0. */
1003 int (*to_get_trace_state_variable_value) (struct target_ops *,
1004 int tsv, LONGEST *val)
1005 TARGET_DEFAULT_RETURN (0);
1006
1007 int (*to_save_trace_data) (struct target_ops *, const char *filename)
1008 TARGET_DEFAULT_NORETURN (tcomplain ());
1009
1010 int (*to_upload_tracepoints) (struct target_ops *,
1011 struct uploaded_tp **utpp)
1012 TARGET_DEFAULT_RETURN (0);
1013
1014 int (*to_upload_trace_state_variables) (struct target_ops *,
1015 struct uploaded_tsv **utsvp)
1016 TARGET_DEFAULT_RETURN (0);
1017
1018 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
1019 ULONGEST offset, LONGEST len)
1020 TARGET_DEFAULT_NORETURN (tcomplain ());
1021
1022 /* Get the minimum length of instruction on which a fast tracepoint
1023 may be set on the target. If this operation is unsupported,
1024 return -1. If for some reason the minimum length cannot be
1025 determined, return 0. */
1026 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
1027 TARGET_DEFAULT_RETURN (-1);
1028
1029 /* Set the target's tracing behavior in response to unexpected
1030 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1031 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
1032 TARGET_DEFAULT_IGNORE ();
1033 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
1034 TARGET_DEFAULT_IGNORE ();
1035 /* Set the size of trace buffer in the target. */
1036 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
1037 TARGET_DEFAULT_IGNORE ();
1038
1039 /* Add/change textual notes about the trace run, returning 1 if
1040 successful, 0 otherwise. */
1041 int (*to_set_trace_notes) (struct target_ops *,
1042 const char *user, const char *notes,
1043 const char *stopnotes)
1044 TARGET_DEFAULT_RETURN (0);
1045
1046 /* Return the processor core that thread PTID was last seen on.
1047 This information is updated only when:
1048 - update_thread_list is called
1049 - thread stops
1050 If the core cannot be determined -- either for the specified
1051 thread, or right now, or in this debug session, or for this
1052 target -- return -1. */
1053 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
1054 TARGET_DEFAULT_RETURN (-1);
1055
1056 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1057 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1058 a match, 0 if there's a mismatch, and -1 if an error is
1059 encountered while reading memory. */
1060 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
1061 CORE_ADDR memaddr, ULONGEST size)
1062 TARGET_DEFAULT_FUNC (default_verify_memory);
1063
1064 /* Return the address of the start of the Thread Information Block
1065 a Windows OS specific feature. */
1066 int (*to_get_tib_address) (struct target_ops *,
1067 ptid_t ptid, CORE_ADDR *addr)
1068 TARGET_DEFAULT_NORETURN (tcomplain ());
1069
1070 /* Send the new settings of write permission variables. */
1071 void (*to_set_permissions) (struct target_ops *)
1072 TARGET_DEFAULT_IGNORE ();
1073
1074 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1075 with its details. Return 1 on success, 0 on failure. */
1076 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
1077 struct static_tracepoint_marker *marker)
1078 TARGET_DEFAULT_RETURN (0);
1079
1080 /* Return a vector of all tracepoints markers string id ID, or all
1081 markers if ID is NULL. */
1082 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
1083 TARGET_DEFAULT_NORETURN (tcomplain ());
1084
1085 /* Return a traceframe info object describing the current
1086 traceframe's contents. This method should not cache data;
1087 higher layers take care of caching, invalidating, and
1088 re-fetching when necessary. */
1089 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
1090 TARGET_DEFAULT_NORETURN (tcomplain ());
1091
1092 /* Ask the target to use or not to use agent according to USE. Return 1
1093 successful, 0 otherwise. */
1094 int (*to_use_agent) (struct target_ops *, int use)
1095 TARGET_DEFAULT_NORETURN (tcomplain ());
1096
1097 /* Is the target able to use agent in current state? */
1098 int (*to_can_use_agent) (struct target_ops *)
1099 TARGET_DEFAULT_RETURN (0);
1100
1101 /* Check whether the target supports branch tracing. */
1102 int (*to_supports_btrace) (struct target_ops *, enum btrace_format)
1103 TARGET_DEFAULT_RETURN (0);
1104
1105 /* Enable branch tracing for PTID using CONF configuration.
1106 Return a branch trace target information struct for reading and for
1107 disabling branch trace. */
1108 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1109 ptid_t ptid,
1110 const struct btrace_config *conf)
1111 TARGET_DEFAULT_NORETURN (tcomplain ());
1112
1113 /* Disable branch tracing and deallocate TINFO. */
1114 void (*to_disable_btrace) (struct target_ops *,
1115 struct btrace_target_info *tinfo)
1116 TARGET_DEFAULT_NORETURN (tcomplain ());
1117
1118 /* Disable branch tracing and deallocate TINFO. This function is similar
1119 to to_disable_btrace, except that it is called during teardown and is
1120 only allowed to perform actions that are safe. A counter-example would
1121 be attempting to talk to a remote target. */
1122 void (*to_teardown_btrace) (struct target_ops *,
1123 struct btrace_target_info *tinfo)
1124 TARGET_DEFAULT_NORETURN (tcomplain ());
1125
1126 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1127 DATA is cleared before new trace is added. */
1128 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1129 struct btrace_data *data,
1130 struct btrace_target_info *btinfo,
1131 enum btrace_read_type type)
1132 TARGET_DEFAULT_NORETURN (tcomplain ());
1133
1134 /* Get the branch trace configuration. */
1135 const struct btrace_config *(*to_btrace_conf) (struct target_ops *self,
1136 const struct btrace_target_info *)
1137 TARGET_DEFAULT_RETURN (NULL);
1138
1139 /* Stop trace recording. */
1140 void (*to_stop_recording) (struct target_ops *)
1141 TARGET_DEFAULT_IGNORE ();
1142
1143 /* Print information about the recording. */
1144 void (*to_info_record) (struct target_ops *)
1145 TARGET_DEFAULT_IGNORE ();
1146
1147 /* Save the recorded execution trace into a file. */
1148 void (*to_save_record) (struct target_ops *, const char *filename)
1149 TARGET_DEFAULT_NORETURN (tcomplain ());
1150
1151 /* Delete the recorded execution trace from the current position
1152 onwards. */
1153 void (*to_delete_record) (struct target_ops *)
1154 TARGET_DEFAULT_NORETURN (tcomplain ());
1155
1156 /* Query if the record target is currently replaying PTID. */
1157 int (*to_record_is_replaying) (struct target_ops *, ptid_t ptid)
1158 TARGET_DEFAULT_RETURN (0);
1159
1160 /* Query if the record target will replay PTID if it were resumed in
1161 execution direction DIR. */
1162 int (*to_record_will_replay) (struct target_ops *, ptid_t ptid, int dir)
1163 TARGET_DEFAULT_RETURN (0);
1164
1165 /* Stop replaying. */
1166 void (*to_record_stop_replaying) (struct target_ops *)
1167 TARGET_DEFAULT_IGNORE ();
1168
1169 /* Go to the begin of the execution trace. */
1170 void (*to_goto_record_begin) (struct target_ops *)
1171 TARGET_DEFAULT_NORETURN (tcomplain ());
1172
1173 /* Go to the end of the execution trace. */
1174 void (*to_goto_record_end) (struct target_ops *)
1175 TARGET_DEFAULT_NORETURN (tcomplain ());
1176
1177 /* Go to a specific location in the recorded execution trace. */
1178 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1179 TARGET_DEFAULT_NORETURN (tcomplain ());
1180
1181 /* Disassemble SIZE instructions in the recorded execution trace from
1182 the current position.
1183 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1184 disassemble SIZE succeeding instructions. */
1185 void (*to_insn_history) (struct target_ops *, int size, int flags)
1186 TARGET_DEFAULT_NORETURN (tcomplain ());
1187
1188 /* Disassemble SIZE instructions in the recorded execution trace around
1189 FROM.
1190 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1191 disassemble SIZE instructions after FROM. */
1192 void (*to_insn_history_from) (struct target_ops *,
1193 ULONGEST from, int size, int flags)
1194 TARGET_DEFAULT_NORETURN (tcomplain ());
1195
1196 /* Disassemble a section of the recorded execution trace from instruction
1197 BEGIN (inclusive) to instruction END (inclusive). */
1198 void (*to_insn_history_range) (struct target_ops *,
1199 ULONGEST begin, ULONGEST end, int flags)
1200 TARGET_DEFAULT_NORETURN (tcomplain ());
1201
1202 /* Print a function trace of the recorded execution trace.
1203 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1204 succeeding functions. */
1205 void (*to_call_history) (struct target_ops *, int size, int flags)
1206 TARGET_DEFAULT_NORETURN (tcomplain ());
1207
1208 /* Print a function trace of the recorded execution trace starting
1209 at function FROM.
1210 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1211 SIZE functions after FROM. */
1212 void (*to_call_history_from) (struct target_ops *,
1213 ULONGEST begin, int size, int flags)
1214 TARGET_DEFAULT_NORETURN (tcomplain ());
1215
1216 /* Print a function trace of an execution trace section from function BEGIN
1217 (inclusive) to function END (inclusive). */
1218 void (*to_call_history_range) (struct target_ops *,
1219 ULONGEST begin, ULONGEST end, int flags)
1220 TARGET_DEFAULT_NORETURN (tcomplain ());
1221
1222 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1223 non-empty annex. */
1224 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1225 TARGET_DEFAULT_RETURN (0);
1226
1227 /* Those unwinders are tried before any other arch unwinders. If
1228 SELF doesn't have unwinders, it should delegate to the
1229 "beneath" target. */
1230 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1231 TARGET_DEFAULT_RETURN (NULL);
1232
1233 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1234 TARGET_DEFAULT_RETURN (NULL);
1235
1236 /* Prepare to generate a core file. */
1237 void (*to_prepare_to_generate_core) (struct target_ops *)
1238 TARGET_DEFAULT_IGNORE ();
1239
1240 /* Cleanup after generating a core file. */
1241 void (*to_done_generating_core) (struct target_ops *)
1242 TARGET_DEFAULT_IGNORE ();
1243
1244 int to_magic;
1245 /* Need sub-structure for target machine related rather than comm related?
1246 */
1247 };
1248
1249 /* Magic number for checking ops size. If a struct doesn't end with this
1250 number, somebody changed the declaration but didn't change all the
1251 places that initialize one. */
1252
1253 #define OPS_MAGIC 3840
1254
1255 /* The ops structure for our "current" target process. This should
1256 never be NULL. If there is no target, it points to the dummy_target. */
1257
1258 extern struct target_ops current_target;
1259
1260 /* Define easy words for doing these operations on our current target. */
1261
1262 #define target_shortname (current_target.to_shortname)
1263 #define target_longname (current_target.to_longname)
1264
1265 /* Does whatever cleanup is required for a target that we are no
1266 longer going to be calling. This routine is automatically always
1267 called after popping the target off the target stack - the target's
1268 own methods are no longer available through the target vector.
1269 Closing file descriptors and freeing all memory allocated memory are
1270 typical things it should do. */
1271
1272 void target_close (struct target_ops *targ);
1273
1274 /* Find the correct target to use for "attach". If a target on the
1275 current stack supports attaching, then it is returned. Otherwise,
1276 the default run target is returned. */
1277
1278 extern struct target_ops *find_attach_target (void);
1279
1280 /* Find the correct target to use for "run". If a target on the
1281 current stack supports creating a new inferior, then it is
1282 returned. Otherwise, the default run target is returned. */
1283
1284 extern struct target_ops *find_run_target (void);
1285
1286 /* Some targets don't generate traps when attaching to the inferior,
1287 or their target_attach implementation takes care of the waiting.
1288 These targets must set to_attach_no_wait. */
1289
1290 #define target_attach_no_wait \
1291 (current_target.to_attach_no_wait)
1292
1293 /* The target_attach operation places a process under debugger control,
1294 and stops the process.
1295
1296 This operation provides a target-specific hook that allows the
1297 necessary bookkeeping to be performed after an attach completes. */
1298 #define target_post_attach(pid) \
1299 (*current_target.to_post_attach) (&current_target, pid)
1300
1301 /* Takes a program previously attached to and detaches it.
1302 The program may resume execution (some targets do, some don't) and will
1303 no longer stop on signals, etc. We better not have left any breakpoints
1304 in the program or it'll die when it hits one. ARGS is arguments
1305 typed by the user (e.g. a signal to send the process). FROM_TTY
1306 says whether to be verbose or not. */
1307
1308 extern void target_detach (const char *, int);
1309
1310 /* Disconnect from the current target without resuming it (leaving it
1311 waiting for a debugger). */
1312
1313 extern void target_disconnect (const char *, int);
1314
1315 /* Resume execution of the target process PTID (or a group of
1316 threads). STEP says whether to hardware single-step or to run free;
1317 SIGGNAL is the signal to be given to the target, or GDB_SIGNAL_0 for no
1318 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1319 PTID means `step/resume only this process id'. A wildcard PTID
1320 (all threads, or all threads of process) means `step/resume
1321 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1322 matches) resume with their 'thread->suspend.stop_signal' signal
1323 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1324 if in "no pass" state. */
1325
1326 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1327
1328 /* Wait for process pid to do something. PTID = -1 to wait for any
1329 pid to do something. Return pid of child, or -1 in case of error;
1330 store status through argument pointer STATUS. Note that it is
1331 _NOT_ OK to throw_exception() out of target_wait() without popping
1332 the debugging target from the stack; GDB isn't prepared to get back
1333 to the prompt with a debugging target but without the frame cache,
1334 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1335 options. */
1336
1337 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1338 int options);
1339
1340 /* The default target_ops::to_wait implementation. */
1341
1342 extern ptid_t default_target_wait (struct target_ops *ops,
1343 ptid_t ptid,
1344 struct target_waitstatus *status,
1345 int options);
1346
1347 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1348
1349 extern void target_fetch_registers (struct regcache *regcache, int regno);
1350
1351 /* Store at least register REGNO, or all regs if REGNO == -1.
1352 It can store as many registers as it wants to, so target_prepare_to_store
1353 must have been previously called. Calls error() if there are problems. */
1354
1355 extern void target_store_registers (struct regcache *regcache, int regs);
1356
1357 /* Get ready to modify the registers array. On machines which store
1358 individual registers, this doesn't need to do anything. On machines
1359 which store all the registers in one fell swoop, this makes sure
1360 that REGISTERS contains all the registers from the program being
1361 debugged. */
1362
1363 #define target_prepare_to_store(regcache) \
1364 (*current_target.to_prepare_to_store) (&current_target, regcache)
1365
1366 /* Determine current address space of thread PTID. */
1367
1368 struct address_space *target_thread_address_space (ptid_t);
1369
1370 /* Implement the "info proc" command. This returns one if the request
1371 was handled, and zero otherwise. It can also throw an exception if
1372 an error was encountered while attempting to handle the
1373 request. */
1374
1375 int target_info_proc (const char *, enum info_proc_what);
1376
1377 /* Returns true if this target can debug multiple processes
1378 simultaneously. */
1379
1380 #define target_supports_multi_process() \
1381 (*current_target.to_supports_multi_process) (&current_target)
1382
1383 /* Returns true if this target can disable address space randomization. */
1384
1385 int target_supports_disable_randomization (void);
1386
1387 /* Returns true if this target can enable and disable tracepoints
1388 while a trace experiment is running. */
1389
1390 #define target_supports_enable_disable_tracepoint() \
1391 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1392
1393 #define target_supports_string_tracing() \
1394 (*current_target.to_supports_string_tracing) (&current_target)
1395
1396 /* Returns true if this target can handle breakpoint conditions
1397 on its end. */
1398
1399 #define target_supports_evaluation_of_breakpoint_conditions() \
1400 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1401
1402 /* Returns true if this target can handle breakpoint commands
1403 on its end. */
1404
1405 #define target_can_run_breakpoint_commands() \
1406 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1407
1408 extern int target_read_string (CORE_ADDR, char **, int, int *);
1409
1410 /* For target_read_memory see target/target.h. */
1411
1412 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1413 ssize_t len);
1414
1415 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1416
1417 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1418
1419 /* For target_write_memory see target/target.h. */
1420
1421 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1422 ssize_t len);
1423
1424 /* Fetches the target's memory map. If one is found it is sorted
1425 and returned, after some consistency checking. Otherwise, NULL
1426 is returned. */
1427 VEC(mem_region_s) *target_memory_map (void);
1428
1429 /* Erase the specified flash region. */
1430 void target_flash_erase (ULONGEST address, LONGEST length);
1431
1432 /* Finish a sequence of flash operations. */
1433 void target_flash_done (void);
1434
1435 /* Describes a request for a memory write operation. */
1436 struct memory_write_request
1437 {
1438 /* Begining address that must be written. */
1439 ULONGEST begin;
1440 /* Past-the-end address. */
1441 ULONGEST end;
1442 /* The data to write. */
1443 gdb_byte *data;
1444 /* A callback baton for progress reporting for this request. */
1445 void *baton;
1446 };
1447 typedef struct memory_write_request memory_write_request_s;
1448 DEF_VEC_O(memory_write_request_s);
1449
1450 /* Enumeration specifying different flash preservation behaviour. */
1451 enum flash_preserve_mode
1452 {
1453 flash_preserve,
1454 flash_discard
1455 };
1456
1457 /* Write several memory blocks at once. This version can be more
1458 efficient than making several calls to target_write_memory, in
1459 particular because it can optimize accesses to flash memory.
1460
1461 Moreover, this is currently the only memory access function in gdb
1462 that supports writing to flash memory, and it should be used for
1463 all cases where access to flash memory is desirable.
1464
1465 REQUESTS is the vector (see vec.h) of memory_write_request.
1466 PRESERVE_FLASH_P indicates what to do with blocks which must be
1467 erased, but not completely rewritten.
1468 PROGRESS_CB is a function that will be periodically called to provide
1469 feedback to user. It will be called with the baton corresponding
1470 to the request currently being written. It may also be called
1471 with a NULL baton, when preserved flash sectors are being rewritten.
1472
1473 The function returns 0 on success, and error otherwise. */
1474 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1475 enum flash_preserve_mode preserve_flash_p,
1476 void (*progress_cb) (ULONGEST, void *));
1477
1478 /* Print a line about the current target. */
1479
1480 #define target_files_info() \
1481 (*current_target.to_files_info) (&current_target)
1482
1483 /* Insert a breakpoint at address BP_TGT->placed_address in
1484 the target machine. Returns 0 for success, and returns non-zero or
1485 throws an error (with a detailed failure reason error code and
1486 message) otherwise. */
1487
1488 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1489 struct bp_target_info *bp_tgt);
1490
1491 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1492 machine. Result is 0 for success, non-zero for error. */
1493
1494 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1495 struct bp_target_info *bp_tgt);
1496
1497 /* Returns true if the terminal settings of the inferior are in
1498 effect. */
1499
1500 extern int target_terminal_is_inferior (void);
1501
1502 /* Initialize the terminal settings we record for the inferior,
1503 before we actually run the inferior. */
1504
1505 extern void target_terminal_init (void);
1506
1507 /* Put the inferior's terminal settings into effect.
1508 This is preparation for starting or resuming the inferior. */
1509
1510 extern void target_terminal_inferior (void);
1511
1512 /* Put some of our terminal settings into effect, enough to get proper
1513 results from our output, but do not change into or out of RAW mode
1514 so that no input is discarded. This is a no-op if terminal_ours
1515 was most recently called. */
1516
1517 extern void target_terminal_ours_for_output (void);
1518
1519 /* Put our terminal settings into effect.
1520 First record the inferior's terminal settings
1521 so they can be restored properly later. */
1522
1523 extern void target_terminal_ours (void);
1524
1525 /* Return true if the target stack has a non-default
1526 "to_terminal_ours" method. */
1527
1528 extern int target_supports_terminal_ours (void);
1529
1530 /* Make a cleanup that restores the state of the terminal to the current
1531 state. */
1532 extern struct cleanup *make_cleanup_restore_target_terminal (void);
1533
1534 /* Print useful information about our terminal status, if such a thing
1535 exists. */
1536
1537 #define target_terminal_info(arg, from_tty) \
1538 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1539
1540 /* Kill the inferior process. Make it go away. */
1541
1542 extern void target_kill (void);
1543
1544 /* Load an executable file into the target process. This is expected
1545 to not only bring new code into the target process, but also to
1546 update GDB's symbol tables to match.
1547
1548 ARG contains command-line arguments, to be broken down with
1549 buildargv (). The first non-switch argument is the filename to
1550 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1551 0)), which is an offset to apply to the load addresses of FILE's
1552 sections. The target may define switches, or other non-switch
1553 arguments, as it pleases. */
1554
1555 extern void target_load (const char *arg, int from_tty);
1556
1557 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1558 notification of inferior events such as fork and vork immediately
1559 after the inferior is created. (This because of how gdb gets an
1560 inferior created via invoking a shell to do it. In such a scenario,
1561 if the shell init file has commands in it, the shell will fork and
1562 exec for each of those commands, and we will see each such fork
1563 event. Very bad.)
1564
1565 Such targets will supply an appropriate definition for this function. */
1566
1567 #define target_post_startup_inferior(ptid) \
1568 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1569
1570 /* On some targets, we can catch an inferior fork or vfork event when
1571 it occurs. These functions insert/remove an already-created
1572 catchpoint for such events. They return 0 for success, 1 if the
1573 catchpoint type is not supported and -1 for failure. */
1574
1575 #define target_insert_fork_catchpoint(pid) \
1576 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1577
1578 #define target_remove_fork_catchpoint(pid) \
1579 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1580
1581 #define target_insert_vfork_catchpoint(pid) \
1582 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1583
1584 #define target_remove_vfork_catchpoint(pid) \
1585 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1586
1587 /* If the inferior forks or vforks, this function will be called at
1588 the next resume in order to perform any bookkeeping and fiddling
1589 necessary to continue debugging either the parent or child, as
1590 requested, and releasing the other. Information about the fork
1591 or vfork event is available via get_last_target_status ().
1592 This function returns 1 if the inferior should not be resumed
1593 (i.e. there is another event pending). */
1594
1595 int target_follow_fork (int follow_child, int detach_fork);
1596
1597 /* Handle the target-specific bookkeeping required when the inferior
1598 makes an exec call. INF is the exec'd inferior. */
1599
1600 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1601
1602 /* On some targets, we can catch an inferior exec event when it
1603 occurs. These functions insert/remove an already-created
1604 catchpoint for such events. They return 0 for success, 1 if the
1605 catchpoint type is not supported and -1 for failure. */
1606
1607 #define target_insert_exec_catchpoint(pid) \
1608 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1609
1610 #define target_remove_exec_catchpoint(pid) \
1611 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1612
1613 /* Syscall catch.
1614
1615 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1616 If NEEDED is zero, it means the target can disable the mechanism to
1617 catch system calls because there are no more catchpoints of this type.
1618
1619 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1620 being requested. In this case, both TABLE_SIZE and TABLE should
1621 be ignored.
1622
1623 TABLE_SIZE is the number of elements in TABLE. It only matters if
1624 ANY_COUNT is zero.
1625
1626 TABLE is an array of ints, indexed by syscall number. An element in
1627 this array is nonzero if that syscall should be caught. This argument
1628 only matters if ANY_COUNT is zero.
1629
1630 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1631 for failure. */
1632
1633 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1634 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1635 pid, needed, any_count, \
1636 table_size, table)
1637
1638 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1639 exit code of PID, if any. */
1640
1641 #define target_has_exited(pid,wait_status,exit_status) \
1642 (*current_target.to_has_exited) (&current_target, \
1643 pid,wait_status,exit_status)
1644
1645 /* The debugger has completed a blocking wait() call. There is now
1646 some process event that must be processed. This function should
1647 be defined by those targets that require the debugger to perform
1648 cleanup or internal state changes in response to the process event. */
1649
1650 /* The inferior process has died. Do what is right. */
1651
1652 void target_mourn_inferior (void);
1653
1654 /* Does target have enough data to do a run or attach command? */
1655
1656 #define target_can_run(t) \
1657 ((t)->to_can_run) (t)
1658
1659 /* Set list of signals to be handled in the target.
1660
1661 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1662 (enum gdb_signal). For every signal whose entry in this array is
1663 non-zero, the target is allowed -but not required- to skip reporting
1664 arrival of the signal to the GDB core by returning from target_wait,
1665 and to pass the signal directly to the inferior instead.
1666
1667 However, if the target is hardware single-stepping a thread that is
1668 about to receive a signal, it needs to be reported in any case, even
1669 if mentioned in a previous target_pass_signals call. */
1670
1671 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1672
1673 /* Set list of signals the target may pass to the inferior. This
1674 directly maps to the "handle SIGNAL pass/nopass" setting.
1675
1676 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1677 number (enum gdb_signal). For every signal whose entry in this
1678 array is non-zero, the target is allowed to pass the signal to the
1679 inferior. Signals not present in the array shall be silently
1680 discarded. This does not influence whether to pass signals to the
1681 inferior as a result of a target_resume call. This is useful in
1682 scenarios where the target needs to decide whether to pass or not a
1683 signal to the inferior without GDB core involvement, such as for
1684 example, when detaching (as threads may have been suspended with
1685 pending signals not reported to GDB). */
1686
1687 extern void target_program_signals (int nsig, unsigned char *program_signals);
1688
1689 /* Check to see if a thread is still alive. */
1690
1691 extern int target_thread_alive (ptid_t ptid);
1692
1693 /* Sync the target's threads with GDB's thread list. */
1694
1695 extern void target_update_thread_list (void);
1696
1697 /* Make target stop in a continuable fashion. (For instance, under
1698 Unix, this should act like SIGSTOP). Note that this function is
1699 asynchronous: it does not wait for the target to become stopped
1700 before returning. If this is the behavior you want please use
1701 target_stop_and_wait. */
1702
1703 extern void target_stop (ptid_t ptid);
1704
1705 /* Interrupt the target just like the user typed a ^C on the
1706 inferior's controlling terminal. (For instance, under Unix, this
1707 should act like SIGINT). This function is asynchronous. */
1708
1709 extern void target_interrupt (ptid_t ptid);
1710
1711 /* Some targets install their own SIGINT handler while the target is
1712 running. This method is called from the QUIT macro to give such
1713 targets a chance to process a Ctrl-C. The target may e.g., choose
1714 to interrupt the (potentially) long running operation, or give up
1715 waiting and disconnect. */
1716
1717 extern void target_check_pending_interrupt (void);
1718
1719 /* Send the specified COMMAND to the target's monitor
1720 (shell,interpreter) for execution. The result of the query is
1721 placed in OUTBUF. */
1722
1723 #define target_rcmd(command, outbuf) \
1724 (*current_target.to_rcmd) (&current_target, command, outbuf)
1725
1726
1727 /* Does the target include all of memory, or only part of it? This
1728 determines whether we look up the target chain for other parts of
1729 memory if this target can't satisfy a request. */
1730
1731 extern int target_has_all_memory_1 (void);
1732 #define target_has_all_memory target_has_all_memory_1 ()
1733
1734 /* Does the target include memory? (Dummy targets don't.) */
1735
1736 extern int target_has_memory_1 (void);
1737 #define target_has_memory target_has_memory_1 ()
1738
1739 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1740 we start a process.) */
1741
1742 extern int target_has_stack_1 (void);
1743 #define target_has_stack target_has_stack_1 ()
1744
1745 /* Does the target have registers? (Exec files don't.) */
1746
1747 extern int target_has_registers_1 (void);
1748 #define target_has_registers target_has_registers_1 ()
1749
1750 /* Does the target have execution? Can we make it jump (through
1751 hoops), or pop its stack a few times? This means that the current
1752 target is currently executing; for some targets, that's the same as
1753 whether or not the target is capable of execution, but there are
1754 also targets which can be current while not executing. In that
1755 case this will become true after to_create_inferior or
1756 to_attach. */
1757
1758 extern int target_has_execution_1 (ptid_t);
1759
1760 /* Like target_has_execution_1, but always passes inferior_ptid. */
1761
1762 extern int target_has_execution_current (void);
1763
1764 #define target_has_execution target_has_execution_current ()
1765
1766 /* Default implementations for process_stratum targets. Return true
1767 if there's a selected inferior, false otherwise. */
1768
1769 extern int default_child_has_all_memory (struct target_ops *ops);
1770 extern int default_child_has_memory (struct target_ops *ops);
1771 extern int default_child_has_stack (struct target_ops *ops);
1772 extern int default_child_has_registers (struct target_ops *ops);
1773 extern int default_child_has_execution (struct target_ops *ops,
1774 ptid_t the_ptid);
1775
1776 /* Can the target support the debugger control of thread execution?
1777 Can it lock the thread scheduler? */
1778
1779 #define target_can_lock_scheduler \
1780 (current_target.to_has_thread_control & tc_schedlock)
1781
1782 /* Controls whether async mode is permitted. */
1783 extern int target_async_permitted;
1784
1785 /* Can the target support asynchronous execution? */
1786 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1787
1788 /* Is the target in asynchronous execution mode? */
1789 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1790
1791 /* Enables/disabled async target events. */
1792 extern void target_async (int enable);
1793
1794 /* Whether support for controlling the target backends always in
1795 non-stop mode is enabled. */
1796 extern enum auto_boolean target_non_stop_enabled;
1797
1798 /* Is the target in non-stop mode? Some targets control the inferior
1799 in non-stop mode even with "set non-stop off". Always true if "set
1800 non-stop" is on. */
1801 extern int target_is_non_stop_p (void);
1802
1803 #define target_execution_direction() \
1804 (current_target.to_execution_direction (&current_target))
1805
1806 /* Converts a process id to a string. Usually, the string just contains
1807 `process xyz', but on some systems it may contain
1808 `process xyz thread abc'. */
1809
1810 extern char *target_pid_to_str (ptid_t ptid);
1811
1812 extern char *normal_pid_to_str (ptid_t ptid);
1813
1814 /* Return a short string describing extra information about PID,
1815 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1816 is okay. */
1817
1818 #define target_extra_thread_info(TP) \
1819 (current_target.to_extra_thread_info (&current_target, TP))
1820
1821 /* Return the thread's name. A NULL result means that the target
1822 could not determine this thread's name. */
1823
1824 extern char *target_thread_name (struct thread_info *);
1825
1826 /* Attempts to find the pathname of the executable file
1827 that was run to create a specified process.
1828
1829 The process PID must be stopped when this operation is used.
1830
1831 If the executable file cannot be determined, NULL is returned.
1832
1833 Else, a pointer to a character string containing the pathname
1834 is returned. This string should be copied into a buffer by
1835 the client if the string will not be immediately used, or if
1836 it must persist. */
1837
1838 #define target_pid_to_exec_file(pid) \
1839 (current_target.to_pid_to_exec_file) (&current_target, pid)
1840
1841 /* See the to_thread_architecture description in struct target_ops. */
1842
1843 #define target_thread_architecture(ptid) \
1844 (current_target.to_thread_architecture (&current_target, ptid))
1845
1846 /*
1847 * Iterator function for target memory regions.
1848 * Calls a callback function once for each memory region 'mapped'
1849 * in the child process. Defined as a simple macro rather than
1850 * as a function macro so that it can be tested for nullity.
1851 */
1852
1853 #define target_find_memory_regions(FUNC, DATA) \
1854 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1855
1856 /*
1857 * Compose corefile .note section.
1858 */
1859
1860 #define target_make_corefile_notes(BFD, SIZE_P) \
1861 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1862
1863 /* Bookmark interfaces. */
1864 #define target_get_bookmark(ARGS, FROM_TTY) \
1865 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1866
1867 #define target_goto_bookmark(ARG, FROM_TTY) \
1868 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1869
1870 /* Hardware watchpoint interfaces. */
1871
1872 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1873 write). Only the INFERIOR_PTID task is being queried. */
1874
1875 #define target_stopped_by_watchpoint() \
1876 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1877
1878 /* Returns non-zero if the target stopped because it executed a
1879 software breakpoint instruction. */
1880
1881 #define target_stopped_by_sw_breakpoint() \
1882 ((*current_target.to_stopped_by_sw_breakpoint) (&current_target))
1883
1884 #define target_supports_stopped_by_sw_breakpoint() \
1885 ((*current_target.to_supports_stopped_by_sw_breakpoint) (&current_target))
1886
1887 #define target_stopped_by_hw_breakpoint() \
1888 ((*current_target.to_stopped_by_hw_breakpoint) (&current_target))
1889
1890 #define target_supports_stopped_by_hw_breakpoint() \
1891 ((*current_target.to_supports_stopped_by_hw_breakpoint) (&current_target))
1892
1893 /* Non-zero if we have steppable watchpoints */
1894
1895 #define target_have_steppable_watchpoint \
1896 (current_target.to_have_steppable_watchpoint)
1897
1898 /* Non-zero if we have continuable watchpoints */
1899
1900 #define target_have_continuable_watchpoint \
1901 (current_target.to_have_continuable_watchpoint)
1902
1903 /* Provide defaults for hardware watchpoint functions. */
1904
1905 /* If the *_hw_beakpoint functions have not been defined
1906 elsewhere use the definitions in the target vector. */
1907
1908 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1909 Returns negative if the target doesn't have enough hardware debug
1910 registers available. Return zero if hardware watchpoint of type
1911 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1912 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1913 CNT is the number of such watchpoints used so far, including this
1914 one. OTHERTYPE is who knows what... */
1915
1916 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1917 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1918 TYPE, CNT, OTHERTYPE)
1919
1920 /* Returns the number of debug registers needed to watch the given
1921 memory region, or zero if not supported. */
1922
1923 #define target_region_ok_for_hw_watchpoint(addr, len) \
1924 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1925 addr, len)
1926
1927
1928 #define target_can_do_single_step() \
1929 (*current_target.to_can_do_single_step) (&current_target)
1930
1931 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1932 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1933 COND is the expression for its condition, or NULL if there's none.
1934 Returns 0 for success, 1 if the watchpoint type is not supported,
1935 -1 for failure. */
1936
1937 #define target_insert_watchpoint(addr, len, type, cond) \
1938 (*current_target.to_insert_watchpoint) (&current_target, \
1939 addr, len, type, cond)
1940
1941 #define target_remove_watchpoint(addr, len, type, cond) \
1942 (*current_target.to_remove_watchpoint) (&current_target, \
1943 addr, len, type, cond)
1944
1945 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1946 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1947 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1948 masked watchpoints are not supported, -1 for failure. */
1949
1950 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1951
1952 /* Remove a masked watchpoint at ADDR with the mask MASK.
1953 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1954 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1955 for failure. */
1956
1957 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1958
1959 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1960 the target machine. Returns 0 for success, and returns non-zero or
1961 throws an error (with a detailed failure reason error code and
1962 message) otherwise. */
1963
1964 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1965 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1966 gdbarch, bp_tgt)
1967
1968 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1969 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1970 gdbarch, bp_tgt)
1971
1972 /* Return number of debug registers needed for a ranged breakpoint,
1973 or -1 if ranged breakpoints are not supported. */
1974
1975 extern int target_ranged_break_num_registers (void);
1976
1977 /* Return non-zero if target knows the data address which triggered this
1978 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1979 INFERIOR_PTID task is being queried. */
1980 #define target_stopped_data_address(target, addr_p) \
1981 (*(target)->to_stopped_data_address) (target, addr_p)
1982
1983 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1984 LENGTH bytes beginning at START. */
1985 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1986 (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length)
1987
1988 /* Return non-zero if the target is capable of using hardware to evaluate
1989 the condition expression. In this case, if the condition is false when
1990 the watched memory location changes, execution may continue without the
1991 debugger being notified.
1992
1993 Due to limitations in the hardware implementation, it may be capable of
1994 avoiding triggering the watchpoint in some cases where the condition
1995 expression is false, but may report some false positives as well.
1996 For this reason, GDB will still evaluate the condition expression when
1997 the watchpoint triggers. */
1998 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1999 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
2000 addr, len, type, cond)
2001
2002 /* Return number of debug registers needed for a masked watchpoint,
2003 -1 if masked watchpoints are not supported or -2 if the given address
2004 and mask combination cannot be used. */
2005
2006 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2007
2008 /* Target can execute in reverse? */
2009 #define target_can_execute_reverse \
2010 current_target.to_can_execute_reverse (&current_target)
2011
2012 extern const struct target_desc *target_read_description (struct target_ops *);
2013
2014 #define target_get_ada_task_ptid(lwp, tid) \
2015 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
2016
2017 /* Utility implementation of searching memory. */
2018 extern int simple_search_memory (struct target_ops* ops,
2019 CORE_ADDR start_addr,
2020 ULONGEST search_space_len,
2021 const gdb_byte *pattern,
2022 ULONGEST pattern_len,
2023 CORE_ADDR *found_addrp);
2024
2025 /* Main entry point for searching memory. */
2026 extern int target_search_memory (CORE_ADDR start_addr,
2027 ULONGEST search_space_len,
2028 const gdb_byte *pattern,
2029 ULONGEST pattern_len,
2030 CORE_ADDR *found_addrp);
2031
2032 /* Target file operations. */
2033
2034 /* Return nonzero if the filesystem seen by the current inferior
2035 is the local filesystem, zero otherwise. */
2036 #define target_filesystem_is_local() \
2037 current_target.to_filesystem_is_local (&current_target)
2038
2039 /* Open FILENAME on the target, in the filesystem as seen by INF,
2040 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2041 by the debugger (GDB or, for remote targets, the remote stub).
2042 Return a target file descriptor, or -1 if an error occurs (and
2043 set *TARGET_ERRNO). */
2044 extern int target_fileio_open (struct inferior *inf,
2045 const char *filename, int flags,
2046 int mode, int *target_errno);
2047
2048 /* Like target_fileio_open, but print a warning message if the
2049 file is being accessed over a link that may be slow. */
2050 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2051 const char *filename,
2052 int flags,
2053 int mode,
2054 int *target_errno);
2055
2056 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2057 Return the number of bytes written, or -1 if an error occurs
2058 (and set *TARGET_ERRNO). */
2059 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2060 ULONGEST offset, int *target_errno);
2061
2062 /* Read up to LEN bytes FD on the target into READ_BUF.
2063 Return the number of bytes read, or -1 if an error occurs
2064 (and set *TARGET_ERRNO). */
2065 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2066 ULONGEST offset, int *target_errno);
2067
2068 /* Get information about the file opened as FD on the target
2069 and put it in SB. Return 0 on success, or -1 if an error
2070 occurs (and set *TARGET_ERRNO). */
2071 extern int target_fileio_fstat (int fd, struct stat *sb,
2072 int *target_errno);
2073
2074 /* Close FD on the target. Return 0, or -1 if an error occurs
2075 (and set *TARGET_ERRNO). */
2076 extern int target_fileio_close (int fd, int *target_errno);
2077
2078 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2079 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2080 for remote targets, the remote stub). Return 0, or -1 if an error
2081 occurs (and set *TARGET_ERRNO). */
2082 extern int target_fileio_unlink (struct inferior *inf,
2083 const char *filename,
2084 int *target_errno);
2085
2086 /* Read value of symbolic link FILENAME on the target, in the
2087 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2088 by the debugger (GDB or, for remote targets, the remote stub).
2089 Return a null-terminated string allocated via xmalloc, or NULL if
2090 an error occurs (and set *TARGET_ERRNO). */
2091 extern char *target_fileio_readlink (struct inferior *inf,
2092 const char *filename,
2093 int *target_errno);
2094
2095 /* Read target file FILENAME, in the filesystem as seen by INF. If
2096 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2097 remote targets, the remote stub). The return value will be -1 if
2098 the transfer fails or is not supported; 0 if the object is empty;
2099 or the length of the object otherwise. If a positive value is
2100 returned, a sufficiently large buffer will be allocated using
2101 xmalloc and returned in *BUF_P containing the contents of the
2102 object.
2103
2104 This method should be used for objects sufficiently small to store
2105 in a single xmalloc'd buffer, when no fixed bound on the object's
2106 size is known in advance. */
2107 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2108 const char *filename,
2109 gdb_byte **buf_p);
2110
2111 /* Read target file FILENAME, in the filesystem as seen by INF. If
2112 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2113 remote targets, the remote stub). The result is NUL-terminated and
2114 returned as a string, allocated using xmalloc. If an error occurs
2115 or the transfer is unsupported, NULL is returned. Empty objects
2116 are returned as allocated but empty strings. A warning is issued
2117 if the result contains any embedded NUL bytes. */
2118 extern char *target_fileio_read_stralloc (struct inferior *inf,
2119 const char *filename);
2120
2121
2122 /* Tracepoint-related operations. */
2123
2124 #define target_trace_init() \
2125 (*current_target.to_trace_init) (&current_target)
2126
2127 #define target_download_tracepoint(t) \
2128 (*current_target.to_download_tracepoint) (&current_target, t)
2129
2130 #define target_can_download_tracepoint() \
2131 (*current_target.to_can_download_tracepoint) (&current_target)
2132
2133 #define target_download_trace_state_variable(tsv) \
2134 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
2135
2136 #define target_enable_tracepoint(loc) \
2137 (*current_target.to_enable_tracepoint) (&current_target, loc)
2138
2139 #define target_disable_tracepoint(loc) \
2140 (*current_target.to_disable_tracepoint) (&current_target, loc)
2141
2142 #define target_trace_start() \
2143 (*current_target.to_trace_start) (&current_target)
2144
2145 #define target_trace_set_readonly_regions() \
2146 (*current_target.to_trace_set_readonly_regions) (&current_target)
2147
2148 #define target_get_trace_status(ts) \
2149 (*current_target.to_get_trace_status) (&current_target, ts)
2150
2151 #define target_get_tracepoint_status(tp,utp) \
2152 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
2153
2154 #define target_trace_stop() \
2155 (*current_target.to_trace_stop) (&current_target)
2156
2157 #define target_trace_find(type,num,addr1,addr2,tpp) \
2158 (*current_target.to_trace_find) (&current_target, \
2159 (type), (num), (addr1), (addr2), (tpp))
2160
2161 #define target_get_trace_state_variable_value(tsv,val) \
2162 (*current_target.to_get_trace_state_variable_value) (&current_target, \
2163 (tsv), (val))
2164
2165 #define target_save_trace_data(filename) \
2166 (*current_target.to_save_trace_data) (&current_target, filename)
2167
2168 #define target_upload_tracepoints(utpp) \
2169 (*current_target.to_upload_tracepoints) (&current_target, utpp)
2170
2171 #define target_upload_trace_state_variables(utsvp) \
2172 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
2173
2174 #define target_get_raw_trace_data(buf,offset,len) \
2175 (*current_target.to_get_raw_trace_data) (&current_target, \
2176 (buf), (offset), (len))
2177
2178 #define target_get_min_fast_tracepoint_insn_len() \
2179 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
2180
2181 #define target_set_disconnected_tracing(val) \
2182 (*current_target.to_set_disconnected_tracing) (&current_target, val)
2183
2184 #define target_set_circular_trace_buffer(val) \
2185 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
2186
2187 #define target_set_trace_buffer_size(val) \
2188 (*current_target.to_set_trace_buffer_size) (&current_target, val)
2189
2190 #define target_set_trace_notes(user,notes,stopnotes) \
2191 (*current_target.to_set_trace_notes) (&current_target, \
2192 (user), (notes), (stopnotes))
2193
2194 #define target_get_tib_address(ptid, addr) \
2195 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
2196
2197 #define target_set_permissions() \
2198 (*current_target.to_set_permissions) (&current_target)
2199
2200 #define target_static_tracepoint_marker_at(addr, marker) \
2201 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
2202 addr, marker)
2203
2204 #define target_static_tracepoint_markers_by_strid(marker_id) \
2205 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2206 marker_id)
2207
2208 #define target_traceframe_info() \
2209 (*current_target.to_traceframe_info) (&current_target)
2210
2211 #define target_use_agent(use) \
2212 (*current_target.to_use_agent) (&current_target, use)
2213
2214 #define target_can_use_agent() \
2215 (*current_target.to_can_use_agent) (&current_target)
2216
2217 #define target_augmented_libraries_svr4_read() \
2218 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2219
2220 /* Command logging facility. */
2221
2222 #define target_log_command(p) \
2223 (*current_target.to_log_command) (&current_target, p)
2224
2225
2226 extern int target_core_of_thread (ptid_t ptid);
2227
2228 /* See to_get_unwinder in struct target_ops. */
2229 extern const struct frame_unwind *target_get_unwinder (void);
2230
2231 /* See to_get_tailcall_unwinder in struct target_ops. */
2232 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2233
2234 /* This implements basic memory verification, reading target memory
2235 and performing the comparison here (as opposed to accelerated
2236 verification making use of the qCRC packet, for example). */
2237
2238 extern int simple_verify_memory (struct target_ops* ops,
2239 const gdb_byte *data,
2240 CORE_ADDR memaddr, ULONGEST size);
2241
2242 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2243 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2244 if there's a mismatch, and -1 if an error is encountered while
2245 reading memory. Throws an error if the functionality is found not
2246 to be supported by the current target. */
2247 int target_verify_memory (const gdb_byte *data,
2248 CORE_ADDR memaddr, ULONGEST size);
2249
2250 /* Routines for maintenance of the target structures...
2251
2252 complete_target_initialization: Finalize a target_ops by filling in
2253 any fields needed by the target implementation. Unnecessary for
2254 targets which are registered via add_target, as this part gets
2255 taken care of then.
2256
2257 add_target: Add a target to the list of all possible targets.
2258 This only makes sense for targets that should be activated using
2259 the "target TARGET_NAME ..." command.
2260
2261 push_target: Make this target the top of the stack of currently used
2262 targets, within its particular stratum of the stack. Result
2263 is 0 if now atop the stack, nonzero if not on top (maybe
2264 should warn user).
2265
2266 unpush_target: Remove this from the stack of currently used targets,
2267 no matter where it is on the list. Returns 0 if no
2268 change, 1 if removed from stack. */
2269
2270 extern void add_target (struct target_ops *);
2271
2272 extern void add_target_with_completer (struct target_ops *t,
2273 completer_ftype *completer);
2274
2275 extern void complete_target_initialization (struct target_ops *t);
2276
2277 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2278 for maintaining backwards compatibility when renaming targets. */
2279
2280 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2281
2282 extern void push_target (struct target_ops *);
2283
2284 extern int unpush_target (struct target_ops *);
2285
2286 extern void target_pre_inferior (int);
2287
2288 extern void target_preopen (int);
2289
2290 /* Does whatever cleanup is required to get rid of all pushed targets. */
2291 extern void pop_all_targets (void);
2292
2293 /* Like pop_all_targets, but pops only targets whose stratum is
2294 strictly above ABOVE_STRATUM. */
2295 extern void pop_all_targets_above (enum strata above_stratum);
2296
2297 extern int target_is_pushed (struct target_ops *t);
2298
2299 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2300 CORE_ADDR offset);
2301
2302 /* Struct target_section maps address ranges to file sections. It is
2303 mostly used with BFD files, but can be used without (e.g. for handling
2304 raw disks, or files not in formats handled by BFD). */
2305
2306 struct target_section
2307 {
2308 CORE_ADDR addr; /* Lowest address in section */
2309 CORE_ADDR endaddr; /* 1+highest address in section */
2310
2311 struct bfd_section *the_bfd_section;
2312
2313 /* The "owner" of the section.
2314 It can be any unique value. It is set by add_target_sections
2315 and used by remove_target_sections.
2316 For example, for executables it is a pointer to exec_bfd and
2317 for shlibs it is the so_list pointer. */
2318 void *owner;
2319 };
2320
2321 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2322
2323 struct target_section_table
2324 {
2325 struct target_section *sections;
2326 struct target_section *sections_end;
2327 };
2328
2329 /* Return the "section" containing the specified address. */
2330 struct target_section *target_section_by_addr (struct target_ops *target,
2331 CORE_ADDR addr);
2332
2333 /* Return the target section table this target (or the targets
2334 beneath) currently manipulate. */
2335
2336 extern struct target_section_table *target_get_section_table
2337 (struct target_ops *target);
2338
2339 /* From mem-break.c */
2340
2341 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2342 struct bp_target_info *);
2343
2344 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2345 struct bp_target_info *);
2346
2347 /* Check whether the memory at the breakpoint's placed address still
2348 contains the expected breakpoint instruction. */
2349
2350 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2351 struct bp_target_info *bp_tgt);
2352
2353 extern int default_memory_remove_breakpoint (struct gdbarch *,
2354 struct bp_target_info *);
2355
2356 extern int default_memory_insert_breakpoint (struct gdbarch *,
2357 struct bp_target_info *);
2358
2359
2360 /* From target.c */
2361
2362 extern void initialize_targets (void);
2363
2364 extern void noprocess (void) ATTRIBUTE_NORETURN;
2365
2366 extern void target_require_runnable (void);
2367
2368 extern struct target_ops *find_target_beneath (struct target_ops *);
2369
2370 /* Find the target at STRATUM. If no target is at that stratum,
2371 return NULL. */
2372
2373 struct target_ops *find_target_at (enum strata stratum);
2374
2375 /* Read OS data object of type TYPE from the target, and return it in
2376 XML format. The result is NUL-terminated and returned as a string,
2377 allocated using xmalloc. If an error occurs or the transfer is
2378 unsupported, NULL is returned. Empty objects are returned as
2379 allocated but empty strings. */
2380
2381 extern char *target_get_osdata (const char *type);
2382
2383 \f
2384 /* Stuff that should be shared among the various remote targets. */
2385
2386 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2387 information (higher values, more information). */
2388 extern int remote_debug;
2389
2390 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2391 extern int baud_rate;
2392
2393 /* Parity for serial port */
2394 extern int serial_parity;
2395
2396 /* Timeout limit for response from target. */
2397 extern int remote_timeout;
2398
2399 \f
2400
2401 /* Set the show memory breakpoints mode to show, and installs a cleanup
2402 to restore it back to the current value. */
2403 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2404
2405 extern int may_write_registers;
2406 extern int may_write_memory;
2407 extern int may_insert_breakpoints;
2408 extern int may_insert_tracepoints;
2409 extern int may_insert_fast_tracepoints;
2410 extern int may_stop;
2411
2412 extern void update_target_permissions (void);
2413
2414 \f
2415 /* Imported from machine dependent code. */
2416
2417 /* See to_supports_btrace in struct target_ops. */
2418 extern int target_supports_btrace (enum btrace_format);
2419
2420 /* See to_enable_btrace in struct target_ops. */
2421 extern struct btrace_target_info *
2422 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2423
2424 /* See to_disable_btrace in struct target_ops. */
2425 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2426
2427 /* See to_teardown_btrace in struct target_ops. */
2428 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2429
2430 /* See to_read_btrace in struct target_ops. */
2431 extern enum btrace_error target_read_btrace (struct btrace_data *,
2432 struct btrace_target_info *,
2433 enum btrace_read_type);
2434
2435 /* See to_btrace_conf in struct target_ops. */
2436 extern const struct btrace_config *
2437 target_btrace_conf (const struct btrace_target_info *);
2438
2439 /* See to_stop_recording in struct target_ops. */
2440 extern void target_stop_recording (void);
2441
2442 /* See to_save_record in struct target_ops. */
2443 extern void target_save_record (const char *filename);
2444
2445 /* Query if the target supports deleting the execution log. */
2446 extern int target_supports_delete_record (void);
2447
2448 /* See to_delete_record in struct target_ops. */
2449 extern void target_delete_record (void);
2450
2451 /* See to_record_is_replaying in struct target_ops. */
2452 extern int target_record_is_replaying (ptid_t ptid);
2453
2454 /* See to_record_will_replay in struct target_ops. */
2455 extern int target_record_will_replay (ptid_t ptid, int dir);
2456
2457 /* See to_record_stop_replaying in struct target_ops. */
2458 extern void target_record_stop_replaying (void);
2459
2460 /* See to_goto_record_begin in struct target_ops. */
2461 extern void target_goto_record_begin (void);
2462
2463 /* See to_goto_record_end in struct target_ops. */
2464 extern void target_goto_record_end (void);
2465
2466 /* See to_goto_record in struct target_ops. */
2467 extern void target_goto_record (ULONGEST insn);
2468
2469 /* See to_insn_history. */
2470 extern void target_insn_history (int size, int flags);
2471
2472 /* See to_insn_history_from. */
2473 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2474
2475 /* See to_insn_history_range. */
2476 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2477
2478 /* See to_call_history. */
2479 extern void target_call_history (int size, int flags);
2480
2481 /* See to_call_history_from. */
2482 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2483
2484 /* See to_call_history_range. */
2485 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2486
2487 /* See to_prepare_to_generate_core. */
2488 extern void target_prepare_to_generate_core (void);
2489
2490 /* See to_done_generating_core. */
2491 extern void target_done_generating_core (void);
2492
2493 #endif /* !defined (TARGET_H) */
This page took 0.148253 seconds and 4 git commands to generate.