79b9886517d78ff6463961c1222fc03d1ee3786d
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible error codes returned by target_xfer_partial, etc. */
207
208 enum target_xfer_error
209 {
210 /* Generic I/O error. Note that it's important that this is '-1',
211 as we still have target_xfer-related code returning hardcoded
212 '-1' on error. */
213 TARGET_XFER_E_IO = -1,
214
215 /* Transfer failed because the piece of the object requested is
216 unavailable. */
217 TARGET_XFER_E_UNAVAILABLE = -2,
218
219 /* Keep list in sync with target_xfer_error_to_string. */
220 };
221
222 /* Return the string form of ERR. */
223
224 extern const char *target_xfer_error_to_string (enum target_xfer_error err);
225
226 /* Enumeration of the kinds of traceframe searches that a target may
227 be able to perform. */
228
229 enum trace_find_type
230 {
231 tfind_number,
232 tfind_pc,
233 tfind_tp,
234 tfind_range,
235 tfind_outside,
236 };
237
238 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
239 DEF_VEC_P(static_tracepoint_marker_p);
240
241 typedef LONGEST
242 target_xfer_partial_ftype (struct target_ops *ops,
243 enum target_object object,
244 const char *annex,
245 gdb_byte *readbuf,
246 const gdb_byte *writebuf,
247 ULONGEST offset,
248 ULONGEST len);
249
250 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
251 OBJECT. The OFFSET, for a seekable object, specifies the
252 starting point. The ANNEX can be used to provide additional
253 data-specific information to the target.
254
255 Return the number of bytes actually transfered, or a negative error
256 code (an 'enum target_xfer_error' value) if the transfer is not
257 supported or otherwise fails. Return of a positive value less than
258 LEN indicates that no further transfer is possible. Unlike the raw
259 to_xfer_partial interface, callers of these functions do not need
260 to retry partial transfers. */
261
262 extern LONGEST target_read (struct target_ops *ops,
263 enum target_object object,
264 const char *annex, gdb_byte *buf,
265 ULONGEST offset, LONGEST len);
266
267 struct memory_read_result
268 {
269 /* First address that was read. */
270 ULONGEST begin;
271 /* Past-the-end address. */
272 ULONGEST end;
273 /* The data. */
274 gdb_byte *data;
275 };
276 typedef struct memory_read_result memory_read_result_s;
277 DEF_VEC_O(memory_read_result_s);
278
279 extern void free_memory_read_result_vector (void *);
280
281 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
282 ULONGEST offset,
283 LONGEST len);
284
285 extern LONGEST target_write (struct target_ops *ops,
286 enum target_object object,
287 const char *annex, const gdb_byte *buf,
288 ULONGEST offset, LONGEST len);
289
290 /* Similar to target_write, except that it also calls PROGRESS with
291 the number of bytes written and the opaque BATON after every
292 successful partial write (and before the first write). This is
293 useful for progress reporting and user interaction while writing
294 data. To abort the transfer, the progress callback can throw an
295 exception. */
296
297 LONGEST target_write_with_progress (struct target_ops *ops,
298 enum target_object object,
299 const char *annex, const gdb_byte *buf,
300 ULONGEST offset, LONGEST len,
301 void (*progress) (ULONGEST, void *),
302 void *baton);
303
304 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
305 be read using OPS. The return value will be -1 if the transfer
306 fails or is not supported; 0 if the object is empty; or the length
307 of the object otherwise. If a positive value is returned, a
308 sufficiently large buffer will be allocated using xmalloc and
309 returned in *BUF_P containing the contents of the object.
310
311 This method should be used for objects sufficiently small to store
312 in a single xmalloc'd buffer, when no fixed bound on the object's
313 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
314 through this function. */
315
316 extern LONGEST target_read_alloc (struct target_ops *ops,
317 enum target_object object,
318 const char *annex, gdb_byte **buf_p);
319
320 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
321 returned as a string, allocated using xmalloc. If an error occurs
322 or the transfer is unsupported, NULL is returned. Empty objects
323 are returned as allocated but empty strings. A warning is issued
324 if the result contains any embedded NUL bytes. */
325
326 extern char *target_read_stralloc (struct target_ops *ops,
327 enum target_object object,
328 const char *annex);
329
330 /* See target_ops->to_xfer_partial. */
331 extern target_xfer_partial_ftype target_xfer_partial;
332
333 /* Wrappers to target read/write that perform memory transfers. They
334 throw an error if the memory transfer fails.
335
336 NOTE: cagney/2003-10-23: The naming schema is lifted from
337 "frame.h". The parameter order is lifted from get_frame_memory,
338 which in turn lifted it from read_memory. */
339
340 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
341 gdb_byte *buf, LONGEST len);
342 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
343 CORE_ADDR addr, int len,
344 enum bfd_endian byte_order);
345 \f
346 struct thread_info; /* fwd decl for parameter list below: */
347
348 /* The type of the callback to the to_async method. */
349
350 typedef void async_callback_ftype (enum inferior_event_type event_type,
351 void *context);
352
353 struct target_ops
354 {
355 struct target_ops *beneath; /* To the target under this one. */
356 char *to_shortname; /* Name this target type */
357 char *to_longname; /* Name for printing */
358 char *to_doc; /* Documentation. Does not include trailing
359 newline, and starts with a one-line descrip-
360 tion (probably similar to to_longname). */
361 /* Per-target scratch pad. */
362 void *to_data;
363 /* The open routine takes the rest of the parameters from the
364 command, and (if successful) pushes a new target onto the
365 stack. Targets should supply this routine, if only to provide
366 an error message. */
367 void (*to_open) (char *, int);
368 /* Old targets with a static target vector provide "to_close".
369 New re-entrant targets provide "to_xclose" and that is expected
370 to xfree everything (including the "struct target_ops"). */
371 void (*to_xclose) (struct target_ops *targ);
372 void (*to_close) (void);
373 void (*to_attach) (struct target_ops *ops, char *, int);
374 void (*to_post_attach) (int);
375 void (*to_detach) (struct target_ops *ops, const char *, int);
376 void (*to_disconnect) (struct target_ops *, char *, int);
377 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal);
378 ptid_t (*to_wait) (struct target_ops *,
379 ptid_t, struct target_waitstatus *, int);
380 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
381 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
382 void (*to_prepare_to_store) (struct target_ops *, struct regcache *);
383
384 /* Transfer LEN bytes of memory between GDB address MYADDR and
385 target address MEMADDR. If WRITE, transfer them to the target, else
386 transfer them from the target. TARGET is the target from which we
387 get this function.
388
389 Return value, N, is one of the following:
390
391 0 means that we can't handle this. If errno has been set, it is the
392 error which prevented us from doing it (FIXME: What about bfd_error?).
393
394 positive (call it N) means that we have transferred N bytes
395 starting at MEMADDR. We might be able to handle more bytes
396 beyond this length, but no promises.
397
398 negative (call its absolute value N) means that we cannot
399 transfer right at MEMADDR, but we could transfer at least
400 something at MEMADDR + N.
401
402 NOTE: cagney/2004-10-01: This has been entirely superseeded by
403 to_xfer_partial and inferior inheritance. */
404
405 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
406 int len, int write,
407 struct mem_attrib *attrib,
408 struct target_ops *target);
409
410 void (*to_files_info) (struct target_ops *);
411 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
412 struct bp_target_info *);
413 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
414 struct bp_target_info *);
415 int (*to_can_use_hw_breakpoint) (int, int, int);
416 int (*to_ranged_break_num_registers) (struct target_ops *);
417 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
418 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
419
420 /* Documentation of what the two routines below are expected to do is
421 provided with the corresponding target_* macros. */
422 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
423 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
424
425 int (*to_insert_mask_watchpoint) (struct target_ops *,
426 CORE_ADDR, CORE_ADDR, int);
427 int (*to_remove_mask_watchpoint) (struct target_ops *,
428 CORE_ADDR, CORE_ADDR, int);
429 int (*to_stopped_by_watchpoint) (void);
430 int to_have_steppable_watchpoint;
431 int to_have_continuable_watchpoint;
432 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
433 int (*to_watchpoint_addr_within_range) (struct target_ops *,
434 CORE_ADDR, CORE_ADDR, int);
435
436 /* Documentation of this routine is provided with the corresponding
437 target_* macro. */
438 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
439
440 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
441 struct expression *);
442 int (*to_masked_watch_num_registers) (struct target_ops *,
443 CORE_ADDR, CORE_ADDR);
444 void (*to_terminal_init) (void);
445 void (*to_terminal_inferior) (void);
446 void (*to_terminal_ours_for_output) (void);
447 void (*to_terminal_ours) (void);
448 void (*to_terminal_save_ours) (void);
449 void (*to_terminal_info) (const char *, int);
450 void (*to_kill) (struct target_ops *);
451 void (*to_load) (char *, int);
452 void (*to_create_inferior) (struct target_ops *,
453 char *, char *, char **, int);
454 void (*to_post_startup_inferior) (ptid_t);
455 int (*to_insert_fork_catchpoint) (int);
456 int (*to_remove_fork_catchpoint) (int);
457 int (*to_insert_vfork_catchpoint) (int);
458 int (*to_remove_vfork_catchpoint) (int);
459 int (*to_follow_fork) (struct target_ops *, int, int);
460 int (*to_insert_exec_catchpoint) (int);
461 int (*to_remove_exec_catchpoint) (int);
462 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
463 int (*to_has_exited) (int, int, int *);
464 void (*to_mourn_inferior) (struct target_ops *);
465 int (*to_can_run) (void);
466
467 /* Documentation of this routine is provided with the corresponding
468 target_* macro. */
469 void (*to_pass_signals) (int, unsigned char *);
470
471 /* Documentation of this routine is provided with the
472 corresponding target_* function. */
473 void (*to_program_signals) (int, unsigned char *);
474
475 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
476 void (*to_find_new_threads) (struct target_ops *);
477 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
478 char *(*to_extra_thread_info) (struct thread_info *);
479 char *(*to_thread_name) (struct thread_info *);
480 void (*to_stop) (ptid_t);
481 void (*to_rcmd) (char *command, struct ui_file *output);
482 char *(*to_pid_to_exec_file) (int pid);
483 void (*to_log_command) (const char *);
484 struct target_section_table *(*to_get_section_table) (struct target_ops *);
485 enum strata to_stratum;
486 int (*to_has_all_memory) (struct target_ops *);
487 int (*to_has_memory) (struct target_ops *);
488 int (*to_has_stack) (struct target_ops *);
489 int (*to_has_registers) (struct target_ops *);
490 int (*to_has_execution) (struct target_ops *, ptid_t);
491 int to_has_thread_control; /* control thread execution */
492 int to_attach_no_wait;
493 /* ASYNC target controls */
494 int (*to_can_async_p) (void);
495 int (*to_is_async_p) (void);
496 void (*to_async) (async_callback_ftype *, void *);
497 int (*to_supports_non_stop) (void);
498 /* find_memory_regions support method for gcore */
499 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
500 /* make_corefile_notes support method for gcore */
501 char * (*to_make_corefile_notes) (bfd *, int *);
502 /* get_bookmark support method for bookmarks */
503 gdb_byte * (*to_get_bookmark) (char *, int);
504 /* goto_bookmark support method for bookmarks */
505 void (*to_goto_bookmark) (gdb_byte *, int);
506 /* Return the thread-local address at OFFSET in the
507 thread-local storage for the thread PTID and the shared library
508 or executable file given by OBJFILE. If that block of
509 thread-local storage hasn't been allocated yet, this function
510 may return an error. */
511 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
512 ptid_t ptid,
513 CORE_ADDR load_module_addr,
514 CORE_ADDR offset);
515
516 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
517 OBJECT. The OFFSET, for a seekable object, specifies the
518 starting point. The ANNEX can be used to provide additional
519 data-specific information to the target.
520
521 Return the number of bytes actually transfered, zero when no
522 further transfer is possible, and a negative error code (really
523 an 'enum target_xfer_error' value) when the transfer is not
524 supported. Return of a positive value smaller than LEN does
525 not indicate the end of the object, only the end of the
526 transfer; higher level code should continue transferring if
527 desired. This is handled in target.c.
528
529 The interface does not support a "retry" mechanism. Instead it
530 assumes that at least one byte will be transfered on each
531 successful call.
532
533 NOTE: cagney/2003-10-17: The current interface can lead to
534 fragmented transfers. Lower target levels should not implement
535 hacks, such as enlarging the transfer, in an attempt to
536 compensate for this. Instead, the target stack should be
537 extended so that it implements supply/collect methods and a
538 look-aside object cache. With that available, the lowest
539 target can safely and freely "push" data up the stack.
540
541 See target_read and target_write for more information. One,
542 and only one, of readbuf or writebuf must be non-NULL. */
543
544 LONGEST (*to_xfer_partial) (struct target_ops *ops,
545 enum target_object object, const char *annex,
546 gdb_byte *readbuf, const gdb_byte *writebuf,
547 ULONGEST offset, ULONGEST len);
548
549 /* Returns the memory map for the target. A return value of NULL
550 means that no memory map is available. If a memory address
551 does not fall within any returned regions, it's assumed to be
552 RAM. The returned memory regions should not overlap.
553
554 The order of regions does not matter; target_memory_map will
555 sort regions by starting address. For that reason, this
556 function should not be called directly except via
557 target_memory_map.
558
559 This method should not cache data; if the memory map could
560 change unexpectedly, it should be invalidated, and higher
561 layers will re-fetch it. */
562 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
563
564 /* Erases the region of flash memory starting at ADDRESS, of
565 length LENGTH.
566
567 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
568 on flash block boundaries, as reported by 'to_memory_map'. */
569 void (*to_flash_erase) (struct target_ops *,
570 ULONGEST address, LONGEST length);
571
572 /* Finishes a flash memory write sequence. After this operation
573 all flash memory should be available for writing and the result
574 of reading from areas written by 'to_flash_write' should be
575 equal to what was written. */
576 void (*to_flash_done) (struct target_ops *);
577
578 /* Describe the architecture-specific features of this target.
579 Returns the description found, or NULL if no description
580 was available. */
581 const struct target_desc *(*to_read_description) (struct target_ops *ops);
582
583 /* Build the PTID of the thread on which a given task is running,
584 based on LWP and THREAD. These values are extracted from the
585 task Private_Data section of the Ada Task Control Block, and
586 their interpretation depends on the target. */
587 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
588
589 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
590 Return 0 if *READPTR is already at the end of the buffer.
591 Return -1 if there is insufficient buffer for a whole entry.
592 Return 1 if an entry was read into *TYPEP and *VALP. */
593 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
594 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
595
596 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
597 sequence of bytes in PATTERN with length PATTERN_LEN.
598
599 The result is 1 if found, 0 if not found, and -1 if there was an error
600 requiring halting of the search (e.g. memory read error).
601 If the pattern is found the address is recorded in FOUND_ADDRP. */
602 int (*to_search_memory) (struct target_ops *ops,
603 CORE_ADDR start_addr, ULONGEST search_space_len,
604 const gdb_byte *pattern, ULONGEST pattern_len,
605 CORE_ADDR *found_addrp);
606
607 /* Can target execute in reverse? */
608 int (*to_can_execute_reverse) (void);
609
610 /* The direction the target is currently executing. Must be
611 implemented on targets that support reverse execution and async
612 mode. The default simply returns forward execution. */
613 enum exec_direction_kind (*to_execution_direction) (void);
614
615 /* Does this target support debugging multiple processes
616 simultaneously? */
617 int (*to_supports_multi_process) (void);
618
619 /* Does this target support enabling and disabling tracepoints while a trace
620 experiment is running? */
621 int (*to_supports_enable_disable_tracepoint) (void);
622
623 /* Does this target support disabling address space randomization? */
624 int (*to_supports_disable_randomization) (void);
625
626 /* Does this target support the tracenz bytecode for string collection? */
627 int (*to_supports_string_tracing) (void);
628
629 /* Does this target support evaluation of breakpoint conditions on its
630 end? */
631 int (*to_supports_evaluation_of_breakpoint_conditions) (void);
632
633 /* Does this target support evaluation of breakpoint commands on its
634 end? */
635 int (*to_can_run_breakpoint_commands) (void);
636
637 /* Determine current architecture of thread PTID.
638
639 The target is supposed to determine the architecture of the code where
640 the target is currently stopped at (on Cell, if a target is in spu_run,
641 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
642 This is architecture used to perform decr_pc_after_break adjustment,
643 and also determines the frame architecture of the innermost frame.
644 ptrace operations need to operate according to target_gdbarch ().
645
646 The default implementation always returns target_gdbarch (). */
647 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
648
649 /* Determine current address space of thread PTID.
650
651 The default implementation always returns the inferior's
652 address space. */
653 struct address_space *(*to_thread_address_space) (struct target_ops *,
654 ptid_t);
655
656 /* Target file operations. */
657
658 /* Open FILENAME on the target, using FLAGS and MODE. Return a
659 target file descriptor, or -1 if an error occurs (and set
660 *TARGET_ERRNO). */
661 int (*to_fileio_open) (const char *filename, int flags, int mode,
662 int *target_errno);
663
664 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
665 Return the number of bytes written, or -1 if an error occurs
666 (and set *TARGET_ERRNO). */
667 int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
668 ULONGEST offset, int *target_errno);
669
670 /* Read up to LEN bytes FD on the target into READ_BUF.
671 Return the number of bytes read, or -1 if an error occurs
672 (and set *TARGET_ERRNO). */
673 int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
674 ULONGEST offset, int *target_errno);
675
676 /* Close FD on the target. Return 0, or -1 if an error occurs
677 (and set *TARGET_ERRNO). */
678 int (*to_fileio_close) (int fd, int *target_errno);
679
680 /* Unlink FILENAME on the target. Return 0, or -1 if an error
681 occurs (and set *TARGET_ERRNO). */
682 int (*to_fileio_unlink) (const char *filename, int *target_errno);
683
684 /* Read value of symbolic link FILENAME on the target. Return a
685 null-terminated string allocated via xmalloc, or NULL if an error
686 occurs (and set *TARGET_ERRNO). */
687 char *(*to_fileio_readlink) (const char *filename, int *target_errno);
688
689
690 /* Implement the "info proc" command. */
691 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
692
693 /* Tracepoint-related operations. */
694
695 /* Prepare the target for a tracing run. */
696 void (*to_trace_init) (void);
697
698 /* Send full details of a tracepoint location to the target. */
699 void (*to_download_tracepoint) (struct bp_location *location);
700
701 /* Is the target able to download tracepoint locations in current
702 state? */
703 int (*to_can_download_tracepoint) (void);
704
705 /* Send full details of a trace state variable to the target. */
706 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
707
708 /* Enable a tracepoint on the target. */
709 void (*to_enable_tracepoint) (struct bp_location *location);
710
711 /* Disable a tracepoint on the target. */
712 void (*to_disable_tracepoint) (struct bp_location *location);
713
714 /* Inform the target info of memory regions that are readonly
715 (such as text sections), and so it should return data from
716 those rather than look in the trace buffer. */
717 void (*to_trace_set_readonly_regions) (void);
718
719 /* Start a trace run. */
720 void (*to_trace_start) (void);
721
722 /* Get the current status of a tracing run. */
723 int (*to_get_trace_status) (struct trace_status *ts);
724
725 void (*to_get_tracepoint_status) (struct breakpoint *tp,
726 struct uploaded_tp *utp);
727
728 /* Stop a trace run. */
729 void (*to_trace_stop) (void);
730
731 /* Ask the target to find a trace frame of the given type TYPE,
732 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
733 number of the trace frame, and also the tracepoint number at
734 TPP. If no trace frame matches, return -1. May throw if the
735 operation fails. */
736 int (*to_trace_find) (enum trace_find_type type, int num,
737 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
738
739 /* Get the value of the trace state variable number TSV, returning
740 1 if the value is known and writing the value itself into the
741 location pointed to by VAL, else returning 0. */
742 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
743
744 int (*to_save_trace_data) (const char *filename);
745
746 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
747
748 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
749
750 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
751 ULONGEST offset, LONGEST len);
752
753 /* Get the minimum length of instruction on which a fast tracepoint
754 may be set on the target. If this operation is unsupported,
755 return -1. If for some reason the minimum length cannot be
756 determined, return 0. */
757 int (*to_get_min_fast_tracepoint_insn_len) (void);
758
759 /* Set the target's tracing behavior in response to unexpected
760 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
761 void (*to_set_disconnected_tracing) (int val);
762 void (*to_set_circular_trace_buffer) (int val);
763 /* Set the size of trace buffer in the target. */
764 void (*to_set_trace_buffer_size) (LONGEST val);
765
766 /* Add/change textual notes about the trace run, returning 1 if
767 successful, 0 otherwise. */
768 int (*to_set_trace_notes) (const char *user, const char *notes,
769 const char *stopnotes);
770
771 /* Return the processor core that thread PTID was last seen on.
772 This information is updated only when:
773 - update_thread_list is called
774 - thread stops
775 If the core cannot be determined -- either for the specified
776 thread, or right now, or in this debug session, or for this
777 target -- return -1. */
778 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
779
780 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
781 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
782 a match, 0 if there's a mismatch, and -1 if an error is
783 encountered while reading memory. */
784 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
785 CORE_ADDR memaddr, ULONGEST size);
786
787 /* Return the address of the start of the Thread Information Block
788 a Windows OS specific feature. */
789 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
790
791 /* Send the new settings of write permission variables. */
792 void (*to_set_permissions) (void);
793
794 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
795 with its details. Return 1 on success, 0 on failure. */
796 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
797 struct static_tracepoint_marker *marker);
798
799 /* Return a vector of all tracepoints markers string id ID, or all
800 markers if ID is NULL. */
801 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
802 (const char *id);
803
804 /* Return a traceframe info object describing the current
805 traceframe's contents. If the target doesn't support
806 traceframe info, return NULL. If the current traceframe is not
807 selected (the current traceframe number is -1), the target can
808 choose to return either NULL or an empty traceframe info. If
809 NULL is returned, for example in remote target, GDB will read
810 from the live inferior. If an empty traceframe info is
811 returned, for example in tfile target, which means the
812 traceframe info is available, but the requested memory is not
813 available in it. GDB will try to see if the requested memory
814 is available in the read-only sections. This method should not
815 cache data; higher layers take care of caching, invalidating,
816 and re-fetching when necessary. */
817 struct traceframe_info *(*to_traceframe_info) (void);
818
819 /* Ask the target to use or not to use agent according to USE. Return 1
820 successful, 0 otherwise. */
821 int (*to_use_agent) (int use);
822
823 /* Is the target able to use agent in current state? */
824 int (*to_can_use_agent) (void);
825
826 /* Check whether the target supports branch tracing. */
827 int (*to_supports_btrace) (void);
828
829 /* Enable branch tracing for PTID and allocate a branch trace target
830 information struct for reading and for disabling branch trace. */
831 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
832
833 /* Disable branch tracing and deallocate TINFO. */
834 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
835
836 /* Disable branch tracing and deallocate TINFO. This function is similar
837 to to_disable_btrace, except that it is called during teardown and is
838 only allowed to perform actions that are safe. A counter-example would
839 be attempting to talk to a remote target. */
840 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
841
842 /* Read branch trace data. */
843 VEC (btrace_block_s) *(*to_read_btrace) (struct btrace_target_info *,
844 enum btrace_read_type);
845
846 /* Stop trace recording. */
847 void (*to_stop_recording) (void);
848
849 /* Print information about the recording. */
850 void (*to_info_record) (void);
851
852 /* Save the recorded execution trace into a file. */
853 void (*to_save_record) (const char *filename);
854
855 /* Delete the recorded execution trace from the current position onwards. */
856 void (*to_delete_record) (void);
857
858 /* Query if the record target is currently replaying. */
859 int (*to_record_is_replaying) (void);
860
861 /* Go to the begin of the execution trace. */
862 void (*to_goto_record_begin) (void);
863
864 /* Go to the end of the execution trace. */
865 void (*to_goto_record_end) (void);
866
867 /* Go to a specific location in the recorded execution trace. */
868 void (*to_goto_record) (ULONGEST insn);
869
870 /* Disassemble SIZE instructions in the recorded execution trace from
871 the current position.
872 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
873 disassemble SIZE succeeding instructions. */
874 void (*to_insn_history) (int size, int flags);
875
876 /* Disassemble SIZE instructions in the recorded execution trace around
877 FROM.
878 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
879 disassemble SIZE instructions after FROM. */
880 void (*to_insn_history_from) (ULONGEST from, int size, int flags);
881
882 /* Disassemble a section of the recorded execution trace from instruction
883 BEGIN (inclusive) to instruction END (inclusive). */
884 void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
885
886 /* Print a function trace of the recorded execution trace.
887 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
888 succeeding functions. */
889 void (*to_call_history) (int size, int flags);
890
891 /* Print a function trace of the recorded execution trace starting
892 at function FROM.
893 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
894 SIZE functions after FROM. */
895 void (*to_call_history_from) (ULONGEST begin, int size, int flags);
896
897 /* Print a function trace of an execution trace section from function BEGIN
898 (inclusive) to function END (inclusive). */
899 void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
900
901 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
902 non-empty annex. */
903 int (*to_augmented_libraries_svr4_read) (void);
904
905 /* Those unwinders are tried before any other arch unwinders. Use NULL if
906 it is not used. */
907 const struct frame_unwind *to_get_unwinder;
908 const struct frame_unwind *to_get_tailcall_unwinder;
909
910 int to_magic;
911 /* Need sub-structure for target machine related rather than comm related?
912 */
913 };
914
915 /* Magic number for checking ops size. If a struct doesn't end with this
916 number, somebody changed the declaration but didn't change all the
917 places that initialize one. */
918
919 #define OPS_MAGIC 3840
920
921 /* The ops structure for our "current" target process. This should
922 never be NULL. If there is no target, it points to the dummy_target. */
923
924 extern struct target_ops current_target;
925
926 /* Define easy words for doing these operations on our current target. */
927
928 #define target_shortname (current_target.to_shortname)
929 #define target_longname (current_target.to_longname)
930
931 /* Does whatever cleanup is required for a target that we are no
932 longer going to be calling. This routine is automatically always
933 called after popping the target off the target stack - the target's
934 own methods are no longer available through the target vector.
935 Closing file descriptors and freeing all memory allocated memory are
936 typical things it should do. */
937
938 void target_close (struct target_ops *targ);
939
940 /* Attaches to a process on the target side. Arguments are as passed
941 to the `attach' command by the user. This routine can be called
942 when the target is not on the target-stack, if the target_can_run
943 routine returns 1; in that case, it must push itself onto the stack.
944 Upon exit, the target should be ready for normal operations, and
945 should be ready to deliver the status of the process immediately
946 (without waiting) to an upcoming target_wait call. */
947
948 void target_attach (char *, int);
949
950 /* Some targets don't generate traps when attaching to the inferior,
951 or their target_attach implementation takes care of the waiting.
952 These targets must set to_attach_no_wait. */
953
954 #define target_attach_no_wait \
955 (current_target.to_attach_no_wait)
956
957 /* The target_attach operation places a process under debugger control,
958 and stops the process.
959
960 This operation provides a target-specific hook that allows the
961 necessary bookkeeping to be performed after an attach completes. */
962 #define target_post_attach(pid) \
963 (*current_target.to_post_attach) (pid)
964
965 /* Takes a program previously attached to and detaches it.
966 The program may resume execution (some targets do, some don't) and will
967 no longer stop on signals, etc. We better not have left any breakpoints
968 in the program or it'll die when it hits one. ARGS is arguments
969 typed by the user (e.g. a signal to send the process). FROM_TTY
970 says whether to be verbose or not. */
971
972 extern void target_detach (const char *, int);
973
974 /* Disconnect from the current target without resuming it (leaving it
975 waiting for a debugger). */
976
977 extern void target_disconnect (char *, int);
978
979 /* Resume execution of the target process PTID (or a group of
980 threads). STEP says whether to single-step or to run free; SIGGNAL
981 is the signal to be given to the target, or GDB_SIGNAL_0 for no
982 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
983 PTID means `step/resume only this process id'. A wildcard PTID
984 (all threads, or all threads of process) means `step/resume
985 INFERIOR_PTID, and let other threads (for which the wildcard PTID
986 matches) resume with their 'thread->suspend.stop_signal' signal
987 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
988 if in "no pass" state. */
989
990 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
991
992 /* Wait for process pid to do something. PTID = -1 to wait for any
993 pid to do something. Return pid of child, or -1 in case of error;
994 store status through argument pointer STATUS. Note that it is
995 _NOT_ OK to throw_exception() out of target_wait() without popping
996 the debugging target from the stack; GDB isn't prepared to get back
997 to the prompt with a debugging target but without the frame cache,
998 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
999 options. */
1000
1001 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1002 int options);
1003
1004 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1005
1006 extern void target_fetch_registers (struct regcache *regcache, int regno);
1007
1008 /* Store at least register REGNO, or all regs if REGNO == -1.
1009 It can store as many registers as it wants to, so target_prepare_to_store
1010 must have been previously called. Calls error() if there are problems. */
1011
1012 extern void target_store_registers (struct regcache *regcache, int regs);
1013
1014 /* Get ready to modify the registers array. On machines which store
1015 individual registers, this doesn't need to do anything. On machines
1016 which store all the registers in one fell swoop, this makes sure
1017 that REGISTERS contains all the registers from the program being
1018 debugged. */
1019
1020 #define target_prepare_to_store(regcache) \
1021 (*current_target.to_prepare_to_store) (&current_target, regcache)
1022
1023 /* Determine current address space of thread PTID. */
1024
1025 struct address_space *target_thread_address_space (ptid_t);
1026
1027 /* Implement the "info proc" command. This returns one if the request
1028 was handled, and zero otherwise. It can also throw an exception if
1029 an error was encountered while attempting to handle the
1030 request. */
1031
1032 int target_info_proc (char *, enum info_proc_what);
1033
1034 /* Returns true if this target can debug multiple processes
1035 simultaneously. */
1036
1037 #define target_supports_multi_process() \
1038 (*current_target.to_supports_multi_process) ()
1039
1040 /* Returns true if this target can disable address space randomization. */
1041
1042 int target_supports_disable_randomization (void);
1043
1044 /* Returns true if this target can enable and disable tracepoints
1045 while a trace experiment is running. */
1046
1047 #define target_supports_enable_disable_tracepoint() \
1048 (*current_target.to_supports_enable_disable_tracepoint) ()
1049
1050 #define target_supports_string_tracing() \
1051 (*current_target.to_supports_string_tracing) ()
1052
1053 /* Returns true if this target can handle breakpoint conditions
1054 on its end. */
1055
1056 #define target_supports_evaluation_of_breakpoint_conditions() \
1057 (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
1058
1059 /* Returns true if this target can handle breakpoint commands
1060 on its end. */
1061
1062 #define target_can_run_breakpoint_commands() \
1063 (*current_target.to_can_run_breakpoint_commands) ()
1064
1065 extern int target_read_string (CORE_ADDR, char **, int, int *);
1066
1067 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1068 ssize_t len);
1069
1070 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1071 ssize_t len);
1072
1073 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1074
1075 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1076
1077 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1078 ssize_t len);
1079
1080 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1081 ssize_t len);
1082
1083 /* Fetches the target's memory map. If one is found it is sorted
1084 and returned, after some consistency checking. Otherwise, NULL
1085 is returned. */
1086 VEC(mem_region_s) *target_memory_map (void);
1087
1088 /* Erase the specified flash region. */
1089 void target_flash_erase (ULONGEST address, LONGEST length);
1090
1091 /* Finish a sequence of flash operations. */
1092 void target_flash_done (void);
1093
1094 /* Describes a request for a memory write operation. */
1095 struct memory_write_request
1096 {
1097 /* Begining address that must be written. */
1098 ULONGEST begin;
1099 /* Past-the-end address. */
1100 ULONGEST end;
1101 /* The data to write. */
1102 gdb_byte *data;
1103 /* A callback baton for progress reporting for this request. */
1104 void *baton;
1105 };
1106 typedef struct memory_write_request memory_write_request_s;
1107 DEF_VEC_O(memory_write_request_s);
1108
1109 /* Enumeration specifying different flash preservation behaviour. */
1110 enum flash_preserve_mode
1111 {
1112 flash_preserve,
1113 flash_discard
1114 };
1115
1116 /* Write several memory blocks at once. This version can be more
1117 efficient than making several calls to target_write_memory, in
1118 particular because it can optimize accesses to flash memory.
1119
1120 Moreover, this is currently the only memory access function in gdb
1121 that supports writing to flash memory, and it should be used for
1122 all cases where access to flash memory is desirable.
1123
1124 REQUESTS is the vector (see vec.h) of memory_write_request.
1125 PRESERVE_FLASH_P indicates what to do with blocks which must be
1126 erased, but not completely rewritten.
1127 PROGRESS_CB is a function that will be periodically called to provide
1128 feedback to user. It will be called with the baton corresponding
1129 to the request currently being written. It may also be called
1130 with a NULL baton, when preserved flash sectors are being rewritten.
1131
1132 The function returns 0 on success, and error otherwise. */
1133 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1134 enum flash_preserve_mode preserve_flash_p,
1135 void (*progress_cb) (ULONGEST, void *));
1136
1137 /* Print a line about the current target. */
1138
1139 #define target_files_info() \
1140 (*current_target.to_files_info) (&current_target)
1141
1142 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1143 the target machine. Returns 0 for success, and returns non-zero or
1144 throws an error (with a detailed failure reason error code and
1145 message) otherwise.
1146 Start the target search at OPS. */
1147
1148 extern int forward_target_insert_breakpoint (struct target_ops *ops,
1149 struct gdbarch *gdbarch,
1150 struct bp_target_info *bp_tgt);
1151
1152 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1153 the target machine. Returns 0 for success, and returns non-zero or
1154 throws an error (with a detailed failure reason error code and
1155 message) otherwise. */
1156
1157 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1158 struct bp_target_info *bp_tgt);
1159
1160 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1161 machine. Result is 0 for success, non-zero for error.
1162 Start the target search at OPS. */
1163
1164 extern int forward_target_remove_breakpoint (struct target_ops *ops,
1165 struct gdbarch *gdbarch,
1166 struct bp_target_info *bp_tgt);
1167 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1168 machine. Result is 0 for success, non-zero for error. */
1169
1170 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1171 struct bp_target_info *bp_tgt);
1172
1173 /* Initialize the terminal settings we record for the inferior,
1174 before we actually run the inferior. */
1175
1176 #define target_terminal_init() \
1177 (*current_target.to_terminal_init) ()
1178
1179 /* Put the inferior's terminal settings into effect.
1180 This is preparation for starting or resuming the inferior. */
1181
1182 extern void target_terminal_inferior (void);
1183
1184 /* Put some of our terminal settings into effect,
1185 enough to get proper results from our output,
1186 but do not change into or out of RAW mode
1187 so that no input is discarded.
1188
1189 After doing this, either terminal_ours or terminal_inferior
1190 should be called to get back to a normal state of affairs. */
1191
1192 #define target_terminal_ours_for_output() \
1193 (*current_target.to_terminal_ours_for_output) ()
1194
1195 /* Put our terminal settings into effect.
1196 First record the inferior's terminal settings
1197 so they can be restored properly later. */
1198
1199 #define target_terminal_ours() \
1200 (*current_target.to_terminal_ours) ()
1201
1202 /* Save our terminal settings.
1203 This is called from TUI after entering or leaving the curses
1204 mode. Since curses modifies our terminal this call is here
1205 to take this change into account. */
1206
1207 #define target_terminal_save_ours() \
1208 (*current_target.to_terminal_save_ours) ()
1209
1210 /* Print useful information about our terminal status, if such a thing
1211 exists. */
1212
1213 #define target_terminal_info(arg, from_tty) \
1214 (*current_target.to_terminal_info) (arg, from_tty)
1215
1216 /* Kill the inferior process. Make it go away. */
1217
1218 extern void target_kill (void);
1219
1220 /* Load an executable file into the target process. This is expected
1221 to not only bring new code into the target process, but also to
1222 update GDB's symbol tables to match.
1223
1224 ARG contains command-line arguments, to be broken down with
1225 buildargv (). The first non-switch argument is the filename to
1226 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1227 0)), which is an offset to apply to the load addresses of FILE's
1228 sections. The target may define switches, or other non-switch
1229 arguments, as it pleases. */
1230
1231 extern void target_load (char *arg, int from_tty);
1232
1233 /* Start an inferior process and set inferior_ptid to its pid.
1234 EXEC_FILE is the file to run.
1235 ALLARGS is a string containing the arguments to the program.
1236 ENV is the environment vector to pass. Errors reported with error().
1237 On VxWorks and various standalone systems, we ignore exec_file. */
1238
1239 void target_create_inferior (char *exec_file, char *args,
1240 char **env, int from_tty);
1241
1242 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1243 notification of inferior events such as fork and vork immediately
1244 after the inferior is created. (This because of how gdb gets an
1245 inferior created via invoking a shell to do it. In such a scenario,
1246 if the shell init file has commands in it, the shell will fork and
1247 exec for each of those commands, and we will see each such fork
1248 event. Very bad.)
1249
1250 Such targets will supply an appropriate definition for this function. */
1251
1252 #define target_post_startup_inferior(ptid) \
1253 (*current_target.to_post_startup_inferior) (ptid)
1254
1255 /* On some targets, we can catch an inferior fork or vfork event when
1256 it occurs. These functions insert/remove an already-created
1257 catchpoint for such events. They return 0 for success, 1 if the
1258 catchpoint type is not supported and -1 for failure. */
1259
1260 #define target_insert_fork_catchpoint(pid) \
1261 (*current_target.to_insert_fork_catchpoint) (pid)
1262
1263 #define target_remove_fork_catchpoint(pid) \
1264 (*current_target.to_remove_fork_catchpoint) (pid)
1265
1266 #define target_insert_vfork_catchpoint(pid) \
1267 (*current_target.to_insert_vfork_catchpoint) (pid)
1268
1269 #define target_remove_vfork_catchpoint(pid) \
1270 (*current_target.to_remove_vfork_catchpoint) (pid)
1271
1272 /* If the inferior forks or vforks, this function will be called at
1273 the next resume in order to perform any bookkeeping and fiddling
1274 necessary to continue debugging either the parent or child, as
1275 requested, and releasing the other. Information about the fork
1276 or vfork event is available via get_last_target_status ().
1277 This function returns 1 if the inferior should not be resumed
1278 (i.e. there is another event pending). */
1279
1280 int target_follow_fork (int follow_child, int detach_fork);
1281
1282 /* On some targets, we can catch an inferior exec event when it
1283 occurs. These functions insert/remove an already-created
1284 catchpoint for such events. They return 0 for success, 1 if the
1285 catchpoint type is not supported and -1 for failure. */
1286
1287 #define target_insert_exec_catchpoint(pid) \
1288 (*current_target.to_insert_exec_catchpoint) (pid)
1289
1290 #define target_remove_exec_catchpoint(pid) \
1291 (*current_target.to_remove_exec_catchpoint) (pid)
1292
1293 /* Syscall catch.
1294
1295 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1296 If NEEDED is zero, it means the target can disable the mechanism to
1297 catch system calls because there are no more catchpoints of this type.
1298
1299 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1300 being requested. In this case, both TABLE_SIZE and TABLE should
1301 be ignored.
1302
1303 TABLE_SIZE is the number of elements in TABLE. It only matters if
1304 ANY_COUNT is zero.
1305
1306 TABLE is an array of ints, indexed by syscall number. An element in
1307 this array is nonzero if that syscall should be caught. This argument
1308 only matters if ANY_COUNT is zero.
1309
1310 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1311 for failure. */
1312
1313 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1314 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1315 table_size, table)
1316
1317 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1318 exit code of PID, if any. */
1319
1320 #define target_has_exited(pid,wait_status,exit_status) \
1321 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1322
1323 /* The debugger has completed a blocking wait() call. There is now
1324 some process event that must be processed. This function should
1325 be defined by those targets that require the debugger to perform
1326 cleanup or internal state changes in response to the process event. */
1327
1328 /* The inferior process has died. Do what is right. */
1329
1330 void target_mourn_inferior (void);
1331
1332 /* Does target have enough data to do a run or attach command? */
1333
1334 #define target_can_run(t) \
1335 ((t)->to_can_run) ()
1336
1337 /* Set list of signals to be handled in the target.
1338
1339 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1340 (enum gdb_signal). For every signal whose entry in this array is
1341 non-zero, the target is allowed -but not required- to skip reporting
1342 arrival of the signal to the GDB core by returning from target_wait,
1343 and to pass the signal directly to the inferior instead.
1344
1345 However, if the target is hardware single-stepping a thread that is
1346 about to receive a signal, it needs to be reported in any case, even
1347 if mentioned in a previous target_pass_signals call. */
1348
1349 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1350
1351 /* Set list of signals the target may pass to the inferior. This
1352 directly maps to the "handle SIGNAL pass/nopass" setting.
1353
1354 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1355 number (enum gdb_signal). For every signal whose entry in this
1356 array is non-zero, the target is allowed to pass the signal to the
1357 inferior. Signals not present in the array shall be silently
1358 discarded. This does not influence whether to pass signals to the
1359 inferior as a result of a target_resume call. This is useful in
1360 scenarios where the target needs to decide whether to pass or not a
1361 signal to the inferior without GDB core involvement, such as for
1362 example, when detaching (as threads may have been suspended with
1363 pending signals not reported to GDB). */
1364
1365 extern void target_program_signals (int nsig, unsigned char *program_signals);
1366
1367 /* Check to see if a thread is still alive. */
1368
1369 extern int target_thread_alive (ptid_t ptid);
1370
1371 /* Query for new threads and add them to the thread list. */
1372
1373 extern void target_find_new_threads (void);
1374
1375 /* Make target stop in a continuable fashion. (For instance, under
1376 Unix, this should act like SIGSTOP). This function is normally
1377 used by GUIs to implement a stop button. */
1378
1379 extern void target_stop (ptid_t ptid);
1380
1381 /* Send the specified COMMAND to the target's monitor
1382 (shell,interpreter) for execution. The result of the query is
1383 placed in OUTBUF. */
1384
1385 #define target_rcmd(command, outbuf) \
1386 (*current_target.to_rcmd) (command, outbuf)
1387
1388
1389 /* Does the target include all of memory, or only part of it? This
1390 determines whether we look up the target chain for other parts of
1391 memory if this target can't satisfy a request. */
1392
1393 extern int target_has_all_memory_1 (void);
1394 #define target_has_all_memory target_has_all_memory_1 ()
1395
1396 /* Does the target include memory? (Dummy targets don't.) */
1397
1398 extern int target_has_memory_1 (void);
1399 #define target_has_memory target_has_memory_1 ()
1400
1401 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1402 we start a process.) */
1403
1404 extern int target_has_stack_1 (void);
1405 #define target_has_stack target_has_stack_1 ()
1406
1407 /* Does the target have registers? (Exec files don't.) */
1408
1409 extern int target_has_registers_1 (void);
1410 #define target_has_registers target_has_registers_1 ()
1411
1412 /* Does the target have execution? Can we make it jump (through
1413 hoops), or pop its stack a few times? This means that the current
1414 target is currently executing; for some targets, that's the same as
1415 whether or not the target is capable of execution, but there are
1416 also targets which can be current while not executing. In that
1417 case this will become true after target_create_inferior or
1418 target_attach. */
1419
1420 extern int target_has_execution_1 (ptid_t);
1421
1422 /* Like target_has_execution_1, but always passes inferior_ptid. */
1423
1424 extern int target_has_execution_current (void);
1425
1426 #define target_has_execution target_has_execution_current ()
1427
1428 /* Default implementations for process_stratum targets. Return true
1429 if there's a selected inferior, false otherwise. */
1430
1431 extern int default_child_has_all_memory (struct target_ops *ops);
1432 extern int default_child_has_memory (struct target_ops *ops);
1433 extern int default_child_has_stack (struct target_ops *ops);
1434 extern int default_child_has_registers (struct target_ops *ops);
1435 extern int default_child_has_execution (struct target_ops *ops,
1436 ptid_t the_ptid);
1437
1438 /* Can the target support the debugger control of thread execution?
1439 Can it lock the thread scheduler? */
1440
1441 #define target_can_lock_scheduler \
1442 (current_target.to_has_thread_control & tc_schedlock)
1443
1444 /* Should the target enable async mode if it is supported? Temporary
1445 cludge until async mode is a strict superset of sync mode. */
1446 extern int target_async_permitted;
1447
1448 /* Can the target support asynchronous execution? */
1449 #define target_can_async_p() (current_target.to_can_async_p ())
1450
1451 /* Is the target in asynchronous execution mode? */
1452 #define target_is_async_p() (current_target.to_is_async_p ())
1453
1454 int target_supports_non_stop (void);
1455
1456 /* Put the target in async mode with the specified callback function. */
1457 #define target_async(CALLBACK,CONTEXT) \
1458 (current_target.to_async ((CALLBACK), (CONTEXT)))
1459
1460 #define target_execution_direction() \
1461 (current_target.to_execution_direction ())
1462
1463 /* Converts a process id to a string. Usually, the string just contains
1464 `process xyz', but on some systems it may contain
1465 `process xyz thread abc'. */
1466
1467 extern char *target_pid_to_str (ptid_t ptid);
1468
1469 extern char *normal_pid_to_str (ptid_t ptid);
1470
1471 /* Return a short string describing extra information about PID,
1472 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1473 is okay. */
1474
1475 #define target_extra_thread_info(TP) \
1476 (current_target.to_extra_thread_info (TP))
1477
1478 /* Return the thread's name. A NULL result means that the target
1479 could not determine this thread's name. */
1480
1481 extern char *target_thread_name (struct thread_info *);
1482
1483 /* Attempts to find the pathname of the executable file
1484 that was run to create a specified process.
1485
1486 The process PID must be stopped when this operation is used.
1487
1488 If the executable file cannot be determined, NULL is returned.
1489
1490 Else, a pointer to a character string containing the pathname
1491 is returned. This string should be copied into a buffer by
1492 the client if the string will not be immediately used, or if
1493 it must persist. */
1494
1495 #define target_pid_to_exec_file(pid) \
1496 (current_target.to_pid_to_exec_file) (pid)
1497
1498 /* See the to_thread_architecture description in struct target_ops. */
1499
1500 #define target_thread_architecture(ptid) \
1501 (current_target.to_thread_architecture (&current_target, ptid))
1502
1503 /*
1504 * Iterator function for target memory regions.
1505 * Calls a callback function once for each memory region 'mapped'
1506 * in the child process. Defined as a simple macro rather than
1507 * as a function macro so that it can be tested for nullity.
1508 */
1509
1510 #define target_find_memory_regions(FUNC, DATA) \
1511 (current_target.to_find_memory_regions) (FUNC, DATA)
1512
1513 /*
1514 * Compose corefile .note section.
1515 */
1516
1517 #define target_make_corefile_notes(BFD, SIZE_P) \
1518 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1519
1520 /* Bookmark interfaces. */
1521 #define target_get_bookmark(ARGS, FROM_TTY) \
1522 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1523
1524 #define target_goto_bookmark(ARG, FROM_TTY) \
1525 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1526
1527 /* Hardware watchpoint interfaces. */
1528
1529 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1530 write). Only the INFERIOR_PTID task is being queried. */
1531
1532 #define target_stopped_by_watchpoint \
1533 (*current_target.to_stopped_by_watchpoint)
1534
1535 /* Non-zero if we have steppable watchpoints */
1536
1537 #define target_have_steppable_watchpoint \
1538 (current_target.to_have_steppable_watchpoint)
1539
1540 /* Non-zero if we have continuable watchpoints */
1541
1542 #define target_have_continuable_watchpoint \
1543 (current_target.to_have_continuable_watchpoint)
1544
1545 /* Provide defaults for hardware watchpoint functions. */
1546
1547 /* If the *_hw_beakpoint functions have not been defined
1548 elsewhere use the definitions in the target vector. */
1549
1550 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1551 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1552 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1553 (including this one?). OTHERTYPE is who knows what... */
1554
1555 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1556 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1557
1558 /* Returns the number of debug registers needed to watch the given
1559 memory region, or zero if not supported. */
1560
1561 #define target_region_ok_for_hw_watchpoint(addr, len) \
1562 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1563
1564
1565 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1566 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1567 COND is the expression for its condition, or NULL if there's none.
1568 Returns 0 for success, 1 if the watchpoint type is not supported,
1569 -1 for failure. */
1570
1571 #define target_insert_watchpoint(addr, len, type, cond) \
1572 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1573
1574 #define target_remove_watchpoint(addr, len, type, cond) \
1575 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1576
1577 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1578 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1579 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1580 masked watchpoints are not supported, -1 for failure. */
1581
1582 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1583
1584 /* Remove a masked watchpoint at ADDR with the mask MASK.
1585 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1586 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1587 for failure. */
1588
1589 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1590
1591 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1592 the target machine. Returns 0 for success, and returns non-zero or
1593 throws an error (with a detailed failure reason error code and
1594 message) otherwise. */
1595
1596 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1597 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1598
1599 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1600 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1601
1602 /* Return number of debug registers needed for a ranged breakpoint,
1603 or -1 if ranged breakpoints are not supported. */
1604
1605 extern int target_ranged_break_num_registers (void);
1606
1607 /* Return non-zero if target knows the data address which triggered this
1608 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1609 INFERIOR_PTID task is being queried. */
1610 #define target_stopped_data_address(target, addr_p) \
1611 (*target.to_stopped_data_address) (target, addr_p)
1612
1613 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1614 LENGTH bytes beginning at START. */
1615 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1616 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1617
1618 /* Return non-zero if the target is capable of using hardware to evaluate
1619 the condition expression. In this case, if the condition is false when
1620 the watched memory location changes, execution may continue without the
1621 debugger being notified.
1622
1623 Due to limitations in the hardware implementation, it may be capable of
1624 avoiding triggering the watchpoint in some cases where the condition
1625 expression is false, but may report some false positives as well.
1626 For this reason, GDB will still evaluate the condition expression when
1627 the watchpoint triggers. */
1628 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1629 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1630
1631 /* Return number of debug registers needed for a masked watchpoint,
1632 -1 if masked watchpoints are not supported or -2 if the given address
1633 and mask combination cannot be used. */
1634
1635 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1636
1637 /* Target can execute in reverse? */
1638 #define target_can_execute_reverse \
1639 (current_target.to_can_execute_reverse ? \
1640 current_target.to_can_execute_reverse () : 0)
1641
1642 extern const struct target_desc *target_read_description (struct target_ops *);
1643
1644 #define target_get_ada_task_ptid(lwp, tid) \
1645 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1646
1647 /* Utility implementation of searching memory. */
1648 extern int simple_search_memory (struct target_ops* ops,
1649 CORE_ADDR start_addr,
1650 ULONGEST search_space_len,
1651 const gdb_byte *pattern,
1652 ULONGEST pattern_len,
1653 CORE_ADDR *found_addrp);
1654
1655 /* Main entry point for searching memory. */
1656 extern int target_search_memory (CORE_ADDR start_addr,
1657 ULONGEST search_space_len,
1658 const gdb_byte *pattern,
1659 ULONGEST pattern_len,
1660 CORE_ADDR *found_addrp);
1661
1662 /* Target file operations. */
1663
1664 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1665 target file descriptor, or -1 if an error occurs (and set
1666 *TARGET_ERRNO). */
1667 extern int target_fileio_open (const char *filename, int flags, int mode,
1668 int *target_errno);
1669
1670 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1671 Return the number of bytes written, or -1 if an error occurs
1672 (and set *TARGET_ERRNO). */
1673 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1674 ULONGEST offset, int *target_errno);
1675
1676 /* Read up to LEN bytes FD on the target into READ_BUF.
1677 Return the number of bytes read, or -1 if an error occurs
1678 (and set *TARGET_ERRNO). */
1679 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1680 ULONGEST offset, int *target_errno);
1681
1682 /* Close FD on the target. Return 0, or -1 if an error occurs
1683 (and set *TARGET_ERRNO). */
1684 extern int target_fileio_close (int fd, int *target_errno);
1685
1686 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1687 occurs (and set *TARGET_ERRNO). */
1688 extern int target_fileio_unlink (const char *filename, int *target_errno);
1689
1690 /* Read value of symbolic link FILENAME on the target. Return a
1691 null-terminated string allocated via xmalloc, or NULL if an error
1692 occurs (and set *TARGET_ERRNO). */
1693 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1694
1695 /* Read target file FILENAME. The return value will be -1 if the transfer
1696 fails or is not supported; 0 if the object is empty; or the length
1697 of the object otherwise. If a positive value is returned, a
1698 sufficiently large buffer will be allocated using xmalloc and
1699 returned in *BUF_P containing the contents of the object.
1700
1701 This method should be used for objects sufficiently small to store
1702 in a single xmalloc'd buffer, when no fixed bound on the object's
1703 size is known in advance. */
1704 extern LONGEST target_fileio_read_alloc (const char *filename,
1705 gdb_byte **buf_p);
1706
1707 /* Read target file FILENAME. The result is NUL-terminated and
1708 returned as a string, allocated using xmalloc. If an error occurs
1709 or the transfer is unsupported, NULL is returned. Empty objects
1710 are returned as allocated but empty strings. A warning is issued
1711 if the result contains any embedded NUL bytes. */
1712 extern char *target_fileio_read_stralloc (const char *filename);
1713
1714
1715 /* Tracepoint-related operations. */
1716
1717 #define target_trace_init() \
1718 (*current_target.to_trace_init) ()
1719
1720 #define target_download_tracepoint(t) \
1721 (*current_target.to_download_tracepoint) (t)
1722
1723 #define target_can_download_tracepoint() \
1724 (*current_target.to_can_download_tracepoint) ()
1725
1726 #define target_download_trace_state_variable(tsv) \
1727 (*current_target.to_download_trace_state_variable) (tsv)
1728
1729 #define target_enable_tracepoint(loc) \
1730 (*current_target.to_enable_tracepoint) (loc)
1731
1732 #define target_disable_tracepoint(loc) \
1733 (*current_target.to_disable_tracepoint) (loc)
1734
1735 #define target_trace_start() \
1736 (*current_target.to_trace_start) ()
1737
1738 #define target_trace_set_readonly_regions() \
1739 (*current_target.to_trace_set_readonly_regions) ()
1740
1741 #define target_get_trace_status(ts) \
1742 (*current_target.to_get_trace_status) (ts)
1743
1744 #define target_get_tracepoint_status(tp,utp) \
1745 (*current_target.to_get_tracepoint_status) (tp, utp)
1746
1747 #define target_trace_stop() \
1748 (*current_target.to_trace_stop) ()
1749
1750 #define target_trace_find(type,num,addr1,addr2,tpp) \
1751 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1752
1753 #define target_get_trace_state_variable_value(tsv,val) \
1754 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1755
1756 #define target_save_trace_data(filename) \
1757 (*current_target.to_save_trace_data) (filename)
1758
1759 #define target_upload_tracepoints(utpp) \
1760 (*current_target.to_upload_tracepoints) (utpp)
1761
1762 #define target_upload_trace_state_variables(utsvp) \
1763 (*current_target.to_upload_trace_state_variables) (utsvp)
1764
1765 #define target_get_raw_trace_data(buf,offset,len) \
1766 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1767
1768 #define target_get_min_fast_tracepoint_insn_len() \
1769 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1770
1771 #define target_set_disconnected_tracing(val) \
1772 (*current_target.to_set_disconnected_tracing) (val)
1773
1774 #define target_set_circular_trace_buffer(val) \
1775 (*current_target.to_set_circular_trace_buffer) (val)
1776
1777 #define target_set_trace_buffer_size(val) \
1778 (*current_target.to_set_trace_buffer_size) (val)
1779
1780 #define target_set_trace_notes(user,notes,stopnotes) \
1781 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1782
1783 #define target_get_tib_address(ptid, addr) \
1784 (*current_target.to_get_tib_address) ((ptid), (addr))
1785
1786 #define target_set_permissions() \
1787 (*current_target.to_set_permissions) ()
1788
1789 #define target_static_tracepoint_marker_at(addr, marker) \
1790 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1791
1792 #define target_static_tracepoint_markers_by_strid(marker_id) \
1793 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1794
1795 #define target_traceframe_info() \
1796 (*current_target.to_traceframe_info) ()
1797
1798 #define target_use_agent(use) \
1799 (*current_target.to_use_agent) (use)
1800
1801 #define target_can_use_agent() \
1802 (*current_target.to_can_use_agent) ()
1803
1804 #define target_augmented_libraries_svr4_read() \
1805 (*current_target.to_augmented_libraries_svr4_read) ()
1806
1807 /* Command logging facility. */
1808
1809 #define target_log_command(p) \
1810 do \
1811 if (current_target.to_log_command) \
1812 (*current_target.to_log_command) (p); \
1813 while (0)
1814
1815
1816 extern int target_core_of_thread (ptid_t ptid);
1817
1818 /* See to_get_unwinder in struct target_ops. */
1819 extern const struct frame_unwind *target_get_unwinder (void);
1820
1821 /* See to_get_tailcall_unwinder in struct target_ops. */
1822 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1823
1824 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1825 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1826 if there's a mismatch, and -1 if an error is encountered while
1827 reading memory. Throws an error if the functionality is found not
1828 to be supported by the current target. */
1829 int target_verify_memory (const gdb_byte *data,
1830 CORE_ADDR memaddr, ULONGEST size);
1831
1832 /* Routines for maintenance of the target structures...
1833
1834 complete_target_initialization: Finalize a target_ops by filling in
1835 any fields needed by the target implementation.
1836
1837 add_target: Add a target to the list of all possible targets.
1838
1839 push_target: Make this target the top of the stack of currently used
1840 targets, within its particular stratum of the stack. Result
1841 is 0 if now atop the stack, nonzero if not on top (maybe
1842 should warn user).
1843
1844 unpush_target: Remove this from the stack of currently used targets,
1845 no matter where it is on the list. Returns 0 if no
1846 change, 1 if removed from stack. */
1847
1848 extern void add_target (struct target_ops *);
1849
1850 extern void add_target_with_completer (struct target_ops *t,
1851 completer_ftype *completer);
1852
1853 extern void complete_target_initialization (struct target_ops *t);
1854
1855 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1856 for maintaining backwards compatibility when renaming targets. */
1857
1858 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1859
1860 extern void push_target (struct target_ops *);
1861
1862 extern int unpush_target (struct target_ops *);
1863
1864 extern void target_pre_inferior (int);
1865
1866 extern void target_preopen (int);
1867
1868 /* Does whatever cleanup is required to get rid of all pushed targets. */
1869 extern void pop_all_targets (void);
1870
1871 /* Like pop_all_targets, but pops only targets whose stratum is
1872 strictly above ABOVE_STRATUM. */
1873 extern void pop_all_targets_above (enum strata above_stratum);
1874
1875 extern int target_is_pushed (struct target_ops *t);
1876
1877 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1878 CORE_ADDR offset);
1879
1880 /* Struct target_section maps address ranges to file sections. It is
1881 mostly used with BFD files, but can be used without (e.g. for handling
1882 raw disks, or files not in formats handled by BFD). */
1883
1884 struct target_section
1885 {
1886 CORE_ADDR addr; /* Lowest address in section */
1887 CORE_ADDR endaddr; /* 1+highest address in section */
1888
1889 struct bfd_section *the_bfd_section;
1890
1891 /* The "owner" of the section.
1892 It can be any unique value. It is set by add_target_sections
1893 and used by remove_target_sections.
1894 For example, for executables it is a pointer to exec_bfd and
1895 for shlibs it is the so_list pointer. */
1896 void *owner;
1897 };
1898
1899 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1900
1901 struct target_section_table
1902 {
1903 struct target_section *sections;
1904 struct target_section *sections_end;
1905 };
1906
1907 /* Return the "section" containing the specified address. */
1908 struct target_section *target_section_by_addr (struct target_ops *target,
1909 CORE_ADDR addr);
1910
1911 /* Return the target section table this target (or the targets
1912 beneath) currently manipulate. */
1913
1914 extern struct target_section_table *target_get_section_table
1915 (struct target_ops *target);
1916
1917 /* From mem-break.c */
1918
1919 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
1920 struct bp_target_info *);
1921
1922 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
1923 struct bp_target_info *);
1924
1925 extern int default_memory_remove_breakpoint (struct gdbarch *,
1926 struct bp_target_info *);
1927
1928 extern int default_memory_insert_breakpoint (struct gdbarch *,
1929 struct bp_target_info *);
1930
1931
1932 /* From target.c */
1933
1934 extern void initialize_targets (void);
1935
1936 extern void noprocess (void) ATTRIBUTE_NORETURN;
1937
1938 extern void target_require_runnable (void);
1939
1940 extern void find_default_attach (struct target_ops *, char *, int);
1941
1942 extern void find_default_create_inferior (struct target_ops *,
1943 char *, char *, char **, int);
1944
1945 extern struct target_ops *find_target_beneath (struct target_ops *);
1946
1947 /* Read OS data object of type TYPE from the target, and return it in
1948 XML format. The result is NUL-terminated and returned as a string,
1949 allocated using xmalloc. If an error occurs or the transfer is
1950 unsupported, NULL is returned. Empty objects are returned as
1951 allocated but empty strings. */
1952
1953 extern char *target_get_osdata (const char *type);
1954
1955 \f
1956 /* Stuff that should be shared among the various remote targets. */
1957
1958 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1959 information (higher values, more information). */
1960 extern int remote_debug;
1961
1962 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1963 extern int baud_rate;
1964 /* Timeout limit for response from target. */
1965 extern int remote_timeout;
1966
1967 \f
1968
1969 /* Set the show memory breakpoints mode to show, and installs a cleanup
1970 to restore it back to the current value. */
1971 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1972
1973 extern int may_write_registers;
1974 extern int may_write_memory;
1975 extern int may_insert_breakpoints;
1976 extern int may_insert_tracepoints;
1977 extern int may_insert_fast_tracepoints;
1978 extern int may_stop;
1979
1980 extern void update_target_permissions (void);
1981
1982 \f
1983 /* Imported from machine dependent code. */
1984
1985 /* Blank target vector entries are initialized to target_ignore. */
1986 void target_ignore (void);
1987
1988 /* See to_supports_btrace in struct target_ops. */
1989 extern int target_supports_btrace (void);
1990
1991 /* See to_enable_btrace in struct target_ops. */
1992 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
1993
1994 /* See to_disable_btrace in struct target_ops. */
1995 extern void target_disable_btrace (struct btrace_target_info *btinfo);
1996
1997 /* See to_teardown_btrace in struct target_ops. */
1998 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
1999
2000 /* See to_read_btrace in struct target_ops. */
2001 extern VEC (btrace_block_s) *target_read_btrace (struct btrace_target_info *,
2002 enum btrace_read_type);
2003
2004 /* See to_stop_recording in struct target_ops. */
2005 extern void target_stop_recording (void);
2006
2007 /* See to_info_record in struct target_ops. */
2008 extern void target_info_record (void);
2009
2010 /* See to_save_record in struct target_ops. */
2011 extern void target_save_record (const char *filename);
2012
2013 /* Query if the target supports deleting the execution log. */
2014 extern int target_supports_delete_record (void);
2015
2016 /* See to_delete_record in struct target_ops. */
2017 extern void target_delete_record (void);
2018
2019 /* See to_record_is_replaying in struct target_ops. */
2020 extern int target_record_is_replaying (void);
2021
2022 /* See to_goto_record_begin in struct target_ops. */
2023 extern void target_goto_record_begin (void);
2024
2025 /* See to_goto_record_end in struct target_ops. */
2026 extern void target_goto_record_end (void);
2027
2028 /* See to_goto_record in struct target_ops. */
2029 extern void target_goto_record (ULONGEST insn);
2030
2031 /* See to_insn_history. */
2032 extern void target_insn_history (int size, int flags);
2033
2034 /* See to_insn_history_from. */
2035 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2036
2037 /* See to_insn_history_range. */
2038 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2039
2040 /* See to_call_history. */
2041 extern void target_call_history (int size, int flags);
2042
2043 /* See to_call_history_from. */
2044 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2045
2046 /* See to_call_history_range. */
2047 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2048
2049 #endif /* !defined (TARGET_H) */
This page took 0.088746 seconds and 3 git commands to generate.