*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Cygnus Support. Written by John Gilmore.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #if !defined (TARGET_H)
24 #define TARGET_H
25
26 /* This include file defines the interface between the main part
27 of the debugger, and the part which is target-specific, or
28 specific to the communications interface between us and the
29 target.
30
31 A TARGET is an interface between the debugger and a particular
32 kind of file or process. Targets can be STACKED in STRATA,
33 so that more than one target can potentially respond to a request.
34 In particular, memory accesses will walk down the stack of targets
35 until they find a target that is interested in handling that particular
36 address. STRATA are artificial boundaries on the stack, within
37 which particular kinds of targets live. Strata exist so that
38 people don't get confused by pushing e.g. a process target and then
39 a file target, and wondering why they can't see the current values
40 of variables any more (the file target is handling them and they
41 never get to the process target). So when you push a file target,
42 it goes into the file stratum, which is always below the process
43 stratum. */
44
45 #include "bfd.h"
46 #include "symtab.h"
47 #include "dcache.h"
48 #include "memattr.h"
49
50 enum strata
51 {
52 dummy_stratum, /* The lowest of the low */
53 file_stratum, /* Executable files, etc */
54 core_stratum, /* Core dump files */
55 download_stratum, /* Downloading of remote targets */
56 process_stratum, /* Executing processes */
57 thread_stratum /* Executing threads */
58 };
59
60 enum thread_control_capabilities
61 {
62 tc_none = 0, /* Default: can't control thread execution. */
63 tc_schedlock = 1, /* Can lock the thread scheduler. */
64 tc_switch = 2 /* Can switch the running thread on demand. */
65 };
66
67 /* Stuff for target_wait. */
68
69 /* Generally, what has the program done? */
70 enum target_waitkind
71 {
72 /* The program has exited. The exit status is in value.integer. */
73 TARGET_WAITKIND_EXITED,
74
75 /* The program has stopped with a signal. Which signal is in
76 value.sig. */
77 TARGET_WAITKIND_STOPPED,
78
79 /* The program has terminated with a signal. Which signal is in
80 value.sig. */
81 TARGET_WAITKIND_SIGNALLED,
82
83 /* The program is letting us know that it dynamically loaded something
84 (e.g. it called load(2) on AIX). */
85 TARGET_WAITKIND_LOADED,
86
87 /* The program has forked. A "related" process' ID is in
88 value.related_pid. I.e., if the child forks, value.related_pid
89 is the parent's ID. */
90
91 TARGET_WAITKIND_FORKED,
92
93 /* The program has vforked. A "related" process's ID is in
94 value.related_pid. */
95
96 TARGET_WAITKIND_VFORKED,
97
98 /* The program has exec'ed a new executable file. The new file's
99 pathname is pointed to by value.execd_pathname. */
100
101 TARGET_WAITKIND_EXECD,
102
103 /* The program has entered or returned from a system call. On
104 HP-UX, this is used in the hardware watchpoint implementation.
105 The syscall's unique integer ID number is in value.syscall_id */
106
107 TARGET_WAITKIND_SYSCALL_ENTRY,
108 TARGET_WAITKIND_SYSCALL_RETURN,
109
110 /* Nothing happened, but we stopped anyway. This perhaps should be handled
111 within target_wait, but I'm not sure target_wait should be resuming the
112 inferior. */
113 TARGET_WAITKIND_SPURIOUS,
114
115 /* This is used for target async and extended-async
116 only. Remote_async_wait() returns this when there is an event
117 on the inferior, but the rest of the world is not interested in
118 it. The inferior has not stopped, but has just sent some output
119 to the console, for instance. In this case, we want to go back
120 to the event loop and wait there for another event from the
121 inferior, rather than being stuck in the remote_async_wait()
122 function. This way the event loop is responsive to other events,
123 like for instance the user typing. */
124 TARGET_WAITKIND_IGNORE
125 };
126
127 struct target_waitstatus
128 {
129 enum target_waitkind kind;
130
131 /* Forked child pid, execd pathname, exit status or signal number. */
132 union
133 {
134 int integer;
135 enum target_signal sig;
136 int related_pid;
137 char *execd_pathname;
138 int syscall_id;
139 }
140 value;
141 };
142
143 /* Possible types of events that the inferior handler will have to
144 deal with. */
145 enum inferior_event_type
146 {
147 /* There is a request to quit the inferior, abandon it. */
148 INF_QUIT_REQ,
149 /* Process a normal inferior event which will result in target_wait
150 being called. */
151 INF_REG_EVENT,
152 /* Deal with an error on the inferior. */
153 INF_ERROR,
154 /* We are called because a timer went off. */
155 INF_TIMER,
156 /* We are called to do stuff after the inferior stops. */
157 INF_EXEC_COMPLETE,
158 /* We are called to do some stuff after the inferior stops, but we
159 are expected to reenter the proceed() and
160 handle_inferior_event() functions. This is used only in case of
161 'step n' like commands. */
162 INF_EXEC_CONTINUE
163 };
164
165 /* Return the string for a signal. */
166 extern char *target_signal_to_string (enum target_signal);
167
168 /* Return the name (SIGHUP, etc.) for a signal. */
169 extern char *target_signal_to_name (enum target_signal);
170
171 /* Given a name (SIGHUP, etc.), return its signal. */
172 enum target_signal target_signal_from_name (char *);
173 \f
174
175 /* If certain kinds of activity happen, target_wait should perform
176 callbacks. */
177 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
178 on TARGET_ACTIVITY_FD. */
179 extern int target_activity_fd;
180 /* Returns zero to leave the inferior alone, one to interrupt it. */
181 extern int (*target_activity_function) (void);
182 \f
183 struct thread_info; /* fwd decl for parameter list below: */
184
185 struct target_ops
186 {
187 char *to_shortname; /* Name this target type */
188 char *to_longname; /* Name for printing */
189 char *to_doc; /* Documentation. Does not include trailing
190 newline, and starts with a one-line descrip-
191 tion (probably similar to to_longname). */
192 void (*to_open) (char *, int);
193 void (*to_close) (int);
194 void (*to_attach) (char *, int);
195 void (*to_post_attach) (int);
196 void (*to_require_attach) (char *, int);
197 void (*to_detach) (char *, int);
198 void (*to_require_detach) (int, char *, int);
199 void (*to_resume) (ptid_t, int, enum target_signal);
200 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
201 void (*to_post_wait) (ptid_t, int);
202 void (*to_fetch_registers) (int);
203 void (*to_store_registers) (int);
204 void (*to_prepare_to_store) (void);
205
206 /* Transfer LEN bytes of memory between GDB address MYADDR and
207 target address MEMADDR. If WRITE, transfer them to the target, else
208 transfer them from the target. TARGET is the target from which we
209 get this function.
210
211 Return value, N, is one of the following:
212
213 0 means that we can't handle this. If errno has been set, it is the
214 error which prevented us from doing it (FIXME: What about bfd_error?).
215
216 positive (call it N) means that we have transferred N bytes
217 starting at MEMADDR. We might be able to handle more bytes
218 beyond this length, but no promises.
219
220 negative (call its absolute value N) means that we cannot
221 transfer right at MEMADDR, but we could transfer at least
222 something at MEMADDR + N. */
223
224 int (*to_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
225 int len, int write,
226 struct mem_attrib *attrib,
227 struct target_ops *target);
228
229 #if 0
230 /* Enable this after 4.12. */
231
232 /* Search target memory. Start at STARTADDR and take LEN bytes of
233 target memory, and them with MASK, and compare to DATA. If they
234 match, set *ADDR_FOUND to the address we found it at, store the data
235 we found at LEN bytes starting at DATA_FOUND, and return. If
236 not, add INCREMENT to the search address and keep trying until
237 the search address is outside of the range [LORANGE,HIRANGE).
238
239 If we don't find anything, set *ADDR_FOUND to (CORE_ADDR)0 and
240 return. */
241
242 void (*to_search) (int len, char *data, char *mask,
243 CORE_ADDR startaddr, int increment,
244 CORE_ADDR lorange, CORE_ADDR hirange,
245 CORE_ADDR * addr_found, char *data_found);
246
247 #define target_search(len, data, mask, startaddr, increment, lorange, hirange, addr_found, data_found) \
248 (*current_target.to_search) (len, data, mask, startaddr, increment, \
249 lorange, hirange, addr_found, data_found)
250 #endif /* 0 */
251
252 void (*to_files_info) (struct target_ops *);
253 int (*to_insert_breakpoint) (CORE_ADDR, char *);
254 int (*to_remove_breakpoint) (CORE_ADDR, char *);
255 int (*to_can_use_hw_breakpoint) (int, int, int);
256 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
257 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
258 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
259 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
260 int (*to_stopped_by_watchpoint) (void);
261 CORE_ADDR (*to_stopped_data_address) (void);
262 int (*to_region_size_ok_for_hw_watchpoint) (int);
263 void (*to_terminal_init) (void);
264 void (*to_terminal_inferior) (void);
265 void (*to_terminal_ours_for_output) (void);
266 void (*to_terminal_ours) (void);
267 void (*to_terminal_save_ours) (void);
268 void (*to_terminal_info) (char *, int);
269 void (*to_kill) (void);
270 void (*to_load) (char *, int);
271 int (*to_lookup_symbol) (char *, CORE_ADDR *);
272 void (*to_create_inferior) (char *, char *, char **);
273 void (*to_post_startup_inferior) (ptid_t);
274 void (*to_acknowledge_created_inferior) (int);
275 int (*to_insert_fork_catchpoint) (int);
276 int (*to_remove_fork_catchpoint) (int);
277 int (*to_insert_vfork_catchpoint) (int);
278 int (*to_remove_vfork_catchpoint) (int);
279 void (*to_post_follow_vfork) (int, int, int, int);
280 int (*to_insert_exec_catchpoint) (int);
281 int (*to_remove_exec_catchpoint) (int);
282 int (*to_reported_exec_events_per_exec_call) (void);
283 int (*to_has_exited) (int, int, int *);
284 void (*to_mourn_inferior) (void);
285 int (*to_can_run) (void);
286 void (*to_notice_signals) (ptid_t ptid);
287 int (*to_thread_alive) (ptid_t ptid);
288 void (*to_find_new_threads) (void);
289 char *(*to_pid_to_str) (ptid_t);
290 char *(*to_extra_thread_info) (struct thread_info *);
291 void (*to_stop) (void);
292 int (*to_query) (int /*char */ , char *, char *, int *);
293 void (*to_rcmd) (char *command, struct ui_file *output);
294 struct symtab_and_line *(*to_enable_exception_callback) (enum
295 exception_event_kind,
296 int);
297 struct exception_event_record *(*to_get_current_exception_event) (void);
298 char *(*to_pid_to_exec_file) (int pid);
299 enum strata to_stratum;
300 struct target_ops
301 *DONT_USE; /* formerly to_next */
302 int to_has_all_memory;
303 int to_has_memory;
304 int to_has_stack;
305 int to_has_registers;
306 int to_has_execution;
307 int to_has_thread_control; /* control thread execution */
308 struct section_table
309 *to_sections;
310 struct section_table
311 *to_sections_end;
312 /* ASYNC target controls */
313 int (*to_can_async_p) (void);
314 int (*to_is_async_p) (void);
315 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
316 void *context);
317 int to_async_mask_value;
318 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
319 unsigned long,
320 int, int, int,
321 void *),
322 void *);
323 char * (*to_make_corefile_notes) (bfd *, int *);
324
325 /* Return the thread-local address at OFFSET in the
326 thread-local storage for the thread PTID and the shared library
327 or executable file given by OBJFILE. If that block of
328 thread-local storage hasn't been allocated yet, this function
329 may return an error. */
330 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
331 struct objfile *objfile,
332 CORE_ADDR offset);
333
334 int to_magic;
335 /* Need sub-structure for target machine related rather than comm related?
336 */
337 };
338
339 /* Magic number for checking ops size. If a struct doesn't end with this
340 number, somebody changed the declaration but didn't change all the
341 places that initialize one. */
342
343 #define OPS_MAGIC 3840
344
345 /* The ops structure for our "current" target process. This should
346 never be NULL. If there is no target, it points to the dummy_target. */
347
348 extern struct target_ops current_target;
349
350 /* An item on the target stack. */
351
352 struct target_stack_item
353 {
354 struct target_stack_item *next;
355 struct target_ops *target_ops;
356 };
357
358 /* The target stack. */
359
360 extern struct target_stack_item *target_stack;
361
362 /* Define easy words for doing these operations on our current target. */
363
364 #define target_shortname (current_target.to_shortname)
365 #define target_longname (current_target.to_longname)
366
367 /* The open routine takes the rest of the parameters from the command,
368 and (if successful) pushes a new target onto the stack.
369 Targets should supply this routine, if only to provide an error message. */
370
371 #define target_open(name, from_tty) \
372 do { \
373 dcache_invalidate (target_dcache); \
374 (*current_target.to_open) (name, from_tty); \
375 } while (0)
376
377 /* Does whatever cleanup is required for a target that we are no longer
378 going to be calling. Argument says whether we are quitting gdb and
379 should not get hung in case of errors, or whether we want a clean
380 termination even if it takes a while. This routine is automatically
381 always called just before a routine is popped off the target stack.
382 Closing file descriptors and freeing memory are typical things it should
383 do. */
384
385 #define target_close(quitting) \
386 (*current_target.to_close) (quitting)
387
388 /* Attaches to a process on the target side. Arguments are as passed
389 to the `attach' command by the user. This routine can be called
390 when the target is not on the target-stack, if the target_can_run
391 routine returns 1; in that case, it must push itself onto the stack.
392 Upon exit, the target should be ready for normal operations, and
393 should be ready to deliver the status of the process immediately
394 (without waiting) to an upcoming target_wait call. */
395
396 #define target_attach(args, from_tty) \
397 (*current_target.to_attach) (args, from_tty)
398
399 /* The target_attach operation places a process under debugger control,
400 and stops the process.
401
402 This operation provides a target-specific hook that allows the
403 necessary bookkeeping to be performed after an attach completes. */
404 #define target_post_attach(pid) \
405 (*current_target.to_post_attach) (pid)
406
407 /* Attaches to a process on the target side, if not already attached.
408 (If already attached, takes no action.)
409
410 This operation can be used to follow the child process of a fork.
411 On some targets, such child processes of an original inferior process
412 are automatically under debugger control, and thus do not require an
413 actual attach operation. */
414
415 #define target_require_attach(args, from_tty) \
416 (*current_target.to_require_attach) (args, from_tty)
417
418 /* Takes a program previously attached to and detaches it.
419 The program may resume execution (some targets do, some don't) and will
420 no longer stop on signals, etc. We better not have left any breakpoints
421 in the program or it'll die when it hits one. ARGS is arguments
422 typed by the user (e.g. a signal to send the process). FROM_TTY
423 says whether to be verbose or not. */
424
425 extern void target_detach (char *, int);
426
427 /* Detaches from a process on the target side, if not already dettached.
428 (If already detached, takes no action.)
429
430 This operation can be used to follow the parent process of a fork.
431 On some targets, such child processes of an original inferior process
432 are automatically under debugger control, and thus do require an actual
433 detach operation.
434
435 PID is the process id of the child to detach from.
436 ARGS is arguments typed by the user (e.g. a signal to send the process).
437 FROM_TTY says whether to be verbose or not. */
438
439 #define target_require_detach(pid, args, from_tty) \
440 (*current_target.to_require_detach) (pid, args, from_tty)
441
442 /* Resume execution of the target process PTID. STEP says whether to
443 single-step or to run free; SIGGNAL is the signal to be given to
444 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
445 pass TARGET_SIGNAL_DEFAULT. */
446
447 #define target_resume(ptid, step, siggnal) \
448 do { \
449 dcache_invalidate(target_dcache); \
450 (*current_target.to_resume) (ptid, step, siggnal); \
451 } while (0)
452
453 /* Wait for process pid to do something. PTID = -1 to wait for any
454 pid to do something. Return pid of child, or -1 in case of error;
455 store status through argument pointer STATUS. Note that it is
456 _NOT_ OK to throw_exception() out of target_wait() without popping
457 the debugging target from the stack; GDB isn't prepared to get back
458 to the prompt with a debugging target but without the frame cache,
459 stop_pc, etc., set up. */
460
461 #define target_wait(ptid, status) \
462 (*current_target.to_wait) (ptid, status)
463
464 /* The target_wait operation waits for a process event to occur, and
465 thereby stop the process.
466
467 On some targets, certain events may happen in sequences. gdb's
468 correct response to any single event of such a sequence may require
469 knowledge of what earlier events in the sequence have been seen.
470
471 This operation provides a target-specific hook that allows the
472 necessary bookkeeping to be performed to track such sequences. */
473
474 #define target_post_wait(ptid, status) \
475 (*current_target.to_post_wait) (ptid, status)
476
477 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
478
479 #define target_fetch_registers(regno) \
480 (*current_target.to_fetch_registers) (regno)
481
482 /* Store at least register REGNO, or all regs if REGNO == -1.
483 It can store as many registers as it wants to, so target_prepare_to_store
484 must have been previously called. Calls error() if there are problems. */
485
486 #define target_store_registers(regs) \
487 (*current_target.to_store_registers) (regs)
488
489 /* Get ready to modify the registers array. On machines which store
490 individual registers, this doesn't need to do anything. On machines
491 which store all the registers in one fell swoop, this makes sure
492 that REGISTERS contains all the registers from the program being
493 debugged. */
494
495 #define target_prepare_to_store() \
496 (*current_target.to_prepare_to_store) ()
497
498 extern DCACHE *target_dcache;
499
500 extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
501 struct mem_attrib *attrib);
502
503 extern int target_read_string (CORE_ADDR, char **, int, int *);
504
505 extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
506
507 extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
508
509 extern int xfer_memory (CORE_ADDR, char *, int, int,
510 struct mem_attrib *, struct target_ops *);
511
512 extern int child_xfer_memory (CORE_ADDR, char *, int, int,
513 struct mem_attrib *, struct target_ops *);
514
515 /* Make a single attempt at transfering LEN bytes. On a successful
516 transfer, the number of bytes actually transfered is returned and
517 ERR is set to 0. When a transfer fails, -1 is returned (the number
518 of bytes actually transfered is not defined) and ERR is set to a
519 non-zero error indication. */
520
521 extern int
522 target_read_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
523
524 extern int
525 target_write_memory_partial (CORE_ADDR addr, char *buf, int len, int *err);
526
527 extern char *child_pid_to_exec_file (int);
528
529 extern char *child_core_file_to_sym_file (char *);
530
531 #if defined(CHILD_POST_ATTACH)
532 extern void child_post_attach (int);
533 #endif
534
535 extern void child_post_wait (ptid_t, int);
536
537 extern void child_post_startup_inferior (ptid_t);
538
539 extern void child_acknowledge_created_inferior (int);
540
541 extern int child_insert_fork_catchpoint (int);
542
543 extern int child_remove_fork_catchpoint (int);
544
545 extern int child_insert_vfork_catchpoint (int);
546
547 extern int child_remove_vfork_catchpoint (int);
548
549 extern void child_acknowledge_created_inferior (int);
550
551 extern void child_post_follow_vfork (int, int, int, int);
552
553 extern int child_insert_exec_catchpoint (int);
554
555 extern int child_remove_exec_catchpoint (int);
556
557 extern int child_reported_exec_events_per_exec_call (void);
558
559 extern int child_has_exited (int, int, int *);
560
561 extern int child_thread_alive (ptid_t);
562
563 /* From infrun.c. */
564
565 extern int inferior_has_forked (int pid, int *child_pid);
566
567 extern int inferior_has_vforked (int pid, int *child_pid);
568
569 extern int inferior_has_execd (int pid, char **execd_pathname);
570
571 /* From exec.c */
572
573 extern void print_section_info (struct target_ops *, bfd *);
574
575 /* Print a line about the current target. */
576
577 #define target_files_info() \
578 (*current_target.to_files_info) (&current_target)
579
580 /* Insert a breakpoint at address ADDR in the target machine.
581 SAVE is a pointer to memory allocated for saving the
582 target contents. It is guaranteed by the caller to be long enough
583 to save "sizeof BREAKPOINT" bytes. Result is 0 for success, or
584 an errno value. */
585
586 #define target_insert_breakpoint(addr, save) \
587 (*current_target.to_insert_breakpoint) (addr, save)
588
589 /* Remove a breakpoint at address ADDR in the target machine.
590 SAVE is a pointer to the same save area
591 that was previously passed to target_insert_breakpoint.
592 Result is 0 for success, or an errno value. */
593
594 #define target_remove_breakpoint(addr, save) \
595 (*current_target.to_remove_breakpoint) (addr, save)
596
597 /* Initialize the terminal settings we record for the inferior,
598 before we actually run the inferior. */
599
600 #define target_terminal_init() \
601 (*current_target.to_terminal_init) ()
602
603 /* Put the inferior's terminal settings into effect.
604 This is preparation for starting or resuming the inferior. */
605
606 #define target_terminal_inferior() \
607 (*current_target.to_terminal_inferior) ()
608
609 /* Put some of our terminal settings into effect,
610 enough to get proper results from our output,
611 but do not change into or out of RAW mode
612 so that no input is discarded.
613
614 After doing this, either terminal_ours or terminal_inferior
615 should be called to get back to a normal state of affairs. */
616
617 #define target_terminal_ours_for_output() \
618 (*current_target.to_terminal_ours_for_output) ()
619
620 /* Put our terminal settings into effect.
621 First record the inferior's terminal settings
622 so they can be restored properly later. */
623
624 #define target_terminal_ours() \
625 (*current_target.to_terminal_ours) ()
626
627 /* Save our terminal settings.
628 This is called from TUI after entering or leaving the curses
629 mode. Since curses modifies our terminal this call is here
630 to take this change into account. */
631
632 #define target_terminal_save_ours() \
633 (*current_target.to_terminal_save_ours) ()
634
635 /* Print useful information about our terminal status, if such a thing
636 exists. */
637
638 #define target_terminal_info(arg, from_tty) \
639 (*current_target.to_terminal_info) (arg, from_tty)
640
641 /* Kill the inferior process. Make it go away. */
642
643 #define target_kill() \
644 (*current_target.to_kill) ()
645
646 /* Load an executable file into the target process. This is expected
647 to not only bring new code into the target process, but also to
648 update GDB's symbol tables to match. */
649
650 extern void target_load (char *arg, int from_tty);
651
652 /* Look up a symbol in the target's symbol table. NAME is the symbol
653 name. ADDRP is a CORE_ADDR * pointing to where the value of the
654 symbol should be returned. The result is 0 if successful, nonzero
655 if the symbol does not exist in the target environment. This
656 function should not call error() if communication with the target
657 is interrupted, since it is called from symbol reading, but should
658 return nonzero, possibly doing a complain(). */
659
660 #define target_lookup_symbol(name, addrp) \
661 (*current_target.to_lookup_symbol) (name, addrp)
662
663 /* Start an inferior process and set inferior_ptid to its pid.
664 EXEC_FILE is the file to run.
665 ALLARGS is a string containing the arguments to the program.
666 ENV is the environment vector to pass. Errors reported with error().
667 On VxWorks and various standalone systems, we ignore exec_file. */
668
669 #define target_create_inferior(exec_file, args, env) \
670 (*current_target.to_create_inferior) (exec_file, args, env)
671
672
673 /* Some targets (such as ttrace-based HPUX) don't allow us to request
674 notification of inferior events such as fork and vork immediately
675 after the inferior is created. (This because of how gdb gets an
676 inferior created via invoking a shell to do it. In such a scenario,
677 if the shell init file has commands in it, the shell will fork and
678 exec for each of those commands, and we will see each such fork
679 event. Very bad.)
680
681 Such targets will supply an appropriate definition for this function. */
682
683 #define target_post_startup_inferior(ptid) \
684 (*current_target.to_post_startup_inferior) (ptid)
685
686 /* On some targets, the sequence of starting up an inferior requires
687 some synchronization between gdb and the new inferior process, PID. */
688
689 #define target_acknowledge_created_inferior(pid) \
690 (*current_target.to_acknowledge_created_inferior) (pid)
691
692 /* On some targets, we can catch an inferior fork or vfork event when
693 it occurs. These functions insert/remove an already-created
694 catchpoint for such events. */
695
696 #define target_insert_fork_catchpoint(pid) \
697 (*current_target.to_insert_fork_catchpoint) (pid)
698
699 #define target_remove_fork_catchpoint(pid) \
700 (*current_target.to_remove_fork_catchpoint) (pid)
701
702 #define target_insert_vfork_catchpoint(pid) \
703 (*current_target.to_insert_vfork_catchpoint) (pid)
704
705 #define target_remove_vfork_catchpoint(pid) \
706 (*current_target.to_remove_vfork_catchpoint) (pid)
707
708 /* An inferior process has been created via a vfork() system call.
709 The debugger has followed the parent, the child, or both. The
710 process of setting up for that follow may have required some
711 target-specific trickery to track the sequence of reported events.
712 If so, this function should be defined by those targets that
713 require the debugger to perform cleanup or initialization after
714 the vfork follow. */
715
716 #define target_post_follow_vfork(parent_pid,followed_parent,child_pid,followed_child) \
717 (*current_target.to_post_follow_vfork) (parent_pid,followed_parent,child_pid,followed_child)
718
719 /* On some targets, we can catch an inferior exec event when it
720 occurs. These functions insert/remove an already-created
721 catchpoint for such events. */
722
723 #define target_insert_exec_catchpoint(pid) \
724 (*current_target.to_insert_exec_catchpoint) (pid)
725
726 #define target_remove_exec_catchpoint(pid) \
727 (*current_target.to_remove_exec_catchpoint) (pid)
728
729 /* Returns the number of exec events that are reported when a process
730 invokes a flavor of the exec() system call on this target, if exec
731 events are being reported. */
732
733 #define target_reported_exec_events_per_exec_call() \
734 (*current_target.to_reported_exec_events_per_exec_call) ()
735
736 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
737 exit code of PID, if any. */
738
739 #define target_has_exited(pid,wait_status,exit_status) \
740 (*current_target.to_has_exited) (pid,wait_status,exit_status)
741
742 /* The debugger has completed a blocking wait() call. There is now
743 some process event that must be processed. This function should
744 be defined by those targets that require the debugger to perform
745 cleanup or internal state changes in response to the process event. */
746
747 /* The inferior process has died. Do what is right. */
748
749 #define target_mourn_inferior() \
750 (*current_target.to_mourn_inferior) ()
751
752 /* Does target have enough data to do a run or attach command? */
753
754 #define target_can_run(t) \
755 ((t)->to_can_run) ()
756
757 /* post process changes to signal handling in the inferior. */
758
759 #define target_notice_signals(ptid) \
760 (*current_target.to_notice_signals) (ptid)
761
762 /* Check to see if a thread is still alive. */
763
764 #define target_thread_alive(ptid) \
765 (*current_target.to_thread_alive) (ptid)
766
767 /* Query for new threads and add them to the thread list. */
768
769 #define target_find_new_threads() \
770 (*current_target.to_find_new_threads) (); \
771
772 /* Make target stop in a continuable fashion. (For instance, under
773 Unix, this should act like SIGSTOP). This function is normally
774 used by GUIs to implement a stop button. */
775
776 #define target_stop current_target.to_stop
777
778 /* Queries the target side for some information. The first argument is a
779 letter specifying the type of the query, which is used to determine who
780 should process it. The second argument is a string that specifies which
781 information is desired and the third is a buffer that carries back the
782 response from the target side. The fourth parameter is the size of the
783 output buffer supplied. */
784
785 #define target_query(query_type, query, resp_buffer, bufffer_size) \
786 (*current_target.to_query) (query_type, query, resp_buffer, bufffer_size)
787
788 /* Send the specified COMMAND to the target's monitor
789 (shell,interpreter) for execution. The result of the query is
790 placed in OUTBUF. */
791
792 #define target_rcmd(command, outbuf) \
793 (*current_target.to_rcmd) (command, outbuf)
794
795
796 /* Get the symbol information for a breakpointable routine called when
797 an exception event occurs.
798 Intended mainly for C++, and for those
799 platforms/implementations where such a callback mechanism is available,
800 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
801 different mechanisms for debugging exceptions. */
802
803 #define target_enable_exception_callback(kind, enable) \
804 (*current_target.to_enable_exception_callback) (kind, enable)
805
806 /* Get the current exception event kind -- throw or catch, etc. */
807
808 #define target_get_current_exception_event() \
809 (*current_target.to_get_current_exception_event) ()
810
811 /* Pointer to next target in the chain, e.g. a core file and an exec file. */
812
813 #define target_next \
814 (current_target.to_next)
815
816 /* Does the target include all of memory, or only part of it? This
817 determines whether we look up the target chain for other parts of
818 memory if this target can't satisfy a request. */
819
820 #define target_has_all_memory \
821 (current_target.to_has_all_memory)
822
823 /* Does the target include memory? (Dummy targets don't.) */
824
825 #define target_has_memory \
826 (current_target.to_has_memory)
827
828 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
829 we start a process.) */
830
831 #define target_has_stack \
832 (current_target.to_has_stack)
833
834 /* Does the target have registers? (Exec files don't.) */
835
836 #define target_has_registers \
837 (current_target.to_has_registers)
838
839 /* Does the target have execution? Can we make it jump (through
840 hoops), or pop its stack a few times? FIXME: If this is to work that
841 way, it needs to check whether an inferior actually exists.
842 remote-udi.c and probably other targets can be the current target
843 when the inferior doesn't actually exist at the moment. Right now
844 this just tells us whether this target is *capable* of execution. */
845
846 #define target_has_execution \
847 (current_target.to_has_execution)
848
849 /* Can the target support the debugger control of thread execution?
850 a) Can it lock the thread scheduler?
851 b) Can it switch the currently running thread? */
852
853 #define target_can_lock_scheduler \
854 (current_target.to_has_thread_control & tc_schedlock)
855
856 #define target_can_switch_threads \
857 (current_target.to_has_thread_control & tc_switch)
858
859 /* Can the target support asynchronous execution? */
860 #define target_can_async_p() (current_target.to_can_async_p ())
861
862 /* Is the target in asynchronous execution mode? */
863 #define target_is_async_p() (current_target.to_is_async_p())
864
865 /* Put the target in async mode with the specified callback function. */
866 #define target_async(CALLBACK,CONTEXT) \
867 (current_target.to_async((CALLBACK), (CONTEXT)))
868
869 /* This is to be used ONLY within run_stack_dummy(). It
870 provides a workaround, to have inferior function calls done in
871 sychronous mode, even though the target is asynchronous. After
872 target_async_mask(0) is called, calls to target_can_async_p() will
873 return FALSE , so that target_resume() will not try to start the
874 target asynchronously. After the inferior stops, we IMMEDIATELY
875 restore the previous nature of the target, by calling
876 target_async_mask(1). After that, target_can_async_p() will return
877 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
878
879 FIXME ezannoni 1999-12-13: we won't need this once we move
880 the turning async on and off to the single execution commands,
881 from where it is done currently, in remote_resume(). */
882
883 #define target_async_mask_value \
884 (current_target.to_async_mask_value)
885
886 extern int target_async_mask (int mask);
887
888 extern void target_link (char *, CORE_ADDR *);
889
890 /* Converts a process id to a string. Usually, the string just contains
891 `process xyz', but on some systems it may contain
892 `process xyz thread abc'. */
893
894 #undef target_pid_to_str
895 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
896
897 #ifndef target_tid_to_str
898 #define target_tid_to_str(PID) \
899 target_pid_to_str (PID)
900 extern char *normal_pid_to_str (ptid_t ptid);
901 #endif
902
903 /* Return a short string describing extra information about PID,
904 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
905 is okay. */
906
907 #define target_extra_thread_info(TP) \
908 (current_target.to_extra_thread_info (TP))
909
910 /*
911 * New Objfile Event Hook:
912 *
913 * Sometimes a GDB component wants to get notified whenever a new
914 * objfile is loaded. Mainly this is used by thread-debugging
915 * implementations that need to know when symbols for the target
916 * thread implemenation are available.
917 *
918 * The old way of doing this is to define a macro 'target_new_objfile'
919 * that points to the function that you want to be called on every
920 * objfile/shlib load.
921 *
922 * The new way is to grab the function pointer, 'target_new_objfile_hook',
923 * and point it to the function that you want to be called on every
924 * objfile/shlib load.
925 *
926 * If multiple clients are willing to be cooperative, they can each
927 * save a pointer to the previous value of target_new_objfile_hook
928 * before modifying it, and arrange for their function to call the
929 * previous function in the chain. In that way, multiple clients
930 * can receive this notification (something like with signal handlers).
931 */
932
933 extern void (*target_new_objfile_hook) (struct objfile *);
934
935 #ifndef target_pid_or_tid_to_str
936 #define target_pid_or_tid_to_str(ID) \
937 target_pid_to_str (ID)
938 #endif
939
940 /* Attempts to find the pathname of the executable file
941 that was run to create a specified process.
942
943 The process PID must be stopped when this operation is used.
944
945 If the executable file cannot be determined, NULL is returned.
946
947 Else, a pointer to a character string containing the pathname
948 is returned. This string should be copied into a buffer by
949 the client if the string will not be immediately used, or if
950 it must persist. */
951
952 #define target_pid_to_exec_file(pid) \
953 (current_target.to_pid_to_exec_file) (pid)
954
955 /*
956 * Iterator function for target memory regions.
957 * Calls a callback function once for each memory region 'mapped'
958 * in the child process. Defined as a simple macro rather than
959 * as a function macro so that it can be tested for nullity.
960 */
961
962 #define target_find_memory_regions(FUNC, DATA) \
963 (current_target.to_find_memory_regions) (FUNC, DATA)
964
965 /*
966 * Compose corefile .note section.
967 */
968
969 #define target_make_corefile_notes(BFD, SIZE_P) \
970 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
971
972 /* Thread-local values. */
973 #define target_get_thread_local_address \
974 (current_target.to_get_thread_local_address)
975 #define target_get_thread_local_address_p() \
976 (target_get_thread_local_address != NULL)
977
978 /* Hook to call target-dependent code after reading in a new symbol table. */
979
980 #ifndef TARGET_SYMFILE_POSTREAD
981 #define TARGET_SYMFILE_POSTREAD(OBJFILE)
982 #endif
983
984 /* Hook to call target dependent code just after inferior target process has
985 started. */
986
987 #ifndef TARGET_CREATE_INFERIOR_HOOK
988 #define TARGET_CREATE_INFERIOR_HOOK(PID)
989 #endif
990
991 /* Hardware watchpoint interfaces. */
992
993 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
994 write). */
995
996 #ifndef STOPPED_BY_WATCHPOINT
997 #define STOPPED_BY_WATCHPOINT(w) \
998 (*current_target.to_stopped_by_watchpoint) ()
999 #endif
1000
1001 /* HP-UX supplies these operations, which respectively disable and enable
1002 the memory page-protections that are used to implement hardware watchpoints
1003 on that platform. See wait_for_inferior's use of these. */
1004
1005 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1006 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1007 #endif
1008
1009 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1010 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1011 #endif
1012
1013 /* Provide defaults for hardware watchpoint functions. */
1014
1015 /* If the *_hw_beakpoint functions have not been defined
1016 elsewhere use the definitions in the target vector. */
1017
1018 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1019 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1020 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1021 (including this one?). OTHERTYPE is who knows what... */
1022
1023 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1024 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1025 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1026 #endif
1027
1028 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1029 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1030 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
1031 #endif
1032
1033
1034 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1035 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1036 success, non-zero for failure. */
1037
1038 #ifndef target_insert_watchpoint
1039 #define target_insert_watchpoint(addr, len, type) \
1040 (*current_target.to_insert_watchpoint) (addr, len, type)
1041
1042 #define target_remove_watchpoint(addr, len, type) \
1043 (*current_target.to_remove_watchpoint) (addr, len, type)
1044 #endif
1045
1046 #ifndef target_insert_hw_breakpoint
1047 #define target_insert_hw_breakpoint(addr, save) \
1048 (*current_target.to_insert_hw_breakpoint) (addr, save)
1049
1050 #define target_remove_hw_breakpoint(addr, save) \
1051 (*current_target.to_remove_hw_breakpoint) (addr, save)
1052 #endif
1053
1054 #ifndef target_stopped_data_address
1055 #define target_stopped_data_address() \
1056 (*current_target.to_stopped_data_address) ()
1057 #endif
1058
1059 /* If defined, then we need to decr pc by this much after a hardware break-
1060 point. Presumably this overrides DECR_PC_AFTER_BREAK... */
1061
1062 #ifndef DECR_PC_AFTER_HW_BREAK
1063 #define DECR_PC_AFTER_HW_BREAK 0
1064 #endif
1065
1066 /* Sometimes gdb may pick up what appears to be a valid target address
1067 from a minimal symbol, but the value really means, essentially,
1068 "This is an index into a table which is populated when the inferior
1069 is run. Therefore, do not attempt to use this as a PC." */
1070
1071 #if !defined(PC_REQUIRES_RUN_BEFORE_USE)
1072 #define PC_REQUIRES_RUN_BEFORE_USE(pc) (0)
1073 #endif
1074
1075 /* This will only be defined by a target that supports catching vfork events,
1076 such as HP-UX.
1077
1078 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1079 child process after it has exec'd, causes the parent process to resume as
1080 well. To prevent the parent from running spontaneously, such targets should
1081 define this to a function that prevents that from happening. */
1082 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1083 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1084 #endif
1085
1086 /* This will only be defined by a target that supports catching vfork events,
1087 such as HP-UX.
1088
1089 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1090 process must be resumed when it delivers its exec event, before the parent
1091 vfork event will be delivered to us. */
1092
1093 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1094 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1095 #endif
1096
1097 /* Routines for maintenance of the target structures...
1098
1099 add_target: Add a target to the list of all possible targets.
1100
1101 push_target: Make this target the top of the stack of currently used
1102 targets, within its particular stratum of the stack. Result
1103 is 0 if now atop the stack, nonzero if not on top (maybe
1104 should warn user).
1105
1106 unpush_target: Remove this from the stack of currently used targets,
1107 no matter where it is on the list. Returns 0 if no
1108 change, 1 if removed from stack.
1109
1110 pop_target: Remove the top thing on the stack of current targets. */
1111
1112 extern void add_target (struct target_ops *);
1113
1114 extern int push_target (struct target_ops *);
1115
1116 extern int unpush_target (struct target_ops *);
1117
1118 extern void target_preopen (int);
1119
1120 extern void pop_target (void);
1121
1122 /* Struct section_table maps address ranges to file sections. It is
1123 mostly used with BFD files, but can be used without (e.g. for handling
1124 raw disks, or files not in formats handled by BFD). */
1125
1126 struct section_table
1127 {
1128 CORE_ADDR addr; /* Lowest address in section */
1129 CORE_ADDR endaddr; /* 1+highest address in section */
1130
1131 sec_ptr the_bfd_section;
1132
1133 bfd *bfd; /* BFD file pointer */
1134 };
1135
1136 /* Builds a section table, given args BFD, SECTABLE_PTR, SECEND_PTR.
1137 Returns 0 if OK, 1 on error. */
1138
1139 extern int
1140 build_section_table (bfd *, struct section_table **, struct section_table **);
1141
1142 /* From mem-break.c */
1143
1144 extern int memory_remove_breakpoint (CORE_ADDR, char *);
1145
1146 extern int memory_insert_breakpoint (CORE_ADDR, char *);
1147
1148 extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1149
1150 extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1151
1152 extern const unsigned char *memory_breakpoint_from_pc (CORE_ADDR *pcptr,
1153 int *lenptr);
1154
1155
1156 /* From target.c */
1157
1158 extern void initialize_targets (void);
1159
1160 extern void noprocess (void);
1161
1162 extern void find_default_attach (char *, int);
1163
1164 extern void find_default_require_attach (char *, int);
1165
1166 extern void find_default_require_detach (int, char *, int);
1167
1168 extern void find_default_create_inferior (char *, char *, char **);
1169
1170 extern struct target_ops *find_run_target (void);
1171
1172 extern struct target_ops *find_core_target (void);
1173
1174 extern struct target_ops *find_target_beneath (struct target_ops *);
1175
1176 extern int
1177 target_resize_to_sections (struct target_ops *target, int num_added);
1178
1179 extern void remove_target_sections (bfd *abfd);
1180
1181 \f
1182 /* Stuff that should be shared among the various remote targets. */
1183
1184 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1185 information (higher values, more information). */
1186 extern int remote_debug;
1187
1188 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1189 extern int baud_rate;
1190 /* Timeout limit for response from target. */
1191 extern int remote_timeout;
1192
1193 \f
1194 /* Functions for helping to write a native target. */
1195
1196 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1197 extern void store_waitstatus (struct target_waitstatus *, int);
1198
1199 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1200 targ_signal SIGNO has an equivalent ``host'' representation. */
1201 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1202 to the shorter target_signal_p() because it is far less ambigious.
1203 In this context ``target_signal'' refers to GDB's internal
1204 representation of the target's set of signals while ``host signal''
1205 refers to the target operating system's signal. Confused? */
1206
1207 extern int target_signal_to_host_p (enum target_signal signo);
1208
1209 /* Convert between host signal numbers and enum target_signal's.
1210 target_signal_to_host() returns 0 and prints a warning() on GDB's
1211 console if SIGNO has no equivalent host representation. */
1212 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1213 refering to the target operating system's signal numbering.
1214 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1215 gdb_signal'' would probably be better as it is refering to GDB's
1216 internal representation of a target operating system's signal. */
1217
1218 extern enum target_signal target_signal_from_host (int);
1219 extern int target_signal_to_host (enum target_signal);
1220
1221 /* Convert from a number used in a GDB command to an enum target_signal. */
1222 extern enum target_signal target_signal_from_command (int);
1223
1224 /* Any target can call this to switch to remote protocol (in remote.c). */
1225 extern void push_remote_target (char *name, int from_tty);
1226 \f
1227 /* Imported from machine dependent code */
1228
1229 /* Blank target vector entries are initialized to target_ignore. */
1230 void target_ignore (void);
1231
1232 #endif /* !defined (TARGET_H) */
This page took 0.073506 seconds and 4 git commands to generate.