Add target_ops argument to to_insert_watchpoint
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int);
407 void (*to_post_attach) (struct target_ops *, int);
408 void (*to_detach) (struct target_ops *ops, const char *, int);
409 void (*to_disconnect) (struct target_ops *, char *, int);
410 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
411 TARGET_DEFAULT_NORETURN (noprocess ());
412 ptid_t (*to_wait) (struct target_ops *,
413 ptid_t, struct target_waitstatus *, int)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
416 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_prepare_to_store) (struct target_ops *, struct regcache *);
419
420 /* Transfer LEN bytes of memory between GDB address MYADDR and
421 target address MEMADDR. If WRITE, transfer them to the target, else
422 transfer them from the target. TARGET is the target from which we
423 get this function.
424
425 Return value, N, is one of the following:
426
427 0 means that we can't handle this. If errno has been set, it is the
428 error which prevented us from doing it (FIXME: What about bfd_error?).
429
430 positive (call it N) means that we have transferred N bytes
431 starting at MEMADDR. We might be able to handle more bytes
432 beyond this length, but no promises.
433
434 negative (call its absolute value N) means that we cannot
435 transfer right at MEMADDR, but we could transfer at least
436 something at MEMADDR + N.
437
438 NOTE: cagney/2004-10-01: This has been entirely superseeded by
439 to_xfer_partial and inferior inheritance. */
440
441 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
442 int len, int write,
443 struct mem_attrib *attrib,
444 struct target_ops *target);
445
446 void (*to_files_info) (struct target_ops *);
447 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
448 struct bp_target_info *)
449 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
450 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
451 struct bp_target_info *)
452 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
453 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int);
454 int (*to_ranged_break_num_registers) (struct target_ops *);
455 int (*to_insert_hw_breakpoint) (struct target_ops *,
456 struct gdbarch *, struct bp_target_info *);
457 int (*to_remove_hw_breakpoint) (struct target_ops *,
458 struct gdbarch *, struct bp_target_info *);
459
460 /* Documentation of what the two routines below are expected to do is
461 provided with the corresponding target_* macros. */
462 int (*to_remove_watchpoint) (struct target_ops *,
463 CORE_ADDR, int, int, struct expression *);
464 int (*to_insert_watchpoint) (struct target_ops *,
465 CORE_ADDR, int, int, struct expression *);
466
467 int (*to_insert_mask_watchpoint) (struct target_ops *,
468 CORE_ADDR, CORE_ADDR, int);
469 int (*to_remove_mask_watchpoint) (struct target_ops *,
470 CORE_ADDR, CORE_ADDR, int);
471 int (*to_stopped_by_watchpoint) (struct target_ops *)
472 TARGET_DEFAULT_RETURN (0);
473 int to_have_steppable_watchpoint;
474 int to_have_continuable_watchpoint;
475 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
476 TARGET_DEFAULT_RETURN (0);
477 int (*to_watchpoint_addr_within_range) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479
480 /* Documentation of this routine is provided with the corresponding
481 target_* macro. */
482 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
483
484 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
485 struct expression *);
486 int (*to_masked_watch_num_registers) (struct target_ops *,
487 CORE_ADDR, CORE_ADDR);
488 void (*to_terminal_init) (void);
489 void (*to_terminal_inferior) (void);
490 void (*to_terminal_ours_for_output) (void);
491 void (*to_terminal_ours) (void);
492 void (*to_terminal_save_ours) (void);
493 void (*to_terminal_info) (const char *, int);
494 void (*to_kill) (struct target_ops *);
495 void (*to_load) (char *, int);
496 void (*to_create_inferior) (struct target_ops *,
497 char *, char *, char **, int);
498 void (*to_post_startup_inferior) (ptid_t);
499 int (*to_insert_fork_catchpoint) (int);
500 int (*to_remove_fork_catchpoint) (int);
501 int (*to_insert_vfork_catchpoint) (int);
502 int (*to_remove_vfork_catchpoint) (int);
503 int (*to_follow_fork) (struct target_ops *, int, int);
504 int (*to_insert_exec_catchpoint) (int);
505 int (*to_remove_exec_catchpoint) (int);
506 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
507 int (*to_has_exited) (int, int, int *);
508 void (*to_mourn_inferior) (struct target_ops *);
509 int (*to_can_run) (void);
510
511 /* Documentation of this routine is provided with the corresponding
512 target_* macro. */
513 void (*to_pass_signals) (int, unsigned char *);
514
515 /* Documentation of this routine is provided with the
516 corresponding target_* function. */
517 void (*to_program_signals) (int, unsigned char *);
518
519 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
520 void (*to_find_new_threads) (struct target_ops *);
521 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
522 char *(*to_extra_thread_info) (struct thread_info *);
523 char *(*to_thread_name) (struct thread_info *);
524 void (*to_stop) (ptid_t);
525 void (*to_rcmd) (char *command, struct ui_file *output);
526 char *(*to_pid_to_exec_file) (int pid);
527 void (*to_log_command) (const char *);
528 struct target_section_table *(*to_get_section_table) (struct target_ops *);
529 enum strata to_stratum;
530 int (*to_has_all_memory) (struct target_ops *);
531 int (*to_has_memory) (struct target_ops *);
532 int (*to_has_stack) (struct target_ops *);
533 int (*to_has_registers) (struct target_ops *);
534 int (*to_has_execution) (struct target_ops *, ptid_t);
535 int to_has_thread_control; /* control thread execution */
536 int to_attach_no_wait;
537 /* ASYNC target controls */
538 int (*to_can_async_p) (struct target_ops *)
539 TARGET_DEFAULT_FUNC (find_default_can_async_p);
540 int (*to_is_async_p) (struct target_ops *)
541 TARGET_DEFAULT_FUNC (find_default_is_async_p);
542 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
543 TARGET_DEFAULT_NORETURN (tcomplain ());
544 int (*to_supports_non_stop) (void);
545 /* find_memory_regions support method for gcore */
546 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
547 /* make_corefile_notes support method for gcore */
548 char * (*to_make_corefile_notes) (bfd *, int *);
549 /* get_bookmark support method for bookmarks */
550 gdb_byte * (*to_get_bookmark) (char *, int);
551 /* goto_bookmark support method for bookmarks */
552 void (*to_goto_bookmark) (gdb_byte *, int);
553 /* Return the thread-local address at OFFSET in the
554 thread-local storage for the thread PTID and the shared library
555 or executable file given by OBJFILE. If that block of
556 thread-local storage hasn't been allocated yet, this function
557 may return an error. */
558 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
559 ptid_t ptid,
560 CORE_ADDR load_module_addr,
561 CORE_ADDR offset);
562
563 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
564 OBJECT. The OFFSET, for a seekable object, specifies the
565 starting point. The ANNEX can be used to provide additional
566 data-specific information to the target.
567
568 Return the transferred status, error or OK (an
569 'enum target_xfer_status' value). Save the number of bytes
570 actually transferred in *XFERED_LEN if transfer is successful
571 (TARGET_XFER_OK) or the number unavailable bytes if the requested
572 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
573 smaller than LEN does not indicate the end of the object, only
574 the end of the transfer; higher level code should continue
575 transferring if desired. This is handled in target.c.
576
577 The interface does not support a "retry" mechanism. Instead it
578 assumes that at least one byte will be transfered on each
579 successful call.
580
581 NOTE: cagney/2003-10-17: The current interface can lead to
582 fragmented transfers. Lower target levels should not implement
583 hacks, such as enlarging the transfer, in an attempt to
584 compensate for this. Instead, the target stack should be
585 extended so that it implements supply/collect methods and a
586 look-aside object cache. With that available, the lowest
587 target can safely and freely "push" data up the stack.
588
589 See target_read and target_write for more information. One,
590 and only one, of readbuf or writebuf must be non-NULL. */
591
592 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
593 enum target_object object,
594 const char *annex,
595 gdb_byte *readbuf,
596 const gdb_byte *writebuf,
597 ULONGEST offset, ULONGEST len,
598 ULONGEST *xfered_len)
599 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
600
601 /* Returns the memory map for the target. A return value of NULL
602 means that no memory map is available. If a memory address
603 does not fall within any returned regions, it's assumed to be
604 RAM. The returned memory regions should not overlap.
605
606 The order of regions does not matter; target_memory_map will
607 sort regions by starting address. For that reason, this
608 function should not be called directly except via
609 target_memory_map.
610
611 This method should not cache data; if the memory map could
612 change unexpectedly, it should be invalidated, and higher
613 layers will re-fetch it. */
614 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
615
616 /* Erases the region of flash memory starting at ADDRESS, of
617 length LENGTH.
618
619 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
620 on flash block boundaries, as reported by 'to_memory_map'. */
621 void (*to_flash_erase) (struct target_ops *,
622 ULONGEST address, LONGEST length);
623
624 /* Finishes a flash memory write sequence. After this operation
625 all flash memory should be available for writing and the result
626 of reading from areas written by 'to_flash_write' should be
627 equal to what was written. */
628 void (*to_flash_done) (struct target_ops *);
629
630 /* Describe the architecture-specific features of this target.
631 Returns the description found, or NULL if no description
632 was available. */
633 const struct target_desc *(*to_read_description) (struct target_ops *ops);
634
635 /* Build the PTID of the thread on which a given task is running,
636 based on LWP and THREAD. These values are extracted from the
637 task Private_Data section of the Ada Task Control Block, and
638 their interpretation depends on the target. */
639 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
640
641 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
642 Return 0 if *READPTR is already at the end of the buffer.
643 Return -1 if there is insufficient buffer for a whole entry.
644 Return 1 if an entry was read into *TYPEP and *VALP. */
645 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
646 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
647
648 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
649 sequence of bytes in PATTERN with length PATTERN_LEN.
650
651 The result is 1 if found, 0 if not found, and -1 if there was an error
652 requiring halting of the search (e.g. memory read error).
653 If the pattern is found the address is recorded in FOUND_ADDRP. */
654 int (*to_search_memory) (struct target_ops *ops,
655 CORE_ADDR start_addr, ULONGEST search_space_len,
656 const gdb_byte *pattern, ULONGEST pattern_len,
657 CORE_ADDR *found_addrp);
658
659 /* Can target execute in reverse? */
660 int (*to_can_execute_reverse) (void);
661
662 /* The direction the target is currently executing. Must be
663 implemented on targets that support reverse execution and async
664 mode. The default simply returns forward execution. */
665 enum exec_direction_kind (*to_execution_direction) (void);
666
667 /* Does this target support debugging multiple processes
668 simultaneously? */
669 int (*to_supports_multi_process) (void);
670
671 /* Does this target support enabling and disabling tracepoints while a trace
672 experiment is running? */
673 int (*to_supports_enable_disable_tracepoint) (void);
674
675 /* Does this target support disabling address space randomization? */
676 int (*to_supports_disable_randomization) (void);
677
678 /* Does this target support the tracenz bytecode for string collection? */
679 int (*to_supports_string_tracing) (void);
680
681 /* Does this target support evaluation of breakpoint conditions on its
682 end? */
683 int (*to_supports_evaluation_of_breakpoint_conditions) (void);
684
685 /* Does this target support evaluation of breakpoint commands on its
686 end? */
687 int (*to_can_run_breakpoint_commands) (void);
688
689 /* Determine current architecture of thread PTID.
690
691 The target is supposed to determine the architecture of the code where
692 the target is currently stopped at (on Cell, if a target is in spu_run,
693 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
694 This is architecture used to perform decr_pc_after_break adjustment,
695 and also determines the frame architecture of the innermost frame.
696 ptrace operations need to operate according to target_gdbarch ().
697
698 The default implementation always returns target_gdbarch (). */
699 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
700
701 /* Determine current address space of thread PTID.
702
703 The default implementation always returns the inferior's
704 address space. */
705 struct address_space *(*to_thread_address_space) (struct target_ops *,
706 ptid_t);
707
708 /* Target file operations. */
709
710 /* Open FILENAME on the target, using FLAGS and MODE. Return a
711 target file descriptor, or -1 if an error occurs (and set
712 *TARGET_ERRNO). */
713 int (*to_fileio_open) (const char *filename, int flags, int mode,
714 int *target_errno);
715
716 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
717 Return the number of bytes written, or -1 if an error occurs
718 (and set *TARGET_ERRNO). */
719 int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
720 ULONGEST offset, int *target_errno);
721
722 /* Read up to LEN bytes FD on the target into READ_BUF.
723 Return the number of bytes read, or -1 if an error occurs
724 (and set *TARGET_ERRNO). */
725 int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
726 ULONGEST offset, int *target_errno);
727
728 /* Close FD on the target. Return 0, or -1 if an error occurs
729 (and set *TARGET_ERRNO). */
730 int (*to_fileio_close) (int fd, int *target_errno);
731
732 /* Unlink FILENAME on the target. Return 0, or -1 if an error
733 occurs (and set *TARGET_ERRNO). */
734 int (*to_fileio_unlink) (const char *filename, int *target_errno);
735
736 /* Read value of symbolic link FILENAME on the target. Return a
737 null-terminated string allocated via xmalloc, or NULL if an error
738 occurs (and set *TARGET_ERRNO). */
739 char *(*to_fileio_readlink) (const char *filename, int *target_errno);
740
741
742 /* Implement the "info proc" command. */
743 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
744
745 /* Tracepoint-related operations. */
746
747 /* Prepare the target for a tracing run. */
748 void (*to_trace_init) (void);
749
750 /* Send full details of a tracepoint location to the target. */
751 void (*to_download_tracepoint) (struct bp_location *location);
752
753 /* Is the target able to download tracepoint locations in current
754 state? */
755 int (*to_can_download_tracepoint) (void);
756
757 /* Send full details of a trace state variable to the target. */
758 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
759
760 /* Enable a tracepoint on the target. */
761 void (*to_enable_tracepoint) (struct bp_location *location);
762
763 /* Disable a tracepoint on the target. */
764 void (*to_disable_tracepoint) (struct bp_location *location);
765
766 /* Inform the target info of memory regions that are readonly
767 (such as text sections), and so it should return data from
768 those rather than look in the trace buffer. */
769 void (*to_trace_set_readonly_regions) (void);
770
771 /* Start a trace run. */
772 void (*to_trace_start) (void);
773
774 /* Get the current status of a tracing run. */
775 int (*to_get_trace_status) (struct trace_status *ts);
776
777 void (*to_get_tracepoint_status) (struct breakpoint *tp,
778 struct uploaded_tp *utp);
779
780 /* Stop a trace run. */
781 void (*to_trace_stop) (void);
782
783 /* Ask the target to find a trace frame of the given type TYPE,
784 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
785 number of the trace frame, and also the tracepoint number at
786 TPP. If no trace frame matches, return -1. May throw if the
787 operation fails. */
788 int (*to_trace_find) (enum trace_find_type type, int num,
789 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
790
791 /* Get the value of the trace state variable number TSV, returning
792 1 if the value is known and writing the value itself into the
793 location pointed to by VAL, else returning 0. */
794 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
795
796 int (*to_save_trace_data) (const char *filename);
797
798 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
799
800 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
801
802 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
803 ULONGEST offset, LONGEST len);
804
805 /* Get the minimum length of instruction on which a fast tracepoint
806 may be set on the target. If this operation is unsupported,
807 return -1. If for some reason the minimum length cannot be
808 determined, return 0. */
809 int (*to_get_min_fast_tracepoint_insn_len) (void);
810
811 /* Set the target's tracing behavior in response to unexpected
812 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
813 void (*to_set_disconnected_tracing) (int val);
814 void (*to_set_circular_trace_buffer) (int val);
815 /* Set the size of trace buffer in the target. */
816 void (*to_set_trace_buffer_size) (LONGEST val);
817
818 /* Add/change textual notes about the trace run, returning 1 if
819 successful, 0 otherwise. */
820 int (*to_set_trace_notes) (const char *user, const char *notes,
821 const char *stopnotes);
822
823 /* Return the processor core that thread PTID was last seen on.
824 This information is updated only when:
825 - update_thread_list is called
826 - thread stops
827 If the core cannot be determined -- either for the specified
828 thread, or right now, or in this debug session, or for this
829 target -- return -1. */
830 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
831
832 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
833 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
834 a match, 0 if there's a mismatch, and -1 if an error is
835 encountered while reading memory. */
836 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
837 CORE_ADDR memaddr, ULONGEST size);
838
839 /* Return the address of the start of the Thread Information Block
840 a Windows OS specific feature. */
841 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
842
843 /* Send the new settings of write permission variables. */
844 void (*to_set_permissions) (void);
845
846 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
847 with its details. Return 1 on success, 0 on failure. */
848 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
849 struct static_tracepoint_marker *marker);
850
851 /* Return a vector of all tracepoints markers string id ID, or all
852 markers if ID is NULL. */
853 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
854 (const char *id);
855
856 /* Return a traceframe info object describing the current
857 traceframe's contents. If the target doesn't support
858 traceframe info, return NULL. If the current traceframe is not
859 selected (the current traceframe number is -1), the target can
860 choose to return either NULL or an empty traceframe info. If
861 NULL is returned, for example in remote target, GDB will read
862 from the live inferior. If an empty traceframe info is
863 returned, for example in tfile target, which means the
864 traceframe info is available, but the requested memory is not
865 available in it. GDB will try to see if the requested memory
866 is available in the read-only sections. This method should not
867 cache data; higher layers take care of caching, invalidating,
868 and re-fetching when necessary. */
869 struct traceframe_info *(*to_traceframe_info) (void);
870
871 /* Ask the target to use or not to use agent according to USE. Return 1
872 successful, 0 otherwise. */
873 int (*to_use_agent) (int use);
874
875 /* Is the target able to use agent in current state? */
876 int (*to_can_use_agent) (void);
877
878 /* Check whether the target supports branch tracing. */
879 int (*to_supports_btrace) (struct target_ops *)
880 TARGET_DEFAULT_RETURN (0);
881
882 /* Enable branch tracing for PTID and allocate a branch trace target
883 information struct for reading and for disabling branch trace. */
884 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
885
886 /* Disable branch tracing and deallocate TINFO. */
887 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
888
889 /* Disable branch tracing and deallocate TINFO. This function is similar
890 to to_disable_btrace, except that it is called during teardown and is
891 only allowed to perform actions that are safe. A counter-example would
892 be attempting to talk to a remote target. */
893 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
894
895 /* Read branch trace data for the thread indicated by BTINFO into DATA.
896 DATA is cleared before new trace is added.
897 The branch trace will start with the most recent block and continue
898 towards older blocks. */
899 enum btrace_error (*to_read_btrace) (VEC (btrace_block_s) **data,
900 struct btrace_target_info *btinfo,
901 enum btrace_read_type type);
902
903 /* Stop trace recording. */
904 void (*to_stop_recording) (void);
905
906 /* Print information about the recording. */
907 void (*to_info_record) (void);
908
909 /* Save the recorded execution trace into a file. */
910 void (*to_save_record) (const char *filename);
911
912 /* Delete the recorded execution trace from the current position onwards. */
913 void (*to_delete_record) (void);
914
915 /* Query if the record target is currently replaying. */
916 int (*to_record_is_replaying) (void);
917
918 /* Go to the begin of the execution trace. */
919 void (*to_goto_record_begin) (void);
920
921 /* Go to the end of the execution trace. */
922 void (*to_goto_record_end) (void);
923
924 /* Go to a specific location in the recorded execution trace. */
925 void (*to_goto_record) (ULONGEST insn);
926
927 /* Disassemble SIZE instructions in the recorded execution trace from
928 the current position.
929 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
930 disassemble SIZE succeeding instructions. */
931 void (*to_insn_history) (int size, int flags);
932
933 /* Disassemble SIZE instructions in the recorded execution trace around
934 FROM.
935 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
936 disassemble SIZE instructions after FROM. */
937 void (*to_insn_history_from) (ULONGEST from, int size, int flags);
938
939 /* Disassemble a section of the recorded execution trace from instruction
940 BEGIN (inclusive) to instruction END (inclusive). */
941 void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
942
943 /* Print a function trace of the recorded execution trace.
944 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
945 succeeding functions. */
946 void (*to_call_history) (int size, int flags);
947
948 /* Print a function trace of the recorded execution trace starting
949 at function FROM.
950 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
951 SIZE functions after FROM. */
952 void (*to_call_history_from) (ULONGEST begin, int size, int flags);
953
954 /* Print a function trace of an execution trace section from function BEGIN
955 (inclusive) to function END (inclusive). */
956 void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
957
958 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
959 non-empty annex. */
960 int (*to_augmented_libraries_svr4_read) (void);
961
962 /* Those unwinders are tried before any other arch unwinders. Use NULL if
963 it is not used. */
964 const struct frame_unwind *to_get_unwinder;
965 const struct frame_unwind *to_get_tailcall_unwinder;
966
967 /* Return the number of bytes by which the PC needs to be decremented
968 after executing a breakpoint instruction.
969 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
970 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
971 struct gdbarch *gdbarch);
972
973 int to_magic;
974 /* Need sub-structure for target machine related rather than comm related?
975 */
976 };
977
978 /* Magic number for checking ops size. If a struct doesn't end with this
979 number, somebody changed the declaration but didn't change all the
980 places that initialize one. */
981
982 #define OPS_MAGIC 3840
983
984 /* The ops structure for our "current" target process. This should
985 never be NULL. If there is no target, it points to the dummy_target. */
986
987 extern struct target_ops current_target;
988
989 /* Define easy words for doing these operations on our current target. */
990
991 #define target_shortname (current_target.to_shortname)
992 #define target_longname (current_target.to_longname)
993
994 /* Does whatever cleanup is required for a target that we are no
995 longer going to be calling. This routine is automatically always
996 called after popping the target off the target stack - the target's
997 own methods are no longer available through the target vector.
998 Closing file descriptors and freeing all memory allocated memory are
999 typical things it should do. */
1000
1001 void target_close (struct target_ops *targ);
1002
1003 /* Attaches to a process on the target side. Arguments are as passed
1004 to the `attach' command by the user. This routine can be called
1005 when the target is not on the target-stack, if the target_can_run
1006 routine returns 1; in that case, it must push itself onto the stack.
1007 Upon exit, the target should be ready for normal operations, and
1008 should be ready to deliver the status of the process immediately
1009 (without waiting) to an upcoming target_wait call. */
1010
1011 void target_attach (char *, int);
1012
1013 /* Some targets don't generate traps when attaching to the inferior,
1014 or their target_attach implementation takes care of the waiting.
1015 These targets must set to_attach_no_wait. */
1016
1017 #define target_attach_no_wait \
1018 (current_target.to_attach_no_wait)
1019
1020 /* The target_attach operation places a process under debugger control,
1021 and stops the process.
1022
1023 This operation provides a target-specific hook that allows the
1024 necessary bookkeeping to be performed after an attach completes. */
1025 #define target_post_attach(pid) \
1026 (*current_target.to_post_attach) (&current_target, pid)
1027
1028 /* Takes a program previously attached to and detaches it.
1029 The program may resume execution (some targets do, some don't) and will
1030 no longer stop on signals, etc. We better not have left any breakpoints
1031 in the program or it'll die when it hits one. ARGS is arguments
1032 typed by the user (e.g. a signal to send the process). FROM_TTY
1033 says whether to be verbose or not. */
1034
1035 extern void target_detach (const char *, int);
1036
1037 /* Disconnect from the current target without resuming it (leaving it
1038 waiting for a debugger). */
1039
1040 extern void target_disconnect (char *, int);
1041
1042 /* Resume execution of the target process PTID (or a group of
1043 threads). STEP says whether to single-step or to run free; SIGGNAL
1044 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1045 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1046 PTID means `step/resume only this process id'. A wildcard PTID
1047 (all threads, or all threads of process) means `step/resume
1048 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1049 matches) resume with their 'thread->suspend.stop_signal' signal
1050 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1051 if in "no pass" state. */
1052
1053 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1054
1055 /* Wait for process pid to do something. PTID = -1 to wait for any
1056 pid to do something. Return pid of child, or -1 in case of error;
1057 store status through argument pointer STATUS. Note that it is
1058 _NOT_ OK to throw_exception() out of target_wait() without popping
1059 the debugging target from the stack; GDB isn't prepared to get back
1060 to the prompt with a debugging target but without the frame cache,
1061 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1062 options. */
1063
1064 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1065 int options);
1066
1067 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1068
1069 extern void target_fetch_registers (struct regcache *regcache, int regno);
1070
1071 /* Store at least register REGNO, or all regs if REGNO == -1.
1072 It can store as many registers as it wants to, so target_prepare_to_store
1073 must have been previously called. Calls error() if there are problems. */
1074
1075 extern void target_store_registers (struct regcache *regcache, int regs);
1076
1077 /* Get ready to modify the registers array. On machines which store
1078 individual registers, this doesn't need to do anything. On machines
1079 which store all the registers in one fell swoop, this makes sure
1080 that REGISTERS contains all the registers from the program being
1081 debugged. */
1082
1083 #define target_prepare_to_store(regcache) \
1084 (*current_target.to_prepare_to_store) (&current_target, regcache)
1085
1086 /* Determine current address space of thread PTID. */
1087
1088 struct address_space *target_thread_address_space (ptid_t);
1089
1090 /* Implement the "info proc" command. This returns one if the request
1091 was handled, and zero otherwise. It can also throw an exception if
1092 an error was encountered while attempting to handle the
1093 request. */
1094
1095 int target_info_proc (char *, enum info_proc_what);
1096
1097 /* Returns true if this target can debug multiple processes
1098 simultaneously. */
1099
1100 #define target_supports_multi_process() \
1101 (*current_target.to_supports_multi_process) ()
1102
1103 /* Returns true if this target can disable address space randomization. */
1104
1105 int target_supports_disable_randomization (void);
1106
1107 /* Returns true if this target can enable and disable tracepoints
1108 while a trace experiment is running. */
1109
1110 #define target_supports_enable_disable_tracepoint() \
1111 (*current_target.to_supports_enable_disable_tracepoint) ()
1112
1113 #define target_supports_string_tracing() \
1114 (*current_target.to_supports_string_tracing) ()
1115
1116 /* Returns true if this target can handle breakpoint conditions
1117 on its end. */
1118
1119 #define target_supports_evaluation_of_breakpoint_conditions() \
1120 (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
1121
1122 /* Returns true if this target can handle breakpoint commands
1123 on its end. */
1124
1125 #define target_can_run_breakpoint_commands() \
1126 (*current_target.to_can_run_breakpoint_commands) ()
1127
1128 extern int target_read_string (CORE_ADDR, char **, int, int *);
1129
1130 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1131 ssize_t len);
1132
1133 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1134 ssize_t len);
1135
1136 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1137
1138 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1139
1140 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1141 ssize_t len);
1142
1143 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1144 ssize_t len);
1145
1146 /* Fetches the target's memory map. If one is found it is sorted
1147 and returned, after some consistency checking. Otherwise, NULL
1148 is returned. */
1149 VEC(mem_region_s) *target_memory_map (void);
1150
1151 /* Erase the specified flash region. */
1152 void target_flash_erase (ULONGEST address, LONGEST length);
1153
1154 /* Finish a sequence of flash operations. */
1155 void target_flash_done (void);
1156
1157 /* Describes a request for a memory write operation. */
1158 struct memory_write_request
1159 {
1160 /* Begining address that must be written. */
1161 ULONGEST begin;
1162 /* Past-the-end address. */
1163 ULONGEST end;
1164 /* The data to write. */
1165 gdb_byte *data;
1166 /* A callback baton for progress reporting for this request. */
1167 void *baton;
1168 };
1169 typedef struct memory_write_request memory_write_request_s;
1170 DEF_VEC_O(memory_write_request_s);
1171
1172 /* Enumeration specifying different flash preservation behaviour. */
1173 enum flash_preserve_mode
1174 {
1175 flash_preserve,
1176 flash_discard
1177 };
1178
1179 /* Write several memory blocks at once. This version can be more
1180 efficient than making several calls to target_write_memory, in
1181 particular because it can optimize accesses to flash memory.
1182
1183 Moreover, this is currently the only memory access function in gdb
1184 that supports writing to flash memory, and it should be used for
1185 all cases where access to flash memory is desirable.
1186
1187 REQUESTS is the vector (see vec.h) of memory_write_request.
1188 PRESERVE_FLASH_P indicates what to do with blocks which must be
1189 erased, but not completely rewritten.
1190 PROGRESS_CB is a function that will be periodically called to provide
1191 feedback to user. It will be called with the baton corresponding
1192 to the request currently being written. It may also be called
1193 with a NULL baton, when preserved flash sectors are being rewritten.
1194
1195 The function returns 0 on success, and error otherwise. */
1196 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1197 enum flash_preserve_mode preserve_flash_p,
1198 void (*progress_cb) (ULONGEST, void *));
1199
1200 /* Print a line about the current target. */
1201
1202 #define target_files_info() \
1203 (*current_target.to_files_info) (&current_target)
1204
1205 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1206 the target machine. Returns 0 for success, and returns non-zero or
1207 throws an error (with a detailed failure reason error code and
1208 message) otherwise. */
1209
1210 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1211 struct bp_target_info *bp_tgt);
1212
1213 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1214 machine. Result is 0 for success, non-zero for error. */
1215
1216 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1217 struct bp_target_info *bp_tgt);
1218
1219 /* Initialize the terminal settings we record for the inferior,
1220 before we actually run the inferior. */
1221
1222 #define target_terminal_init() \
1223 (*current_target.to_terminal_init) ()
1224
1225 /* Put the inferior's terminal settings into effect.
1226 This is preparation for starting or resuming the inferior. */
1227
1228 extern void target_terminal_inferior (void);
1229
1230 /* Put some of our terminal settings into effect,
1231 enough to get proper results from our output,
1232 but do not change into or out of RAW mode
1233 so that no input is discarded.
1234
1235 After doing this, either terminal_ours or terminal_inferior
1236 should be called to get back to a normal state of affairs. */
1237
1238 #define target_terminal_ours_for_output() \
1239 (*current_target.to_terminal_ours_for_output) ()
1240
1241 /* Put our terminal settings into effect.
1242 First record the inferior's terminal settings
1243 so they can be restored properly later. */
1244
1245 #define target_terminal_ours() \
1246 (*current_target.to_terminal_ours) ()
1247
1248 /* Save our terminal settings.
1249 This is called from TUI after entering or leaving the curses
1250 mode. Since curses modifies our terminal this call is here
1251 to take this change into account. */
1252
1253 #define target_terminal_save_ours() \
1254 (*current_target.to_terminal_save_ours) ()
1255
1256 /* Print useful information about our terminal status, if such a thing
1257 exists. */
1258
1259 #define target_terminal_info(arg, from_tty) \
1260 (*current_target.to_terminal_info) (arg, from_tty)
1261
1262 /* Kill the inferior process. Make it go away. */
1263
1264 extern void target_kill (void);
1265
1266 /* Load an executable file into the target process. This is expected
1267 to not only bring new code into the target process, but also to
1268 update GDB's symbol tables to match.
1269
1270 ARG contains command-line arguments, to be broken down with
1271 buildargv (). The first non-switch argument is the filename to
1272 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1273 0)), which is an offset to apply to the load addresses of FILE's
1274 sections. The target may define switches, or other non-switch
1275 arguments, as it pleases. */
1276
1277 extern void target_load (char *arg, int from_tty);
1278
1279 /* Start an inferior process and set inferior_ptid to its pid.
1280 EXEC_FILE is the file to run.
1281 ALLARGS is a string containing the arguments to the program.
1282 ENV is the environment vector to pass. Errors reported with error().
1283 On VxWorks and various standalone systems, we ignore exec_file. */
1284
1285 void target_create_inferior (char *exec_file, char *args,
1286 char **env, int from_tty);
1287
1288 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1289 notification of inferior events such as fork and vork immediately
1290 after the inferior is created. (This because of how gdb gets an
1291 inferior created via invoking a shell to do it. In such a scenario,
1292 if the shell init file has commands in it, the shell will fork and
1293 exec for each of those commands, and we will see each such fork
1294 event. Very bad.)
1295
1296 Such targets will supply an appropriate definition for this function. */
1297
1298 #define target_post_startup_inferior(ptid) \
1299 (*current_target.to_post_startup_inferior) (ptid)
1300
1301 /* On some targets, we can catch an inferior fork or vfork event when
1302 it occurs. These functions insert/remove an already-created
1303 catchpoint for such events. They return 0 for success, 1 if the
1304 catchpoint type is not supported and -1 for failure. */
1305
1306 #define target_insert_fork_catchpoint(pid) \
1307 (*current_target.to_insert_fork_catchpoint) (pid)
1308
1309 #define target_remove_fork_catchpoint(pid) \
1310 (*current_target.to_remove_fork_catchpoint) (pid)
1311
1312 #define target_insert_vfork_catchpoint(pid) \
1313 (*current_target.to_insert_vfork_catchpoint) (pid)
1314
1315 #define target_remove_vfork_catchpoint(pid) \
1316 (*current_target.to_remove_vfork_catchpoint) (pid)
1317
1318 /* If the inferior forks or vforks, this function will be called at
1319 the next resume in order to perform any bookkeeping and fiddling
1320 necessary to continue debugging either the parent or child, as
1321 requested, and releasing the other. Information about the fork
1322 or vfork event is available via get_last_target_status ().
1323 This function returns 1 if the inferior should not be resumed
1324 (i.e. there is another event pending). */
1325
1326 int target_follow_fork (int follow_child, int detach_fork);
1327
1328 /* On some targets, we can catch an inferior exec event when it
1329 occurs. These functions insert/remove an already-created
1330 catchpoint for such events. They return 0 for success, 1 if the
1331 catchpoint type is not supported and -1 for failure. */
1332
1333 #define target_insert_exec_catchpoint(pid) \
1334 (*current_target.to_insert_exec_catchpoint) (pid)
1335
1336 #define target_remove_exec_catchpoint(pid) \
1337 (*current_target.to_remove_exec_catchpoint) (pid)
1338
1339 /* Syscall catch.
1340
1341 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1342 If NEEDED is zero, it means the target can disable the mechanism to
1343 catch system calls because there are no more catchpoints of this type.
1344
1345 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1346 being requested. In this case, both TABLE_SIZE and TABLE should
1347 be ignored.
1348
1349 TABLE_SIZE is the number of elements in TABLE. It only matters if
1350 ANY_COUNT is zero.
1351
1352 TABLE is an array of ints, indexed by syscall number. An element in
1353 this array is nonzero if that syscall should be caught. This argument
1354 only matters if ANY_COUNT is zero.
1355
1356 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1357 for failure. */
1358
1359 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1360 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1361 table_size, table)
1362
1363 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1364 exit code of PID, if any. */
1365
1366 #define target_has_exited(pid,wait_status,exit_status) \
1367 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1368
1369 /* The debugger has completed a blocking wait() call. There is now
1370 some process event that must be processed. This function should
1371 be defined by those targets that require the debugger to perform
1372 cleanup or internal state changes in response to the process event. */
1373
1374 /* The inferior process has died. Do what is right. */
1375
1376 void target_mourn_inferior (void);
1377
1378 /* Does target have enough data to do a run or attach command? */
1379
1380 #define target_can_run(t) \
1381 ((t)->to_can_run) ()
1382
1383 /* Set list of signals to be handled in the target.
1384
1385 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1386 (enum gdb_signal). For every signal whose entry in this array is
1387 non-zero, the target is allowed -but not required- to skip reporting
1388 arrival of the signal to the GDB core by returning from target_wait,
1389 and to pass the signal directly to the inferior instead.
1390
1391 However, if the target is hardware single-stepping a thread that is
1392 about to receive a signal, it needs to be reported in any case, even
1393 if mentioned in a previous target_pass_signals call. */
1394
1395 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1396
1397 /* Set list of signals the target may pass to the inferior. This
1398 directly maps to the "handle SIGNAL pass/nopass" setting.
1399
1400 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1401 number (enum gdb_signal). For every signal whose entry in this
1402 array is non-zero, the target is allowed to pass the signal to the
1403 inferior. Signals not present in the array shall be silently
1404 discarded. This does not influence whether to pass signals to the
1405 inferior as a result of a target_resume call. This is useful in
1406 scenarios where the target needs to decide whether to pass or not a
1407 signal to the inferior without GDB core involvement, such as for
1408 example, when detaching (as threads may have been suspended with
1409 pending signals not reported to GDB). */
1410
1411 extern void target_program_signals (int nsig, unsigned char *program_signals);
1412
1413 /* Check to see if a thread is still alive. */
1414
1415 extern int target_thread_alive (ptid_t ptid);
1416
1417 /* Query for new threads and add them to the thread list. */
1418
1419 extern void target_find_new_threads (void);
1420
1421 /* Make target stop in a continuable fashion. (For instance, under
1422 Unix, this should act like SIGSTOP). This function is normally
1423 used by GUIs to implement a stop button. */
1424
1425 extern void target_stop (ptid_t ptid);
1426
1427 /* Send the specified COMMAND to the target's monitor
1428 (shell,interpreter) for execution. The result of the query is
1429 placed in OUTBUF. */
1430
1431 #define target_rcmd(command, outbuf) \
1432 (*current_target.to_rcmd) (command, outbuf)
1433
1434
1435 /* Does the target include all of memory, or only part of it? This
1436 determines whether we look up the target chain for other parts of
1437 memory if this target can't satisfy a request. */
1438
1439 extern int target_has_all_memory_1 (void);
1440 #define target_has_all_memory target_has_all_memory_1 ()
1441
1442 /* Does the target include memory? (Dummy targets don't.) */
1443
1444 extern int target_has_memory_1 (void);
1445 #define target_has_memory target_has_memory_1 ()
1446
1447 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1448 we start a process.) */
1449
1450 extern int target_has_stack_1 (void);
1451 #define target_has_stack target_has_stack_1 ()
1452
1453 /* Does the target have registers? (Exec files don't.) */
1454
1455 extern int target_has_registers_1 (void);
1456 #define target_has_registers target_has_registers_1 ()
1457
1458 /* Does the target have execution? Can we make it jump (through
1459 hoops), or pop its stack a few times? This means that the current
1460 target is currently executing; for some targets, that's the same as
1461 whether or not the target is capable of execution, but there are
1462 also targets which can be current while not executing. In that
1463 case this will become true after target_create_inferior or
1464 target_attach. */
1465
1466 extern int target_has_execution_1 (ptid_t);
1467
1468 /* Like target_has_execution_1, but always passes inferior_ptid. */
1469
1470 extern int target_has_execution_current (void);
1471
1472 #define target_has_execution target_has_execution_current ()
1473
1474 /* Default implementations for process_stratum targets. Return true
1475 if there's a selected inferior, false otherwise. */
1476
1477 extern int default_child_has_all_memory (struct target_ops *ops);
1478 extern int default_child_has_memory (struct target_ops *ops);
1479 extern int default_child_has_stack (struct target_ops *ops);
1480 extern int default_child_has_registers (struct target_ops *ops);
1481 extern int default_child_has_execution (struct target_ops *ops,
1482 ptid_t the_ptid);
1483
1484 /* Can the target support the debugger control of thread execution?
1485 Can it lock the thread scheduler? */
1486
1487 #define target_can_lock_scheduler \
1488 (current_target.to_has_thread_control & tc_schedlock)
1489
1490 /* Should the target enable async mode if it is supported? Temporary
1491 cludge until async mode is a strict superset of sync mode. */
1492 extern int target_async_permitted;
1493
1494 /* Can the target support asynchronous execution? */
1495 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1496
1497 /* Is the target in asynchronous execution mode? */
1498 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1499
1500 int target_supports_non_stop (void);
1501
1502 /* Put the target in async mode with the specified callback function. */
1503 #define target_async(CALLBACK,CONTEXT) \
1504 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1505
1506 #define target_execution_direction() \
1507 (current_target.to_execution_direction ())
1508
1509 /* Converts a process id to a string. Usually, the string just contains
1510 `process xyz', but on some systems it may contain
1511 `process xyz thread abc'. */
1512
1513 extern char *target_pid_to_str (ptid_t ptid);
1514
1515 extern char *normal_pid_to_str (ptid_t ptid);
1516
1517 /* Return a short string describing extra information about PID,
1518 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1519 is okay. */
1520
1521 #define target_extra_thread_info(TP) \
1522 (current_target.to_extra_thread_info (TP))
1523
1524 /* Return the thread's name. A NULL result means that the target
1525 could not determine this thread's name. */
1526
1527 extern char *target_thread_name (struct thread_info *);
1528
1529 /* Attempts to find the pathname of the executable file
1530 that was run to create a specified process.
1531
1532 The process PID must be stopped when this operation is used.
1533
1534 If the executable file cannot be determined, NULL is returned.
1535
1536 Else, a pointer to a character string containing the pathname
1537 is returned. This string should be copied into a buffer by
1538 the client if the string will not be immediately used, or if
1539 it must persist. */
1540
1541 #define target_pid_to_exec_file(pid) \
1542 (current_target.to_pid_to_exec_file) (pid)
1543
1544 /* See the to_thread_architecture description in struct target_ops. */
1545
1546 #define target_thread_architecture(ptid) \
1547 (current_target.to_thread_architecture (&current_target, ptid))
1548
1549 /*
1550 * Iterator function for target memory regions.
1551 * Calls a callback function once for each memory region 'mapped'
1552 * in the child process. Defined as a simple macro rather than
1553 * as a function macro so that it can be tested for nullity.
1554 */
1555
1556 #define target_find_memory_regions(FUNC, DATA) \
1557 (current_target.to_find_memory_regions) (FUNC, DATA)
1558
1559 /*
1560 * Compose corefile .note section.
1561 */
1562
1563 #define target_make_corefile_notes(BFD, SIZE_P) \
1564 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1565
1566 /* Bookmark interfaces. */
1567 #define target_get_bookmark(ARGS, FROM_TTY) \
1568 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1569
1570 #define target_goto_bookmark(ARG, FROM_TTY) \
1571 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1572
1573 /* Hardware watchpoint interfaces. */
1574
1575 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1576 write). Only the INFERIOR_PTID task is being queried. */
1577
1578 #define target_stopped_by_watchpoint() \
1579 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1580
1581 /* Non-zero if we have steppable watchpoints */
1582
1583 #define target_have_steppable_watchpoint \
1584 (current_target.to_have_steppable_watchpoint)
1585
1586 /* Non-zero if we have continuable watchpoints */
1587
1588 #define target_have_continuable_watchpoint \
1589 (current_target.to_have_continuable_watchpoint)
1590
1591 /* Provide defaults for hardware watchpoint functions. */
1592
1593 /* If the *_hw_beakpoint functions have not been defined
1594 elsewhere use the definitions in the target vector. */
1595
1596 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1597 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1598 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1599 (including this one?). OTHERTYPE is who knows what... */
1600
1601 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1602 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1603 TYPE, CNT, OTHERTYPE);
1604
1605 /* Returns the number of debug registers needed to watch the given
1606 memory region, or zero if not supported. */
1607
1608 #define target_region_ok_for_hw_watchpoint(addr, len) \
1609 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1610
1611
1612 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1613 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1614 COND is the expression for its condition, or NULL if there's none.
1615 Returns 0 for success, 1 if the watchpoint type is not supported,
1616 -1 for failure. */
1617
1618 #define target_insert_watchpoint(addr, len, type, cond) \
1619 (*current_target.to_insert_watchpoint) (&current_target, \
1620 addr, len, type, cond)
1621
1622 #define target_remove_watchpoint(addr, len, type, cond) \
1623 (*current_target.to_remove_watchpoint) (&current_target, \
1624 addr, len, type, cond)
1625
1626 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1627 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1628 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1629 masked watchpoints are not supported, -1 for failure. */
1630
1631 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1632
1633 /* Remove a masked watchpoint at ADDR with the mask MASK.
1634 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1635 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1636 for failure. */
1637
1638 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1639
1640 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1641 the target machine. Returns 0 for success, and returns non-zero or
1642 throws an error (with a detailed failure reason error code and
1643 message) otherwise. */
1644
1645 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1646 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1647 gdbarch, bp_tgt)
1648
1649 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1650 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1651 gdbarch, bp_tgt)
1652
1653 /* Return number of debug registers needed for a ranged breakpoint,
1654 or -1 if ranged breakpoints are not supported. */
1655
1656 extern int target_ranged_break_num_registers (void);
1657
1658 /* Return non-zero if target knows the data address which triggered this
1659 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1660 INFERIOR_PTID task is being queried. */
1661 #define target_stopped_data_address(target, addr_p) \
1662 (*target.to_stopped_data_address) (target, addr_p)
1663
1664 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1665 LENGTH bytes beginning at START. */
1666 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1667 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1668
1669 /* Return non-zero if the target is capable of using hardware to evaluate
1670 the condition expression. In this case, if the condition is false when
1671 the watched memory location changes, execution may continue without the
1672 debugger being notified.
1673
1674 Due to limitations in the hardware implementation, it may be capable of
1675 avoiding triggering the watchpoint in some cases where the condition
1676 expression is false, but may report some false positives as well.
1677 For this reason, GDB will still evaluate the condition expression when
1678 the watchpoint triggers. */
1679 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1680 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1681
1682 /* Return number of debug registers needed for a masked watchpoint,
1683 -1 if masked watchpoints are not supported or -2 if the given address
1684 and mask combination cannot be used. */
1685
1686 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1687
1688 /* Target can execute in reverse? */
1689 #define target_can_execute_reverse \
1690 (current_target.to_can_execute_reverse ? \
1691 current_target.to_can_execute_reverse () : 0)
1692
1693 extern const struct target_desc *target_read_description (struct target_ops *);
1694
1695 #define target_get_ada_task_ptid(lwp, tid) \
1696 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1697
1698 /* Utility implementation of searching memory. */
1699 extern int simple_search_memory (struct target_ops* ops,
1700 CORE_ADDR start_addr,
1701 ULONGEST search_space_len,
1702 const gdb_byte *pattern,
1703 ULONGEST pattern_len,
1704 CORE_ADDR *found_addrp);
1705
1706 /* Main entry point for searching memory. */
1707 extern int target_search_memory (CORE_ADDR start_addr,
1708 ULONGEST search_space_len,
1709 const gdb_byte *pattern,
1710 ULONGEST pattern_len,
1711 CORE_ADDR *found_addrp);
1712
1713 /* Target file operations. */
1714
1715 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1716 target file descriptor, or -1 if an error occurs (and set
1717 *TARGET_ERRNO). */
1718 extern int target_fileio_open (const char *filename, int flags, int mode,
1719 int *target_errno);
1720
1721 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1722 Return the number of bytes written, or -1 if an error occurs
1723 (and set *TARGET_ERRNO). */
1724 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1725 ULONGEST offset, int *target_errno);
1726
1727 /* Read up to LEN bytes FD on the target into READ_BUF.
1728 Return the number of bytes read, or -1 if an error occurs
1729 (and set *TARGET_ERRNO). */
1730 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1731 ULONGEST offset, int *target_errno);
1732
1733 /* Close FD on the target. Return 0, or -1 if an error occurs
1734 (and set *TARGET_ERRNO). */
1735 extern int target_fileio_close (int fd, int *target_errno);
1736
1737 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1738 occurs (and set *TARGET_ERRNO). */
1739 extern int target_fileio_unlink (const char *filename, int *target_errno);
1740
1741 /* Read value of symbolic link FILENAME on the target. Return a
1742 null-terminated string allocated via xmalloc, or NULL if an error
1743 occurs (and set *TARGET_ERRNO). */
1744 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1745
1746 /* Read target file FILENAME. The return value will be -1 if the transfer
1747 fails or is not supported; 0 if the object is empty; or the length
1748 of the object otherwise. If a positive value is returned, a
1749 sufficiently large buffer will be allocated using xmalloc and
1750 returned in *BUF_P containing the contents of the object.
1751
1752 This method should be used for objects sufficiently small to store
1753 in a single xmalloc'd buffer, when no fixed bound on the object's
1754 size is known in advance. */
1755 extern LONGEST target_fileio_read_alloc (const char *filename,
1756 gdb_byte **buf_p);
1757
1758 /* Read target file FILENAME. The result is NUL-terminated and
1759 returned as a string, allocated using xmalloc. If an error occurs
1760 or the transfer is unsupported, NULL is returned. Empty objects
1761 are returned as allocated but empty strings. A warning is issued
1762 if the result contains any embedded NUL bytes. */
1763 extern char *target_fileio_read_stralloc (const char *filename);
1764
1765
1766 /* Tracepoint-related operations. */
1767
1768 #define target_trace_init() \
1769 (*current_target.to_trace_init) ()
1770
1771 #define target_download_tracepoint(t) \
1772 (*current_target.to_download_tracepoint) (t)
1773
1774 #define target_can_download_tracepoint() \
1775 (*current_target.to_can_download_tracepoint) ()
1776
1777 #define target_download_trace_state_variable(tsv) \
1778 (*current_target.to_download_trace_state_variable) (tsv)
1779
1780 #define target_enable_tracepoint(loc) \
1781 (*current_target.to_enable_tracepoint) (loc)
1782
1783 #define target_disable_tracepoint(loc) \
1784 (*current_target.to_disable_tracepoint) (loc)
1785
1786 #define target_trace_start() \
1787 (*current_target.to_trace_start) ()
1788
1789 #define target_trace_set_readonly_regions() \
1790 (*current_target.to_trace_set_readonly_regions) ()
1791
1792 #define target_get_trace_status(ts) \
1793 (*current_target.to_get_trace_status) (ts)
1794
1795 #define target_get_tracepoint_status(tp,utp) \
1796 (*current_target.to_get_tracepoint_status) (tp, utp)
1797
1798 #define target_trace_stop() \
1799 (*current_target.to_trace_stop) ()
1800
1801 #define target_trace_find(type,num,addr1,addr2,tpp) \
1802 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1803
1804 #define target_get_trace_state_variable_value(tsv,val) \
1805 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1806
1807 #define target_save_trace_data(filename) \
1808 (*current_target.to_save_trace_data) (filename)
1809
1810 #define target_upload_tracepoints(utpp) \
1811 (*current_target.to_upload_tracepoints) (utpp)
1812
1813 #define target_upload_trace_state_variables(utsvp) \
1814 (*current_target.to_upload_trace_state_variables) (utsvp)
1815
1816 #define target_get_raw_trace_data(buf,offset,len) \
1817 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1818
1819 #define target_get_min_fast_tracepoint_insn_len() \
1820 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1821
1822 #define target_set_disconnected_tracing(val) \
1823 (*current_target.to_set_disconnected_tracing) (val)
1824
1825 #define target_set_circular_trace_buffer(val) \
1826 (*current_target.to_set_circular_trace_buffer) (val)
1827
1828 #define target_set_trace_buffer_size(val) \
1829 (*current_target.to_set_trace_buffer_size) (val)
1830
1831 #define target_set_trace_notes(user,notes,stopnotes) \
1832 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1833
1834 #define target_get_tib_address(ptid, addr) \
1835 (*current_target.to_get_tib_address) ((ptid), (addr))
1836
1837 #define target_set_permissions() \
1838 (*current_target.to_set_permissions) ()
1839
1840 #define target_static_tracepoint_marker_at(addr, marker) \
1841 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1842
1843 #define target_static_tracepoint_markers_by_strid(marker_id) \
1844 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1845
1846 #define target_traceframe_info() \
1847 (*current_target.to_traceframe_info) ()
1848
1849 #define target_use_agent(use) \
1850 (*current_target.to_use_agent) (use)
1851
1852 #define target_can_use_agent() \
1853 (*current_target.to_can_use_agent) ()
1854
1855 #define target_augmented_libraries_svr4_read() \
1856 (*current_target.to_augmented_libraries_svr4_read) ()
1857
1858 /* Command logging facility. */
1859
1860 #define target_log_command(p) \
1861 do \
1862 if (current_target.to_log_command) \
1863 (*current_target.to_log_command) (p); \
1864 while (0)
1865
1866
1867 extern int target_core_of_thread (ptid_t ptid);
1868
1869 /* See to_get_unwinder in struct target_ops. */
1870 extern const struct frame_unwind *target_get_unwinder (void);
1871
1872 /* See to_get_tailcall_unwinder in struct target_ops. */
1873 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1874
1875 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1876 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1877 if there's a mismatch, and -1 if an error is encountered while
1878 reading memory. Throws an error if the functionality is found not
1879 to be supported by the current target. */
1880 int target_verify_memory (const gdb_byte *data,
1881 CORE_ADDR memaddr, ULONGEST size);
1882
1883 /* Routines for maintenance of the target structures...
1884
1885 complete_target_initialization: Finalize a target_ops by filling in
1886 any fields needed by the target implementation.
1887
1888 add_target: Add a target to the list of all possible targets.
1889
1890 push_target: Make this target the top of the stack of currently used
1891 targets, within its particular stratum of the stack. Result
1892 is 0 if now atop the stack, nonzero if not on top (maybe
1893 should warn user).
1894
1895 unpush_target: Remove this from the stack of currently used targets,
1896 no matter where it is on the list. Returns 0 if no
1897 change, 1 if removed from stack. */
1898
1899 extern void add_target (struct target_ops *);
1900
1901 extern void add_target_with_completer (struct target_ops *t,
1902 completer_ftype *completer);
1903
1904 extern void complete_target_initialization (struct target_ops *t);
1905
1906 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1907 for maintaining backwards compatibility when renaming targets. */
1908
1909 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1910
1911 extern void push_target (struct target_ops *);
1912
1913 extern int unpush_target (struct target_ops *);
1914
1915 extern void target_pre_inferior (int);
1916
1917 extern void target_preopen (int);
1918
1919 /* Does whatever cleanup is required to get rid of all pushed targets. */
1920 extern void pop_all_targets (void);
1921
1922 /* Like pop_all_targets, but pops only targets whose stratum is
1923 strictly above ABOVE_STRATUM. */
1924 extern void pop_all_targets_above (enum strata above_stratum);
1925
1926 extern int target_is_pushed (struct target_ops *t);
1927
1928 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1929 CORE_ADDR offset);
1930
1931 /* Struct target_section maps address ranges to file sections. It is
1932 mostly used with BFD files, but can be used without (e.g. for handling
1933 raw disks, or files not in formats handled by BFD). */
1934
1935 struct target_section
1936 {
1937 CORE_ADDR addr; /* Lowest address in section */
1938 CORE_ADDR endaddr; /* 1+highest address in section */
1939
1940 struct bfd_section *the_bfd_section;
1941
1942 /* The "owner" of the section.
1943 It can be any unique value. It is set by add_target_sections
1944 and used by remove_target_sections.
1945 For example, for executables it is a pointer to exec_bfd and
1946 for shlibs it is the so_list pointer. */
1947 void *owner;
1948 };
1949
1950 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1951
1952 struct target_section_table
1953 {
1954 struct target_section *sections;
1955 struct target_section *sections_end;
1956 };
1957
1958 /* Return the "section" containing the specified address. */
1959 struct target_section *target_section_by_addr (struct target_ops *target,
1960 CORE_ADDR addr);
1961
1962 /* Return the target section table this target (or the targets
1963 beneath) currently manipulate. */
1964
1965 extern struct target_section_table *target_get_section_table
1966 (struct target_ops *target);
1967
1968 /* From mem-break.c */
1969
1970 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
1971 struct bp_target_info *);
1972
1973 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
1974 struct bp_target_info *);
1975
1976 extern int default_memory_remove_breakpoint (struct gdbarch *,
1977 struct bp_target_info *);
1978
1979 extern int default_memory_insert_breakpoint (struct gdbarch *,
1980 struct bp_target_info *);
1981
1982
1983 /* From target.c */
1984
1985 extern void initialize_targets (void);
1986
1987 extern void noprocess (void) ATTRIBUTE_NORETURN;
1988
1989 extern void target_require_runnable (void);
1990
1991 extern void find_default_attach (struct target_ops *, char *, int);
1992
1993 extern void find_default_create_inferior (struct target_ops *,
1994 char *, char *, char **, int);
1995
1996 extern struct target_ops *find_target_beneath (struct target_ops *);
1997
1998 /* Find the target at STRATUM. If no target is at that stratum,
1999 return NULL. */
2000
2001 struct target_ops *find_target_at (enum strata stratum);
2002
2003 /* Read OS data object of type TYPE from the target, and return it in
2004 XML format. The result is NUL-terminated and returned as a string,
2005 allocated using xmalloc. If an error occurs or the transfer is
2006 unsupported, NULL is returned. Empty objects are returned as
2007 allocated but empty strings. */
2008
2009 extern char *target_get_osdata (const char *type);
2010
2011 \f
2012 /* Stuff that should be shared among the various remote targets. */
2013
2014 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2015 information (higher values, more information). */
2016 extern int remote_debug;
2017
2018 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2019 extern int baud_rate;
2020 /* Timeout limit for response from target. */
2021 extern int remote_timeout;
2022
2023 \f
2024
2025 /* Set the show memory breakpoints mode to show, and installs a cleanup
2026 to restore it back to the current value. */
2027 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2028
2029 extern int may_write_registers;
2030 extern int may_write_memory;
2031 extern int may_insert_breakpoints;
2032 extern int may_insert_tracepoints;
2033 extern int may_insert_fast_tracepoints;
2034 extern int may_stop;
2035
2036 extern void update_target_permissions (void);
2037
2038 \f
2039 /* Imported from machine dependent code. */
2040
2041 /* Blank target vector entries are initialized to target_ignore. */
2042 void target_ignore (void);
2043
2044 /* See to_supports_btrace in struct target_ops. */
2045 #define target_supports_btrace() \
2046 (current_target.to_supports_btrace (&current_target))
2047
2048 /* See to_enable_btrace in struct target_ops. */
2049 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2050
2051 /* See to_disable_btrace in struct target_ops. */
2052 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2053
2054 /* See to_teardown_btrace in struct target_ops. */
2055 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2056
2057 /* See to_read_btrace in struct target_ops. */
2058 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2059 struct btrace_target_info *,
2060 enum btrace_read_type);
2061
2062 /* See to_stop_recording in struct target_ops. */
2063 extern void target_stop_recording (void);
2064
2065 /* See to_info_record in struct target_ops. */
2066 extern void target_info_record (void);
2067
2068 /* See to_save_record in struct target_ops. */
2069 extern void target_save_record (const char *filename);
2070
2071 /* Query if the target supports deleting the execution log. */
2072 extern int target_supports_delete_record (void);
2073
2074 /* See to_delete_record in struct target_ops. */
2075 extern void target_delete_record (void);
2076
2077 /* See to_record_is_replaying in struct target_ops. */
2078 extern int target_record_is_replaying (void);
2079
2080 /* See to_goto_record_begin in struct target_ops. */
2081 extern void target_goto_record_begin (void);
2082
2083 /* See to_goto_record_end in struct target_ops. */
2084 extern void target_goto_record_end (void);
2085
2086 /* See to_goto_record in struct target_ops. */
2087 extern void target_goto_record (ULONGEST insn);
2088
2089 /* See to_insn_history. */
2090 extern void target_insn_history (int size, int flags);
2091
2092 /* See to_insn_history_from. */
2093 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2094
2095 /* See to_insn_history_range. */
2096 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2097
2098 /* See to_call_history. */
2099 extern void target_call_history (int size, int flags);
2100
2101 /* See to_call_history_from. */
2102 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2103
2104 /* See to_call_history_range. */
2105 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2106
2107 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2108 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2109 struct gdbarch *gdbarch);
2110
2111 /* See to_decr_pc_after_break. */
2112 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2113
2114 #endif /* !defined (TARGET_H) */
This page took 0.083294 seconds and 4 git commands to generate.