gdb
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #if !defined (TARGET_H)
25 #define TARGET_H
26
27 struct objfile;
28 struct ui_file;
29 struct mem_attrib;
30 struct target_ops;
31 struct bp_target_info;
32 struct regcache;
33 struct target_section_table;
34 struct trace_state_variable;
35 struct trace_status;
36 struct uploaded_tsv;
37 struct uploaded_tp;
38 struct static_tracepoint_marker;
39
40 struct expression;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "bfd.h"
62 #include "symtab.h"
63 #include "memattr.h"
64 #include "vec.h"
65 #include "gdb_signals.h"
66
67 enum strata
68 {
69 dummy_stratum, /* The lowest of the low */
70 file_stratum, /* Executable files, etc */
71 process_stratum, /* Executing processes or core dump files */
72 thread_stratum, /* Executing threads */
73 record_stratum, /* Support record debugging */
74 arch_stratum /* Architecture overrides */
75 };
76
77 enum thread_control_capabilities
78 {
79 tc_none = 0, /* Default: can't control thread execution. */
80 tc_schedlock = 1, /* Can lock the thread scheduler. */
81 };
82
83 /* Stuff for target_wait. */
84
85 /* Generally, what has the program done? */
86 enum target_waitkind
87 {
88 /* The program has exited. The exit status is in value.integer. */
89 TARGET_WAITKIND_EXITED,
90
91 /* The program has stopped with a signal. Which signal is in
92 value.sig. */
93 TARGET_WAITKIND_STOPPED,
94
95 /* The program has terminated with a signal. Which signal is in
96 value.sig. */
97 TARGET_WAITKIND_SIGNALLED,
98
99 /* The program is letting us know that it dynamically loaded something
100 (e.g. it called load(2) on AIX). */
101 TARGET_WAITKIND_LOADED,
102
103 /* The program has forked. A "related" process' PTID is in
104 value.related_pid. I.e., if the child forks, value.related_pid
105 is the parent's ID. */
106
107 TARGET_WAITKIND_FORKED,
108
109 /* The program has vforked. A "related" process's PTID is in
110 value.related_pid. */
111
112 TARGET_WAITKIND_VFORKED,
113
114 /* The program has exec'ed a new executable file. The new file's
115 pathname is pointed to by value.execd_pathname. */
116
117 TARGET_WAITKIND_EXECD,
118
119 /* The program had previously vforked, and now the child is done
120 with the shared memory region, because it exec'ed or exited.
121 Note that the event is reported to the vfork parent. This is
122 only used if GDB did not stay attached to the vfork child,
123 otherwise, a TARGET_WAITKIND_EXECD or
124 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
125 has the same effect. */
126 TARGET_WAITKIND_VFORK_DONE,
127
128 /* The program has entered or returned from a system call. On
129 HP-UX, this is used in the hardware watchpoint implementation.
130 The syscall's unique integer ID number is in value.syscall_id. */
131
132 TARGET_WAITKIND_SYSCALL_ENTRY,
133 TARGET_WAITKIND_SYSCALL_RETURN,
134
135 /* Nothing happened, but we stopped anyway. This perhaps should be handled
136 within target_wait, but I'm not sure target_wait should be resuming the
137 inferior. */
138 TARGET_WAITKIND_SPURIOUS,
139
140 /* An event has occured, but we should wait again.
141 Remote_async_wait() returns this when there is an event
142 on the inferior, but the rest of the world is not interested in
143 it. The inferior has not stopped, but has just sent some output
144 to the console, for instance. In this case, we want to go back
145 to the event loop and wait there for another event from the
146 inferior, rather than being stuck in the remote_async_wait()
147 function. sThis way the event loop is responsive to other events,
148 like for instance the user typing. */
149 TARGET_WAITKIND_IGNORE,
150
151 /* The target has run out of history information,
152 and cannot run backward any further. */
153 TARGET_WAITKIND_NO_HISTORY
154 };
155
156 struct target_waitstatus
157 {
158 enum target_waitkind kind;
159
160 /* Forked child pid, execd pathname, exit status, signal number or
161 syscall number. */
162 union
163 {
164 int integer;
165 enum target_signal sig;
166 ptid_t related_pid;
167 char *execd_pathname;
168 int syscall_number;
169 }
170 value;
171 };
172
173 /* Options that can be passed to target_wait. */
174
175 /* Return immediately if there's no event already queued. If this
176 options is not requested, target_wait blocks waiting for an
177 event. */
178 #define TARGET_WNOHANG 1
179
180 /* The structure below stores information about a system call.
181 It is basically used in the "catch syscall" command, and in
182 every function that gives information about a system call.
183
184 It's also good to mention that its fields represent everything
185 that we currently know about a syscall in GDB. */
186 struct syscall
187 {
188 /* The syscall number. */
189 int number;
190
191 /* The syscall name. */
192 const char *name;
193 };
194
195 /* Return a pretty printed form of target_waitstatus.
196 Space for the result is malloc'd, caller must free. */
197 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
198
199 /* Possible types of events that the inferior handler will have to
200 deal with. */
201 enum inferior_event_type
202 {
203 /* There is a request to quit the inferior, abandon it. */
204 INF_QUIT_REQ,
205 /* Process a normal inferior event which will result in target_wait
206 being called. */
207 INF_REG_EVENT,
208 /* Deal with an error on the inferior. */
209 INF_ERROR,
210 /* We are called because a timer went off. */
211 INF_TIMER,
212 /* We are called to do stuff after the inferior stops. */
213 INF_EXEC_COMPLETE,
214 /* We are called to do some stuff after the inferior stops, but we
215 are expected to reenter the proceed() and
216 handle_inferior_event() functions. This is used only in case of
217 'step n' like commands. */
218 INF_EXEC_CONTINUE
219 };
220 \f
221 /* Target objects which can be transfered using target_read,
222 target_write, et cetera. */
223
224 enum target_object
225 {
226 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
227 TARGET_OBJECT_AVR,
228 /* SPU target specific transfer. See "spu-tdep.c". */
229 TARGET_OBJECT_SPU,
230 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
231 TARGET_OBJECT_MEMORY,
232 /* Memory, avoiding GDB's data cache and trusting the executable.
233 Target implementations of to_xfer_partial never need to handle
234 this object, and most callers should not use it. */
235 TARGET_OBJECT_RAW_MEMORY,
236 /* Memory known to be part of the target's stack. This is cached even
237 if it is not in a region marked as such, since it is known to be
238 "normal" RAM. */
239 TARGET_OBJECT_STACK_MEMORY,
240 /* Kernel Unwind Table. See "ia64-tdep.c". */
241 TARGET_OBJECT_UNWIND_TABLE,
242 /* Transfer auxilliary vector. */
243 TARGET_OBJECT_AUXV,
244 /* StackGhost cookie. See "sparc-tdep.c". */
245 TARGET_OBJECT_WCOOKIE,
246 /* Target memory map in XML format. */
247 TARGET_OBJECT_MEMORY_MAP,
248 /* Flash memory. This object can be used to write contents to
249 a previously erased flash memory. Using it without erasing
250 flash can have unexpected results. Addresses are physical
251 address on target, and not relative to flash start. */
252 TARGET_OBJECT_FLASH,
253 /* Available target-specific features, e.g. registers and coprocessors.
254 See "target-descriptions.c". ANNEX should never be empty. */
255 TARGET_OBJECT_AVAILABLE_FEATURES,
256 /* Currently loaded libraries, in XML format. */
257 TARGET_OBJECT_LIBRARIES,
258 /* Get OS specific data. The ANNEX specifies the type (running
259 processes, etc.). The data being transfered is expected to follow
260 the DTD specified in features/osdata.dtd. */
261 TARGET_OBJECT_OSDATA,
262 /* Extra signal info. Usually the contents of `siginfo_t' on unix
263 platforms. */
264 TARGET_OBJECT_SIGNAL_INFO,
265 /* The list of threads that are being debugged. */
266 TARGET_OBJECT_THREADS,
267 /* Collected static trace data. */
268 TARGET_OBJECT_STATIC_TRACE_DATA,
269 /* The HP-UX registers (those that can be obtained or modified by using
270 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
271 TARGET_OBJECT_HPUX_UREGS,
272 /* The HP-UX shared library linkage pointer. ANNEX should be a string
273 image of the code address whose linkage pointer we are looking for.
274
275 The size of the data transfered is always 8 bytes (the size of an
276 address on ia64). */
277 TARGET_OBJECT_HPUX_SOLIB_GOT,
278 /* Possible future objects: TARGET_OBJECT_FILE, ... */
279 };
280
281 /* Enumeration of the kinds of traceframe searches that a target may
282 be able to perform. */
283
284 enum trace_find_type
285 {
286 tfind_number,
287 tfind_pc,
288 tfind_tp,
289 tfind_range,
290 tfind_outside,
291 };
292
293 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
294 DEF_VEC_P(static_tracepoint_marker_p);
295
296 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
297 OBJECT. The OFFSET, for a seekable object, specifies the
298 starting point. The ANNEX can be used to provide additional
299 data-specific information to the target.
300
301 Return the number of bytes actually transfered, or -1 if the
302 transfer is not supported or otherwise fails. Return of a positive
303 value less than LEN indicates that no further transfer is possible.
304 Unlike the raw to_xfer_partial interface, callers of these
305 functions do not need to retry partial transfers. */
306
307 extern LONGEST target_read (struct target_ops *ops,
308 enum target_object object,
309 const char *annex, gdb_byte *buf,
310 ULONGEST offset, LONGEST len);
311
312 struct memory_read_result
313 {
314 /* First address that was read. */
315 ULONGEST begin;
316 /* Past-the-end address. */
317 ULONGEST end;
318 /* The data. */
319 gdb_byte *data;
320 };
321 typedef struct memory_read_result memory_read_result_s;
322 DEF_VEC_O(memory_read_result_s);
323
324 extern void free_memory_read_result_vector (void *);
325
326 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
327 ULONGEST offset,
328 LONGEST len);
329
330 extern LONGEST target_write (struct target_ops *ops,
331 enum target_object object,
332 const char *annex, const gdb_byte *buf,
333 ULONGEST offset, LONGEST len);
334
335 /* Similar to target_write, except that it also calls PROGRESS with
336 the number of bytes written and the opaque BATON after every
337 successful partial write (and before the first write). This is
338 useful for progress reporting and user interaction while writing
339 data. To abort the transfer, the progress callback can throw an
340 exception. */
341
342 LONGEST target_write_with_progress (struct target_ops *ops,
343 enum target_object object,
344 const char *annex, const gdb_byte *buf,
345 ULONGEST offset, LONGEST len,
346 void (*progress) (ULONGEST, void *),
347 void *baton);
348
349 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
350 be read using OPS. The return value will be -1 if the transfer
351 fails or is not supported; 0 if the object is empty; or the length
352 of the object otherwise. If a positive value is returned, a
353 sufficiently large buffer will be allocated using xmalloc and
354 returned in *BUF_P containing the contents of the object.
355
356 This method should be used for objects sufficiently small to store
357 in a single xmalloc'd buffer, when no fixed bound on the object's
358 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
359 through this function. */
360
361 extern LONGEST target_read_alloc (struct target_ops *ops,
362 enum target_object object,
363 const char *annex, gdb_byte **buf_p);
364
365 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
366 returned as a string, allocated using xmalloc. If an error occurs
367 or the transfer is unsupported, NULL is returned. Empty objects
368 are returned as allocated but empty strings. A warning is issued
369 if the result contains any embedded NUL bytes. */
370
371 extern char *target_read_stralloc (struct target_ops *ops,
372 enum target_object object,
373 const char *annex);
374
375 /* Wrappers to target read/write that perform memory transfers. They
376 throw an error if the memory transfer fails.
377
378 NOTE: cagney/2003-10-23: The naming schema is lifted from
379 "frame.h". The parameter order is lifted from get_frame_memory,
380 which in turn lifted it from read_memory. */
381
382 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
383 gdb_byte *buf, LONGEST len);
384 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
385 CORE_ADDR addr, int len,
386 enum bfd_endian byte_order);
387 \f
388 struct thread_info; /* fwd decl for parameter list below: */
389
390 struct target_ops
391 {
392 struct target_ops *beneath; /* To the target under this one. */
393 char *to_shortname; /* Name this target type */
394 char *to_longname; /* Name for printing */
395 char *to_doc; /* Documentation. Does not include trailing
396 newline, and starts with a one-line descrip-
397 tion (probably similar to to_longname). */
398 /* Per-target scratch pad. */
399 void *to_data;
400 /* The open routine takes the rest of the parameters from the
401 command, and (if successful) pushes a new target onto the
402 stack. Targets should supply this routine, if only to provide
403 an error message. */
404 void (*to_open) (char *, int);
405 /* Old targets with a static target vector provide "to_close".
406 New re-entrant targets provide "to_xclose" and that is expected
407 to xfree everything (including the "struct target_ops"). */
408 void (*to_xclose) (struct target_ops *targ, int quitting);
409 void (*to_close) (int);
410 void (*to_attach) (struct target_ops *ops, char *, int);
411 void (*to_post_attach) (int);
412 void (*to_detach) (struct target_ops *ops, char *, int);
413 void (*to_disconnect) (struct target_ops *, char *, int);
414 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
415 ptid_t (*to_wait) (struct target_ops *,
416 ptid_t, struct target_waitstatus *, int);
417 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
418 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
419 void (*to_prepare_to_store) (struct regcache *);
420
421 /* Transfer LEN bytes of memory between GDB address MYADDR and
422 target address MEMADDR. If WRITE, transfer them to the target, else
423 transfer them from the target. TARGET is the target from which we
424 get this function.
425
426 Return value, N, is one of the following:
427
428 0 means that we can't handle this. If errno has been set, it is the
429 error which prevented us from doing it (FIXME: What about bfd_error?).
430
431 positive (call it N) means that we have transferred N bytes
432 starting at MEMADDR. We might be able to handle more bytes
433 beyond this length, but no promises.
434
435 negative (call its absolute value N) means that we cannot
436 transfer right at MEMADDR, but we could transfer at least
437 something at MEMADDR + N.
438
439 NOTE: cagney/2004-10-01: This has been entirely superseeded by
440 to_xfer_partial and inferior inheritance. */
441
442 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
443 int len, int write,
444 struct mem_attrib *attrib,
445 struct target_ops *target);
446
447 void (*to_files_info) (struct target_ops *);
448 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
449 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
450 int (*to_can_use_hw_breakpoint) (int, int, int);
451 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
452 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
453
454 /* Documentation of what the two routines below are expected to do is
455 provided with the corresponding target_* macros. */
456 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
457 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
458
459 int (*to_stopped_by_watchpoint) (void);
460 int to_have_steppable_watchpoint;
461 int to_have_continuable_watchpoint;
462 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
463 int (*to_watchpoint_addr_within_range) (struct target_ops *,
464 CORE_ADDR, CORE_ADDR, int);
465
466 /* Documentation of this routine is provided with the corresponding
467 target_* macro. */
468 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
469
470 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
471 struct expression *);
472 void (*to_terminal_init) (void);
473 void (*to_terminal_inferior) (void);
474 void (*to_terminal_ours_for_output) (void);
475 void (*to_terminal_ours) (void);
476 void (*to_terminal_save_ours) (void);
477 void (*to_terminal_info) (char *, int);
478 void (*to_kill) (struct target_ops *);
479 void (*to_load) (char *, int);
480 int (*to_lookup_symbol) (char *, CORE_ADDR *);
481 void (*to_create_inferior) (struct target_ops *,
482 char *, char *, char **, int);
483 void (*to_post_startup_inferior) (ptid_t);
484 int (*to_insert_fork_catchpoint) (int);
485 int (*to_remove_fork_catchpoint) (int);
486 int (*to_insert_vfork_catchpoint) (int);
487 int (*to_remove_vfork_catchpoint) (int);
488 int (*to_follow_fork) (struct target_ops *, int);
489 int (*to_insert_exec_catchpoint) (int);
490 int (*to_remove_exec_catchpoint) (int);
491 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
492 int (*to_has_exited) (int, int, int *);
493 void (*to_mourn_inferior) (struct target_ops *);
494 int (*to_can_run) (void);
495 void (*to_notice_signals) (ptid_t ptid);
496 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
497 void (*to_find_new_threads) (struct target_ops *);
498 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
499 char *(*to_extra_thread_info) (struct thread_info *);
500 char *(*to_thread_name) (struct thread_info *);
501 void (*to_stop) (ptid_t);
502 void (*to_rcmd) (char *command, struct ui_file *output);
503 char *(*to_pid_to_exec_file) (int pid);
504 void (*to_log_command) (const char *);
505 struct target_section_table *(*to_get_section_table) (struct target_ops *);
506 enum strata to_stratum;
507 int (*to_has_all_memory) (struct target_ops *);
508 int (*to_has_memory) (struct target_ops *);
509 int (*to_has_stack) (struct target_ops *);
510 int (*to_has_registers) (struct target_ops *);
511 int (*to_has_execution) (struct target_ops *);
512 int to_has_thread_control; /* control thread execution */
513 int to_attach_no_wait;
514 /* ASYNC target controls */
515 int (*to_can_async_p) (void);
516 int (*to_is_async_p) (void);
517 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
518 int (*to_async_mask) (int);
519 int (*to_supports_non_stop) (void);
520 /* find_memory_regions support method for gcore */
521 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
522 /* make_corefile_notes support method for gcore */
523 char * (*to_make_corefile_notes) (bfd *, int *);
524 /* get_bookmark support method for bookmarks */
525 gdb_byte * (*to_get_bookmark) (char *, int);
526 /* goto_bookmark support method for bookmarks */
527 void (*to_goto_bookmark) (gdb_byte *, int);
528 /* Return the thread-local address at OFFSET in the
529 thread-local storage for the thread PTID and the shared library
530 or executable file given by OBJFILE. If that block of
531 thread-local storage hasn't been allocated yet, this function
532 may return an error. */
533 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
534 ptid_t ptid,
535 CORE_ADDR load_module_addr,
536 CORE_ADDR offset);
537
538 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
539 OBJECT. The OFFSET, for a seekable object, specifies the
540 starting point. The ANNEX can be used to provide additional
541 data-specific information to the target.
542
543 Return the number of bytes actually transfered, zero when no
544 further transfer is possible, and -1 when the transfer is not
545 supported. Return of a positive value smaller than LEN does
546 not indicate the end of the object, only the end of the
547 transfer; higher level code should continue transferring if
548 desired. This is handled in target.c.
549
550 The interface does not support a "retry" mechanism. Instead it
551 assumes that at least one byte will be transfered on each
552 successful call.
553
554 NOTE: cagney/2003-10-17: The current interface can lead to
555 fragmented transfers. Lower target levels should not implement
556 hacks, such as enlarging the transfer, in an attempt to
557 compensate for this. Instead, the target stack should be
558 extended so that it implements supply/collect methods and a
559 look-aside object cache. With that available, the lowest
560 target can safely and freely "push" data up the stack.
561
562 See target_read and target_write for more information. One,
563 and only one, of readbuf or writebuf must be non-NULL. */
564
565 LONGEST (*to_xfer_partial) (struct target_ops *ops,
566 enum target_object object, const char *annex,
567 gdb_byte *readbuf, const gdb_byte *writebuf,
568 ULONGEST offset, LONGEST len);
569
570 /* Returns the memory map for the target. A return value of NULL
571 means that no memory map is available. If a memory address
572 does not fall within any returned regions, it's assumed to be
573 RAM. The returned memory regions should not overlap.
574
575 The order of regions does not matter; target_memory_map will
576 sort regions by starting address. For that reason, this
577 function should not be called directly except via
578 target_memory_map.
579
580 This method should not cache data; if the memory map could
581 change unexpectedly, it should be invalidated, and higher
582 layers will re-fetch it. */
583 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
584
585 /* Erases the region of flash memory starting at ADDRESS, of
586 length LENGTH.
587
588 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
589 on flash block boundaries, as reported by 'to_memory_map'. */
590 void (*to_flash_erase) (struct target_ops *,
591 ULONGEST address, LONGEST length);
592
593 /* Finishes a flash memory write sequence. After this operation
594 all flash memory should be available for writing and the result
595 of reading from areas written by 'to_flash_write' should be
596 equal to what was written. */
597 void (*to_flash_done) (struct target_ops *);
598
599 /* Describe the architecture-specific features of this target.
600 Returns the description found, or NULL if no description
601 was available. */
602 const struct target_desc *(*to_read_description) (struct target_ops *ops);
603
604 /* Build the PTID of the thread on which a given task is running,
605 based on LWP and THREAD. These values are extracted from the
606 task Private_Data section of the Ada Task Control Block, and
607 their interpretation depends on the target. */
608 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
609
610 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
611 Return 0 if *READPTR is already at the end of the buffer.
612 Return -1 if there is insufficient buffer for a whole entry.
613 Return 1 if an entry was read into *TYPEP and *VALP. */
614 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
615 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
616
617 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
618 sequence of bytes in PATTERN with length PATTERN_LEN.
619
620 The result is 1 if found, 0 if not found, and -1 if there was an error
621 requiring halting of the search (e.g. memory read error).
622 If the pattern is found the address is recorded in FOUND_ADDRP. */
623 int (*to_search_memory) (struct target_ops *ops,
624 CORE_ADDR start_addr, ULONGEST search_space_len,
625 const gdb_byte *pattern, ULONGEST pattern_len,
626 CORE_ADDR *found_addrp);
627
628 /* Can target execute in reverse? */
629 int (*to_can_execute_reverse) (void);
630
631 /* Does this target support debugging multiple processes
632 simultaneously? */
633 int (*to_supports_multi_process) (void);
634
635 /* Determine current architecture of thread PTID.
636
637 The target is supposed to determine the architecture of the code where
638 the target is currently stopped at (on Cell, if a target is in spu_run,
639 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
640 This is architecture used to perform decr_pc_after_break adjustment,
641 and also determines the frame architecture of the innermost frame.
642 ptrace operations need to operate according to target_gdbarch.
643
644 The default implementation always returns target_gdbarch. */
645 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
646
647 /* Determine current address space of thread PTID.
648
649 The default implementation always returns the inferior's
650 address space. */
651 struct address_space *(*to_thread_address_space) (struct target_ops *,
652 ptid_t);
653
654 /* Tracepoint-related operations. */
655
656 /* Prepare the target for a tracing run. */
657 void (*to_trace_init) (void);
658
659 /* Send full details of a tracepoint to the target. */
660 void (*to_download_tracepoint) (struct breakpoint *t);
661
662 /* Send full details of a trace state variable to the target. */
663 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
664
665 /* Inform the target info of memory regions that are readonly
666 (such as text sections), and so it should return data from
667 those rather than look in the trace buffer. */
668 void (*to_trace_set_readonly_regions) (void);
669
670 /* Start a trace run. */
671 void (*to_trace_start) (void);
672
673 /* Get the current status of a tracing run. */
674 int (*to_get_trace_status) (struct trace_status *ts);
675
676 /* Stop a trace run. */
677 void (*to_trace_stop) (void);
678
679 /* Ask the target to find a trace frame of the given type TYPE,
680 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
681 number of the trace frame, and also the tracepoint number at
682 TPP. If no trace frame matches, return -1. May throw if the
683 operation fails. */
684 int (*to_trace_find) (enum trace_find_type type, int num,
685 ULONGEST addr1, ULONGEST addr2, int *tpp);
686
687 /* Get the value of the trace state variable number TSV, returning
688 1 if the value is known and writing the value itself into the
689 location pointed to by VAL, else returning 0. */
690 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
691
692 int (*to_save_trace_data) (const char *filename);
693
694 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
695
696 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
697
698 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
699 ULONGEST offset, LONGEST len);
700
701 /* Set the target's tracing behavior in response to unexpected
702 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
703 void (*to_set_disconnected_tracing) (int val);
704 void (*to_set_circular_trace_buffer) (int val);
705
706 /* Return the processor core that thread PTID was last seen on.
707 This information is updated only when:
708 - update_thread_list is called
709 - thread stops
710 If the core cannot be determined -- either for the specified
711 thread, or right now, or in this debug session, or for this
712 target -- return -1. */
713 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
714
715 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
716 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
717 a match, 0 if there's a mismatch, and -1 if an error is
718 encountered while reading memory. */
719 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
720 CORE_ADDR memaddr, ULONGEST size);
721
722 /* Return the address of the start of the Thread Information Block
723 a Windows OS specific feature. */
724 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
725
726 /* Send the new settings of write permission variables. */
727 void (*to_set_permissions) (void);
728
729 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
730 with its details. Return 1 on success, 0 on failure. */
731 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
732 struct static_tracepoint_marker *marker);
733
734 /* Return a vector of all tracepoints markers string id ID, or all
735 markers if ID is NULL. */
736 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
737 (const char *id);
738
739 int to_magic;
740 /* Need sub-structure for target machine related rather than comm related?
741 */
742 };
743
744 /* Magic number for checking ops size. If a struct doesn't end with this
745 number, somebody changed the declaration but didn't change all the
746 places that initialize one. */
747
748 #define OPS_MAGIC 3840
749
750 /* The ops structure for our "current" target process. This should
751 never be NULL. If there is no target, it points to the dummy_target. */
752
753 extern struct target_ops current_target;
754
755 /* Define easy words for doing these operations on our current target. */
756
757 #define target_shortname (current_target.to_shortname)
758 #define target_longname (current_target.to_longname)
759
760 /* Does whatever cleanup is required for a target that we are no
761 longer going to be calling. QUITTING indicates that GDB is exiting
762 and should not get hung on an error (otherwise it is important to
763 perform clean termination, even if it takes a while). This routine
764 is automatically always called when popping the target off the
765 target stack (to_beneath is undefined). Closing file descriptors
766 and freeing all memory allocated memory are typical things it
767 should do. */
768
769 void target_close (struct target_ops *targ, int quitting);
770
771 /* Attaches to a process on the target side. Arguments are as passed
772 to the `attach' command by the user. This routine can be called
773 when the target is not on the target-stack, if the target_can_run
774 routine returns 1; in that case, it must push itself onto the stack.
775 Upon exit, the target should be ready for normal operations, and
776 should be ready to deliver the status of the process immediately
777 (without waiting) to an upcoming target_wait call. */
778
779 void target_attach (char *, int);
780
781 /* Some targets don't generate traps when attaching to the inferior,
782 or their target_attach implementation takes care of the waiting.
783 These targets must set to_attach_no_wait. */
784
785 #define target_attach_no_wait \
786 (current_target.to_attach_no_wait)
787
788 /* The target_attach operation places a process under debugger control,
789 and stops the process.
790
791 This operation provides a target-specific hook that allows the
792 necessary bookkeeping to be performed after an attach completes. */
793 #define target_post_attach(pid) \
794 (*current_target.to_post_attach) (pid)
795
796 /* Takes a program previously attached to and detaches it.
797 The program may resume execution (some targets do, some don't) and will
798 no longer stop on signals, etc. We better not have left any breakpoints
799 in the program or it'll die when it hits one. ARGS is arguments
800 typed by the user (e.g. a signal to send the process). FROM_TTY
801 says whether to be verbose or not. */
802
803 extern void target_detach (char *, int);
804
805 /* Disconnect from the current target without resuming it (leaving it
806 waiting for a debugger). */
807
808 extern void target_disconnect (char *, int);
809
810 /* Resume execution of the target process PTID. STEP says whether to
811 single-step or to run free; SIGGNAL is the signal to be given to
812 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
813 pass TARGET_SIGNAL_DEFAULT. */
814
815 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
816
817 /* Wait for process pid to do something. PTID = -1 to wait for any
818 pid to do something. Return pid of child, or -1 in case of error;
819 store status through argument pointer STATUS. Note that it is
820 _NOT_ OK to throw_exception() out of target_wait() without popping
821 the debugging target from the stack; GDB isn't prepared to get back
822 to the prompt with a debugging target but without the frame cache,
823 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
824 options. */
825
826 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
827 int options);
828
829 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
830
831 extern void target_fetch_registers (struct regcache *regcache, int regno);
832
833 /* Store at least register REGNO, or all regs if REGNO == -1.
834 It can store as many registers as it wants to, so target_prepare_to_store
835 must have been previously called. Calls error() if there are problems. */
836
837 extern void target_store_registers (struct regcache *regcache, int regs);
838
839 /* Get ready to modify the registers array. On machines which store
840 individual registers, this doesn't need to do anything. On machines
841 which store all the registers in one fell swoop, this makes sure
842 that REGISTERS contains all the registers from the program being
843 debugged. */
844
845 #define target_prepare_to_store(regcache) \
846 (*current_target.to_prepare_to_store) (regcache)
847
848 /* Determine current address space of thread PTID. */
849
850 struct address_space *target_thread_address_space (ptid_t);
851
852 /* Returns true if this target can debug multiple processes
853 simultaneously. */
854
855 #define target_supports_multi_process() \
856 (*current_target.to_supports_multi_process) ()
857
858 /* Invalidate all target dcaches. */
859 extern void target_dcache_invalidate (void);
860
861 extern int target_read_string (CORE_ADDR, char **, int, int *);
862
863 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
864
865 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
866
867 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
868 int len);
869
870 /* Fetches the target's memory map. If one is found it is sorted
871 and returned, after some consistency checking. Otherwise, NULL
872 is returned. */
873 VEC(mem_region_s) *target_memory_map (void);
874
875 /* Erase the specified flash region. */
876 void target_flash_erase (ULONGEST address, LONGEST length);
877
878 /* Finish a sequence of flash operations. */
879 void target_flash_done (void);
880
881 /* Describes a request for a memory write operation. */
882 struct memory_write_request
883 {
884 /* Begining address that must be written. */
885 ULONGEST begin;
886 /* Past-the-end address. */
887 ULONGEST end;
888 /* The data to write. */
889 gdb_byte *data;
890 /* A callback baton for progress reporting for this request. */
891 void *baton;
892 };
893 typedef struct memory_write_request memory_write_request_s;
894 DEF_VEC_O(memory_write_request_s);
895
896 /* Enumeration specifying different flash preservation behaviour. */
897 enum flash_preserve_mode
898 {
899 flash_preserve,
900 flash_discard
901 };
902
903 /* Write several memory blocks at once. This version can be more
904 efficient than making several calls to target_write_memory, in
905 particular because it can optimize accesses to flash memory.
906
907 Moreover, this is currently the only memory access function in gdb
908 that supports writing to flash memory, and it should be used for
909 all cases where access to flash memory is desirable.
910
911 REQUESTS is the vector (see vec.h) of memory_write_request.
912 PRESERVE_FLASH_P indicates what to do with blocks which must be
913 erased, but not completely rewritten.
914 PROGRESS_CB is a function that will be periodically called to provide
915 feedback to user. It will be called with the baton corresponding
916 to the request currently being written. It may also be called
917 with a NULL baton, when preserved flash sectors are being rewritten.
918
919 The function returns 0 on success, and error otherwise. */
920 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
921 enum flash_preserve_mode preserve_flash_p,
922 void (*progress_cb) (ULONGEST, void *));
923
924 /* From infrun.c. */
925
926 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
927
928 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
929
930 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
931
932 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
933
934 /* Print a line about the current target. */
935
936 #define target_files_info() \
937 (*current_target.to_files_info) (&current_target)
938
939 /* Insert a breakpoint at address BP_TGT->placed_address in the target
940 machine. Result is 0 for success, or an errno value. */
941
942 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
943 struct bp_target_info *bp_tgt);
944
945 /* Remove a breakpoint at address BP_TGT->placed_address in the target
946 machine. Result is 0 for success, or an errno value. */
947
948 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
949 struct bp_target_info *bp_tgt);
950
951 /* Initialize the terminal settings we record for the inferior,
952 before we actually run the inferior. */
953
954 #define target_terminal_init() \
955 (*current_target.to_terminal_init) ()
956
957 /* Put the inferior's terminal settings into effect.
958 This is preparation for starting or resuming the inferior. */
959
960 extern void target_terminal_inferior (void);
961
962 /* Put some of our terminal settings into effect,
963 enough to get proper results from our output,
964 but do not change into or out of RAW mode
965 so that no input is discarded.
966
967 After doing this, either terminal_ours or terminal_inferior
968 should be called to get back to a normal state of affairs. */
969
970 #define target_terminal_ours_for_output() \
971 (*current_target.to_terminal_ours_for_output) ()
972
973 /* Put our terminal settings into effect.
974 First record the inferior's terminal settings
975 so they can be restored properly later. */
976
977 #define target_terminal_ours() \
978 (*current_target.to_terminal_ours) ()
979
980 /* Save our terminal settings.
981 This is called from TUI after entering or leaving the curses
982 mode. Since curses modifies our terminal this call is here
983 to take this change into account. */
984
985 #define target_terminal_save_ours() \
986 (*current_target.to_terminal_save_ours) ()
987
988 /* Print useful information about our terminal status, if such a thing
989 exists. */
990
991 #define target_terminal_info(arg, from_tty) \
992 (*current_target.to_terminal_info) (arg, from_tty)
993
994 /* Kill the inferior process. Make it go away. */
995
996 extern void target_kill (void);
997
998 /* Load an executable file into the target process. This is expected
999 to not only bring new code into the target process, but also to
1000 update GDB's symbol tables to match.
1001
1002 ARG contains command-line arguments, to be broken down with
1003 buildargv (). The first non-switch argument is the filename to
1004 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1005 0)), which is an offset to apply to the load addresses of FILE's
1006 sections. The target may define switches, or other non-switch
1007 arguments, as it pleases. */
1008
1009 extern void target_load (char *arg, int from_tty);
1010
1011 /* Look up a symbol in the target's symbol table. NAME is the symbol
1012 name. ADDRP is a CORE_ADDR * pointing to where the value of the
1013 symbol should be returned. The result is 0 if successful, nonzero
1014 if the symbol does not exist in the target environment. This
1015 function should not call error() if communication with the target
1016 is interrupted, since it is called from symbol reading, but should
1017 return nonzero, possibly doing a complain(). */
1018
1019 #define target_lookup_symbol(name, addrp) \
1020 (*current_target.to_lookup_symbol) (name, addrp)
1021
1022 /* Start an inferior process and set inferior_ptid to its pid.
1023 EXEC_FILE is the file to run.
1024 ALLARGS is a string containing the arguments to the program.
1025 ENV is the environment vector to pass. Errors reported with error().
1026 On VxWorks and various standalone systems, we ignore exec_file. */
1027
1028 void target_create_inferior (char *exec_file, char *args,
1029 char **env, int from_tty);
1030
1031 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1032 notification of inferior events such as fork and vork immediately
1033 after the inferior is created. (This because of how gdb gets an
1034 inferior created via invoking a shell to do it. In such a scenario,
1035 if the shell init file has commands in it, the shell will fork and
1036 exec for each of those commands, and we will see each such fork
1037 event. Very bad.)
1038
1039 Such targets will supply an appropriate definition for this function. */
1040
1041 #define target_post_startup_inferior(ptid) \
1042 (*current_target.to_post_startup_inferior) (ptid)
1043
1044 /* On some targets, we can catch an inferior fork or vfork event when
1045 it occurs. These functions insert/remove an already-created
1046 catchpoint for such events. They return 0 for success, 1 if the
1047 catchpoint type is not supported and -1 for failure. */
1048
1049 #define target_insert_fork_catchpoint(pid) \
1050 (*current_target.to_insert_fork_catchpoint) (pid)
1051
1052 #define target_remove_fork_catchpoint(pid) \
1053 (*current_target.to_remove_fork_catchpoint) (pid)
1054
1055 #define target_insert_vfork_catchpoint(pid) \
1056 (*current_target.to_insert_vfork_catchpoint) (pid)
1057
1058 #define target_remove_vfork_catchpoint(pid) \
1059 (*current_target.to_remove_vfork_catchpoint) (pid)
1060
1061 /* If the inferior forks or vforks, this function will be called at
1062 the next resume in order to perform any bookkeeping and fiddling
1063 necessary to continue debugging either the parent or child, as
1064 requested, and releasing the other. Information about the fork
1065 or vfork event is available via get_last_target_status ().
1066 This function returns 1 if the inferior should not be resumed
1067 (i.e. there is another event pending). */
1068
1069 int target_follow_fork (int follow_child);
1070
1071 /* On some targets, we can catch an inferior exec event when it
1072 occurs. These functions insert/remove an already-created
1073 catchpoint for such events. They return 0 for success, 1 if the
1074 catchpoint type is not supported and -1 for failure. */
1075
1076 #define target_insert_exec_catchpoint(pid) \
1077 (*current_target.to_insert_exec_catchpoint) (pid)
1078
1079 #define target_remove_exec_catchpoint(pid) \
1080 (*current_target.to_remove_exec_catchpoint) (pid)
1081
1082 /* Syscall catch.
1083
1084 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1085 If NEEDED is zero, it means the target can disable the mechanism to
1086 catch system calls because there are no more catchpoints of this type.
1087
1088 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1089 being requested. In this case, both TABLE_SIZE and TABLE should
1090 be ignored.
1091
1092 TABLE_SIZE is the number of elements in TABLE. It only matters if
1093 ANY_COUNT is zero.
1094
1095 TABLE is an array of ints, indexed by syscall number. An element in
1096 this array is nonzero if that syscall should be caught. This argument
1097 only matters if ANY_COUNT is zero.
1098
1099 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1100 for failure. */
1101
1102 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1103 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1104 table_size, table)
1105
1106 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1107 exit code of PID, if any. */
1108
1109 #define target_has_exited(pid,wait_status,exit_status) \
1110 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1111
1112 /* The debugger has completed a blocking wait() call. There is now
1113 some process event that must be processed. This function should
1114 be defined by those targets that require the debugger to perform
1115 cleanup or internal state changes in response to the process event. */
1116
1117 /* The inferior process has died. Do what is right. */
1118
1119 void target_mourn_inferior (void);
1120
1121 /* Does target have enough data to do a run or attach command? */
1122
1123 #define target_can_run(t) \
1124 ((t)->to_can_run) ()
1125
1126 /* post process changes to signal handling in the inferior. */
1127
1128 #define target_notice_signals(ptid) \
1129 (*current_target.to_notice_signals) (ptid)
1130
1131 /* Check to see if a thread is still alive. */
1132
1133 extern int target_thread_alive (ptid_t ptid);
1134
1135 /* Query for new threads and add them to the thread list. */
1136
1137 extern void target_find_new_threads (void);
1138
1139 /* Make target stop in a continuable fashion. (For instance, under
1140 Unix, this should act like SIGSTOP). This function is normally
1141 used by GUIs to implement a stop button. */
1142
1143 extern void target_stop (ptid_t ptid);
1144
1145 /* Send the specified COMMAND to the target's monitor
1146 (shell,interpreter) for execution. The result of the query is
1147 placed in OUTBUF. */
1148
1149 #define target_rcmd(command, outbuf) \
1150 (*current_target.to_rcmd) (command, outbuf)
1151
1152
1153 /* Does the target include all of memory, or only part of it? This
1154 determines whether we look up the target chain for other parts of
1155 memory if this target can't satisfy a request. */
1156
1157 extern int target_has_all_memory_1 (void);
1158 #define target_has_all_memory target_has_all_memory_1 ()
1159
1160 /* Does the target include memory? (Dummy targets don't.) */
1161
1162 extern int target_has_memory_1 (void);
1163 #define target_has_memory target_has_memory_1 ()
1164
1165 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1166 we start a process.) */
1167
1168 extern int target_has_stack_1 (void);
1169 #define target_has_stack target_has_stack_1 ()
1170
1171 /* Does the target have registers? (Exec files don't.) */
1172
1173 extern int target_has_registers_1 (void);
1174 #define target_has_registers target_has_registers_1 ()
1175
1176 /* Does the target have execution? Can we make it jump (through
1177 hoops), or pop its stack a few times? This means that the current
1178 target is currently executing; for some targets, that's the same as
1179 whether or not the target is capable of execution, but there are
1180 also targets which can be current while not executing. In that
1181 case this will become true after target_create_inferior or
1182 target_attach. */
1183
1184 extern int target_has_execution_1 (void);
1185 #define target_has_execution target_has_execution_1 ()
1186
1187 /* Default implementations for process_stratum targets. Return true
1188 if there's a selected inferior, false otherwise. */
1189
1190 extern int default_child_has_all_memory (struct target_ops *ops);
1191 extern int default_child_has_memory (struct target_ops *ops);
1192 extern int default_child_has_stack (struct target_ops *ops);
1193 extern int default_child_has_registers (struct target_ops *ops);
1194 extern int default_child_has_execution (struct target_ops *ops);
1195
1196 /* Can the target support the debugger control of thread execution?
1197 Can it lock the thread scheduler? */
1198
1199 #define target_can_lock_scheduler \
1200 (current_target.to_has_thread_control & tc_schedlock)
1201
1202 /* Should the target enable async mode if it is supported? Temporary
1203 cludge until async mode is a strict superset of sync mode. */
1204 extern int target_async_permitted;
1205
1206 /* Can the target support asynchronous execution? */
1207 #define target_can_async_p() (current_target.to_can_async_p ())
1208
1209 /* Is the target in asynchronous execution mode? */
1210 #define target_is_async_p() (current_target.to_is_async_p ())
1211
1212 int target_supports_non_stop (void);
1213
1214 /* Put the target in async mode with the specified callback function. */
1215 #define target_async(CALLBACK,CONTEXT) \
1216 (current_target.to_async ((CALLBACK), (CONTEXT)))
1217
1218 /* This is to be used ONLY within call_function_by_hand(). It provides
1219 a workaround, to have inferior function calls done in sychronous
1220 mode, even though the target is asynchronous. After
1221 target_async_mask(0) is called, calls to target_can_async_p() will
1222 return FALSE , so that target_resume() will not try to start the
1223 target asynchronously. After the inferior stops, we IMMEDIATELY
1224 restore the previous nature of the target, by calling
1225 target_async_mask(1). After that, target_can_async_p() will return
1226 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1227
1228 FIXME ezannoni 1999-12-13: we won't need this once we move
1229 the turning async on and off to the single execution commands,
1230 from where it is done currently, in remote_resume(). */
1231
1232 #define target_async_mask(MASK) \
1233 (current_target.to_async_mask (MASK))
1234
1235 /* Converts a process id to a string. Usually, the string just contains
1236 `process xyz', but on some systems it may contain
1237 `process xyz thread abc'. */
1238
1239 extern char *target_pid_to_str (ptid_t ptid);
1240
1241 extern char *normal_pid_to_str (ptid_t ptid);
1242
1243 /* Return a short string describing extra information about PID,
1244 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1245 is okay. */
1246
1247 #define target_extra_thread_info(TP) \
1248 (current_target.to_extra_thread_info (TP))
1249
1250 /* Return the thread's name. A NULL result means that the target
1251 could not determine this thread's name. */
1252
1253 extern char *target_thread_name (struct thread_info *);
1254
1255 /* Attempts to find the pathname of the executable file
1256 that was run to create a specified process.
1257
1258 The process PID must be stopped when this operation is used.
1259
1260 If the executable file cannot be determined, NULL is returned.
1261
1262 Else, a pointer to a character string containing the pathname
1263 is returned. This string should be copied into a buffer by
1264 the client if the string will not be immediately used, or if
1265 it must persist. */
1266
1267 #define target_pid_to_exec_file(pid) \
1268 (current_target.to_pid_to_exec_file) (pid)
1269
1270 /* See the to_thread_architecture description in struct target_ops. */
1271
1272 #define target_thread_architecture(ptid) \
1273 (current_target.to_thread_architecture (&current_target, ptid))
1274
1275 /*
1276 * Iterator function for target memory regions.
1277 * Calls a callback function once for each memory region 'mapped'
1278 * in the child process. Defined as a simple macro rather than
1279 * as a function macro so that it can be tested for nullity.
1280 */
1281
1282 #define target_find_memory_regions(FUNC, DATA) \
1283 (current_target.to_find_memory_regions) (FUNC, DATA)
1284
1285 /*
1286 * Compose corefile .note section.
1287 */
1288
1289 #define target_make_corefile_notes(BFD, SIZE_P) \
1290 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1291
1292 /* Bookmark interfaces. */
1293 #define target_get_bookmark(ARGS, FROM_TTY) \
1294 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1295
1296 #define target_goto_bookmark(ARG, FROM_TTY) \
1297 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1298
1299 /* Hardware watchpoint interfaces. */
1300
1301 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1302 write). Only the INFERIOR_PTID task is being queried. */
1303
1304 #define target_stopped_by_watchpoint \
1305 (*current_target.to_stopped_by_watchpoint)
1306
1307 /* Non-zero if we have steppable watchpoints */
1308
1309 #define target_have_steppable_watchpoint \
1310 (current_target.to_have_steppable_watchpoint)
1311
1312 /* Non-zero if we have continuable watchpoints */
1313
1314 #define target_have_continuable_watchpoint \
1315 (current_target.to_have_continuable_watchpoint)
1316
1317 /* Provide defaults for hardware watchpoint functions. */
1318
1319 /* If the *_hw_beakpoint functions have not been defined
1320 elsewhere use the definitions in the target vector. */
1321
1322 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1323 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1324 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1325 (including this one?). OTHERTYPE is who knows what... */
1326
1327 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1328 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1329
1330 /* Returns the number of debug registers needed to watch the given
1331 memory region, or zero if not supported. */
1332
1333 #define target_region_ok_for_hw_watchpoint(addr, len) \
1334 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1335
1336
1337 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1338 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1339 COND is the expression for its condition, or NULL if there's none.
1340 Returns 0 for success, 1 if the watchpoint type is not supported,
1341 -1 for failure. */
1342
1343 #define target_insert_watchpoint(addr, len, type, cond) \
1344 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1345
1346 #define target_remove_watchpoint(addr, len, type, cond) \
1347 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1348
1349 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1350 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1351
1352 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1353 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1354
1355 /* Return non-zero if target knows the data address which triggered this
1356 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1357 INFERIOR_PTID task is being queried. */
1358 #define target_stopped_data_address(target, addr_p) \
1359 (*target.to_stopped_data_address) (target, addr_p)
1360
1361 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1362 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1363
1364 /* Return non-zero if the target is capable of using hardware to evaluate
1365 the condition expression. In this case, if the condition is false when
1366 the watched memory location changes, execution may continue without the
1367 debugger being notified.
1368
1369 Due to limitations in the hardware implementation, it may be capable of
1370 avoiding triggering the watchpoint in some cases where the condition
1371 expression is false, but may report some false positives as well.
1372 For this reason, GDB will still evaluate the condition expression when
1373 the watchpoint triggers. */
1374 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1375 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1376
1377 /* Target can execute in reverse? */
1378 #define target_can_execute_reverse \
1379 (current_target.to_can_execute_reverse ? \
1380 current_target.to_can_execute_reverse () : 0)
1381
1382 extern const struct target_desc *target_read_description (struct target_ops *);
1383
1384 #define target_get_ada_task_ptid(lwp, tid) \
1385 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1386
1387 /* Utility implementation of searching memory. */
1388 extern int simple_search_memory (struct target_ops* ops,
1389 CORE_ADDR start_addr,
1390 ULONGEST search_space_len,
1391 const gdb_byte *pattern,
1392 ULONGEST pattern_len,
1393 CORE_ADDR *found_addrp);
1394
1395 /* Main entry point for searching memory. */
1396 extern int target_search_memory (CORE_ADDR start_addr,
1397 ULONGEST search_space_len,
1398 const gdb_byte *pattern,
1399 ULONGEST pattern_len,
1400 CORE_ADDR *found_addrp);
1401
1402 /* Tracepoint-related operations. */
1403
1404 #define target_trace_init() \
1405 (*current_target.to_trace_init) ()
1406
1407 #define target_download_tracepoint(t) \
1408 (*current_target.to_download_tracepoint) (t)
1409
1410 #define target_download_trace_state_variable(tsv) \
1411 (*current_target.to_download_trace_state_variable) (tsv)
1412
1413 #define target_trace_start() \
1414 (*current_target.to_trace_start) ()
1415
1416 #define target_trace_set_readonly_regions() \
1417 (*current_target.to_trace_set_readonly_regions) ()
1418
1419 #define target_get_trace_status(ts) \
1420 (*current_target.to_get_trace_status) (ts)
1421
1422 #define target_trace_stop() \
1423 (*current_target.to_trace_stop) ()
1424
1425 #define target_trace_find(type,num,addr1,addr2,tpp) \
1426 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1427
1428 #define target_get_trace_state_variable_value(tsv,val) \
1429 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1430
1431 #define target_save_trace_data(filename) \
1432 (*current_target.to_save_trace_data) (filename)
1433
1434 #define target_upload_tracepoints(utpp) \
1435 (*current_target.to_upload_tracepoints) (utpp)
1436
1437 #define target_upload_trace_state_variables(utsvp) \
1438 (*current_target.to_upload_trace_state_variables) (utsvp)
1439
1440 #define target_get_raw_trace_data(buf,offset,len) \
1441 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1442
1443 #define target_set_disconnected_tracing(val) \
1444 (*current_target.to_set_disconnected_tracing) (val)
1445
1446 #define target_set_circular_trace_buffer(val) \
1447 (*current_target.to_set_circular_trace_buffer) (val)
1448
1449 #define target_get_tib_address(ptid, addr) \
1450 (*current_target.to_get_tib_address) ((ptid), (addr))
1451
1452 #define target_set_permissions() \
1453 (*current_target.to_set_permissions) ()
1454
1455 #define target_static_tracepoint_marker_at(addr, marker) \
1456 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1457
1458 #define target_static_tracepoint_markers_by_strid(marker_id) \
1459 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1460
1461 /* Command logging facility. */
1462
1463 #define target_log_command(p) \
1464 do \
1465 if (current_target.to_log_command) \
1466 (*current_target.to_log_command) (p); \
1467 while (0)
1468
1469
1470 extern int target_core_of_thread (ptid_t ptid);
1471
1472 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1473 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1474 if there's a mismatch, and -1 if an error is encountered while
1475 reading memory. Throws an error if the functionality is found not
1476 to be supported by the current target. */
1477 int target_verify_memory (const gdb_byte *data,
1478 CORE_ADDR memaddr, ULONGEST size);
1479
1480 /* Routines for maintenance of the target structures...
1481
1482 add_target: Add a target to the list of all possible targets.
1483
1484 push_target: Make this target the top of the stack of currently used
1485 targets, within its particular stratum of the stack. Result
1486 is 0 if now atop the stack, nonzero if not on top (maybe
1487 should warn user).
1488
1489 unpush_target: Remove this from the stack of currently used targets,
1490 no matter where it is on the list. Returns 0 if no
1491 change, 1 if removed from stack.
1492
1493 pop_target: Remove the top thing on the stack of current targets. */
1494
1495 extern void add_target (struct target_ops *);
1496
1497 extern void push_target (struct target_ops *);
1498
1499 extern int unpush_target (struct target_ops *);
1500
1501 extern void target_pre_inferior (int);
1502
1503 extern void target_preopen (int);
1504
1505 extern void pop_target (void);
1506
1507 /* Does whatever cleanup is required to get rid of all pushed targets.
1508 QUITTING is propagated to target_close; it indicates that GDB is
1509 exiting and should not get hung on an error (otherwise it is
1510 important to perform clean termination, even if it takes a
1511 while). */
1512 extern void pop_all_targets (int quitting);
1513
1514 /* Like pop_all_targets, but pops only targets whose stratum is
1515 strictly above ABOVE_STRATUM. */
1516 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1517
1518 extern int target_is_pushed (struct target_ops *t);
1519
1520 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1521 CORE_ADDR offset);
1522
1523 /* Struct target_section maps address ranges to file sections. It is
1524 mostly used with BFD files, but can be used without (e.g. for handling
1525 raw disks, or files not in formats handled by BFD). */
1526
1527 struct target_section
1528 {
1529 CORE_ADDR addr; /* Lowest address in section */
1530 CORE_ADDR endaddr; /* 1+highest address in section */
1531
1532 struct bfd_section *the_bfd_section;
1533
1534 bfd *bfd; /* BFD file pointer */
1535 };
1536
1537 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1538
1539 struct target_section_table
1540 {
1541 struct target_section *sections;
1542 struct target_section *sections_end;
1543 };
1544
1545 /* Return the "section" containing the specified address. */
1546 struct target_section *target_section_by_addr (struct target_ops *target,
1547 CORE_ADDR addr);
1548
1549 /* Return the target section table this target (or the targets
1550 beneath) currently manipulate. */
1551
1552 extern struct target_section_table *target_get_section_table
1553 (struct target_ops *target);
1554
1555 /* From mem-break.c */
1556
1557 extern int memory_remove_breakpoint (struct gdbarch *,
1558 struct bp_target_info *);
1559
1560 extern int memory_insert_breakpoint (struct gdbarch *,
1561 struct bp_target_info *);
1562
1563 extern int default_memory_remove_breakpoint (struct gdbarch *,
1564 struct bp_target_info *);
1565
1566 extern int default_memory_insert_breakpoint (struct gdbarch *,
1567 struct bp_target_info *);
1568
1569
1570 /* From target.c */
1571
1572 extern void initialize_targets (void);
1573
1574 extern void noprocess (void) ATTRIBUTE_NORETURN;
1575
1576 extern void target_require_runnable (void);
1577
1578 extern void find_default_attach (struct target_ops *, char *, int);
1579
1580 extern void find_default_create_inferior (struct target_ops *,
1581 char *, char *, char **, int);
1582
1583 extern struct target_ops *find_run_target (void);
1584
1585 extern struct target_ops *find_target_beneath (struct target_ops *);
1586
1587 /* Read OS data object of type TYPE from the target, and return it in
1588 XML format. The result is NUL-terminated and returned as a string,
1589 allocated using xmalloc. If an error occurs or the transfer is
1590 unsupported, NULL is returned. Empty objects are returned as
1591 allocated but empty strings. */
1592
1593 extern char *target_get_osdata (const char *type);
1594
1595 \f
1596 /* Stuff that should be shared among the various remote targets. */
1597
1598 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1599 information (higher values, more information). */
1600 extern int remote_debug;
1601
1602 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1603 extern int baud_rate;
1604 /* Timeout limit for response from target. */
1605 extern int remote_timeout;
1606
1607 \f
1608 /* Functions for helping to write a native target. */
1609
1610 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1611 extern void store_waitstatus (struct target_waitstatus *, int);
1612
1613 /* These are in common/signals.c, but they're only used by gdb. */
1614 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1615 int);
1616 extern int default_target_signal_to_host (struct gdbarch *,
1617 enum target_signal);
1618
1619 /* Convert from a number used in a GDB command to an enum target_signal. */
1620 extern enum target_signal target_signal_from_command (int);
1621 /* End of files in common/signals.c. */
1622
1623 /* Set the show memory breakpoints mode to show, and installs a cleanup
1624 to restore it back to the current value. */
1625 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1626
1627 extern int may_write_registers;
1628 extern int may_write_memory;
1629 extern int may_insert_breakpoints;
1630 extern int may_insert_tracepoints;
1631 extern int may_insert_fast_tracepoints;
1632 extern int may_stop;
1633
1634 extern void update_target_permissions (void);
1635
1636 \f
1637 /* Imported from machine dependent code. */
1638
1639 /* Blank target vector entries are initialized to target_ignore. */
1640 void target_ignore (void);
1641
1642 #endif /* !defined (TARGET_H) */
This page took 0.079686 seconds and 4 git commands to generate.