2011-11-14 Stan Shebs <stan@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #if !defined (TARGET_H)
25 #define TARGET_H
26
27 struct objfile;
28 struct ui_file;
29 struct mem_attrib;
30 struct target_ops;
31 struct bp_location;
32 struct bp_target_info;
33 struct regcache;
34 struct target_section_table;
35 struct trace_state_variable;
36 struct trace_status;
37 struct uploaded_tsv;
38 struct uploaded_tp;
39 struct static_tracepoint_marker;
40 struct traceframe_info;
41 struct expression;
42
43 /* This include file defines the interface between the main part
44 of the debugger, and the part which is target-specific, or
45 specific to the communications interface between us and the
46 target.
47
48 A TARGET is an interface between the debugger and a particular
49 kind of file or process. Targets can be STACKED in STRATA,
50 so that more than one target can potentially respond to a request.
51 In particular, memory accesses will walk down the stack of targets
52 until they find a target that is interested in handling that particular
53 address. STRATA are artificial boundaries on the stack, within
54 which particular kinds of targets live. Strata exist so that
55 people don't get confused by pushing e.g. a process target and then
56 a file target, and wondering why they can't see the current values
57 of variables any more (the file target is handling them and they
58 never get to the process target). So when you push a file target,
59 it goes into the file stratum, which is always below the process
60 stratum. */
61
62 #include "bfd.h"
63 #include "symtab.h"
64 #include "memattr.h"
65 #include "vec.h"
66 #include "gdb_signals.h"
67
68 enum strata
69 {
70 dummy_stratum, /* The lowest of the low */
71 file_stratum, /* Executable files, etc */
72 process_stratum, /* Executing processes or core dump files */
73 thread_stratum, /* Executing threads */
74 record_stratum, /* Support record debugging */
75 arch_stratum /* Architecture overrides */
76 };
77
78 enum thread_control_capabilities
79 {
80 tc_none = 0, /* Default: can't control thread execution. */
81 tc_schedlock = 1, /* Can lock the thread scheduler. */
82 };
83
84 /* Stuff for target_wait. */
85
86 /* Generally, what has the program done? */
87 enum target_waitkind
88 {
89 /* The program has exited. The exit status is in value.integer. */
90 TARGET_WAITKIND_EXITED,
91
92 /* The program has stopped with a signal. Which signal is in
93 value.sig. */
94 TARGET_WAITKIND_STOPPED,
95
96 /* The program has terminated with a signal. Which signal is in
97 value.sig. */
98 TARGET_WAITKIND_SIGNALLED,
99
100 /* The program is letting us know that it dynamically loaded something
101 (e.g. it called load(2) on AIX). */
102 TARGET_WAITKIND_LOADED,
103
104 /* The program has forked. A "related" process' PTID is in
105 value.related_pid. I.e., if the child forks, value.related_pid
106 is the parent's ID. */
107
108 TARGET_WAITKIND_FORKED,
109
110 /* The program has vforked. A "related" process's PTID is in
111 value.related_pid. */
112
113 TARGET_WAITKIND_VFORKED,
114
115 /* The program has exec'ed a new executable file. The new file's
116 pathname is pointed to by value.execd_pathname. */
117
118 TARGET_WAITKIND_EXECD,
119
120 /* The program had previously vforked, and now the child is done
121 with the shared memory region, because it exec'ed or exited.
122 Note that the event is reported to the vfork parent. This is
123 only used if GDB did not stay attached to the vfork child,
124 otherwise, a TARGET_WAITKIND_EXECD or
125 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
126 has the same effect. */
127 TARGET_WAITKIND_VFORK_DONE,
128
129 /* The program has entered or returned from a system call. On
130 HP-UX, this is used in the hardware watchpoint implementation.
131 The syscall's unique integer ID number is in value.syscall_id. */
132
133 TARGET_WAITKIND_SYSCALL_ENTRY,
134 TARGET_WAITKIND_SYSCALL_RETURN,
135
136 /* Nothing happened, but we stopped anyway. This perhaps should be handled
137 within target_wait, but I'm not sure target_wait should be resuming the
138 inferior. */
139 TARGET_WAITKIND_SPURIOUS,
140
141 /* An event has occured, but we should wait again.
142 Remote_async_wait() returns this when there is an event
143 on the inferior, but the rest of the world is not interested in
144 it. The inferior has not stopped, but has just sent some output
145 to the console, for instance. In this case, we want to go back
146 to the event loop and wait there for another event from the
147 inferior, rather than being stuck in the remote_async_wait()
148 function. sThis way the event loop is responsive to other events,
149 like for instance the user typing. */
150 TARGET_WAITKIND_IGNORE,
151
152 /* The target has run out of history information,
153 and cannot run backward any further. */
154 TARGET_WAITKIND_NO_HISTORY,
155
156 /* There are no resumed children left in the program. */
157 TARGET_WAITKIND_NO_RESUMED
158 };
159
160 struct target_waitstatus
161 {
162 enum target_waitkind kind;
163
164 /* Forked child pid, execd pathname, exit status, signal number or
165 syscall number. */
166 union
167 {
168 int integer;
169 enum target_signal sig;
170 ptid_t related_pid;
171 char *execd_pathname;
172 int syscall_number;
173 }
174 value;
175 };
176
177 /* Options that can be passed to target_wait. */
178
179 /* Return immediately if there's no event already queued. If this
180 options is not requested, target_wait blocks waiting for an
181 event. */
182 #define TARGET_WNOHANG 1
183
184 /* The structure below stores information about a system call.
185 It is basically used in the "catch syscall" command, and in
186 every function that gives information about a system call.
187
188 It's also good to mention that its fields represent everything
189 that we currently know about a syscall in GDB. */
190 struct syscall
191 {
192 /* The syscall number. */
193 int number;
194
195 /* The syscall name. */
196 const char *name;
197 };
198
199 /* Return a pretty printed form of target_waitstatus.
200 Space for the result is malloc'd, caller must free. */
201 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
202
203 /* Possible types of events that the inferior handler will have to
204 deal with. */
205 enum inferior_event_type
206 {
207 /* Process a normal inferior event which will result in target_wait
208 being called. */
209 INF_REG_EVENT,
210 /* We are called because a timer went off. */
211 INF_TIMER,
212 /* We are called to do stuff after the inferior stops. */
213 INF_EXEC_COMPLETE,
214 /* We are called to do some stuff after the inferior stops, but we
215 are expected to reenter the proceed() and
216 handle_inferior_event() functions. This is used only in case of
217 'step n' like commands. */
218 INF_EXEC_CONTINUE
219 };
220 \f
221 /* Target objects which can be transfered using target_read,
222 target_write, et cetera. */
223
224 enum target_object
225 {
226 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
227 TARGET_OBJECT_AVR,
228 /* SPU target specific transfer. See "spu-tdep.c". */
229 TARGET_OBJECT_SPU,
230 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
231 TARGET_OBJECT_MEMORY,
232 /* Memory, avoiding GDB's data cache and trusting the executable.
233 Target implementations of to_xfer_partial never need to handle
234 this object, and most callers should not use it. */
235 TARGET_OBJECT_RAW_MEMORY,
236 /* Memory known to be part of the target's stack. This is cached even
237 if it is not in a region marked as such, since it is known to be
238 "normal" RAM. */
239 TARGET_OBJECT_STACK_MEMORY,
240 /* Kernel Unwind Table. See "ia64-tdep.c". */
241 TARGET_OBJECT_UNWIND_TABLE,
242 /* Transfer auxilliary vector. */
243 TARGET_OBJECT_AUXV,
244 /* StackGhost cookie. See "sparc-tdep.c". */
245 TARGET_OBJECT_WCOOKIE,
246 /* Target memory map in XML format. */
247 TARGET_OBJECT_MEMORY_MAP,
248 /* Flash memory. This object can be used to write contents to
249 a previously erased flash memory. Using it without erasing
250 flash can have unexpected results. Addresses are physical
251 address on target, and not relative to flash start. */
252 TARGET_OBJECT_FLASH,
253 /* Available target-specific features, e.g. registers and coprocessors.
254 See "target-descriptions.c". ANNEX should never be empty. */
255 TARGET_OBJECT_AVAILABLE_FEATURES,
256 /* Currently loaded libraries, in XML format. */
257 TARGET_OBJECT_LIBRARIES,
258 /* Get OS specific data. The ANNEX specifies the type (running
259 processes, etc.). The data being transfered is expected to follow
260 the DTD specified in features/osdata.dtd. */
261 TARGET_OBJECT_OSDATA,
262 /* Extra signal info. Usually the contents of `siginfo_t' on unix
263 platforms. */
264 TARGET_OBJECT_SIGNAL_INFO,
265 /* The list of threads that are being debugged. */
266 TARGET_OBJECT_THREADS,
267 /* Collected static trace data. */
268 TARGET_OBJECT_STATIC_TRACE_DATA,
269 /* The HP-UX registers (those that can be obtained or modified by using
270 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
271 TARGET_OBJECT_HPUX_UREGS,
272 /* The HP-UX shared library linkage pointer. ANNEX should be a string
273 image of the code address whose linkage pointer we are looking for.
274
275 The size of the data transfered is always 8 bytes (the size of an
276 address on ia64). */
277 TARGET_OBJECT_HPUX_SOLIB_GOT,
278 /* Traceframe info, in XML format. */
279 TARGET_OBJECT_TRACEFRAME_INFO,
280 /* Load maps for FDPIC systems. */
281 TARGET_OBJECT_FDPIC,
282 /* Darwin dynamic linker info data. */
283 TARGET_OBJECT_DARWIN_DYLD_INFO
284 /* Possible future objects: TARGET_OBJECT_FILE, ... */
285 };
286
287 /* Enumeration of the kinds of traceframe searches that a target may
288 be able to perform. */
289
290 enum trace_find_type
291 {
292 tfind_number,
293 tfind_pc,
294 tfind_tp,
295 tfind_range,
296 tfind_outside,
297 };
298
299 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
300 DEF_VEC_P(static_tracepoint_marker_p);
301
302 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
303 OBJECT. The OFFSET, for a seekable object, specifies the
304 starting point. The ANNEX can be used to provide additional
305 data-specific information to the target.
306
307 Return the number of bytes actually transfered, or -1 if the
308 transfer is not supported or otherwise fails. Return of a positive
309 value less than LEN indicates that no further transfer is possible.
310 Unlike the raw to_xfer_partial interface, callers of these
311 functions do not need to retry partial transfers. */
312
313 extern LONGEST target_read (struct target_ops *ops,
314 enum target_object object,
315 const char *annex, gdb_byte *buf,
316 ULONGEST offset, LONGEST len);
317
318 struct memory_read_result
319 {
320 /* First address that was read. */
321 ULONGEST begin;
322 /* Past-the-end address. */
323 ULONGEST end;
324 /* The data. */
325 gdb_byte *data;
326 };
327 typedef struct memory_read_result memory_read_result_s;
328 DEF_VEC_O(memory_read_result_s);
329
330 extern void free_memory_read_result_vector (void *);
331
332 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
333 ULONGEST offset,
334 LONGEST len);
335
336 extern LONGEST target_write (struct target_ops *ops,
337 enum target_object object,
338 const char *annex, const gdb_byte *buf,
339 ULONGEST offset, LONGEST len);
340
341 /* Similar to target_write, except that it also calls PROGRESS with
342 the number of bytes written and the opaque BATON after every
343 successful partial write (and before the first write). This is
344 useful for progress reporting and user interaction while writing
345 data. To abort the transfer, the progress callback can throw an
346 exception. */
347
348 LONGEST target_write_with_progress (struct target_ops *ops,
349 enum target_object object,
350 const char *annex, const gdb_byte *buf,
351 ULONGEST offset, LONGEST len,
352 void (*progress) (ULONGEST, void *),
353 void *baton);
354
355 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
356 be read using OPS. The return value will be -1 if the transfer
357 fails or is not supported; 0 if the object is empty; or the length
358 of the object otherwise. If a positive value is returned, a
359 sufficiently large buffer will be allocated using xmalloc and
360 returned in *BUF_P containing the contents of the object.
361
362 This method should be used for objects sufficiently small to store
363 in a single xmalloc'd buffer, when no fixed bound on the object's
364 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
365 through this function. */
366
367 extern LONGEST target_read_alloc (struct target_ops *ops,
368 enum target_object object,
369 const char *annex, gdb_byte **buf_p);
370
371 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
372 returned as a string, allocated using xmalloc. If an error occurs
373 or the transfer is unsupported, NULL is returned. Empty objects
374 are returned as allocated but empty strings. A warning is issued
375 if the result contains any embedded NUL bytes. */
376
377 extern char *target_read_stralloc (struct target_ops *ops,
378 enum target_object object,
379 const char *annex);
380
381 /* Wrappers to target read/write that perform memory transfers. They
382 throw an error if the memory transfer fails.
383
384 NOTE: cagney/2003-10-23: The naming schema is lifted from
385 "frame.h". The parameter order is lifted from get_frame_memory,
386 which in turn lifted it from read_memory. */
387
388 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
389 gdb_byte *buf, LONGEST len);
390 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
391 CORE_ADDR addr, int len,
392 enum bfd_endian byte_order);
393 \f
394 struct thread_info; /* fwd decl for parameter list below: */
395
396 struct target_ops
397 {
398 struct target_ops *beneath; /* To the target under this one. */
399 char *to_shortname; /* Name this target type */
400 char *to_longname; /* Name for printing */
401 char *to_doc; /* Documentation. Does not include trailing
402 newline, and starts with a one-line descrip-
403 tion (probably similar to to_longname). */
404 /* Per-target scratch pad. */
405 void *to_data;
406 /* The open routine takes the rest of the parameters from the
407 command, and (if successful) pushes a new target onto the
408 stack. Targets should supply this routine, if only to provide
409 an error message. */
410 void (*to_open) (char *, int);
411 /* Old targets with a static target vector provide "to_close".
412 New re-entrant targets provide "to_xclose" and that is expected
413 to xfree everything (including the "struct target_ops"). */
414 void (*to_xclose) (struct target_ops *targ, int quitting);
415 void (*to_close) (int);
416 void (*to_attach) (struct target_ops *ops, char *, int);
417 void (*to_post_attach) (int);
418 void (*to_detach) (struct target_ops *ops, char *, int);
419 void (*to_disconnect) (struct target_ops *, char *, int);
420 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
421 ptid_t (*to_wait) (struct target_ops *,
422 ptid_t, struct target_waitstatus *, int);
423 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
424 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
425 void (*to_prepare_to_store) (struct regcache *);
426
427 /* Transfer LEN bytes of memory between GDB address MYADDR and
428 target address MEMADDR. If WRITE, transfer them to the target, else
429 transfer them from the target. TARGET is the target from which we
430 get this function.
431
432 Return value, N, is one of the following:
433
434 0 means that we can't handle this. If errno has been set, it is the
435 error which prevented us from doing it (FIXME: What about bfd_error?).
436
437 positive (call it N) means that we have transferred N bytes
438 starting at MEMADDR. We might be able to handle more bytes
439 beyond this length, but no promises.
440
441 negative (call its absolute value N) means that we cannot
442 transfer right at MEMADDR, but we could transfer at least
443 something at MEMADDR + N.
444
445 NOTE: cagney/2004-10-01: This has been entirely superseeded by
446 to_xfer_partial and inferior inheritance. */
447
448 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
449 int len, int write,
450 struct mem_attrib *attrib,
451 struct target_ops *target);
452
453 void (*to_files_info) (struct target_ops *);
454 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
455 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
456 int (*to_can_use_hw_breakpoint) (int, int, int);
457 int (*to_ranged_break_num_registers) (struct target_ops *);
458 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
459 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
460
461 /* Documentation of what the two routines below are expected to do is
462 provided with the corresponding target_* macros. */
463 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
464 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
465
466 int (*to_insert_mask_watchpoint) (struct target_ops *,
467 CORE_ADDR, CORE_ADDR, int);
468 int (*to_remove_mask_watchpoint) (struct target_ops *,
469 CORE_ADDR, CORE_ADDR, int);
470 int (*to_stopped_by_watchpoint) (void);
471 int to_have_steppable_watchpoint;
472 int to_have_continuable_watchpoint;
473 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
474 int (*to_watchpoint_addr_within_range) (struct target_ops *,
475 CORE_ADDR, CORE_ADDR, int);
476
477 /* Documentation of this routine is provided with the corresponding
478 target_* macro. */
479 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
480
481 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
482 struct expression *);
483 int (*to_masked_watch_num_registers) (struct target_ops *,
484 CORE_ADDR, CORE_ADDR);
485 void (*to_terminal_init) (void);
486 void (*to_terminal_inferior) (void);
487 void (*to_terminal_ours_for_output) (void);
488 void (*to_terminal_ours) (void);
489 void (*to_terminal_save_ours) (void);
490 void (*to_terminal_info) (char *, int);
491 void (*to_kill) (struct target_ops *);
492 void (*to_load) (char *, int);
493 void (*to_create_inferior) (struct target_ops *,
494 char *, char *, char **, int);
495 void (*to_post_startup_inferior) (ptid_t);
496 int (*to_insert_fork_catchpoint) (int);
497 int (*to_remove_fork_catchpoint) (int);
498 int (*to_insert_vfork_catchpoint) (int);
499 int (*to_remove_vfork_catchpoint) (int);
500 int (*to_follow_fork) (struct target_ops *, int);
501 int (*to_insert_exec_catchpoint) (int);
502 int (*to_remove_exec_catchpoint) (int);
503 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
504 int (*to_has_exited) (int, int, int *);
505 void (*to_mourn_inferior) (struct target_ops *);
506 int (*to_can_run) (void);
507
508 /* Documentation of this routine is provided with the corresponding
509 target_* macro. */
510 void (*to_pass_signals) (int, unsigned char *);
511
512 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
513 void (*to_find_new_threads) (struct target_ops *);
514 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
515 char *(*to_extra_thread_info) (struct thread_info *);
516 char *(*to_thread_name) (struct thread_info *);
517 void (*to_stop) (ptid_t);
518 void (*to_rcmd) (char *command, struct ui_file *output);
519 char *(*to_pid_to_exec_file) (int pid);
520 void (*to_log_command) (const char *);
521 struct target_section_table *(*to_get_section_table) (struct target_ops *);
522 enum strata to_stratum;
523 int (*to_has_all_memory) (struct target_ops *);
524 int (*to_has_memory) (struct target_ops *);
525 int (*to_has_stack) (struct target_ops *);
526 int (*to_has_registers) (struct target_ops *);
527 int (*to_has_execution) (struct target_ops *, ptid_t);
528 int to_has_thread_control; /* control thread execution */
529 int to_attach_no_wait;
530 /* ASYNC target controls */
531 int (*to_can_async_p) (void);
532 int (*to_is_async_p) (void);
533 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
534 int (*to_supports_non_stop) (void);
535 /* find_memory_regions support method for gcore */
536 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
537 /* make_corefile_notes support method for gcore */
538 char * (*to_make_corefile_notes) (bfd *, int *);
539 /* get_bookmark support method for bookmarks */
540 gdb_byte * (*to_get_bookmark) (char *, int);
541 /* goto_bookmark support method for bookmarks */
542 void (*to_goto_bookmark) (gdb_byte *, int);
543 /* Return the thread-local address at OFFSET in the
544 thread-local storage for the thread PTID and the shared library
545 or executable file given by OBJFILE. If that block of
546 thread-local storage hasn't been allocated yet, this function
547 may return an error. */
548 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
549 ptid_t ptid,
550 CORE_ADDR load_module_addr,
551 CORE_ADDR offset);
552
553 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
554 OBJECT. The OFFSET, for a seekable object, specifies the
555 starting point. The ANNEX can be used to provide additional
556 data-specific information to the target.
557
558 Return the number of bytes actually transfered, zero when no
559 further transfer is possible, and -1 when the transfer is not
560 supported. Return of a positive value smaller than LEN does
561 not indicate the end of the object, only the end of the
562 transfer; higher level code should continue transferring if
563 desired. This is handled in target.c.
564
565 The interface does not support a "retry" mechanism. Instead it
566 assumes that at least one byte will be transfered on each
567 successful call.
568
569 NOTE: cagney/2003-10-17: The current interface can lead to
570 fragmented transfers. Lower target levels should not implement
571 hacks, such as enlarging the transfer, in an attempt to
572 compensate for this. Instead, the target stack should be
573 extended so that it implements supply/collect methods and a
574 look-aside object cache. With that available, the lowest
575 target can safely and freely "push" data up the stack.
576
577 See target_read and target_write for more information. One,
578 and only one, of readbuf or writebuf must be non-NULL. */
579
580 LONGEST (*to_xfer_partial) (struct target_ops *ops,
581 enum target_object object, const char *annex,
582 gdb_byte *readbuf, const gdb_byte *writebuf,
583 ULONGEST offset, LONGEST len);
584
585 /* Returns the memory map for the target. A return value of NULL
586 means that no memory map is available. If a memory address
587 does not fall within any returned regions, it's assumed to be
588 RAM. The returned memory regions should not overlap.
589
590 The order of regions does not matter; target_memory_map will
591 sort regions by starting address. For that reason, this
592 function should not be called directly except via
593 target_memory_map.
594
595 This method should not cache data; if the memory map could
596 change unexpectedly, it should be invalidated, and higher
597 layers will re-fetch it. */
598 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
599
600 /* Erases the region of flash memory starting at ADDRESS, of
601 length LENGTH.
602
603 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
604 on flash block boundaries, as reported by 'to_memory_map'. */
605 void (*to_flash_erase) (struct target_ops *,
606 ULONGEST address, LONGEST length);
607
608 /* Finishes a flash memory write sequence. After this operation
609 all flash memory should be available for writing and the result
610 of reading from areas written by 'to_flash_write' should be
611 equal to what was written. */
612 void (*to_flash_done) (struct target_ops *);
613
614 /* Describe the architecture-specific features of this target.
615 Returns the description found, or NULL if no description
616 was available. */
617 const struct target_desc *(*to_read_description) (struct target_ops *ops);
618
619 /* Build the PTID of the thread on which a given task is running,
620 based on LWP and THREAD. These values are extracted from the
621 task Private_Data section of the Ada Task Control Block, and
622 their interpretation depends on the target. */
623 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
624
625 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
626 Return 0 if *READPTR is already at the end of the buffer.
627 Return -1 if there is insufficient buffer for a whole entry.
628 Return 1 if an entry was read into *TYPEP and *VALP. */
629 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
630 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
631
632 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
633 sequence of bytes in PATTERN with length PATTERN_LEN.
634
635 The result is 1 if found, 0 if not found, and -1 if there was an error
636 requiring halting of the search (e.g. memory read error).
637 If the pattern is found the address is recorded in FOUND_ADDRP. */
638 int (*to_search_memory) (struct target_ops *ops,
639 CORE_ADDR start_addr, ULONGEST search_space_len,
640 const gdb_byte *pattern, ULONGEST pattern_len,
641 CORE_ADDR *found_addrp);
642
643 /* Can target execute in reverse? */
644 int (*to_can_execute_reverse) (void);
645
646 /* The direction the target is currently executing. Must be
647 implemented on targets that support reverse execution and async
648 mode. The default simply returns forward execution. */
649 enum exec_direction_kind (*to_execution_direction) (void);
650
651 /* Does this target support debugging multiple processes
652 simultaneously? */
653 int (*to_supports_multi_process) (void);
654
655 /* Does this target support enabling and disabling tracepoints while a trace
656 experiment is running? */
657 int (*to_supports_enable_disable_tracepoint) (void);
658
659 /* Does this target support disabling address space randomization? */
660 int (*to_supports_disable_randomization) (void);
661
662 /* Does this target support the tracenz bytecode for string collection? */
663 int (*to_supports_string_tracing) (void);
664
665 /* Determine current architecture of thread PTID.
666
667 The target is supposed to determine the architecture of the code where
668 the target is currently stopped at (on Cell, if a target is in spu_run,
669 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
670 This is architecture used to perform decr_pc_after_break adjustment,
671 and also determines the frame architecture of the innermost frame.
672 ptrace operations need to operate according to target_gdbarch.
673
674 The default implementation always returns target_gdbarch. */
675 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
676
677 /* Determine current address space of thread PTID.
678
679 The default implementation always returns the inferior's
680 address space. */
681 struct address_space *(*to_thread_address_space) (struct target_ops *,
682 ptid_t);
683
684 /* Tracepoint-related operations. */
685
686 /* Prepare the target for a tracing run. */
687 void (*to_trace_init) (void);
688
689 /* Send full details of a tracepoint location to the target. */
690 void (*to_download_tracepoint) (struct bp_location *location);
691
692 /* Is the target able to download tracepoint locations in current
693 state? */
694 int (*to_can_download_tracepoint) (void);
695
696 /* Send full details of a trace state variable to the target. */
697 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
698
699 /* Enable a tracepoint on the target. */
700 void (*to_enable_tracepoint) (struct bp_location *location);
701
702 /* Disable a tracepoint on the target. */
703 void (*to_disable_tracepoint) (struct bp_location *location);
704
705 /* Inform the target info of memory regions that are readonly
706 (such as text sections), and so it should return data from
707 those rather than look in the trace buffer. */
708 void (*to_trace_set_readonly_regions) (void);
709
710 /* Start a trace run. */
711 void (*to_trace_start) (void);
712
713 /* Get the current status of a tracing run. */
714 int (*to_get_trace_status) (struct trace_status *ts);
715
716 /* Stop a trace run. */
717 void (*to_trace_stop) (void);
718
719 /* Ask the target to find a trace frame of the given type TYPE,
720 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
721 number of the trace frame, and also the tracepoint number at
722 TPP. If no trace frame matches, return -1. May throw if the
723 operation fails. */
724 int (*to_trace_find) (enum trace_find_type type, int num,
725 ULONGEST addr1, ULONGEST addr2, int *tpp);
726
727 /* Get the value of the trace state variable number TSV, returning
728 1 if the value is known and writing the value itself into the
729 location pointed to by VAL, else returning 0. */
730 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
731
732 int (*to_save_trace_data) (const char *filename);
733
734 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
735
736 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
737
738 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
739 ULONGEST offset, LONGEST len);
740
741 /* Get the minimum length of instruction on which a fast tracepoint
742 may be set on the target. If this operation is unsupported,
743 return -1. If for some reason the minimum length cannot be
744 determined, return 0. */
745 int (*to_get_min_fast_tracepoint_insn_len) (void);
746
747 /* Set the target's tracing behavior in response to unexpected
748 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
749 void (*to_set_disconnected_tracing) (int val);
750 void (*to_set_circular_trace_buffer) (int val);
751
752 /* Return the processor core that thread PTID was last seen on.
753 This information is updated only when:
754 - update_thread_list is called
755 - thread stops
756 If the core cannot be determined -- either for the specified
757 thread, or right now, or in this debug session, or for this
758 target -- return -1. */
759 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
760
761 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
762 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
763 a match, 0 if there's a mismatch, and -1 if an error is
764 encountered while reading memory. */
765 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
766 CORE_ADDR memaddr, ULONGEST size);
767
768 /* Return the address of the start of the Thread Information Block
769 a Windows OS specific feature. */
770 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
771
772 /* Send the new settings of write permission variables. */
773 void (*to_set_permissions) (void);
774
775 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
776 with its details. Return 1 on success, 0 on failure. */
777 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
778 struct static_tracepoint_marker *marker);
779
780 /* Return a vector of all tracepoints markers string id ID, or all
781 markers if ID is NULL. */
782 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
783 (const char *id);
784
785 /* Return a traceframe info object describing the current
786 traceframe's contents. This method should not cache data;
787 higher layers take care of caching, invalidating, and
788 re-fetching when necessary. */
789 struct traceframe_info *(*to_traceframe_info) (void);
790
791 int to_magic;
792 /* Need sub-structure for target machine related rather than comm related?
793 */
794 };
795
796 /* Magic number for checking ops size. If a struct doesn't end with this
797 number, somebody changed the declaration but didn't change all the
798 places that initialize one. */
799
800 #define OPS_MAGIC 3840
801
802 /* The ops structure for our "current" target process. This should
803 never be NULL. If there is no target, it points to the dummy_target. */
804
805 extern struct target_ops current_target;
806
807 /* Define easy words for doing these operations on our current target. */
808
809 #define target_shortname (current_target.to_shortname)
810 #define target_longname (current_target.to_longname)
811
812 /* Does whatever cleanup is required for a target that we are no
813 longer going to be calling. QUITTING indicates that GDB is exiting
814 and should not get hung on an error (otherwise it is important to
815 perform clean termination, even if it takes a while). This routine
816 is automatically always called when popping the target off the
817 target stack (to_beneath is undefined). Closing file descriptors
818 and freeing all memory allocated memory are typical things it
819 should do. */
820
821 void target_close (struct target_ops *targ, int quitting);
822
823 /* Attaches to a process on the target side. Arguments are as passed
824 to the `attach' command by the user. This routine can be called
825 when the target is not on the target-stack, if the target_can_run
826 routine returns 1; in that case, it must push itself onto the stack.
827 Upon exit, the target should be ready for normal operations, and
828 should be ready to deliver the status of the process immediately
829 (without waiting) to an upcoming target_wait call. */
830
831 void target_attach (char *, int);
832
833 /* Some targets don't generate traps when attaching to the inferior,
834 or their target_attach implementation takes care of the waiting.
835 These targets must set to_attach_no_wait. */
836
837 #define target_attach_no_wait \
838 (current_target.to_attach_no_wait)
839
840 /* The target_attach operation places a process under debugger control,
841 and stops the process.
842
843 This operation provides a target-specific hook that allows the
844 necessary bookkeeping to be performed after an attach completes. */
845 #define target_post_attach(pid) \
846 (*current_target.to_post_attach) (pid)
847
848 /* Takes a program previously attached to and detaches it.
849 The program may resume execution (some targets do, some don't) and will
850 no longer stop on signals, etc. We better not have left any breakpoints
851 in the program or it'll die when it hits one. ARGS is arguments
852 typed by the user (e.g. a signal to send the process). FROM_TTY
853 says whether to be verbose or not. */
854
855 extern void target_detach (char *, int);
856
857 /* Disconnect from the current target without resuming it (leaving it
858 waiting for a debugger). */
859
860 extern void target_disconnect (char *, int);
861
862 /* Resume execution of the target process PTID. STEP says whether to
863 single-step or to run free; SIGGNAL is the signal to be given to
864 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
865 pass TARGET_SIGNAL_DEFAULT. */
866
867 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
868
869 /* Wait for process pid to do something. PTID = -1 to wait for any
870 pid to do something. Return pid of child, or -1 in case of error;
871 store status through argument pointer STATUS. Note that it is
872 _NOT_ OK to throw_exception() out of target_wait() without popping
873 the debugging target from the stack; GDB isn't prepared to get back
874 to the prompt with a debugging target but without the frame cache,
875 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
876 options. */
877
878 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
879 int options);
880
881 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
882
883 extern void target_fetch_registers (struct regcache *regcache, int regno);
884
885 /* Store at least register REGNO, or all regs if REGNO == -1.
886 It can store as many registers as it wants to, so target_prepare_to_store
887 must have been previously called. Calls error() if there are problems. */
888
889 extern void target_store_registers (struct regcache *regcache, int regs);
890
891 /* Get ready to modify the registers array. On machines which store
892 individual registers, this doesn't need to do anything. On machines
893 which store all the registers in one fell swoop, this makes sure
894 that REGISTERS contains all the registers from the program being
895 debugged. */
896
897 #define target_prepare_to_store(regcache) \
898 (*current_target.to_prepare_to_store) (regcache)
899
900 /* Determine current address space of thread PTID. */
901
902 struct address_space *target_thread_address_space (ptid_t);
903
904 /* Returns true if this target can debug multiple processes
905 simultaneously. */
906
907 #define target_supports_multi_process() \
908 (*current_target.to_supports_multi_process) ()
909
910 /* Returns true if this target can disable address space randomization. */
911
912 int target_supports_disable_randomization (void);
913
914 /* Returns true if this target can enable and disable tracepoints
915 while a trace experiment is running. */
916
917 #define target_supports_enable_disable_tracepoint() \
918 (*current_target.to_supports_enable_disable_tracepoint) ()
919
920 #define target_supports_string_tracing() \
921 (*current_target.to_supports_string_tracing) ()
922
923 /* Invalidate all target dcaches. */
924 extern void target_dcache_invalidate (void);
925
926 extern int target_read_string (CORE_ADDR, char **, int, int *);
927
928 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
929
930 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
931
932 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
933 int len);
934
935 /* Fetches the target's memory map. If one is found it is sorted
936 and returned, after some consistency checking. Otherwise, NULL
937 is returned. */
938 VEC(mem_region_s) *target_memory_map (void);
939
940 /* Erase the specified flash region. */
941 void target_flash_erase (ULONGEST address, LONGEST length);
942
943 /* Finish a sequence of flash operations. */
944 void target_flash_done (void);
945
946 /* Describes a request for a memory write operation. */
947 struct memory_write_request
948 {
949 /* Begining address that must be written. */
950 ULONGEST begin;
951 /* Past-the-end address. */
952 ULONGEST end;
953 /* The data to write. */
954 gdb_byte *data;
955 /* A callback baton for progress reporting for this request. */
956 void *baton;
957 };
958 typedef struct memory_write_request memory_write_request_s;
959 DEF_VEC_O(memory_write_request_s);
960
961 /* Enumeration specifying different flash preservation behaviour. */
962 enum flash_preserve_mode
963 {
964 flash_preserve,
965 flash_discard
966 };
967
968 /* Write several memory blocks at once. This version can be more
969 efficient than making several calls to target_write_memory, in
970 particular because it can optimize accesses to flash memory.
971
972 Moreover, this is currently the only memory access function in gdb
973 that supports writing to flash memory, and it should be used for
974 all cases where access to flash memory is desirable.
975
976 REQUESTS is the vector (see vec.h) of memory_write_request.
977 PRESERVE_FLASH_P indicates what to do with blocks which must be
978 erased, but not completely rewritten.
979 PROGRESS_CB is a function that will be periodically called to provide
980 feedback to user. It will be called with the baton corresponding
981 to the request currently being written. It may also be called
982 with a NULL baton, when preserved flash sectors are being rewritten.
983
984 The function returns 0 on success, and error otherwise. */
985 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
986 enum flash_preserve_mode preserve_flash_p,
987 void (*progress_cb) (ULONGEST, void *));
988
989 /* From infrun.c. */
990
991 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
992
993 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
994
995 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
996
997 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
998
999 /* Print a line about the current target. */
1000
1001 #define target_files_info() \
1002 (*current_target.to_files_info) (&current_target)
1003
1004 /* Insert a breakpoint at address BP_TGT->placed_address in the target
1005 machine. Result is 0 for success, or an errno value. */
1006
1007 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1008 struct bp_target_info *bp_tgt);
1009
1010 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1011 machine. Result is 0 for success, or an errno value. */
1012
1013 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1014 struct bp_target_info *bp_tgt);
1015
1016 /* Initialize the terminal settings we record for the inferior,
1017 before we actually run the inferior. */
1018
1019 #define target_terminal_init() \
1020 (*current_target.to_terminal_init) ()
1021
1022 /* Put the inferior's terminal settings into effect.
1023 This is preparation for starting or resuming the inferior. */
1024
1025 extern void target_terminal_inferior (void);
1026
1027 /* Put some of our terminal settings into effect,
1028 enough to get proper results from our output,
1029 but do not change into or out of RAW mode
1030 so that no input is discarded.
1031
1032 After doing this, either terminal_ours or terminal_inferior
1033 should be called to get back to a normal state of affairs. */
1034
1035 #define target_terminal_ours_for_output() \
1036 (*current_target.to_terminal_ours_for_output) ()
1037
1038 /* Put our terminal settings into effect.
1039 First record the inferior's terminal settings
1040 so they can be restored properly later. */
1041
1042 #define target_terminal_ours() \
1043 (*current_target.to_terminal_ours) ()
1044
1045 /* Save our terminal settings.
1046 This is called from TUI after entering or leaving the curses
1047 mode. Since curses modifies our terminal this call is here
1048 to take this change into account. */
1049
1050 #define target_terminal_save_ours() \
1051 (*current_target.to_terminal_save_ours) ()
1052
1053 /* Print useful information about our terminal status, if such a thing
1054 exists. */
1055
1056 #define target_terminal_info(arg, from_tty) \
1057 (*current_target.to_terminal_info) (arg, from_tty)
1058
1059 /* Kill the inferior process. Make it go away. */
1060
1061 extern void target_kill (void);
1062
1063 /* Load an executable file into the target process. This is expected
1064 to not only bring new code into the target process, but also to
1065 update GDB's symbol tables to match.
1066
1067 ARG contains command-line arguments, to be broken down with
1068 buildargv (). The first non-switch argument is the filename to
1069 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1070 0)), which is an offset to apply to the load addresses of FILE's
1071 sections. The target may define switches, or other non-switch
1072 arguments, as it pleases. */
1073
1074 extern void target_load (char *arg, int from_tty);
1075
1076 /* Start an inferior process and set inferior_ptid to its pid.
1077 EXEC_FILE is the file to run.
1078 ALLARGS is a string containing the arguments to the program.
1079 ENV is the environment vector to pass. Errors reported with error().
1080 On VxWorks and various standalone systems, we ignore exec_file. */
1081
1082 void target_create_inferior (char *exec_file, char *args,
1083 char **env, int from_tty);
1084
1085 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1086 notification of inferior events such as fork and vork immediately
1087 after the inferior is created. (This because of how gdb gets an
1088 inferior created via invoking a shell to do it. In such a scenario,
1089 if the shell init file has commands in it, the shell will fork and
1090 exec for each of those commands, and we will see each such fork
1091 event. Very bad.)
1092
1093 Such targets will supply an appropriate definition for this function. */
1094
1095 #define target_post_startup_inferior(ptid) \
1096 (*current_target.to_post_startup_inferior) (ptid)
1097
1098 /* On some targets, we can catch an inferior fork or vfork event when
1099 it occurs. These functions insert/remove an already-created
1100 catchpoint for such events. They return 0 for success, 1 if the
1101 catchpoint type is not supported and -1 for failure. */
1102
1103 #define target_insert_fork_catchpoint(pid) \
1104 (*current_target.to_insert_fork_catchpoint) (pid)
1105
1106 #define target_remove_fork_catchpoint(pid) \
1107 (*current_target.to_remove_fork_catchpoint) (pid)
1108
1109 #define target_insert_vfork_catchpoint(pid) \
1110 (*current_target.to_insert_vfork_catchpoint) (pid)
1111
1112 #define target_remove_vfork_catchpoint(pid) \
1113 (*current_target.to_remove_vfork_catchpoint) (pid)
1114
1115 /* If the inferior forks or vforks, this function will be called at
1116 the next resume in order to perform any bookkeeping and fiddling
1117 necessary to continue debugging either the parent or child, as
1118 requested, and releasing the other. Information about the fork
1119 or vfork event is available via get_last_target_status ().
1120 This function returns 1 if the inferior should not be resumed
1121 (i.e. there is another event pending). */
1122
1123 int target_follow_fork (int follow_child);
1124
1125 /* On some targets, we can catch an inferior exec event when it
1126 occurs. These functions insert/remove an already-created
1127 catchpoint for such events. They return 0 for success, 1 if the
1128 catchpoint type is not supported and -1 for failure. */
1129
1130 #define target_insert_exec_catchpoint(pid) \
1131 (*current_target.to_insert_exec_catchpoint) (pid)
1132
1133 #define target_remove_exec_catchpoint(pid) \
1134 (*current_target.to_remove_exec_catchpoint) (pid)
1135
1136 /* Syscall catch.
1137
1138 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1139 If NEEDED is zero, it means the target can disable the mechanism to
1140 catch system calls because there are no more catchpoints of this type.
1141
1142 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1143 being requested. In this case, both TABLE_SIZE and TABLE should
1144 be ignored.
1145
1146 TABLE_SIZE is the number of elements in TABLE. It only matters if
1147 ANY_COUNT is zero.
1148
1149 TABLE is an array of ints, indexed by syscall number. An element in
1150 this array is nonzero if that syscall should be caught. This argument
1151 only matters if ANY_COUNT is zero.
1152
1153 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1154 for failure. */
1155
1156 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1157 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1158 table_size, table)
1159
1160 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1161 exit code of PID, if any. */
1162
1163 #define target_has_exited(pid,wait_status,exit_status) \
1164 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1165
1166 /* The debugger has completed a blocking wait() call. There is now
1167 some process event that must be processed. This function should
1168 be defined by those targets that require the debugger to perform
1169 cleanup or internal state changes in response to the process event. */
1170
1171 /* The inferior process has died. Do what is right. */
1172
1173 void target_mourn_inferior (void);
1174
1175 /* Does target have enough data to do a run or attach command? */
1176
1177 #define target_can_run(t) \
1178 ((t)->to_can_run) ()
1179
1180 /* Set list of signals to be handled in the target.
1181
1182 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1183 (enum target_signal). For every signal whose entry in this array is
1184 non-zero, the target is allowed -but not required- to skip reporting
1185 arrival of the signal to the GDB core by returning from target_wait,
1186 and to pass the signal directly to the inferior instead.
1187
1188 However, if the target is hardware single-stepping a thread that is
1189 about to receive a signal, it needs to be reported in any case, even
1190 if mentioned in a previous target_pass_signals call. */
1191
1192 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1193
1194 /* Check to see if a thread is still alive. */
1195
1196 extern int target_thread_alive (ptid_t ptid);
1197
1198 /* Query for new threads and add them to the thread list. */
1199
1200 extern void target_find_new_threads (void);
1201
1202 /* Make target stop in a continuable fashion. (For instance, under
1203 Unix, this should act like SIGSTOP). This function is normally
1204 used by GUIs to implement a stop button. */
1205
1206 extern void target_stop (ptid_t ptid);
1207
1208 /* Send the specified COMMAND to the target's monitor
1209 (shell,interpreter) for execution. The result of the query is
1210 placed in OUTBUF. */
1211
1212 #define target_rcmd(command, outbuf) \
1213 (*current_target.to_rcmd) (command, outbuf)
1214
1215
1216 /* Does the target include all of memory, or only part of it? This
1217 determines whether we look up the target chain for other parts of
1218 memory if this target can't satisfy a request. */
1219
1220 extern int target_has_all_memory_1 (void);
1221 #define target_has_all_memory target_has_all_memory_1 ()
1222
1223 /* Does the target include memory? (Dummy targets don't.) */
1224
1225 extern int target_has_memory_1 (void);
1226 #define target_has_memory target_has_memory_1 ()
1227
1228 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1229 we start a process.) */
1230
1231 extern int target_has_stack_1 (void);
1232 #define target_has_stack target_has_stack_1 ()
1233
1234 /* Does the target have registers? (Exec files don't.) */
1235
1236 extern int target_has_registers_1 (void);
1237 #define target_has_registers target_has_registers_1 ()
1238
1239 /* Does the target have execution? Can we make it jump (through
1240 hoops), or pop its stack a few times? This means that the current
1241 target is currently executing; for some targets, that's the same as
1242 whether or not the target is capable of execution, but there are
1243 also targets which can be current while not executing. In that
1244 case this will become true after target_create_inferior or
1245 target_attach. */
1246
1247 extern int target_has_execution_1 (ptid_t);
1248
1249 /* Like target_has_execution_1, but always passes inferior_ptid. */
1250
1251 extern int target_has_execution_current (void);
1252
1253 #define target_has_execution target_has_execution_current ()
1254
1255 /* Default implementations for process_stratum targets. Return true
1256 if there's a selected inferior, false otherwise. */
1257
1258 extern int default_child_has_all_memory (struct target_ops *ops);
1259 extern int default_child_has_memory (struct target_ops *ops);
1260 extern int default_child_has_stack (struct target_ops *ops);
1261 extern int default_child_has_registers (struct target_ops *ops);
1262 extern int default_child_has_execution (struct target_ops *ops,
1263 ptid_t the_ptid);
1264
1265 /* Can the target support the debugger control of thread execution?
1266 Can it lock the thread scheduler? */
1267
1268 #define target_can_lock_scheduler \
1269 (current_target.to_has_thread_control & tc_schedlock)
1270
1271 /* Should the target enable async mode if it is supported? Temporary
1272 cludge until async mode is a strict superset of sync mode. */
1273 extern int target_async_permitted;
1274
1275 /* Can the target support asynchronous execution? */
1276 #define target_can_async_p() (current_target.to_can_async_p ())
1277
1278 /* Is the target in asynchronous execution mode? */
1279 #define target_is_async_p() (current_target.to_is_async_p ())
1280
1281 int target_supports_non_stop (void);
1282
1283 /* Put the target in async mode with the specified callback function. */
1284 #define target_async(CALLBACK,CONTEXT) \
1285 (current_target.to_async ((CALLBACK), (CONTEXT)))
1286
1287 #define target_execution_direction() \
1288 (current_target.to_execution_direction ())
1289
1290 /* Converts a process id to a string. Usually, the string just contains
1291 `process xyz', but on some systems it may contain
1292 `process xyz thread abc'. */
1293
1294 extern char *target_pid_to_str (ptid_t ptid);
1295
1296 extern char *normal_pid_to_str (ptid_t ptid);
1297
1298 /* Return a short string describing extra information about PID,
1299 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1300 is okay. */
1301
1302 #define target_extra_thread_info(TP) \
1303 (current_target.to_extra_thread_info (TP))
1304
1305 /* Return the thread's name. A NULL result means that the target
1306 could not determine this thread's name. */
1307
1308 extern char *target_thread_name (struct thread_info *);
1309
1310 /* Attempts to find the pathname of the executable file
1311 that was run to create a specified process.
1312
1313 The process PID must be stopped when this operation is used.
1314
1315 If the executable file cannot be determined, NULL is returned.
1316
1317 Else, a pointer to a character string containing the pathname
1318 is returned. This string should be copied into a buffer by
1319 the client if the string will not be immediately used, or if
1320 it must persist. */
1321
1322 #define target_pid_to_exec_file(pid) \
1323 (current_target.to_pid_to_exec_file) (pid)
1324
1325 /* See the to_thread_architecture description in struct target_ops. */
1326
1327 #define target_thread_architecture(ptid) \
1328 (current_target.to_thread_architecture (&current_target, ptid))
1329
1330 /*
1331 * Iterator function for target memory regions.
1332 * Calls a callback function once for each memory region 'mapped'
1333 * in the child process. Defined as a simple macro rather than
1334 * as a function macro so that it can be tested for nullity.
1335 */
1336
1337 #define target_find_memory_regions(FUNC, DATA) \
1338 (current_target.to_find_memory_regions) (FUNC, DATA)
1339
1340 /*
1341 * Compose corefile .note section.
1342 */
1343
1344 #define target_make_corefile_notes(BFD, SIZE_P) \
1345 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1346
1347 /* Bookmark interfaces. */
1348 #define target_get_bookmark(ARGS, FROM_TTY) \
1349 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1350
1351 #define target_goto_bookmark(ARG, FROM_TTY) \
1352 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1353
1354 /* Hardware watchpoint interfaces. */
1355
1356 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1357 write). Only the INFERIOR_PTID task is being queried. */
1358
1359 #define target_stopped_by_watchpoint \
1360 (*current_target.to_stopped_by_watchpoint)
1361
1362 /* Non-zero if we have steppable watchpoints */
1363
1364 #define target_have_steppable_watchpoint \
1365 (current_target.to_have_steppable_watchpoint)
1366
1367 /* Non-zero if we have continuable watchpoints */
1368
1369 #define target_have_continuable_watchpoint \
1370 (current_target.to_have_continuable_watchpoint)
1371
1372 /* Provide defaults for hardware watchpoint functions. */
1373
1374 /* If the *_hw_beakpoint functions have not been defined
1375 elsewhere use the definitions in the target vector. */
1376
1377 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1378 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1379 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1380 (including this one?). OTHERTYPE is who knows what... */
1381
1382 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1383 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1384
1385 /* Returns the number of debug registers needed to watch the given
1386 memory region, or zero if not supported. */
1387
1388 #define target_region_ok_for_hw_watchpoint(addr, len) \
1389 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1390
1391
1392 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1393 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1394 COND is the expression for its condition, or NULL if there's none.
1395 Returns 0 for success, 1 if the watchpoint type is not supported,
1396 -1 for failure. */
1397
1398 #define target_insert_watchpoint(addr, len, type, cond) \
1399 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1400
1401 #define target_remove_watchpoint(addr, len, type, cond) \
1402 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1403
1404 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1405 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1406 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1407 masked watchpoints are not supported, -1 for failure. */
1408
1409 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1410
1411 /* Remove a masked watchpoint at ADDR with the mask MASK.
1412 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1413 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1414 for failure. */
1415
1416 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1417
1418 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1419 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1420
1421 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1422 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1423
1424 /* Return number of debug registers needed for a ranged breakpoint,
1425 or -1 if ranged breakpoints are not supported. */
1426
1427 extern int target_ranged_break_num_registers (void);
1428
1429 /* Return non-zero if target knows the data address which triggered this
1430 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1431 INFERIOR_PTID task is being queried. */
1432 #define target_stopped_data_address(target, addr_p) \
1433 (*target.to_stopped_data_address) (target, addr_p)
1434
1435 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1436 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1437
1438 /* Return non-zero if the target is capable of using hardware to evaluate
1439 the condition expression. In this case, if the condition is false when
1440 the watched memory location changes, execution may continue without the
1441 debugger being notified.
1442
1443 Due to limitations in the hardware implementation, it may be capable of
1444 avoiding triggering the watchpoint in some cases where the condition
1445 expression is false, but may report some false positives as well.
1446 For this reason, GDB will still evaluate the condition expression when
1447 the watchpoint triggers. */
1448 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1449 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1450
1451 /* Return number of debug registers needed for a masked watchpoint,
1452 -1 if masked watchpoints are not supported or -2 if the given address
1453 and mask combination cannot be used. */
1454
1455 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1456
1457 /* Target can execute in reverse? */
1458 #define target_can_execute_reverse \
1459 (current_target.to_can_execute_reverse ? \
1460 current_target.to_can_execute_reverse () : 0)
1461
1462 extern const struct target_desc *target_read_description (struct target_ops *);
1463
1464 #define target_get_ada_task_ptid(lwp, tid) \
1465 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1466
1467 /* Utility implementation of searching memory. */
1468 extern int simple_search_memory (struct target_ops* ops,
1469 CORE_ADDR start_addr,
1470 ULONGEST search_space_len,
1471 const gdb_byte *pattern,
1472 ULONGEST pattern_len,
1473 CORE_ADDR *found_addrp);
1474
1475 /* Main entry point for searching memory. */
1476 extern int target_search_memory (CORE_ADDR start_addr,
1477 ULONGEST search_space_len,
1478 const gdb_byte *pattern,
1479 ULONGEST pattern_len,
1480 CORE_ADDR *found_addrp);
1481
1482 /* Tracepoint-related operations. */
1483
1484 #define target_trace_init() \
1485 (*current_target.to_trace_init) ()
1486
1487 #define target_download_tracepoint(t) \
1488 (*current_target.to_download_tracepoint) (t)
1489
1490 #define target_can_download_tracepoint() \
1491 (*current_target.to_can_download_tracepoint) ()
1492
1493 #define target_download_trace_state_variable(tsv) \
1494 (*current_target.to_download_trace_state_variable) (tsv)
1495
1496 #define target_enable_tracepoint(loc) \
1497 (*current_target.to_enable_tracepoint) (loc)
1498
1499 #define target_disable_tracepoint(loc) \
1500 (*current_target.to_disable_tracepoint) (loc)
1501
1502 #define target_trace_start() \
1503 (*current_target.to_trace_start) ()
1504
1505 #define target_trace_set_readonly_regions() \
1506 (*current_target.to_trace_set_readonly_regions) ()
1507
1508 #define target_get_trace_status(ts) \
1509 (*current_target.to_get_trace_status) (ts)
1510
1511 #define target_trace_stop() \
1512 (*current_target.to_trace_stop) ()
1513
1514 #define target_trace_find(type,num,addr1,addr2,tpp) \
1515 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1516
1517 #define target_get_trace_state_variable_value(tsv,val) \
1518 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1519
1520 #define target_save_trace_data(filename) \
1521 (*current_target.to_save_trace_data) (filename)
1522
1523 #define target_upload_tracepoints(utpp) \
1524 (*current_target.to_upload_tracepoints) (utpp)
1525
1526 #define target_upload_trace_state_variables(utsvp) \
1527 (*current_target.to_upload_trace_state_variables) (utsvp)
1528
1529 #define target_get_raw_trace_data(buf,offset,len) \
1530 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1531
1532 #define target_get_min_fast_tracepoint_insn_len() \
1533 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1534
1535 #define target_set_disconnected_tracing(val) \
1536 (*current_target.to_set_disconnected_tracing) (val)
1537
1538 #define target_set_circular_trace_buffer(val) \
1539 (*current_target.to_set_circular_trace_buffer) (val)
1540
1541 #define target_get_tib_address(ptid, addr) \
1542 (*current_target.to_get_tib_address) ((ptid), (addr))
1543
1544 #define target_set_permissions() \
1545 (*current_target.to_set_permissions) ()
1546
1547 #define target_static_tracepoint_marker_at(addr, marker) \
1548 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1549
1550 #define target_static_tracepoint_markers_by_strid(marker_id) \
1551 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1552
1553 #define target_traceframe_info() \
1554 (*current_target.to_traceframe_info) ()
1555
1556 /* Command logging facility. */
1557
1558 #define target_log_command(p) \
1559 do \
1560 if (current_target.to_log_command) \
1561 (*current_target.to_log_command) (p); \
1562 while (0)
1563
1564
1565 extern int target_core_of_thread (ptid_t ptid);
1566
1567 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1568 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1569 if there's a mismatch, and -1 if an error is encountered while
1570 reading memory. Throws an error if the functionality is found not
1571 to be supported by the current target. */
1572 int target_verify_memory (const gdb_byte *data,
1573 CORE_ADDR memaddr, ULONGEST size);
1574
1575 /* Routines for maintenance of the target structures...
1576
1577 add_target: Add a target to the list of all possible targets.
1578
1579 push_target: Make this target the top of the stack of currently used
1580 targets, within its particular stratum of the stack. Result
1581 is 0 if now atop the stack, nonzero if not on top (maybe
1582 should warn user).
1583
1584 unpush_target: Remove this from the stack of currently used targets,
1585 no matter where it is on the list. Returns 0 if no
1586 change, 1 if removed from stack.
1587
1588 pop_target: Remove the top thing on the stack of current targets. */
1589
1590 extern void add_target (struct target_ops *);
1591
1592 extern void push_target (struct target_ops *);
1593
1594 extern int unpush_target (struct target_ops *);
1595
1596 extern void target_pre_inferior (int);
1597
1598 extern void target_preopen (int);
1599
1600 extern void pop_target (void);
1601
1602 /* Does whatever cleanup is required to get rid of all pushed targets.
1603 QUITTING is propagated to target_close; it indicates that GDB is
1604 exiting and should not get hung on an error (otherwise it is
1605 important to perform clean termination, even if it takes a
1606 while). */
1607 extern void pop_all_targets (int quitting);
1608
1609 /* Like pop_all_targets, but pops only targets whose stratum is
1610 strictly above ABOVE_STRATUM. */
1611 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1612
1613 extern int target_is_pushed (struct target_ops *t);
1614
1615 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1616 CORE_ADDR offset);
1617
1618 /* Struct target_section maps address ranges to file sections. It is
1619 mostly used with BFD files, but can be used without (e.g. for handling
1620 raw disks, or files not in formats handled by BFD). */
1621
1622 struct target_section
1623 {
1624 CORE_ADDR addr; /* Lowest address in section */
1625 CORE_ADDR endaddr; /* 1+highest address in section */
1626
1627 struct bfd_section *the_bfd_section;
1628
1629 bfd *bfd; /* BFD file pointer */
1630 };
1631
1632 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1633
1634 struct target_section_table
1635 {
1636 struct target_section *sections;
1637 struct target_section *sections_end;
1638 };
1639
1640 /* Return the "section" containing the specified address. */
1641 struct target_section *target_section_by_addr (struct target_ops *target,
1642 CORE_ADDR addr);
1643
1644 /* Return the target section table this target (or the targets
1645 beneath) currently manipulate. */
1646
1647 extern struct target_section_table *target_get_section_table
1648 (struct target_ops *target);
1649
1650 /* From mem-break.c */
1651
1652 extern int memory_remove_breakpoint (struct gdbarch *,
1653 struct bp_target_info *);
1654
1655 extern int memory_insert_breakpoint (struct gdbarch *,
1656 struct bp_target_info *);
1657
1658 extern int default_memory_remove_breakpoint (struct gdbarch *,
1659 struct bp_target_info *);
1660
1661 extern int default_memory_insert_breakpoint (struct gdbarch *,
1662 struct bp_target_info *);
1663
1664
1665 /* From target.c */
1666
1667 extern void initialize_targets (void);
1668
1669 extern void noprocess (void) ATTRIBUTE_NORETURN;
1670
1671 extern void target_require_runnable (void);
1672
1673 extern void find_default_attach (struct target_ops *, char *, int);
1674
1675 extern void find_default_create_inferior (struct target_ops *,
1676 char *, char *, char **, int);
1677
1678 extern struct target_ops *find_run_target (void);
1679
1680 extern struct target_ops *find_target_beneath (struct target_ops *);
1681
1682 /* Read OS data object of type TYPE from the target, and return it in
1683 XML format. The result is NUL-terminated and returned as a string,
1684 allocated using xmalloc. If an error occurs or the transfer is
1685 unsupported, NULL is returned. Empty objects are returned as
1686 allocated but empty strings. */
1687
1688 extern char *target_get_osdata (const char *type);
1689
1690 \f
1691 /* Stuff that should be shared among the various remote targets. */
1692
1693 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1694 information (higher values, more information). */
1695 extern int remote_debug;
1696
1697 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1698 extern int baud_rate;
1699 /* Timeout limit for response from target. */
1700 extern int remote_timeout;
1701
1702 \f
1703 /* Functions for helping to write a native target. */
1704
1705 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1706 extern void store_waitstatus (struct target_waitstatus *, int);
1707
1708 /* These are in common/signals.c, but they're only used by gdb. */
1709 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1710 int);
1711 extern int default_target_signal_to_host (struct gdbarch *,
1712 enum target_signal);
1713
1714 /* Convert from a number used in a GDB command to an enum target_signal. */
1715 extern enum target_signal target_signal_from_command (int);
1716 /* End of files in common/signals.c. */
1717
1718 /* Set the show memory breakpoints mode to show, and installs a cleanup
1719 to restore it back to the current value. */
1720 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1721
1722 extern int may_write_registers;
1723 extern int may_write_memory;
1724 extern int may_insert_breakpoints;
1725 extern int may_insert_tracepoints;
1726 extern int may_insert_fast_tracepoints;
1727 extern int may_stop;
1728
1729 extern void update_target_permissions (void);
1730
1731 \f
1732 /* Imported from machine dependent code. */
1733
1734 /* Blank target vector entries are initialized to target_ignore. */
1735 void target_ignore (void);
1736
1737 #endif /* !defined (TARGET_H) */
This page took 0.0645289999999999 seconds and 4 git commands to generate.