2003-10-24 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support. Written by John Gilmore.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #if !defined (TARGET_H)
26 #define TARGET_H
27
28 struct objfile;
29 struct ui_file;
30 struct mem_attrib;
31 struct target_ops;
32
33 /* This include file defines the interface between the main part
34 of the debugger, and the part which is target-specific, or
35 specific to the communications interface between us and the
36 target.
37
38 A TARGET is an interface between the debugger and a particular
39 kind of file or process. Targets can be STACKED in STRATA,
40 so that more than one target can potentially respond to a request.
41 In particular, memory accesses will walk down the stack of targets
42 until they find a target that is interested in handling that particular
43 address. STRATA are artificial boundaries on the stack, within
44 which particular kinds of targets live. Strata exist so that
45 people don't get confused by pushing e.g. a process target and then
46 a file target, and wondering why they can't see the current values
47 of variables any more (the file target is handling them and they
48 never get to the process target). So when you push a file target,
49 it goes into the file stratum, which is always below the process
50 stratum. */
51
52 #include "bfd.h"
53 #include "symtab.h"
54 #include "dcache.h"
55 #include "memattr.h"
56
57 enum strata
58 {
59 dummy_stratum, /* The lowest of the low */
60 file_stratum, /* Executable files, etc */
61 core_stratum, /* Core dump files */
62 download_stratum, /* Downloading of remote targets */
63 process_stratum, /* Executing processes */
64 thread_stratum /* Executing threads */
65 };
66
67 enum thread_control_capabilities
68 {
69 tc_none = 0, /* Default: can't control thread execution. */
70 tc_schedlock = 1, /* Can lock the thread scheduler. */
71 tc_switch = 2 /* Can switch the running thread on demand. */
72 };
73
74 /* Stuff for target_wait. */
75
76 /* Generally, what has the program done? */
77 enum target_waitkind
78 {
79 /* The program has exited. The exit status is in value.integer. */
80 TARGET_WAITKIND_EXITED,
81
82 /* The program has stopped with a signal. Which signal is in
83 value.sig. */
84 TARGET_WAITKIND_STOPPED,
85
86 /* The program has terminated with a signal. Which signal is in
87 value.sig. */
88 TARGET_WAITKIND_SIGNALLED,
89
90 /* The program is letting us know that it dynamically loaded something
91 (e.g. it called load(2) on AIX). */
92 TARGET_WAITKIND_LOADED,
93
94 /* The program has forked. A "related" process' ID is in
95 value.related_pid. I.e., if the child forks, value.related_pid
96 is the parent's ID. */
97
98 TARGET_WAITKIND_FORKED,
99
100 /* The program has vforked. A "related" process's ID is in
101 value.related_pid. */
102
103 TARGET_WAITKIND_VFORKED,
104
105 /* The program has exec'ed a new executable file. The new file's
106 pathname is pointed to by value.execd_pathname. */
107
108 TARGET_WAITKIND_EXECD,
109
110 /* The program has entered or returned from a system call. On
111 HP-UX, this is used in the hardware watchpoint implementation.
112 The syscall's unique integer ID number is in value.syscall_id */
113
114 TARGET_WAITKIND_SYSCALL_ENTRY,
115 TARGET_WAITKIND_SYSCALL_RETURN,
116
117 /* Nothing happened, but we stopped anyway. This perhaps should be handled
118 within target_wait, but I'm not sure target_wait should be resuming the
119 inferior. */
120 TARGET_WAITKIND_SPURIOUS,
121
122 /* An event has occured, but we should wait again.
123 Remote_async_wait() returns this when there is an event
124 on the inferior, but the rest of the world is not interested in
125 it. The inferior has not stopped, but has just sent some output
126 to the console, for instance. In this case, we want to go back
127 to the event loop and wait there for another event from the
128 inferior, rather than being stuck in the remote_async_wait()
129 function. This way the event loop is responsive to other events,
130 like for instance the user typing. */
131 TARGET_WAITKIND_IGNORE
132 };
133
134 struct target_waitstatus
135 {
136 enum target_waitkind kind;
137
138 /* Forked child pid, execd pathname, exit status or signal number. */
139 union
140 {
141 int integer;
142 enum target_signal sig;
143 int related_pid;
144 char *execd_pathname;
145 int syscall_id;
146 }
147 value;
148 };
149
150 /* Possible types of events that the inferior handler will have to
151 deal with. */
152 enum inferior_event_type
153 {
154 /* There is a request to quit the inferior, abandon it. */
155 INF_QUIT_REQ,
156 /* Process a normal inferior event which will result in target_wait
157 being called. */
158 INF_REG_EVENT,
159 /* Deal with an error on the inferior. */
160 INF_ERROR,
161 /* We are called because a timer went off. */
162 INF_TIMER,
163 /* We are called to do stuff after the inferior stops. */
164 INF_EXEC_COMPLETE,
165 /* We are called to do some stuff after the inferior stops, but we
166 are expected to reenter the proceed() and
167 handle_inferior_event() functions. This is used only in case of
168 'step n' like commands. */
169 INF_EXEC_CONTINUE
170 };
171
172 /* Return the string for a signal. */
173 extern char *target_signal_to_string (enum target_signal);
174
175 /* Return the name (SIGHUP, etc.) for a signal. */
176 extern char *target_signal_to_name (enum target_signal);
177
178 /* Given a name (SIGHUP, etc.), return its signal. */
179 enum target_signal target_signal_from_name (char *);
180 \f
181 /* Request the transfer of up to LEN 8-bit bytes of the target's
182 OBJECT. The OFFSET, for a seekable object, specifies the starting
183 point. The ANNEX can be used to provide additional data-specific
184 information to the target.
185
186 Return the number of bytes actually transfered, zero when no
187 further transfer is possible, and -1 when the transfer is not
188 supported.
189
190 NOTE: cagney/2003-10-17: The current interface does not support a
191 "retry" mechanism. Instead it assumes that at least one byte will
192 be transfered on each call.
193
194 NOTE: cagney/2003-10-17: The current interface can lead to
195 fragmented transfers. Lower target levels should not implement
196 hacks, such as enlarging the transfer, in an attempt to compensate
197 for this. Instead, the target stack should be extended so that it
198 implements supply/collect methods and a look-aside object cache.
199 With that available, the lowest target can safely and freely "push"
200 data up the stack.
201
202 NOTE: cagney/2003-10-17: Unlike the old query and the memory
203 transfer mechanisms, these methods are explicitly parameterized by
204 the target that it should be applied to.
205
206 NOTE: cagney/2003-10-17: Just like the old query and memory xfer
207 methods, these new methods perform partial transfers. The only
208 difference is that these new methods thought to include "partial"
209 in the name. The old code's failure to do this lead to much
210 confusion and duplication of effort as each target object attempted
211 to locally take responsibility for something it didn't have to
212 worry about.
213
214 NOTE: cagney/2003-10-17: For backward compatibility with the
215 "target_query" method that this replaced, when BUF, OFFSET and LEN
216 are NULL/zero, return the "minimum" buffer size. See "remote.c"
217 for further information. */
218
219 enum target_object
220 {
221 /* Kernel Object Display transfer. See "kod.c" and "remote.c". */
222 TARGET_OBJECT_KOD,
223 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
224 TARGET_OBJECT_AVR,
225 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
226 TARGET_OBJECT_MEMORY
227 /* Possible future ojbects: TARGET_OJBECT_FILE, TARGET_OBJECT_PROC,
228 TARGET_OBJECT_AUXV, ... */
229 };
230
231 extern LONGEST target_read_partial (struct target_ops *ops,
232 enum target_object object,
233 const char *annex, void *buf,
234 ULONGEST offset, LONGEST len);
235
236 extern LONGEST target_write_partial (struct target_ops *ops,
237 enum target_object object,
238 const char *annex, const void *buf,
239 ULONGEST offset, LONGEST len);
240
241 /* Wrappers to perform the full transfer. */
242 extern LONGEST target_read (struct target_ops *ops,
243 enum target_object object,
244 const char *annex, void *buf,
245 ULONGEST offset, LONGEST len);
246
247 extern LONGEST target_write (struct target_ops *ops,
248 enum target_object object,
249 const char *annex, const void *buf,
250 ULONGEST offset, LONGEST len);
251
252 /* Wrappers to target read/write that perform memory transfers. They
253 throw an error if the memory transfer fails.
254
255 NOTE: cagney/2003-10-23: The naming schema is lifted from
256 "frame.h". The parameter order is lifted from get_frame_memory,
257 which in turn lifted it from read_memory. */
258
259 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
260 void *buf, LONGEST len);
261 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
262 CORE_ADDR addr, int len);
263 \f
264
265 /* If certain kinds of activity happen, target_wait should perform
266 callbacks. */
267 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
268 on TARGET_ACTIVITY_FD. */
269 extern int target_activity_fd;
270 /* Returns zero to leave the inferior alone, one to interrupt it. */
271 extern int (*target_activity_function) (void);
272 \f
273 struct thread_info; /* fwd decl for parameter list below: */
274
275 struct target_ops
276 {
277 struct target_ops *beneath; /* To the target under this one. */
278 char *to_shortname; /* Name this target type */
279 char *to_longname; /* Name for printing */
280 char *to_doc; /* Documentation. Does not include trailing
281 newline, and starts with a one-line descrip-
282 tion (probably similar to to_longname). */
283 /* The open routine takes the rest of the parameters from the
284 command, and (if successful) pushes a new target onto the
285 stack. Targets should supply this routine, if only to provide
286 an error message. */
287 void (*to_open) (char *, int);
288 /* Old targets with a static target vector provide "to_close".
289 New re-entrant targets provide "to_xclose" and that is expected
290 to xfree everything (including the "struct target_ops"). */
291 void (*to_xclose) (struct target_ops *targ, int quitting);
292 void (*to_close) (int);
293 void (*to_attach) (char *, int);
294 void (*to_post_attach) (int);
295 void (*to_detach) (char *, int);
296 void (*to_disconnect) (char *, int);
297 void (*to_resume) (ptid_t, int, enum target_signal);
298 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
299 void (*to_post_wait) (ptid_t, int);
300 void (*to_fetch_registers) (int);
301 void (*to_store_registers) (int);
302 void (*to_prepare_to_store) (void);
303
304 /* Transfer LEN bytes of memory between GDB address MYADDR and
305 target address MEMADDR. If WRITE, transfer them to the target, else
306 transfer them from the target. TARGET is the target from which we
307 get this function.
308
309 Return value, N, is one of the following:
310
311 0 means that we can't handle this. If errno has been set, it is the
312 error which prevented us from doing it (FIXME: What about bfd_error?).
313
314 positive (call it N) means that we have transferred N bytes
315 starting at MEMADDR. We might be able to handle more bytes
316 beyond this length, but no promises.
317
318 negative (call its absolute value N) means that we cannot
319 transfer right at MEMADDR, but we could transfer at least
320 something at MEMADDR + N. */
321
322 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
323 int len, int write,
324 struct mem_attrib *attrib,
325 struct target_ops *target);
326
327 void (*to_files_info) (struct target_ops *);
328 int (*to_insert_breakpoint) (CORE_ADDR, char *);
329 int (*to_remove_breakpoint) (CORE_ADDR, char *);
330 int (*to_can_use_hw_breakpoint) (int, int, int);
331 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
332 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
333 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
334 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
335 int (*to_stopped_by_watchpoint) (void);
336 int to_have_continuable_watchpoint;
337 CORE_ADDR (*to_stopped_data_address) (void);
338 int (*to_region_size_ok_for_hw_watchpoint) (int);
339 void (*to_terminal_init) (void);
340 void (*to_terminal_inferior) (void);
341 void (*to_terminal_ours_for_output) (void);
342 void (*to_terminal_ours) (void);
343 void (*to_terminal_save_ours) (void);
344 void (*to_terminal_info) (char *, int);
345 void (*to_kill) (void);
346 void (*to_load) (char *, int);
347 int (*to_lookup_symbol) (char *, CORE_ADDR *);
348 void (*to_create_inferior) (char *, char *, char **);
349 void (*to_post_startup_inferior) (ptid_t);
350 void (*to_acknowledge_created_inferior) (int);
351 int (*to_insert_fork_catchpoint) (int);
352 int (*to_remove_fork_catchpoint) (int);
353 int (*to_insert_vfork_catchpoint) (int);
354 int (*to_remove_vfork_catchpoint) (int);
355 int (*to_follow_fork) (int);
356 int (*to_insert_exec_catchpoint) (int);
357 int (*to_remove_exec_catchpoint) (int);
358 int (*to_reported_exec_events_per_exec_call) (void);
359 int (*to_has_exited) (int, int, int *);
360 void (*to_mourn_inferior) (void);
361 int (*to_can_run) (void);
362 void (*to_notice_signals) (ptid_t ptid);
363 int (*to_thread_alive) (ptid_t ptid);
364 void (*to_find_new_threads) (void);
365 char *(*to_pid_to_str) (ptid_t);
366 char *(*to_extra_thread_info) (struct thread_info *);
367 void (*to_stop) (void);
368 void (*to_rcmd) (char *command, struct ui_file *output);
369 struct symtab_and_line *(*to_enable_exception_callback) (enum
370 exception_event_kind,
371 int);
372 struct exception_event_record *(*to_get_current_exception_event) (void);
373 char *(*to_pid_to_exec_file) (int pid);
374 enum strata to_stratum;
375 int to_has_all_memory;
376 int to_has_memory;
377 int to_has_stack;
378 int to_has_registers;
379 int to_has_execution;
380 int to_has_thread_control; /* control thread execution */
381 struct section_table
382 *to_sections;
383 struct section_table
384 *to_sections_end;
385 /* ASYNC target controls */
386 int (*to_can_async_p) (void);
387 int (*to_is_async_p) (void);
388 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
389 void *context);
390 int to_async_mask_value;
391 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
392 unsigned long,
393 int, int, int,
394 void *),
395 void *);
396 char * (*to_make_corefile_notes) (bfd *, int *);
397
398 /* Return the thread-local address at OFFSET in the
399 thread-local storage for the thread PTID and the shared library
400 or executable file given by OBJFILE. If that block of
401 thread-local storage hasn't been allocated yet, this function
402 may return an error. */
403 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
404 struct objfile *objfile,
405 CORE_ADDR offset);
406
407 /* See above. */
408 LONGEST (*to_read_partial) (struct target_ops *ops,
409 enum target_object object,
410 const char *annex, void *buf,
411 ULONGEST offset, LONGEST len);
412 LONGEST (*to_write_partial) (struct target_ops *ops,
413 enum target_object object,
414 const char *annex, const void *buf,
415 ULONGEST offset, LONGEST len);
416
417 int to_magic;
418 /* Need sub-structure for target machine related rather than comm related?
419 */
420 };
421
422 /* Magic number for checking ops size. If a struct doesn't end with this
423 number, somebody changed the declaration but didn't change all the
424 places that initialize one. */
425
426 #define OPS_MAGIC 3840
427
428 /* The ops structure for our "current" target process. This should
429 never be NULL. If there is no target, it points to the dummy_target. */
430
431 extern struct target_ops current_target;
432
433 /* Define easy words for doing these operations on our current target. */
434
435 #define target_shortname (current_target.to_shortname)
436 #define target_longname (current_target.to_longname)
437
438 /* Does whatever cleanup is required for a target that we are no
439 longer going to be calling. QUITTING indicates that GDB is exiting
440 and should not get hung on an error (otherwise it is important to
441 perform clean termination, even if it takes a while). This routine
442 is automatically always called when popping the target off the
443 target stack (to_beneath is undefined). Closing file descriptors
444 and freeing all memory allocated memory are typical things it
445 should do. */
446
447 void target_close (struct target_ops *targ, int quitting);
448
449 /* Attaches to a process on the target side. Arguments are as passed
450 to the `attach' command by the user. This routine can be called
451 when the target is not on the target-stack, if the target_can_run
452 routine returns 1; in that case, it must push itself onto the stack.
453 Upon exit, the target should be ready for normal operations, and
454 should be ready to deliver the status of the process immediately
455 (without waiting) to an upcoming target_wait call. */
456
457 #define target_attach(args, from_tty) \
458 (*current_target.to_attach) (args, from_tty)
459
460 /* The target_attach operation places a process under debugger control,
461 and stops the process.
462
463 This operation provides a target-specific hook that allows the
464 necessary bookkeeping to be performed after an attach completes. */
465 #define target_post_attach(pid) \
466 (*current_target.to_post_attach) (pid)
467
468 /* Takes a program previously attached to and detaches it.
469 The program may resume execution (some targets do, some don't) and will
470 no longer stop on signals, etc. We better not have left any breakpoints
471 in the program or it'll die when it hits one. ARGS is arguments
472 typed by the user (e.g. a signal to send the process). FROM_TTY
473 says whether to be verbose or not. */
474
475 extern void target_detach (char *, int);
476
477 /* Disconnect from the current target without resuming it (leaving it
478 waiting for a debugger). */
479
480 extern void target_disconnect (char *, int);
481
482 /* Resume execution of the target process PTID. STEP says whether to
483 single-step or to run free; SIGGNAL is the signal to be given to
484 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
485 pass TARGET_SIGNAL_DEFAULT. */
486
487 #define target_resume(ptid, step, siggnal) \
488 do { \
489 dcache_invalidate(target_dcache); \
490 (*current_target.to_resume) (ptid, step, siggnal); \
491 } while (0)
492
493 /* Wait for process pid to do something. PTID = -1 to wait for any
494 pid to do something. Return pid of child, or -1 in case of error;
495 store status through argument pointer STATUS. Note that it is
496 _NOT_ OK to throw_exception() out of target_wait() without popping
497 the debugging target from the stack; GDB isn't prepared to get back
498 to the prompt with a debugging target but without the frame cache,
499 stop_pc, etc., set up. */
500
501 #define target_wait(ptid, status) \
502 (*current_target.to_wait) (ptid, status)
503
504 /* The target_wait operation waits for a process event to occur, and
505 thereby stop the process.
506
507 On some targets, certain events may happen in sequences. gdb's
508 correct response to any single event of such a sequence may require
509 knowledge of what earlier events in the sequence have been seen.
510
511 This operation provides a target-specific hook that allows the
512 necessary bookkeeping to be performed to track such sequences. */
513
514 #define target_post_wait(ptid, status) \
515 (*current_target.to_post_wait) (ptid, status)
516
517 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
518
519 #define target_fetch_registers(regno) \
520 (*current_target.to_fetch_registers) (regno)
521
522 /* Store at least register REGNO, or all regs if REGNO == -1.
523 It can store as many registers as it wants to, so target_prepare_to_store
524 must have been previously called. Calls error() if there are problems. */
525
526 #define target_store_registers(regs) \
527 (*current_target.to_store_registers) (regs)
528
529 /* Get ready to modify the registers array. On machines which store
530 individual registers, this doesn't need to do anything. On machines
531 which store all the registers in one fell swoop, this makes sure
532 that REGISTERS contains all the registers from the program being
533 debugged. */
534
535 #define target_prepare_to_store() \
536 (*current_target.to_prepare_to_store) ()
537
538 extern DCACHE *target_dcache;
539
540 extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
541 struct mem_attrib *attrib);
542
543 extern int target_read_string (CORE_ADDR, char **, int, int *);
544
545 extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
546
547 extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
548
549 extern int xfer_memory (CORE_ADDR, char *, int, int,
550 struct mem_attrib *, struct target_ops *);
551
552 extern int child_xfer_memory (CORE_ADDR, char *, int, int,
553 struct mem_attrib *, struct target_ops *);
554
555 /* Make a single attempt at transfering LEN bytes. On a successful
556 transfer, the number of bytes actually transfered is returned and
557 ERR is set to 0. When a transfer fails, -1 is returned (the number
558 of bytes actually transfered is not defined) and ERR is set to a
559 non-zero error indication. */
560
561 extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
562 int *err);
563
564 extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
565 int *err);
566
567 extern char *child_pid_to_exec_file (int);
568
569 extern char *child_core_file_to_sym_file (char *);
570
571 #if defined(CHILD_POST_ATTACH)
572 extern void child_post_attach (int);
573 #endif
574
575 extern void child_post_wait (ptid_t, int);
576
577 extern void child_post_startup_inferior (ptid_t);
578
579 extern void child_acknowledge_created_inferior (int);
580
581 extern int child_insert_fork_catchpoint (int);
582
583 extern int child_remove_fork_catchpoint (int);
584
585 extern int child_insert_vfork_catchpoint (int);
586
587 extern int child_remove_vfork_catchpoint (int);
588
589 extern void child_acknowledge_created_inferior (int);
590
591 extern int child_follow_fork (int);
592
593 extern int child_insert_exec_catchpoint (int);
594
595 extern int child_remove_exec_catchpoint (int);
596
597 extern int child_reported_exec_events_per_exec_call (void);
598
599 extern int child_has_exited (int, int, int *);
600
601 extern int child_thread_alive (ptid_t);
602
603 /* From infrun.c. */
604
605 extern int inferior_has_forked (int pid, int *child_pid);
606
607 extern int inferior_has_vforked (int pid, int *child_pid);
608
609 extern int inferior_has_execd (int pid, char **execd_pathname);
610
611 /* From exec.c */
612
613 extern void print_section_info (struct target_ops *, bfd *);
614
615 /* Print a line about the current target. */
616
617 #define target_files_info() \
618 (*current_target.to_files_info) (&current_target)
619
620 /* Insert a breakpoint at address ADDR in the target machine. SAVE is
621 a pointer to memory allocated for saving the target contents. It
622 is guaranteed by the caller to be long enough to save the number of
623 breakpoint bytes indicated by BREAKPOINT_FROM_PC. Result is 0 for
624 success, or an errno value. */
625
626 #define target_insert_breakpoint(addr, save) \
627 (*current_target.to_insert_breakpoint) (addr, save)
628
629 /* Remove a breakpoint at address ADDR in the target machine.
630 SAVE is a pointer to the same save area
631 that was previously passed to target_insert_breakpoint.
632 Result is 0 for success, or an errno value. */
633
634 #define target_remove_breakpoint(addr, save) \
635 (*current_target.to_remove_breakpoint) (addr, save)
636
637 /* Initialize the terminal settings we record for the inferior,
638 before we actually run the inferior. */
639
640 #define target_terminal_init() \
641 (*current_target.to_terminal_init) ()
642
643 /* Put the inferior's terminal settings into effect.
644 This is preparation for starting or resuming the inferior. */
645
646 #define target_terminal_inferior() \
647 (*current_target.to_terminal_inferior) ()
648
649 /* Put some of our terminal settings into effect,
650 enough to get proper results from our output,
651 but do not change into or out of RAW mode
652 so that no input is discarded.
653
654 After doing this, either terminal_ours or terminal_inferior
655 should be called to get back to a normal state of affairs. */
656
657 #define target_terminal_ours_for_output() \
658 (*current_target.to_terminal_ours_for_output) ()
659
660 /* Put our terminal settings into effect.
661 First record the inferior's terminal settings
662 so they can be restored properly later. */
663
664 #define target_terminal_ours() \
665 (*current_target.to_terminal_ours) ()
666
667 /* Save our terminal settings.
668 This is called from TUI after entering or leaving the curses
669 mode. Since curses modifies our terminal this call is here
670 to take this change into account. */
671
672 #define target_terminal_save_ours() \
673 (*current_target.to_terminal_save_ours) ()
674
675 /* Print useful information about our terminal status, if such a thing
676 exists. */
677
678 #define target_terminal_info(arg, from_tty) \
679 (*current_target.to_terminal_info) (arg, from_tty)
680
681 /* Kill the inferior process. Make it go away. */
682
683 #define target_kill() \
684 (*current_target.to_kill) ()
685
686 /* Load an executable file into the target process. This is expected
687 to not only bring new code into the target process, but also to
688 update GDB's symbol tables to match. */
689
690 extern void target_load (char *arg, int from_tty);
691
692 /* Look up a symbol in the target's symbol table. NAME is the symbol
693 name. ADDRP is a CORE_ADDR * pointing to where the value of the
694 symbol should be returned. The result is 0 if successful, nonzero
695 if the symbol does not exist in the target environment. This
696 function should not call error() if communication with the target
697 is interrupted, since it is called from symbol reading, but should
698 return nonzero, possibly doing a complain(). */
699
700 #define target_lookup_symbol(name, addrp) \
701 (*current_target.to_lookup_symbol) (name, addrp)
702
703 /* Start an inferior process and set inferior_ptid to its pid.
704 EXEC_FILE is the file to run.
705 ALLARGS is a string containing the arguments to the program.
706 ENV is the environment vector to pass. Errors reported with error().
707 On VxWorks and various standalone systems, we ignore exec_file. */
708
709 #define target_create_inferior(exec_file, args, env) \
710 (*current_target.to_create_inferior) (exec_file, args, env)
711
712
713 /* Some targets (such as ttrace-based HPUX) don't allow us to request
714 notification of inferior events such as fork and vork immediately
715 after the inferior is created. (This because of how gdb gets an
716 inferior created via invoking a shell to do it. In such a scenario,
717 if the shell init file has commands in it, the shell will fork and
718 exec for each of those commands, and we will see each such fork
719 event. Very bad.)
720
721 Such targets will supply an appropriate definition for this function. */
722
723 #define target_post_startup_inferior(ptid) \
724 (*current_target.to_post_startup_inferior) (ptid)
725
726 /* On some targets, the sequence of starting up an inferior requires
727 some synchronization between gdb and the new inferior process, PID. */
728
729 #define target_acknowledge_created_inferior(pid) \
730 (*current_target.to_acknowledge_created_inferior) (pid)
731
732 /* On some targets, we can catch an inferior fork or vfork event when
733 it occurs. These functions insert/remove an already-created
734 catchpoint for such events. */
735
736 #define target_insert_fork_catchpoint(pid) \
737 (*current_target.to_insert_fork_catchpoint) (pid)
738
739 #define target_remove_fork_catchpoint(pid) \
740 (*current_target.to_remove_fork_catchpoint) (pid)
741
742 #define target_insert_vfork_catchpoint(pid) \
743 (*current_target.to_insert_vfork_catchpoint) (pid)
744
745 #define target_remove_vfork_catchpoint(pid) \
746 (*current_target.to_remove_vfork_catchpoint) (pid)
747
748 /* If the inferior forks or vforks, this function will be called at
749 the next resume in order to perform any bookkeeping and fiddling
750 necessary to continue debugging either the parent or child, as
751 requested, and releasing the other. Information about the fork
752 or vfork event is available via get_last_target_status ().
753 This function returns 1 if the inferior should not be resumed
754 (i.e. there is another event pending). */
755
756 #define target_follow_fork(follow_child) \
757 (*current_target.to_follow_fork) (follow_child)
758
759 /* On some targets, we can catch an inferior exec event when it
760 occurs. These functions insert/remove an already-created
761 catchpoint for such events. */
762
763 #define target_insert_exec_catchpoint(pid) \
764 (*current_target.to_insert_exec_catchpoint) (pid)
765
766 #define target_remove_exec_catchpoint(pid) \
767 (*current_target.to_remove_exec_catchpoint) (pid)
768
769 /* Returns the number of exec events that are reported when a process
770 invokes a flavor of the exec() system call on this target, if exec
771 events are being reported. */
772
773 #define target_reported_exec_events_per_exec_call() \
774 (*current_target.to_reported_exec_events_per_exec_call) ()
775
776 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
777 exit code of PID, if any. */
778
779 #define target_has_exited(pid,wait_status,exit_status) \
780 (*current_target.to_has_exited) (pid,wait_status,exit_status)
781
782 /* The debugger has completed a blocking wait() call. There is now
783 some process event that must be processed. This function should
784 be defined by those targets that require the debugger to perform
785 cleanup or internal state changes in response to the process event. */
786
787 /* The inferior process has died. Do what is right. */
788
789 #define target_mourn_inferior() \
790 (*current_target.to_mourn_inferior) ()
791
792 /* Does target have enough data to do a run or attach command? */
793
794 #define target_can_run(t) \
795 ((t)->to_can_run) ()
796
797 /* post process changes to signal handling in the inferior. */
798
799 #define target_notice_signals(ptid) \
800 (*current_target.to_notice_signals) (ptid)
801
802 /* Check to see if a thread is still alive. */
803
804 #define target_thread_alive(ptid) \
805 (*current_target.to_thread_alive) (ptid)
806
807 /* Query for new threads and add them to the thread list. */
808
809 #define target_find_new_threads() \
810 (*current_target.to_find_new_threads) (); \
811
812 /* Make target stop in a continuable fashion. (For instance, under
813 Unix, this should act like SIGSTOP). This function is normally
814 used by GUIs to implement a stop button. */
815
816 #define target_stop current_target.to_stop
817
818 /* Send the specified COMMAND to the target's monitor
819 (shell,interpreter) for execution. The result of the query is
820 placed in OUTBUF. */
821
822 #define target_rcmd(command, outbuf) \
823 (*current_target.to_rcmd) (command, outbuf)
824
825
826 /* Get the symbol information for a breakpointable routine called when
827 an exception event occurs.
828 Intended mainly for C++, and for those
829 platforms/implementations where such a callback mechanism is available,
830 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
831 different mechanisms for debugging exceptions. */
832
833 #define target_enable_exception_callback(kind, enable) \
834 (*current_target.to_enable_exception_callback) (kind, enable)
835
836 /* Get the current exception event kind -- throw or catch, etc. */
837
838 #define target_get_current_exception_event() \
839 (*current_target.to_get_current_exception_event) ()
840
841 /* Does the target include all of memory, or only part of it? This
842 determines whether we look up the target chain for other parts of
843 memory if this target can't satisfy a request. */
844
845 #define target_has_all_memory \
846 (current_target.to_has_all_memory)
847
848 /* Does the target include memory? (Dummy targets don't.) */
849
850 #define target_has_memory \
851 (current_target.to_has_memory)
852
853 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
854 we start a process.) */
855
856 #define target_has_stack \
857 (current_target.to_has_stack)
858
859 /* Does the target have registers? (Exec files don't.) */
860
861 #define target_has_registers \
862 (current_target.to_has_registers)
863
864 /* Does the target have execution? Can we make it jump (through
865 hoops), or pop its stack a few times? FIXME: If this is to work that
866 way, it needs to check whether an inferior actually exists.
867 remote-udi.c and probably other targets can be the current target
868 when the inferior doesn't actually exist at the moment. Right now
869 this just tells us whether this target is *capable* of execution. */
870
871 #define target_has_execution \
872 (current_target.to_has_execution)
873
874 /* Can the target support the debugger control of thread execution?
875 a) Can it lock the thread scheduler?
876 b) Can it switch the currently running thread? */
877
878 #define target_can_lock_scheduler \
879 (current_target.to_has_thread_control & tc_schedlock)
880
881 #define target_can_switch_threads \
882 (current_target.to_has_thread_control & tc_switch)
883
884 /* Can the target support asynchronous execution? */
885 #define target_can_async_p() (current_target.to_can_async_p ())
886
887 /* Is the target in asynchronous execution mode? */
888 #define target_is_async_p() (current_target.to_is_async_p())
889
890 /* Put the target in async mode with the specified callback function. */
891 #define target_async(CALLBACK,CONTEXT) \
892 (current_target.to_async((CALLBACK), (CONTEXT)))
893
894 /* This is to be used ONLY within call_function_by_hand(). It provides
895 a workaround, to have inferior function calls done in sychronous
896 mode, even though the target is asynchronous. After
897 target_async_mask(0) is called, calls to target_can_async_p() will
898 return FALSE , so that target_resume() will not try to start the
899 target asynchronously. After the inferior stops, we IMMEDIATELY
900 restore the previous nature of the target, by calling
901 target_async_mask(1). After that, target_can_async_p() will return
902 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
903
904 FIXME ezannoni 1999-12-13: we won't need this once we move
905 the turning async on and off to the single execution commands,
906 from where it is done currently, in remote_resume(). */
907
908 #define target_async_mask_value \
909 (current_target.to_async_mask_value)
910
911 extern int target_async_mask (int mask);
912
913 extern void target_link (char *, CORE_ADDR *);
914
915 /* Converts a process id to a string. Usually, the string just contains
916 `process xyz', but on some systems it may contain
917 `process xyz thread abc'. */
918
919 #undef target_pid_to_str
920 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
921
922 #ifndef target_tid_to_str
923 #define target_tid_to_str(PID) \
924 target_pid_to_str (PID)
925 extern char *normal_pid_to_str (ptid_t ptid);
926 #endif
927
928 /* Return a short string describing extra information about PID,
929 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
930 is okay. */
931
932 #define target_extra_thread_info(TP) \
933 (current_target.to_extra_thread_info (TP))
934
935 /*
936 * New Objfile Event Hook:
937 *
938 * Sometimes a GDB component wants to get notified whenever a new
939 * objfile is loaded. Mainly this is used by thread-debugging
940 * implementations that need to know when symbols for the target
941 * thread implemenation are available.
942 *
943 * The old way of doing this is to define a macro 'target_new_objfile'
944 * that points to the function that you want to be called on every
945 * objfile/shlib load.
946 *
947 * The new way is to grab the function pointer, 'target_new_objfile_hook',
948 * and point it to the function that you want to be called on every
949 * objfile/shlib load.
950 *
951 * If multiple clients are willing to be cooperative, they can each
952 * save a pointer to the previous value of target_new_objfile_hook
953 * before modifying it, and arrange for their function to call the
954 * previous function in the chain. In that way, multiple clients
955 * can receive this notification (something like with signal handlers).
956 */
957
958 extern void (*target_new_objfile_hook) (struct objfile *);
959
960 #ifndef target_pid_or_tid_to_str
961 #define target_pid_or_tid_to_str(ID) \
962 target_pid_to_str (ID)
963 #endif
964
965 /* Attempts to find the pathname of the executable file
966 that was run to create a specified process.
967
968 The process PID must be stopped when this operation is used.
969
970 If the executable file cannot be determined, NULL is returned.
971
972 Else, a pointer to a character string containing the pathname
973 is returned. This string should be copied into a buffer by
974 the client if the string will not be immediately used, or if
975 it must persist. */
976
977 #define target_pid_to_exec_file(pid) \
978 (current_target.to_pid_to_exec_file) (pid)
979
980 /*
981 * Iterator function for target memory regions.
982 * Calls a callback function once for each memory region 'mapped'
983 * in the child process. Defined as a simple macro rather than
984 * as a function macro so that it can be tested for nullity.
985 */
986
987 #define target_find_memory_regions(FUNC, DATA) \
988 (current_target.to_find_memory_regions) (FUNC, DATA)
989
990 /*
991 * Compose corefile .note section.
992 */
993
994 #define target_make_corefile_notes(BFD, SIZE_P) \
995 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
996
997 /* Thread-local values. */
998 #define target_get_thread_local_address \
999 (current_target.to_get_thread_local_address)
1000 #define target_get_thread_local_address_p() \
1001 (target_get_thread_local_address != NULL)
1002
1003 /* Hook to call target dependent code just after inferior target process has
1004 started. */
1005
1006 #ifndef TARGET_CREATE_INFERIOR_HOOK
1007 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1008 #endif
1009
1010 /* Hardware watchpoint interfaces. */
1011
1012 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1013 write). */
1014
1015 #ifndef STOPPED_BY_WATCHPOINT
1016 #define STOPPED_BY_WATCHPOINT(w) \
1017 (*current_target.to_stopped_by_watchpoint) ()
1018 #endif
1019
1020 /* Non-zero if we have continuable watchpoints */
1021
1022 #ifndef HAVE_CONTINUABLE_WATCHPOINT
1023 #define HAVE_CONTINUABLE_WATCHPOINT \
1024 (current_target.to_have_continuable_watchpoint)
1025 #endif
1026
1027 /* HP-UX supplies these operations, which respectively disable and enable
1028 the memory page-protections that are used to implement hardware watchpoints
1029 on that platform. See wait_for_inferior's use of these. */
1030
1031 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1032 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1033 #endif
1034
1035 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1036 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1037 #endif
1038
1039 /* Provide defaults for hardware watchpoint functions. */
1040
1041 /* If the *_hw_beakpoint functions have not been defined
1042 elsewhere use the definitions in the target vector. */
1043
1044 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1045 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1046 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1047 (including this one?). OTHERTYPE is who knows what... */
1048
1049 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1050 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1051 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1052 #endif
1053
1054 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1055 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1056 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
1057 #endif
1058
1059
1060 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1061 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1062 success, non-zero for failure. */
1063
1064 #ifndef target_insert_watchpoint
1065 #define target_insert_watchpoint(addr, len, type) \
1066 (*current_target.to_insert_watchpoint) (addr, len, type)
1067
1068 #define target_remove_watchpoint(addr, len, type) \
1069 (*current_target.to_remove_watchpoint) (addr, len, type)
1070 #endif
1071
1072 #ifndef target_insert_hw_breakpoint
1073 #define target_insert_hw_breakpoint(addr, save) \
1074 (*current_target.to_insert_hw_breakpoint) (addr, save)
1075
1076 #define target_remove_hw_breakpoint(addr, save) \
1077 (*current_target.to_remove_hw_breakpoint) (addr, save)
1078 #endif
1079
1080 #ifndef target_stopped_data_address
1081 #define target_stopped_data_address() \
1082 (*current_target.to_stopped_data_address) ()
1083 #endif
1084
1085 /* If defined, then we need to decr pc by this much after a hardware break-
1086 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1087
1088 #ifndef DECR_PC_AFTER_HW_BREAK
1089 #define DECR_PC_AFTER_HW_BREAK 0
1090 #endif
1091
1092 /* Sometimes gdb may pick up what appears to be a valid target address
1093 from a minimal symbol, but the value really means, essentially,
1094 "This is an index into a table which is populated when the inferior
1095 is run. Therefore, do not attempt to use this as a PC." */
1096
1097 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1098 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1099 #endif
1100
1101 /* This will only be defined by a target that supports catching vfork events,
1102 such as HP-UX.
1103
1104 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1105 child process after it has exec'd, causes the parent process to resume as
1106 well. To prevent the parent from running spontaneously, such targets should
1107 define this to a function that prevents that from happening. */
1108 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1109 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1110 #endif
1111
1112 /* This will only be defined by a target that supports catching vfork events,
1113 such as HP-UX.
1114
1115 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1116 process must be resumed when it delivers its exec event, before the parent
1117 vfork event will be delivered to us. */
1118
1119 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1120 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1121 #endif
1122
1123 /* Routines for maintenance of the target structures...
1124
1125 add_target: Add a target to the list of all possible targets.
1126
1127 push_target: Make this target the top of the stack of currently used
1128 targets, within its particular stratum of the stack. Result
1129 is 0 if now atop the stack, nonzero if not on top (maybe
1130 should warn user).
1131
1132 unpush_target: Remove this from the stack of currently used targets,
1133 no matter where it is on the list. Returns 0 if no
1134 change, 1 if removed from stack.
1135
1136 pop_target: Remove the top thing on the stack of current targets. */
1137
1138 extern void add_target (struct target_ops *);
1139
1140 extern int push_target (struct target_ops *);
1141
1142 extern int unpush_target (struct target_ops *);
1143
1144 extern void target_preopen (int);
1145
1146 extern void pop_target (void);
1147
1148 /* Struct section_table maps address ranges to file sections. It is
1149 mostly used with BFD files, but can be used without (e.g. for handling
1150 raw disks, or files not in formats handled by BFD). */
1151
1152 struct section_table
1153 {
1154 CORE_ADDR addr; /* Lowest address in section */
1155 CORE_ADDR endaddr; /* 1+highest address in section */
1156
1157 sec_ptr the_bfd_section;
1158
1159 bfd *bfd; /* BFD file pointer */
1160 };
1161
1162 /* Return the "section" containing the specified address. */
1163 struct section_table *target_section_by_addr (struct target_ops *target,
1164 CORE_ADDR addr);
1165
1166
1167 /* From mem-break.c */
1168
1169 extern int memory_remove_breakpoint (CORE_ADDR, char *);
1170
1171 extern int memory_insert_breakpoint (CORE_ADDR, char *);
1172
1173 extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1174
1175 extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1176
1177
1178 /* From target.c */
1179
1180 extern void initialize_targets (void);
1181
1182 extern void noprocess (void);
1183
1184 extern void find_default_attach (char *, int);
1185
1186 extern void find_default_create_inferior (char *, char *, char **);
1187
1188 extern struct target_ops *find_run_target (void);
1189
1190 extern struct target_ops *find_core_target (void);
1191
1192 extern struct target_ops *find_target_beneath (struct target_ops *);
1193
1194 extern int target_resize_to_sections (struct target_ops *target,
1195 int num_added);
1196
1197 extern void remove_target_sections (bfd *abfd);
1198
1199 \f
1200 /* Stuff that should be shared among the various remote targets. */
1201
1202 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1203 information (higher values, more information). */
1204 extern int remote_debug;
1205
1206 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1207 extern int baud_rate;
1208 /* Timeout limit for response from target. */
1209 extern int remote_timeout;
1210
1211 \f
1212 /* Functions for helping to write a native target. */
1213
1214 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1215 extern void store_waitstatus (struct target_waitstatus *, int);
1216
1217 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1218 targ_signal SIGNO has an equivalent ``host'' representation. */
1219 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1220 to the shorter target_signal_p() because it is far less ambigious.
1221 In this context ``target_signal'' refers to GDB's internal
1222 representation of the target's set of signals while ``host signal''
1223 refers to the target operating system's signal. Confused? */
1224
1225 extern int target_signal_to_host_p (enum target_signal signo);
1226
1227 /* Convert between host signal numbers and enum target_signal's.
1228 target_signal_to_host() returns 0 and prints a warning() on GDB's
1229 console if SIGNO has no equivalent host representation. */
1230 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1231 refering to the target operating system's signal numbering.
1232 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1233 gdb_signal'' would probably be better as it is refering to GDB's
1234 internal representation of a target operating system's signal. */
1235
1236 extern enum target_signal target_signal_from_host (int);
1237 extern int target_signal_to_host (enum target_signal);
1238
1239 /* Convert from a number used in a GDB command to an enum target_signal. */
1240 extern enum target_signal target_signal_from_command (int);
1241
1242 /* Any target can call this to switch to remote protocol (in remote.c). */
1243 extern void push_remote_target (char *name, int from_tty);
1244 \f
1245 /* Imported from machine dependent code */
1246
1247 /* Blank target vector entries are initialized to target_ignore. */
1248 void target_ignore (void);
1249
1250 #endif /* !defined (TARGET_H) */
This page took 0.072063 seconds and 4 git commands to generate.