4bbf4de88d19e8eb3af71e65797478a316b04a53
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40
41 /* This include file defines the interface between the main part
42 of the debugger, and the part which is target-specific, or
43 specific to the communications interface between us and the
44 target.
45
46 A TARGET is an interface between the debugger and a particular
47 kind of file or process. Targets can be STACKED in STRATA,
48 so that more than one target can potentially respond to a request.
49 In particular, memory accesses will walk down the stack of targets
50 until they find a target that is interested in handling that particular
51 address. STRATA are artificial boundaries on the stack, within
52 which particular kinds of targets live. Strata exist so that
53 people don't get confused by pushing e.g. a process target and then
54 a file target, and wondering why they can't see the current values
55 of variables any more (the file target is handling them and they
56 never get to the process target). So when you push a file target,
57 it goes into the file stratum, which is always below the process
58 stratum. */
59
60 #include "bfd.h"
61 #include "symtab.h"
62 #include "memattr.h"
63 #include "vec.h"
64 #include "gdb_signals.h"
65
66 enum strata
67 {
68 dummy_stratum, /* The lowest of the low */
69 file_stratum, /* Executable files, etc */
70 process_stratum, /* Executing processes or core dump files */
71 thread_stratum, /* Executing threads */
72 record_stratum, /* Support record debugging */
73 arch_stratum /* Architecture overrides */
74 };
75
76 enum thread_control_capabilities
77 {
78 tc_none = 0, /* Default: can't control thread execution. */
79 tc_schedlock = 1, /* Can lock the thread scheduler. */
80 };
81
82 /* Stuff for target_wait. */
83
84 /* Generally, what has the program done? */
85 enum target_waitkind
86 {
87 /* The program has exited. The exit status is in value.integer. */
88 TARGET_WAITKIND_EXITED,
89
90 /* The program has stopped with a signal. Which signal is in
91 value.sig. */
92 TARGET_WAITKIND_STOPPED,
93
94 /* The program has terminated with a signal. Which signal is in
95 value.sig. */
96 TARGET_WAITKIND_SIGNALLED,
97
98 /* The program is letting us know that it dynamically loaded something
99 (e.g. it called load(2) on AIX). */
100 TARGET_WAITKIND_LOADED,
101
102 /* The program has forked. A "related" process' PTID is in
103 value.related_pid. I.e., if the child forks, value.related_pid
104 is the parent's ID. */
105
106 TARGET_WAITKIND_FORKED,
107
108 /* The program has vforked. A "related" process's PTID is in
109 value.related_pid. */
110
111 TARGET_WAITKIND_VFORKED,
112
113 /* The program has exec'ed a new executable file. The new file's
114 pathname is pointed to by value.execd_pathname. */
115
116 TARGET_WAITKIND_EXECD,
117
118 /* The program had previously vforked, and now the child is done
119 with the shared memory region, because it exec'ed or exited.
120 Note that the event is reported to the vfork parent. This is
121 only used if GDB did not stay attached to the vfork child,
122 otherwise, a TARGET_WAITKIND_EXECD or
123 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
124 has the same effect. */
125 TARGET_WAITKIND_VFORK_DONE,
126
127 /* The program has entered or returned from a system call. On
128 HP-UX, this is used in the hardware watchpoint implementation.
129 The syscall's unique integer ID number is in value.syscall_id. */
130
131 TARGET_WAITKIND_SYSCALL_ENTRY,
132 TARGET_WAITKIND_SYSCALL_RETURN,
133
134 /* Nothing happened, but we stopped anyway. This perhaps should be handled
135 within target_wait, but I'm not sure target_wait should be resuming the
136 inferior. */
137 TARGET_WAITKIND_SPURIOUS,
138
139 /* An event has occured, but we should wait again.
140 Remote_async_wait() returns this when there is an event
141 on the inferior, but the rest of the world is not interested in
142 it. The inferior has not stopped, but has just sent some output
143 to the console, for instance. In this case, we want to go back
144 to the event loop and wait there for another event from the
145 inferior, rather than being stuck in the remote_async_wait()
146 function. sThis way the event loop is responsive to other events,
147 like for instance the user typing. */
148 TARGET_WAITKIND_IGNORE,
149
150 /* The target has run out of history information,
151 and cannot run backward any further. */
152 TARGET_WAITKIND_NO_HISTORY,
153
154 /* There are no resumed children left in the program. */
155 TARGET_WAITKIND_NO_RESUMED
156 };
157
158 struct target_waitstatus
159 {
160 enum target_waitkind kind;
161
162 /* Forked child pid, execd pathname, exit status, signal number or
163 syscall number. */
164 union
165 {
166 int integer;
167 enum target_signal sig;
168 ptid_t related_pid;
169 char *execd_pathname;
170 int syscall_number;
171 }
172 value;
173 };
174
175 /* Options that can be passed to target_wait. */
176
177 /* Return immediately if there's no event already queued. If this
178 options is not requested, target_wait blocks waiting for an
179 event. */
180 #define TARGET_WNOHANG 1
181
182 /* The structure below stores information about a system call.
183 It is basically used in the "catch syscall" command, and in
184 every function that gives information about a system call.
185
186 It's also good to mention that its fields represent everything
187 that we currently know about a syscall in GDB. */
188 struct syscall
189 {
190 /* The syscall number. */
191 int number;
192
193 /* The syscall name. */
194 const char *name;
195 };
196
197 /* Return a pretty printed form of target_waitstatus.
198 Space for the result is malloc'd, caller must free. */
199 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
200
201 /* Possible types of events that the inferior handler will have to
202 deal with. */
203 enum inferior_event_type
204 {
205 /* Process a normal inferior event which will result in target_wait
206 being called. */
207 INF_REG_EVENT,
208 /* We are called because a timer went off. */
209 INF_TIMER,
210 /* We are called to do stuff after the inferior stops. */
211 INF_EXEC_COMPLETE,
212 /* We are called to do some stuff after the inferior stops, but we
213 are expected to reenter the proceed() and
214 handle_inferior_event() functions. This is used only in case of
215 'step n' like commands. */
216 INF_EXEC_CONTINUE
217 };
218 \f
219 /* Target objects which can be transfered using target_read,
220 target_write, et cetera. */
221
222 enum target_object
223 {
224 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
225 TARGET_OBJECT_AVR,
226 /* SPU target specific transfer. See "spu-tdep.c". */
227 TARGET_OBJECT_SPU,
228 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
229 TARGET_OBJECT_MEMORY,
230 /* Memory, avoiding GDB's data cache and trusting the executable.
231 Target implementations of to_xfer_partial never need to handle
232 this object, and most callers should not use it. */
233 TARGET_OBJECT_RAW_MEMORY,
234 /* Memory known to be part of the target's stack. This is cached even
235 if it is not in a region marked as such, since it is known to be
236 "normal" RAM. */
237 TARGET_OBJECT_STACK_MEMORY,
238 /* Kernel Unwind Table. See "ia64-tdep.c". */
239 TARGET_OBJECT_UNWIND_TABLE,
240 /* Transfer auxilliary vector. */
241 TARGET_OBJECT_AUXV,
242 /* StackGhost cookie. See "sparc-tdep.c". */
243 TARGET_OBJECT_WCOOKIE,
244 /* Target memory map in XML format. */
245 TARGET_OBJECT_MEMORY_MAP,
246 /* Flash memory. This object can be used to write contents to
247 a previously erased flash memory. Using it without erasing
248 flash can have unexpected results. Addresses are physical
249 address on target, and not relative to flash start. */
250 TARGET_OBJECT_FLASH,
251 /* Available target-specific features, e.g. registers and coprocessors.
252 See "target-descriptions.c". ANNEX should never be empty. */
253 TARGET_OBJECT_AVAILABLE_FEATURES,
254 /* Currently loaded libraries, in XML format. */
255 TARGET_OBJECT_LIBRARIES,
256 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
257 TARGET_OBJECT_LIBRARIES_SVR4,
258 /* Get OS specific data. The ANNEX specifies the type (running
259 processes, etc.). The data being transfered is expected to follow
260 the DTD specified in features/osdata.dtd. */
261 TARGET_OBJECT_OSDATA,
262 /* Extra signal info. Usually the contents of `siginfo_t' on unix
263 platforms. */
264 TARGET_OBJECT_SIGNAL_INFO,
265 /* The list of threads that are being debugged. */
266 TARGET_OBJECT_THREADS,
267 /* Collected static trace data. */
268 TARGET_OBJECT_STATIC_TRACE_DATA,
269 /* The HP-UX registers (those that can be obtained or modified by using
270 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
271 TARGET_OBJECT_HPUX_UREGS,
272 /* The HP-UX shared library linkage pointer. ANNEX should be a string
273 image of the code address whose linkage pointer we are looking for.
274
275 The size of the data transfered is always 8 bytes (the size of an
276 address on ia64). */
277 TARGET_OBJECT_HPUX_SOLIB_GOT,
278 /* Traceframe info, in XML format. */
279 TARGET_OBJECT_TRACEFRAME_INFO,
280 /* Load maps for FDPIC systems. */
281 TARGET_OBJECT_FDPIC,
282 /* Darwin dynamic linker info data. */
283 TARGET_OBJECT_DARWIN_DYLD_INFO
284 /* Possible future objects: TARGET_OBJECT_FILE, ... */
285 };
286
287 /* Enumeration of the kinds of traceframe searches that a target may
288 be able to perform. */
289
290 enum trace_find_type
291 {
292 tfind_number,
293 tfind_pc,
294 tfind_tp,
295 tfind_range,
296 tfind_outside,
297 };
298
299 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
300 DEF_VEC_P(static_tracepoint_marker_p);
301
302 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
303 OBJECT. The OFFSET, for a seekable object, specifies the
304 starting point. The ANNEX can be used to provide additional
305 data-specific information to the target.
306
307 Return the number of bytes actually transfered, or -1 if the
308 transfer is not supported or otherwise fails. Return of a positive
309 value less than LEN indicates that no further transfer is possible.
310 Unlike the raw to_xfer_partial interface, callers of these
311 functions do not need to retry partial transfers. */
312
313 extern LONGEST target_read (struct target_ops *ops,
314 enum target_object object,
315 const char *annex, gdb_byte *buf,
316 ULONGEST offset, LONGEST len);
317
318 struct memory_read_result
319 {
320 /* First address that was read. */
321 ULONGEST begin;
322 /* Past-the-end address. */
323 ULONGEST end;
324 /* The data. */
325 gdb_byte *data;
326 };
327 typedef struct memory_read_result memory_read_result_s;
328 DEF_VEC_O(memory_read_result_s);
329
330 extern void free_memory_read_result_vector (void *);
331
332 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
333 ULONGEST offset,
334 LONGEST len);
335
336 extern LONGEST target_write (struct target_ops *ops,
337 enum target_object object,
338 const char *annex, const gdb_byte *buf,
339 ULONGEST offset, LONGEST len);
340
341 /* Similar to target_write, except that it also calls PROGRESS with
342 the number of bytes written and the opaque BATON after every
343 successful partial write (and before the first write). This is
344 useful for progress reporting and user interaction while writing
345 data. To abort the transfer, the progress callback can throw an
346 exception. */
347
348 LONGEST target_write_with_progress (struct target_ops *ops,
349 enum target_object object,
350 const char *annex, const gdb_byte *buf,
351 ULONGEST offset, LONGEST len,
352 void (*progress) (ULONGEST, void *),
353 void *baton);
354
355 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
356 be read using OPS. The return value will be -1 if the transfer
357 fails or is not supported; 0 if the object is empty; or the length
358 of the object otherwise. If a positive value is returned, a
359 sufficiently large buffer will be allocated using xmalloc and
360 returned in *BUF_P containing the contents of the object.
361
362 This method should be used for objects sufficiently small to store
363 in a single xmalloc'd buffer, when no fixed bound on the object's
364 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
365 through this function. */
366
367 extern LONGEST target_read_alloc (struct target_ops *ops,
368 enum target_object object,
369 const char *annex, gdb_byte **buf_p);
370
371 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
372 returned as a string, allocated using xmalloc. If an error occurs
373 or the transfer is unsupported, NULL is returned. Empty objects
374 are returned as allocated but empty strings. A warning is issued
375 if the result contains any embedded NUL bytes. */
376
377 extern char *target_read_stralloc (struct target_ops *ops,
378 enum target_object object,
379 const char *annex);
380
381 /* Wrappers to target read/write that perform memory transfers. They
382 throw an error if the memory transfer fails.
383
384 NOTE: cagney/2003-10-23: The naming schema is lifted from
385 "frame.h". The parameter order is lifted from get_frame_memory,
386 which in turn lifted it from read_memory. */
387
388 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
389 gdb_byte *buf, LONGEST len);
390 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
391 CORE_ADDR addr, int len,
392 enum bfd_endian byte_order);
393 \f
394 struct thread_info; /* fwd decl for parameter list below: */
395
396 struct target_ops
397 {
398 struct target_ops *beneath; /* To the target under this one. */
399 char *to_shortname; /* Name this target type */
400 char *to_longname; /* Name for printing */
401 char *to_doc; /* Documentation. Does not include trailing
402 newline, and starts with a one-line descrip-
403 tion (probably similar to to_longname). */
404 /* Per-target scratch pad. */
405 void *to_data;
406 /* The open routine takes the rest of the parameters from the
407 command, and (if successful) pushes a new target onto the
408 stack. Targets should supply this routine, if only to provide
409 an error message. */
410 void (*to_open) (char *, int);
411 /* Old targets with a static target vector provide "to_close".
412 New re-entrant targets provide "to_xclose" and that is expected
413 to xfree everything (including the "struct target_ops"). */
414 void (*to_xclose) (struct target_ops *targ, int quitting);
415 void (*to_close) (int);
416 void (*to_attach) (struct target_ops *ops, char *, int);
417 void (*to_post_attach) (int);
418 void (*to_detach) (struct target_ops *ops, char *, int);
419 void (*to_disconnect) (struct target_ops *, char *, int);
420 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
421 ptid_t (*to_wait) (struct target_ops *,
422 ptid_t, struct target_waitstatus *, int);
423 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
424 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
425 void (*to_prepare_to_store) (struct regcache *);
426
427 /* Transfer LEN bytes of memory between GDB address MYADDR and
428 target address MEMADDR. If WRITE, transfer them to the target, else
429 transfer them from the target. TARGET is the target from which we
430 get this function.
431
432 Return value, N, is one of the following:
433
434 0 means that we can't handle this. If errno has been set, it is the
435 error which prevented us from doing it (FIXME: What about bfd_error?).
436
437 positive (call it N) means that we have transferred N bytes
438 starting at MEMADDR. We might be able to handle more bytes
439 beyond this length, but no promises.
440
441 negative (call its absolute value N) means that we cannot
442 transfer right at MEMADDR, but we could transfer at least
443 something at MEMADDR + N.
444
445 NOTE: cagney/2004-10-01: This has been entirely superseeded by
446 to_xfer_partial and inferior inheritance. */
447
448 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
449 int len, int write,
450 struct mem_attrib *attrib,
451 struct target_ops *target);
452
453 void (*to_files_info) (struct target_ops *);
454 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
455 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
456 int (*to_can_use_hw_breakpoint) (int, int, int);
457 int (*to_ranged_break_num_registers) (struct target_ops *);
458 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
459 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
460
461 /* Documentation of what the two routines below are expected to do is
462 provided with the corresponding target_* macros. */
463 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
464 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
465
466 int (*to_insert_mask_watchpoint) (struct target_ops *,
467 CORE_ADDR, CORE_ADDR, int);
468 int (*to_remove_mask_watchpoint) (struct target_ops *,
469 CORE_ADDR, CORE_ADDR, int);
470 int (*to_stopped_by_watchpoint) (void);
471 int to_have_steppable_watchpoint;
472 int to_have_continuable_watchpoint;
473 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
474 int (*to_watchpoint_addr_within_range) (struct target_ops *,
475 CORE_ADDR, CORE_ADDR, int);
476
477 /* Documentation of this routine is provided with the corresponding
478 target_* macro. */
479 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
480
481 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
482 struct expression *);
483 int (*to_masked_watch_num_registers) (struct target_ops *,
484 CORE_ADDR, CORE_ADDR);
485 void (*to_terminal_init) (void);
486 void (*to_terminal_inferior) (void);
487 void (*to_terminal_ours_for_output) (void);
488 void (*to_terminal_ours) (void);
489 void (*to_terminal_save_ours) (void);
490 void (*to_terminal_info) (char *, int);
491 void (*to_kill) (struct target_ops *);
492 void (*to_load) (char *, int);
493 void (*to_create_inferior) (struct target_ops *,
494 char *, char *, char **, int);
495 void (*to_post_startup_inferior) (ptid_t);
496 int (*to_insert_fork_catchpoint) (int);
497 int (*to_remove_fork_catchpoint) (int);
498 int (*to_insert_vfork_catchpoint) (int);
499 int (*to_remove_vfork_catchpoint) (int);
500 int (*to_follow_fork) (struct target_ops *, int);
501 int (*to_insert_exec_catchpoint) (int);
502 int (*to_remove_exec_catchpoint) (int);
503 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
504 int (*to_has_exited) (int, int, int *);
505 void (*to_mourn_inferior) (struct target_ops *);
506 int (*to_can_run) (void);
507
508 /* Documentation of this routine is provided with the corresponding
509 target_* macro. */
510 void (*to_pass_signals) (int, unsigned char *);
511
512 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
513 void (*to_find_new_threads) (struct target_ops *);
514 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
515 char *(*to_extra_thread_info) (struct thread_info *);
516 char *(*to_thread_name) (struct thread_info *);
517 void (*to_stop) (ptid_t);
518 void (*to_rcmd) (char *command, struct ui_file *output);
519 char *(*to_pid_to_exec_file) (int pid);
520 void (*to_log_command) (const char *);
521 struct target_section_table *(*to_get_section_table) (struct target_ops *);
522 enum strata to_stratum;
523 int (*to_has_all_memory) (struct target_ops *);
524 int (*to_has_memory) (struct target_ops *);
525 int (*to_has_stack) (struct target_ops *);
526 int (*to_has_registers) (struct target_ops *);
527 int (*to_has_execution) (struct target_ops *, ptid_t);
528 int to_has_thread_control; /* control thread execution */
529 int to_attach_no_wait;
530 /* ASYNC target controls */
531 int (*to_can_async_p) (void);
532 int (*to_is_async_p) (void);
533 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
534 int (*to_supports_non_stop) (void);
535 /* find_memory_regions support method for gcore */
536 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
537 /* make_corefile_notes support method for gcore */
538 char * (*to_make_corefile_notes) (bfd *, int *);
539 /* get_bookmark support method for bookmarks */
540 gdb_byte * (*to_get_bookmark) (char *, int);
541 /* goto_bookmark support method for bookmarks */
542 void (*to_goto_bookmark) (gdb_byte *, int);
543 /* Return the thread-local address at OFFSET in the
544 thread-local storage for the thread PTID and the shared library
545 or executable file given by OBJFILE. If that block of
546 thread-local storage hasn't been allocated yet, this function
547 may return an error. */
548 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
549 ptid_t ptid,
550 CORE_ADDR load_module_addr,
551 CORE_ADDR offset);
552
553 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
554 OBJECT. The OFFSET, for a seekable object, specifies the
555 starting point. The ANNEX can be used to provide additional
556 data-specific information to the target.
557
558 Return the number of bytes actually transfered, zero when no
559 further transfer is possible, and -1 when the transfer is not
560 supported. Return of a positive value smaller than LEN does
561 not indicate the end of the object, only the end of the
562 transfer; higher level code should continue transferring if
563 desired. This is handled in target.c.
564
565 The interface does not support a "retry" mechanism. Instead it
566 assumes that at least one byte will be transfered on each
567 successful call.
568
569 NOTE: cagney/2003-10-17: The current interface can lead to
570 fragmented transfers. Lower target levels should not implement
571 hacks, such as enlarging the transfer, in an attempt to
572 compensate for this. Instead, the target stack should be
573 extended so that it implements supply/collect methods and a
574 look-aside object cache. With that available, the lowest
575 target can safely and freely "push" data up the stack.
576
577 See target_read and target_write for more information. One,
578 and only one, of readbuf or writebuf must be non-NULL. */
579
580 LONGEST (*to_xfer_partial) (struct target_ops *ops,
581 enum target_object object, const char *annex,
582 gdb_byte *readbuf, const gdb_byte *writebuf,
583 ULONGEST offset, LONGEST len);
584
585 /* Returns the memory map for the target. A return value of NULL
586 means that no memory map is available. If a memory address
587 does not fall within any returned regions, it's assumed to be
588 RAM. The returned memory regions should not overlap.
589
590 The order of regions does not matter; target_memory_map will
591 sort regions by starting address. For that reason, this
592 function should not be called directly except via
593 target_memory_map.
594
595 This method should not cache data; if the memory map could
596 change unexpectedly, it should be invalidated, and higher
597 layers will re-fetch it. */
598 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
599
600 /* Erases the region of flash memory starting at ADDRESS, of
601 length LENGTH.
602
603 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
604 on flash block boundaries, as reported by 'to_memory_map'. */
605 void (*to_flash_erase) (struct target_ops *,
606 ULONGEST address, LONGEST length);
607
608 /* Finishes a flash memory write sequence. After this operation
609 all flash memory should be available for writing and the result
610 of reading from areas written by 'to_flash_write' should be
611 equal to what was written. */
612 void (*to_flash_done) (struct target_ops *);
613
614 /* Describe the architecture-specific features of this target.
615 Returns the description found, or NULL if no description
616 was available. */
617 const struct target_desc *(*to_read_description) (struct target_ops *ops);
618
619 /* Build the PTID of the thread on which a given task is running,
620 based on LWP and THREAD. These values are extracted from the
621 task Private_Data section of the Ada Task Control Block, and
622 their interpretation depends on the target. */
623 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
624
625 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
626 Return 0 if *READPTR is already at the end of the buffer.
627 Return -1 if there is insufficient buffer for a whole entry.
628 Return 1 if an entry was read into *TYPEP and *VALP. */
629 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
630 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
631
632 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
633 sequence of bytes in PATTERN with length PATTERN_LEN.
634
635 The result is 1 if found, 0 if not found, and -1 if there was an error
636 requiring halting of the search (e.g. memory read error).
637 If the pattern is found the address is recorded in FOUND_ADDRP. */
638 int (*to_search_memory) (struct target_ops *ops,
639 CORE_ADDR start_addr, ULONGEST search_space_len,
640 const gdb_byte *pattern, ULONGEST pattern_len,
641 CORE_ADDR *found_addrp);
642
643 /* Can target execute in reverse? */
644 int (*to_can_execute_reverse) (void);
645
646 /* The direction the target is currently executing. Must be
647 implemented on targets that support reverse execution and async
648 mode. The default simply returns forward execution. */
649 enum exec_direction_kind (*to_execution_direction) (void);
650
651 /* Does this target support debugging multiple processes
652 simultaneously? */
653 int (*to_supports_multi_process) (void);
654
655 /* Does this target support enabling and disabling tracepoints while a trace
656 experiment is running? */
657 int (*to_supports_enable_disable_tracepoint) (void);
658
659 /* Does this target support disabling address space randomization? */
660 int (*to_supports_disable_randomization) (void);
661
662 /* Does this target support the tracenz bytecode for string collection? */
663 int (*to_supports_string_tracing) (void);
664
665 /* Determine current architecture of thread PTID.
666
667 The target is supposed to determine the architecture of the code where
668 the target is currently stopped at (on Cell, if a target is in spu_run,
669 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
670 This is architecture used to perform decr_pc_after_break adjustment,
671 and also determines the frame architecture of the innermost frame.
672 ptrace operations need to operate according to target_gdbarch.
673
674 The default implementation always returns target_gdbarch. */
675 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
676
677 /* Determine current address space of thread PTID.
678
679 The default implementation always returns the inferior's
680 address space. */
681 struct address_space *(*to_thread_address_space) (struct target_ops *,
682 ptid_t);
683
684 /* Target file operations. */
685
686 /* Open FILENAME on the target, using FLAGS and MODE. Return a
687 target file descriptor, or -1 if an error occurs (and set
688 *TARGET_ERRNO). */
689 int (*to_fileio_open) (const char *filename, int flags, int mode,
690 int *target_errno);
691
692 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
693 Return the number of bytes written, or -1 if an error occurs
694 (and set *TARGET_ERRNO). */
695 int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
696 ULONGEST offset, int *target_errno);
697
698 /* Read up to LEN bytes FD on the target into READ_BUF.
699 Return the number of bytes read, or -1 if an error occurs
700 (and set *TARGET_ERRNO). */
701 int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
702 ULONGEST offset, int *target_errno);
703
704 /* Close FD on the target. Return 0, or -1 if an error occurs
705 (and set *TARGET_ERRNO). */
706 int (*to_fileio_close) (int fd, int *target_errno);
707
708 /* Unlink FILENAME on the target. Return 0, or -1 if an error
709 occurs (and set *TARGET_ERRNO). */
710 int (*to_fileio_unlink) (const char *filename, int *target_errno);
711
712
713 /* Tracepoint-related operations. */
714
715 /* Prepare the target for a tracing run. */
716 void (*to_trace_init) (void);
717
718 /* Send full details of a tracepoint location to the target. */
719 void (*to_download_tracepoint) (struct bp_location *location);
720
721 /* Is the target able to download tracepoint locations in current
722 state? */
723 int (*to_can_download_tracepoint) (void);
724
725 /* Send full details of a trace state variable to the target. */
726 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
727
728 /* Enable a tracepoint on the target. */
729 void (*to_enable_tracepoint) (struct bp_location *location);
730
731 /* Disable a tracepoint on the target. */
732 void (*to_disable_tracepoint) (struct bp_location *location);
733
734 /* Inform the target info of memory regions that are readonly
735 (such as text sections), and so it should return data from
736 those rather than look in the trace buffer. */
737 void (*to_trace_set_readonly_regions) (void);
738
739 /* Start a trace run. */
740 void (*to_trace_start) (void);
741
742 /* Get the current status of a tracing run. */
743 int (*to_get_trace_status) (struct trace_status *ts);
744
745 void (*to_get_tracepoint_status) (struct breakpoint *tp,
746 struct uploaded_tp *utp);
747
748 /* Stop a trace run. */
749 void (*to_trace_stop) (void);
750
751 /* Ask the target to find a trace frame of the given type TYPE,
752 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
753 number of the trace frame, and also the tracepoint number at
754 TPP. If no trace frame matches, return -1. May throw if the
755 operation fails. */
756 int (*to_trace_find) (enum trace_find_type type, int num,
757 ULONGEST addr1, ULONGEST addr2, int *tpp);
758
759 /* Get the value of the trace state variable number TSV, returning
760 1 if the value is known and writing the value itself into the
761 location pointed to by VAL, else returning 0. */
762 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
763
764 int (*to_save_trace_data) (const char *filename);
765
766 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
767
768 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
769
770 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
771 ULONGEST offset, LONGEST len);
772
773 /* Get the minimum length of instruction on which a fast tracepoint
774 may be set on the target. If this operation is unsupported,
775 return -1. If for some reason the minimum length cannot be
776 determined, return 0. */
777 int (*to_get_min_fast_tracepoint_insn_len) (void);
778
779 /* Set the target's tracing behavior in response to unexpected
780 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
781 void (*to_set_disconnected_tracing) (int val);
782 void (*to_set_circular_trace_buffer) (int val);
783
784 /* Add/change textual notes about the trace run, returning 1 if
785 successful, 0 otherwise. */
786 int (*to_set_trace_notes) (char *user, char *notes, char* stopnotes);
787
788 /* Return the processor core that thread PTID was last seen on.
789 This information is updated only when:
790 - update_thread_list is called
791 - thread stops
792 If the core cannot be determined -- either for the specified
793 thread, or right now, or in this debug session, or for this
794 target -- return -1. */
795 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
796
797 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
798 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
799 a match, 0 if there's a mismatch, and -1 if an error is
800 encountered while reading memory. */
801 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
802 CORE_ADDR memaddr, ULONGEST size);
803
804 /* Return the address of the start of the Thread Information Block
805 a Windows OS specific feature. */
806 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
807
808 /* Send the new settings of write permission variables. */
809 void (*to_set_permissions) (void);
810
811 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
812 with its details. Return 1 on success, 0 on failure. */
813 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
814 struct static_tracepoint_marker *marker);
815
816 /* Return a vector of all tracepoints markers string id ID, or all
817 markers if ID is NULL. */
818 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
819 (const char *id);
820
821 /* Return a traceframe info object describing the current
822 traceframe's contents. This method should not cache data;
823 higher layers take care of caching, invalidating, and
824 re-fetching when necessary. */
825 struct traceframe_info *(*to_traceframe_info) (void);
826
827 int to_magic;
828 /* Need sub-structure for target machine related rather than comm related?
829 */
830 };
831
832 /* Magic number for checking ops size. If a struct doesn't end with this
833 number, somebody changed the declaration but didn't change all the
834 places that initialize one. */
835
836 #define OPS_MAGIC 3840
837
838 /* The ops structure for our "current" target process. This should
839 never be NULL. If there is no target, it points to the dummy_target. */
840
841 extern struct target_ops current_target;
842
843 /* Define easy words for doing these operations on our current target. */
844
845 #define target_shortname (current_target.to_shortname)
846 #define target_longname (current_target.to_longname)
847
848 /* Does whatever cleanup is required for a target that we are no
849 longer going to be calling. QUITTING indicates that GDB is exiting
850 and should not get hung on an error (otherwise it is important to
851 perform clean termination, even if it takes a while). This routine
852 is automatically always called after popping the target off the
853 target stack - the target's own methods are no longer available
854 through the target vector. Closing file descriptors and freeing all
855 memory allocated memory are typical things it should do. */
856
857 void target_close (struct target_ops *targ, int quitting);
858
859 /* Attaches to a process on the target side. Arguments are as passed
860 to the `attach' command by the user. This routine can be called
861 when the target is not on the target-stack, if the target_can_run
862 routine returns 1; in that case, it must push itself onto the stack.
863 Upon exit, the target should be ready for normal operations, and
864 should be ready to deliver the status of the process immediately
865 (without waiting) to an upcoming target_wait call. */
866
867 void target_attach (char *, int);
868
869 /* Some targets don't generate traps when attaching to the inferior,
870 or their target_attach implementation takes care of the waiting.
871 These targets must set to_attach_no_wait. */
872
873 #define target_attach_no_wait \
874 (current_target.to_attach_no_wait)
875
876 /* The target_attach operation places a process under debugger control,
877 and stops the process.
878
879 This operation provides a target-specific hook that allows the
880 necessary bookkeeping to be performed after an attach completes. */
881 #define target_post_attach(pid) \
882 (*current_target.to_post_attach) (pid)
883
884 /* Takes a program previously attached to and detaches it.
885 The program may resume execution (some targets do, some don't) and will
886 no longer stop on signals, etc. We better not have left any breakpoints
887 in the program or it'll die when it hits one. ARGS is arguments
888 typed by the user (e.g. a signal to send the process). FROM_TTY
889 says whether to be verbose or not. */
890
891 extern void target_detach (char *, int);
892
893 /* Disconnect from the current target without resuming it (leaving it
894 waiting for a debugger). */
895
896 extern void target_disconnect (char *, int);
897
898 /* Resume execution of the target process PTID. STEP says whether to
899 single-step or to run free; SIGGNAL is the signal to be given to
900 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
901 pass TARGET_SIGNAL_DEFAULT. */
902
903 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
904
905 /* Wait for process pid to do something. PTID = -1 to wait for any
906 pid to do something. Return pid of child, or -1 in case of error;
907 store status through argument pointer STATUS. Note that it is
908 _NOT_ OK to throw_exception() out of target_wait() without popping
909 the debugging target from the stack; GDB isn't prepared to get back
910 to the prompt with a debugging target but without the frame cache,
911 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
912 options. */
913
914 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
915 int options);
916
917 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
918
919 extern void target_fetch_registers (struct regcache *regcache, int regno);
920
921 /* Store at least register REGNO, or all regs if REGNO == -1.
922 It can store as many registers as it wants to, so target_prepare_to_store
923 must have been previously called. Calls error() if there are problems. */
924
925 extern void target_store_registers (struct regcache *regcache, int regs);
926
927 /* Get ready to modify the registers array. On machines which store
928 individual registers, this doesn't need to do anything. On machines
929 which store all the registers in one fell swoop, this makes sure
930 that REGISTERS contains all the registers from the program being
931 debugged. */
932
933 #define target_prepare_to_store(regcache) \
934 (*current_target.to_prepare_to_store) (regcache)
935
936 /* Determine current address space of thread PTID. */
937
938 struct address_space *target_thread_address_space (ptid_t);
939
940 /* Returns true if this target can debug multiple processes
941 simultaneously. */
942
943 #define target_supports_multi_process() \
944 (*current_target.to_supports_multi_process) ()
945
946 /* Returns true if this target can disable address space randomization. */
947
948 int target_supports_disable_randomization (void);
949
950 /* Returns true if this target can enable and disable tracepoints
951 while a trace experiment is running. */
952
953 #define target_supports_enable_disable_tracepoint() \
954 (*current_target.to_supports_enable_disable_tracepoint) ()
955
956 #define target_supports_string_tracing() \
957 (*current_target.to_supports_string_tracing) ()
958
959 /* Invalidate all target dcaches. */
960 extern void target_dcache_invalidate (void);
961
962 extern int target_read_string (CORE_ADDR, char **, int, int *);
963
964 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
965
966 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
967
968 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
969 int len);
970
971 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
972 int len);
973
974 /* Fetches the target's memory map. If one is found it is sorted
975 and returned, after some consistency checking. Otherwise, NULL
976 is returned. */
977 VEC(mem_region_s) *target_memory_map (void);
978
979 /* Erase the specified flash region. */
980 void target_flash_erase (ULONGEST address, LONGEST length);
981
982 /* Finish a sequence of flash operations. */
983 void target_flash_done (void);
984
985 /* Describes a request for a memory write operation. */
986 struct memory_write_request
987 {
988 /* Begining address that must be written. */
989 ULONGEST begin;
990 /* Past-the-end address. */
991 ULONGEST end;
992 /* The data to write. */
993 gdb_byte *data;
994 /* A callback baton for progress reporting for this request. */
995 void *baton;
996 };
997 typedef struct memory_write_request memory_write_request_s;
998 DEF_VEC_O(memory_write_request_s);
999
1000 /* Enumeration specifying different flash preservation behaviour. */
1001 enum flash_preserve_mode
1002 {
1003 flash_preserve,
1004 flash_discard
1005 };
1006
1007 /* Write several memory blocks at once. This version can be more
1008 efficient than making several calls to target_write_memory, in
1009 particular because it can optimize accesses to flash memory.
1010
1011 Moreover, this is currently the only memory access function in gdb
1012 that supports writing to flash memory, and it should be used for
1013 all cases where access to flash memory is desirable.
1014
1015 REQUESTS is the vector (see vec.h) of memory_write_request.
1016 PRESERVE_FLASH_P indicates what to do with blocks which must be
1017 erased, but not completely rewritten.
1018 PROGRESS_CB is a function that will be periodically called to provide
1019 feedback to user. It will be called with the baton corresponding
1020 to the request currently being written. It may also be called
1021 with a NULL baton, when preserved flash sectors are being rewritten.
1022
1023 The function returns 0 on success, and error otherwise. */
1024 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1025 enum flash_preserve_mode preserve_flash_p,
1026 void (*progress_cb) (ULONGEST, void *));
1027
1028 /* From infrun.c. */
1029
1030 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
1031
1032 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
1033
1034 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
1035
1036 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
1037
1038 /* Print a line about the current target. */
1039
1040 #define target_files_info() \
1041 (*current_target.to_files_info) (&current_target)
1042
1043 /* Insert a breakpoint at address BP_TGT->placed_address in the target
1044 machine. Result is 0 for success, or an errno value. */
1045
1046 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1047 struct bp_target_info *bp_tgt);
1048
1049 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1050 machine. Result is 0 for success, or an errno value. */
1051
1052 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1053 struct bp_target_info *bp_tgt);
1054
1055 /* Initialize the terminal settings we record for the inferior,
1056 before we actually run the inferior. */
1057
1058 #define target_terminal_init() \
1059 (*current_target.to_terminal_init) ()
1060
1061 /* Put the inferior's terminal settings into effect.
1062 This is preparation for starting or resuming the inferior. */
1063
1064 extern void target_terminal_inferior (void);
1065
1066 /* Put some of our terminal settings into effect,
1067 enough to get proper results from our output,
1068 but do not change into or out of RAW mode
1069 so that no input is discarded.
1070
1071 After doing this, either terminal_ours or terminal_inferior
1072 should be called to get back to a normal state of affairs. */
1073
1074 #define target_terminal_ours_for_output() \
1075 (*current_target.to_terminal_ours_for_output) ()
1076
1077 /* Put our terminal settings into effect.
1078 First record the inferior's terminal settings
1079 so they can be restored properly later. */
1080
1081 #define target_terminal_ours() \
1082 (*current_target.to_terminal_ours) ()
1083
1084 /* Save our terminal settings.
1085 This is called from TUI after entering or leaving the curses
1086 mode. Since curses modifies our terminal this call is here
1087 to take this change into account. */
1088
1089 #define target_terminal_save_ours() \
1090 (*current_target.to_terminal_save_ours) ()
1091
1092 /* Print useful information about our terminal status, if such a thing
1093 exists. */
1094
1095 #define target_terminal_info(arg, from_tty) \
1096 (*current_target.to_terminal_info) (arg, from_tty)
1097
1098 /* Kill the inferior process. Make it go away. */
1099
1100 extern void target_kill (void);
1101
1102 /* Load an executable file into the target process. This is expected
1103 to not only bring new code into the target process, but also to
1104 update GDB's symbol tables to match.
1105
1106 ARG contains command-line arguments, to be broken down with
1107 buildargv (). The first non-switch argument is the filename to
1108 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1109 0)), which is an offset to apply to the load addresses of FILE's
1110 sections. The target may define switches, or other non-switch
1111 arguments, as it pleases. */
1112
1113 extern void target_load (char *arg, int from_tty);
1114
1115 /* Start an inferior process and set inferior_ptid to its pid.
1116 EXEC_FILE is the file to run.
1117 ALLARGS is a string containing the arguments to the program.
1118 ENV is the environment vector to pass. Errors reported with error().
1119 On VxWorks and various standalone systems, we ignore exec_file. */
1120
1121 void target_create_inferior (char *exec_file, char *args,
1122 char **env, int from_tty);
1123
1124 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1125 notification of inferior events such as fork and vork immediately
1126 after the inferior is created. (This because of how gdb gets an
1127 inferior created via invoking a shell to do it. In such a scenario,
1128 if the shell init file has commands in it, the shell will fork and
1129 exec for each of those commands, and we will see each such fork
1130 event. Very bad.)
1131
1132 Such targets will supply an appropriate definition for this function. */
1133
1134 #define target_post_startup_inferior(ptid) \
1135 (*current_target.to_post_startup_inferior) (ptid)
1136
1137 /* On some targets, we can catch an inferior fork or vfork event when
1138 it occurs. These functions insert/remove an already-created
1139 catchpoint for such events. They return 0 for success, 1 if the
1140 catchpoint type is not supported and -1 for failure. */
1141
1142 #define target_insert_fork_catchpoint(pid) \
1143 (*current_target.to_insert_fork_catchpoint) (pid)
1144
1145 #define target_remove_fork_catchpoint(pid) \
1146 (*current_target.to_remove_fork_catchpoint) (pid)
1147
1148 #define target_insert_vfork_catchpoint(pid) \
1149 (*current_target.to_insert_vfork_catchpoint) (pid)
1150
1151 #define target_remove_vfork_catchpoint(pid) \
1152 (*current_target.to_remove_vfork_catchpoint) (pid)
1153
1154 /* If the inferior forks or vforks, this function will be called at
1155 the next resume in order to perform any bookkeeping and fiddling
1156 necessary to continue debugging either the parent or child, as
1157 requested, and releasing the other. Information about the fork
1158 or vfork event is available via get_last_target_status ().
1159 This function returns 1 if the inferior should not be resumed
1160 (i.e. there is another event pending). */
1161
1162 int target_follow_fork (int follow_child);
1163
1164 /* On some targets, we can catch an inferior exec event when it
1165 occurs. These functions insert/remove an already-created
1166 catchpoint for such events. They return 0 for success, 1 if the
1167 catchpoint type is not supported and -1 for failure. */
1168
1169 #define target_insert_exec_catchpoint(pid) \
1170 (*current_target.to_insert_exec_catchpoint) (pid)
1171
1172 #define target_remove_exec_catchpoint(pid) \
1173 (*current_target.to_remove_exec_catchpoint) (pid)
1174
1175 /* Syscall catch.
1176
1177 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1178 If NEEDED is zero, it means the target can disable the mechanism to
1179 catch system calls because there are no more catchpoints of this type.
1180
1181 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1182 being requested. In this case, both TABLE_SIZE and TABLE should
1183 be ignored.
1184
1185 TABLE_SIZE is the number of elements in TABLE. It only matters if
1186 ANY_COUNT is zero.
1187
1188 TABLE is an array of ints, indexed by syscall number. An element in
1189 this array is nonzero if that syscall should be caught. This argument
1190 only matters if ANY_COUNT is zero.
1191
1192 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1193 for failure. */
1194
1195 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1196 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1197 table_size, table)
1198
1199 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1200 exit code of PID, if any. */
1201
1202 #define target_has_exited(pid,wait_status,exit_status) \
1203 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1204
1205 /* The debugger has completed a blocking wait() call. There is now
1206 some process event that must be processed. This function should
1207 be defined by those targets that require the debugger to perform
1208 cleanup or internal state changes in response to the process event. */
1209
1210 /* The inferior process has died. Do what is right. */
1211
1212 void target_mourn_inferior (void);
1213
1214 /* Does target have enough data to do a run or attach command? */
1215
1216 #define target_can_run(t) \
1217 ((t)->to_can_run) ()
1218
1219 /* Set list of signals to be handled in the target.
1220
1221 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1222 (enum target_signal). For every signal whose entry in this array is
1223 non-zero, the target is allowed -but not required- to skip reporting
1224 arrival of the signal to the GDB core by returning from target_wait,
1225 and to pass the signal directly to the inferior instead.
1226
1227 However, if the target is hardware single-stepping a thread that is
1228 about to receive a signal, it needs to be reported in any case, even
1229 if mentioned in a previous target_pass_signals call. */
1230
1231 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1232
1233 /* Check to see if a thread is still alive. */
1234
1235 extern int target_thread_alive (ptid_t ptid);
1236
1237 /* Query for new threads and add them to the thread list. */
1238
1239 extern void target_find_new_threads (void);
1240
1241 /* Make target stop in a continuable fashion. (For instance, under
1242 Unix, this should act like SIGSTOP). This function is normally
1243 used by GUIs to implement a stop button. */
1244
1245 extern void target_stop (ptid_t ptid);
1246
1247 /* Send the specified COMMAND to the target's monitor
1248 (shell,interpreter) for execution. The result of the query is
1249 placed in OUTBUF. */
1250
1251 #define target_rcmd(command, outbuf) \
1252 (*current_target.to_rcmd) (command, outbuf)
1253
1254
1255 /* Does the target include all of memory, or only part of it? This
1256 determines whether we look up the target chain for other parts of
1257 memory if this target can't satisfy a request. */
1258
1259 extern int target_has_all_memory_1 (void);
1260 #define target_has_all_memory target_has_all_memory_1 ()
1261
1262 /* Does the target include memory? (Dummy targets don't.) */
1263
1264 extern int target_has_memory_1 (void);
1265 #define target_has_memory target_has_memory_1 ()
1266
1267 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1268 we start a process.) */
1269
1270 extern int target_has_stack_1 (void);
1271 #define target_has_stack target_has_stack_1 ()
1272
1273 /* Does the target have registers? (Exec files don't.) */
1274
1275 extern int target_has_registers_1 (void);
1276 #define target_has_registers target_has_registers_1 ()
1277
1278 /* Does the target have execution? Can we make it jump (through
1279 hoops), or pop its stack a few times? This means that the current
1280 target is currently executing; for some targets, that's the same as
1281 whether or not the target is capable of execution, but there are
1282 also targets which can be current while not executing. In that
1283 case this will become true after target_create_inferior or
1284 target_attach. */
1285
1286 extern int target_has_execution_1 (ptid_t);
1287
1288 /* Like target_has_execution_1, but always passes inferior_ptid. */
1289
1290 extern int target_has_execution_current (void);
1291
1292 #define target_has_execution target_has_execution_current ()
1293
1294 /* Default implementations for process_stratum targets. Return true
1295 if there's a selected inferior, false otherwise. */
1296
1297 extern int default_child_has_all_memory (struct target_ops *ops);
1298 extern int default_child_has_memory (struct target_ops *ops);
1299 extern int default_child_has_stack (struct target_ops *ops);
1300 extern int default_child_has_registers (struct target_ops *ops);
1301 extern int default_child_has_execution (struct target_ops *ops,
1302 ptid_t the_ptid);
1303
1304 /* Can the target support the debugger control of thread execution?
1305 Can it lock the thread scheduler? */
1306
1307 #define target_can_lock_scheduler \
1308 (current_target.to_has_thread_control & tc_schedlock)
1309
1310 /* Should the target enable async mode if it is supported? Temporary
1311 cludge until async mode is a strict superset of sync mode. */
1312 extern int target_async_permitted;
1313
1314 /* Can the target support asynchronous execution? */
1315 #define target_can_async_p() (current_target.to_can_async_p ())
1316
1317 /* Is the target in asynchronous execution mode? */
1318 #define target_is_async_p() (current_target.to_is_async_p ())
1319
1320 int target_supports_non_stop (void);
1321
1322 /* Put the target in async mode with the specified callback function. */
1323 #define target_async(CALLBACK,CONTEXT) \
1324 (current_target.to_async ((CALLBACK), (CONTEXT)))
1325
1326 #define target_execution_direction() \
1327 (current_target.to_execution_direction ())
1328
1329 /* Converts a process id to a string. Usually, the string just contains
1330 `process xyz', but on some systems it may contain
1331 `process xyz thread abc'. */
1332
1333 extern char *target_pid_to_str (ptid_t ptid);
1334
1335 extern char *normal_pid_to_str (ptid_t ptid);
1336
1337 /* Return a short string describing extra information about PID,
1338 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1339 is okay. */
1340
1341 #define target_extra_thread_info(TP) \
1342 (current_target.to_extra_thread_info (TP))
1343
1344 /* Return the thread's name. A NULL result means that the target
1345 could not determine this thread's name. */
1346
1347 extern char *target_thread_name (struct thread_info *);
1348
1349 /* Attempts to find the pathname of the executable file
1350 that was run to create a specified process.
1351
1352 The process PID must be stopped when this operation is used.
1353
1354 If the executable file cannot be determined, NULL is returned.
1355
1356 Else, a pointer to a character string containing the pathname
1357 is returned. This string should be copied into a buffer by
1358 the client if the string will not be immediately used, or if
1359 it must persist. */
1360
1361 #define target_pid_to_exec_file(pid) \
1362 (current_target.to_pid_to_exec_file) (pid)
1363
1364 /* See the to_thread_architecture description in struct target_ops. */
1365
1366 #define target_thread_architecture(ptid) \
1367 (current_target.to_thread_architecture (&current_target, ptid))
1368
1369 /*
1370 * Iterator function for target memory regions.
1371 * Calls a callback function once for each memory region 'mapped'
1372 * in the child process. Defined as a simple macro rather than
1373 * as a function macro so that it can be tested for nullity.
1374 */
1375
1376 #define target_find_memory_regions(FUNC, DATA) \
1377 (current_target.to_find_memory_regions) (FUNC, DATA)
1378
1379 /*
1380 * Compose corefile .note section.
1381 */
1382
1383 #define target_make_corefile_notes(BFD, SIZE_P) \
1384 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1385
1386 /* Bookmark interfaces. */
1387 #define target_get_bookmark(ARGS, FROM_TTY) \
1388 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1389
1390 #define target_goto_bookmark(ARG, FROM_TTY) \
1391 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1392
1393 /* Hardware watchpoint interfaces. */
1394
1395 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1396 write). Only the INFERIOR_PTID task is being queried. */
1397
1398 #define target_stopped_by_watchpoint \
1399 (*current_target.to_stopped_by_watchpoint)
1400
1401 /* Non-zero if we have steppable watchpoints */
1402
1403 #define target_have_steppable_watchpoint \
1404 (current_target.to_have_steppable_watchpoint)
1405
1406 /* Non-zero if we have continuable watchpoints */
1407
1408 #define target_have_continuable_watchpoint \
1409 (current_target.to_have_continuable_watchpoint)
1410
1411 /* Provide defaults for hardware watchpoint functions. */
1412
1413 /* If the *_hw_beakpoint functions have not been defined
1414 elsewhere use the definitions in the target vector. */
1415
1416 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1417 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1418 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1419 (including this one?). OTHERTYPE is who knows what... */
1420
1421 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1422 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1423
1424 /* Returns the number of debug registers needed to watch the given
1425 memory region, or zero if not supported. */
1426
1427 #define target_region_ok_for_hw_watchpoint(addr, len) \
1428 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1429
1430
1431 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1432 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1433 COND is the expression for its condition, or NULL if there's none.
1434 Returns 0 for success, 1 if the watchpoint type is not supported,
1435 -1 for failure. */
1436
1437 #define target_insert_watchpoint(addr, len, type, cond) \
1438 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1439
1440 #define target_remove_watchpoint(addr, len, type, cond) \
1441 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1442
1443 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1444 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1445 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1446 masked watchpoints are not supported, -1 for failure. */
1447
1448 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1449
1450 /* Remove a masked watchpoint at ADDR with the mask MASK.
1451 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1452 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1453 for failure. */
1454
1455 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1456
1457 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1458 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1459
1460 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1461 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1462
1463 /* Return number of debug registers needed for a ranged breakpoint,
1464 or -1 if ranged breakpoints are not supported. */
1465
1466 extern int target_ranged_break_num_registers (void);
1467
1468 /* Return non-zero if target knows the data address which triggered this
1469 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1470 INFERIOR_PTID task is being queried. */
1471 #define target_stopped_data_address(target, addr_p) \
1472 (*target.to_stopped_data_address) (target, addr_p)
1473
1474 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1475 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1476
1477 /* Return non-zero if the target is capable of using hardware to evaluate
1478 the condition expression. In this case, if the condition is false when
1479 the watched memory location changes, execution may continue without the
1480 debugger being notified.
1481
1482 Due to limitations in the hardware implementation, it may be capable of
1483 avoiding triggering the watchpoint in some cases where the condition
1484 expression is false, but may report some false positives as well.
1485 For this reason, GDB will still evaluate the condition expression when
1486 the watchpoint triggers. */
1487 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1488 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1489
1490 /* Return number of debug registers needed for a masked watchpoint,
1491 -1 if masked watchpoints are not supported or -2 if the given address
1492 and mask combination cannot be used. */
1493
1494 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1495
1496 /* Target can execute in reverse? */
1497 #define target_can_execute_reverse \
1498 (current_target.to_can_execute_reverse ? \
1499 current_target.to_can_execute_reverse () : 0)
1500
1501 extern const struct target_desc *target_read_description (struct target_ops *);
1502
1503 #define target_get_ada_task_ptid(lwp, tid) \
1504 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1505
1506 /* Utility implementation of searching memory. */
1507 extern int simple_search_memory (struct target_ops* ops,
1508 CORE_ADDR start_addr,
1509 ULONGEST search_space_len,
1510 const gdb_byte *pattern,
1511 ULONGEST pattern_len,
1512 CORE_ADDR *found_addrp);
1513
1514 /* Main entry point for searching memory. */
1515 extern int target_search_memory (CORE_ADDR start_addr,
1516 ULONGEST search_space_len,
1517 const gdb_byte *pattern,
1518 ULONGEST pattern_len,
1519 CORE_ADDR *found_addrp);
1520
1521 /* Target file operations. */
1522
1523 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1524 target file descriptor, or -1 if an error occurs (and set
1525 *TARGET_ERRNO). */
1526 extern int target_fileio_open (const char *filename, int flags, int mode,
1527 int *target_errno);
1528
1529 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1530 Return the number of bytes written, or -1 if an error occurs
1531 (and set *TARGET_ERRNO). */
1532 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1533 ULONGEST offset, int *target_errno);
1534
1535 /* Read up to LEN bytes FD on the target into READ_BUF.
1536 Return the number of bytes read, or -1 if an error occurs
1537 (and set *TARGET_ERRNO). */
1538 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1539 ULONGEST offset, int *target_errno);
1540
1541 /* Close FD on the target. Return 0, or -1 if an error occurs
1542 (and set *TARGET_ERRNO). */
1543 extern int target_fileio_close (int fd, int *target_errno);
1544
1545 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1546 occurs (and set *TARGET_ERRNO). */
1547 extern int target_fileio_unlink (const char *filename, int *target_errno);
1548
1549 /* Read target file FILENAME. The return value will be -1 if the transfer
1550 fails or is not supported; 0 if the object is empty; or the length
1551 of the object otherwise. If a positive value is returned, a
1552 sufficiently large buffer will be allocated using xmalloc and
1553 returned in *BUF_P containing the contents of the object.
1554
1555 This method should be used for objects sufficiently small to store
1556 in a single xmalloc'd buffer, when no fixed bound on the object's
1557 size is known in advance. */
1558 extern LONGEST target_fileio_read_alloc (const char *filename,
1559 gdb_byte **buf_p);
1560
1561 /* Read target file FILENAME. The result is NUL-terminated and
1562 returned as a string, allocated using xmalloc. If an error occurs
1563 or the transfer is unsupported, NULL is returned. Empty objects
1564 are returned as allocated but empty strings. A warning is issued
1565 if the result contains any embedded NUL bytes. */
1566 extern char *target_fileio_read_stralloc (const char *filename);
1567
1568
1569 /* Tracepoint-related operations. */
1570
1571 #define target_trace_init() \
1572 (*current_target.to_trace_init) ()
1573
1574 #define target_download_tracepoint(t) \
1575 (*current_target.to_download_tracepoint) (t)
1576
1577 #define target_can_download_tracepoint() \
1578 (*current_target.to_can_download_tracepoint) ()
1579
1580 #define target_download_trace_state_variable(tsv) \
1581 (*current_target.to_download_trace_state_variable) (tsv)
1582
1583 #define target_enable_tracepoint(loc) \
1584 (*current_target.to_enable_tracepoint) (loc)
1585
1586 #define target_disable_tracepoint(loc) \
1587 (*current_target.to_disable_tracepoint) (loc)
1588
1589 #define target_trace_start() \
1590 (*current_target.to_trace_start) ()
1591
1592 #define target_trace_set_readonly_regions() \
1593 (*current_target.to_trace_set_readonly_regions) ()
1594
1595 #define target_get_trace_status(ts) \
1596 (*current_target.to_get_trace_status) (ts)
1597
1598 #define target_get_tracepoint_status(tp,utp) \
1599 (*current_target.to_get_tracepoint_status) (tp, utp)
1600
1601 #define target_trace_stop() \
1602 (*current_target.to_trace_stop) ()
1603
1604 #define target_trace_find(type,num,addr1,addr2,tpp) \
1605 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1606
1607 #define target_get_trace_state_variable_value(tsv,val) \
1608 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1609
1610 #define target_save_trace_data(filename) \
1611 (*current_target.to_save_trace_data) (filename)
1612
1613 #define target_upload_tracepoints(utpp) \
1614 (*current_target.to_upload_tracepoints) (utpp)
1615
1616 #define target_upload_trace_state_variables(utsvp) \
1617 (*current_target.to_upload_trace_state_variables) (utsvp)
1618
1619 #define target_get_raw_trace_data(buf,offset,len) \
1620 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1621
1622 #define target_get_min_fast_tracepoint_insn_len() \
1623 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1624
1625 #define target_set_disconnected_tracing(val) \
1626 (*current_target.to_set_disconnected_tracing) (val)
1627
1628 #define target_set_circular_trace_buffer(val) \
1629 (*current_target.to_set_circular_trace_buffer) (val)
1630
1631 #define target_set_trace_notes(user,notes,stopnotes) \
1632 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1633
1634 #define target_get_tib_address(ptid, addr) \
1635 (*current_target.to_get_tib_address) ((ptid), (addr))
1636
1637 #define target_set_permissions() \
1638 (*current_target.to_set_permissions) ()
1639
1640 #define target_static_tracepoint_marker_at(addr, marker) \
1641 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1642
1643 #define target_static_tracepoint_markers_by_strid(marker_id) \
1644 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1645
1646 #define target_traceframe_info() \
1647 (*current_target.to_traceframe_info) ()
1648
1649 /* Command logging facility. */
1650
1651 #define target_log_command(p) \
1652 do \
1653 if (current_target.to_log_command) \
1654 (*current_target.to_log_command) (p); \
1655 while (0)
1656
1657
1658 extern int target_core_of_thread (ptid_t ptid);
1659
1660 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1661 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1662 if there's a mismatch, and -1 if an error is encountered while
1663 reading memory. Throws an error if the functionality is found not
1664 to be supported by the current target. */
1665 int target_verify_memory (const gdb_byte *data,
1666 CORE_ADDR memaddr, ULONGEST size);
1667
1668 /* Routines for maintenance of the target structures...
1669
1670 add_target: Add a target to the list of all possible targets.
1671
1672 push_target: Make this target the top of the stack of currently used
1673 targets, within its particular stratum of the stack. Result
1674 is 0 if now atop the stack, nonzero if not on top (maybe
1675 should warn user).
1676
1677 unpush_target: Remove this from the stack of currently used targets,
1678 no matter where it is on the list. Returns 0 if no
1679 change, 1 if removed from stack.
1680
1681 pop_target: Remove the top thing on the stack of current targets. */
1682
1683 extern void add_target (struct target_ops *);
1684
1685 extern void push_target (struct target_ops *);
1686
1687 extern int unpush_target (struct target_ops *);
1688
1689 extern void target_pre_inferior (int);
1690
1691 extern void target_preopen (int);
1692
1693 extern void pop_target (void);
1694
1695 /* Does whatever cleanup is required to get rid of all pushed targets.
1696 QUITTING is propagated to target_close; it indicates that GDB is
1697 exiting and should not get hung on an error (otherwise it is
1698 important to perform clean termination, even if it takes a
1699 while). */
1700 extern void pop_all_targets (int quitting);
1701
1702 /* Like pop_all_targets, but pops only targets whose stratum is
1703 strictly above ABOVE_STRATUM. */
1704 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1705
1706 extern int target_is_pushed (struct target_ops *t);
1707
1708 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1709 CORE_ADDR offset);
1710
1711 /* Struct target_section maps address ranges to file sections. It is
1712 mostly used with BFD files, but can be used without (e.g. for handling
1713 raw disks, or files not in formats handled by BFD). */
1714
1715 struct target_section
1716 {
1717 CORE_ADDR addr; /* Lowest address in section */
1718 CORE_ADDR endaddr; /* 1+highest address in section */
1719
1720 struct bfd_section *the_bfd_section;
1721
1722 bfd *bfd; /* BFD file pointer */
1723 };
1724
1725 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1726
1727 struct target_section_table
1728 {
1729 struct target_section *sections;
1730 struct target_section *sections_end;
1731 };
1732
1733 /* Return the "section" containing the specified address. */
1734 struct target_section *target_section_by_addr (struct target_ops *target,
1735 CORE_ADDR addr);
1736
1737 /* Return the target section table this target (or the targets
1738 beneath) currently manipulate. */
1739
1740 extern struct target_section_table *target_get_section_table
1741 (struct target_ops *target);
1742
1743 /* From mem-break.c */
1744
1745 extern int memory_remove_breakpoint (struct gdbarch *,
1746 struct bp_target_info *);
1747
1748 extern int memory_insert_breakpoint (struct gdbarch *,
1749 struct bp_target_info *);
1750
1751 extern int default_memory_remove_breakpoint (struct gdbarch *,
1752 struct bp_target_info *);
1753
1754 extern int default_memory_insert_breakpoint (struct gdbarch *,
1755 struct bp_target_info *);
1756
1757
1758 /* From target.c */
1759
1760 extern void initialize_targets (void);
1761
1762 extern void noprocess (void) ATTRIBUTE_NORETURN;
1763
1764 extern void target_require_runnable (void);
1765
1766 extern void find_default_attach (struct target_ops *, char *, int);
1767
1768 extern void find_default_create_inferior (struct target_ops *,
1769 char *, char *, char **, int);
1770
1771 extern struct target_ops *find_run_target (void);
1772
1773 extern struct target_ops *find_target_beneath (struct target_ops *);
1774
1775 /* Read OS data object of type TYPE from the target, and return it in
1776 XML format. The result is NUL-terminated and returned as a string,
1777 allocated using xmalloc. If an error occurs or the transfer is
1778 unsupported, NULL is returned. Empty objects are returned as
1779 allocated but empty strings. */
1780
1781 extern char *target_get_osdata (const char *type);
1782
1783 \f
1784 /* Stuff that should be shared among the various remote targets. */
1785
1786 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1787 information (higher values, more information). */
1788 extern int remote_debug;
1789
1790 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1791 extern int baud_rate;
1792 /* Timeout limit for response from target. */
1793 extern int remote_timeout;
1794
1795 \f
1796 /* Functions for helping to write a native target. */
1797
1798 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1799 extern void store_waitstatus (struct target_waitstatus *, int);
1800
1801 /* These are in common/signals.c, but they're only used by gdb. */
1802 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1803 int);
1804 extern int default_target_signal_to_host (struct gdbarch *,
1805 enum target_signal);
1806
1807 /* Convert from a number used in a GDB command to an enum target_signal. */
1808 extern enum target_signal target_signal_from_command (int);
1809 /* End of files in common/signals.c. */
1810
1811 /* Set the show memory breakpoints mode to show, and installs a cleanup
1812 to restore it back to the current value. */
1813 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1814
1815 extern int may_write_registers;
1816 extern int may_write_memory;
1817 extern int may_insert_breakpoints;
1818 extern int may_insert_tracepoints;
1819 extern int may_insert_fast_tracepoints;
1820 extern int may_stop;
1821
1822 extern void update_target_permissions (void);
1823
1824 \f
1825 /* Imported from machine dependent code. */
1826
1827 /* Blank target vector entries are initialized to target_ignore. */
1828 void target_ignore (void);
1829
1830 #endif /* !defined (TARGET_H) */
This page took 0.131922 seconds and 3 git commands to generate.