[Ada] move some variables to scope where they are used
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #if !defined (TARGET_H)
25 #define TARGET_H
26
27 struct objfile;
28 struct ui_file;
29 struct mem_attrib;
30 struct target_ops;
31 struct bp_target_info;
32 struct regcache;
33 struct target_section_table;
34 struct trace_state_variable;
35 struct trace_status;
36 struct uploaded_tsv;
37 struct uploaded_tp;
38 struct static_tracepoint_marker;
39
40 struct expression;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "bfd.h"
62 #include "symtab.h"
63 #include "memattr.h"
64 #include "vec.h"
65 #include "gdb_signals.h"
66
67 enum strata
68 {
69 dummy_stratum, /* The lowest of the low */
70 file_stratum, /* Executable files, etc */
71 process_stratum, /* Executing processes or core dump files */
72 thread_stratum, /* Executing threads */
73 record_stratum, /* Support record debugging */
74 arch_stratum /* Architecture overrides */
75 };
76
77 enum thread_control_capabilities
78 {
79 tc_none = 0, /* Default: can't control thread execution. */
80 tc_schedlock = 1, /* Can lock the thread scheduler. */
81 };
82
83 /* Stuff for target_wait. */
84
85 /* Generally, what has the program done? */
86 enum target_waitkind
87 {
88 /* The program has exited. The exit status is in value.integer. */
89 TARGET_WAITKIND_EXITED,
90
91 /* The program has stopped with a signal. Which signal is in
92 value.sig. */
93 TARGET_WAITKIND_STOPPED,
94
95 /* The program has terminated with a signal. Which signal is in
96 value.sig. */
97 TARGET_WAITKIND_SIGNALLED,
98
99 /* The program is letting us know that it dynamically loaded something
100 (e.g. it called load(2) on AIX). */
101 TARGET_WAITKIND_LOADED,
102
103 /* The program has forked. A "related" process' PTID is in
104 value.related_pid. I.e., if the child forks, value.related_pid
105 is the parent's ID. */
106
107 TARGET_WAITKIND_FORKED,
108
109 /* The program has vforked. A "related" process's PTID is in
110 value.related_pid. */
111
112 TARGET_WAITKIND_VFORKED,
113
114 /* The program has exec'ed a new executable file. The new file's
115 pathname is pointed to by value.execd_pathname. */
116
117 TARGET_WAITKIND_EXECD,
118
119 /* The program had previously vforked, and now the child is done
120 with the shared memory region, because it exec'ed or exited.
121 Note that the event is reported to the vfork parent. This is
122 only used if GDB did not stay attached to the vfork child,
123 otherwise, a TARGET_WAITKIND_EXECD or
124 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
125 has the same effect. */
126 TARGET_WAITKIND_VFORK_DONE,
127
128 /* The program has entered or returned from a system call. On
129 HP-UX, this is used in the hardware watchpoint implementation.
130 The syscall's unique integer ID number is in value.syscall_id */
131
132 TARGET_WAITKIND_SYSCALL_ENTRY,
133 TARGET_WAITKIND_SYSCALL_RETURN,
134
135 /* Nothing happened, but we stopped anyway. This perhaps should be handled
136 within target_wait, but I'm not sure target_wait should be resuming the
137 inferior. */
138 TARGET_WAITKIND_SPURIOUS,
139
140 /* An event has occured, but we should wait again.
141 Remote_async_wait() returns this when there is an event
142 on the inferior, but the rest of the world is not interested in
143 it. The inferior has not stopped, but has just sent some output
144 to the console, for instance. In this case, we want to go back
145 to the event loop and wait there for another event from the
146 inferior, rather than being stuck in the remote_async_wait()
147 function. This way the event loop is responsive to other events,
148 like for instance the user typing. */
149 TARGET_WAITKIND_IGNORE,
150
151 /* The target has run out of history information,
152 and cannot run backward any further. */
153 TARGET_WAITKIND_NO_HISTORY
154 };
155
156 struct target_waitstatus
157 {
158 enum target_waitkind kind;
159
160 /* Forked child pid, execd pathname, exit status, signal number or
161 syscall number. */
162 union
163 {
164 int integer;
165 enum target_signal sig;
166 ptid_t related_pid;
167 char *execd_pathname;
168 int syscall_number;
169 }
170 value;
171 };
172
173 /* Options that can be passed to target_wait. */
174
175 /* Return immediately if there's no event already queued. If this
176 options is not requested, target_wait blocks waiting for an
177 event. */
178 #define TARGET_WNOHANG 1
179
180 /* The structure below stores information about a system call.
181 It is basically used in the "catch syscall" command, and in
182 every function that gives information about a system call.
183
184 It's also good to mention that its fields represent everything
185 that we currently know about a syscall in GDB. */
186 struct syscall
187 {
188 /* The syscall number. */
189 int number;
190
191 /* The syscall name. */
192 const char *name;
193 };
194
195 /* Return a pretty printed form of target_waitstatus.
196 Space for the result is malloc'd, caller must free. */
197 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
198
199 /* Possible types of events that the inferior handler will have to
200 deal with. */
201 enum inferior_event_type
202 {
203 /* There is a request to quit the inferior, abandon it. */
204 INF_QUIT_REQ,
205 /* Process a normal inferior event which will result in target_wait
206 being called. */
207 INF_REG_EVENT,
208 /* Deal with an error on the inferior. */
209 INF_ERROR,
210 /* We are called because a timer went off. */
211 INF_TIMER,
212 /* We are called to do stuff after the inferior stops. */
213 INF_EXEC_COMPLETE,
214 /* We are called to do some stuff after the inferior stops, but we
215 are expected to reenter the proceed() and
216 handle_inferior_event() functions. This is used only in case of
217 'step n' like commands. */
218 INF_EXEC_CONTINUE
219 };
220 \f
221 /* Target objects which can be transfered using target_read,
222 target_write, et cetera. */
223
224 enum target_object
225 {
226 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
227 TARGET_OBJECT_AVR,
228 /* SPU target specific transfer. See "spu-tdep.c". */
229 TARGET_OBJECT_SPU,
230 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
231 TARGET_OBJECT_MEMORY,
232 /* Memory, avoiding GDB's data cache and trusting the executable.
233 Target implementations of to_xfer_partial never need to handle
234 this object, and most callers should not use it. */
235 TARGET_OBJECT_RAW_MEMORY,
236 /* Memory known to be part of the target's stack. This is cached even
237 if it is not in a region marked as such, since it is known to be
238 "normal" RAM. */
239 TARGET_OBJECT_STACK_MEMORY,
240 /* Kernel Unwind Table. See "ia64-tdep.c". */
241 TARGET_OBJECT_UNWIND_TABLE,
242 /* Transfer auxilliary vector. */
243 TARGET_OBJECT_AUXV,
244 /* StackGhost cookie. See "sparc-tdep.c". */
245 TARGET_OBJECT_WCOOKIE,
246 /* Target memory map in XML format. */
247 TARGET_OBJECT_MEMORY_MAP,
248 /* Flash memory. This object can be used to write contents to
249 a previously erased flash memory. Using it without erasing
250 flash can have unexpected results. Addresses are physical
251 address on target, and not relative to flash start. */
252 TARGET_OBJECT_FLASH,
253 /* Available target-specific features, e.g. registers and coprocessors.
254 See "target-descriptions.c". ANNEX should never be empty. */
255 TARGET_OBJECT_AVAILABLE_FEATURES,
256 /* Currently loaded libraries, in XML format. */
257 TARGET_OBJECT_LIBRARIES,
258 /* Get OS specific data. The ANNEX specifies the type (running
259 processes, etc.). */
260 TARGET_OBJECT_OSDATA,
261 /* Extra signal info. Usually the contents of `siginfo_t' on unix
262 platforms. */
263 TARGET_OBJECT_SIGNAL_INFO,
264 /* The list of threads that are being debugged. */
265 TARGET_OBJECT_THREADS,
266 /* Collected static trace data. */
267 TARGET_OBJECT_STATIC_TRACE_DATA,
268 /* Possible future objects: TARGET_OBJECT_FILE, ... */
269 };
270
271 /* Enumeration of the kinds of traceframe searches that a target may
272 be able to perform. */
273
274 enum trace_find_type
275 {
276 tfind_number,
277 tfind_pc,
278 tfind_tp,
279 tfind_range,
280 tfind_outside,
281 };
282
283 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
284 DEF_VEC_P(static_tracepoint_marker_p);
285
286 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
287 OBJECT. The OFFSET, for a seekable object, specifies the
288 starting point. The ANNEX can be used to provide additional
289 data-specific information to the target.
290
291 Return the number of bytes actually transfered, or -1 if the
292 transfer is not supported or otherwise fails. Return of a positive
293 value less than LEN indicates that no further transfer is possible.
294 Unlike the raw to_xfer_partial interface, callers of these
295 functions do not need to retry partial transfers. */
296
297 extern LONGEST target_read (struct target_ops *ops,
298 enum target_object object,
299 const char *annex, gdb_byte *buf,
300 ULONGEST offset, LONGEST len);
301
302 struct memory_read_result
303 {
304 /* First address that was read. */
305 ULONGEST begin;
306 /* Past-the-end address. */
307 ULONGEST end;
308 /* The data. */
309 gdb_byte *data;
310 };
311 typedef struct memory_read_result memory_read_result_s;
312 DEF_VEC_O(memory_read_result_s);
313
314 extern void free_memory_read_result_vector (void *);
315
316 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
317 ULONGEST offset,
318 LONGEST len);
319
320 extern LONGEST target_write (struct target_ops *ops,
321 enum target_object object,
322 const char *annex, const gdb_byte *buf,
323 ULONGEST offset, LONGEST len);
324
325 /* Similar to target_write, except that it also calls PROGRESS with
326 the number of bytes written and the opaque BATON after every
327 successful partial write (and before the first write). This is
328 useful for progress reporting and user interaction while writing
329 data. To abort the transfer, the progress callback can throw an
330 exception. */
331
332 LONGEST target_write_with_progress (struct target_ops *ops,
333 enum target_object object,
334 const char *annex, const gdb_byte *buf,
335 ULONGEST offset, LONGEST len,
336 void (*progress) (ULONGEST, void *),
337 void *baton);
338
339 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
340 be read using OPS. The return value will be -1 if the transfer
341 fails or is not supported; 0 if the object is empty; or the length
342 of the object otherwise. If a positive value is returned, a
343 sufficiently large buffer will be allocated using xmalloc and
344 returned in *BUF_P containing the contents of the object.
345
346 This method should be used for objects sufficiently small to store
347 in a single xmalloc'd buffer, when no fixed bound on the object's
348 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
349 through this function. */
350
351 extern LONGEST target_read_alloc (struct target_ops *ops,
352 enum target_object object,
353 const char *annex, gdb_byte **buf_p);
354
355 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
356 returned as a string, allocated using xmalloc. If an error occurs
357 or the transfer is unsupported, NULL is returned. Empty objects
358 are returned as allocated but empty strings. A warning is issued
359 if the result contains any embedded NUL bytes. */
360
361 extern char *target_read_stralloc (struct target_ops *ops,
362 enum target_object object,
363 const char *annex);
364
365 /* Wrappers to target read/write that perform memory transfers. They
366 throw an error if the memory transfer fails.
367
368 NOTE: cagney/2003-10-23: The naming schema is lifted from
369 "frame.h". The parameter order is lifted from get_frame_memory,
370 which in turn lifted it from read_memory. */
371
372 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
373 gdb_byte *buf, LONGEST len);
374 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
375 CORE_ADDR addr, int len,
376 enum bfd_endian byte_order);
377 \f
378 struct thread_info; /* fwd decl for parameter list below: */
379
380 struct target_ops
381 {
382 struct target_ops *beneath; /* To the target under this one. */
383 char *to_shortname; /* Name this target type */
384 char *to_longname; /* Name for printing */
385 char *to_doc; /* Documentation. Does not include trailing
386 newline, and starts with a one-line descrip-
387 tion (probably similar to to_longname). */
388 /* Per-target scratch pad. */
389 void *to_data;
390 /* The open routine takes the rest of the parameters from the
391 command, and (if successful) pushes a new target onto the
392 stack. Targets should supply this routine, if only to provide
393 an error message. */
394 void (*to_open) (char *, int);
395 /* Old targets with a static target vector provide "to_close".
396 New re-entrant targets provide "to_xclose" and that is expected
397 to xfree everything (including the "struct target_ops"). */
398 void (*to_xclose) (struct target_ops *targ, int quitting);
399 void (*to_close) (int);
400 void (*to_attach) (struct target_ops *ops, char *, int);
401 void (*to_post_attach) (int);
402 void (*to_detach) (struct target_ops *ops, char *, int);
403 void (*to_disconnect) (struct target_ops *, char *, int);
404 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
405 ptid_t (*to_wait) (struct target_ops *,
406 ptid_t, struct target_waitstatus *, int);
407 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
408 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
409 void (*to_prepare_to_store) (struct regcache *);
410
411 /* Transfer LEN bytes of memory between GDB address MYADDR and
412 target address MEMADDR. If WRITE, transfer them to the target, else
413 transfer them from the target. TARGET is the target from which we
414 get this function.
415
416 Return value, N, is one of the following:
417
418 0 means that we can't handle this. If errno has been set, it is the
419 error which prevented us from doing it (FIXME: What about bfd_error?).
420
421 positive (call it N) means that we have transferred N bytes
422 starting at MEMADDR. We might be able to handle more bytes
423 beyond this length, but no promises.
424
425 negative (call its absolute value N) means that we cannot
426 transfer right at MEMADDR, but we could transfer at least
427 something at MEMADDR + N.
428
429 NOTE: cagney/2004-10-01: This has been entirely superseeded by
430 to_xfer_partial and inferior inheritance. */
431
432 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
433 int len, int write,
434 struct mem_attrib *attrib,
435 struct target_ops *target);
436
437 void (*to_files_info) (struct target_ops *);
438 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
439 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
440 int (*to_can_use_hw_breakpoint) (int, int, int);
441 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
442 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
443
444 /* Documentation of what the two routines below are expected to do is
445 provided with the corresponding target_* macros. */
446 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
447 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
448
449 int (*to_stopped_by_watchpoint) (void);
450 int to_have_steppable_watchpoint;
451 int to_have_continuable_watchpoint;
452 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
453 int (*to_watchpoint_addr_within_range) (struct target_ops *,
454 CORE_ADDR, CORE_ADDR, int);
455 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
456 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
457 struct expression *);
458 void (*to_terminal_init) (void);
459 void (*to_terminal_inferior) (void);
460 void (*to_terminal_ours_for_output) (void);
461 void (*to_terminal_ours) (void);
462 void (*to_terminal_save_ours) (void);
463 void (*to_terminal_info) (char *, int);
464 void (*to_kill) (struct target_ops *);
465 void (*to_load) (char *, int);
466 int (*to_lookup_symbol) (char *, CORE_ADDR *);
467 void (*to_create_inferior) (struct target_ops *,
468 char *, char *, char **, int);
469 void (*to_post_startup_inferior) (ptid_t);
470 void (*to_acknowledge_created_inferior) (int);
471 void (*to_insert_fork_catchpoint) (int);
472 int (*to_remove_fork_catchpoint) (int);
473 void (*to_insert_vfork_catchpoint) (int);
474 int (*to_remove_vfork_catchpoint) (int);
475 int (*to_follow_fork) (struct target_ops *, int);
476 void (*to_insert_exec_catchpoint) (int);
477 int (*to_remove_exec_catchpoint) (int);
478 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
479 int (*to_has_exited) (int, int, int *);
480 void (*to_mourn_inferior) (struct target_ops *);
481 int (*to_can_run) (void);
482 void (*to_notice_signals) (ptid_t ptid);
483 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
484 void (*to_find_new_threads) (struct target_ops *);
485 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
486 char *(*to_extra_thread_info) (struct thread_info *);
487 void (*to_stop) (ptid_t);
488 void (*to_rcmd) (char *command, struct ui_file *output);
489 char *(*to_pid_to_exec_file) (int pid);
490 void (*to_log_command) (const char *);
491 struct target_section_table *(*to_get_section_table) (struct target_ops *);
492 enum strata to_stratum;
493 int (*to_has_all_memory) (struct target_ops *);
494 int (*to_has_memory) (struct target_ops *);
495 int (*to_has_stack) (struct target_ops *);
496 int (*to_has_registers) (struct target_ops *);
497 int (*to_has_execution) (struct target_ops *);
498 int to_has_thread_control; /* control thread execution */
499 int to_attach_no_wait;
500 /* ASYNC target controls */
501 int (*to_can_async_p) (void);
502 int (*to_is_async_p) (void);
503 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
504 int (*to_async_mask) (int);
505 int (*to_supports_non_stop) (void);
506 /* find_memory_regions support method for gcore */
507 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
508 /* make_corefile_notes support method for gcore */
509 char * (*to_make_corefile_notes) (bfd *, int *);
510 /* get_bookmark support method for bookmarks */
511 gdb_byte * (*to_get_bookmark) (char *, int);
512 /* goto_bookmark support method for bookmarks */
513 void (*to_goto_bookmark) (gdb_byte *, int);
514 /* Return the thread-local address at OFFSET in the
515 thread-local storage for the thread PTID and the shared library
516 or executable file given by OBJFILE. If that block of
517 thread-local storage hasn't been allocated yet, this function
518 may return an error. */
519 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
520 ptid_t ptid,
521 CORE_ADDR load_module_addr,
522 CORE_ADDR offset);
523
524 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
525 OBJECT. The OFFSET, for a seekable object, specifies the
526 starting point. The ANNEX can be used to provide additional
527 data-specific information to the target.
528
529 Return the number of bytes actually transfered, zero when no
530 further transfer is possible, and -1 when the transfer is not
531 supported. Return of a positive value smaller than LEN does
532 not indicate the end of the object, only the end of the
533 transfer; higher level code should continue transferring if
534 desired. This is handled in target.c.
535
536 The interface does not support a "retry" mechanism. Instead it
537 assumes that at least one byte will be transfered on each
538 successful call.
539
540 NOTE: cagney/2003-10-17: The current interface can lead to
541 fragmented transfers. Lower target levels should not implement
542 hacks, such as enlarging the transfer, in an attempt to
543 compensate for this. Instead, the target stack should be
544 extended so that it implements supply/collect methods and a
545 look-aside object cache. With that available, the lowest
546 target can safely and freely "push" data up the stack.
547
548 See target_read and target_write for more information. One,
549 and only one, of readbuf or writebuf must be non-NULL. */
550
551 LONGEST (*to_xfer_partial) (struct target_ops *ops,
552 enum target_object object, const char *annex,
553 gdb_byte *readbuf, const gdb_byte *writebuf,
554 ULONGEST offset, LONGEST len);
555
556 /* Returns the memory map for the target. A return value of NULL
557 means that no memory map is available. If a memory address
558 does not fall within any returned regions, it's assumed to be
559 RAM. The returned memory regions should not overlap.
560
561 The order of regions does not matter; target_memory_map will
562 sort regions by starting address. For that reason, this
563 function should not be called directly except via
564 target_memory_map.
565
566 This method should not cache data; if the memory map could
567 change unexpectedly, it should be invalidated, and higher
568 layers will re-fetch it. */
569 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
570
571 /* Erases the region of flash memory starting at ADDRESS, of
572 length LENGTH.
573
574 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
575 on flash block boundaries, as reported by 'to_memory_map'. */
576 void (*to_flash_erase) (struct target_ops *,
577 ULONGEST address, LONGEST length);
578
579 /* Finishes a flash memory write sequence. After this operation
580 all flash memory should be available for writing and the result
581 of reading from areas written by 'to_flash_write' should be
582 equal to what was written. */
583 void (*to_flash_done) (struct target_ops *);
584
585 /* Describe the architecture-specific features of this target.
586 Returns the description found, or NULL if no description
587 was available. */
588 const struct target_desc *(*to_read_description) (struct target_ops *ops);
589
590 /* Build the PTID of the thread on which a given task is running,
591 based on LWP and THREAD. These values are extracted from the
592 task Private_Data section of the Ada Task Control Block, and
593 their interpretation depends on the target. */
594 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
595
596 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
597 Return 0 if *READPTR is already at the end of the buffer.
598 Return -1 if there is insufficient buffer for a whole entry.
599 Return 1 if an entry was read into *TYPEP and *VALP. */
600 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
601 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
602
603 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
604 sequence of bytes in PATTERN with length PATTERN_LEN.
605
606 The result is 1 if found, 0 if not found, and -1 if there was an error
607 requiring halting of the search (e.g. memory read error).
608 If the pattern is found the address is recorded in FOUND_ADDRP. */
609 int (*to_search_memory) (struct target_ops *ops,
610 CORE_ADDR start_addr, ULONGEST search_space_len,
611 const gdb_byte *pattern, ULONGEST pattern_len,
612 CORE_ADDR *found_addrp);
613
614 /* Can target execute in reverse? */
615 int (*to_can_execute_reverse) (void);
616
617 /* Does this target support debugging multiple processes
618 simultaneously? */
619 int (*to_supports_multi_process) (void);
620
621 /* Determine current architecture of thread PTID.
622
623 The target is supposed to determine the architecture of the code where
624 the target is currently stopped at (on Cell, if a target is in spu_run,
625 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
626 This is architecture used to perform decr_pc_after_break adjustment,
627 and also determines the frame architecture of the innermost frame.
628 ptrace operations need to operate according to target_gdbarch.
629
630 The default implementation always returns target_gdbarch. */
631 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
632
633 /* Determine current address space of thread PTID.
634
635 The default implementation always returns the inferior's
636 address space. */
637 struct address_space *(*to_thread_address_space) (struct target_ops *,
638 ptid_t);
639
640 /* Tracepoint-related operations. */
641
642 /* Prepare the target for a tracing run. */
643 void (*to_trace_init) (void);
644
645 /* Send full details of a tracepoint to the target. */
646 void (*to_download_tracepoint) (struct breakpoint *t);
647
648 /* Send full details of a trace state variable to the target. */
649 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
650
651 /* Inform the target info of memory regions that are readonly
652 (such as text sections), and so it should return data from
653 those rather than look in the trace buffer. */
654 void (*to_trace_set_readonly_regions) (void);
655
656 /* Start a trace run. */
657 void (*to_trace_start) (void);
658
659 /* Get the current status of a tracing run. */
660 int (*to_get_trace_status) (struct trace_status *ts);
661
662 /* Stop a trace run. */
663 void (*to_trace_stop) (void);
664
665 /* Ask the target to find a trace frame of the given type TYPE,
666 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
667 number of the trace frame, and also the tracepoint number at
668 TPP. If no trace frame matches, return -1. May throw if the
669 operation fails. */
670 int (*to_trace_find) (enum trace_find_type type, int num,
671 ULONGEST addr1, ULONGEST addr2, int *tpp);
672
673 /* Get the value of the trace state variable number TSV, returning
674 1 if the value is known and writing the value itself into the
675 location pointed to by VAL, else returning 0. */
676 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
677
678 int (*to_save_trace_data) (const char *filename);
679
680 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
681
682 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
683
684 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
685 ULONGEST offset, LONGEST len);
686
687 /* Set the target's tracing behavior in response to unexpected
688 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
689 void (*to_set_disconnected_tracing) (int val);
690 void (*to_set_circular_trace_buffer) (int val);
691
692 /* Return the processor core that thread PTID was last seen on.
693 This information is updated only when:
694 - update_thread_list is called
695 - thread stops
696 If the core cannot be determined -- either for the specified thread, or
697 right now, or in this debug session, or for this target -- return -1. */
698 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
699
700 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
701 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
702 a match, 0 if there's a mismatch, and -1 if an error is
703 encountered while reading memory. */
704 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
705 CORE_ADDR memaddr, ULONGEST size);
706
707 /* Return the address of the start of the Thread Information Block
708 a Windows OS specific feature. */
709 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
710
711 /* Send the new settings of write permission variables. */
712 void (*to_set_permissions) (void);
713
714 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
715 with its details. Return 1 on success, 0 on failure. */
716 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
717 struct static_tracepoint_marker *marker);
718
719 /* Return a vector of all tracepoints markers string id ID, or all
720 markers if ID is NULL. */
721 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
722 (const char *id);
723
724 int to_magic;
725 /* Need sub-structure for target machine related rather than comm related?
726 */
727 };
728
729 /* Magic number for checking ops size. If a struct doesn't end with this
730 number, somebody changed the declaration but didn't change all the
731 places that initialize one. */
732
733 #define OPS_MAGIC 3840
734
735 /* The ops structure for our "current" target process. This should
736 never be NULL. If there is no target, it points to the dummy_target. */
737
738 extern struct target_ops current_target;
739
740 /* Define easy words for doing these operations on our current target. */
741
742 #define target_shortname (current_target.to_shortname)
743 #define target_longname (current_target.to_longname)
744
745 /* Does whatever cleanup is required for a target that we are no
746 longer going to be calling. QUITTING indicates that GDB is exiting
747 and should not get hung on an error (otherwise it is important to
748 perform clean termination, even if it takes a while). This routine
749 is automatically always called when popping the target off the
750 target stack (to_beneath is undefined). Closing file descriptors
751 and freeing all memory allocated memory are typical things it
752 should do. */
753
754 void target_close (struct target_ops *targ, int quitting);
755
756 /* Attaches to a process on the target side. Arguments are as passed
757 to the `attach' command by the user. This routine can be called
758 when the target is not on the target-stack, if the target_can_run
759 routine returns 1; in that case, it must push itself onto the stack.
760 Upon exit, the target should be ready for normal operations, and
761 should be ready to deliver the status of the process immediately
762 (without waiting) to an upcoming target_wait call. */
763
764 void target_attach (char *, int);
765
766 /* Some targets don't generate traps when attaching to the inferior,
767 or their target_attach implementation takes care of the waiting.
768 These targets must set to_attach_no_wait. */
769
770 #define target_attach_no_wait \
771 (current_target.to_attach_no_wait)
772
773 /* The target_attach operation places a process under debugger control,
774 and stops the process.
775
776 This operation provides a target-specific hook that allows the
777 necessary bookkeeping to be performed after an attach completes. */
778 #define target_post_attach(pid) \
779 (*current_target.to_post_attach) (pid)
780
781 /* Takes a program previously attached to and detaches it.
782 The program may resume execution (some targets do, some don't) and will
783 no longer stop on signals, etc. We better not have left any breakpoints
784 in the program or it'll die when it hits one. ARGS is arguments
785 typed by the user (e.g. a signal to send the process). FROM_TTY
786 says whether to be verbose or not. */
787
788 extern void target_detach (char *, int);
789
790 /* Disconnect from the current target without resuming it (leaving it
791 waiting for a debugger). */
792
793 extern void target_disconnect (char *, int);
794
795 /* Resume execution of the target process PTID. STEP says whether to
796 single-step or to run free; SIGGNAL is the signal to be given to
797 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
798 pass TARGET_SIGNAL_DEFAULT. */
799
800 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
801
802 /* Wait for process pid to do something. PTID = -1 to wait for any
803 pid to do something. Return pid of child, or -1 in case of error;
804 store status through argument pointer STATUS. Note that it is
805 _NOT_ OK to throw_exception() out of target_wait() without popping
806 the debugging target from the stack; GDB isn't prepared to get back
807 to the prompt with a debugging target but without the frame cache,
808 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
809 options. */
810
811 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
812 int options);
813
814 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
815
816 extern void target_fetch_registers (struct regcache *regcache, int regno);
817
818 /* Store at least register REGNO, or all regs if REGNO == -1.
819 It can store as many registers as it wants to, so target_prepare_to_store
820 must have been previously called. Calls error() if there are problems. */
821
822 extern void target_store_registers (struct regcache *regcache, int regs);
823
824 /* Get ready to modify the registers array. On machines which store
825 individual registers, this doesn't need to do anything. On machines
826 which store all the registers in one fell swoop, this makes sure
827 that REGISTERS contains all the registers from the program being
828 debugged. */
829
830 #define target_prepare_to_store(regcache) \
831 (*current_target.to_prepare_to_store) (regcache)
832
833 /* Determine current address space of thread PTID. */
834
835 struct address_space *target_thread_address_space (ptid_t);
836
837 /* Returns true if this target can debug multiple processes
838 simultaneously. */
839
840 #define target_supports_multi_process() \
841 (*current_target.to_supports_multi_process) ()
842
843 /* Invalidate all target dcaches. */
844 extern void target_dcache_invalidate (void);
845
846 extern int target_read_string (CORE_ADDR, char **, int, int *);
847
848 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
849
850 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
851
852 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
853 int len);
854
855 /* Fetches the target's memory map. If one is found it is sorted
856 and returned, after some consistency checking. Otherwise, NULL
857 is returned. */
858 VEC(mem_region_s) *target_memory_map (void);
859
860 /* Erase the specified flash region. */
861 void target_flash_erase (ULONGEST address, LONGEST length);
862
863 /* Finish a sequence of flash operations. */
864 void target_flash_done (void);
865
866 /* Describes a request for a memory write operation. */
867 struct memory_write_request
868 {
869 /* Begining address that must be written. */
870 ULONGEST begin;
871 /* Past-the-end address. */
872 ULONGEST end;
873 /* The data to write. */
874 gdb_byte *data;
875 /* A callback baton for progress reporting for this request. */
876 void *baton;
877 };
878 typedef struct memory_write_request memory_write_request_s;
879 DEF_VEC_O(memory_write_request_s);
880
881 /* Enumeration specifying different flash preservation behaviour. */
882 enum flash_preserve_mode
883 {
884 flash_preserve,
885 flash_discard
886 };
887
888 /* Write several memory blocks at once. This version can be more
889 efficient than making several calls to target_write_memory, in
890 particular because it can optimize accesses to flash memory.
891
892 Moreover, this is currently the only memory access function in gdb
893 that supports writing to flash memory, and it should be used for
894 all cases where access to flash memory is desirable.
895
896 REQUESTS is the vector (see vec.h) of memory_write_request.
897 PRESERVE_FLASH_P indicates what to do with blocks which must be
898 erased, but not completely rewritten.
899 PROGRESS_CB is a function that will be periodically called to provide
900 feedback to user. It will be called with the baton corresponding
901 to the request currently being written. It may also be called
902 with a NULL baton, when preserved flash sectors are being rewritten.
903
904 The function returns 0 on success, and error otherwise. */
905 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
906 enum flash_preserve_mode preserve_flash_p,
907 void (*progress_cb) (ULONGEST, void *));
908
909 /* From infrun.c. */
910
911 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
912
913 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
914
915 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
916
917 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
918
919 /* Print a line about the current target. */
920
921 #define target_files_info() \
922 (*current_target.to_files_info) (&current_target)
923
924 /* Insert a breakpoint at address BP_TGT->placed_address in the target
925 machine. Result is 0 for success, or an errno value. */
926
927 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
928 struct bp_target_info *bp_tgt);
929
930 /* Remove a breakpoint at address BP_TGT->placed_address in the target
931 machine. Result is 0 for success, or an errno value. */
932
933 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
934 struct bp_target_info *bp_tgt);
935
936 /* Initialize the terminal settings we record for the inferior,
937 before we actually run the inferior. */
938
939 #define target_terminal_init() \
940 (*current_target.to_terminal_init) ()
941
942 /* Put the inferior's terminal settings into effect.
943 This is preparation for starting or resuming the inferior. */
944
945 extern void target_terminal_inferior (void);
946
947 /* Put some of our terminal settings into effect,
948 enough to get proper results from our output,
949 but do not change into or out of RAW mode
950 so that no input is discarded.
951
952 After doing this, either terminal_ours or terminal_inferior
953 should be called to get back to a normal state of affairs. */
954
955 #define target_terminal_ours_for_output() \
956 (*current_target.to_terminal_ours_for_output) ()
957
958 /* Put our terminal settings into effect.
959 First record the inferior's terminal settings
960 so they can be restored properly later. */
961
962 #define target_terminal_ours() \
963 (*current_target.to_terminal_ours) ()
964
965 /* Save our terminal settings.
966 This is called from TUI after entering or leaving the curses
967 mode. Since curses modifies our terminal this call is here
968 to take this change into account. */
969
970 #define target_terminal_save_ours() \
971 (*current_target.to_terminal_save_ours) ()
972
973 /* Print useful information about our terminal status, if such a thing
974 exists. */
975
976 #define target_terminal_info(arg, from_tty) \
977 (*current_target.to_terminal_info) (arg, from_tty)
978
979 /* Kill the inferior process. Make it go away. */
980
981 extern void target_kill (void);
982
983 /* Load an executable file into the target process. This is expected
984 to not only bring new code into the target process, but also to
985 update GDB's symbol tables to match.
986
987 ARG contains command-line arguments, to be broken down with
988 buildargv (). The first non-switch argument is the filename to
989 load, FILE; the second is a number (as parsed by strtoul (..., ...,
990 0)), which is an offset to apply to the load addresses of FILE's
991 sections. The target may define switches, or other non-switch
992 arguments, as it pleases. */
993
994 extern void target_load (char *arg, int from_tty);
995
996 /* Look up a symbol in the target's symbol table. NAME is the symbol
997 name. ADDRP is a CORE_ADDR * pointing to where the value of the
998 symbol should be returned. The result is 0 if successful, nonzero
999 if the symbol does not exist in the target environment. This
1000 function should not call error() if communication with the target
1001 is interrupted, since it is called from symbol reading, but should
1002 return nonzero, possibly doing a complain(). */
1003
1004 #define target_lookup_symbol(name, addrp) \
1005 (*current_target.to_lookup_symbol) (name, addrp)
1006
1007 /* Start an inferior process and set inferior_ptid to its pid.
1008 EXEC_FILE is the file to run.
1009 ALLARGS is a string containing the arguments to the program.
1010 ENV is the environment vector to pass. Errors reported with error().
1011 On VxWorks and various standalone systems, we ignore exec_file. */
1012
1013 void target_create_inferior (char *exec_file, char *args,
1014 char **env, int from_tty);
1015
1016 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1017 notification of inferior events such as fork and vork immediately
1018 after the inferior is created. (This because of how gdb gets an
1019 inferior created via invoking a shell to do it. In such a scenario,
1020 if the shell init file has commands in it, the shell will fork and
1021 exec for each of those commands, and we will see each such fork
1022 event. Very bad.)
1023
1024 Such targets will supply an appropriate definition for this function. */
1025
1026 #define target_post_startup_inferior(ptid) \
1027 (*current_target.to_post_startup_inferior) (ptid)
1028
1029 /* On some targets, the sequence of starting up an inferior requires
1030 some synchronization between gdb and the new inferior process, PID. */
1031
1032 #define target_acknowledge_created_inferior(pid) \
1033 (*current_target.to_acknowledge_created_inferior) (pid)
1034
1035 /* On some targets, we can catch an inferior fork or vfork event when
1036 it occurs. These functions insert/remove an already-created
1037 catchpoint for such events. */
1038
1039 #define target_insert_fork_catchpoint(pid) \
1040 (*current_target.to_insert_fork_catchpoint) (pid)
1041
1042 #define target_remove_fork_catchpoint(pid) \
1043 (*current_target.to_remove_fork_catchpoint) (pid)
1044
1045 #define target_insert_vfork_catchpoint(pid) \
1046 (*current_target.to_insert_vfork_catchpoint) (pid)
1047
1048 #define target_remove_vfork_catchpoint(pid) \
1049 (*current_target.to_remove_vfork_catchpoint) (pid)
1050
1051 /* If the inferior forks or vforks, this function will be called at
1052 the next resume in order to perform any bookkeeping and fiddling
1053 necessary to continue debugging either the parent or child, as
1054 requested, and releasing the other. Information about the fork
1055 or vfork event is available via get_last_target_status ().
1056 This function returns 1 if the inferior should not be resumed
1057 (i.e. there is another event pending). */
1058
1059 int target_follow_fork (int follow_child);
1060
1061 /* On some targets, we can catch an inferior exec event when it
1062 occurs. These functions insert/remove an already-created
1063 catchpoint for such events. */
1064
1065 #define target_insert_exec_catchpoint(pid) \
1066 (*current_target.to_insert_exec_catchpoint) (pid)
1067
1068 #define target_remove_exec_catchpoint(pid) \
1069 (*current_target.to_remove_exec_catchpoint) (pid)
1070
1071 /* Syscall catch.
1072
1073 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1074 If NEEDED is zero, it means the target can disable the mechanism to
1075 catch system calls because there are no more catchpoints of this type.
1076
1077 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1078 being requested. In this case, both TABLE_SIZE and TABLE should
1079 be ignored.
1080
1081 TABLE_SIZE is the number of elements in TABLE. It only matters if
1082 ANY_COUNT is zero.
1083
1084 TABLE is an array of ints, indexed by syscall number. An element in
1085 this array is nonzero if that syscall should be caught. This argument
1086 only matters if ANY_COUNT is zero. */
1087
1088 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1089 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1090 table_size, table)
1091
1092 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1093 exit code of PID, if any. */
1094
1095 #define target_has_exited(pid,wait_status,exit_status) \
1096 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1097
1098 /* The debugger has completed a blocking wait() call. There is now
1099 some process event that must be processed. This function should
1100 be defined by those targets that require the debugger to perform
1101 cleanup or internal state changes in response to the process event. */
1102
1103 /* The inferior process has died. Do what is right. */
1104
1105 void target_mourn_inferior (void);
1106
1107 /* Does target have enough data to do a run or attach command? */
1108
1109 #define target_can_run(t) \
1110 ((t)->to_can_run) ()
1111
1112 /* post process changes to signal handling in the inferior. */
1113
1114 #define target_notice_signals(ptid) \
1115 (*current_target.to_notice_signals) (ptid)
1116
1117 /* Check to see if a thread is still alive. */
1118
1119 extern int target_thread_alive (ptid_t ptid);
1120
1121 /* Query for new threads and add them to the thread list. */
1122
1123 extern void target_find_new_threads (void);
1124
1125 /* Make target stop in a continuable fashion. (For instance, under
1126 Unix, this should act like SIGSTOP). This function is normally
1127 used by GUIs to implement a stop button. */
1128
1129 extern void target_stop (ptid_t ptid);
1130
1131 /* Send the specified COMMAND to the target's monitor
1132 (shell,interpreter) for execution. The result of the query is
1133 placed in OUTBUF. */
1134
1135 #define target_rcmd(command, outbuf) \
1136 (*current_target.to_rcmd) (command, outbuf)
1137
1138
1139 /* Does the target include all of memory, or only part of it? This
1140 determines whether we look up the target chain for other parts of
1141 memory if this target can't satisfy a request. */
1142
1143 extern int target_has_all_memory_1 (void);
1144 #define target_has_all_memory target_has_all_memory_1 ()
1145
1146 /* Does the target include memory? (Dummy targets don't.) */
1147
1148 extern int target_has_memory_1 (void);
1149 #define target_has_memory target_has_memory_1 ()
1150
1151 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1152 we start a process.) */
1153
1154 extern int target_has_stack_1 (void);
1155 #define target_has_stack target_has_stack_1 ()
1156
1157 /* Does the target have registers? (Exec files don't.) */
1158
1159 extern int target_has_registers_1 (void);
1160 #define target_has_registers target_has_registers_1 ()
1161
1162 /* Does the target have execution? Can we make it jump (through
1163 hoops), or pop its stack a few times? This means that the current
1164 target is currently executing; for some targets, that's the same as
1165 whether or not the target is capable of execution, but there are
1166 also targets which can be current while not executing. In that
1167 case this will become true after target_create_inferior or
1168 target_attach. */
1169
1170 extern int target_has_execution_1 (void);
1171 #define target_has_execution target_has_execution_1 ()
1172
1173 /* Default implementations for process_stratum targets. Return true
1174 if there's a selected inferior, false otherwise. */
1175
1176 extern int default_child_has_all_memory (struct target_ops *ops);
1177 extern int default_child_has_memory (struct target_ops *ops);
1178 extern int default_child_has_stack (struct target_ops *ops);
1179 extern int default_child_has_registers (struct target_ops *ops);
1180 extern int default_child_has_execution (struct target_ops *ops);
1181
1182 /* Can the target support the debugger control of thread execution?
1183 Can it lock the thread scheduler? */
1184
1185 #define target_can_lock_scheduler \
1186 (current_target.to_has_thread_control & tc_schedlock)
1187
1188 /* Should the target enable async mode if it is supported? Temporary
1189 cludge until async mode is a strict superset of sync mode. */
1190 extern int target_async_permitted;
1191
1192 /* Can the target support asynchronous execution? */
1193 #define target_can_async_p() (current_target.to_can_async_p ())
1194
1195 /* Is the target in asynchronous execution mode? */
1196 #define target_is_async_p() (current_target.to_is_async_p ())
1197
1198 int target_supports_non_stop (void);
1199
1200 /* Put the target in async mode with the specified callback function. */
1201 #define target_async(CALLBACK,CONTEXT) \
1202 (current_target.to_async ((CALLBACK), (CONTEXT)))
1203
1204 /* This is to be used ONLY within call_function_by_hand(). It provides
1205 a workaround, to have inferior function calls done in sychronous
1206 mode, even though the target is asynchronous. After
1207 target_async_mask(0) is called, calls to target_can_async_p() will
1208 return FALSE , so that target_resume() will not try to start the
1209 target asynchronously. After the inferior stops, we IMMEDIATELY
1210 restore the previous nature of the target, by calling
1211 target_async_mask(1). After that, target_can_async_p() will return
1212 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1213
1214 FIXME ezannoni 1999-12-13: we won't need this once we move
1215 the turning async on and off to the single execution commands,
1216 from where it is done currently, in remote_resume(). */
1217
1218 #define target_async_mask(MASK) \
1219 (current_target.to_async_mask (MASK))
1220
1221 /* Converts a process id to a string. Usually, the string just contains
1222 `process xyz', but on some systems it may contain
1223 `process xyz thread abc'. */
1224
1225 extern char *target_pid_to_str (ptid_t ptid);
1226
1227 extern char *normal_pid_to_str (ptid_t ptid);
1228
1229 /* Return a short string describing extra information about PID,
1230 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1231 is okay. */
1232
1233 #define target_extra_thread_info(TP) \
1234 (current_target.to_extra_thread_info (TP))
1235
1236 /* Attempts to find the pathname of the executable file
1237 that was run to create a specified process.
1238
1239 The process PID must be stopped when this operation is used.
1240
1241 If the executable file cannot be determined, NULL is returned.
1242
1243 Else, a pointer to a character string containing the pathname
1244 is returned. This string should be copied into a buffer by
1245 the client if the string will not be immediately used, or if
1246 it must persist. */
1247
1248 #define target_pid_to_exec_file(pid) \
1249 (current_target.to_pid_to_exec_file) (pid)
1250
1251 /* See the to_thread_architecture description in struct target_ops. */
1252
1253 #define target_thread_architecture(ptid) \
1254 (current_target.to_thread_architecture (&current_target, ptid))
1255
1256 /*
1257 * Iterator function for target memory regions.
1258 * Calls a callback function once for each memory region 'mapped'
1259 * in the child process. Defined as a simple macro rather than
1260 * as a function macro so that it can be tested for nullity.
1261 */
1262
1263 #define target_find_memory_regions(FUNC, DATA) \
1264 (current_target.to_find_memory_regions) (FUNC, DATA)
1265
1266 /*
1267 * Compose corefile .note section.
1268 */
1269
1270 #define target_make_corefile_notes(BFD, SIZE_P) \
1271 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1272
1273 /* Bookmark interfaces. */
1274 #define target_get_bookmark(ARGS, FROM_TTY) \
1275 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1276
1277 #define target_goto_bookmark(ARG, FROM_TTY) \
1278 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1279
1280 /* Hardware watchpoint interfaces. */
1281
1282 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1283 write). Only the INFERIOR_PTID task is being queried. */
1284
1285 #define target_stopped_by_watchpoint \
1286 (*current_target.to_stopped_by_watchpoint)
1287
1288 /* Non-zero if we have steppable watchpoints */
1289
1290 #define target_have_steppable_watchpoint \
1291 (current_target.to_have_steppable_watchpoint)
1292
1293 /* Non-zero if we have continuable watchpoints */
1294
1295 #define target_have_continuable_watchpoint \
1296 (current_target.to_have_continuable_watchpoint)
1297
1298 /* Provide defaults for hardware watchpoint functions. */
1299
1300 /* If the *_hw_beakpoint functions have not been defined
1301 elsewhere use the definitions in the target vector. */
1302
1303 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1304 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1305 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1306 (including this one?). OTHERTYPE is who knows what... */
1307
1308 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1309 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1310
1311 #define target_region_ok_for_hw_watchpoint(addr, len) \
1312 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1313
1314
1315 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1316 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1317 COND is the expression for its condition, or NULL if there's none.
1318 Returns 0 for success, 1 if the watchpoint type is not supported,
1319 -1 for failure. */
1320
1321 #define target_insert_watchpoint(addr, len, type, cond) \
1322 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1323
1324 #define target_remove_watchpoint(addr, len, type, cond) \
1325 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1326
1327 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1328 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1329
1330 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1331 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1332
1333 /* Return non-zero if target knows the data address which triggered this
1334 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1335 INFERIOR_PTID task is being queried. */
1336 #define target_stopped_data_address(target, addr_p) \
1337 (*target.to_stopped_data_address) (target, addr_p)
1338
1339 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1340 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1341
1342 /* Return non-zero if the target is capable of using hardware to evaluate
1343 the condition expression. In this case, if the condition is false when
1344 the watched memory location changes, execution may continue without the
1345 debugger being notified.
1346
1347 Due to limitations in the hardware implementation, it may be capable of
1348 avoiding triggering the watchpoint in some cases where the condition
1349 expression is false, but may report some false positives as well.
1350 For this reason, GDB will still evaluate the condition expression when
1351 the watchpoint triggers. */
1352 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1353 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1354
1355 /* Target can execute in reverse? */
1356 #define target_can_execute_reverse \
1357 (current_target.to_can_execute_reverse ? \
1358 current_target.to_can_execute_reverse () : 0)
1359
1360 extern const struct target_desc *target_read_description (struct target_ops *);
1361
1362 #define target_get_ada_task_ptid(lwp, tid) \
1363 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1364
1365 /* Utility implementation of searching memory. */
1366 extern int simple_search_memory (struct target_ops* ops,
1367 CORE_ADDR start_addr,
1368 ULONGEST search_space_len,
1369 const gdb_byte *pattern,
1370 ULONGEST pattern_len,
1371 CORE_ADDR *found_addrp);
1372
1373 /* Main entry point for searching memory. */
1374 extern int target_search_memory (CORE_ADDR start_addr,
1375 ULONGEST search_space_len,
1376 const gdb_byte *pattern,
1377 ULONGEST pattern_len,
1378 CORE_ADDR *found_addrp);
1379
1380 /* Tracepoint-related operations. */
1381
1382 #define target_trace_init() \
1383 (*current_target.to_trace_init) ()
1384
1385 #define target_download_tracepoint(t) \
1386 (*current_target.to_download_tracepoint) (t)
1387
1388 #define target_download_trace_state_variable(tsv) \
1389 (*current_target.to_download_trace_state_variable) (tsv)
1390
1391 #define target_trace_start() \
1392 (*current_target.to_trace_start) ()
1393
1394 #define target_trace_set_readonly_regions() \
1395 (*current_target.to_trace_set_readonly_regions) ()
1396
1397 #define target_get_trace_status(ts) \
1398 (*current_target.to_get_trace_status) (ts)
1399
1400 #define target_trace_stop() \
1401 (*current_target.to_trace_stop) ()
1402
1403 #define target_trace_find(type,num,addr1,addr2,tpp) \
1404 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1405
1406 #define target_get_trace_state_variable_value(tsv,val) \
1407 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1408
1409 #define target_save_trace_data(filename) \
1410 (*current_target.to_save_trace_data) (filename)
1411
1412 #define target_upload_tracepoints(utpp) \
1413 (*current_target.to_upload_tracepoints) (utpp)
1414
1415 #define target_upload_trace_state_variables(utsvp) \
1416 (*current_target.to_upload_trace_state_variables) (utsvp)
1417
1418 #define target_get_raw_trace_data(buf,offset,len) \
1419 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1420
1421 #define target_set_disconnected_tracing(val) \
1422 (*current_target.to_set_disconnected_tracing) (val)
1423
1424 #define target_set_circular_trace_buffer(val) \
1425 (*current_target.to_set_circular_trace_buffer) (val)
1426
1427 #define target_get_tib_address(ptid, addr) \
1428 (*current_target.to_get_tib_address) ((ptid), (addr))
1429
1430 #define target_set_permissions() \
1431 (*current_target.to_set_permissions) ()
1432
1433 #define target_static_tracepoint_marker_at(addr, marker) \
1434 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1435
1436 #define target_static_tracepoint_markers_by_strid(marker_id) \
1437 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1438
1439 /* Command logging facility. */
1440
1441 #define target_log_command(p) \
1442 do \
1443 if (current_target.to_log_command) \
1444 (*current_target.to_log_command) (p); \
1445 while (0)
1446
1447
1448 extern int target_core_of_thread (ptid_t ptid);
1449
1450 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1451 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1452 if there's a mismatch, and -1 if an error is encountered while
1453 reading memory. Throws an error if the functionality is found not
1454 to be supported by the current target. */
1455 int target_verify_memory (const gdb_byte *data,
1456 CORE_ADDR memaddr, ULONGEST size);
1457
1458 /* Routines for maintenance of the target structures...
1459
1460 add_target: Add a target to the list of all possible targets.
1461
1462 push_target: Make this target the top of the stack of currently used
1463 targets, within its particular stratum of the stack. Result
1464 is 0 if now atop the stack, nonzero if not on top (maybe
1465 should warn user).
1466
1467 unpush_target: Remove this from the stack of currently used targets,
1468 no matter where it is on the list. Returns 0 if no
1469 change, 1 if removed from stack.
1470
1471 pop_target: Remove the top thing on the stack of current targets. */
1472
1473 extern void add_target (struct target_ops *);
1474
1475 extern void push_target (struct target_ops *);
1476
1477 extern int unpush_target (struct target_ops *);
1478
1479 extern void target_pre_inferior (int);
1480
1481 extern void target_preopen (int);
1482
1483 extern void pop_target (void);
1484
1485 /* Does whatever cleanup is required to get rid of all pushed targets.
1486 QUITTING is propagated to target_close; it indicates that GDB is
1487 exiting and should not get hung on an error (otherwise it is
1488 important to perform clean termination, even if it takes a
1489 while). */
1490 extern void pop_all_targets (int quitting);
1491
1492 /* Like pop_all_targets, but pops only targets whose stratum is
1493 strictly above ABOVE_STRATUM. */
1494 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1495
1496 extern int target_is_pushed (struct target_ops *t);
1497
1498 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1499 CORE_ADDR offset);
1500
1501 /* Struct target_section maps address ranges to file sections. It is
1502 mostly used with BFD files, but can be used without (e.g. for handling
1503 raw disks, or files not in formats handled by BFD). */
1504
1505 struct target_section
1506 {
1507 CORE_ADDR addr; /* Lowest address in section */
1508 CORE_ADDR endaddr; /* 1+highest address in section */
1509
1510 struct bfd_section *the_bfd_section;
1511
1512 bfd *bfd; /* BFD file pointer */
1513 };
1514
1515 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1516
1517 struct target_section_table
1518 {
1519 struct target_section *sections;
1520 struct target_section *sections_end;
1521 };
1522
1523 /* Return the "section" containing the specified address. */
1524 struct target_section *target_section_by_addr (struct target_ops *target,
1525 CORE_ADDR addr);
1526
1527 /* Return the target section table this target (or the targets
1528 beneath) currently manipulate. */
1529
1530 extern struct target_section_table *target_get_section_table
1531 (struct target_ops *target);
1532
1533 /* From mem-break.c */
1534
1535 extern int memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
1536
1537 extern int memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
1538
1539 extern int default_memory_remove_breakpoint (struct gdbarch *, struct bp_target_info *);
1540
1541 extern int default_memory_insert_breakpoint (struct gdbarch *, struct bp_target_info *);
1542
1543
1544 /* From target.c */
1545
1546 extern void initialize_targets (void);
1547
1548 extern void noprocess (void) ATTRIBUTE_NORETURN;
1549
1550 extern void target_require_runnable (void);
1551
1552 extern void find_default_attach (struct target_ops *, char *, int);
1553
1554 extern void find_default_create_inferior (struct target_ops *,
1555 char *, char *, char **, int);
1556
1557 extern struct target_ops *find_run_target (void);
1558
1559 extern struct target_ops *find_target_beneath (struct target_ops *);
1560
1561 /* Read OS data object of type TYPE from the target, and return it in
1562 XML format. The result is NUL-terminated and returned as a string,
1563 allocated using xmalloc. If an error occurs or the transfer is
1564 unsupported, NULL is returned. Empty objects are returned as
1565 allocated but empty strings. */
1566
1567 extern char *target_get_osdata (const char *type);
1568
1569 \f
1570 /* Stuff that should be shared among the various remote targets. */
1571
1572 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1573 information (higher values, more information). */
1574 extern int remote_debug;
1575
1576 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1577 extern int baud_rate;
1578 /* Timeout limit for response from target. */
1579 extern int remote_timeout;
1580
1581 \f
1582 /* Functions for helping to write a native target. */
1583
1584 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1585 extern void store_waitstatus (struct target_waitstatus *, int);
1586
1587 /* These are in common/signals.c, but they're only used by gdb. */
1588 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1589 int);
1590 extern int default_target_signal_to_host (struct gdbarch *,
1591 enum target_signal);
1592
1593 /* Convert from a number used in a GDB command to an enum target_signal. */
1594 extern enum target_signal target_signal_from_command (int);
1595 /* End of files in common/signals.c. */
1596
1597 /* Set the show memory breakpoints mode to show, and installs a cleanup
1598 to restore it back to the current value. */
1599 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1600
1601 extern int may_write_registers;
1602 extern int may_write_memory;
1603 extern int may_insert_breakpoints;
1604 extern int may_insert_tracepoints;
1605 extern int may_insert_fast_tracepoints;
1606 extern int may_stop;
1607
1608 extern void update_target_permissions (void);
1609
1610 \f
1611 /* Imported from machine dependent code */
1612
1613 /* Blank target vector entries are initialized to target_ignore. */
1614 void target_ignore (void);
1615
1616 extern struct target_ops deprecated_child_ops;
1617
1618 #endif /* !defined (TARGET_H) */
This page took 0.063085 seconds and 4 git commands to generate.