* MAINTAINERS (Write After Approval): Add myself.
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support. Written by John Gilmore.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #if !defined (TARGET_H)
26 #define TARGET_H
27
28 struct objfile;
29 struct ui_file;
30 struct mem_attrib;
31 struct target_ops;
32
33 /* This include file defines the interface between the main part
34 of the debugger, and the part which is target-specific, or
35 specific to the communications interface between us and the
36 target.
37
38 A TARGET is an interface between the debugger and a particular
39 kind of file or process. Targets can be STACKED in STRATA,
40 so that more than one target can potentially respond to a request.
41 In particular, memory accesses will walk down the stack of targets
42 until they find a target that is interested in handling that particular
43 address. STRATA are artificial boundaries on the stack, within
44 which particular kinds of targets live. Strata exist so that
45 people don't get confused by pushing e.g. a process target and then
46 a file target, and wondering why they can't see the current values
47 of variables any more (the file target is handling them and they
48 never get to the process target). So when you push a file target,
49 it goes into the file stratum, which is always below the process
50 stratum. */
51
52 #include "bfd.h"
53 #include "symtab.h"
54 #include "dcache.h"
55 #include "memattr.h"
56
57 enum strata
58 {
59 dummy_stratum, /* The lowest of the low */
60 file_stratum, /* Executable files, etc */
61 core_stratum, /* Core dump files */
62 download_stratum, /* Downloading of remote targets */
63 process_stratum, /* Executing processes */
64 thread_stratum /* Executing threads */
65 };
66
67 enum thread_control_capabilities
68 {
69 tc_none = 0, /* Default: can't control thread execution. */
70 tc_schedlock = 1, /* Can lock the thread scheduler. */
71 tc_switch = 2 /* Can switch the running thread on demand. */
72 };
73
74 /* Stuff for target_wait. */
75
76 /* Generally, what has the program done? */
77 enum target_waitkind
78 {
79 /* The program has exited. The exit status is in value.integer. */
80 TARGET_WAITKIND_EXITED,
81
82 /* The program has stopped with a signal. Which signal is in
83 value.sig. */
84 TARGET_WAITKIND_STOPPED,
85
86 /* The program has terminated with a signal. Which signal is in
87 value.sig. */
88 TARGET_WAITKIND_SIGNALLED,
89
90 /* The program is letting us know that it dynamically loaded something
91 (e.g. it called load(2) on AIX). */
92 TARGET_WAITKIND_LOADED,
93
94 /* The program has forked. A "related" process' ID is in
95 value.related_pid. I.e., if the child forks, value.related_pid
96 is the parent's ID. */
97
98 TARGET_WAITKIND_FORKED,
99
100 /* The program has vforked. A "related" process's ID is in
101 value.related_pid. */
102
103 TARGET_WAITKIND_VFORKED,
104
105 /* The program has exec'ed a new executable file. The new file's
106 pathname is pointed to by value.execd_pathname. */
107
108 TARGET_WAITKIND_EXECD,
109
110 /* The program has entered or returned from a system call. On
111 HP-UX, this is used in the hardware watchpoint implementation.
112 The syscall's unique integer ID number is in value.syscall_id */
113
114 TARGET_WAITKIND_SYSCALL_ENTRY,
115 TARGET_WAITKIND_SYSCALL_RETURN,
116
117 /* Nothing happened, but we stopped anyway. This perhaps should be handled
118 within target_wait, but I'm not sure target_wait should be resuming the
119 inferior. */
120 TARGET_WAITKIND_SPURIOUS,
121
122 /* An event has occured, but we should wait again.
123 Remote_async_wait() returns this when there is an event
124 on the inferior, but the rest of the world is not interested in
125 it. The inferior has not stopped, but has just sent some output
126 to the console, for instance. In this case, we want to go back
127 to the event loop and wait there for another event from the
128 inferior, rather than being stuck in the remote_async_wait()
129 function. This way the event loop is responsive to other events,
130 like for instance the user typing. */
131 TARGET_WAITKIND_IGNORE
132 };
133
134 struct target_waitstatus
135 {
136 enum target_waitkind kind;
137
138 /* Forked child pid, execd pathname, exit status or signal number. */
139 union
140 {
141 int integer;
142 enum target_signal sig;
143 int related_pid;
144 char *execd_pathname;
145 int syscall_id;
146 }
147 value;
148 };
149
150 /* Possible types of events that the inferior handler will have to
151 deal with. */
152 enum inferior_event_type
153 {
154 /* There is a request to quit the inferior, abandon it. */
155 INF_QUIT_REQ,
156 /* Process a normal inferior event which will result in target_wait
157 being called. */
158 INF_REG_EVENT,
159 /* Deal with an error on the inferior. */
160 INF_ERROR,
161 /* We are called because a timer went off. */
162 INF_TIMER,
163 /* We are called to do stuff after the inferior stops. */
164 INF_EXEC_COMPLETE,
165 /* We are called to do some stuff after the inferior stops, but we
166 are expected to reenter the proceed() and
167 handle_inferior_event() functions. This is used only in case of
168 'step n' like commands. */
169 INF_EXEC_CONTINUE
170 };
171
172 /* Return the string for a signal. */
173 extern char *target_signal_to_string (enum target_signal);
174
175 /* Return the name (SIGHUP, etc.) for a signal. */
176 extern char *target_signal_to_name (enum target_signal);
177
178 /* Given a name (SIGHUP, etc.), return its signal. */
179 enum target_signal target_signal_from_name (char *);
180 \f
181 /* Request the transfer of up to LEN 8-bit bytes of the target's
182 OBJECT. The OFFSET, for a seekable object, specifies the starting
183 point. The ANNEX can be used to provide additional data-specific
184 information to the target.
185
186 Return the number of bytes actually transfered, zero when no
187 further transfer is possible, and -1 when the transfer is not
188 supported.
189
190 NOTE: cagney/2003-10-17: The current interface does not support a
191 "retry" mechanism. Instead it assumes that at least one byte will
192 be transfered on each call.
193
194 NOTE: cagney/2003-10-17: The current interface can lead to
195 fragmented transfers. Lower target levels should not implement
196 hacks, such as enlarging the transfer, in an attempt to compensate
197 for this. Instead, the target stack should be extended so that it
198 implements supply/collect methods and a look-aside object cache.
199 With that available, the lowest target can safely and freely "push"
200 data up the stack.
201
202 NOTE: cagney/2003-10-17: Unlike the old query and the memory
203 transfer mechanisms, these methods are explicitly parameterized by
204 the target that it should be applied to.
205
206 NOTE: cagney/2003-10-17: Just like the old query and memory xfer
207 methods, these new methods perform partial transfers. The only
208 difference is that these new methods thought to include "partial"
209 in the name. The old code's failure to do this lead to much
210 confusion and duplication of effort as each target object attempted
211 to locally take responsibility for something it didn't have to
212 worry about.
213
214 NOTE: cagney/2003-10-17: With a TARGET_OBJECT_KOD object, for
215 backward compatibility with the "target_query" method that this
216 replaced, when OFFSET and LEN are both zero, return the "minimum"
217 buffer size. See "remote.c" for further information. */
218
219 enum target_object
220 {
221 /* Kernel Object Display transfer. See "kod.c" and "remote.c". */
222 TARGET_OBJECT_KOD,
223 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
224 TARGET_OBJECT_AVR,
225 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
226 TARGET_OBJECT_MEMORY,
227 /* Kernel Unwind Table. See "ia64-tdep.c". */
228 TARGET_OBJECT_UNWIND_TABLE,
229 /* Transfer auxilliary vector. */
230 TARGET_OBJECT_AUXV,
231 /* StackGhost cookie. See "sparc-tdep.c". */
232 TARGET_OBJECT_WCOOKIE
233
234 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
235 };
236
237 extern LONGEST target_read_partial (struct target_ops *ops,
238 enum target_object object,
239 const char *annex, void *buf,
240 ULONGEST offset, LONGEST len);
241
242 extern LONGEST target_write_partial (struct target_ops *ops,
243 enum target_object object,
244 const char *annex, const void *buf,
245 ULONGEST offset, LONGEST len);
246
247 /* Wrappers to perform the full transfer. */
248 extern LONGEST target_read (struct target_ops *ops,
249 enum target_object object,
250 const char *annex, void *buf,
251 ULONGEST offset, LONGEST len);
252
253 extern LONGEST target_write (struct target_ops *ops,
254 enum target_object object,
255 const char *annex, const void *buf,
256 ULONGEST offset, LONGEST len);
257
258 /* Wrappers to target read/write that perform memory transfers. They
259 throw an error if the memory transfer fails.
260
261 NOTE: cagney/2003-10-23: The naming schema is lifted from
262 "frame.h". The parameter order is lifted from get_frame_memory,
263 which in turn lifted it from read_memory. */
264
265 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
266 void *buf, LONGEST len);
267 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
268 CORE_ADDR addr, int len);
269 \f
270
271 /* If certain kinds of activity happen, target_wait should perform
272 callbacks. */
273 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
274 on TARGET_ACTIVITY_FD. */
275 extern int target_activity_fd;
276 /* Returns zero to leave the inferior alone, one to interrupt it. */
277 extern int (*target_activity_function) (void);
278 \f
279 struct thread_info; /* fwd decl for parameter list below: */
280
281 struct target_ops
282 {
283 struct target_ops *beneath; /* To the target under this one. */
284 char *to_shortname; /* Name this target type */
285 char *to_longname; /* Name for printing */
286 char *to_doc; /* Documentation. Does not include trailing
287 newline, and starts with a one-line descrip-
288 tion (probably similar to to_longname). */
289 /* Per-target scratch pad. */
290 void *to_data;
291 /* The open routine takes the rest of the parameters from the
292 command, and (if successful) pushes a new target onto the
293 stack. Targets should supply this routine, if only to provide
294 an error message. */
295 void (*to_open) (char *, int);
296 /* Old targets with a static target vector provide "to_close".
297 New re-entrant targets provide "to_xclose" and that is expected
298 to xfree everything (including the "struct target_ops"). */
299 void (*to_xclose) (struct target_ops *targ, int quitting);
300 void (*to_close) (int);
301 void (*to_attach) (char *, int);
302 void (*to_post_attach) (int);
303 void (*to_detach) (char *, int);
304 void (*to_disconnect) (char *, int);
305 void (*to_resume) (ptid_t, int, enum target_signal);
306 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
307 void (*to_fetch_registers) (int);
308 void (*to_store_registers) (int);
309 void (*to_prepare_to_store) (void);
310
311 /* Transfer LEN bytes of memory between GDB address MYADDR and
312 target address MEMADDR. If WRITE, transfer them to the target, else
313 transfer them from the target. TARGET is the target from which we
314 get this function.
315
316 Return value, N, is one of the following:
317
318 0 means that we can't handle this. If errno has been set, it is the
319 error which prevented us from doing it (FIXME: What about bfd_error?).
320
321 positive (call it N) means that we have transferred N bytes
322 starting at MEMADDR. We might be able to handle more bytes
323 beyond this length, but no promises.
324
325 negative (call its absolute value N) means that we cannot
326 transfer right at MEMADDR, but we could transfer at least
327 something at MEMADDR + N.
328
329 NOTE: cagney/2004-10-01: This has been entirely superseeded by
330 to_xfer_partial and inferior inheritance. */
331
332 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, char *myaddr,
333 int len, int write,
334 struct mem_attrib *attrib,
335 struct target_ops *target);
336
337 void (*to_files_info) (struct target_ops *);
338 int (*to_insert_breakpoint) (CORE_ADDR, char *);
339 int (*to_remove_breakpoint) (CORE_ADDR, char *);
340 int (*to_can_use_hw_breakpoint) (int, int, int);
341 int (*to_insert_hw_breakpoint) (CORE_ADDR, char *);
342 int (*to_remove_hw_breakpoint) (CORE_ADDR, char *);
343 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
344 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
345 int (*to_stopped_by_watchpoint) (void);
346 int to_have_continuable_watchpoint;
347 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
348 int (*to_region_size_ok_for_hw_watchpoint) (int);
349 void (*to_terminal_init) (void);
350 void (*to_terminal_inferior) (void);
351 void (*to_terminal_ours_for_output) (void);
352 void (*to_terminal_ours) (void);
353 void (*to_terminal_save_ours) (void);
354 void (*to_terminal_info) (char *, int);
355 void (*to_kill) (void);
356 void (*to_load) (char *, int);
357 int (*to_lookup_symbol) (char *, CORE_ADDR *);
358 void (*to_create_inferior) (char *, char *, char **, int);
359 void (*to_post_startup_inferior) (ptid_t);
360 void (*to_acknowledge_created_inferior) (int);
361 int (*to_insert_fork_catchpoint) (int);
362 int (*to_remove_fork_catchpoint) (int);
363 int (*to_insert_vfork_catchpoint) (int);
364 int (*to_remove_vfork_catchpoint) (int);
365 int (*to_follow_fork) (int);
366 int (*to_insert_exec_catchpoint) (int);
367 int (*to_remove_exec_catchpoint) (int);
368 int (*to_reported_exec_events_per_exec_call) (void);
369 int (*to_has_exited) (int, int, int *);
370 void (*to_mourn_inferior) (void);
371 int (*to_can_run) (void);
372 void (*to_notice_signals) (ptid_t ptid);
373 int (*to_thread_alive) (ptid_t ptid);
374 void (*to_find_new_threads) (void);
375 char *(*to_pid_to_str) (ptid_t);
376 char *(*to_extra_thread_info) (struct thread_info *);
377 void (*to_stop) (void);
378 void (*to_rcmd) (char *command, struct ui_file *output);
379 struct symtab_and_line *(*to_enable_exception_callback) (enum
380 exception_event_kind,
381 int);
382 struct exception_event_record *(*to_get_current_exception_event) (void);
383 char *(*to_pid_to_exec_file) (int pid);
384 enum strata to_stratum;
385 int to_has_all_memory;
386 int to_has_memory;
387 int to_has_stack;
388 int to_has_registers;
389 int to_has_execution;
390 int to_has_thread_control; /* control thread execution */
391 struct section_table
392 *to_sections;
393 struct section_table
394 *to_sections_end;
395 /* ASYNC target controls */
396 int (*to_can_async_p) (void);
397 int (*to_is_async_p) (void);
398 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
399 void *context);
400 int to_async_mask_value;
401 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
402 unsigned long,
403 int, int, int,
404 void *),
405 void *);
406 char * (*to_make_corefile_notes) (bfd *, int *);
407
408 /* Return the thread-local address at OFFSET in the
409 thread-local storage for the thread PTID and the shared library
410 or executable file given by OBJFILE. If that block of
411 thread-local storage hasn't been allocated yet, this function
412 may return an error. */
413 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
414 struct objfile *objfile,
415 CORE_ADDR offset);
416
417 /* Perform partial transfers on OBJECT. See target_read_partial
418 and target_write_partial for details of each variant. One, and
419 only one, of readbuf or writebuf must be non-NULL. */
420 LONGEST (*to_xfer_partial) (struct target_ops *ops,
421 enum target_object object, const char *annex,
422 void *readbuf, const void *writebuf,
423 ULONGEST offset, LONGEST len);
424
425 int to_magic;
426 /* Need sub-structure for target machine related rather than comm related?
427 */
428 };
429
430 /* Magic number for checking ops size. If a struct doesn't end with this
431 number, somebody changed the declaration but didn't change all the
432 places that initialize one. */
433
434 #define OPS_MAGIC 3840
435
436 /* The ops structure for our "current" target process. This should
437 never be NULL. If there is no target, it points to the dummy_target. */
438
439 extern struct target_ops current_target;
440
441 /* Define easy words for doing these operations on our current target. */
442
443 #define target_shortname (current_target.to_shortname)
444 #define target_longname (current_target.to_longname)
445
446 /* Does whatever cleanup is required for a target that we are no
447 longer going to be calling. QUITTING indicates that GDB is exiting
448 and should not get hung on an error (otherwise it is important to
449 perform clean termination, even if it takes a while). This routine
450 is automatically always called when popping the target off the
451 target stack (to_beneath is undefined). Closing file descriptors
452 and freeing all memory allocated memory are typical things it
453 should do. */
454
455 void target_close (struct target_ops *targ, int quitting);
456
457 /* Attaches to a process on the target side. Arguments are as passed
458 to the `attach' command by the user. This routine can be called
459 when the target is not on the target-stack, if the target_can_run
460 routine returns 1; in that case, it must push itself onto the stack.
461 Upon exit, the target should be ready for normal operations, and
462 should be ready to deliver the status of the process immediately
463 (without waiting) to an upcoming target_wait call. */
464
465 #define target_attach(args, from_tty) \
466 (*current_target.to_attach) (args, from_tty)
467
468 /* The target_attach operation places a process under debugger control,
469 and stops the process.
470
471 This operation provides a target-specific hook that allows the
472 necessary bookkeeping to be performed after an attach completes. */
473 #define target_post_attach(pid) \
474 (*current_target.to_post_attach) (pid)
475
476 /* Takes a program previously attached to and detaches it.
477 The program may resume execution (some targets do, some don't) and will
478 no longer stop on signals, etc. We better not have left any breakpoints
479 in the program or it'll die when it hits one. ARGS is arguments
480 typed by the user (e.g. a signal to send the process). FROM_TTY
481 says whether to be verbose or not. */
482
483 extern void target_detach (char *, int);
484
485 /* Disconnect from the current target without resuming it (leaving it
486 waiting for a debugger). */
487
488 extern void target_disconnect (char *, int);
489
490 /* Resume execution of the target process PTID. STEP says whether to
491 single-step or to run free; SIGGNAL is the signal to be given to
492 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
493 pass TARGET_SIGNAL_DEFAULT. */
494
495 #define target_resume(ptid, step, siggnal) \
496 do { \
497 dcache_invalidate(target_dcache); \
498 (*current_target.to_resume) (ptid, step, siggnal); \
499 } while (0)
500
501 /* Wait for process pid to do something. PTID = -1 to wait for any
502 pid to do something. Return pid of child, or -1 in case of error;
503 store status through argument pointer STATUS. Note that it is
504 _NOT_ OK to throw_exception() out of target_wait() without popping
505 the debugging target from the stack; GDB isn't prepared to get back
506 to the prompt with a debugging target but without the frame cache,
507 stop_pc, etc., set up. */
508
509 #define target_wait(ptid, status) \
510 (*current_target.to_wait) (ptid, status)
511
512 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
513
514 #define target_fetch_registers(regno) \
515 (*current_target.to_fetch_registers) (regno)
516
517 /* Store at least register REGNO, or all regs if REGNO == -1.
518 It can store as many registers as it wants to, so target_prepare_to_store
519 must have been previously called. Calls error() if there are problems. */
520
521 #define target_store_registers(regs) \
522 (*current_target.to_store_registers) (regs)
523
524 /* Get ready to modify the registers array. On machines which store
525 individual registers, this doesn't need to do anything. On machines
526 which store all the registers in one fell swoop, this makes sure
527 that REGISTERS contains all the registers from the program being
528 debugged. */
529
530 #define target_prepare_to_store() \
531 (*current_target.to_prepare_to_store) ()
532
533 extern DCACHE *target_dcache;
534
535 extern int do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
536 struct mem_attrib *attrib);
537
538 extern int target_read_string (CORE_ADDR, char **, int, int *);
539
540 extern int target_read_memory (CORE_ADDR memaddr, char *myaddr, int len);
541
542 extern int target_write_memory (CORE_ADDR memaddr, char *myaddr, int len);
543
544 extern int xfer_memory (CORE_ADDR, char *, int, int,
545 struct mem_attrib *, struct target_ops *);
546
547 extern int child_xfer_memory (CORE_ADDR, char *, int, int,
548 struct mem_attrib *, struct target_ops *);
549
550 /* Make a single attempt at transfering LEN bytes. On a successful
551 transfer, the number of bytes actually transfered is returned and
552 ERR is set to 0. When a transfer fails, -1 is returned (the number
553 of bytes actually transfered is not defined) and ERR is set to a
554 non-zero error indication. */
555
556 extern int target_read_memory_partial (CORE_ADDR addr, char *buf, int len,
557 int *err);
558
559 extern int target_write_memory_partial (CORE_ADDR addr, char *buf, int len,
560 int *err);
561
562 extern char *child_pid_to_exec_file (int);
563
564 extern char *child_core_file_to_sym_file (char *);
565
566 #if defined(CHILD_POST_ATTACH)
567 extern void child_post_attach (int);
568 #endif
569
570 extern void child_post_startup_inferior (ptid_t);
571
572 extern void child_acknowledge_created_inferior (int);
573
574 extern int child_insert_fork_catchpoint (int);
575
576 extern int child_remove_fork_catchpoint (int);
577
578 extern int child_insert_vfork_catchpoint (int);
579
580 extern int child_remove_vfork_catchpoint (int);
581
582 extern void child_acknowledge_created_inferior (int);
583
584 extern int child_follow_fork (int);
585
586 extern int child_insert_exec_catchpoint (int);
587
588 extern int child_remove_exec_catchpoint (int);
589
590 extern int child_reported_exec_events_per_exec_call (void);
591
592 extern int child_has_exited (int, int, int *);
593
594 extern int child_thread_alive (ptid_t);
595
596 /* From infrun.c. */
597
598 extern int inferior_has_forked (int pid, int *child_pid);
599
600 extern int inferior_has_vforked (int pid, int *child_pid);
601
602 extern int inferior_has_execd (int pid, char **execd_pathname);
603
604 /* From exec.c */
605
606 extern void print_section_info (struct target_ops *, bfd *);
607
608 /* Print a line about the current target. */
609
610 #define target_files_info() \
611 (*current_target.to_files_info) (&current_target)
612
613 /* Insert a breakpoint at address ADDR in the target machine. SAVE is
614 a pointer to memory allocated for saving the target contents. It
615 is guaranteed by the caller to be long enough to save the number of
616 breakpoint bytes indicated by BREAKPOINT_FROM_PC. Result is 0 for
617 success, or an errno value. */
618
619 #define target_insert_breakpoint(addr, save) \
620 (*current_target.to_insert_breakpoint) (addr, save)
621
622 /* Remove a breakpoint at address ADDR in the target machine.
623 SAVE is a pointer to the same save area
624 that was previously passed to target_insert_breakpoint.
625 Result is 0 for success, or an errno value. */
626
627 #define target_remove_breakpoint(addr, save) \
628 (*current_target.to_remove_breakpoint) (addr, save)
629
630 /* Initialize the terminal settings we record for the inferior,
631 before we actually run the inferior. */
632
633 #define target_terminal_init() \
634 (*current_target.to_terminal_init) ()
635
636 /* Put the inferior's terminal settings into effect.
637 This is preparation for starting or resuming the inferior. */
638
639 #define target_terminal_inferior() \
640 (*current_target.to_terminal_inferior) ()
641
642 /* Put some of our terminal settings into effect,
643 enough to get proper results from our output,
644 but do not change into or out of RAW mode
645 so that no input is discarded.
646
647 After doing this, either terminal_ours or terminal_inferior
648 should be called to get back to a normal state of affairs. */
649
650 #define target_terminal_ours_for_output() \
651 (*current_target.to_terminal_ours_for_output) ()
652
653 /* Put our terminal settings into effect.
654 First record the inferior's terminal settings
655 so they can be restored properly later. */
656
657 #define target_terminal_ours() \
658 (*current_target.to_terminal_ours) ()
659
660 /* Save our terminal settings.
661 This is called from TUI after entering or leaving the curses
662 mode. Since curses modifies our terminal this call is here
663 to take this change into account. */
664
665 #define target_terminal_save_ours() \
666 (*current_target.to_terminal_save_ours) ()
667
668 /* Print useful information about our terminal status, if such a thing
669 exists. */
670
671 #define target_terminal_info(arg, from_tty) \
672 (*current_target.to_terminal_info) (arg, from_tty)
673
674 /* Kill the inferior process. Make it go away. */
675
676 #define target_kill() \
677 (*current_target.to_kill) ()
678
679 /* Load an executable file into the target process. This is expected
680 to not only bring new code into the target process, but also to
681 update GDB's symbol tables to match. */
682
683 extern void target_load (char *arg, int from_tty);
684
685 /* Look up a symbol in the target's symbol table. NAME is the symbol
686 name. ADDRP is a CORE_ADDR * pointing to where the value of the
687 symbol should be returned. The result is 0 if successful, nonzero
688 if the symbol does not exist in the target environment. This
689 function should not call error() if communication with the target
690 is interrupted, since it is called from symbol reading, but should
691 return nonzero, possibly doing a complain(). */
692
693 #define target_lookup_symbol(name, addrp) \
694 (*current_target.to_lookup_symbol) (name, addrp)
695
696 /* Start an inferior process and set inferior_ptid to its pid.
697 EXEC_FILE is the file to run.
698 ALLARGS is a string containing the arguments to the program.
699 ENV is the environment vector to pass. Errors reported with error().
700 On VxWorks and various standalone systems, we ignore exec_file. */
701
702 #define target_create_inferior(exec_file, args, env, FROM_TTY) \
703 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
704
705
706 /* Some targets (such as ttrace-based HPUX) don't allow us to request
707 notification of inferior events such as fork and vork immediately
708 after the inferior is created. (This because of how gdb gets an
709 inferior created via invoking a shell to do it. In such a scenario,
710 if the shell init file has commands in it, the shell will fork and
711 exec for each of those commands, and we will see each such fork
712 event. Very bad.)
713
714 Such targets will supply an appropriate definition for this function. */
715
716 #define target_post_startup_inferior(ptid) \
717 (*current_target.to_post_startup_inferior) (ptid)
718
719 /* On some targets, the sequence of starting up an inferior requires
720 some synchronization between gdb and the new inferior process, PID. */
721
722 #define target_acknowledge_created_inferior(pid) \
723 (*current_target.to_acknowledge_created_inferior) (pid)
724
725 /* On some targets, we can catch an inferior fork or vfork event when
726 it occurs. These functions insert/remove an already-created
727 catchpoint for such events. */
728
729 #define target_insert_fork_catchpoint(pid) \
730 (*current_target.to_insert_fork_catchpoint) (pid)
731
732 #define target_remove_fork_catchpoint(pid) \
733 (*current_target.to_remove_fork_catchpoint) (pid)
734
735 #define target_insert_vfork_catchpoint(pid) \
736 (*current_target.to_insert_vfork_catchpoint) (pid)
737
738 #define target_remove_vfork_catchpoint(pid) \
739 (*current_target.to_remove_vfork_catchpoint) (pid)
740
741 /* If the inferior forks or vforks, this function will be called at
742 the next resume in order to perform any bookkeeping and fiddling
743 necessary to continue debugging either the parent or child, as
744 requested, and releasing the other. Information about the fork
745 or vfork event is available via get_last_target_status ().
746 This function returns 1 if the inferior should not be resumed
747 (i.e. there is another event pending). */
748
749 #define target_follow_fork(follow_child) \
750 (*current_target.to_follow_fork) (follow_child)
751
752 /* On some targets, we can catch an inferior exec event when it
753 occurs. These functions insert/remove an already-created
754 catchpoint for such events. */
755
756 #define target_insert_exec_catchpoint(pid) \
757 (*current_target.to_insert_exec_catchpoint) (pid)
758
759 #define target_remove_exec_catchpoint(pid) \
760 (*current_target.to_remove_exec_catchpoint) (pid)
761
762 /* Returns the number of exec events that are reported when a process
763 invokes a flavor of the exec() system call on this target, if exec
764 events are being reported. */
765
766 #define target_reported_exec_events_per_exec_call() \
767 (*current_target.to_reported_exec_events_per_exec_call) ()
768
769 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
770 exit code of PID, if any. */
771
772 #define target_has_exited(pid,wait_status,exit_status) \
773 (*current_target.to_has_exited) (pid,wait_status,exit_status)
774
775 /* The debugger has completed a blocking wait() call. There is now
776 some process event that must be processed. This function should
777 be defined by those targets that require the debugger to perform
778 cleanup or internal state changes in response to the process event. */
779
780 /* The inferior process has died. Do what is right. */
781
782 #define target_mourn_inferior() \
783 (*current_target.to_mourn_inferior) ()
784
785 /* Does target have enough data to do a run or attach command? */
786
787 #define target_can_run(t) \
788 ((t)->to_can_run) ()
789
790 /* post process changes to signal handling in the inferior. */
791
792 #define target_notice_signals(ptid) \
793 (*current_target.to_notice_signals) (ptid)
794
795 /* Check to see if a thread is still alive. */
796
797 #define target_thread_alive(ptid) \
798 (*current_target.to_thread_alive) (ptid)
799
800 /* Query for new threads and add them to the thread list. */
801
802 #define target_find_new_threads() \
803 (*current_target.to_find_new_threads) (); \
804
805 /* Make target stop in a continuable fashion. (For instance, under
806 Unix, this should act like SIGSTOP). This function is normally
807 used by GUIs to implement a stop button. */
808
809 #define target_stop current_target.to_stop
810
811 /* Send the specified COMMAND to the target's monitor
812 (shell,interpreter) for execution. The result of the query is
813 placed in OUTBUF. */
814
815 #define target_rcmd(command, outbuf) \
816 (*current_target.to_rcmd) (command, outbuf)
817
818
819 /* Get the symbol information for a breakpointable routine called when
820 an exception event occurs.
821 Intended mainly for C++, and for those
822 platforms/implementations where such a callback mechanism is available,
823 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
824 different mechanisms for debugging exceptions. */
825
826 #define target_enable_exception_callback(kind, enable) \
827 (*current_target.to_enable_exception_callback) (kind, enable)
828
829 /* Get the current exception event kind -- throw or catch, etc. */
830
831 #define target_get_current_exception_event() \
832 (*current_target.to_get_current_exception_event) ()
833
834 /* Does the target include all of memory, or only part of it? This
835 determines whether we look up the target chain for other parts of
836 memory if this target can't satisfy a request. */
837
838 #define target_has_all_memory \
839 (current_target.to_has_all_memory)
840
841 /* Does the target include memory? (Dummy targets don't.) */
842
843 #define target_has_memory \
844 (current_target.to_has_memory)
845
846 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
847 we start a process.) */
848
849 #define target_has_stack \
850 (current_target.to_has_stack)
851
852 /* Does the target have registers? (Exec files don't.) */
853
854 #define target_has_registers \
855 (current_target.to_has_registers)
856
857 /* Does the target have execution? Can we make it jump (through
858 hoops), or pop its stack a few times? FIXME: If this is to work that
859 way, it needs to check whether an inferior actually exists.
860 remote-udi.c and probably other targets can be the current target
861 when the inferior doesn't actually exist at the moment. Right now
862 this just tells us whether this target is *capable* of execution. */
863
864 #define target_has_execution \
865 (current_target.to_has_execution)
866
867 /* Can the target support the debugger control of thread execution?
868 a) Can it lock the thread scheduler?
869 b) Can it switch the currently running thread? */
870
871 #define target_can_lock_scheduler \
872 (current_target.to_has_thread_control & tc_schedlock)
873
874 #define target_can_switch_threads \
875 (current_target.to_has_thread_control & tc_switch)
876
877 /* Can the target support asynchronous execution? */
878 #define target_can_async_p() (current_target.to_can_async_p ())
879
880 /* Is the target in asynchronous execution mode? */
881 #define target_is_async_p() (current_target.to_is_async_p())
882
883 /* Put the target in async mode with the specified callback function. */
884 #define target_async(CALLBACK,CONTEXT) \
885 (current_target.to_async((CALLBACK), (CONTEXT)))
886
887 /* This is to be used ONLY within call_function_by_hand(). It provides
888 a workaround, to have inferior function calls done in sychronous
889 mode, even though the target is asynchronous. After
890 target_async_mask(0) is called, calls to target_can_async_p() will
891 return FALSE , so that target_resume() will not try to start the
892 target asynchronously. After the inferior stops, we IMMEDIATELY
893 restore the previous nature of the target, by calling
894 target_async_mask(1). After that, target_can_async_p() will return
895 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
896
897 FIXME ezannoni 1999-12-13: we won't need this once we move
898 the turning async on and off to the single execution commands,
899 from where it is done currently, in remote_resume(). */
900
901 #define target_async_mask_value \
902 (current_target.to_async_mask_value)
903
904 extern int target_async_mask (int mask);
905
906 extern void target_link (char *, CORE_ADDR *);
907
908 /* Converts a process id to a string. Usually, the string just contains
909 `process xyz', but on some systems it may contain
910 `process xyz thread abc'. */
911
912 #undef target_pid_to_str
913 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
914
915 #ifndef target_tid_to_str
916 #define target_tid_to_str(PID) \
917 target_pid_to_str (PID)
918 extern char *normal_pid_to_str (ptid_t ptid);
919 #endif
920
921 /* Return a short string describing extra information about PID,
922 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
923 is okay. */
924
925 #define target_extra_thread_info(TP) \
926 (current_target.to_extra_thread_info (TP))
927
928 /*
929 * New Objfile Event Hook:
930 *
931 * Sometimes a GDB component wants to get notified whenever a new
932 * objfile is loaded. Mainly this is used by thread-debugging
933 * implementations that need to know when symbols for the target
934 * thread implemenation are available.
935 *
936 * The old way of doing this is to define a macro 'target_new_objfile'
937 * that points to the function that you want to be called on every
938 * objfile/shlib load.
939
940 The new way is to grab the function pointer,
941 'deprecated_target_new_objfile_hook', and point it to the function
942 that you want to be called on every objfile/shlib load.
943
944 If multiple clients are willing to be cooperative, they can each
945 save a pointer to the previous value of
946 deprecated_target_new_objfile_hook before modifying it, and arrange
947 for their function to call the previous function in the chain. In
948 that way, multiple clients can receive this notification (something
949 like with signal handlers). */
950
951 extern void (*deprecated_target_new_objfile_hook) (struct objfile *);
952
953 #ifndef target_pid_or_tid_to_str
954 #define target_pid_or_tid_to_str(ID) \
955 target_pid_to_str (ID)
956 #endif
957
958 /* Attempts to find the pathname of the executable file
959 that was run to create a specified process.
960
961 The process PID must be stopped when this operation is used.
962
963 If the executable file cannot be determined, NULL is returned.
964
965 Else, a pointer to a character string containing the pathname
966 is returned. This string should be copied into a buffer by
967 the client if the string will not be immediately used, or if
968 it must persist. */
969
970 #define target_pid_to_exec_file(pid) \
971 (current_target.to_pid_to_exec_file) (pid)
972
973 /*
974 * Iterator function for target memory regions.
975 * Calls a callback function once for each memory region 'mapped'
976 * in the child process. Defined as a simple macro rather than
977 * as a function macro so that it can be tested for nullity.
978 */
979
980 #define target_find_memory_regions(FUNC, DATA) \
981 (current_target.to_find_memory_regions) (FUNC, DATA)
982
983 /*
984 * Compose corefile .note section.
985 */
986
987 #define target_make_corefile_notes(BFD, SIZE_P) \
988 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
989
990 /* Thread-local values. */
991 #define target_get_thread_local_address \
992 (current_target.to_get_thread_local_address)
993 #define target_get_thread_local_address_p() \
994 (target_get_thread_local_address != NULL)
995
996 /* Hook to call target dependent code just after inferior target process has
997 started. */
998
999 #ifndef TARGET_CREATE_INFERIOR_HOOK
1000 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1001 #endif
1002
1003 /* Hardware watchpoint interfaces. */
1004
1005 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1006 write). */
1007
1008 #ifndef STOPPED_BY_WATCHPOINT
1009 #define STOPPED_BY_WATCHPOINT(w) \
1010 (*current_target.to_stopped_by_watchpoint) ()
1011 #endif
1012
1013 /* Non-zero if we have continuable watchpoints */
1014
1015 #ifndef HAVE_CONTINUABLE_WATCHPOINT
1016 #define HAVE_CONTINUABLE_WATCHPOINT \
1017 (current_target.to_have_continuable_watchpoint)
1018 #endif
1019
1020 /* HP-UX supplies these operations, which respectively disable and enable
1021 the memory page-protections that are used to implement hardware watchpoints
1022 on that platform. See wait_for_inferior's use of these. */
1023
1024 #if !defined(TARGET_DISABLE_HW_WATCHPOINTS)
1025 #define TARGET_DISABLE_HW_WATCHPOINTS(pid)
1026 #endif
1027
1028 #if !defined(TARGET_ENABLE_HW_WATCHPOINTS)
1029 #define TARGET_ENABLE_HW_WATCHPOINTS(pid)
1030 #endif
1031
1032 /* Provide defaults for hardware watchpoint functions. */
1033
1034 /* If the *_hw_beakpoint functions have not been defined
1035 elsewhere use the definitions in the target vector. */
1036
1037 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1038 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1039 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1040 (including this one?). OTHERTYPE is who knows what... */
1041
1042 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1043 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1044 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1045 #endif
1046
1047 #if !defined(TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT)
1048 #define TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT(byte_count) \
1049 (*current_target.to_region_size_ok_for_hw_watchpoint) (byte_count)
1050 #endif
1051
1052
1053 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1054 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1055 success, non-zero for failure. */
1056
1057 #ifndef target_insert_watchpoint
1058 #define target_insert_watchpoint(addr, len, type) \
1059 (*current_target.to_insert_watchpoint) (addr, len, type)
1060
1061 #define target_remove_watchpoint(addr, len, type) \
1062 (*current_target.to_remove_watchpoint) (addr, len, type)
1063 #endif
1064
1065 #ifndef target_insert_hw_breakpoint
1066 #define target_insert_hw_breakpoint(addr, save) \
1067 (*current_target.to_insert_hw_breakpoint) (addr, save)
1068
1069 #define target_remove_hw_breakpoint(addr, save) \
1070 (*current_target.to_remove_hw_breakpoint) (addr, save)
1071 #endif
1072
1073 extern int target_stopped_data_address_p (struct target_ops *);
1074
1075 #ifndef target_stopped_data_address
1076 #define target_stopped_data_address(target, x) \
1077 (*target.to_stopped_data_address) (target, x)
1078 #else
1079 /* Horrible hack to get around existing macros :-(. */
1080 #define target_stopped_data_address_p(CURRENT_TARGET) (1)
1081 #endif
1082
1083 /* This will only be defined by a target that supports catching vfork events,
1084 such as HP-UX.
1085
1086 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1087 child process after it has exec'd, causes the parent process to resume as
1088 well. To prevent the parent from running spontaneously, such targets should
1089 define this to a function that prevents that from happening. */
1090 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1091 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1092 #endif
1093
1094 /* This will only be defined by a target that supports catching vfork events,
1095 such as HP-UX.
1096
1097 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1098 process must be resumed when it delivers its exec event, before the parent
1099 vfork event will be delivered to us. */
1100
1101 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1102 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1103 #endif
1104
1105 /* Routines for maintenance of the target structures...
1106
1107 add_target: Add a target to the list of all possible targets.
1108
1109 push_target: Make this target the top of the stack of currently used
1110 targets, within its particular stratum of the stack. Result
1111 is 0 if now atop the stack, nonzero if not on top (maybe
1112 should warn user).
1113
1114 unpush_target: Remove this from the stack of currently used targets,
1115 no matter where it is on the list. Returns 0 if no
1116 change, 1 if removed from stack.
1117
1118 pop_target: Remove the top thing on the stack of current targets. */
1119
1120 extern void add_target (struct target_ops *);
1121
1122 extern int push_target (struct target_ops *);
1123
1124 extern int unpush_target (struct target_ops *);
1125
1126 extern void target_preopen (int);
1127
1128 extern void pop_target (void);
1129
1130 /* Struct section_table maps address ranges to file sections. It is
1131 mostly used with BFD files, but can be used without (e.g. for handling
1132 raw disks, or files not in formats handled by BFD). */
1133
1134 struct section_table
1135 {
1136 CORE_ADDR addr; /* Lowest address in section */
1137 CORE_ADDR endaddr; /* 1+highest address in section */
1138
1139 struct bfd_section *the_bfd_section;
1140
1141 bfd *bfd; /* BFD file pointer */
1142 };
1143
1144 /* Return the "section" containing the specified address. */
1145 struct section_table *target_section_by_addr (struct target_ops *target,
1146 CORE_ADDR addr);
1147
1148
1149 /* From mem-break.c */
1150
1151 extern int memory_remove_breakpoint (CORE_ADDR, char *);
1152
1153 extern int memory_insert_breakpoint (CORE_ADDR, char *);
1154
1155 extern int default_memory_remove_breakpoint (CORE_ADDR, char *);
1156
1157 extern int default_memory_insert_breakpoint (CORE_ADDR, char *);
1158
1159
1160 /* From target.c */
1161
1162 extern void initialize_targets (void);
1163
1164 extern void noprocess (void);
1165
1166 extern void find_default_attach (char *, int);
1167
1168 extern void find_default_create_inferior (char *, char *, char **, int);
1169
1170 extern struct target_ops *find_run_target (void);
1171
1172 extern struct target_ops *find_core_target (void);
1173
1174 extern struct target_ops *find_target_beneath (struct target_ops *);
1175
1176 extern int target_resize_to_sections (struct target_ops *target,
1177 int num_added);
1178
1179 extern void remove_target_sections (bfd *abfd);
1180
1181 \f
1182 /* Stuff that should be shared among the various remote targets. */
1183
1184 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1185 information (higher values, more information). */
1186 extern int remote_debug;
1187
1188 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1189 extern int baud_rate;
1190 /* Timeout limit for response from target. */
1191 extern int remote_timeout;
1192
1193 \f
1194 /* Functions for helping to write a native target. */
1195
1196 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1197 extern void store_waitstatus (struct target_waitstatus *, int);
1198
1199 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1200 targ_signal SIGNO has an equivalent ``host'' representation. */
1201 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1202 to the shorter target_signal_p() because it is far less ambigious.
1203 In this context ``target_signal'' refers to GDB's internal
1204 representation of the target's set of signals while ``host signal''
1205 refers to the target operating system's signal. Confused? */
1206
1207 extern int target_signal_to_host_p (enum target_signal signo);
1208
1209 /* Convert between host signal numbers and enum target_signal's.
1210 target_signal_to_host() returns 0 and prints a warning() on GDB's
1211 console if SIGNO has no equivalent host representation. */
1212 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1213 refering to the target operating system's signal numbering.
1214 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1215 gdb_signal'' would probably be better as it is refering to GDB's
1216 internal representation of a target operating system's signal. */
1217
1218 extern enum target_signal target_signal_from_host (int);
1219 extern int target_signal_to_host (enum target_signal);
1220
1221 /* Convert from a number used in a GDB command to an enum target_signal. */
1222 extern enum target_signal target_signal_from_command (int);
1223
1224 /* Any target can call this to switch to remote protocol (in remote.c). */
1225 extern void push_remote_target (char *name, int from_tty);
1226 \f
1227 /* Imported from machine dependent code */
1228
1229 /* Blank target vector entries are initialized to target_ignore. */
1230 void target_ignore (void);
1231
1232 extern struct target_ops deprecated_child_ops;
1233
1234 #endif /* !defined (TARGET_H) */
This page took 0.060643 seconds and 4 git commands to generate.