s390: Clean up s390-linux-tdep.c
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "common/scoped_restore.h"
46
47 /* This include file defines the interface between the main part
48 of the debugger, and the part which is target-specific, or
49 specific to the communications interface between us and the
50 target.
51
52 A TARGET is an interface between the debugger and a particular
53 kind of file or process. Targets can be STACKED in STRATA,
54 so that more than one target can potentially respond to a request.
55 In particular, memory accesses will walk down the stack of targets
56 until they find a target that is interested in handling that particular
57 address. STRATA are artificial boundaries on the stack, within
58 which particular kinds of targets live. Strata exist so that
59 people don't get confused by pushing e.g. a process target and then
60 a file target, and wondering why they can't see the current values
61 of variables any more (the file target is handling them and they
62 never get to the process target). So when you push a file target,
63 it goes into the file stratum, which is always below the process
64 stratum. */
65
66 #include "target/target.h"
67 #include "target/resume.h"
68 #include "target/wait.h"
69 #include "target/waitstatus.h"
70 #include "bfd.h"
71 #include "symtab.h"
72 #include "memattr.h"
73 #include "vec.h"
74 #include "gdb_signals.h"
75 #include "btrace.h"
76 #include "record.h"
77 #include "command.h"
78 #include "disasm.h"
79 #include "tracepoint.h"
80
81 #include "break-common.h" /* For enum target_hw_bp_type. */
82
83 enum strata
84 {
85 dummy_stratum, /* The lowest of the low */
86 file_stratum, /* Executable files, etc */
87 process_stratum, /* Executing processes or core dump files */
88 thread_stratum, /* Executing threads */
89 record_stratum, /* Support record debugging */
90 arch_stratum /* Architecture overrides */
91 };
92
93 enum thread_control_capabilities
94 {
95 tc_none = 0, /* Default: can't control thread execution. */
96 tc_schedlock = 1, /* Can lock the thread scheduler. */
97 };
98
99 /* The structure below stores information about a system call.
100 It is basically used in the "catch syscall" command, and in
101 every function that gives information about a system call.
102
103 It's also good to mention that its fields represent everything
104 that we currently know about a syscall in GDB. */
105 struct syscall
106 {
107 /* The syscall number. */
108 int number;
109
110 /* The syscall name. */
111 const char *name;
112 };
113
114 /* Return a pretty printed form of TARGET_OPTIONS.
115 Space for the result is malloc'd, caller must free. */
116 extern char *target_options_to_string (int target_options);
117
118 /* Possible types of events that the inferior handler will have to
119 deal with. */
120 enum inferior_event_type
121 {
122 /* Process a normal inferior event which will result in target_wait
123 being called. */
124 INF_REG_EVENT,
125 /* We are called to do stuff after the inferior stops. */
126 INF_EXEC_COMPLETE,
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* Traceframe info, in XML format. */
185 TARGET_OBJECT_TRACEFRAME_INFO,
186 /* Load maps for FDPIC systems. */
187 TARGET_OBJECT_FDPIC,
188 /* Darwin dynamic linker info data. */
189 TARGET_OBJECT_DARWIN_DYLD_INFO,
190 /* OpenVMS Unwind Information Block. */
191 TARGET_OBJECT_OPENVMS_UIB,
192 /* Branch trace data, in XML format. */
193 TARGET_OBJECT_BTRACE,
194 /* Branch trace configuration, in XML format. */
195 TARGET_OBJECT_BTRACE_CONF,
196 /* The pathname of the executable file that was run to create
197 a specified process. ANNEX should be a string representation
198 of the process ID of the process in question, in hexadecimal
199 format. */
200 TARGET_OBJECT_EXEC_FILE,
201 /* Possible future objects: TARGET_OBJECT_FILE, ... */
202 };
203
204 /* Possible values returned by target_xfer_partial, etc. */
205
206 enum target_xfer_status
207 {
208 /* Some bytes are transferred. */
209 TARGET_XFER_OK = 1,
210
211 /* No further transfer is possible. */
212 TARGET_XFER_EOF = 0,
213
214 /* The piece of the object requested is unavailable. */
215 TARGET_XFER_UNAVAILABLE = 2,
216
217 /* Generic I/O error. Note that it's important that this is '-1',
218 as we still have target_xfer-related code returning hardcoded
219 '-1' on error. */
220 TARGET_XFER_E_IO = -1,
221
222 /* Keep list in sync with target_xfer_status_to_string. */
223 };
224
225 /* Return the string form of STATUS. */
226
227 extern const char *
228 target_xfer_status_to_string (enum target_xfer_status status);
229
230 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
231 DEF_VEC_P(static_tracepoint_marker_p);
232
233 typedef enum target_xfer_status
234 target_xfer_partial_ftype (struct target_ops *ops,
235 enum target_object object,
236 const char *annex,
237 gdb_byte *readbuf,
238 const gdb_byte *writebuf,
239 ULONGEST offset,
240 ULONGEST len,
241 ULONGEST *xfered_len);
242
243 enum target_xfer_status
244 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
245 const gdb_byte *writebuf, ULONGEST memaddr,
246 LONGEST len, ULONGEST *xfered_len);
247
248 /* Request that OPS transfer up to LEN addressable units of the target's
249 OBJECT. When reading from a memory object, the size of an addressable unit
250 is architecture dependent and can be found using
251 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
252 byte long. BUF should point to a buffer large enough to hold the read data,
253 taking into account the addressable unit size. The OFFSET, for a seekable
254 object, specifies the starting point. The ANNEX can be used to provide
255 additional data-specific information to the target.
256
257 Return the number of addressable units actually transferred, or a negative
258 error code (an 'enum target_xfer_error' value) if the transfer is not
259 supported or otherwise fails. Return of a positive value less than
260 LEN indicates that no further transfer is possible. Unlike the raw
261 to_xfer_partial interface, callers of these functions do not need
262 to retry partial transfers. */
263
264 extern LONGEST target_read (struct target_ops *ops,
265 enum target_object object,
266 const char *annex, gdb_byte *buf,
267 ULONGEST offset, LONGEST len);
268
269 struct memory_read_result
270 {
271 memory_read_result (ULONGEST begin_, ULONGEST end_,
272 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
273 : begin (begin_),
274 end (end_),
275 data (std::move (data_))
276 {
277 }
278
279 ~memory_read_result () = default;
280
281 memory_read_result (memory_read_result &&other) = default;
282
283 DISABLE_COPY_AND_ASSIGN (memory_read_result);
284
285 /* First address that was read. */
286 ULONGEST begin;
287 /* Past-the-end address. */
288 ULONGEST end;
289 /* The data. */
290 gdb::unique_xmalloc_ptr<gdb_byte> data;
291 };
292
293 extern std::vector<memory_read_result> read_memory_robust
294 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
295
296 /* Request that OPS transfer up to LEN addressable units from BUF to the
297 target's OBJECT. When writing to a memory object, the addressable unit
298 size is architecture dependent and can be found using
299 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
300 byte long. The OFFSET, for a seekable object, specifies the starting point.
301 The ANNEX can be used to provide additional data-specific information to
302 the target.
303
304 Return the number of addressable units actually transferred, or a negative
305 error code (an 'enum target_xfer_status' value) if the transfer is not
306 supported or otherwise fails. Return of a positive value less than
307 LEN indicates that no further transfer is possible. Unlike the raw
308 to_xfer_partial interface, callers of these functions do not need to
309 retry partial transfers. */
310
311 extern LONGEST target_write (struct target_ops *ops,
312 enum target_object object,
313 const char *annex, const gdb_byte *buf,
314 ULONGEST offset, LONGEST len);
315
316 /* Similar to target_write, except that it also calls PROGRESS with
317 the number of bytes written and the opaque BATON after every
318 successful partial write (and before the first write). This is
319 useful for progress reporting and user interaction while writing
320 data. To abort the transfer, the progress callback can throw an
321 exception. */
322
323 LONGEST target_write_with_progress (struct target_ops *ops,
324 enum target_object object,
325 const char *annex, const gdb_byte *buf,
326 ULONGEST offset, LONGEST len,
327 void (*progress) (ULONGEST, void *),
328 void *baton);
329
330 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
331 be read using OPS. The return value will be -1 if the transfer
332 fails or is not supported; 0 if the object is empty; or the length
333 of the object otherwise. If a positive value is returned, a
334 sufficiently large buffer will be allocated using xmalloc and
335 returned in *BUF_P containing the contents of the object.
336
337 This method should be used for objects sufficiently small to store
338 in a single xmalloc'd buffer, when no fixed bound on the object's
339 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
340 through this function. */
341
342 extern LONGEST target_read_alloc (struct target_ops *ops,
343 enum target_object object,
344 const char *annex, gdb_byte **buf_p);
345
346 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
347 returned as a string. If an error occurs or the transfer is
348 unsupported, NULL is returned. Empty objects are returned as
349 allocated but empty strings. A warning is issued if the result
350 contains any embedded NUL bytes. */
351
352 extern gdb::unique_xmalloc_ptr<char> target_read_stralloc
353 (struct target_ops *ops, enum target_object object, const char *annex);
354
355 /* See target_ops->to_xfer_partial. */
356 extern target_xfer_partial_ftype target_xfer_partial;
357
358 /* Wrappers to target read/write that perform memory transfers. They
359 throw an error if the memory transfer fails.
360
361 NOTE: cagney/2003-10-23: The naming schema is lifted from
362 "frame.h". The parameter order is lifted from get_frame_memory,
363 which in turn lifted it from read_memory. */
364
365 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
366 gdb_byte *buf, LONGEST len);
367 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
368 CORE_ADDR addr, int len,
369 enum bfd_endian byte_order);
370 \f
371 struct thread_info; /* fwd decl for parameter list below: */
372
373 /* The type of the callback to the to_async method. */
374
375 typedef void async_callback_ftype (enum inferior_event_type event_type,
376 void *context);
377
378 /* Normally target debug printing is purely type-based. However,
379 sometimes it is necessary to override the debug printing on a
380 per-argument basis. This macro can be used, attribute-style, to
381 name the target debug printing function for a particular method
382 argument. FUNC is the name of the function. The macro's
383 definition is empty because it is only used by the
384 make-target-delegates script. */
385
386 #define TARGET_DEBUG_PRINTER(FUNC)
387
388 /* These defines are used to mark target_ops methods. The script
389 make-target-delegates scans these and auto-generates the base
390 method implementations. There are four macros that can be used:
391
392 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
393 does nothing. This is only valid if the method return type is
394 'void'.
395
396 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
397 'tcomplain ()'. The base method simply makes this call, which is
398 assumed not to return.
399
400 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
401 base method returns this expression's value.
402
403 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
404 make-target-delegates does not generate a base method in this case,
405 but instead uses the argument function as the base method. */
406
407 #define TARGET_DEFAULT_IGNORE()
408 #define TARGET_DEFAULT_NORETURN(ARG)
409 #define TARGET_DEFAULT_RETURN(ARG)
410 #define TARGET_DEFAULT_FUNC(ARG)
411
412 struct target_ops
413 {
414 struct target_ops *beneath; /* To the target under this one. */
415 const char *to_shortname; /* Name this target type */
416 const char *to_longname; /* Name for printing */
417 const char *to_doc; /* Documentation. Does not include trailing
418 newline, and starts with a one-line descrip-
419 tion (probably similar to to_longname). */
420 /* Per-target scratch pad. */
421 void *to_data;
422 /* The open routine takes the rest of the parameters from the
423 command, and (if successful) pushes a new target onto the
424 stack. Targets should supply this routine, if only to provide
425 an error message. */
426 void (*to_open) (const char *, int);
427 /* Old targets with a static target vector provide "to_close".
428 New re-entrant targets provide "to_xclose" and that is expected
429 to xfree everything (including the "struct target_ops"). */
430 void (*to_xclose) (struct target_ops *targ);
431 void (*to_close) (struct target_ops *);
432 /* Attaches to a process on the target side. Arguments are as
433 passed to the `attach' command by the user. This routine can
434 be called when the target is not on the target-stack, if the
435 target_can_run routine returns 1; in that case, it must push
436 itself onto the stack. Upon exit, the target should be ready
437 for normal operations, and should be ready to deliver the
438 status of the process immediately (without waiting) to an
439 upcoming target_wait call. */
440 void (*to_attach) (struct target_ops *ops, const char *, int);
441 void (*to_post_attach) (struct target_ops *, int)
442 TARGET_DEFAULT_IGNORE ();
443 void (*to_detach) (struct target_ops *ops, inferior *, int)
444 TARGET_DEFAULT_IGNORE ();
445 void (*to_disconnect) (struct target_ops *, const char *, int)
446 TARGET_DEFAULT_NORETURN (tcomplain ());
447 void (*to_resume) (struct target_ops *, ptid_t,
448 int TARGET_DEBUG_PRINTER (target_debug_print_step),
449 enum gdb_signal)
450 TARGET_DEFAULT_NORETURN (noprocess ());
451 void (*to_commit_resume) (struct target_ops *)
452 TARGET_DEFAULT_IGNORE ();
453 ptid_t (*to_wait) (struct target_ops *,
454 ptid_t, struct target_waitstatus *,
455 int TARGET_DEBUG_PRINTER (target_debug_print_options))
456 TARGET_DEFAULT_FUNC (default_target_wait);
457 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
458 TARGET_DEFAULT_IGNORE ();
459 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
460 TARGET_DEFAULT_NORETURN (noprocess ());
461 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
462 TARGET_DEFAULT_NORETURN (noprocess ());
463
464 void (*to_files_info) (struct target_ops *)
465 TARGET_DEFAULT_IGNORE ();
466 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
467 struct bp_target_info *)
468 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
469 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
470 struct bp_target_info *,
471 enum remove_bp_reason)
472 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
473
474 /* Returns true if the target stopped because it executed a
475 software breakpoint. This is necessary for correct background
476 execution / non-stop mode operation, and for correct PC
477 adjustment on targets where the PC needs to be adjusted when a
478 software breakpoint triggers. In these modes, by the time GDB
479 processes a breakpoint event, the breakpoint may already be
480 done from the target, so GDB needs to be able to tell whether
481 it should ignore the event and whether it should adjust the PC.
482 See adjust_pc_after_break. */
483 int (*to_stopped_by_sw_breakpoint) (struct target_ops *)
484 TARGET_DEFAULT_RETURN (0);
485 /* Returns true if the above method is supported. */
486 int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *)
487 TARGET_DEFAULT_RETURN (0);
488
489 /* Returns true if the target stopped for a hardware breakpoint.
490 Likewise, if the target supports hardware breakpoints, this
491 method is necessary for correct background execution / non-stop
492 mode operation. Even though hardware breakpoints do not
493 require PC adjustment, GDB needs to be able to tell whether the
494 hardware breakpoint event is a delayed event for a breakpoint
495 that is already gone and should thus be ignored. */
496 int (*to_stopped_by_hw_breakpoint) (struct target_ops *)
497 TARGET_DEFAULT_RETURN (0);
498 /* Returns true if the above method is supported. */
499 int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *)
500 TARGET_DEFAULT_RETURN (0);
501
502 int (*to_can_use_hw_breakpoint) (struct target_ops *,
503 enum bptype, int, int)
504 TARGET_DEFAULT_RETURN (0);
505 int (*to_ranged_break_num_registers) (struct target_ops *)
506 TARGET_DEFAULT_RETURN (-1);
507 int (*to_insert_hw_breakpoint) (struct target_ops *,
508 struct gdbarch *, struct bp_target_info *)
509 TARGET_DEFAULT_RETURN (-1);
510 int (*to_remove_hw_breakpoint) (struct target_ops *,
511 struct gdbarch *, struct bp_target_info *)
512 TARGET_DEFAULT_RETURN (-1);
513
514 /* Documentation of what the two routines below are expected to do is
515 provided with the corresponding target_* macros. */
516 int (*to_remove_watchpoint) (struct target_ops *, CORE_ADDR, int,
517 enum target_hw_bp_type, struct expression *)
518 TARGET_DEFAULT_RETURN (-1);
519 int (*to_insert_watchpoint) (struct target_ops *, CORE_ADDR, int,
520 enum target_hw_bp_type, struct expression *)
521 TARGET_DEFAULT_RETURN (-1);
522
523 int (*to_insert_mask_watchpoint) (struct target_ops *,
524 CORE_ADDR, CORE_ADDR,
525 enum target_hw_bp_type)
526 TARGET_DEFAULT_RETURN (1);
527 int (*to_remove_mask_watchpoint) (struct target_ops *,
528 CORE_ADDR, CORE_ADDR,
529 enum target_hw_bp_type)
530 TARGET_DEFAULT_RETURN (1);
531 int (*to_stopped_by_watchpoint) (struct target_ops *)
532 TARGET_DEFAULT_RETURN (0);
533 int to_have_steppable_watchpoint;
534 int to_have_continuable_watchpoint;
535 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
536 TARGET_DEFAULT_RETURN (0);
537 int (*to_watchpoint_addr_within_range) (struct target_ops *,
538 CORE_ADDR, CORE_ADDR, int)
539 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
540
541 /* Documentation of this routine is provided with the corresponding
542 target_* macro. */
543 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
544 CORE_ADDR, int)
545 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
546
547 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
548 CORE_ADDR, int, int,
549 struct expression *)
550 TARGET_DEFAULT_RETURN (0);
551 int (*to_masked_watch_num_registers) (struct target_ops *,
552 CORE_ADDR, CORE_ADDR)
553 TARGET_DEFAULT_RETURN (-1);
554
555 /* Return 1 for sure target can do single step. Return -1 for
556 unknown. Return 0 for target can't do. */
557 int (*to_can_do_single_step) (struct target_ops *)
558 TARGET_DEFAULT_RETURN (-1);
559
560 void (*to_terminal_init) (struct target_ops *)
561 TARGET_DEFAULT_IGNORE ();
562 void (*to_terminal_inferior) (struct target_ops *)
563 TARGET_DEFAULT_IGNORE ();
564 void (*to_terminal_ours_for_output) (struct target_ops *)
565 TARGET_DEFAULT_IGNORE ();
566 void (*to_terminal_ours) (struct target_ops *)
567 TARGET_DEFAULT_IGNORE ();
568 void (*to_terminal_info) (struct target_ops *, const char *, int)
569 TARGET_DEFAULT_FUNC (default_terminal_info);
570 void (*to_kill) (struct target_ops *)
571 TARGET_DEFAULT_NORETURN (noprocess ());
572 void (*to_load) (struct target_ops *, const char *, int)
573 TARGET_DEFAULT_NORETURN (tcomplain ());
574 /* Start an inferior process and set inferior_ptid to its pid.
575 EXEC_FILE is the file to run.
576 ALLARGS is a string containing the arguments to the program.
577 ENV is the environment vector to pass. Errors reported with error().
578 On VxWorks and various standalone systems, we ignore exec_file. */
579 void (*to_create_inferior) (struct target_ops *,
580 const char *, const std::string &,
581 char **, int);
582 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
583 TARGET_DEFAULT_IGNORE ();
584 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
585 TARGET_DEFAULT_RETURN (1);
586 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
587 TARGET_DEFAULT_RETURN (1);
588 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
589 TARGET_DEFAULT_RETURN (1);
590 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
591 TARGET_DEFAULT_RETURN (1);
592 int (*to_follow_fork) (struct target_ops *, int, int)
593 TARGET_DEFAULT_FUNC (default_follow_fork);
594 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
595 TARGET_DEFAULT_RETURN (1);
596 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
597 TARGET_DEFAULT_RETURN (1);
598 void (*to_follow_exec) (struct target_ops *, struct inferior *, char *)
599 TARGET_DEFAULT_IGNORE ();
600 int (*to_set_syscall_catchpoint) (struct target_ops *,
601 int, bool, int,
602 gdb::array_view<const int>)
603 TARGET_DEFAULT_RETURN (1);
604 int (*to_has_exited) (struct target_ops *, int, int, int *)
605 TARGET_DEFAULT_RETURN (0);
606 void (*to_mourn_inferior) (struct target_ops *)
607 TARGET_DEFAULT_FUNC (default_mourn_inferior);
608 /* Note that to_can_run is special and can be invoked on an
609 unpushed target. Targets defining this method must also define
610 to_can_async_p and to_supports_non_stop. */
611 int (*to_can_run) (struct target_ops *)
612 TARGET_DEFAULT_RETURN (0);
613
614 /* Documentation of this routine is provided with the corresponding
615 target_* macro. */
616 void (*to_pass_signals) (struct target_ops *, int,
617 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
618 TARGET_DEFAULT_IGNORE ();
619
620 /* Documentation of this routine is provided with the
621 corresponding target_* function. */
622 void (*to_program_signals) (struct target_ops *, int,
623 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
624 TARGET_DEFAULT_IGNORE ();
625
626 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
627 TARGET_DEFAULT_RETURN (0);
628 void (*to_update_thread_list) (struct target_ops *)
629 TARGET_DEFAULT_IGNORE ();
630 const char *(*to_pid_to_str) (struct target_ops *, ptid_t)
631 TARGET_DEFAULT_FUNC (default_pid_to_str);
632 const char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
633 TARGET_DEFAULT_RETURN (NULL);
634 const char *(*to_thread_name) (struct target_ops *, struct thread_info *)
635 TARGET_DEFAULT_RETURN (NULL);
636 struct thread_info *(*to_thread_handle_to_thread_info) (struct target_ops *,
637 const gdb_byte *,
638 int,
639 struct inferior *inf)
640 TARGET_DEFAULT_RETURN (NULL);
641 void (*to_stop) (struct target_ops *, ptid_t)
642 TARGET_DEFAULT_IGNORE ();
643 void (*to_interrupt) (struct target_ops *, ptid_t)
644 TARGET_DEFAULT_IGNORE ();
645 void (*to_pass_ctrlc) (struct target_ops *)
646 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
647 void (*to_rcmd) (struct target_ops *,
648 const char *command, struct ui_file *output)
649 TARGET_DEFAULT_FUNC (default_rcmd);
650 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
651 TARGET_DEFAULT_RETURN (NULL);
652 void (*to_log_command) (struct target_ops *, const char *)
653 TARGET_DEFAULT_IGNORE ();
654 struct target_section_table *(*to_get_section_table) (struct target_ops *)
655 TARGET_DEFAULT_RETURN (NULL);
656 enum strata to_stratum;
657 int (*to_has_all_memory) (struct target_ops *);
658 int (*to_has_memory) (struct target_ops *);
659 int (*to_has_stack) (struct target_ops *);
660 int (*to_has_registers) (struct target_ops *);
661 int (*to_has_execution) (struct target_ops *, ptid_t);
662 int to_has_thread_control; /* control thread execution */
663 int to_attach_no_wait;
664 /* This method must be implemented in some situations. See the
665 comment on 'to_can_run'. */
666 int (*to_can_async_p) (struct target_ops *)
667 TARGET_DEFAULT_RETURN (0);
668 int (*to_is_async_p) (struct target_ops *)
669 TARGET_DEFAULT_RETURN (0);
670 void (*to_async) (struct target_ops *, int)
671 TARGET_DEFAULT_NORETURN (tcomplain ());
672 void (*to_thread_events) (struct target_ops *, int)
673 TARGET_DEFAULT_IGNORE ();
674 /* This method must be implemented in some situations. See the
675 comment on 'to_can_run'. */
676 int (*to_supports_non_stop) (struct target_ops *)
677 TARGET_DEFAULT_RETURN (0);
678 /* Return true if the target operates in non-stop mode even with
679 "set non-stop off". */
680 int (*to_always_non_stop_p) (struct target_ops *)
681 TARGET_DEFAULT_RETURN (0);
682 /* find_memory_regions support method for gcore */
683 int (*to_find_memory_regions) (struct target_ops *,
684 find_memory_region_ftype func, void *data)
685 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
686 /* make_corefile_notes support method for gcore */
687 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
688 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
689 /* get_bookmark support method for bookmarks */
690 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
691 TARGET_DEFAULT_NORETURN (tcomplain ());
692 /* goto_bookmark support method for bookmarks */
693 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
694 TARGET_DEFAULT_NORETURN (tcomplain ());
695 /* Return the thread-local address at OFFSET in the
696 thread-local storage for the thread PTID and the shared library
697 or executable file given by OBJFILE. If that block of
698 thread-local storage hasn't been allocated yet, this function
699 may return an error. LOAD_MODULE_ADDR may be zero for statically
700 linked multithreaded inferiors. */
701 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
702 ptid_t ptid,
703 CORE_ADDR load_module_addr,
704 CORE_ADDR offset)
705 TARGET_DEFAULT_NORETURN (generic_tls_error ());
706
707 /* Request that OPS transfer up to LEN addressable units of the target's
708 OBJECT. When reading from a memory object, the size of an addressable
709 unit is architecture dependent and can be found using
710 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
711 1 byte long. The OFFSET, for a seekable object, specifies the
712 starting point. The ANNEX can be used to provide additional
713 data-specific information to the target.
714
715 Return the transferred status, error or OK (an
716 'enum target_xfer_status' value). Save the number of addressable units
717 actually transferred in *XFERED_LEN if transfer is successful
718 (TARGET_XFER_OK) or the number unavailable units if the requested
719 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
720 smaller than LEN does not indicate the end of the object, only
721 the end of the transfer; higher level code should continue
722 transferring if desired. This is handled in target.c.
723
724 The interface does not support a "retry" mechanism. Instead it
725 assumes that at least one addressable unit will be transfered on each
726 successful call.
727
728 NOTE: cagney/2003-10-17: The current interface can lead to
729 fragmented transfers. Lower target levels should not implement
730 hacks, such as enlarging the transfer, in an attempt to
731 compensate for this. Instead, the target stack should be
732 extended so that it implements supply/collect methods and a
733 look-aside object cache. With that available, the lowest
734 target can safely and freely "push" data up the stack.
735
736 See target_read and target_write for more information. One,
737 and only one, of readbuf or writebuf must be non-NULL. */
738
739 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
740 enum target_object object,
741 const char *annex,
742 gdb_byte *readbuf,
743 const gdb_byte *writebuf,
744 ULONGEST offset, ULONGEST len,
745 ULONGEST *xfered_len)
746 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
747
748 /* Return the limit on the size of any single memory transfer
749 for the target. */
750
751 ULONGEST (*to_get_memory_xfer_limit) (struct target_ops *)
752 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
753
754 /* Returns the memory map for the target. A return value of NULL
755 means that no memory map is available. If a memory address
756 does not fall within any returned regions, it's assumed to be
757 RAM. The returned memory regions should not overlap.
758
759 The order of regions does not matter; target_memory_map will
760 sort regions by starting address. For that reason, this
761 function should not be called directly except via
762 target_memory_map.
763
764 This method should not cache data; if the memory map could
765 change unexpectedly, it should be invalidated, and higher
766 layers will re-fetch it. */
767 std::vector<mem_region> (*to_memory_map) (struct target_ops *)
768 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
769
770 /* Erases the region of flash memory starting at ADDRESS, of
771 length LENGTH.
772
773 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
774 on flash block boundaries, as reported by 'to_memory_map'. */
775 void (*to_flash_erase) (struct target_ops *,
776 ULONGEST address, LONGEST length)
777 TARGET_DEFAULT_NORETURN (tcomplain ());
778
779 /* Finishes a flash memory write sequence. After this operation
780 all flash memory should be available for writing and the result
781 of reading from areas written by 'to_flash_write' should be
782 equal to what was written. */
783 void (*to_flash_done) (struct target_ops *)
784 TARGET_DEFAULT_NORETURN (tcomplain ());
785
786 /* Describe the architecture-specific features of this target. If
787 OPS doesn't have a description, this should delegate to the
788 "beneath" target. Returns the description found, or NULL if no
789 description was available. */
790 const struct target_desc *(*to_read_description) (struct target_ops *ops)
791 TARGET_DEFAULT_RETURN (NULL);
792
793 /* Build the PTID of the thread on which a given task is running,
794 based on LWP and THREAD. These values are extracted from the
795 task Private_Data section of the Ada Task Control Block, and
796 their interpretation depends on the target. */
797 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
798 long lwp, long thread)
799 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
800
801 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
802 Return 0 if *READPTR is already at the end of the buffer.
803 Return -1 if there is insufficient buffer for a whole entry.
804 Return 1 if an entry was read into *TYPEP and *VALP. */
805 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
806 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
807 TARGET_DEFAULT_FUNC (default_auxv_parse);
808
809 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
810 sequence of bytes in PATTERN with length PATTERN_LEN.
811
812 The result is 1 if found, 0 if not found, and -1 if there was an error
813 requiring halting of the search (e.g. memory read error).
814 If the pattern is found the address is recorded in FOUND_ADDRP. */
815 int (*to_search_memory) (struct target_ops *ops,
816 CORE_ADDR start_addr, ULONGEST search_space_len,
817 const gdb_byte *pattern, ULONGEST pattern_len,
818 CORE_ADDR *found_addrp)
819 TARGET_DEFAULT_FUNC (default_search_memory);
820
821 /* Can target execute in reverse? */
822 int (*to_can_execute_reverse) (struct target_ops *)
823 TARGET_DEFAULT_RETURN (0);
824
825 /* The direction the target is currently executing. Must be
826 implemented on targets that support reverse execution and async
827 mode. The default simply returns forward execution. */
828 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
829 TARGET_DEFAULT_FUNC (default_execution_direction);
830
831 /* Does this target support debugging multiple processes
832 simultaneously? */
833 int (*to_supports_multi_process) (struct target_ops *)
834 TARGET_DEFAULT_RETURN (0);
835
836 /* Does this target support enabling and disabling tracepoints while a trace
837 experiment is running? */
838 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
839 TARGET_DEFAULT_RETURN (0);
840
841 /* Does this target support disabling address space randomization? */
842 int (*to_supports_disable_randomization) (struct target_ops *);
843
844 /* Does this target support the tracenz bytecode for string collection? */
845 int (*to_supports_string_tracing) (struct target_ops *)
846 TARGET_DEFAULT_RETURN (0);
847
848 /* Does this target support evaluation of breakpoint conditions on its
849 end? */
850 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
851 TARGET_DEFAULT_RETURN (0);
852
853 /* Does this target support evaluation of breakpoint commands on its
854 end? */
855 int (*to_can_run_breakpoint_commands) (struct target_ops *)
856 TARGET_DEFAULT_RETURN (0);
857
858 /* Determine current architecture of thread PTID.
859
860 The target is supposed to determine the architecture of the code where
861 the target is currently stopped at (on Cell, if a target is in spu_run,
862 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
863 This is architecture used to perform decr_pc_after_break adjustment,
864 and also determines the frame architecture of the innermost frame.
865 ptrace operations need to operate according to target_gdbarch ().
866
867 The default implementation always returns target_gdbarch (). */
868 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
869 TARGET_DEFAULT_FUNC (default_thread_architecture);
870
871 /* Determine current address space of thread PTID.
872
873 The default implementation always returns the inferior's
874 address space. */
875 struct address_space *(*to_thread_address_space) (struct target_ops *,
876 ptid_t)
877 TARGET_DEFAULT_FUNC (default_thread_address_space);
878
879 /* Target file operations. */
880
881 /* Return nonzero if the filesystem seen by the current inferior
882 is the local filesystem, zero otherwise. */
883 int (*to_filesystem_is_local) (struct target_ops *)
884 TARGET_DEFAULT_RETURN (1);
885
886 /* Open FILENAME on the target, in the filesystem as seen by INF,
887 using FLAGS and MODE. If INF is NULL, use the filesystem seen
888 by the debugger (GDB or, for remote targets, the remote stub).
889 If WARN_IF_SLOW is nonzero, print a warning message if the file
890 is being accessed over a link that may be slow. Return a
891 target file descriptor, or -1 if an error occurs (and set
892 *TARGET_ERRNO). */
893 int (*to_fileio_open) (struct target_ops *,
894 struct inferior *inf, const char *filename,
895 int flags, int mode, int warn_if_slow,
896 int *target_errno);
897
898 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
899 Return the number of bytes written, or -1 if an error occurs
900 (and set *TARGET_ERRNO). */
901 int (*to_fileio_pwrite) (struct target_ops *,
902 int fd, const gdb_byte *write_buf, int len,
903 ULONGEST offset, int *target_errno);
904
905 /* Read up to LEN bytes FD on the target into READ_BUF.
906 Return the number of bytes read, or -1 if an error occurs
907 (and set *TARGET_ERRNO). */
908 int (*to_fileio_pread) (struct target_ops *,
909 int fd, gdb_byte *read_buf, int len,
910 ULONGEST offset, int *target_errno);
911
912 /* Get information about the file opened as FD and put it in
913 SB. Return 0 on success, or -1 if an error occurs (and set
914 *TARGET_ERRNO). */
915 int (*to_fileio_fstat) (struct target_ops *,
916 int fd, struct stat *sb, int *target_errno);
917
918 /* Close FD on the target. Return 0, or -1 if an error occurs
919 (and set *TARGET_ERRNO). */
920 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
921
922 /* Unlink FILENAME on the target, in the filesystem as seen by
923 INF. If INF is NULL, use the filesystem seen by the debugger
924 (GDB or, for remote targets, the remote stub). Return 0, or
925 -1 if an error occurs (and set *TARGET_ERRNO). */
926 int (*to_fileio_unlink) (struct target_ops *,
927 struct inferior *inf,
928 const char *filename,
929 int *target_errno);
930
931 /* Read value of symbolic link FILENAME on the target, in the
932 filesystem as seen by INF. If INF is NULL, use the filesystem
933 seen by the debugger (GDB or, for remote targets, the remote
934 stub). Return a null-terminated string allocated via xmalloc,
935 or NULL if an error occurs (and set *TARGET_ERRNO). */
936 char *(*to_fileio_readlink) (struct target_ops *,
937 struct inferior *inf,
938 const char *filename,
939 int *target_errno);
940
941
942 /* Implement the "info proc" command. */
943 void (*to_info_proc) (struct target_ops *, const char *,
944 enum info_proc_what);
945
946 /* Tracepoint-related operations. */
947
948 /* Prepare the target for a tracing run. */
949 void (*to_trace_init) (struct target_ops *)
950 TARGET_DEFAULT_NORETURN (tcomplain ());
951
952 /* Send full details of a tracepoint location to the target. */
953 void (*to_download_tracepoint) (struct target_ops *,
954 struct bp_location *location)
955 TARGET_DEFAULT_NORETURN (tcomplain ());
956
957 /* Is the target able to download tracepoint locations in current
958 state? */
959 int (*to_can_download_tracepoint) (struct target_ops *)
960 TARGET_DEFAULT_RETURN (0);
961
962 /* Send full details of a trace state variable to the target. */
963 void (*to_download_trace_state_variable) (struct target_ops *,
964 struct trace_state_variable *tsv)
965 TARGET_DEFAULT_NORETURN (tcomplain ());
966
967 /* Enable a tracepoint on the target. */
968 void (*to_enable_tracepoint) (struct target_ops *,
969 struct bp_location *location)
970 TARGET_DEFAULT_NORETURN (tcomplain ());
971
972 /* Disable a tracepoint on the target. */
973 void (*to_disable_tracepoint) (struct target_ops *,
974 struct bp_location *location)
975 TARGET_DEFAULT_NORETURN (tcomplain ());
976
977 /* Inform the target info of memory regions that are readonly
978 (such as text sections), and so it should return data from
979 those rather than look in the trace buffer. */
980 void (*to_trace_set_readonly_regions) (struct target_ops *)
981 TARGET_DEFAULT_NORETURN (tcomplain ());
982
983 /* Start a trace run. */
984 void (*to_trace_start) (struct target_ops *)
985 TARGET_DEFAULT_NORETURN (tcomplain ());
986
987 /* Get the current status of a tracing run. */
988 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
989 TARGET_DEFAULT_RETURN (-1);
990
991 void (*to_get_tracepoint_status) (struct target_ops *,
992 struct breakpoint *tp,
993 struct uploaded_tp *utp)
994 TARGET_DEFAULT_NORETURN (tcomplain ());
995
996 /* Stop a trace run. */
997 void (*to_trace_stop) (struct target_ops *)
998 TARGET_DEFAULT_NORETURN (tcomplain ());
999
1000 /* Ask the target to find a trace frame of the given type TYPE,
1001 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1002 number of the trace frame, and also the tracepoint number at
1003 TPP. If no trace frame matches, return -1. May throw if the
1004 operation fails. */
1005 int (*to_trace_find) (struct target_ops *,
1006 enum trace_find_type type, int num,
1007 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1008 TARGET_DEFAULT_RETURN (-1);
1009
1010 /* Get the value of the trace state variable number TSV, returning
1011 1 if the value is known and writing the value itself into the
1012 location pointed to by VAL, else returning 0. */
1013 int (*to_get_trace_state_variable_value) (struct target_ops *,
1014 int tsv, LONGEST *val)
1015 TARGET_DEFAULT_RETURN (0);
1016
1017 int (*to_save_trace_data) (struct target_ops *, const char *filename)
1018 TARGET_DEFAULT_NORETURN (tcomplain ());
1019
1020 int (*to_upload_tracepoints) (struct target_ops *,
1021 struct uploaded_tp **utpp)
1022 TARGET_DEFAULT_RETURN (0);
1023
1024 int (*to_upload_trace_state_variables) (struct target_ops *,
1025 struct uploaded_tsv **utsvp)
1026 TARGET_DEFAULT_RETURN (0);
1027
1028 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
1029 ULONGEST offset, LONGEST len)
1030 TARGET_DEFAULT_NORETURN (tcomplain ());
1031
1032 /* Get the minimum length of instruction on which a fast tracepoint
1033 may be set on the target. If this operation is unsupported,
1034 return -1. If for some reason the minimum length cannot be
1035 determined, return 0. */
1036 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
1037 TARGET_DEFAULT_RETURN (-1);
1038
1039 /* Set the target's tracing behavior in response to unexpected
1040 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1041 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
1042 TARGET_DEFAULT_IGNORE ();
1043 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
1044 TARGET_DEFAULT_IGNORE ();
1045 /* Set the size of trace buffer in the target. */
1046 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
1047 TARGET_DEFAULT_IGNORE ();
1048
1049 /* Add/change textual notes about the trace run, returning 1 if
1050 successful, 0 otherwise. */
1051 int (*to_set_trace_notes) (struct target_ops *,
1052 const char *user, const char *notes,
1053 const char *stopnotes)
1054 TARGET_DEFAULT_RETURN (0);
1055
1056 /* Return the processor core that thread PTID was last seen on.
1057 This information is updated only when:
1058 - update_thread_list is called
1059 - thread stops
1060 If the core cannot be determined -- either for the specified
1061 thread, or right now, or in this debug session, or for this
1062 target -- return -1. */
1063 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
1064 TARGET_DEFAULT_RETURN (-1);
1065
1066 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1067 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1068 a match, 0 if there's a mismatch, and -1 if an error is
1069 encountered while reading memory. */
1070 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
1071 CORE_ADDR memaddr, ULONGEST size)
1072 TARGET_DEFAULT_FUNC (default_verify_memory);
1073
1074 /* Return the address of the start of the Thread Information Block
1075 a Windows OS specific feature. */
1076 int (*to_get_tib_address) (struct target_ops *,
1077 ptid_t ptid, CORE_ADDR *addr)
1078 TARGET_DEFAULT_NORETURN (tcomplain ());
1079
1080 /* Send the new settings of write permission variables. */
1081 void (*to_set_permissions) (struct target_ops *)
1082 TARGET_DEFAULT_IGNORE ();
1083
1084 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1085 with its details. Return 1 on success, 0 on failure. */
1086 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
1087 struct static_tracepoint_marker *marker)
1088 TARGET_DEFAULT_RETURN (0);
1089
1090 /* Return a vector of all tracepoints markers string id ID, or all
1091 markers if ID is NULL. */
1092 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
1093 TARGET_DEFAULT_NORETURN (tcomplain ());
1094
1095 /* Return a traceframe info object describing the current
1096 traceframe's contents. This method should not cache data;
1097 higher layers take care of caching, invalidating, and
1098 re-fetching when necessary. */
1099 traceframe_info_up (*to_traceframe_info) (struct target_ops *)
1100 TARGET_DEFAULT_NORETURN (tcomplain ());
1101
1102 /* Ask the target to use or not to use agent according to USE. Return 1
1103 successful, 0 otherwise. */
1104 int (*to_use_agent) (struct target_ops *, int use)
1105 TARGET_DEFAULT_NORETURN (tcomplain ());
1106
1107 /* Is the target able to use agent in current state? */
1108 int (*to_can_use_agent) (struct target_ops *)
1109 TARGET_DEFAULT_RETURN (0);
1110
1111 /* Check whether the target supports branch tracing. */
1112 int (*to_supports_btrace) (struct target_ops *, enum btrace_format)
1113 TARGET_DEFAULT_RETURN (0);
1114
1115 /* Enable branch tracing for PTID using CONF configuration.
1116 Return a branch trace target information struct for reading and for
1117 disabling branch trace. */
1118 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1119 ptid_t ptid,
1120 const struct btrace_config *conf)
1121 TARGET_DEFAULT_NORETURN (tcomplain ());
1122
1123 /* Disable branch tracing and deallocate TINFO. */
1124 void (*to_disable_btrace) (struct target_ops *,
1125 struct btrace_target_info *tinfo)
1126 TARGET_DEFAULT_NORETURN (tcomplain ());
1127
1128 /* Disable branch tracing and deallocate TINFO. This function is similar
1129 to to_disable_btrace, except that it is called during teardown and is
1130 only allowed to perform actions that are safe. A counter-example would
1131 be attempting to talk to a remote target. */
1132 void (*to_teardown_btrace) (struct target_ops *,
1133 struct btrace_target_info *tinfo)
1134 TARGET_DEFAULT_NORETURN (tcomplain ());
1135
1136 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1137 DATA is cleared before new trace is added. */
1138 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1139 struct btrace_data *data,
1140 struct btrace_target_info *btinfo,
1141 enum btrace_read_type type)
1142 TARGET_DEFAULT_NORETURN (tcomplain ());
1143
1144 /* Get the branch trace configuration. */
1145 const struct btrace_config *(*to_btrace_conf) (struct target_ops *self,
1146 const struct btrace_target_info *)
1147 TARGET_DEFAULT_RETURN (NULL);
1148
1149 /* Current recording method. */
1150 enum record_method (*to_record_method) (struct target_ops *, ptid_t ptid)
1151 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1152
1153 /* Stop trace recording. */
1154 void (*to_stop_recording) (struct target_ops *)
1155 TARGET_DEFAULT_IGNORE ();
1156
1157 /* Print information about the recording. */
1158 void (*to_info_record) (struct target_ops *)
1159 TARGET_DEFAULT_IGNORE ();
1160
1161 /* Save the recorded execution trace into a file. */
1162 void (*to_save_record) (struct target_ops *, const char *filename)
1163 TARGET_DEFAULT_NORETURN (tcomplain ());
1164
1165 /* Delete the recorded execution trace from the current position
1166 onwards. */
1167 void (*to_delete_record) (struct target_ops *)
1168 TARGET_DEFAULT_NORETURN (tcomplain ());
1169
1170 /* Query if the record target is currently replaying PTID. */
1171 int (*to_record_is_replaying) (struct target_ops *, ptid_t ptid)
1172 TARGET_DEFAULT_RETURN (0);
1173
1174 /* Query if the record target will replay PTID if it were resumed in
1175 execution direction DIR. */
1176 int (*to_record_will_replay) (struct target_ops *, ptid_t ptid, int dir)
1177 TARGET_DEFAULT_RETURN (0);
1178
1179 /* Stop replaying. */
1180 void (*to_record_stop_replaying) (struct target_ops *)
1181 TARGET_DEFAULT_IGNORE ();
1182
1183 /* Go to the begin of the execution trace. */
1184 void (*to_goto_record_begin) (struct target_ops *)
1185 TARGET_DEFAULT_NORETURN (tcomplain ());
1186
1187 /* Go to the end of the execution trace. */
1188 void (*to_goto_record_end) (struct target_ops *)
1189 TARGET_DEFAULT_NORETURN (tcomplain ());
1190
1191 /* Go to a specific location in the recorded execution trace. */
1192 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1193 TARGET_DEFAULT_NORETURN (tcomplain ());
1194
1195 /* Disassemble SIZE instructions in the recorded execution trace from
1196 the current position.
1197 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1198 disassemble SIZE succeeding instructions. */
1199 void (*to_insn_history) (struct target_ops *, int size,
1200 gdb_disassembly_flags flags)
1201 TARGET_DEFAULT_NORETURN (tcomplain ());
1202
1203 /* Disassemble SIZE instructions in the recorded execution trace around
1204 FROM.
1205 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1206 disassemble SIZE instructions after FROM. */
1207 void (*to_insn_history_from) (struct target_ops *,
1208 ULONGEST from, int size,
1209 gdb_disassembly_flags flags)
1210 TARGET_DEFAULT_NORETURN (tcomplain ());
1211
1212 /* Disassemble a section of the recorded execution trace from instruction
1213 BEGIN (inclusive) to instruction END (inclusive). */
1214 void (*to_insn_history_range) (struct target_ops *,
1215 ULONGEST begin, ULONGEST end,
1216 gdb_disassembly_flags flags)
1217 TARGET_DEFAULT_NORETURN (tcomplain ());
1218
1219 /* Print a function trace of the recorded execution trace.
1220 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1221 succeeding functions. */
1222 void (*to_call_history) (struct target_ops *, int size, int flags)
1223 TARGET_DEFAULT_NORETURN (tcomplain ());
1224
1225 /* Print a function trace of the recorded execution trace starting
1226 at function FROM.
1227 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1228 SIZE functions after FROM. */
1229 void (*to_call_history_from) (struct target_ops *,
1230 ULONGEST begin, int size, int flags)
1231 TARGET_DEFAULT_NORETURN (tcomplain ());
1232
1233 /* Print a function trace of an execution trace section from function BEGIN
1234 (inclusive) to function END (inclusive). */
1235 void (*to_call_history_range) (struct target_ops *,
1236 ULONGEST begin, ULONGEST end, int flags)
1237 TARGET_DEFAULT_NORETURN (tcomplain ());
1238
1239 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1240 non-empty annex. */
1241 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1242 TARGET_DEFAULT_RETURN (0);
1243
1244 /* Those unwinders are tried before any other arch unwinders. If
1245 SELF doesn't have unwinders, it should delegate to the
1246 "beneath" target. */
1247 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1248 TARGET_DEFAULT_RETURN (NULL);
1249
1250 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1251 TARGET_DEFAULT_RETURN (NULL);
1252
1253 /* Prepare to generate a core file. */
1254 void (*to_prepare_to_generate_core) (struct target_ops *)
1255 TARGET_DEFAULT_IGNORE ();
1256
1257 /* Cleanup after generating a core file. */
1258 void (*to_done_generating_core) (struct target_ops *)
1259 TARGET_DEFAULT_IGNORE ();
1260
1261 int to_magic;
1262 /* Need sub-structure for target machine related rather than comm related?
1263 */
1264 };
1265
1266 /* Magic number for checking ops size. If a struct doesn't end with this
1267 number, somebody changed the declaration but didn't change all the
1268 places that initialize one. */
1269
1270 #define OPS_MAGIC 3840
1271
1272 /* The ops structure for our "current" target process. This should
1273 never be NULL. If there is no target, it points to the dummy_target. */
1274
1275 extern struct target_ops current_target;
1276
1277 /* Define easy words for doing these operations on our current target. */
1278
1279 #define target_shortname (current_target.to_shortname)
1280 #define target_longname (current_target.to_longname)
1281
1282 /* Does whatever cleanup is required for a target that we are no
1283 longer going to be calling. This routine is automatically always
1284 called after popping the target off the target stack - the target's
1285 own methods are no longer available through the target vector.
1286 Closing file descriptors and freeing all memory allocated memory are
1287 typical things it should do. */
1288
1289 void target_close (struct target_ops *targ);
1290
1291 /* Find the correct target to use for "attach". If a target on the
1292 current stack supports attaching, then it is returned. Otherwise,
1293 the default run target is returned. */
1294
1295 extern struct target_ops *find_attach_target (void);
1296
1297 /* Find the correct target to use for "run". If a target on the
1298 current stack supports creating a new inferior, then it is
1299 returned. Otherwise, the default run target is returned. */
1300
1301 extern struct target_ops *find_run_target (void);
1302
1303 /* Some targets don't generate traps when attaching to the inferior,
1304 or their target_attach implementation takes care of the waiting.
1305 These targets must set to_attach_no_wait. */
1306
1307 #define target_attach_no_wait \
1308 (current_target.to_attach_no_wait)
1309
1310 /* The target_attach operation places a process under debugger control,
1311 and stops the process.
1312
1313 This operation provides a target-specific hook that allows the
1314 necessary bookkeeping to be performed after an attach completes. */
1315 #define target_post_attach(pid) \
1316 (*current_target.to_post_attach) (&current_target, pid)
1317
1318 /* Display a message indicating we're about to detach from the current
1319 inferior process. */
1320
1321 extern void target_announce_detach (int from_tty);
1322
1323 /* Takes a program previously attached to and detaches it.
1324 The program may resume execution (some targets do, some don't) and will
1325 no longer stop on signals, etc. We better not have left any breakpoints
1326 in the program or it'll die when it hits one. FROM_TTY says whether to be
1327 verbose or not. */
1328
1329 extern void target_detach (inferior *inf, int from_tty);
1330
1331 /* Disconnect from the current target without resuming it (leaving it
1332 waiting for a debugger). */
1333
1334 extern void target_disconnect (const char *, int);
1335
1336 /* Resume execution (or prepare for execution) of a target thread,
1337 process or all processes. STEP says whether to hardware
1338 single-step or to run free; SIGGNAL is the signal to be given to
1339 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1340 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1341 process id'. A wildcard PTID (all threads, or all threads of
1342 process) means `step/resume INFERIOR_PTID, and let other threads
1343 (for which the wildcard PTID matches) resume with their
1344 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1345 is in "pass" state, or with no signal if in "no pass" state.
1346
1347 In order to efficiently handle batches of resumption requests,
1348 targets may implement this method such that it records the
1349 resumption request, but defers the actual resumption to the
1350 target_commit_resume method implementation. See
1351 target_commit_resume below. */
1352 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1353
1354 /* Commit a series of resumption requests previously prepared with
1355 target_resume calls.
1356
1357 GDB always calls target_commit_resume after calling target_resume
1358 one or more times. A target may thus use this method in
1359 coordination with the target_resume method to batch target-side
1360 resumption requests. In that case, the target doesn't actually
1361 resume in its target_resume implementation. Instead, it prepares
1362 the resumption in target_resume, and defers the actual resumption
1363 to target_commit_resume. E.g., the remote target uses this to
1364 coalesce multiple resumption requests in a single vCont packet. */
1365 extern void target_commit_resume ();
1366
1367 /* Setup to defer target_commit_resume calls, and reactivate
1368 target_commit_resume on destruction, if it was previously
1369 active. */
1370 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1371
1372 /* For target_read_memory see target/target.h. */
1373
1374 /* The default target_ops::to_wait implementation. */
1375
1376 extern ptid_t default_target_wait (struct target_ops *ops,
1377 ptid_t ptid,
1378 struct target_waitstatus *status,
1379 int options);
1380
1381 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1382
1383 extern void target_fetch_registers (struct regcache *regcache, int regno);
1384
1385 /* Store at least register REGNO, or all regs if REGNO == -1.
1386 It can store as many registers as it wants to, so target_prepare_to_store
1387 must have been previously called. Calls error() if there are problems. */
1388
1389 extern void target_store_registers (struct regcache *regcache, int regs);
1390
1391 /* Get ready to modify the registers array. On machines which store
1392 individual registers, this doesn't need to do anything. On machines
1393 which store all the registers in one fell swoop, this makes sure
1394 that REGISTERS contains all the registers from the program being
1395 debugged. */
1396
1397 #define target_prepare_to_store(regcache) \
1398 (*current_target.to_prepare_to_store) (&current_target, regcache)
1399
1400 /* Determine current address space of thread PTID. */
1401
1402 struct address_space *target_thread_address_space (ptid_t);
1403
1404 /* Implement the "info proc" command. This returns one if the request
1405 was handled, and zero otherwise. It can also throw an exception if
1406 an error was encountered while attempting to handle the
1407 request. */
1408
1409 int target_info_proc (const char *, enum info_proc_what);
1410
1411 /* Returns true if this target can disable address space randomization. */
1412
1413 int target_supports_disable_randomization (void);
1414
1415 /* Returns true if this target can enable and disable tracepoints
1416 while a trace experiment is running. */
1417
1418 #define target_supports_enable_disable_tracepoint() \
1419 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1420
1421 #define target_supports_string_tracing() \
1422 (*current_target.to_supports_string_tracing) (&current_target)
1423
1424 /* Returns true if this target can handle breakpoint conditions
1425 on its end. */
1426
1427 #define target_supports_evaluation_of_breakpoint_conditions() \
1428 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1429
1430 /* Returns true if this target can handle breakpoint commands
1431 on its end. */
1432
1433 #define target_can_run_breakpoint_commands() \
1434 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1435
1436 extern int target_read_string (CORE_ADDR, char **, int, int *);
1437
1438 /* For target_read_memory see target/target.h. */
1439
1440 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1441 ssize_t len);
1442
1443 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1444
1445 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1446
1447 /* For target_write_memory see target/target.h. */
1448
1449 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1450 ssize_t len);
1451
1452 /* Fetches the target's memory map. If one is found it is sorted
1453 and returned, after some consistency checking. Otherwise, NULL
1454 is returned. */
1455 std::vector<mem_region> target_memory_map (void);
1456
1457 /* Erases all flash memory regions on the target. */
1458 void flash_erase_command (const char *cmd, int from_tty);
1459
1460 /* Erase the specified flash region. */
1461 void target_flash_erase (ULONGEST address, LONGEST length);
1462
1463 /* Finish a sequence of flash operations. */
1464 void target_flash_done (void);
1465
1466 /* Describes a request for a memory write operation. */
1467 struct memory_write_request
1468 {
1469 /* Begining address that must be written. */
1470 ULONGEST begin;
1471 /* Past-the-end address. */
1472 ULONGEST end;
1473 /* The data to write. */
1474 gdb_byte *data;
1475 /* A callback baton for progress reporting for this request. */
1476 void *baton;
1477 };
1478 typedef struct memory_write_request memory_write_request_s;
1479 DEF_VEC_O(memory_write_request_s);
1480
1481 /* Enumeration specifying different flash preservation behaviour. */
1482 enum flash_preserve_mode
1483 {
1484 flash_preserve,
1485 flash_discard
1486 };
1487
1488 /* Write several memory blocks at once. This version can be more
1489 efficient than making several calls to target_write_memory, in
1490 particular because it can optimize accesses to flash memory.
1491
1492 Moreover, this is currently the only memory access function in gdb
1493 that supports writing to flash memory, and it should be used for
1494 all cases where access to flash memory is desirable.
1495
1496 REQUESTS is the vector (see vec.h) of memory_write_request.
1497 PRESERVE_FLASH_P indicates what to do with blocks which must be
1498 erased, but not completely rewritten.
1499 PROGRESS_CB is a function that will be periodically called to provide
1500 feedback to user. It will be called with the baton corresponding
1501 to the request currently being written. It may also be called
1502 with a NULL baton, when preserved flash sectors are being rewritten.
1503
1504 The function returns 0 on success, and error otherwise. */
1505 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1506 enum flash_preserve_mode preserve_flash_p,
1507 void (*progress_cb) (ULONGEST, void *));
1508
1509 /* Print a line about the current target. */
1510
1511 #define target_files_info() \
1512 (*current_target.to_files_info) (&current_target)
1513
1514 /* Insert a breakpoint at address BP_TGT->placed_address in
1515 the target machine. Returns 0 for success, and returns non-zero or
1516 throws an error (with a detailed failure reason error code and
1517 message) otherwise. */
1518
1519 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1520 struct bp_target_info *bp_tgt);
1521
1522 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1523 machine. Result is 0 for success, non-zero for error. */
1524
1525 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1526 struct bp_target_info *bp_tgt,
1527 enum remove_bp_reason reason);
1528
1529 /* Return true if the target stack has a non-default
1530 "to_terminal_ours" method. */
1531
1532 extern int target_supports_terminal_ours (void);
1533
1534 /* Kill the inferior process. Make it go away. */
1535
1536 extern void target_kill (void);
1537
1538 /* Load an executable file into the target process. This is expected
1539 to not only bring new code into the target process, but also to
1540 update GDB's symbol tables to match.
1541
1542 ARG contains command-line arguments, to be broken down with
1543 buildargv (). The first non-switch argument is the filename to
1544 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1545 0)), which is an offset to apply to the load addresses of FILE's
1546 sections. The target may define switches, or other non-switch
1547 arguments, as it pleases. */
1548
1549 extern void target_load (const char *arg, int from_tty);
1550
1551 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1552 notification of inferior events such as fork and vork immediately
1553 after the inferior is created. (This because of how gdb gets an
1554 inferior created via invoking a shell to do it. In such a scenario,
1555 if the shell init file has commands in it, the shell will fork and
1556 exec for each of those commands, and we will see each such fork
1557 event. Very bad.)
1558
1559 Such targets will supply an appropriate definition for this function. */
1560
1561 #define target_post_startup_inferior(ptid) \
1562 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1563
1564 /* On some targets, we can catch an inferior fork or vfork event when
1565 it occurs. These functions insert/remove an already-created
1566 catchpoint for such events. They return 0 for success, 1 if the
1567 catchpoint type is not supported and -1 for failure. */
1568
1569 #define target_insert_fork_catchpoint(pid) \
1570 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1571
1572 #define target_remove_fork_catchpoint(pid) \
1573 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1574
1575 #define target_insert_vfork_catchpoint(pid) \
1576 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1577
1578 #define target_remove_vfork_catchpoint(pid) \
1579 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1580
1581 /* If the inferior forks or vforks, this function will be called at
1582 the next resume in order to perform any bookkeeping and fiddling
1583 necessary to continue debugging either the parent or child, as
1584 requested, and releasing the other. Information about the fork
1585 or vfork event is available via get_last_target_status ().
1586 This function returns 1 if the inferior should not be resumed
1587 (i.e. there is another event pending). */
1588
1589 int target_follow_fork (int follow_child, int detach_fork);
1590
1591 /* Handle the target-specific bookkeeping required when the inferior
1592 makes an exec call. INF is the exec'd inferior. */
1593
1594 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1595
1596 /* On some targets, we can catch an inferior exec event when it
1597 occurs. These functions insert/remove an already-created
1598 catchpoint for such events. They return 0 for success, 1 if the
1599 catchpoint type is not supported and -1 for failure. */
1600
1601 #define target_insert_exec_catchpoint(pid) \
1602 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1603
1604 #define target_remove_exec_catchpoint(pid) \
1605 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1606
1607 /* Syscall catch.
1608
1609 NEEDED is true if any syscall catch (of any kind) is requested.
1610 If NEEDED is false, it means the target can disable the mechanism to
1611 catch system calls because there are no more catchpoints of this type.
1612
1613 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1614 being requested. In this case, SYSCALL_COUNTS should be ignored.
1615
1616 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1617 element in this array is nonzero if that syscall should be caught.
1618 This argument only matters if ANY_COUNT is zero.
1619
1620 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1621 for failure. */
1622
1623 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1624 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1625 pid, needed, any_count, \
1626 syscall_counts)
1627
1628 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1629 exit code of PID, if any. */
1630
1631 #define target_has_exited(pid,wait_status,exit_status) \
1632 (*current_target.to_has_exited) (&current_target, \
1633 pid,wait_status,exit_status)
1634
1635 /* The debugger has completed a blocking wait() call. There is now
1636 some process event that must be processed. This function should
1637 be defined by those targets that require the debugger to perform
1638 cleanup or internal state changes in response to the process event. */
1639
1640 /* For target_mourn_inferior see target/target.h. */
1641
1642 /* Does target have enough data to do a run or attach command? */
1643
1644 #define target_can_run(t) \
1645 ((t)->to_can_run) (t)
1646
1647 /* Set list of signals to be handled in the target.
1648
1649 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1650 (enum gdb_signal). For every signal whose entry in this array is
1651 non-zero, the target is allowed -but not required- to skip reporting
1652 arrival of the signal to the GDB core by returning from target_wait,
1653 and to pass the signal directly to the inferior instead.
1654
1655 However, if the target is hardware single-stepping a thread that is
1656 about to receive a signal, it needs to be reported in any case, even
1657 if mentioned in a previous target_pass_signals call. */
1658
1659 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1660
1661 /* Set list of signals the target may pass to the inferior. This
1662 directly maps to the "handle SIGNAL pass/nopass" setting.
1663
1664 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1665 number (enum gdb_signal). For every signal whose entry in this
1666 array is non-zero, the target is allowed to pass the signal to the
1667 inferior. Signals not present in the array shall be silently
1668 discarded. This does not influence whether to pass signals to the
1669 inferior as a result of a target_resume call. This is useful in
1670 scenarios where the target needs to decide whether to pass or not a
1671 signal to the inferior without GDB core involvement, such as for
1672 example, when detaching (as threads may have been suspended with
1673 pending signals not reported to GDB). */
1674
1675 extern void target_program_signals (int nsig, unsigned char *program_signals);
1676
1677 /* Check to see if a thread is still alive. */
1678
1679 extern int target_thread_alive (ptid_t ptid);
1680
1681 /* Sync the target's threads with GDB's thread list. */
1682
1683 extern void target_update_thread_list (void);
1684
1685 /* Make target stop in a continuable fashion. (For instance, under
1686 Unix, this should act like SIGSTOP). Note that this function is
1687 asynchronous: it does not wait for the target to become stopped
1688 before returning. If this is the behavior you want please use
1689 target_stop_and_wait. */
1690
1691 extern void target_stop (ptid_t ptid);
1692
1693 /* Interrupt the target just like the user typed a ^C on the
1694 inferior's controlling terminal. (For instance, under Unix, this
1695 should act like SIGINT). This function is asynchronous. */
1696
1697 extern void target_interrupt (ptid_t ptid);
1698
1699 /* Pass a ^C, as determined to have been pressed by checking the quit
1700 flag, to the target. Normally calls target_interrupt, but remote
1701 targets may take the opportunity to detect the remote side is not
1702 responding and offer to disconnect. */
1703
1704 extern void target_pass_ctrlc (void);
1705
1706 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1707 target_interrupt. */
1708 extern void default_target_pass_ctrlc (struct target_ops *ops);
1709
1710 /* Send the specified COMMAND to the target's monitor
1711 (shell,interpreter) for execution. The result of the query is
1712 placed in OUTBUF. */
1713
1714 #define target_rcmd(command, outbuf) \
1715 (*current_target.to_rcmd) (&current_target, command, outbuf)
1716
1717
1718 /* Does the target include all of memory, or only part of it? This
1719 determines whether we look up the target chain for other parts of
1720 memory if this target can't satisfy a request. */
1721
1722 extern int target_has_all_memory_1 (void);
1723 #define target_has_all_memory target_has_all_memory_1 ()
1724
1725 /* Does the target include memory? (Dummy targets don't.) */
1726
1727 extern int target_has_memory_1 (void);
1728 #define target_has_memory target_has_memory_1 ()
1729
1730 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1731 we start a process.) */
1732
1733 extern int target_has_stack_1 (void);
1734 #define target_has_stack target_has_stack_1 ()
1735
1736 /* Does the target have registers? (Exec files don't.) */
1737
1738 extern int target_has_registers_1 (void);
1739 #define target_has_registers target_has_registers_1 ()
1740
1741 /* Does the target have execution? Can we make it jump (through
1742 hoops), or pop its stack a few times? This means that the current
1743 target is currently executing; for some targets, that's the same as
1744 whether or not the target is capable of execution, but there are
1745 also targets which can be current while not executing. In that
1746 case this will become true after to_create_inferior or
1747 to_attach. */
1748
1749 extern int target_has_execution_1 (ptid_t);
1750
1751 /* Like target_has_execution_1, but always passes inferior_ptid. */
1752
1753 extern int target_has_execution_current (void);
1754
1755 #define target_has_execution target_has_execution_current ()
1756
1757 /* Default implementations for process_stratum targets. Return true
1758 if there's a selected inferior, false otherwise. */
1759
1760 extern int default_child_has_all_memory (struct target_ops *ops);
1761 extern int default_child_has_memory (struct target_ops *ops);
1762 extern int default_child_has_stack (struct target_ops *ops);
1763 extern int default_child_has_registers (struct target_ops *ops);
1764 extern int default_child_has_execution (struct target_ops *ops,
1765 ptid_t the_ptid);
1766
1767 /* Can the target support the debugger control of thread execution?
1768 Can it lock the thread scheduler? */
1769
1770 #define target_can_lock_scheduler \
1771 (current_target.to_has_thread_control & tc_schedlock)
1772
1773 /* Controls whether async mode is permitted. */
1774 extern int target_async_permitted;
1775
1776 /* Can the target support asynchronous execution? */
1777 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1778
1779 /* Is the target in asynchronous execution mode? */
1780 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1781
1782 /* Enables/disabled async target events. */
1783 extern void target_async (int enable);
1784
1785 /* Enables/disables thread create and exit events. */
1786 extern void target_thread_events (int enable);
1787
1788 /* Whether support for controlling the target backends always in
1789 non-stop mode is enabled. */
1790 extern enum auto_boolean target_non_stop_enabled;
1791
1792 /* Is the target in non-stop mode? Some targets control the inferior
1793 in non-stop mode even with "set non-stop off". Always true if "set
1794 non-stop" is on. */
1795 extern int target_is_non_stop_p (void);
1796
1797 #define target_execution_direction() \
1798 (current_target.to_execution_direction (&current_target))
1799
1800 /* Converts a process id to a string. Usually, the string just contains
1801 `process xyz', but on some systems it may contain
1802 `process xyz thread abc'. */
1803
1804 extern const char *target_pid_to_str (ptid_t ptid);
1805
1806 extern const char *normal_pid_to_str (ptid_t ptid);
1807
1808 /* Return a short string describing extra information about PID,
1809 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1810 is okay. */
1811
1812 #define target_extra_thread_info(TP) \
1813 (current_target.to_extra_thread_info (&current_target, TP))
1814
1815 /* Return the thread's name, or NULL if the target is unable to determine it.
1816 The returned value must not be freed by the caller. */
1817
1818 extern const char *target_thread_name (struct thread_info *);
1819
1820 /* Given a pointer to a thread library specific thread handle and
1821 its length, return a pointer to the corresponding thread_info struct. */
1822
1823 extern struct thread_info *target_thread_handle_to_thread_info
1824 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1825
1826 /* Attempts to find the pathname of the executable file
1827 that was run to create a specified process.
1828
1829 The process PID must be stopped when this operation is used.
1830
1831 If the executable file cannot be determined, NULL is returned.
1832
1833 Else, a pointer to a character string containing the pathname
1834 is returned. This string should be copied into a buffer by
1835 the client if the string will not be immediately used, or if
1836 it must persist. */
1837
1838 #define target_pid_to_exec_file(pid) \
1839 (current_target.to_pid_to_exec_file) (&current_target, pid)
1840
1841 /* See the to_thread_architecture description in struct target_ops. */
1842
1843 #define target_thread_architecture(ptid) \
1844 (current_target.to_thread_architecture (&current_target, ptid))
1845
1846 /*
1847 * Iterator function for target memory regions.
1848 * Calls a callback function once for each memory region 'mapped'
1849 * in the child process. Defined as a simple macro rather than
1850 * as a function macro so that it can be tested for nullity.
1851 */
1852
1853 #define target_find_memory_regions(FUNC, DATA) \
1854 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1855
1856 /*
1857 * Compose corefile .note section.
1858 */
1859
1860 #define target_make_corefile_notes(BFD, SIZE_P) \
1861 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1862
1863 /* Bookmark interfaces. */
1864 #define target_get_bookmark(ARGS, FROM_TTY) \
1865 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1866
1867 #define target_goto_bookmark(ARG, FROM_TTY) \
1868 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1869
1870 /* Hardware watchpoint interfaces. */
1871
1872 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1873 write). Only the INFERIOR_PTID task is being queried. */
1874
1875 #define target_stopped_by_watchpoint() \
1876 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1877
1878 /* Returns non-zero if the target stopped because it executed a
1879 software breakpoint instruction. */
1880
1881 #define target_stopped_by_sw_breakpoint() \
1882 ((*current_target.to_stopped_by_sw_breakpoint) (&current_target))
1883
1884 #define target_supports_stopped_by_sw_breakpoint() \
1885 ((*current_target.to_supports_stopped_by_sw_breakpoint) (&current_target))
1886
1887 #define target_stopped_by_hw_breakpoint() \
1888 ((*current_target.to_stopped_by_hw_breakpoint) (&current_target))
1889
1890 #define target_supports_stopped_by_hw_breakpoint() \
1891 ((*current_target.to_supports_stopped_by_hw_breakpoint) (&current_target))
1892
1893 /* Non-zero if we have steppable watchpoints */
1894
1895 #define target_have_steppable_watchpoint \
1896 (current_target.to_have_steppable_watchpoint)
1897
1898 /* Non-zero if we have continuable watchpoints */
1899
1900 #define target_have_continuable_watchpoint \
1901 (current_target.to_have_continuable_watchpoint)
1902
1903 /* Provide defaults for hardware watchpoint functions. */
1904
1905 /* If the *_hw_beakpoint functions have not been defined
1906 elsewhere use the definitions in the target vector. */
1907
1908 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1909 Returns negative if the target doesn't have enough hardware debug
1910 registers available. Return zero if hardware watchpoint of type
1911 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1912 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1913 CNT is the number of such watchpoints used so far, including this
1914 one. OTHERTYPE is the number of watchpoints of other types than
1915 this one used so far. */
1916
1917 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1918 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1919 TYPE, CNT, OTHERTYPE)
1920
1921 /* Returns the number of debug registers needed to watch the given
1922 memory region, or zero if not supported. */
1923
1924 #define target_region_ok_for_hw_watchpoint(addr, len) \
1925 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1926 addr, len)
1927
1928
1929 #define target_can_do_single_step() \
1930 (*current_target.to_can_do_single_step) (&current_target)
1931
1932 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1933 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1934 COND is the expression for its condition, or NULL if there's none.
1935 Returns 0 for success, 1 if the watchpoint type is not supported,
1936 -1 for failure. */
1937
1938 #define target_insert_watchpoint(addr, len, type, cond) \
1939 (*current_target.to_insert_watchpoint) (&current_target, \
1940 addr, len, type, cond)
1941
1942 #define target_remove_watchpoint(addr, len, type, cond) \
1943 (*current_target.to_remove_watchpoint) (&current_target, \
1944 addr, len, type, cond)
1945
1946 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1947 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1948 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1949 masked watchpoints are not supported, -1 for failure. */
1950
1951 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1952 enum target_hw_bp_type);
1953
1954 /* Remove a masked watchpoint at ADDR with the mask MASK.
1955 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1956 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1957 for failure. */
1958
1959 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1960 enum target_hw_bp_type);
1961
1962 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1963 the target machine. Returns 0 for success, and returns non-zero or
1964 throws an error (with a detailed failure reason error code and
1965 message) otherwise. */
1966
1967 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1968 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1969 gdbarch, bp_tgt)
1970
1971 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1972 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1973 gdbarch, bp_tgt)
1974
1975 /* Return number of debug registers needed for a ranged breakpoint,
1976 or -1 if ranged breakpoints are not supported. */
1977
1978 extern int target_ranged_break_num_registers (void);
1979
1980 /* Return non-zero if target knows the data address which triggered this
1981 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1982 INFERIOR_PTID task is being queried. */
1983 #define target_stopped_data_address(target, addr_p) \
1984 (*(target)->to_stopped_data_address) (target, addr_p)
1985
1986 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1987 LENGTH bytes beginning at START. */
1988 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1989 (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length)
1990
1991 /* Return non-zero if the target is capable of using hardware to evaluate
1992 the condition expression. In this case, if the condition is false when
1993 the watched memory location changes, execution may continue without the
1994 debugger being notified.
1995
1996 Due to limitations in the hardware implementation, it may be capable of
1997 avoiding triggering the watchpoint in some cases where the condition
1998 expression is false, but may report some false positives as well.
1999 For this reason, GDB will still evaluate the condition expression when
2000 the watchpoint triggers. */
2001 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2002 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
2003 addr, len, type, cond)
2004
2005 /* Return number of debug registers needed for a masked watchpoint,
2006 -1 if masked watchpoints are not supported or -2 if the given address
2007 and mask combination cannot be used. */
2008
2009 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2010
2011 /* Target can execute in reverse? */
2012 #define target_can_execute_reverse \
2013 current_target.to_can_execute_reverse (&current_target)
2014
2015 extern const struct target_desc *target_read_description (struct target_ops *);
2016
2017 #define target_get_ada_task_ptid(lwp, tid) \
2018 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
2019
2020 /* Utility implementation of searching memory. */
2021 extern int simple_search_memory (struct target_ops* ops,
2022 CORE_ADDR start_addr,
2023 ULONGEST search_space_len,
2024 const gdb_byte *pattern,
2025 ULONGEST pattern_len,
2026 CORE_ADDR *found_addrp);
2027
2028 /* Main entry point for searching memory. */
2029 extern int target_search_memory (CORE_ADDR start_addr,
2030 ULONGEST search_space_len,
2031 const gdb_byte *pattern,
2032 ULONGEST pattern_len,
2033 CORE_ADDR *found_addrp);
2034
2035 /* Target file operations. */
2036
2037 /* Return nonzero if the filesystem seen by the current inferior
2038 is the local filesystem, zero otherwise. */
2039 #define target_filesystem_is_local() \
2040 current_target.to_filesystem_is_local (&current_target)
2041
2042 /* Open FILENAME on the target, in the filesystem as seen by INF,
2043 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2044 by the debugger (GDB or, for remote targets, the remote stub).
2045 Return a target file descriptor, or -1 if an error occurs (and
2046 set *TARGET_ERRNO). */
2047 extern int target_fileio_open (struct inferior *inf,
2048 const char *filename, int flags,
2049 int mode, int *target_errno);
2050
2051 /* Like target_fileio_open, but print a warning message if the
2052 file is being accessed over a link that may be slow. */
2053 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2054 const char *filename,
2055 int flags,
2056 int mode,
2057 int *target_errno);
2058
2059 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2060 Return the number of bytes written, or -1 if an error occurs
2061 (and set *TARGET_ERRNO). */
2062 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2063 ULONGEST offset, int *target_errno);
2064
2065 /* Read up to LEN bytes FD on the target into READ_BUF.
2066 Return the number of bytes read, or -1 if an error occurs
2067 (and set *TARGET_ERRNO). */
2068 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2069 ULONGEST offset, int *target_errno);
2070
2071 /* Get information about the file opened as FD on the target
2072 and put it in SB. Return 0 on success, or -1 if an error
2073 occurs (and set *TARGET_ERRNO). */
2074 extern int target_fileio_fstat (int fd, struct stat *sb,
2075 int *target_errno);
2076
2077 /* Close FD on the target. Return 0, or -1 if an error occurs
2078 (and set *TARGET_ERRNO). */
2079 extern int target_fileio_close (int fd, int *target_errno);
2080
2081 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2082 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2083 for remote targets, the remote stub). Return 0, or -1 if an error
2084 occurs (and set *TARGET_ERRNO). */
2085 extern int target_fileio_unlink (struct inferior *inf,
2086 const char *filename,
2087 int *target_errno);
2088
2089 /* Read value of symbolic link FILENAME on the target, in the
2090 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2091 by the debugger (GDB or, for remote targets, the remote stub).
2092 Return a null-terminated string allocated via xmalloc, or NULL if
2093 an error occurs (and set *TARGET_ERRNO). */
2094 extern char *target_fileio_readlink (struct inferior *inf,
2095 const char *filename,
2096 int *target_errno);
2097
2098 /* Read target file FILENAME, in the filesystem as seen by INF. If
2099 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2100 remote targets, the remote stub). The return value will be -1 if
2101 the transfer fails or is not supported; 0 if the object is empty;
2102 or the length of the object otherwise. If a positive value is
2103 returned, a sufficiently large buffer will be allocated using
2104 xmalloc and returned in *BUF_P containing the contents of the
2105 object.
2106
2107 This method should be used for objects sufficiently small to store
2108 in a single xmalloc'd buffer, when no fixed bound on the object's
2109 size is known in advance. */
2110 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2111 const char *filename,
2112 gdb_byte **buf_p);
2113
2114 /* Read target file FILENAME, in the filesystem as seen by INF. If
2115 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2116 remote targets, the remote stub). The result is NUL-terminated and
2117 returned as a string, allocated using xmalloc. If an error occurs
2118 or the transfer is unsupported, NULL is returned. Empty objects
2119 are returned as allocated but empty strings. A warning is issued
2120 if the result contains any embedded NUL bytes. */
2121 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2122 (struct inferior *inf, const char *filename);
2123
2124
2125 /* Tracepoint-related operations. */
2126
2127 #define target_trace_init() \
2128 (*current_target.to_trace_init) (&current_target)
2129
2130 #define target_download_tracepoint(t) \
2131 (*current_target.to_download_tracepoint) (&current_target, t)
2132
2133 #define target_can_download_tracepoint() \
2134 (*current_target.to_can_download_tracepoint) (&current_target)
2135
2136 #define target_download_trace_state_variable(tsv) \
2137 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
2138
2139 #define target_enable_tracepoint(loc) \
2140 (*current_target.to_enable_tracepoint) (&current_target, loc)
2141
2142 #define target_disable_tracepoint(loc) \
2143 (*current_target.to_disable_tracepoint) (&current_target, loc)
2144
2145 #define target_trace_start() \
2146 (*current_target.to_trace_start) (&current_target)
2147
2148 #define target_trace_set_readonly_regions() \
2149 (*current_target.to_trace_set_readonly_regions) (&current_target)
2150
2151 #define target_get_trace_status(ts) \
2152 (*current_target.to_get_trace_status) (&current_target, ts)
2153
2154 #define target_get_tracepoint_status(tp,utp) \
2155 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
2156
2157 #define target_trace_stop() \
2158 (*current_target.to_trace_stop) (&current_target)
2159
2160 #define target_trace_find(type,num,addr1,addr2,tpp) \
2161 (*current_target.to_trace_find) (&current_target, \
2162 (type), (num), (addr1), (addr2), (tpp))
2163
2164 #define target_get_trace_state_variable_value(tsv,val) \
2165 (*current_target.to_get_trace_state_variable_value) (&current_target, \
2166 (tsv), (val))
2167
2168 #define target_save_trace_data(filename) \
2169 (*current_target.to_save_trace_data) (&current_target, filename)
2170
2171 #define target_upload_tracepoints(utpp) \
2172 (*current_target.to_upload_tracepoints) (&current_target, utpp)
2173
2174 #define target_upload_trace_state_variables(utsvp) \
2175 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
2176
2177 #define target_get_raw_trace_data(buf,offset,len) \
2178 (*current_target.to_get_raw_trace_data) (&current_target, \
2179 (buf), (offset), (len))
2180
2181 #define target_get_min_fast_tracepoint_insn_len() \
2182 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
2183
2184 #define target_set_disconnected_tracing(val) \
2185 (*current_target.to_set_disconnected_tracing) (&current_target, val)
2186
2187 #define target_set_circular_trace_buffer(val) \
2188 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
2189
2190 #define target_set_trace_buffer_size(val) \
2191 (*current_target.to_set_trace_buffer_size) (&current_target, val)
2192
2193 #define target_set_trace_notes(user,notes,stopnotes) \
2194 (*current_target.to_set_trace_notes) (&current_target, \
2195 (user), (notes), (stopnotes))
2196
2197 #define target_get_tib_address(ptid, addr) \
2198 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
2199
2200 #define target_set_permissions() \
2201 (*current_target.to_set_permissions) (&current_target)
2202
2203 #define target_static_tracepoint_marker_at(addr, marker) \
2204 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
2205 addr, marker)
2206
2207 #define target_static_tracepoint_markers_by_strid(marker_id) \
2208 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2209 marker_id)
2210
2211 #define target_traceframe_info() \
2212 (*current_target.to_traceframe_info) (&current_target)
2213
2214 #define target_use_agent(use) \
2215 (*current_target.to_use_agent) (&current_target, use)
2216
2217 #define target_can_use_agent() \
2218 (*current_target.to_can_use_agent) (&current_target)
2219
2220 #define target_augmented_libraries_svr4_read() \
2221 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2222
2223 /* Command logging facility. */
2224
2225 #define target_log_command(p) \
2226 (*current_target.to_log_command) (&current_target, p)
2227
2228
2229 extern int target_core_of_thread (ptid_t ptid);
2230
2231 /* See to_get_unwinder in struct target_ops. */
2232 extern const struct frame_unwind *target_get_unwinder (void);
2233
2234 /* See to_get_tailcall_unwinder in struct target_ops. */
2235 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2236
2237 /* This implements basic memory verification, reading target memory
2238 and performing the comparison here (as opposed to accelerated
2239 verification making use of the qCRC packet, for example). */
2240
2241 extern int simple_verify_memory (struct target_ops* ops,
2242 const gdb_byte *data,
2243 CORE_ADDR memaddr, ULONGEST size);
2244
2245 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2246 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2247 if there's a mismatch, and -1 if an error is encountered while
2248 reading memory. Throws an error if the functionality is found not
2249 to be supported by the current target. */
2250 int target_verify_memory (const gdb_byte *data,
2251 CORE_ADDR memaddr, ULONGEST size);
2252
2253 /* Routines for maintenance of the target structures...
2254
2255 complete_target_initialization: Finalize a target_ops by filling in
2256 any fields needed by the target implementation. Unnecessary for
2257 targets which are registered via add_target, as this part gets
2258 taken care of then.
2259
2260 add_target: Add a target to the list of all possible targets.
2261 This only makes sense for targets that should be activated using
2262 the "target TARGET_NAME ..." command.
2263
2264 push_target: Make this target the top of the stack of currently used
2265 targets, within its particular stratum of the stack. Result
2266 is 0 if now atop the stack, nonzero if not on top (maybe
2267 should warn user).
2268
2269 unpush_target: Remove this from the stack of currently used targets,
2270 no matter where it is on the list. Returns 0 if no
2271 change, 1 if removed from stack. */
2272
2273 extern void add_target (struct target_ops *);
2274
2275 extern void add_target_with_completer (struct target_ops *t,
2276 completer_ftype *completer);
2277
2278 extern void complete_target_initialization (struct target_ops *t);
2279
2280 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2281 for maintaining backwards compatibility when renaming targets. */
2282
2283 extern void add_deprecated_target_alias (struct target_ops *t,
2284 const char *alias);
2285
2286 extern void push_target (struct target_ops *);
2287
2288 extern int unpush_target (struct target_ops *);
2289
2290 extern void target_pre_inferior (int);
2291
2292 extern void target_preopen (int);
2293
2294 /* Does whatever cleanup is required to get rid of all pushed targets. */
2295 extern void pop_all_targets (void);
2296
2297 /* Like pop_all_targets, but pops only targets whose stratum is at or
2298 above STRATUM. */
2299 extern void pop_all_targets_at_and_above (enum strata stratum);
2300
2301 /* Like pop_all_targets, but pops only targets whose stratum is
2302 strictly above ABOVE_STRATUM. */
2303 extern void pop_all_targets_above (enum strata above_stratum);
2304
2305 extern int target_is_pushed (struct target_ops *t);
2306
2307 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2308 CORE_ADDR offset);
2309
2310 /* Struct target_section maps address ranges to file sections. It is
2311 mostly used with BFD files, but can be used without (e.g. for handling
2312 raw disks, or files not in formats handled by BFD). */
2313
2314 struct target_section
2315 {
2316 CORE_ADDR addr; /* Lowest address in section */
2317 CORE_ADDR endaddr; /* 1+highest address in section */
2318
2319 struct bfd_section *the_bfd_section;
2320
2321 /* The "owner" of the section.
2322 It can be any unique value. It is set by add_target_sections
2323 and used by remove_target_sections.
2324 For example, for executables it is a pointer to exec_bfd and
2325 for shlibs it is the so_list pointer. */
2326 void *owner;
2327 };
2328
2329 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2330
2331 struct target_section_table
2332 {
2333 struct target_section *sections;
2334 struct target_section *sections_end;
2335 };
2336
2337 /* Return the "section" containing the specified address. */
2338 struct target_section *target_section_by_addr (struct target_ops *target,
2339 CORE_ADDR addr);
2340
2341 /* Return the target section table this target (or the targets
2342 beneath) currently manipulate. */
2343
2344 extern struct target_section_table *target_get_section_table
2345 (struct target_ops *target);
2346
2347 /* From mem-break.c */
2348
2349 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2350 struct bp_target_info *,
2351 enum remove_bp_reason);
2352
2353 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2354 struct bp_target_info *);
2355
2356 /* Check whether the memory at the breakpoint's placed address still
2357 contains the expected breakpoint instruction. */
2358
2359 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2360 struct bp_target_info *bp_tgt);
2361
2362 extern int default_memory_remove_breakpoint (struct gdbarch *,
2363 struct bp_target_info *);
2364
2365 extern int default_memory_insert_breakpoint (struct gdbarch *,
2366 struct bp_target_info *);
2367
2368
2369 /* From target.c */
2370
2371 extern void initialize_targets (void);
2372
2373 extern void noprocess (void) ATTRIBUTE_NORETURN;
2374
2375 extern void target_require_runnable (void);
2376
2377 extern struct target_ops *find_target_beneath (struct target_ops *);
2378
2379 /* Find the target at STRATUM. If no target is at that stratum,
2380 return NULL. */
2381
2382 struct target_ops *find_target_at (enum strata stratum);
2383
2384 /* Read OS data object of type TYPE from the target, and return it in
2385 XML format. The result is NUL-terminated and returned as a string.
2386 If an error occurs or the transfer is unsupported, NULL is
2387 returned. Empty objects are returned as allocated but empty
2388 strings. */
2389
2390 extern gdb::unique_xmalloc_ptr<char> target_get_osdata (const char *type);
2391
2392 \f
2393 /* Stuff that should be shared among the various remote targets. */
2394
2395 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2396 information (higher values, more information). */
2397 extern int remote_debug;
2398
2399 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2400 extern int baud_rate;
2401
2402 /* Parity for serial port */
2403 extern int serial_parity;
2404
2405 /* Timeout limit for response from target. */
2406 extern int remote_timeout;
2407
2408 \f
2409
2410 /* Set the show memory breakpoints mode to show, and return a
2411 scoped_restore to restore it back to the current value. */
2412 extern scoped_restore_tmpl<int>
2413 make_scoped_restore_show_memory_breakpoints (int show);
2414
2415 extern int may_write_registers;
2416 extern int may_write_memory;
2417 extern int may_insert_breakpoints;
2418 extern int may_insert_tracepoints;
2419 extern int may_insert_fast_tracepoints;
2420 extern int may_stop;
2421
2422 extern void update_target_permissions (void);
2423
2424 \f
2425 /* Imported from machine dependent code. */
2426
2427 /* See to_supports_btrace in struct target_ops. */
2428 extern int target_supports_btrace (enum btrace_format);
2429
2430 /* See to_enable_btrace in struct target_ops. */
2431 extern struct btrace_target_info *
2432 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2433
2434 /* See to_disable_btrace in struct target_ops. */
2435 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2436
2437 /* See to_teardown_btrace in struct target_ops. */
2438 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2439
2440 /* See to_read_btrace in struct target_ops. */
2441 extern enum btrace_error target_read_btrace (struct btrace_data *,
2442 struct btrace_target_info *,
2443 enum btrace_read_type);
2444
2445 /* See to_btrace_conf in struct target_ops. */
2446 extern const struct btrace_config *
2447 target_btrace_conf (const struct btrace_target_info *);
2448
2449 /* See to_stop_recording in struct target_ops. */
2450 extern void target_stop_recording (void);
2451
2452 /* See to_save_record in struct target_ops. */
2453 extern void target_save_record (const char *filename);
2454
2455 /* Query if the target supports deleting the execution log. */
2456 extern int target_supports_delete_record (void);
2457
2458 /* See to_delete_record in struct target_ops. */
2459 extern void target_delete_record (void);
2460
2461 /* See to_record_method. */
2462 extern enum record_method target_record_method (ptid_t ptid);
2463
2464 /* See to_record_is_replaying in struct target_ops. */
2465 extern int target_record_is_replaying (ptid_t ptid);
2466
2467 /* See to_record_will_replay in struct target_ops. */
2468 extern int target_record_will_replay (ptid_t ptid, int dir);
2469
2470 /* See to_record_stop_replaying in struct target_ops. */
2471 extern void target_record_stop_replaying (void);
2472
2473 /* See to_goto_record_begin in struct target_ops. */
2474 extern void target_goto_record_begin (void);
2475
2476 /* See to_goto_record_end in struct target_ops. */
2477 extern void target_goto_record_end (void);
2478
2479 /* See to_goto_record in struct target_ops. */
2480 extern void target_goto_record (ULONGEST insn);
2481
2482 /* See to_insn_history. */
2483 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2484
2485 /* See to_insn_history_from. */
2486 extern void target_insn_history_from (ULONGEST from, int size,
2487 gdb_disassembly_flags flags);
2488
2489 /* See to_insn_history_range. */
2490 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2491 gdb_disassembly_flags flags);
2492
2493 /* See to_call_history. */
2494 extern void target_call_history (int size, int flags);
2495
2496 /* See to_call_history_from. */
2497 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2498
2499 /* See to_call_history_range. */
2500 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2501
2502 /* See to_prepare_to_generate_core. */
2503 extern void target_prepare_to_generate_core (void);
2504
2505 /* See to_done_generating_core. */
2506 extern void target_done_generating_core (void);
2507
2508 #if GDB_SELF_TEST
2509 namespace selftests {
2510
2511 /* A mock process_stratum target_ops that doesn't read/write registers
2512 anywhere. */
2513
2514 class test_target_ops : public target_ops
2515 {
2516 public:
2517 test_target_ops ();
2518 };
2519 } // namespace selftests
2520 #endif /* GDB_SELF_TEST */
2521
2522 #endif /* !defined (TARGET_H) */
This page took 0.094369 seconds and 4 git commands to generate.