daily update
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40
41 /* This include file defines the interface between the main part
42 of the debugger, and the part which is target-specific, or
43 specific to the communications interface between us and the
44 target.
45
46 A TARGET is an interface between the debugger and a particular
47 kind of file or process. Targets can be STACKED in STRATA,
48 so that more than one target can potentially respond to a request.
49 In particular, memory accesses will walk down the stack of targets
50 until they find a target that is interested in handling that particular
51 address. STRATA are artificial boundaries on the stack, within
52 which particular kinds of targets live. Strata exist so that
53 people don't get confused by pushing e.g. a process target and then
54 a file target, and wondering why they can't see the current values
55 of variables any more (the file target is handling them and they
56 never get to the process target). So when you push a file target,
57 it goes into the file stratum, which is always below the process
58 stratum. */
59
60 #include "bfd.h"
61 #include "symtab.h"
62 #include "memattr.h"
63 #include "vec.h"
64 #include "gdb_signals.h"
65
66 enum strata
67 {
68 dummy_stratum, /* The lowest of the low */
69 file_stratum, /* Executable files, etc */
70 process_stratum, /* Executing processes or core dump files */
71 thread_stratum, /* Executing threads */
72 record_stratum, /* Support record debugging */
73 arch_stratum /* Architecture overrides */
74 };
75
76 enum thread_control_capabilities
77 {
78 tc_none = 0, /* Default: can't control thread execution. */
79 tc_schedlock = 1, /* Can lock the thread scheduler. */
80 };
81
82 /* Stuff for target_wait. */
83
84 /* Generally, what has the program done? */
85 enum target_waitkind
86 {
87 /* The program has exited. The exit status is in value.integer. */
88 TARGET_WAITKIND_EXITED,
89
90 /* The program has stopped with a signal. Which signal is in
91 value.sig. */
92 TARGET_WAITKIND_STOPPED,
93
94 /* The program has terminated with a signal. Which signal is in
95 value.sig. */
96 TARGET_WAITKIND_SIGNALLED,
97
98 /* The program is letting us know that it dynamically loaded something
99 (e.g. it called load(2) on AIX). */
100 TARGET_WAITKIND_LOADED,
101
102 /* The program has forked. A "related" process' PTID is in
103 value.related_pid. I.e., if the child forks, value.related_pid
104 is the parent's ID. */
105
106 TARGET_WAITKIND_FORKED,
107
108 /* The program has vforked. A "related" process's PTID is in
109 value.related_pid. */
110
111 TARGET_WAITKIND_VFORKED,
112
113 /* The program has exec'ed a new executable file. The new file's
114 pathname is pointed to by value.execd_pathname. */
115
116 TARGET_WAITKIND_EXECD,
117
118 /* The program had previously vforked, and now the child is done
119 with the shared memory region, because it exec'ed or exited.
120 Note that the event is reported to the vfork parent. This is
121 only used if GDB did not stay attached to the vfork child,
122 otherwise, a TARGET_WAITKIND_EXECD or
123 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
124 has the same effect. */
125 TARGET_WAITKIND_VFORK_DONE,
126
127 /* The program has entered or returned from a system call. On
128 HP-UX, this is used in the hardware watchpoint implementation.
129 The syscall's unique integer ID number is in value.syscall_id. */
130
131 TARGET_WAITKIND_SYSCALL_ENTRY,
132 TARGET_WAITKIND_SYSCALL_RETURN,
133
134 /* Nothing happened, but we stopped anyway. This perhaps should be handled
135 within target_wait, but I'm not sure target_wait should be resuming the
136 inferior. */
137 TARGET_WAITKIND_SPURIOUS,
138
139 /* An event has occured, but we should wait again.
140 Remote_async_wait() returns this when there is an event
141 on the inferior, but the rest of the world is not interested in
142 it. The inferior has not stopped, but has just sent some output
143 to the console, for instance. In this case, we want to go back
144 to the event loop and wait there for another event from the
145 inferior, rather than being stuck in the remote_async_wait()
146 function. sThis way the event loop is responsive to other events,
147 like for instance the user typing. */
148 TARGET_WAITKIND_IGNORE,
149
150 /* The target has run out of history information,
151 and cannot run backward any further. */
152 TARGET_WAITKIND_NO_HISTORY,
153
154 /* There are no resumed children left in the program. */
155 TARGET_WAITKIND_NO_RESUMED
156 };
157
158 struct target_waitstatus
159 {
160 enum target_waitkind kind;
161
162 /* Forked child pid, execd pathname, exit status, signal number or
163 syscall number. */
164 union
165 {
166 int integer;
167 enum gdb_signal sig;
168 ptid_t related_pid;
169 char *execd_pathname;
170 int syscall_number;
171 }
172 value;
173 };
174
175 /* Options that can be passed to target_wait. */
176
177 /* Return immediately if there's no event already queued. If this
178 options is not requested, target_wait blocks waiting for an
179 event. */
180 #define TARGET_WNOHANG 1
181
182 /* The structure below stores information about a system call.
183 It is basically used in the "catch syscall" command, and in
184 every function that gives information about a system call.
185
186 It's also good to mention that its fields represent everything
187 that we currently know about a syscall in GDB. */
188 struct syscall
189 {
190 /* The syscall number. */
191 int number;
192
193 /* The syscall name. */
194 const char *name;
195 };
196
197 /* Return a pretty printed form of target_waitstatus.
198 Space for the result is malloc'd, caller must free. */
199 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
200
201 /* Return a pretty printed form of TARGET_OPTIONS.
202 Space for the result is malloc'd, caller must free. */
203 extern char *target_options_to_string (int target_options);
204
205 /* Possible types of events that the inferior handler will have to
206 deal with. */
207 enum inferior_event_type
208 {
209 /* Process a normal inferior event which will result in target_wait
210 being called. */
211 INF_REG_EVENT,
212 /* We are called because a timer went off. */
213 INF_TIMER,
214 /* We are called to do stuff after the inferior stops. */
215 INF_EXEC_COMPLETE,
216 /* We are called to do some stuff after the inferior stops, but we
217 are expected to reenter the proceed() and
218 handle_inferior_event() functions. This is used only in case of
219 'step n' like commands. */
220 INF_EXEC_CONTINUE
221 };
222 \f
223 /* Target objects which can be transfered using target_read,
224 target_write, et cetera. */
225
226 enum target_object
227 {
228 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
229 TARGET_OBJECT_AVR,
230 /* SPU target specific transfer. See "spu-tdep.c". */
231 TARGET_OBJECT_SPU,
232 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
233 TARGET_OBJECT_MEMORY,
234 /* Memory, avoiding GDB's data cache and trusting the executable.
235 Target implementations of to_xfer_partial never need to handle
236 this object, and most callers should not use it. */
237 TARGET_OBJECT_RAW_MEMORY,
238 /* Memory known to be part of the target's stack. This is cached even
239 if it is not in a region marked as such, since it is known to be
240 "normal" RAM. */
241 TARGET_OBJECT_STACK_MEMORY,
242 /* Kernel Unwind Table. See "ia64-tdep.c". */
243 TARGET_OBJECT_UNWIND_TABLE,
244 /* Transfer auxilliary vector. */
245 TARGET_OBJECT_AUXV,
246 /* StackGhost cookie. See "sparc-tdep.c". */
247 TARGET_OBJECT_WCOOKIE,
248 /* Target memory map in XML format. */
249 TARGET_OBJECT_MEMORY_MAP,
250 /* Flash memory. This object can be used to write contents to
251 a previously erased flash memory. Using it without erasing
252 flash can have unexpected results. Addresses are physical
253 address on target, and not relative to flash start. */
254 TARGET_OBJECT_FLASH,
255 /* Available target-specific features, e.g. registers and coprocessors.
256 See "target-descriptions.c". ANNEX should never be empty. */
257 TARGET_OBJECT_AVAILABLE_FEATURES,
258 /* Currently loaded libraries, in XML format. */
259 TARGET_OBJECT_LIBRARIES,
260 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
261 TARGET_OBJECT_LIBRARIES_SVR4,
262 /* Get OS specific data. The ANNEX specifies the type (running
263 processes, etc.). The data being transfered is expected to follow
264 the DTD specified in features/osdata.dtd. */
265 TARGET_OBJECT_OSDATA,
266 /* Extra signal info. Usually the contents of `siginfo_t' on unix
267 platforms. */
268 TARGET_OBJECT_SIGNAL_INFO,
269 /* The list of threads that are being debugged. */
270 TARGET_OBJECT_THREADS,
271 /* Collected static trace data. */
272 TARGET_OBJECT_STATIC_TRACE_DATA,
273 /* The HP-UX registers (those that can be obtained or modified by using
274 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
275 TARGET_OBJECT_HPUX_UREGS,
276 /* The HP-UX shared library linkage pointer. ANNEX should be a string
277 image of the code address whose linkage pointer we are looking for.
278
279 The size of the data transfered is always 8 bytes (the size of an
280 address on ia64). */
281 TARGET_OBJECT_HPUX_SOLIB_GOT,
282 /* Traceframe info, in XML format. */
283 TARGET_OBJECT_TRACEFRAME_INFO,
284 /* Load maps for FDPIC systems. */
285 TARGET_OBJECT_FDPIC,
286 /* Darwin dynamic linker info data. */
287 TARGET_OBJECT_DARWIN_DYLD_INFO,
288 /* OpenVMS Unwind Information Block. */
289 TARGET_OBJECT_OPENVMS_UIB
290 /* Possible future objects: TARGET_OBJECT_FILE, ... */
291 };
292
293 /* Enumeration of the kinds of traceframe searches that a target may
294 be able to perform. */
295
296 enum trace_find_type
297 {
298 tfind_number,
299 tfind_pc,
300 tfind_tp,
301 tfind_range,
302 tfind_outside,
303 };
304
305 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
306 DEF_VEC_P(static_tracepoint_marker_p);
307
308 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
309 OBJECT. The OFFSET, for a seekable object, specifies the
310 starting point. The ANNEX can be used to provide additional
311 data-specific information to the target.
312
313 Return the number of bytes actually transfered, or -1 if the
314 transfer is not supported or otherwise fails. Return of a positive
315 value less than LEN indicates that no further transfer is possible.
316 Unlike the raw to_xfer_partial interface, callers of these
317 functions do not need to retry partial transfers. */
318
319 extern LONGEST target_read (struct target_ops *ops,
320 enum target_object object,
321 const char *annex, gdb_byte *buf,
322 ULONGEST offset, LONGEST len);
323
324 struct memory_read_result
325 {
326 /* First address that was read. */
327 ULONGEST begin;
328 /* Past-the-end address. */
329 ULONGEST end;
330 /* The data. */
331 gdb_byte *data;
332 };
333 typedef struct memory_read_result memory_read_result_s;
334 DEF_VEC_O(memory_read_result_s);
335
336 extern void free_memory_read_result_vector (void *);
337
338 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
339 ULONGEST offset,
340 LONGEST len);
341
342 extern LONGEST target_write (struct target_ops *ops,
343 enum target_object object,
344 const char *annex, const gdb_byte *buf,
345 ULONGEST offset, LONGEST len);
346
347 /* Similar to target_write, except that it also calls PROGRESS with
348 the number of bytes written and the opaque BATON after every
349 successful partial write (and before the first write). This is
350 useful for progress reporting and user interaction while writing
351 data. To abort the transfer, the progress callback can throw an
352 exception. */
353
354 LONGEST target_write_with_progress (struct target_ops *ops,
355 enum target_object object,
356 const char *annex, const gdb_byte *buf,
357 ULONGEST offset, LONGEST len,
358 void (*progress) (ULONGEST, void *),
359 void *baton);
360
361 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
362 be read using OPS. The return value will be -1 if the transfer
363 fails or is not supported; 0 if the object is empty; or the length
364 of the object otherwise. If a positive value is returned, a
365 sufficiently large buffer will be allocated using xmalloc and
366 returned in *BUF_P containing the contents of the object.
367
368 This method should be used for objects sufficiently small to store
369 in a single xmalloc'd buffer, when no fixed bound on the object's
370 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
371 through this function. */
372
373 extern LONGEST target_read_alloc (struct target_ops *ops,
374 enum target_object object,
375 const char *annex, gdb_byte **buf_p);
376
377 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
378 returned as a string, allocated using xmalloc. If an error occurs
379 or the transfer is unsupported, NULL is returned. Empty objects
380 are returned as allocated but empty strings. A warning is issued
381 if the result contains any embedded NUL bytes. */
382
383 extern char *target_read_stralloc (struct target_ops *ops,
384 enum target_object object,
385 const char *annex);
386
387 /* Wrappers to target read/write that perform memory transfers. They
388 throw an error if the memory transfer fails.
389
390 NOTE: cagney/2003-10-23: The naming schema is lifted from
391 "frame.h". The parameter order is lifted from get_frame_memory,
392 which in turn lifted it from read_memory. */
393
394 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
395 gdb_byte *buf, LONGEST len);
396 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
397 CORE_ADDR addr, int len,
398 enum bfd_endian byte_order);
399 \f
400 struct thread_info; /* fwd decl for parameter list below: */
401
402 struct target_ops
403 {
404 struct target_ops *beneath; /* To the target under this one. */
405 char *to_shortname; /* Name this target type */
406 char *to_longname; /* Name for printing */
407 char *to_doc; /* Documentation. Does not include trailing
408 newline, and starts with a one-line descrip-
409 tion (probably similar to to_longname). */
410 /* Per-target scratch pad. */
411 void *to_data;
412 /* The open routine takes the rest of the parameters from the
413 command, and (if successful) pushes a new target onto the
414 stack. Targets should supply this routine, if only to provide
415 an error message. */
416 void (*to_open) (char *, int);
417 /* Old targets with a static target vector provide "to_close".
418 New re-entrant targets provide "to_xclose" and that is expected
419 to xfree everything (including the "struct target_ops"). */
420 void (*to_xclose) (struct target_ops *targ, int quitting);
421 void (*to_close) (int);
422 void (*to_attach) (struct target_ops *ops, char *, int);
423 void (*to_post_attach) (int);
424 void (*to_detach) (struct target_ops *ops, char *, int);
425 void (*to_disconnect) (struct target_ops *, char *, int);
426 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal);
427 ptid_t (*to_wait) (struct target_ops *,
428 ptid_t, struct target_waitstatus *, int);
429 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
430 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
431 void (*to_prepare_to_store) (struct regcache *);
432
433 /* Transfer LEN bytes of memory between GDB address MYADDR and
434 target address MEMADDR. If WRITE, transfer them to the target, else
435 transfer them from the target. TARGET is the target from which we
436 get this function.
437
438 Return value, N, is one of the following:
439
440 0 means that we can't handle this. If errno has been set, it is the
441 error which prevented us from doing it (FIXME: What about bfd_error?).
442
443 positive (call it N) means that we have transferred N bytes
444 starting at MEMADDR. We might be able to handle more bytes
445 beyond this length, but no promises.
446
447 negative (call its absolute value N) means that we cannot
448 transfer right at MEMADDR, but we could transfer at least
449 something at MEMADDR + N.
450
451 NOTE: cagney/2004-10-01: This has been entirely superseeded by
452 to_xfer_partial and inferior inheritance. */
453
454 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
455 int len, int write,
456 struct mem_attrib *attrib,
457 struct target_ops *target);
458
459 void (*to_files_info) (struct target_ops *);
460 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
461 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
462 int (*to_can_use_hw_breakpoint) (int, int, int);
463 int (*to_ranged_break_num_registers) (struct target_ops *);
464 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
465 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
466
467 /* Documentation of what the two routines below are expected to do is
468 provided with the corresponding target_* macros. */
469 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
470 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
471
472 int (*to_insert_mask_watchpoint) (struct target_ops *,
473 CORE_ADDR, CORE_ADDR, int);
474 int (*to_remove_mask_watchpoint) (struct target_ops *,
475 CORE_ADDR, CORE_ADDR, int);
476 int (*to_stopped_by_watchpoint) (void);
477 int to_have_steppable_watchpoint;
478 int to_have_continuable_watchpoint;
479 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
480 int (*to_watchpoint_addr_within_range) (struct target_ops *,
481 CORE_ADDR, CORE_ADDR, int);
482
483 /* Documentation of this routine is provided with the corresponding
484 target_* macro. */
485 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
486
487 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
488 struct expression *);
489 int (*to_masked_watch_num_registers) (struct target_ops *,
490 CORE_ADDR, CORE_ADDR);
491 void (*to_terminal_init) (void);
492 void (*to_terminal_inferior) (void);
493 void (*to_terminal_ours_for_output) (void);
494 void (*to_terminal_ours) (void);
495 void (*to_terminal_save_ours) (void);
496 void (*to_terminal_info) (char *, int);
497 void (*to_kill) (struct target_ops *);
498 void (*to_load) (char *, int);
499 void (*to_create_inferior) (struct target_ops *,
500 char *, char *, char **, int);
501 void (*to_post_startup_inferior) (ptid_t);
502 int (*to_insert_fork_catchpoint) (int);
503 int (*to_remove_fork_catchpoint) (int);
504 int (*to_insert_vfork_catchpoint) (int);
505 int (*to_remove_vfork_catchpoint) (int);
506 int (*to_follow_fork) (struct target_ops *, int);
507 int (*to_insert_exec_catchpoint) (int);
508 int (*to_remove_exec_catchpoint) (int);
509 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
510 int (*to_has_exited) (int, int, int *);
511 void (*to_mourn_inferior) (struct target_ops *);
512 int (*to_can_run) (void);
513
514 /* Documentation of this routine is provided with the corresponding
515 target_* macro. */
516 void (*to_pass_signals) (int, unsigned char *);
517
518 /* Documentation of this routine is provided with the
519 corresponding target_* function. */
520 void (*to_program_signals) (int, unsigned char *);
521
522 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
523 void (*to_find_new_threads) (struct target_ops *);
524 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
525 char *(*to_extra_thread_info) (struct thread_info *);
526 char *(*to_thread_name) (struct thread_info *);
527 void (*to_stop) (ptid_t);
528 void (*to_rcmd) (char *command, struct ui_file *output);
529 char *(*to_pid_to_exec_file) (int pid);
530 void (*to_log_command) (const char *);
531 struct target_section_table *(*to_get_section_table) (struct target_ops *);
532 enum strata to_stratum;
533 int (*to_has_all_memory) (struct target_ops *);
534 int (*to_has_memory) (struct target_ops *);
535 int (*to_has_stack) (struct target_ops *);
536 int (*to_has_registers) (struct target_ops *);
537 int (*to_has_execution) (struct target_ops *, ptid_t);
538 int to_has_thread_control; /* control thread execution */
539 int to_attach_no_wait;
540 /* ASYNC target controls */
541 int (*to_can_async_p) (void);
542 int (*to_is_async_p) (void);
543 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
544 int (*to_supports_non_stop) (void);
545 /* find_memory_regions support method for gcore */
546 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
547 /* make_corefile_notes support method for gcore */
548 char * (*to_make_corefile_notes) (bfd *, int *);
549 /* get_bookmark support method for bookmarks */
550 gdb_byte * (*to_get_bookmark) (char *, int);
551 /* goto_bookmark support method for bookmarks */
552 void (*to_goto_bookmark) (gdb_byte *, int);
553 /* Return the thread-local address at OFFSET in the
554 thread-local storage for the thread PTID and the shared library
555 or executable file given by OBJFILE. If that block of
556 thread-local storage hasn't been allocated yet, this function
557 may return an error. */
558 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
559 ptid_t ptid,
560 CORE_ADDR load_module_addr,
561 CORE_ADDR offset);
562
563 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
564 OBJECT. The OFFSET, for a seekable object, specifies the
565 starting point. The ANNEX can be used to provide additional
566 data-specific information to the target.
567
568 Return the number of bytes actually transfered, zero when no
569 further transfer is possible, and -1 when the transfer is not
570 supported. Return of a positive value smaller than LEN does
571 not indicate the end of the object, only the end of the
572 transfer; higher level code should continue transferring if
573 desired. This is handled in target.c.
574
575 The interface does not support a "retry" mechanism. Instead it
576 assumes that at least one byte will be transfered on each
577 successful call.
578
579 NOTE: cagney/2003-10-17: The current interface can lead to
580 fragmented transfers. Lower target levels should not implement
581 hacks, such as enlarging the transfer, in an attempt to
582 compensate for this. Instead, the target stack should be
583 extended so that it implements supply/collect methods and a
584 look-aside object cache. With that available, the lowest
585 target can safely and freely "push" data up the stack.
586
587 See target_read and target_write for more information. One,
588 and only one, of readbuf or writebuf must be non-NULL. */
589
590 LONGEST (*to_xfer_partial) (struct target_ops *ops,
591 enum target_object object, const char *annex,
592 gdb_byte *readbuf, const gdb_byte *writebuf,
593 ULONGEST offset, LONGEST len);
594
595 /* Returns the memory map for the target. A return value of NULL
596 means that no memory map is available. If a memory address
597 does not fall within any returned regions, it's assumed to be
598 RAM. The returned memory regions should not overlap.
599
600 The order of regions does not matter; target_memory_map will
601 sort regions by starting address. For that reason, this
602 function should not be called directly except via
603 target_memory_map.
604
605 This method should not cache data; if the memory map could
606 change unexpectedly, it should be invalidated, and higher
607 layers will re-fetch it. */
608 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
609
610 /* Erases the region of flash memory starting at ADDRESS, of
611 length LENGTH.
612
613 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
614 on flash block boundaries, as reported by 'to_memory_map'. */
615 void (*to_flash_erase) (struct target_ops *,
616 ULONGEST address, LONGEST length);
617
618 /* Finishes a flash memory write sequence. After this operation
619 all flash memory should be available for writing and the result
620 of reading from areas written by 'to_flash_write' should be
621 equal to what was written. */
622 void (*to_flash_done) (struct target_ops *);
623
624 /* Describe the architecture-specific features of this target.
625 Returns the description found, or NULL if no description
626 was available. */
627 const struct target_desc *(*to_read_description) (struct target_ops *ops);
628
629 /* Build the PTID of the thread on which a given task is running,
630 based on LWP and THREAD. These values are extracted from the
631 task Private_Data section of the Ada Task Control Block, and
632 their interpretation depends on the target. */
633 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
634
635 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
636 Return 0 if *READPTR is already at the end of the buffer.
637 Return -1 if there is insufficient buffer for a whole entry.
638 Return 1 if an entry was read into *TYPEP and *VALP. */
639 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
640 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
641
642 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
643 sequence of bytes in PATTERN with length PATTERN_LEN.
644
645 The result is 1 if found, 0 if not found, and -1 if there was an error
646 requiring halting of the search (e.g. memory read error).
647 If the pattern is found the address is recorded in FOUND_ADDRP. */
648 int (*to_search_memory) (struct target_ops *ops,
649 CORE_ADDR start_addr, ULONGEST search_space_len,
650 const gdb_byte *pattern, ULONGEST pattern_len,
651 CORE_ADDR *found_addrp);
652
653 /* Can target execute in reverse? */
654 int (*to_can_execute_reverse) (void);
655
656 /* The direction the target is currently executing. Must be
657 implemented on targets that support reverse execution and async
658 mode. The default simply returns forward execution. */
659 enum exec_direction_kind (*to_execution_direction) (void);
660
661 /* Does this target support debugging multiple processes
662 simultaneously? */
663 int (*to_supports_multi_process) (void);
664
665 /* Does this target support enabling and disabling tracepoints while a trace
666 experiment is running? */
667 int (*to_supports_enable_disable_tracepoint) (void);
668
669 /* Does this target support disabling address space randomization? */
670 int (*to_supports_disable_randomization) (void);
671
672 /* Does this target support the tracenz bytecode for string collection? */
673 int (*to_supports_string_tracing) (void);
674
675 /* Does this target support evaluation of breakpoint conditions on its
676 end? */
677 int (*to_supports_evaluation_of_breakpoint_conditions) (void);
678
679 /* Does this target support evaluation of breakpoint commands on its
680 end? */
681 int (*to_can_run_breakpoint_commands) (void);
682
683 /* Determine current architecture of thread PTID.
684
685 The target is supposed to determine the architecture of the code where
686 the target is currently stopped at (on Cell, if a target is in spu_run,
687 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
688 This is architecture used to perform decr_pc_after_break adjustment,
689 and also determines the frame architecture of the innermost frame.
690 ptrace operations need to operate according to target_gdbarch.
691
692 The default implementation always returns target_gdbarch. */
693 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
694
695 /* Determine current address space of thread PTID.
696
697 The default implementation always returns the inferior's
698 address space. */
699 struct address_space *(*to_thread_address_space) (struct target_ops *,
700 ptid_t);
701
702 /* Target file operations. */
703
704 /* Open FILENAME on the target, using FLAGS and MODE. Return a
705 target file descriptor, or -1 if an error occurs (and set
706 *TARGET_ERRNO). */
707 int (*to_fileio_open) (const char *filename, int flags, int mode,
708 int *target_errno);
709
710 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
711 Return the number of bytes written, or -1 if an error occurs
712 (and set *TARGET_ERRNO). */
713 int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
714 ULONGEST offset, int *target_errno);
715
716 /* Read up to LEN bytes FD on the target into READ_BUF.
717 Return the number of bytes read, or -1 if an error occurs
718 (and set *TARGET_ERRNO). */
719 int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
720 ULONGEST offset, int *target_errno);
721
722 /* Close FD on the target. Return 0, or -1 if an error occurs
723 (and set *TARGET_ERRNO). */
724 int (*to_fileio_close) (int fd, int *target_errno);
725
726 /* Unlink FILENAME on the target. Return 0, or -1 if an error
727 occurs (and set *TARGET_ERRNO). */
728 int (*to_fileio_unlink) (const char *filename, int *target_errno);
729
730 /* Read value of symbolic link FILENAME on the target. Return a
731 null-terminated string allocated via xmalloc, or NULL if an error
732 occurs (and set *TARGET_ERRNO). */
733 char *(*to_fileio_readlink) (const char *filename, int *target_errno);
734
735
736 /* Implement the "info proc" command. */
737 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
738
739 /* Tracepoint-related operations. */
740
741 /* Prepare the target for a tracing run. */
742 void (*to_trace_init) (void);
743
744 /* Send full details of a tracepoint location to the target. */
745 void (*to_download_tracepoint) (struct bp_location *location);
746
747 /* Is the target able to download tracepoint locations in current
748 state? */
749 int (*to_can_download_tracepoint) (void);
750
751 /* Send full details of a trace state variable to the target. */
752 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
753
754 /* Enable a tracepoint on the target. */
755 void (*to_enable_tracepoint) (struct bp_location *location);
756
757 /* Disable a tracepoint on the target. */
758 void (*to_disable_tracepoint) (struct bp_location *location);
759
760 /* Inform the target info of memory regions that are readonly
761 (such as text sections), and so it should return data from
762 those rather than look in the trace buffer. */
763 void (*to_trace_set_readonly_regions) (void);
764
765 /* Start a trace run. */
766 void (*to_trace_start) (void);
767
768 /* Get the current status of a tracing run. */
769 int (*to_get_trace_status) (struct trace_status *ts);
770
771 void (*to_get_tracepoint_status) (struct breakpoint *tp,
772 struct uploaded_tp *utp);
773
774 /* Stop a trace run. */
775 void (*to_trace_stop) (void);
776
777 /* Ask the target to find a trace frame of the given type TYPE,
778 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
779 number of the trace frame, and also the tracepoint number at
780 TPP. If no trace frame matches, return -1. May throw if the
781 operation fails. */
782 int (*to_trace_find) (enum trace_find_type type, int num,
783 ULONGEST addr1, ULONGEST addr2, int *tpp);
784
785 /* Get the value of the trace state variable number TSV, returning
786 1 if the value is known and writing the value itself into the
787 location pointed to by VAL, else returning 0. */
788 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
789
790 int (*to_save_trace_data) (const char *filename);
791
792 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
793
794 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
795
796 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
797 ULONGEST offset, LONGEST len);
798
799 /* Get the minimum length of instruction on which a fast tracepoint
800 may be set on the target. If this operation is unsupported,
801 return -1. If for some reason the minimum length cannot be
802 determined, return 0. */
803 int (*to_get_min_fast_tracepoint_insn_len) (void);
804
805 /* Set the target's tracing behavior in response to unexpected
806 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
807 void (*to_set_disconnected_tracing) (int val);
808 void (*to_set_circular_trace_buffer) (int val);
809
810 /* Add/change textual notes about the trace run, returning 1 if
811 successful, 0 otherwise. */
812 int (*to_set_trace_notes) (char *user, char *notes, char* stopnotes);
813
814 /* Return the processor core that thread PTID was last seen on.
815 This information is updated only when:
816 - update_thread_list is called
817 - thread stops
818 If the core cannot be determined -- either for the specified
819 thread, or right now, or in this debug session, or for this
820 target -- return -1. */
821 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
822
823 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
824 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
825 a match, 0 if there's a mismatch, and -1 if an error is
826 encountered while reading memory. */
827 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
828 CORE_ADDR memaddr, ULONGEST size);
829
830 /* Return the address of the start of the Thread Information Block
831 a Windows OS specific feature. */
832 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
833
834 /* Send the new settings of write permission variables. */
835 void (*to_set_permissions) (void);
836
837 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
838 with its details. Return 1 on success, 0 on failure. */
839 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
840 struct static_tracepoint_marker *marker);
841
842 /* Return a vector of all tracepoints markers string id ID, or all
843 markers if ID is NULL. */
844 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
845 (const char *id);
846
847 /* Return a traceframe info object describing the current
848 traceframe's contents. This method should not cache data;
849 higher layers take care of caching, invalidating, and
850 re-fetching when necessary. */
851 struct traceframe_info *(*to_traceframe_info) (void);
852
853 /* Ask the target to use or not to use agent according to USE. Return 1
854 successful, 0 otherwise. */
855 int (*to_use_agent) (int use);
856
857 /* Is the target able to use agent in current state? */
858 int (*to_can_use_agent) (void);
859
860 int to_magic;
861 /* Need sub-structure for target machine related rather than comm related?
862 */
863 };
864
865 /* Magic number for checking ops size. If a struct doesn't end with this
866 number, somebody changed the declaration but didn't change all the
867 places that initialize one. */
868
869 #define OPS_MAGIC 3840
870
871 /* The ops structure for our "current" target process. This should
872 never be NULL. If there is no target, it points to the dummy_target. */
873
874 extern struct target_ops current_target;
875
876 /* Define easy words for doing these operations on our current target. */
877
878 #define target_shortname (current_target.to_shortname)
879 #define target_longname (current_target.to_longname)
880
881 /* Does whatever cleanup is required for a target that we are no
882 longer going to be calling. QUITTING indicates that GDB is exiting
883 and should not get hung on an error (otherwise it is important to
884 perform clean termination, even if it takes a while). This routine
885 is automatically always called after popping the target off the
886 target stack - the target's own methods are no longer available
887 through the target vector. Closing file descriptors and freeing all
888 memory allocated memory are typical things it should do. */
889
890 void target_close (struct target_ops *targ, int quitting);
891
892 /* Attaches to a process on the target side. Arguments are as passed
893 to the `attach' command by the user. This routine can be called
894 when the target is not on the target-stack, if the target_can_run
895 routine returns 1; in that case, it must push itself onto the stack.
896 Upon exit, the target should be ready for normal operations, and
897 should be ready to deliver the status of the process immediately
898 (without waiting) to an upcoming target_wait call. */
899
900 void target_attach (char *, int);
901
902 /* Some targets don't generate traps when attaching to the inferior,
903 or their target_attach implementation takes care of the waiting.
904 These targets must set to_attach_no_wait. */
905
906 #define target_attach_no_wait \
907 (current_target.to_attach_no_wait)
908
909 /* The target_attach operation places a process under debugger control,
910 and stops the process.
911
912 This operation provides a target-specific hook that allows the
913 necessary bookkeeping to be performed after an attach completes. */
914 #define target_post_attach(pid) \
915 (*current_target.to_post_attach) (pid)
916
917 /* Takes a program previously attached to and detaches it.
918 The program may resume execution (some targets do, some don't) and will
919 no longer stop on signals, etc. We better not have left any breakpoints
920 in the program or it'll die when it hits one. ARGS is arguments
921 typed by the user (e.g. a signal to send the process). FROM_TTY
922 says whether to be verbose or not. */
923
924 extern void target_detach (char *, int);
925
926 /* Disconnect from the current target without resuming it (leaving it
927 waiting for a debugger). */
928
929 extern void target_disconnect (char *, int);
930
931 /* Resume execution of the target process PTID (or a group of
932 threads). STEP says whether to single-step or to run free; SIGGNAL
933 is the signal to be given to the target, or GDB_SIGNAL_0 for no
934 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
935 PTID means `step/resume only this process id'. A wildcard PTID
936 (all threads, or all threads of process) means `step/resume
937 INFERIOR_PTID, and let other threads (for which the wildcard PTID
938 matches) resume with their 'thread->suspend.stop_signal' signal
939 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
940 if in "no pass" state. */
941
942 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
943
944 /* Wait for process pid to do something. PTID = -1 to wait for any
945 pid to do something. Return pid of child, or -1 in case of error;
946 store status through argument pointer STATUS. Note that it is
947 _NOT_ OK to throw_exception() out of target_wait() without popping
948 the debugging target from the stack; GDB isn't prepared to get back
949 to the prompt with a debugging target but without the frame cache,
950 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
951 options. */
952
953 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
954 int options);
955
956 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
957
958 extern void target_fetch_registers (struct regcache *regcache, int regno);
959
960 /* Store at least register REGNO, or all regs if REGNO == -1.
961 It can store as many registers as it wants to, so target_prepare_to_store
962 must have been previously called. Calls error() if there are problems. */
963
964 extern void target_store_registers (struct regcache *regcache, int regs);
965
966 /* Get ready to modify the registers array. On machines which store
967 individual registers, this doesn't need to do anything. On machines
968 which store all the registers in one fell swoop, this makes sure
969 that REGISTERS contains all the registers from the program being
970 debugged. */
971
972 #define target_prepare_to_store(regcache) \
973 (*current_target.to_prepare_to_store) (regcache)
974
975 /* Determine current address space of thread PTID. */
976
977 struct address_space *target_thread_address_space (ptid_t);
978
979 /* Implement the "info proc" command. */
980
981 void target_info_proc (char *, enum info_proc_what);
982
983 /* Returns true if this target can debug multiple processes
984 simultaneously. */
985
986 #define target_supports_multi_process() \
987 (*current_target.to_supports_multi_process) ()
988
989 /* Returns true if this target can disable address space randomization. */
990
991 int target_supports_disable_randomization (void);
992
993 /* Returns true if this target can enable and disable tracepoints
994 while a trace experiment is running. */
995
996 #define target_supports_enable_disable_tracepoint() \
997 (*current_target.to_supports_enable_disable_tracepoint) ()
998
999 #define target_supports_string_tracing() \
1000 (*current_target.to_supports_string_tracing) ()
1001
1002 /* Returns true if this target can handle breakpoint conditions
1003 on its end. */
1004
1005 #define target_supports_evaluation_of_breakpoint_conditions() \
1006 (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
1007
1008 /* Returns true if this target can handle breakpoint commands
1009 on its end. */
1010
1011 #define target_can_run_breakpoint_commands() \
1012 (*current_target.to_can_run_breakpoint_commands) ()
1013
1014 /* Invalidate all target dcaches. */
1015 extern void target_dcache_invalidate (void);
1016
1017 extern int target_read_string (CORE_ADDR, char **, int, int *);
1018
1019 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1020 ssize_t len);
1021
1022 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1023
1024 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1025 ssize_t len);
1026
1027 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1028 ssize_t len);
1029
1030 /* Fetches the target's memory map. If one is found it is sorted
1031 and returned, after some consistency checking. Otherwise, NULL
1032 is returned. */
1033 VEC(mem_region_s) *target_memory_map (void);
1034
1035 /* Erase the specified flash region. */
1036 void target_flash_erase (ULONGEST address, LONGEST length);
1037
1038 /* Finish a sequence of flash operations. */
1039 void target_flash_done (void);
1040
1041 /* Describes a request for a memory write operation. */
1042 struct memory_write_request
1043 {
1044 /* Begining address that must be written. */
1045 ULONGEST begin;
1046 /* Past-the-end address. */
1047 ULONGEST end;
1048 /* The data to write. */
1049 gdb_byte *data;
1050 /* A callback baton for progress reporting for this request. */
1051 void *baton;
1052 };
1053 typedef struct memory_write_request memory_write_request_s;
1054 DEF_VEC_O(memory_write_request_s);
1055
1056 /* Enumeration specifying different flash preservation behaviour. */
1057 enum flash_preserve_mode
1058 {
1059 flash_preserve,
1060 flash_discard
1061 };
1062
1063 /* Write several memory blocks at once. This version can be more
1064 efficient than making several calls to target_write_memory, in
1065 particular because it can optimize accesses to flash memory.
1066
1067 Moreover, this is currently the only memory access function in gdb
1068 that supports writing to flash memory, and it should be used for
1069 all cases where access to flash memory is desirable.
1070
1071 REQUESTS is the vector (see vec.h) of memory_write_request.
1072 PRESERVE_FLASH_P indicates what to do with blocks which must be
1073 erased, but not completely rewritten.
1074 PROGRESS_CB is a function that will be periodically called to provide
1075 feedback to user. It will be called with the baton corresponding
1076 to the request currently being written. It may also be called
1077 with a NULL baton, when preserved flash sectors are being rewritten.
1078
1079 The function returns 0 on success, and error otherwise. */
1080 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1081 enum flash_preserve_mode preserve_flash_p,
1082 void (*progress_cb) (ULONGEST, void *));
1083
1084 /* From infrun.c. */
1085
1086 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
1087
1088 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
1089
1090 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
1091
1092 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
1093
1094 /* Print a line about the current target. */
1095
1096 #define target_files_info() \
1097 (*current_target.to_files_info) (&current_target)
1098
1099 /* Insert a breakpoint at address BP_TGT->placed_address in the target
1100 machine. Result is 0 for success, or an errno value. */
1101
1102 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1103 struct bp_target_info *bp_tgt);
1104
1105 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1106 machine. Result is 0 for success, or an errno value. */
1107
1108 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1109 struct bp_target_info *bp_tgt);
1110
1111 /* Initialize the terminal settings we record for the inferior,
1112 before we actually run the inferior. */
1113
1114 #define target_terminal_init() \
1115 (*current_target.to_terminal_init) ()
1116
1117 /* Put the inferior's terminal settings into effect.
1118 This is preparation for starting or resuming the inferior. */
1119
1120 extern void target_terminal_inferior (void);
1121
1122 /* Put some of our terminal settings into effect,
1123 enough to get proper results from our output,
1124 but do not change into or out of RAW mode
1125 so that no input is discarded.
1126
1127 After doing this, either terminal_ours or terminal_inferior
1128 should be called to get back to a normal state of affairs. */
1129
1130 #define target_terminal_ours_for_output() \
1131 (*current_target.to_terminal_ours_for_output) ()
1132
1133 /* Put our terminal settings into effect.
1134 First record the inferior's terminal settings
1135 so they can be restored properly later. */
1136
1137 #define target_terminal_ours() \
1138 (*current_target.to_terminal_ours) ()
1139
1140 /* Save our terminal settings.
1141 This is called from TUI after entering or leaving the curses
1142 mode. Since curses modifies our terminal this call is here
1143 to take this change into account. */
1144
1145 #define target_terminal_save_ours() \
1146 (*current_target.to_terminal_save_ours) ()
1147
1148 /* Print useful information about our terminal status, if such a thing
1149 exists. */
1150
1151 #define target_terminal_info(arg, from_tty) \
1152 (*current_target.to_terminal_info) (arg, from_tty)
1153
1154 /* Kill the inferior process. Make it go away. */
1155
1156 extern void target_kill (void);
1157
1158 /* Load an executable file into the target process. This is expected
1159 to not only bring new code into the target process, but also to
1160 update GDB's symbol tables to match.
1161
1162 ARG contains command-line arguments, to be broken down with
1163 buildargv (). The first non-switch argument is the filename to
1164 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1165 0)), which is an offset to apply to the load addresses of FILE's
1166 sections. The target may define switches, or other non-switch
1167 arguments, as it pleases. */
1168
1169 extern void target_load (char *arg, int from_tty);
1170
1171 /* Start an inferior process and set inferior_ptid to its pid.
1172 EXEC_FILE is the file to run.
1173 ALLARGS is a string containing the arguments to the program.
1174 ENV is the environment vector to pass. Errors reported with error().
1175 On VxWorks and various standalone systems, we ignore exec_file. */
1176
1177 void target_create_inferior (char *exec_file, char *args,
1178 char **env, int from_tty);
1179
1180 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1181 notification of inferior events such as fork and vork immediately
1182 after the inferior is created. (This because of how gdb gets an
1183 inferior created via invoking a shell to do it. In such a scenario,
1184 if the shell init file has commands in it, the shell will fork and
1185 exec for each of those commands, and we will see each such fork
1186 event. Very bad.)
1187
1188 Such targets will supply an appropriate definition for this function. */
1189
1190 #define target_post_startup_inferior(ptid) \
1191 (*current_target.to_post_startup_inferior) (ptid)
1192
1193 /* On some targets, we can catch an inferior fork or vfork event when
1194 it occurs. These functions insert/remove an already-created
1195 catchpoint for such events. They return 0 for success, 1 if the
1196 catchpoint type is not supported and -1 for failure. */
1197
1198 #define target_insert_fork_catchpoint(pid) \
1199 (*current_target.to_insert_fork_catchpoint) (pid)
1200
1201 #define target_remove_fork_catchpoint(pid) \
1202 (*current_target.to_remove_fork_catchpoint) (pid)
1203
1204 #define target_insert_vfork_catchpoint(pid) \
1205 (*current_target.to_insert_vfork_catchpoint) (pid)
1206
1207 #define target_remove_vfork_catchpoint(pid) \
1208 (*current_target.to_remove_vfork_catchpoint) (pid)
1209
1210 /* If the inferior forks or vforks, this function will be called at
1211 the next resume in order to perform any bookkeeping and fiddling
1212 necessary to continue debugging either the parent or child, as
1213 requested, and releasing the other. Information about the fork
1214 or vfork event is available via get_last_target_status ().
1215 This function returns 1 if the inferior should not be resumed
1216 (i.e. there is another event pending). */
1217
1218 int target_follow_fork (int follow_child);
1219
1220 /* On some targets, we can catch an inferior exec event when it
1221 occurs. These functions insert/remove an already-created
1222 catchpoint for such events. They return 0 for success, 1 if the
1223 catchpoint type is not supported and -1 for failure. */
1224
1225 #define target_insert_exec_catchpoint(pid) \
1226 (*current_target.to_insert_exec_catchpoint) (pid)
1227
1228 #define target_remove_exec_catchpoint(pid) \
1229 (*current_target.to_remove_exec_catchpoint) (pid)
1230
1231 /* Syscall catch.
1232
1233 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1234 If NEEDED is zero, it means the target can disable the mechanism to
1235 catch system calls because there are no more catchpoints of this type.
1236
1237 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1238 being requested. In this case, both TABLE_SIZE and TABLE should
1239 be ignored.
1240
1241 TABLE_SIZE is the number of elements in TABLE. It only matters if
1242 ANY_COUNT is zero.
1243
1244 TABLE is an array of ints, indexed by syscall number. An element in
1245 this array is nonzero if that syscall should be caught. This argument
1246 only matters if ANY_COUNT is zero.
1247
1248 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1249 for failure. */
1250
1251 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1252 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1253 table_size, table)
1254
1255 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1256 exit code of PID, if any. */
1257
1258 #define target_has_exited(pid,wait_status,exit_status) \
1259 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1260
1261 /* The debugger has completed a blocking wait() call. There is now
1262 some process event that must be processed. This function should
1263 be defined by those targets that require the debugger to perform
1264 cleanup or internal state changes in response to the process event. */
1265
1266 /* The inferior process has died. Do what is right. */
1267
1268 void target_mourn_inferior (void);
1269
1270 /* Does target have enough data to do a run or attach command? */
1271
1272 #define target_can_run(t) \
1273 ((t)->to_can_run) ()
1274
1275 /* Set list of signals to be handled in the target.
1276
1277 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1278 (enum gdb_signal). For every signal whose entry in this array is
1279 non-zero, the target is allowed -but not required- to skip reporting
1280 arrival of the signal to the GDB core by returning from target_wait,
1281 and to pass the signal directly to the inferior instead.
1282
1283 However, if the target is hardware single-stepping a thread that is
1284 about to receive a signal, it needs to be reported in any case, even
1285 if mentioned in a previous target_pass_signals call. */
1286
1287 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1288
1289 /* Set list of signals the target may pass to the inferior. This
1290 directly maps to the "handle SIGNAL pass/nopass" setting.
1291
1292 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1293 number (enum gdb_signal). For every signal whose entry in this
1294 array is non-zero, the target is allowed to pass the signal to the
1295 inferior. Signals not present in the array shall be silently
1296 discarded. This does not influence whether to pass signals to the
1297 inferior as a result of a target_resume call. This is useful in
1298 scenarios where the target needs to decide whether to pass or not a
1299 signal to the inferior without GDB core involvement, such as for
1300 example, when detaching (as threads may have been suspended with
1301 pending signals not reported to GDB). */
1302
1303 extern void target_program_signals (int nsig, unsigned char *program_signals);
1304
1305 /* Check to see if a thread is still alive. */
1306
1307 extern int target_thread_alive (ptid_t ptid);
1308
1309 /* Query for new threads and add them to the thread list. */
1310
1311 extern void target_find_new_threads (void);
1312
1313 /* Make target stop in a continuable fashion. (For instance, under
1314 Unix, this should act like SIGSTOP). This function is normally
1315 used by GUIs to implement a stop button. */
1316
1317 extern void target_stop (ptid_t ptid);
1318
1319 /* Send the specified COMMAND to the target's monitor
1320 (shell,interpreter) for execution. The result of the query is
1321 placed in OUTBUF. */
1322
1323 #define target_rcmd(command, outbuf) \
1324 (*current_target.to_rcmd) (command, outbuf)
1325
1326
1327 /* Does the target include all of memory, or only part of it? This
1328 determines whether we look up the target chain for other parts of
1329 memory if this target can't satisfy a request. */
1330
1331 extern int target_has_all_memory_1 (void);
1332 #define target_has_all_memory target_has_all_memory_1 ()
1333
1334 /* Does the target include memory? (Dummy targets don't.) */
1335
1336 extern int target_has_memory_1 (void);
1337 #define target_has_memory target_has_memory_1 ()
1338
1339 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1340 we start a process.) */
1341
1342 extern int target_has_stack_1 (void);
1343 #define target_has_stack target_has_stack_1 ()
1344
1345 /* Does the target have registers? (Exec files don't.) */
1346
1347 extern int target_has_registers_1 (void);
1348 #define target_has_registers target_has_registers_1 ()
1349
1350 /* Does the target have execution? Can we make it jump (through
1351 hoops), or pop its stack a few times? This means that the current
1352 target is currently executing; for some targets, that's the same as
1353 whether or not the target is capable of execution, but there are
1354 also targets which can be current while not executing. In that
1355 case this will become true after target_create_inferior or
1356 target_attach. */
1357
1358 extern int target_has_execution_1 (ptid_t);
1359
1360 /* Like target_has_execution_1, but always passes inferior_ptid. */
1361
1362 extern int target_has_execution_current (void);
1363
1364 #define target_has_execution target_has_execution_current ()
1365
1366 /* Default implementations for process_stratum targets. Return true
1367 if there's a selected inferior, false otherwise. */
1368
1369 extern int default_child_has_all_memory (struct target_ops *ops);
1370 extern int default_child_has_memory (struct target_ops *ops);
1371 extern int default_child_has_stack (struct target_ops *ops);
1372 extern int default_child_has_registers (struct target_ops *ops);
1373 extern int default_child_has_execution (struct target_ops *ops,
1374 ptid_t the_ptid);
1375
1376 /* Can the target support the debugger control of thread execution?
1377 Can it lock the thread scheduler? */
1378
1379 #define target_can_lock_scheduler \
1380 (current_target.to_has_thread_control & tc_schedlock)
1381
1382 /* Should the target enable async mode if it is supported? Temporary
1383 cludge until async mode is a strict superset of sync mode. */
1384 extern int target_async_permitted;
1385
1386 /* Can the target support asynchronous execution? */
1387 #define target_can_async_p() (current_target.to_can_async_p ())
1388
1389 /* Is the target in asynchronous execution mode? */
1390 #define target_is_async_p() (current_target.to_is_async_p ())
1391
1392 int target_supports_non_stop (void);
1393
1394 /* Put the target in async mode with the specified callback function. */
1395 #define target_async(CALLBACK,CONTEXT) \
1396 (current_target.to_async ((CALLBACK), (CONTEXT)))
1397
1398 #define target_execution_direction() \
1399 (current_target.to_execution_direction ())
1400
1401 /* Converts a process id to a string. Usually, the string just contains
1402 `process xyz', but on some systems it may contain
1403 `process xyz thread abc'. */
1404
1405 extern char *target_pid_to_str (ptid_t ptid);
1406
1407 extern char *normal_pid_to_str (ptid_t ptid);
1408
1409 /* Return a short string describing extra information about PID,
1410 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1411 is okay. */
1412
1413 #define target_extra_thread_info(TP) \
1414 (current_target.to_extra_thread_info (TP))
1415
1416 /* Return the thread's name. A NULL result means that the target
1417 could not determine this thread's name. */
1418
1419 extern char *target_thread_name (struct thread_info *);
1420
1421 /* Attempts to find the pathname of the executable file
1422 that was run to create a specified process.
1423
1424 The process PID must be stopped when this operation is used.
1425
1426 If the executable file cannot be determined, NULL is returned.
1427
1428 Else, a pointer to a character string containing the pathname
1429 is returned. This string should be copied into a buffer by
1430 the client if the string will not be immediately used, or if
1431 it must persist. */
1432
1433 #define target_pid_to_exec_file(pid) \
1434 (current_target.to_pid_to_exec_file) (pid)
1435
1436 /* See the to_thread_architecture description in struct target_ops. */
1437
1438 #define target_thread_architecture(ptid) \
1439 (current_target.to_thread_architecture (&current_target, ptid))
1440
1441 /*
1442 * Iterator function for target memory regions.
1443 * Calls a callback function once for each memory region 'mapped'
1444 * in the child process. Defined as a simple macro rather than
1445 * as a function macro so that it can be tested for nullity.
1446 */
1447
1448 #define target_find_memory_regions(FUNC, DATA) \
1449 (current_target.to_find_memory_regions) (FUNC, DATA)
1450
1451 /*
1452 * Compose corefile .note section.
1453 */
1454
1455 #define target_make_corefile_notes(BFD, SIZE_P) \
1456 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1457
1458 /* Bookmark interfaces. */
1459 #define target_get_bookmark(ARGS, FROM_TTY) \
1460 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1461
1462 #define target_goto_bookmark(ARG, FROM_TTY) \
1463 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1464
1465 /* Hardware watchpoint interfaces. */
1466
1467 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1468 write). Only the INFERIOR_PTID task is being queried. */
1469
1470 #define target_stopped_by_watchpoint \
1471 (*current_target.to_stopped_by_watchpoint)
1472
1473 /* Non-zero if we have steppable watchpoints */
1474
1475 #define target_have_steppable_watchpoint \
1476 (current_target.to_have_steppable_watchpoint)
1477
1478 /* Non-zero if we have continuable watchpoints */
1479
1480 #define target_have_continuable_watchpoint \
1481 (current_target.to_have_continuable_watchpoint)
1482
1483 /* Provide defaults for hardware watchpoint functions. */
1484
1485 /* If the *_hw_beakpoint functions have not been defined
1486 elsewhere use the definitions in the target vector. */
1487
1488 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1489 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1490 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1491 (including this one?). OTHERTYPE is who knows what... */
1492
1493 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1494 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1495
1496 /* Returns the number of debug registers needed to watch the given
1497 memory region, or zero if not supported. */
1498
1499 #define target_region_ok_for_hw_watchpoint(addr, len) \
1500 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1501
1502
1503 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1504 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1505 COND is the expression for its condition, or NULL if there's none.
1506 Returns 0 for success, 1 if the watchpoint type is not supported,
1507 -1 for failure. */
1508
1509 #define target_insert_watchpoint(addr, len, type, cond) \
1510 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1511
1512 #define target_remove_watchpoint(addr, len, type, cond) \
1513 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1514
1515 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1516 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1517 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1518 masked watchpoints are not supported, -1 for failure. */
1519
1520 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1521
1522 /* Remove a masked watchpoint at ADDR with the mask MASK.
1523 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1524 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1525 for failure. */
1526
1527 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1528
1529 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1530 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1531
1532 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1533 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1534
1535 /* Return number of debug registers needed for a ranged breakpoint,
1536 or -1 if ranged breakpoints are not supported. */
1537
1538 extern int target_ranged_break_num_registers (void);
1539
1540 /* Return non-zero if target knows the data address which triggered this
1541 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1542 INFERIOR_PTID task is being queried. */
1543 #define target_stopped_data_address(target, addr_p) \
1544 (*target.to_stopped_data_address) (target, addr_p)
1545
1546 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1547 LENGTH bytes beginning at START. */
1548 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1549 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1550
1551 /* Return non-zero if the target is capable of using hardware to evaluate
1552 the condition expression. In this case, if the condition is false when
1553 the watched memory location changes, execution may continue without the
1554 debugger being notified.
1555
1556 Due to limitations in the hardware implementation, it may be capable of
1557 avoiding triggering the watchpoint in some cases where the condition
1558 expression is false, but may report some false positives as well.
1559 For this reason, GDB will still evaluate the condition expression when
1560 the watchpoint triggers. */
1561 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1562 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1563
1564 /* Return number of debug registers needed for a masked watchpoint,
1565 -1 if masked watchpoints are not supported or -2 if the given address
1566 and mask combination cannot be used. */
1567
1568 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1569
1570 /* Target can execute in reverse? */
1571 #define target_can_execute_reverse \
1572 (current_target.to_can_execute_reverse ? \
1573 current_target.to_can_execute_reverse () : 0)
1574
1575 extern const struct target_desc *target_read_description (struct target_ops *);
1576
1577 #define target_get_ada_task_ptid(lwp, tid) \
1578 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1579
1580 /* Utility implementation of searching memory. */
1581 extern int simple_search_memory (struct target_ops* ops,
1582 CORE_ADDR start_addr,
1583 ULONGEST search_space_len,
1584 const gdb_byte *pattern,
1585 ULONGEST pattern_len,
1586 CORE_ADDR *found_addrp);
1587
1588 /* Main entry point for searching memory. */
1589 extern int target_search_memory (CORE_ADDR start_addr,
1590 ULONGEST search_space_len,
1591 const gdb_byte *pattern,
1592 ULONGEST pattern_len,
1593 CORE_ADDR *found_addrp);
1594
1595 /* Target file operations. */
1596
1597 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1598 target file descriptor, or -1 if an error occurs (and set
1599 *TARGET_ERRNO). */
1600 extern int target_fileio_open (const char *filename, int flags, int mode,
1601 int *target_errno);
1602
1603 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1604 Return the number of bytes written, or -1 if an error occurs
1605 (and set *TARGET_ERRNO). */
1606 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1607 ULONGEST offset, int *target_errno);
1608
1609 /* Read up to LEN bytes FD on the target into READ_BUF.
1610 Return the number of bytes read, or -1 if an error occurs
1611 (and set *TARGET_ERRNO). */
1612 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1613 ULONGEST offset, int *target_errno);
1614
1615 /* Close FD on the target. Return 0, or -1 if an error occurs
1616 (and set *TARGET_ERRNO). */
1617 extern int target_fileio_close (int fd, int *target_errno);
1618
1619 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1620 occurs (and set *TARGET_ERRNO). */
1621 extern int target_fileio_unlink (const char *filename, int *target_errno);
1622
1623 /* Read value of symbolic link FILENAME on the target. Return a
1624 null-terminated string allocated via xmalloc, or NULL if an error
1625 occurs (and set *TARGET_ERRNO). */
1626 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1627
1628 /* Read target file FILENAME. The return value will be -1 if the transfer
1629 fails or is not supported; 0 if the object is empty; or the length
1630 of the object otherwise. If a positive value is returned, a
1631 sufficiently large buffer will be allocated using xmalloc and
1632 returned in *BUF_P containing the contents of the object.
1633
1634 This method should be used for objects sufficiently small to store
1635 in a single xmalloc'd buffer, when no fixed bound on the object's
1636 size is known in advance. */
1637 extern LONGEST target_fileio_read_alloc (const char *filename,
1638 gdb_byte **buf_p);
1639
1640 /* Read target file FILENAME. The result is NUL-terminated and
1641 returned as a string, allocated using xmalloc. If an error occurs
1642 or the transfer is unsupported, NULL is returned. Empty objects
1643 are returned as allocated but empty strings. A warning is issued
1644 if the result contains any embedded NUL bytes. */
1645 extern char *target_fileio_read_stralloc (const char *filename);
1646
1647
1648 /* Tracepoint-related operations. */
1649
1650 #define target_trace_init() \
1651 (*current_target.to_trace_init) ()
1652
1653 #define target_download_tracepoint(t) \
1654 (*current_target.to_download_tracepoint) (t)
1655
1656 #define target_can_download_tracepoint() \
1657 (*current_target.to_can_download_tracepoint) ()
1658
1659 #define target_download_trace_state_variable(tsv) \
1660 (*current_target.to_download_trace_state_variable) (tsv)
1661
1662 #define target_enable_tracepoint(loc) \
1663 (*current_target.to_enable_tracepoint) (loc)
1664
1665 #define target_disable_tracepoint(loc) \
1666 (*current_target.to_disable_tracepoint) (loc)
1667
1668 #define target_trace_start() \
1669 (*current_target.to_trace_start) ()
1670
1671 #define target_trace_set_readonly_regions() \
1672 (*current_target.to_trace_set_readonly_regions) ()
1673
1674 #define target_get_trace_status(ts) \
1675 (*current_target.to_get_trace_status) (ts)
1676
1677 #define target_get_tracepoint_status(tp,utp) \
1678 (*current_target.to_get_tracepoint_status) (tp, utp)
1679
1680 #define target_trace_stop() \
1681 (*current_target.to_trace_stop) ()
1682
1683 #define target_trace_find(type,num,addr1,addr2,tpp) \
1684 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1685
1686 #define target_get_trace_state_variable_value(tsv,val) \
1687 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1688
1689 #define target_save_trace_data(filename) \
1690 (*current_target.to_save_trace_data) (filename)
1691
1692 #define target_upload_tracepoints(utpp) \
1693 (*current_target.to_upload_tracepoints) (utpp)
1694
1695 #define target_upload_trace_state_variables(utsvp) \
1696 (*current_target.to_upload_trace_state_variables) (utsvp)
1697
1698 #define target_get_raw_trace_data(buf,offset,len) \
1699 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1700
1701 #define target_get_min_fast_tracepoint_insn_len() \
1702 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1703
1704 #define target_set_disconnected_tracing(val) \
1705 (*current_target.to_set_disconnected_tracing) (val)
1706
1707 #define target_set_circular_trace_buffer(val) \
1708 (*current_target.to_set_circular_trace_buffer) (val)
1709
1710 #define target_set_trace_notes(user,notes,stopnotes) \
1711 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1712
1713 #define target_get_tib_address(ptid, addr) \
1714 (*current_target.to_get_tib_address) ((ptid), (addr))
1715
1716 #define target_set_permissions() \
1717 (*current_target.to_set_permissions) ()
1718
1719 #define target_static_tracepoint_marker_at(addr, marker) \
1720 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1721
1722 #define target_static_tracepoint_markers_by_strid(marker_id) \
1723 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1724
1725 #define target_traceframe_info() \
1726 (*current_target.to_traceframe_info) ()
1727
1728 #define target_use_agent(use) \
1729 (*current_target.to_use_agent) (use)
1730
1731 #define target_can_use_agent() \
1732 (*current_target.to_can_use_agent) ()
1733
1734 /* Command logging facility. */
1735
1736 #define target_log_command(p) \
1737 do \
1738 if (current_target.to_log_command) \
1739 (*current_target.to_log_command) (p); \
1740 while (0)
1741
1742
1743 extern int target_core_of_thread (ptid_t ptid);
1744
1745 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1746 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1747 if there's a mismatch, and -1 if an error is encountered while
1748 reading memory. Throws an error if the functionality is found not
1749 to be supported by the current target. */
1750 int target_verify_memory (const gdb_byte *data,
1751 CORE_ADDR memaddr, ULONGEST size);
1752
1753 /* Routines for maintenance of the target structures...
1754
1755 add_target: Add a target to the list of all possible targets.
1756
1757 push_target: Make this target the top of the stack of currently used
1758 targets, within its particular stratum of the stack. Result
1759 is 0 if now atop the stack, nonzero if not on top (maybe
1760 should warn user).
1761
1762 unpush_target: Remove this from the stack of currently used targets,
1763 no matter where it is on the list. Returns 0 if no
1764 change, 1 if removed from stack.
1765
1766 pop_target: Remove the top thing on the stack of current targets. */
1767
1768 extern void add_target (struct target_ops *);
1769
1770 extern void push_target (struct target_ops *);
1771
1772 extern int unpush_target (struct target_ops *);
1773
1774 extern void target_pre_inferior (int);
1775
1776 extern void target_preopen (int);
1777
1778 extern void pop_target (void);
1779
1780 /* Does whatever cleanup is required to get rid of all pushed targets.
1781 QUITTING is propagated to target_close; it indicates that GDB is
1782 exiting and should not get hung on an error (otherwise it is
1783 important to perform clean termination, even if it takes a
1784 while). */
1785 extern void pop_all_targets (int quitting);
1786
1787 /* Like pop_all_targets, but pops only targets whose stratum is
1788 strictly above ABOVE_STRATUM. */
1789 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1790
1791 extern int target_is_pushed (struct target_ops *t);
1792
1793 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1794 CORE_ADDR offset);
1795
1796 /* Struct target_section maps address ranges to file sections. It is
1797 mostly used with BFD files, but can be used without (e.g. for handling
1798 raw disks, or files not in formats handled by BFD). */
1799
1800 struct target_section
1801 {
1802 CORE_ADDR addr; /* Lowest address in section */
1803 CORE_ADDR endaddr; /* 1+highest address in section */
1804
1805 struct bfd_section *the_bfd_section;
1806
1807 /* A given BFD may appear multiple times in the target section
1808 list, so each BFD is associated with a given key. The key is
1809 just some convenient pointer that can be used to differentiate
1810 the BFDs. These are managed only by convention. */
1811 void *key;
1812
1813 bfd *bfd; /* BFD file pointer */
1814 };
1815
1816 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1817
1818 struct target_section_table
1819 {
1820 struct target_section *sections;
1821 struct target_section *sections_end;
1822 };
1823
1824 /* Return the "section" containing the specified address. */
1825 struct target_section *target_section_by_addr (struct target_ops *target,
1826 CORE_ADDR addr);
1827
1828 /* Return the target section table this target (or the targets
1829 beneath) currently manipulate. */
1830
1831 extern struct target_section_table *target_get_section_table
1832 (struct target_ops *target);
1833
1834 /* From mem-break.c */
1835
1836 extern int memory_remove_breakpoint (struct gdbarch *,
1837 struct bp_target_info *);
1838
1839 extern int memory_insert_breakpoint (struct gdbarch *,
1840 struct bp_target_info *);
1841
1842 extern int default_memory_remove_breakpoint (struct gdbarch *,
1843 struct bp_target_info *);
1844
1845 extern int default_memory_insert_breakpoint (struct gdbarch *,
1846 struct bp_target_info *);
1847
1848
1849 /* From target.c */
1850
1851 extern void initialize_targets (void);
1852
1853 extern void noprocess (void) ATTRIBUTE_NORETURN;
1854
1855 extern void target_require_runnable (void);
1856
1857 extern void find_default_attach (struct target_ops *, char *, int);
1858
1859 extern void find_default_create_inferior (struct target_ops *,
1860 char *, char *, char **, int);
1861
1862 extern struct target_ops *find_run_target (void);
1863
1864 extern struct target_ops *find_target_beneath (struct target_ops *);
1865
1866 /* Read OS data object of type TYPE from the target, and return it in
1867 XML format. The result is NUL-terminated and returned as a string,
1868 allocated using xmalloc. If an error occurs or the transfer is
1869 unsupported, NULL is returned. Empty objects are returned as
1870 allocated but empty strings. */
1871
1872 extern char *target_get_osdata (const char *type);
1873
1874 \f
1875 /* Stuff that should be shared among the various remote targets. */
1876
1877 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1878 information (higher values, more information). */
1879 extern int remote_debug;
1880
1881 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1882 extern int baud_rate;
1883 /* Timeout limit for response from target. */
1884 extern int remote_timeout;
1885
1886 \f
1887
1888 /* Set the show memory breakpoints mode to show, and installs a cleanup
1889 to restore it back to the current value. */
1890 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1891
1892 extern int may_write_registers;
1893 extern int may_write_memory;
1894 extern int may_insert_breakpoints;
1895 extern int may_insert_tracepoints;
1896 extern int may_insert_fast_tracepoints;
1897 extern int may_stop;
1898
1899 extern void update_target_permissions (void);
1900
1901 \f
1902 /* Imported from machine dependent code. */
1903
1904 /* Blank target vector entries are initialized to target_ignore. */
1905 void target_ignore (void);
1906
1907 #endif /* !defined (TARGET_H) */
This page took 0.067148 seconds and 4 git commands to generate.