convert to_get_tracepoint_status
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int)
407 TARGET_DEFAULT_FUNC (find_default_attach);
408 void (*to_post_attach) (struct target_ops *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_detach) (struct target_ops *ops, const char *, int)
411 TARGET_DEFAULT_IGNORE ();
412 void (*to_disconnect) (struct target_ops *, char *, int);
413 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *);
461 int (*to_insert_hw_breakpoint) (struct target_ops *,
462 struct gdbarch *, struct bp_target_info *)
463 TARGET_DEFAULT_RETURN (-1);
464 int (*to_remove_hw_breakpoint) (struct target_ops *,
465 struct gdbarch *, struct bp_target_info *)
466 TARGET_DEFAULT_RETURN (-1);
467
468 /* Documentation of what the two routines below are expected to do is
469 provided with the corresponding target_* macros. */
470 int (*to_remove_watchpoint) (struct target_ops *,
471 CORE_ADDR, int, int, struct expression *)
472 TARGET_DEFAULT_RETURN (-1);
473 int (*to_insert_watchpoint) (struct target_ops *,
474 CORE_ADDR, int, int, struct expression *)
475 TARGET_DEFAULT_RETURN (-1);
476
477 int (*to_insert_mask_watchpoint) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479 int (*to_remove_mask_watchpoint) (struct target_ops *,
480 CORE_ADDR, CORE_ADDR, int);
481 int (*to_stopped_by_watchpoint) (struct target_ops *)
482 TARGET_DEFAULT_RETURN (0);
483 int to_have_steppable_watchpoint;
484 int to_have_continuable_watchpoint;
485 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
486 TARGET_DEFAULT_RETURN (0);
487 int (*to_watchpoint_addr_within_range) (struct target_ops *,
488 CORE_ADDR, CORE_ADDR, int)
489 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
490
491 /* Documentation of this routine is provided with the corresponding
492 target_* macro. */
493 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
494 CORE_ADDR, int)
495 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
496
497 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
498 CORE_ADDR, int, int,
499 struct expression *)
500 TARGET_DEFAULT_RETURN (0);
501 int (*to_masked_watch_num_registers) (struct target_ops *,
502 CORE_ADDR, CORE_ADDR);
503 void (*to_terminal_init) (struct target_ops *)
504 TARGET_DEFAULT_IGNORE ();
505 void (*to_terminal_inferior) (struct target_ops *)
506 TARGET_DEFAULT_IGNORE ();
507 void (*to_terminal_ours_for_output) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_ours) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_save_ours) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_info) (struct target_ops *, const char *, int)
514 TARGET_DEFAULT_FUNC (default_terminal_info);
515 void (*to_kill) (struct target_ops *);
516 void (*to_load) (struct target_ops *, char *, int)
517 TARGET_DEFAULT_NORETURN (tcomplain ());
518 void (*to_create_inferior) (struct target_ops *,
519 char *, char *, char **, int);
520 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
521 TARGET_DEFAULT_IGNORE ();
522 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
523 TARGET_DEFAULT_RETURN (1);
524 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
525 TARGET_DEFAULT_RETURN (1);
526 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
527 TARGET_DEFAULT_RETURN (1);
528 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
529 TARGET_DEFAULT_RETURN (1);
530 int (*to_follow_fork) (struct target_ops *, int, int);
531 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
532 TARGET_DEFAULT_RETURN (1);
533 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_set_syscall_catchpoint) (struct target_ops *,
536 int, int, int, int, int *)
537 TARGET_DEFAULT_RETURN (1);
538 int (*to_has_exited) (struct target_ops *, int, int, int *)
539 TARGET_DEFAULT_RETURN (0);
540 void (*to_mourn_inferior) (struct target_ops *);
541 int (*to_can_run) (struct target_ops *);
542
543 /* Documentation of this routine is provided with the corresponding
544 target_* macro. */
545 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
546
547 /* Documentation of this routine is provided with the
548 corresponding target_* function. */
549 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
550
551 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
552 void (*to_find_new_threads) (struct target_ops *);
553 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
554 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
555 TARGET_DEFAULT_RETURN (0);
556 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
557 TARGET_DEFAULT_RETURN (0);
558 void (*to_stop) (struct target_ops *, ptid_t);
559 void (*to_rcmd) (struct target_ops *,
560 char *command, struct ui_file *output)
561 TARGET_DEFAULT_FUNC (default_rcmd);
562 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
563 TARGET_DEFAULT_RETURN (0);
564 void (*to_log_command) (struct target_ops *, const char *)
565 TARGET_DEFAULT_IGNORE ();
566 struct target_section_table *(*to_get_section_table) (struct target_ops *);
567 enum strata to_stratum;
568 int (*to_has_all_memory) (struct target_ops *);
569 int (*to_has_memory) (struct target_ops *);
570 int (*to_has_stack) (struct target_ops *);
571 int (*to_has_registers) (struct target_ops *);
572 int (*to_has_execution) (struct target_ops *, ptid_t);
573 int to_has_thread_control; /* control thread execution */
574 int to_attach_no_wait;
575 /* ASYNC target controls */
576 int (*to_can_async_p) (struct target_ops *)
577 TARGET_DEFAULT_FUNC (find_default_can_async_p);
578 int (*to_is_async_p) (struct target_ops *)
579 TARGET_DEFAULT_FUNC (find_default_is_async_p);
580 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
581 TARGET_DEFAULT_NORETURN (tcomplain ());
582 int (*to_supports_non_stop) (struct target_ops *);
583 /* find_memory_regions support method for gcore */
584 int (*to_find_memory_regions) (struct target_ops *,
585 find_memory_region_ftype func, void *data)
586 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
587 /* make_corefile_notes support method for gcore */
588 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
589 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
590 /* get_bookmark support method for bookmarks */
591 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
592 TARGET_DEFAULT_NORETURN (tcomplain ());
593 /* goto_bookmark support method for bookmarks */
594 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
595 TARGET_DEFAULT_NORETURN (tcomplain ());
596 /* Return the thread-local address at OFFSET in the
597 thread-local storage for the thread PTID and the shared library
598 or executable file given by OBJFILE. If that block of
599 thread-local storage hasn't been allocated yet, this function
600 may return an error. */
601 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
602 ptid_t ptid,
603 CORE_ADDR load_module_addr,
604 CORE_ADDR offset);
605
606 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
607 OBJECT. The OFFSET, for a seekable object, specifies the
608 starting point. The ANNEX can be used to provide additional
609 data-specific information to the target.
610
611 Return the transferred status, error or OK (an
612 'enum target_xfer_status' value). Save the number of bytes
613 actually transferred in *XFERED_LEN if transfer is successful
614 (TARGET_XFER_OK) or the number unavailable bytes if the requested
615 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
616 smaller than LEN does not indicate the end of the object, only
617 the end of the transfer; higher level code should continue
618 transferring if desired. This is handled in target.c.
619
620 The interface does not support a "retry" mechanism. Instead it
621 assumes that at least one byte will be transfered on each
622 successful call.
623
624 NOTE: cagney/2003-10-17: The current interface can lead to
625 fragmented transfers. Lower target levels should not implement
626 hacks, such as enlarging the transfer, in an attempt to
627 compensate for this. Instead, the target stack should be
628 extended so that it implements supply/collect methods and a
629 look-aside object cache. With that available, the lowest
630 target can safely and freely "push" data up the stack.
631
632 See target_read and target_write for more information. One,
633 and only one, of readbuf or writebuf must be non-NULL. */
634
635 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
636 enum target_object object,
637 const char *annex,
638 gdb_byte *readbuf,
639 const gdb_byte *writebuf,
640 ULONGEST offset, ULONGEST len,
641 ULONGEST *xfered_len)
642 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
643
644 /* Returns the memory map for the target. A return value of NULL
645 means that no memory map is available. If a memory address
646 does not fall within any returned regions, it's assumed to be
647 RAM. The returned memory regions should not overlap.
648
649 The order of regions does not matter; target_memory_map will
650 sort regions by starting address. For that reason, this
651 function should not be called directly except via
652 target_memory_map.
653
654 This method should not cache data; if the memory map could
655 change unexpectedly, it should be invalidated, and higher
656 layers will re-fetch it. */
657 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
658
659 /* Erases the region of flash memory starting at ADDRESS, of
660 length LENGTH.
661
662 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
663 on flash block boundaries, as reported by 'to_memory_map'. */
664 void (*to_flash_erase) (struct target_ops *,
665 ULONGEST address, LONGEST length);
666
667 /* Finishes a flash memory write sequence. After this operation
668 all flash memory should be available for writing and the result
669 of reading from areas written by 'to_flash_write' should be
670 equal to what was written. */
671 void (*to_flash_done) (struct target_ops *);
672
673 /* Describe the architecture-specific features of this target.
674 Returns the description found, or NULL if no description
675 was available. */
676 const struct target_desc *(*to_read_description) (struct target_ops *ops);
677
678 /* Build the PTID of the thread on which a given task is running,
679 based on LWP and THREAD. These values are extracted from the
680 task Private_Data section of the Ada Task Control Block, and
681 their interpretation depends on the target. */
682 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
683 long lwp, long thread)
684 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
685
686 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
687 Return 0 if *READPTR is already at the end of the buffer.
688 Return -1 if there is insufficient buffer for a whole entry.
689 Return 1 if an entry was read into *TYPEP and *VALP. */
690 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
691 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
692
693 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
694 sequence of bytes in PATTERN with length PATTERN_LEN.
695
696 The result is 1 if found, 0 if not found, and -1 if there was an error
697 requiring halting of the search (e.g. memory read error).
698 If the pattern is found the address is recorded in FOUND_ADDRP. */
699 int (*to_search_memory) (struct target_ops *ops,
700 CORE_ADDR start_addr, ULONGEST search_space_len,
701 const gdb_byte *pattern, ULONGEST pattern_len,
702 CORE_ADDR *found_addrp);
703
704 /* Can target execute in reverse? */
705 int (*to_can_execute_reverse) (struct target_ops *)
706 TARGET_DEFAULT_RETURN (0);
707
708 /* The direction the target is currently executing. Must be
709 implemented on targets that support reverse execution and async
710 mode. The default simply returns forward execution. */
711 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
712 TARGET_DEFAULT_FUNC (default_execution_direction);
713
714 /* Does this target support debugging multiple processes
715 simultaneously? */
716 int (*to_supports_multi_process) (struct target_ops *)
717 TARGET_DEFAULT_RETURN (0);
718
719 /* Does this target support enabling and disabling tracepoints while a trace
720 experiment is running? */
721 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
722 TARGET_DEFAULT_RETURN (0);
723
724 /* Does this target support disabling address space randomization? */
725 int (*to_supports_disable_randomization) (struct target_ops *);
726
727 /* Does this target support the tracenz bytecode for string collection? */
728 int (*to_supports_string_tracing) (struct target_ops *)
729 TARGET_DEFAULT_RETURN (0);
730
731 /* Does this target support evaluation of breakpoint conditions on its
732 end? */
733 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
734
735 /* Does this target support evaluation of breakpoint commands on its
736 end? */
737 int (*to_can_run_breakpoint_commands) (struct target_ops *);
738
739 /* Determine current architecture of thread PTID.
740
741 The target is supposed to determine the architecture of the code where
742 the target is currently stopped at (on Cell, if a target is in spu_run,
743 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
744 This is architecture used to perform decr_pc_after_break adjustment,
745 and also determines the frame architecture of the innermost frame.
746 ptrace operations need to operate according to target_gdbarch ().
747
748 The default implementation always returns target_gdbarch (). */
749 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
750 TARGET_DEFAULT_FUNC (default_thread_architecture);
751
752 /* Determine current address space of thread PTID.
753
754 The default implementation always returns the inferior's
755 address space. */
756 struct address_space *(*to_thread_address_space) (struct target_ops *,
757 ptid_t);
758
759 /* Target file operations. */
760
761 /* Open FILENAME on the target, using FLAGS and MODE. Return a
762 target file descriptor, or -1 if an error occurs (and set
763 *TARGET_ERRNO). */
764 int (*to_fileio_open) (struct target_ops *,
765 const char *filename, int flags, int mode,
766 int *target_errno);
767
768 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
769 Return the number of bytes written, or -1 if an error occurs
770 (and set *TARGET_ERRNO). */
771 int (*to_fileio_pwrite) (struct target_ops *,
772 int fd, const gdb_byte *write_buf, int len,
773 ULONGEST offset, int *target_errno);
774
775 /* Read up to LEN bytes FD on the target into READ_BUF.
776 Return the number of bytes read, or -1 if an error occurs
777 (and set *TARGET_ERRNO). */
778 int (*to_fileio_pread) (struct target_ops *,
779 int fd, gdb_byte *read_buf, int len,
780 ULONGEST offset, int *target_errno);
781
782 /* Close FD on the target. Return 0, or -1 if an error occurs
783 (and set *TARGET_ERRNO). */
784 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
785
786 /* Unlink FILENAME on the target. Return 0, or -1 if an error
787 occurs (and set *TARGET_ERRNO). */
788 int (*to_fileio_unlink) (struct target_ops *,
789 const char *filename, int *target_errno);
790
791 /* Read value of symbolic link FILENAME on the target. Return a
792 null-terminated string allocated via xmalloc, or NULL if an error
793 occurs (and set *TARGET_ERRNO). */
794 char *(*to_fileio_readlink) (struct target_ops *,
795 const char *filename, int *target_errno);
796
797
798 /* Implement the "info proc" command. */
799 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
800
801 /* Tracepoint-related operations. */
802
803 /* Prepare the target for a tracing run. */
804 void (*to_trace_init) (struct target_ops *)
805 TARGET_DEFAULT_NORETURN (tcomplain ());
806
807 /* Send full details of a tracepoint location to the target. */
808 void (*to_download_tracepoint) (struct target_ops *,
809 struct bp_location *location)
810 TARGET_DEFAULT_NORETURN (tcomplain ());
811
812 /* Is the target able to download tracepoint locations in current
813 state? */
814 int (*to_can_download_tracepoint) (struct target_ops *)
815 TARGET_DEFAULT_RETURN (0);
816
817 /* Send full details of a trace state variable to the target. */
818 void (*to_download_trace_state_variable) (struct target_ops *,
819 struct trace_state_variable *tsv)
820 TARGET_DEFAULT_NORETURN (tcomplain ());
821
822 /* Enable a tracepoint on the target. */
823 void (*to_enable_tracepoint) (struct target_ops *,
824 struct bp_location *location)
825 TARGET_DEFAULT_NORETURN (tcomplain ());
826
827 /* Disable a tracepoint on the target. */
828 void (*to_disable_tracepoint) (struct target_ops *,
829 struct bp_location *location)
830 TARGET_DEFAULT_NORETURN (tcomplain ());
831
832 /* Inform the target info of memory regions that are readonly
833 (such as text sections), and so it should return data from
834 those rather than look in the trace buffer. */
835 void (*to_trace_set_readonly_regions) (struct target_ops *)
836 TARGET_DEFAULT_NORETURN (tcomplain ());
837
838 /* Start a trace run. */
839 void (*to_trace_start) (struct target_ops *)
840 TARGET_DEFAULT_NORETURN (tcomplain ());
841
842 /* Get the current status of a tracing run. */
843 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
844 TARGET_DEFAULT_RETURN (-1);
845
846 void (*to_get_tracepoint_status) (struct target_ops *,
847 struct breakpoint *tp,
848 struct uploaded_tp *utp)
849 TARGET_DEFAULT_NORETURN (tcomplain ());
850
851 /* Stop a trace run. */
852 void (*to_trace_stop) (struct target_ops *);
853
854 /* Ask the target to find a trace frame of the given type TYPE,
855 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
856 number of the trace frame, and also the tracepoint number at
857 TPP. If no trace frame matches, return -1. May throw if the
858 operation fails. */
859 int (*to_trace_find) (struct target_ops *,
860 enum trace_find_type type, int num,
861 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
862
863 /* Get the value of the trace state variable number TSV, returning
864 1 if the value is known and writing the value itself into the
865 location pointed to by VAL, else returning 0. */
866 int (*to_get_trace_state_variable_value) (struct target_ops *,
867 int tsv, LONGEST *val);
868
869 int (*to_save_trace_data) (struct target_ops *, const char *filename);
870
871 int (*to_upload_tracepoints) (struct target_ops *,
872 struct uploaded_tp **utpp);
873
874 int (*to_upload_trace_state_variables) (struct target_ops *,
875 struct uploaded_tsv **utsvp);
876
877 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
878 ULONGEST offset, LONGEST len);
879
880 /* Get the minimum length of instruction on which a fast tracepoint
881 may be set on the target. If this operation is unsupported,
882 return -1. If for some reason the minimum length cannot be
883 determined, return 0. */
884 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *);
885
886 /* Set the target's tracing behavior in response to unexpected
887 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
888 void (*to_set_disconnected_tracing) (struct target_ops *, int val);
889 void (*to_set_circular_trace_buffer) (struct target_ops *, int val);
890 /* Set the size of trace buffer in the target. */
891 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val);
892
893 /* Add/change textual notes about the trace run, returning 1 if
894 successful, 0 otherwise. */
895 int (*to_set_trace_notes) (struct target_ops *,
896 const char *user, const char *notes,
897 const char *stopnotes);
898
899 /* Return the processor core that thread PTID was last seen on.
900 This information is updated only when:
901 - update_thread_list is called
902 - thread stops
903 If the core cannot be determined -- either for the specified
904 thread, or right now, or in this debug session, or for this
905 target -- return -1. */
906 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
907
908 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
909 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
910 a match, 0 if there's a mismatch, and -1 if an error is
911 encountered while reading memory. */
912 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
913 CORE_ADDR memaddr, ULONGEST size);
914
915 /* Return the address of the start of the Thread Information Block
916 a Windows OS specific feature. */
917 int (*to_get_tib_address) (struct target_ops *,
918 ptid_t ptid, CORE_ADDR *addr);
919
920 /* Send the new settings of write permission variables. */
921 void (*to_set_permissions) (struct target_ops *);
922
923 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
924 with its details. Return 1 on success, 0 on failure. */
925 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
926 struct static_tracepoint_marker *marker);
927
928 /* Return a vector of all tracepoints markers string id ID, or all
929 markers if ID is NULL. */
930 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
931 (struct target_ops *, const char *id);
932
933 /* Return a traceframe info object describing the current
934 traceframe's contents. If the target doesn't support
935 traceframe info, return NULL. If the current traceframe is not
936 selected (the current traceframe number is -1), the target can
937 choose to return either NULL or an empty traceframe info. If
938 NULL is returned, for example in remote target, GDB will read
939 from the live inferior. If an empty traceframe info is
940 returned, for example in tfile target, which means the
941 traceframe info is available, but the requested memory is not
942 available in it. GDB will try to see if the requested memory
943 is available in the read-only sections. This method should not
944 cache data; higher layers take care of caching, invalidating,
945 and re-fetching when necessary. */
946 struct traceframe_info *(*to_traceframe_info) (struct target_ops *);
947
948 /* Ask the target to use or not to use agent according to USE. Return 1
949 successful, 0 otherwise. */
950 int (*to_use_agent) (struct target_ops *, int use);
951
952 /* Is the target able to use agent in current state? */
953 int (*to_can_use_agent) (struct target_ops *);
954
955 /* Check whether the target supports branch tracing. */
956 int (*to_supports_btrace) (struct target_ops *)
957 TARGET_DEFAULT_RETURN (0);
958
959 /* Enable branch tracing for PTID and allocate a branch trace target
960 information struct for reading and for disabling branch trace. */
961 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
962 ptid_t ptid);
963
964 /* Disable branch tracing and deallocate TINFO. */
965 void (*to_disable_btrace) (struct target_ops *,
966 struct btrace_target_info *tinfo);
967
968 /* Disable branch tracing and deallocate TINFO. This function is similar
969 to to_disable_btrace, except that it is called during teardown and is
970 only allowed to perform actions that are safe. A counter-example would
971 be attempting to talk to a remote target. */
972 void (*to_teardown_btrace) (struct target_ops *,
973 struct btrace_target_info *tinfo);
974
975 /* Read branch trace data for the thread indicated by BTINFO into DATA.
976 DATA is cleared before new trace is added.
977 The branch trace will start with the most recent block and continue
978 towards older blocks. */
979 enum btrace_error (*to_read_btrace) (struct target_ops *self,
980 VEC (btrace_block_s) **data,
981 struct btrace_target_info *btinfo,
982 enum btrace_read_type type);
983
984 /* Stop trace recording. */
985 void (*to_stop_recording) (struct target_ops *);
986
987 /* Print information about the recording. */
988 void (*to_info_record) (struct target_ops *);
989
990 /* Save the recorded execution trace into a file. */
991 void (*to_save_record) (struct target_ops *, const char *filename);
992
993 /* Delete the recorded execution trace from the current position onwards. */
994 void (*to_delete_record) (struct target_ops *);
995
996 /* Query if the record target is currently replaying. */
997 int (*to_record_is_replaying) (struct target_ops *);
998
999 /* Go to the begin of the execution trace. */
1000 void (*to_goto_record_begin) (struct target_ops *);
1001
1002 /* Go to the end of the execution trace. */
1003 void (*to_goto_record_end) (struct target_ops *);
1004
1005 /* Go to a specific location in the recorded execution trace. */
1006 void (*to_goto_record) (struct target_ops *, ULONGEST insn);
1007
1008 /* Disassemble SIZE instructions in the recorded execution trace from
1009 the current position.
1010 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1011 disassemble SIZE succeeding instructions. */
1012 void (*to_insn_history) (struct target_ops *, int size, int flags);
1013
1014 /* Disassemble SIZE instructions in the recorded execution trace around
1015 FROM.
1016 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1017 disassemble SIZE instructions after FROM. */
1018 void (*to_insn_history_from) (struct target_ops *,
1019 ULONGEST from, int size, int flags);
1020
1021 /* Disassemble a section of the recorded execution trace from instruction
1022 BEGIN (inclusive) to instruction END (inclusive). */
1023 void (*to_insn_history_range) (struct target_ops *,
1024 ULONGEST begin, ULONGEST end, int flags);
1025
1026 /* Print a function trace of the recorded execution trace.
1027 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1028 succeeding functions. */
1029 void (*to_call_history) (struct target_ops *, int size, int flags);
1030
1031 /* Print a function trace of the recorded execution trace starting
1032 at function FROM.
1033 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1034 SIZE functions after FROM. */
1035 void (*to_call_history_from) (struct target_ops *,
1036 ULONGEST begin, int size, int flags);
1037
1038 /* Print a function trace of an execution trace section from function BEGIN
1039 (inclusive) to function END (inclusive). */
1040 void (*to_call_history_range) (struct target_ops *,
1041 ULONGEST begin, ULONGEST end, int flags);
1042
1043 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1044 non-empty annex. */
1045 int (*to_augmented_libraries_svr4_read) (struct target_ops *);
1046
1047 /* Those unwinders are tried before any other arch unwinders. Use NULL if
1048 it is not used. */
1049 const struct frame_unwind *to_get_unwinder;
1050 const struct frame_unwind *to_get_tailcall_unwinder;
1051
1052 /* Return the number of bytes by which the PC needs to be decremented
1053 after executing a breakpoint instruction.
1054 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1055 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1056 struct gdbarch *gdbarch);
1057
1058 int to_magic;
1059 /* Need sub-structure for target machine related rather than comm related?
1060 */
1061 };
1062
1063 /* Magic number for checking ops size. If a struct doesn't end with this
1064 number, somebody changed the declaration but didn't change all the
1065 places that initialize one. */
1066
1067 #define OPS_MAGIC 3840
1068
1069 /* The ops structure for our "current" target process. This should
1070 never be NULL. If there is no target, it points to the dummy_target. */
1071
1072 extern struct target_ops current_target;
1073
1074 /* Define easy words for doing these operations on our current target. */
1075
1076 #define target_shortname (current_target.to_shortname)
1077 #define target_longname (current_target.to_longname)
1078
1079 /* Does whatever cleanup is required for a target that we are no
1080 longer going to be calling. This routine is automatically always
1081 called after popping the target off the target stack - the target's
1082 own methods are no longer available through the target vector.
1083 Closing file descriptors and freeing all memory allocated memory are
1084 typical things it should do. */
1085
1086 void target_close (struct target_ops *targ);
1087
1088 /* Attaches to a process on the target side. Arguments are as passed
1089 to the `attach' command by the user. This routine can be called
1090 when the target is not on the target-stack, if the target_can_run
1091 routine returns 1; in that case, it must push itself onto the stack.
1092 Upon exit, the target should be ready for normal operations, and
1093 should be ready to deliver the status of the process immediately
1094 (without waiting) to an upcoming target_wait call. */
1095
1096 void target_attach (char *, int);
1097
1098 /* Some targets don't generate traps when attaching to the inferior,
1099 or their target_attach implementation takes care of the waiting.
1100 These targets must set to_attach_no_wait. */
1101
1102 #define target_attach_no_wait \
1103 (current_target.to_attach_no_wait)
1104
1105 /* The target_attach operation places a process under debugger control,
1106 and stops the process.
1107
1108 This operation provides a target-specific hook that allows the
1109 necessary bookkeeping to be performed after an attach completes. */
1110 #define target_post_attach(pid) \
1111 (*current_target.to_post_attach) (&current_target, pid)
1112
1113 /* Takes a program previously attached to and detaches it.
1114 The program may resume execution (some targets do, some don't) and will
1115 no longer stop on signals, etc. We better not have left any breakpoints
1116 in the program or it'll die when it hits one. ARGS is arguments
1117 typed by the user (e.g. a signal to send the process). FROM_TTY
1118 says whether to be verbose or not. */
1119
1120 extern void target_detach (const char *, int);
1121
1122 /* Disconnect from the current target without resuming it (leaving it
1123 waiting for a debugger). */
1124
1125 extern void target_disconnect (char *, int);
1126
1127 /* Resume execution of the target process PTID (or a group of
1128 threads). STEP says whether to single-step or to run free; SIGGNAL
1129 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1130 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1131 PTID means `step/resume only this process id'. A wildcard PTID
1132 (all threads, or all threads of process) means `step/resume
1133 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1134 matches) resume with their 'thread->suspend.stop_signal' signal
1135 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1136 if in "no pass" state. */
1137
1138 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1139
1140 /* Wait for process pid to do something. PTID = -1 to wait for any
1141 pid to do something. Return pid of child, or -1 in case of error;
1142 store status through argument pointer STATUS. Note that it is
1143 _NOT_ OK to throw_exception() out of target_wait() without popping
1144 the debugging target from the stack; GDB isn't prepared to get back
1145 to the prompt with a debugging target but without the frame cache,
1146 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1147 options. */
1148
1149 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1150 int options);
1151
1152 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1153
1154 extern void target_fetch_registers (struct regcache *regcache, int regno);
1155
1156 /* Store at least register REGNO, or all regs if REGNO == -1.
1157 It can store as many registers as it wants to, so target_prepare_to_store
1158 must have been previously called. Calls error() if there are problems. */
1159
1160 extern void target_store_registers (struct regcache *regcache, int regs);
1161
1162 /* Get ready to modify the registers array. On machines which store
1163 individual registers, this doesn't need to do anything. On machines
1164 which store all the registers in one fell swoop, this makes sure
1165 that REGISTERS contains all the registers from the program being
1166 debugged. */
1167
1168 #define target_prepare_to_store(regcache) \
1169 (*current_target.to_prepare_to_store) (&current_target, regcache)
1170
1171 /* Determine current address space of thread PTID. */
1172
1173 struct address_space *target_thread_address_space (ptid_t);
1174
1175 /* Implement the "info proc" command. This returns one if the request
1176 was handled, and zero otherwise. It can also throw an exception if
1177 an error was encountered while attempting to handle the
1178 request. */
1179
1180 int target_info_proc (char *, enum info_proc_what);
1181
1182 /* Returns true if this target can debug multiple processes
1183 simultaneously. */
1184
1185 #define target_supports_multi_process() \
1186 (*current_target.to_supports_multi_process) (&current_target)
1187
1188 /* Returns true if this target can disable address space randomization. */
1189
1190 int target_supports_disable_randomization (void);
1191
1192 /* Returns true if this target can enable and disable tracepoints
1193 while a trace experiment is running. */
1194
1195 #define target_supports_enable_disable_tracepoint() \
1196 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1197
1198 #define target_supports_string_tracing() \
1199 (*current_target.to_supports_string_tracing) (&current_target)
1200
1201 /* Returns true if this target can handle breakpoint conditions
1202 on its end. */
1203
1204 #define target_supports_evaluation_of_breakpoint_conditions() \
1205 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1206
1207 /* Returns true if this target can handle breakpoint commands
1208 on its end. */
1209
1210 #define target_can_run_breakpoint_commands() \
1211 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1212
1213 extern int target_read_string (CORE_ADDR, char **, int, int *);
1214
1215 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1216 ssize_t len);
1217
1218 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1219 ssize_t len);
1220
1221 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1222
1223 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1224
1225 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1226 ssize_t len);
1227
1228 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1229 ssize_t len);
1230
1231 /* Fetches the target's memory map. If one is found it is sorted
1232 and returned, after some consistency checking. Otherwise, NULL
1233 is returned. */
1234 VEC(mem_region_s) *target_memory_map (void);
1235
1236 /* Erase the specified flash region. */
1237 void target_flash_erase (ULONGEST address, LONGEST length);
1238
1239 /* Finish a sequence of flash operations. */
1240 void target_flash_done (void);
1241
1242 /* Describes a request for a memory write operation. */
1243 struct memory_write_request
1244 {
1245 /* Begining address that must be written. */
1246 ULONGEST begin;
1247 /* Past-the-end address. */
1248 ULONGEST end;
1249 /* The data to write. */
1250 gdb_byte *data;
1251 /* A callback baton for progress reporting for this request. */
1252 void *baton;
1253 };
1254 typedef struct memory_write_request memory_write_request_s;
1255 DEF_VEC_O(memory_write_request_s);
1256
1257 /* Enumeration specifying different flash preservation behaviour. */
1258 enum flash_preserve_mode
1259 {
1260 flash_preserve,
1261 flash_discard
1262 };
1263
1264 /* Write several memory blocks at once. This version can be more
1265 efficient than making several calls to target_write_memory, in
1266 particular because it can optimize accesses to flash memory.
1267
1268 Moreover, this is currently the only memory access function in gdb
1269 that supports writing to flash memory, and it should be used for
1270 all cases where access to flash memory is desirable.
1271
1272 REQUESTS is the vector (see vec.h) of memory_write_request.
1273 PRESERVE_FLASH_P indicates what to do with blocks which must be
1274 erased, but not completely rewritten.
1275 PROGRESS_CB is a function that will be periodically called to provide
1276 feedback to user. It will be called with the baton corresponding
1277 to the request currently being written. It may also be called
1278 with a NULL baton, when preserved flash sectors are being rewritten.
1279
1280 The function returns 0 on success, and error otherwise. */
1281 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1282 enum flash_preserve_mode preserve_flash_p,
1283 void (*progress_cb) (ULONGEST, void *));
1284
1285 /* Print a line about the current target. */
1286
1287 #define target_files_info() \
1288 (*current_target.to_files_info) (&current_target)
1289
1290 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1291 the target machine. Returns 0 for success, and returns non-zero or
1292 throws an error (with a detailed failure reason error code and
1293 message) otherwise. */
1294
1295 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1296 struct bp_target_info *bp_tgt);
1297
1298 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1299 machine. Result is 0 for success, non-zero for error. */
1300
1301 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1302 struct bp_target_info *bp_tgt);
1303
1304 /* Initialize the terminal settings we record for the inferior,
1305 before we actually run the inferior. */
1306
1307 #define target_terminal_init() \
1308 (*current_target.to_terminal_init) (&current_target)
1309
1310 /* Put the inferior's terminal settings into effect.
1311 This is preparation for starting or resuming the inferior. */
1312
1313 extern void target_terminal_inferior (void);
1314
1315 /* Put some of our terminal settings into effect,
1316 enough to get proper results from our output,
1317 but do not change into or out of RAW mode
1318 so that no input is discarded.
1319
1320 After doing this, either terminal_ours or terminal_inferior
1321 should be called to get back to a normal state of affairs. */
1322
1323 #define target_terminal_ours_for_output() \
1324 (*current_target.to_terminal_ours_for_output) (&current_target)
1325
1326 /* Put our terminal settings into effect.
1327 First record the inferior's terminal settings
1328 so they can be restored properly later. */
1329
1330 #define target_terminal_ours() \
1331 (*current_target.to_terminal_ours) (&current_target)
1332
1333 /* Save our terminal settings.
1334 This is called from TUI after entering or leaving the curses
1335 mode. Since curses modifies our terminal this call is here
1336 to take this change into account. */
1337
1338 #define target_terminal_save_ours() \
1339 (*current_target.to_terminal_save_ours) (&current_target)
1340
1341 /* Print useful information about our terminal status, if such a thing
1342 exists. */
1343
1344 #define target_terminal_info(arg, from_tty) \
1345 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1346
1347 /* Kill the inferior process. Make it go away. */
1348
1349 extern void target_kill (void);
1350
1351 /* Load an executable file into the target process. This is expected
1352 to not only bring new code into the target process, but also to
1353 update GDB's symbol tables to match.
1354
1355 ARG contains command-line arguments, to be broken down with
1356 buildargv (). The first non-switch argument is the filename to
1357 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1358 0)), which is an offset to apply to the load addresses of FILE's
1359 sections. The target may define switches, or other non-switch
1360 arguments, as it pleases. */
1361
1362 extern void target_load (char *arg, int from_tty);
1363
1364 /* Start an inferior process and set inferior_ptid to its pid.
1365 EXEC_FILE is the file to run.
1366 ALLARGS is a string containing the arguments to the program.
1367 ENV is the environment vector to pass. Errors reported with error().
1368 On VxWorks and various standalone systems, we ignore exec_file. */
1369
1370 void target_create_inferior (char *exec_file, char *args,
1371 char **env, int from_tty);
1372
1373 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1374 notification of inferior events such as fork and vork immediately
1375 after the inferior is created. (This because of how gdb gets an
1376 inferior created via invoking a shell to do it. In such a scenario,
1377 if the shell init file has commands in it, the shell will fork and
1378 exec for each of those commands, and we will see each such fork
1379 event. Very bad.)
1380
1381 Such targets will supply an appropriate definition for this function. */
1382
1383 #define target_post_startup_inferior(ptid) \
1384 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1385
1386 /* On some targets, we can catch an inferior fork or vfork event when
1387 it occurs. These functions insert/remove an already-created
1388 catchpoint for such events. They return 0 for success, 1 if the
1389 catchpoint type is not supported and -1 for failure. */
1390
1391 #define target_insert_fork_catchpoint(pid) \
1392 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1393
1394 #define target_remove_fork_catchpoint(pid) \
1395 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1396
1397 #define target_insert_vfork_catchpoint(pid) \
1398 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1399
1400 #define target_remove_vfork_catchpoint(pid) \
1401 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1402
1403 /* If the inferior forks or vforks, this function will be called at
1404 the next resume in order to perform any bookkeeping and fiddling
1405 necessary to continue debugging either the parent or child, as
1406 requested, and releasing the other. Information about the fork
1407 or vfork event is available via get_last_target_status ().
1408 This function returns 1 if the inferior should not be resumed
1409 (i.e. there is another event pending). */
1410
1411 int target_follow_fork (int follow_child, int detach_fork);
1412
1413 /* On some targets, we can catch an inferior exec event when it
1414 occurs. These functions insert/remove an already-created
1415 catchpoint for such events. They return 0 for success, 1 if the
1416 catchpoint type is not supported and -1 for failure. */
1417
1418 #define target_insert_exec_catchpoint(pid) \
1419 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1420
1421 #define target_remove_exec_catchpoint(pid) \
1422 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1423
1424 /* Syscall catch.
1425
1426 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1427 If NEEDED is zero, it means the target can disable the mechanism to
1428 catch system calls because there are no more catchpoints of this type.
1429
1430 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1431 being requested. In this case, both TABLE_SIZE and TABLE should
1432 be ignored.
1433
1434 TABLE_SIZE is the number of elements in TABLE. It only matters if
1435 ANY_COUNT is zero.
1436
1437 TABLE is an array of ints, indexed by syscall number. An element in
1438 this array is nonzero if that syscall should be caught. This argument
1439 only matters if ANY_COUNT is zero.
1440
1441 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1442 for failure. */
1443
1444 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1445 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1446 pid, needed, any_count, \
1447 table_size, table)
1448
1449 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1450 exit code of PID, if any. */
1451
1452 #define target_has_exited(pid,wait_status,exit_status) \
1453 (*current_target.to_has_exited) (&current_target, \
1454 pid,wait_status,exit_status)
1455
1456 /* The debugger has completed a blocking wait() call. There is now
1457 some process event that must be processed. This function should
1458 be defined by those targets that require the debugger to perform
1459 cleanup or internal state changes in response to the process event. */
1460
1461 /* The inferior process has died. Do what is right. */
1462
1463 void target_mourn_inferior (void);
1464
1465 /* Does target have enough data to do a run or attach command? */
1466
1467 #define target_can_run(t) \
1468 ((t)->to_can_run) (t)
1469
1470 /* Set list of signals to be handled in the target.
1471
1472 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1473 (enum gdb_signal). For every signal whose entry in this array is
1474 non-zero, the target is allowed -but not required- to skip reporting
1475 arrival of the signal to the GDB core by returning from target_wait,
1476 and to pass the signal directly to the inferior instead.
1477
1478 However, if the target is hardware single-stepping a thread that is
1479 about to receive a signal, it needs to be reported in any case, even
1480 if mentioned in a previous target_pass_signals call. */
1481
1482 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1483
1484 /* Set list of signals the target may pass to the inferior. This
1485 directly maps to the "handle SIGNAL pass/nopass" setting.
1486
1487 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1488 number (enum gdb_signal). For every signal whose entry in this
1489 array is non-zero, the target is allowed to pass the signal to the
1490 inferior. Signals not present in the array shall be silently
1491 discarded. This does not influence whether to pass signals to the
1492 inferior as a result of a target_resume call. This is useful in
1493 scenarios where the target needs to decide whether to pass or not a
1494 signal to the inferior without GDB core involvement, such as for
1495 example, when detaching (as threads may have been suspended with
1496 pending signals not reported to GDB). */
1497
1498 extern void target_program_signals (int nsig, unsigned char *program_signals);
1499
1500 /* Check to see if a thread is still alive. */
1501
1502 extern int target_thread_alive (ptid_t ptid);
1503
1504 /* Query for new threads and add them to the thread list. */
1505
1506 extern void target_find_new_threads (void);
1507
1508 /* Make target stop in a continuable fashion. (For instance, under
1509 Unix, this should act like SIGSTOP). This function is normally
1510 used by GUIs to implement a stop button. */
1511
1512 extern void target_stop (ptid_t ptid);
1513
1514 /* Send the specified COMMAND to the target's monitor
1515 (shell,interpreter) for execution. The result of the query is
1516 placed in OUTBUF. */
1517
1518 #define target_rcmd(command, outbuf) \
1519 (*current_target.to_rcmd) (&current_target, command, outbuf)
1520
1521
1522 /* Does the target include all of memory, or only part of it? This
1523 determines whether we look up the target chain for other parts of
1524 memory if this target can't satisfy a request. */
1525
1526 extern int target_has_all_memory_1 (void);
1527 #define target_has_all_memory target_has_all_memory_1 ()
1528
1529 /* Does the target include memory? (Dummy targets don't.) */
1530
1531 extern int target_has_memory_1 (void);
1532 #define target_has_memory target_has_memory_1 ()
1533
1534 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1535 we start a process.) */
1536
1537 extern int target_has_stack_1 (void);
1538 #define target_has_stack target_has_stack_1 ()
1539
1540 /* Does the target have registers? (Exec files don't.) */
1541
1542 extern int target_has_registers_1 (void);
1543 #define target_has_registers target_has_registers_1 ()
1544
1545 /* Does the target have execution? Can we make it jump (through
1546 hoops), or pop its stack a few times? This means that the current
1547 target is currently executing; for some targets, that's the same as
1548 whether or not the target is capable of execution, but there are
1549 also targets which can be current while not executing. In that
1550 case this will become true after target_create_inferior or
1551 target_attach. */
1552
1553 extern int target_has_execution_1 (ptid_t);
1554
1555 /* Like target_has_execution_1, but always passes inferior_ptid. */
1556
1557 extern int target_has_execution_current (void);
1558
1559 #define target_has_execution target_has_execution_current ()
1560
1561 /* Default implementations for process_stratum targets. Return true
1562 if there's a selected inferior, false otherwise. */
1563
1564 extern int default_child_has_all_memory (struct target_ops *ops);
1565 extern int default_child_has_memory (struct target_ops *ops);
1566 extern int default_child_has_stack (struct target_ops *ops);
1567 extern int default_child_has_registers (struct target_ops *ops);
1568 extern int default_child_has_execution (struct target_ops *ops,
1569 ptid_t the_ptid);
1570
1571 /* Can the target support the debugger control of thread execution?
1572 Can it lock the thread scheduler? */
1573
1574 #define target_can_lock_scheduler \
1575 (current_target.to_has_thread_control & tc_schedlock)
1576
1577 /* Should the target enable async mode if it is supported? Temporary
1578 cludge until async mode is a strict superset of sync mode. */
1579 extern int target_async_permitted;
1580
1581 /* Can the target support asynchronous execution? */
1582 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1583
1584 /* Is the target in asynchronous execution mode? */
1585 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1586
1587 int target_supports_non_stop (void);
1588
1589 /* Put the target in async mode with the specified callback function. */
1590 #define target_async(CALLBACK,CONTEXT) \
1591 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1592
1593 #define target_execution_direction() \
1594 (current_target.to_execution_direction (&current_target))
1595
1596 /* Converts a process id to a string. Usually, the string just contains
1597 `process xyz', but on some systems it may contain
1598 `process xyz thread abc'. */
1599
1600 extern char *target_pid_to_str (ptid_t ptid);
1601
1602 extern char *normal_pid_to_str (ptid_t ptid);
1603
1604 /* Return a short string describing extra information about PID,
1605 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1606 is okay. */
1607
1608 #define target_extra_thread_info(TP) \
1609 (current_target.to_extra_thread_info (&current_target, TP))
1610
1611 /* Return the thread's name. A NULL result means that the target
1612 could not determine this thread's name. */
1613
1614 extern char *target_thread_name (struct thread_info *);
1615
1616 /* Attempts to find the pathname of the executable file
1617 that was run to create a specified process.
1618
1619 The process PID must be stopped when this operation is used.
1620
1621 If the executable file cannot be determined, NULL is returned.
1622
1623 Else, a pointer to a character string containing the pathname
1624 is returned. This string should be copied into a buffer by
1625 the client if the string will not be immediately used, or if
1626 it must persist. */
1627
1628 #define target_pid_to_exec_file(pid) \
1629 (current_target.to_pid_to_exec_file) (&current_target, pid)
1630
1631 /* See the to_thread_architecture description in struct target_ops. */
1632
1633 #define target_thread_architecture(ptid) \
1634 (current_target.to_thread_architecture (&current_target, ptid))
1635
1636 /*
1637 * Iterator function for target memory regions.
1638 * Calls a callback function once for each memory region 'mapped'
1639 * in the child process. Defined as a simple macro rather than
1640 * as a function macro so that it can be tested for nullity.
1641 */
1642
1643 #define target_find_memory_regions(FUNC, DATA) \
1644 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1645
1646 /*
1647 * Compose corefile .note section.
1648 */
1649
1650 #define target_make_corefile_notes(BFD, SIZE_P) \
1651 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1652
1653 /* Bookmark interfaces. */
1654 #define target_get_bookmark(ARGS, FROM_TTY) \
1655 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1656
1657 #define target_goto_bookmark(ARG, FROM_TTY) \
1658 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1659
1660 /* Hardware watchpoint interfaces. */
1661
1662 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1663 write). Only the INFERIOR_PTID task is being queried. */
1664
1665 #define target_stopped_by_watchpoint() \
1666 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1667
1668 /* Non-zero if we have steppable watchpoints */
1669
1670 #define target_have_steppable_watchpoint \
1671 (current_target.to_have_steppable_watchpoint)
1672
1673 /* Non-zero if we have continuable watchpoints */
1674
1675 #define target_have_continuable_watchpoint \
1676 (current_target.to_have_continuable_watchpoint)
1677
1678 /* Provide defaults for hardware watchpoint functions. */
1679
1680 /* If the *_hw_beakpoint functions have not been defined
1681 elsewhere use the definitions in the target vector. */
1682
1683 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1684 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1685 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1686 (including this one?). OTHERTYPE is who knows what... */
1687
1688 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1689 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1690 TYPE, CNT, OTHERTYPE);
1691
1692 /* Returns the number of debug registers needed to watch the given
1693 memory region, or zero if not supported. */
1694
1695 #define target_region_ok_for_hw_watchpoint(addr, len) \
1696 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1697 addr, len)
1698
1699
1700 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1701 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1702 COND is the expression for its condition, or NULL if there's none.
1703 Returns 0 for success, 1 if the watchpoint type is not supported,
1704 -1 for failure. */
1705
1706 #define target_insert_watchpoint(addr, len, type, cond) \
1707 (*current_target.to_insert_watchpoint) (&current_target, \
1708 addr, len, type, cond)
1709
1710 #define target_remove_watchpoint(addr, len, type, cond) \
1711 (*current_target.to_remove_watchpoint) (&current_target, \
1712 addr, len, type, cond)
1713
1714 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1715 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1716 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1717 masked watchpoints are not supported, -1 for failure. */
1718
1719 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1720
1721 /* Remove a masked watchpoint at ADDR with the mask MASK.
1722 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1723 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1724 for failure. */
1725
1726 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1727
1728 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1729 the target machine. Returns 0 for success, and returns non-zero or
1730 throws an error (with a detailed failure reason error code and
1731 message) otherwise. */
1732
1733 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1734 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1735 gdbarch, bp_tgt)
1736
1737 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1738 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1739 gdbarch, bp_tgt)
1740
1741 /* Return number of debug registers needed for a ranged breakpoint,
1742 or -1 if ranged breakpoints are not supported. */
1743
1744 extern int target_ranged_break_num_registers (void);
1745
1746 /* Return non-zero if target knows the data address which triggered this
1747 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1748 INFERIOR_PTID task is being queried. */
1749 #define target_stopped_data_address(target, addr_p) \
1750 (*target.to_stopped_data_address) (target, addr_p)
1751
1752 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1753 LENGTH bytes beginning at START. */
1754 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1755 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1756
1757 /* Return non-zero if the target is capable of using hardware to evaluate
1758 the condition expression. In this case, if the condition is false when
1759 the watched memory location changes, execution may continue without the
1760 debugger being notified.
1761
1762 Due to limitations in the hardware implementation, it may be capable of
1763 avoiding triggering the watchpoint in some cases where the condition
1764 expression is false, but may report some false positives as well.
1765 For this reason, GDB will still evaluate the condition expression when
1766 the watchpoint triggers. */
1767 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1768 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1769 addr, len, type, cond)
1770
1771 /* Return number of debug registers needed for a masked watchpoint,
1772 -1 if masked watchpoints are not supported or -2 if the given address
1773 and mask combination cannot be used. */
1774
1775 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1776
1777 /* Target can execute in reverse? */
1778 #define target_can_execute_reverse \
1779 current_target.to_can_execute_reverse (&current_target)
1780
1781 extern const struct target_desc *target_read_description (struct target_ops *);
1782
1783 #define target_get_ada_task_ptid(lwp, tid) \
1784 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1785
1786 /* Utility implementation of searching memory. */
1787 extern int simple_search_memory (struct target_ops* ops,
1788 CORE_ADDR start_addr,
1789 ULONGEST search_space_len,
1790 const gdb_byte *pattern,
1791 ULONGEST pattern_len,
1792 CORE_ADDR *found_addrp);
1793
1794 /* Main entry point for searching memory. */
1795 extern int target_search_memory (CORE_ADDR start_addr,
1796 ULONGEST search_space_len,
1797 const gdb_byte *pattern,
1798 ULONGEST pattern_len,
1799 CORE_ADDR *found_addrp);
1800
1801 /* Target file operations. */
1802
1803 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1804 target file descriptor, or -1 if an error occurs (and set
1805 *TARGET_ERRNO). */
1806 extern int target_fileio_open (const char *filename, int flags, int mode,
1807 int *target_errno);
1808
1809 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1810 Return the number of bytes written, or -1 if an error occurs
1811 (and set *TARGET_ERRNO). */
1812 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1813 ULONGEST offset, int *target_errno);
1814
1815 /* Read up to LEN bytes FD on the target into READ_BUF.
1816 Return the number of bytes read, or -1 if an error occurs
1817 (and set *TARGET_ERRNO). */
1818 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1819 ULONGEST offset, int *target_errno);
1820
1821 /* Close FD on the target. Return 0, or -1 if an error occurs
1822 (and set *TARGET_ERRNO). */
1823 extern int target_fileio_close (int fd, int *target_errno);
1824
1825 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1826 occurs (and set *TARGET_ERRNO). */
1827 extern int target_fileio_unlink (const char *filename, int *target_errno);
1828
1829 /* Read value of symbolic link FILENAME on the target. Return a
1830 null-terminated string allocated via xmalloc, or NULL if an error
1831 occurs (and set *TARGET_ERRNO). */
1832 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1833
1834 /* Read target file FILENAME. The return value will be -1 if the transfer
1835 fails or is not supported; 0 if the object is empty; or the length
1836 of the object otherwise. If a positive value is returned, a
1837 sufficiently large buffer will be allocated using xmalloc and
1838 returned in *BUF_P containing the contents of the object.
1839
1840 This method should be used for objects sufficiently small to store
1841 in a single xmalloc'd buffer, when no fixed bound on the object's
1842 size is known in advance. */
1843 extern LONGEST target_fileio_read_alloc (const char *filename,
1844 gdb_byte **buf_p);
1845
1846 /* Read target file FILENAME. The result is NUL-terminated and
1847 returned as a string, allocated using xmalloc. If an error occurs
1848 or the transfer is unsupported, NULL is returned. Empty objects
1849 are returned as allocated but empty strings. A warning is issued
1850 if the result contains any embedded NUL bytes. */
1851 extern char *target_fileio_read_stralloc (const char *filename);
1852
1853
1854 /* Tracepoint-related operations. */
1855
1856 #define target_trace_init() \
1857 (*current_target.to_trace_init) (&current_target)
1858
1859 #define target_download_tracepoint(t) \
1860 (*current_target.to_download_tracepoint) (&current_target, t)
1861
1862 #define target_can_download_tracepoint() \
1863 (*current_target.to_can_download_tracepoint) (&current_target)
1864
1865 #define target_download_trace_state_variable(tsv) \
1866 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1867
1868 #define target_enable_tracepoint(loc) \
1869 (*current_target.to_enable_tracepoint) (&current_target, loc)
1870
1871 #define target_disable_tracepoint(loc) \
1872 (*current_target.to_disable_tracepoint) (&current_target, loc)
1873
1874 #define target_trace_start() \
1875 (*current_target.to_trace_start) (&current_target)
1876
1877 #define target_trace_set_readonly_regions() \
1878 (*current_target.to_trace_set_readonly_regions) (&current_target)
1879
1880 #define target_get_trace_status(ts) \
1881 (*current_target.to_get_trace_status) (&current_target, ts)
1882
1883 #define target_get_tracepoint_status(tp,utp) \
1884 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1885
1886 #define target_trace_stop() \
1887 (*current_target.to_trace_stop) (&current_target)
1888
1889 #define target_trace_find(type,num,addr1,addr2,tpp) \
1890 (*current_target.to_trace_find) (&current_target, \
1891 (type), (num), (addr1), (addr2), (tpp))
1892
1893 #define target_get_trace_state_variable_value(tsv,val) \
1894 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1895 (tsv), (val))
1896
1897 #define target_save_trace_data(filename) \
1898 (*current_target.to_save_trace_data) (&current_target, filename)
1899
1900 #define target_upload_tracepoints(utpp) \
1901 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1902
1903 #define target_upload_trace_state_variables(utsvp) \
1904 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1905
1906 #define target_get_raw_trace_data(buf,offset,len) \
1907 (*current_target.to_get_raw_trace_data) (&current_target, \
1908 (buf), (offset), (len))
1909
1910 #define target_get_min_fast_tracepoint_insn_len() \
1911 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1912
1913 #define target_set_disconnected_tracing(val) \
1914 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1915
1916 #define target_set_circular_trace_buffer(val) \
1917 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1918
1919 #define target_set_trace_buffer_size(val) \
1920 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1921
1922 #define target_set_trace_notes(user,notes,stopnotes) \
1923 (*current_target.to_set_trace_notes) (&current_target, \
1924 (user), (notes), (stopnotes))
1925
1926 #define target_get_tib_address(ptid, addr) \
1927 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1928
1929 #define target_set_permissions() \
1930 (*current_target.to_set_permissions) (&current_target)
1931
1932 #define target_static_tracepoint_marker_at(addr, marker) \
1933 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1934 addr, marker)
1935
1936 #define target_static_tracepoint_markers_by_strid(marker_id) \
1937 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1938 marker_id)
1939
1940 #define target_traceframe_info() \
1941 (*current_target.to_traceframe_info) (&current_target)
1942
1943 #define target_use_agent(use) \
1944 (*current_target.to_use_agent) (&current_target, use)
1945
1946 #define target_can_use_agent() \
1947 (*current_target.to_can_use_agent) (&current_target)
1948
1949 #define target_augmented_libraries_svr4_read() \
1950 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
1951
1952 /* Command logging facility. */
1953
1954 #define target_log_command(p) \
1955 (*current_target.to_log_command) (&current_target, p)
1956
1957
1958 extern int target_core_of_thread (ptid_t ptid);
1959
1960 /* See to_get_unwinder in struct target_ops. */
1961 extern const struct frame_unwind *target_get_unwinder (void);
1962
1963 /* See to_get_tailcall_unwinder in struct target_ops. */
1964 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1965
1966 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1967 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1968 if there's a mismatch, and -1 if an error is encountered while
1969 reading memory. Throws an error if the functionality is found not
1970 to be supported by the current target. */
1971 int target_verify_memory (const gdb_byte *data,
1972 CORE_ADDR memaddr, ULONGEST size);
1973
1974 /* Routines for maintenance of the target structures...
1975
1976 complete_target_initialization: Finalize a target_ops by filling in
1977 any fields needed by the target implementation.
1978
1979 add_target: Add a target to the list of all possible targets.
1980
1981 push_target: Make this target the top of the stack of currently used
1982 targets, within its particular stratum of the stack. Result
1983 is 0 if now atop the stack, nonzero if not on top (maybe
1984 should warn user).
1985
1986 unpush_target: Remove this from the stack of currently used targets,
1987 no matter where it is on the list. Returns 0 if no
1988 change, 1 if removed from stack. */
1989
1990 extern void add_target (struct target_ops *);
1991
1992 extern void add_target_with_completer (struct target_ops *t,
1993 completer_ftype *completer);
1994
1995 extern void complete_target_initialization (struct target_ops *t);
1996
1997 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1998 for maintaining backwards compatibility when renaming targets. */
1999
2000 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2001
2002 extern void push_target (struct target_ops *);
2003
2004 extern int unpush_target (struct target_ops *);
2005
2006 extern void target_pre_inferior (int);
2007
2008 extern void target_preopen (int);
2009
2010 /* Does whatever cleanup is required to get rid of all pushed targets. */
2011 extern void pop_all_targets (void);
2012
2013 /* Like pop_all_targets, but pops only targets whose stratum is
2014 strictly above ABOVE_STRATUM. */
2015 extern void pop_all_targets_above (enum strata above_stratum);
2016
2017 extern int target_is_pushed (struct target_ops *t);
2018
2019 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2020 CORE_ADDR offset);
2021
2022 /* Struct target_section maps address ranges to file sections. It is
2023 mostly used with BFD files, but can be used without (e.g. for handling
2024 raw disks, or files not in formats handled by BFD). */
2025
2026 struct target_section
2027 {
2028 CORE_ADDR addr; /* Lowest address in section */
2029 CORE_ADDR endaddr; /* 1+highest address in section */
2030
2031 struct bfd_section *the_bfd_section;
2032
2033 /* The "owner" of the section.
2034 It can be any unique value. It is set by add_target_sections
2035 and used by remove_target_sections.
2036 For example, for executables it is a pointer to exec_bfd and
2037 for shlibs it is the so_list pointer. */
2038 void *owner;
2039 };
2040
2041 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2042
2043 struct target_section_table
2044 {
2045 struct target_section *sections;
2046 struct target_section *sections_end;
2047 };
2048
2049 /* Return the "section" containing the specified address. */
2050 struct target_section *target_section_by_addr (struct target_ops *target,
2051 CORE_ADDR addr);
2052
2053 /* Return the target section table this target (or the targets
2054 beneath) currently manipulate. */
2055
2056 extern struct target_section_table *target_get_section_table
2057 (struct target_ops *target);
2058
2059 /* From mem-break.c */
2060
2061 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2062 struct bp_target_info *);
2063
2064 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2065 struct bp_target_info *);
2066
2067 extern int default_memory_remove_breakpoint (struct gdbarch *,
2068 struct bp_target_info *);
2069
2070 extern int default_memory_insert_breakpoint (struct gdbarch *,
2071 struct bp_target_info *);
2072
2073
2074 /* From target.c */
2075
2076 extern void initialize_targets (void);
2077
2078 extern void noprocess (void) ATTRIBUTE_NORETURN;
2079
2080 extern void target_require_runnable (void);
2081
2082 extern void find_default_attach (struct target_ops *, char *, int);
2083
2084 extern void find_default_create_inferior (struct target_ops *,
2085 char *, char *, char **, int);
2086
2087 extern struct target_ops *find_target_beneath (struct target_ops *);
2088
2089 /* Find the target at STRATUM. If no target is at that stratum,
2090 return NULL. */
2091
2092 struct target_ops *find_target_at (enum strata stratum);
2093
2094 /* Read OS data object of type TYPE from the target, and return it in
2095 XML format. The result is NUL-terminated and returned as a string,
2096 allocated using xmalloc. If an error occurs or the transfer is
2097 unsupported, NULL is returned. Empty objects are returned as
2098 allocated but empty strings. */
2099
2100 extern char *target_get_osdata (const char *type);
2101
2102 \f
2103 /* Stuff that should be shared among the various remote targets. */
2104
2105 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2106 information (higher values, more information). */
2107 extern int remote_debug;
2108
2109 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2110 extern int baud_rate;
2111 /* Timeout limit for response from target. */
2112 extern int remote_timeout;
2113
2114 \f
2115
2116 /* Set the show memory breakpoints mode to show, and installs a cleanup
2117 to restore it back to the current value. */
2118 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2119
2120 extern int may_write_registers;
2121 extern int may_write_memory;
2122 extern int may_insert_breakpoints;
2123 extern int may_insert_tracepoints;
2124 extern int may_insert_fast_tracepoints;
2125 extern int may_stop;
2126
2127 extern void update_target_permissions (void);
2128
2129 \f
2130 /* Imported from machine dependent code. */
2131
2132 /* Blank target vector entries are initialized to target_ignore. */
2133 void target_ignore (void);
2134
2135 /* See to_supports_btrace in struct target_ops. */
2136 #define target_supports_btrace() \
2137 (current_target.to_supports_btrace (&current_target))
2138
2139 /* See to_enable_btrace in struct target_ops. */
2140 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2141
2142 /* See to_disable_btrace in struct target_ops. */
2143 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2144
2145 /* See to_teardown_btrace in struct target_ops. */
2146 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2147
2148 /* See to_read_btrace in struct target_ops. */
2149 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2150 struct btrace_target_info *,
2151 enum btrace_read_type);
2152
2153 /* See to_stop_recording in struct target_ops. */
2154 extern void target_stop_recording (void);
2155
2156 /* See to_info_record in struct target_ops. */
2157 extern void target_info_record (void);
2158
2159 /* See to_save_record in struct target_ops. */
2160 extern void target_save_record (const char *filename);
2161
2162 /* Query if the target supports deleting the execution log. */
2163 extern int target_supports_delete_record (void);
2164
2165 /* See to_delete_record in struct target_ops. */
2166 extern void target_delete_record (void);
2167
2168 /* See to_record_is_replaying in struct target_ops. */
2169 extern int target_record_is_replaying (void);
2170
2171 /* See to_goto_record_begin in struct target_ops. */
2172 extern void target_goto_record_begin (void);
2173
2174 /* See to_goto_record_end in struct target_ops. */
2175 extern void target_goto_record_end (void);
2176
2177 /* See to_goto_record in struct target_ops. */
2178 extern void target_goto_record (ULONGEST insn);
2179
2180 /* See to_insn_history. */
2181 extern void target_insn_history (int size, int flags);
2182
2183 /* See to_insn_history_from. */
2184 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2185
2186 /* See to_insn_history_range. */
2187 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2188
2189 /* See to_call_history. */
2190 extern void target_call_history (int size, int flags);
2191
2192 /* See to_call_history_from. */
2193 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2194
2195 /* See to_call_history_range. */
2196 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2197
2198 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2199 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2200 struct gdbarch *gdbarch);
2201
2202 /* See to_decr_pc_after_break. */
2203 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2204
2205 #endif /* !defined (TARGET_H) */
This page took 0.302744 seconds and 4 git commands to generate.