9a39839f428f756077daa2ed5c40ddb6ab64f98d
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible error codes returned by target_xfer_partial, etc. */
207
208 enum target_xfer_error
209 {
210 /* Generic I/O error. Note that it's important that this is '-1',
211 as we still have target_xfer-related code returning hardcoded
212 '-1' on error. */
213 TARGET_XFER_E_IO = -1,
214
215 /* Transfer failed because the piece of the object requested is
216 unavailable. */
217 TARGET_XFER_E_UNAVAILABLE = -2,
218
219 /* Keep list in sync with target_xfer_error_to_string. */
220 };
221
222 /* Return the string form of ERR. */
223
224 extern const char *target_xfer_error_to_string (enum target_xfer_error err);
225
226 /* Enumeration of the kinds of traceframe searches that a target may
227 be able to perform. */
228
229 enum trace_find_type
230 {
231 tfind_number,
232 tfind_pc,
233 tfind_tp,
234 tfind_range,
235 tfind_outside,
236 };
237
238 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
239 DEF_VEC_P(static_tracepoint_marker_p);
240
241 typedef LONGEST
242 target_xfer_partial_ftype (struct target_ops *ops,
243 enum target_object object,
244 const char *annex,
245 gdb_byte *readbuf,
246 const gdb_byte *writebuf,
247 ULONGEST offset,
248 ULONGEST len);
249
250 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
251 OBJECT. The OFFSET, for a seekable object, specifies the
252 starting point. The ANNEX can be used to provide additional
253 data-specific information to the target.
254
255 Return the number of bytes actually transfered, or a negative error
256 code (an 'enum target_xfer_error' value) if the transfer is not
257 supported or otherwise fails. Return of a positive value less than
258 LEN indicates that no further transfer is possible. Unlike the raw
259 to_xfer_partial interface, callers of these functions do not need
260 to retry partial transfers. */
261
262 extern LONGEST target_read (struct target_ops *ops,
263 enum target_object object,
264 const char *annex, gdb_byte *buf,
265 ULONGEST offset, LONGEST len);
266
267 struct memory_read_result
268 {
269 /* First address that was read. */
270 ULONGEST begin;
271 /* Past-the-end address. */
272 ULONGEST end;
273 /* The data. */
274 gdb_byte *data;
275 };
276 typedef struct memory_read_result memory_read_result_s;
277 DEF_VEC_O(memory_read_result_s);
278
279 extern void free_memory_read_result_vector (void *);
280
281 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
282 ULONGEST offset,
283 LONGEST len);
284
285 extern LONGEST target_write (struct target_ops *ops,
286 enum target_object object,
287 const char *annex, const gdb_byte *buf,
288 ULONGEST offset, LONGEST len);
289
290 /* Similar to target_write, except that it also calls PROGRESS with
291 the number of bytes written and the opaque BATON after every
292 successful partial write (and before the first write). This is
293 useful for progress reporting and user interaction while writing
294 data. To abort the transfer, the progress callback can throw an
295 exception. */
296
297 LONGEST target_write_with_progress (struct target_ops *ops,
298 enum target_object object,
299 const char *annex, const gdb_byte *buf,
300 ULONGEST offset, LONGEST len,
301 void (*progress) (ULONGEST, void *),
302 void *baton);
303
304 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
305 be read using OPS. The return value will be -1 if the transfer
306 fails or is not supported; 0 if the object is empty; or the length
307 of the object otherwise. If a positive value is returned, a
308 sufficiently large buffer will be allocated using xmalloc and
309 returned in *BUF_P containing the contents of the object.
310
311 This method should be used for objects sufficiently small to store
312 in a single xmalloc'd buffer, when no fixed bound on the object's
313 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
314 through this function. */
315
316 extern LONGEST target_read_alloc (struct target_ops *ops,
317 enum target_object object,
318 const char *annex, gdb_byte **buf_p);
319
320 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
321 returned as a string, allocated using xmalloc. If an error occurs
322 or the transfer is unsupported, NULL is returned. Empty objects
323 are returned as allocated but empty strings. A warning is issued
324 if the result contains any embedded NUL bytes. */
325
326 extern char *target_read_stralloc (struct target_ops *ops,
327 enum target_object object,
328 const char *annex);
329
330 /* See target_ops->to_xfer_partial. */
331 extern target_xfer_partial_ftype target_xfer_partial;
332
333 /* Wrappers to target read/write that perform memory transfers. They
334 throw an error if the memory transfer fails.
335
336 NOTE: cagney/2003-10-23: The naming schema is lifted from
337 "frame.h". The parameter order is lifted from get_frame_memory,
338 which in turn lifted it from read_memory. */
339
340 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
341 gdb_byte *buf, LONGEST len);
342 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
343 CORE_ADDR addr, int len,
344 enum bfd_endian byte_order);
345 \f
346 struct thread_info; /* fwd decl for parameter list below: */
347
348 struct target_ops
349 {
350 struct target_ops *beneath; /* To the target under this one. */
351 char *to_shortname; /* Name this target type */
352 char *to_longname; /* Name for printing */
353 char *to_doc; /* Documentation. Does not include trailing
354 newline, and starts with a one-line descrip-
355 tion (probably similar to to_longname). */
356 /* Per-target scratch pad. */
357 void *to_data;
358 /* The open routine takes the rest of the parameters from the
359 command, and (if successful) pushes a new target onto the
360 stack. Targets should supply this routine, if only to provide
361 an error message. */
362 void (*to_open) (char *, int);
363 /* Old targets with a static target vector provide "to_close".
364 New re-entrant targets provide "to_xclose" and that is expected
365 to xfree everything (including the "struct target_ops"). */
366 void (*to_xclose) (struct target_ops *targ);
367 void (*to_close) (void);
368 void (*to_attach) (struct target_ops *ops, char *, int);
369 void (*to_post_attach) (int);
370 void (*to_detach) (struct target_ops *ops, const char *, int);
371 void (*to_disconnect) (struct target_ops *, char *, int);
372 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal);
373 ptid_t (*to_wait) (struct target_ops *,
374 ptid_t, struct target_waitstatus *, int);
375 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
376 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
377 void (*to_prepare_to_store) (struct regcache *);
378
379 /* Transfer LEN bytes of memory between GDB address MYADDR and
380 target address MEMADDR. If WRITE, transfer them to the target, else
381 transfer them from the target. TARGET is the target from which we
382 get this function.
383
384 Return value, N, is one of the following:
385
386 0 means that we can't handle this. If errno has been set, it is the
387 error which prevented us from doing it (FIXME: What about bfd_error?).
388
389 positive (call it N) means that we have transferred N bytes
390 starting at MEMADDR. We might be able to handle more bytes
391 beyond this length, but no promises.
392
393 negative (call its absolute value N) means that we cannot
394 transfer right at MEMADDR, but we could transfer at least
395 something at MEMADDR + N.
396
397 NOTE: cagney/2004-10-01: This has been entirely superseeded by
398 to_xfer_partial and inferior inheritance. */
399
400 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
401 int len, int write,
402 struct mem_attrib *attrib,
403 struct target_ops *target);
404
405 void (*to_files_info) (struct target_ops *);
406 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
407 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
408 int (*to_can_use_hw_breakpoint) (int, int, int);
409 int (*to_ranged_break_num_registers) (struct target_ops *);
410 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
411 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
412
413 /* Documentation of what the two routines below are expected to do is
414 provided with the corresponding target_* macros. */
415 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
416 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
417
418 int (*to_insert_mask_watchpoint) (struct target_ops *,
419 CORE_ADDR, CORE_ADDR, int);
420 int (*to_remove_mask_watchpoint) (struct target_ops *,
421 CORE_ADDR, CORE_ADDR, int);
422 int (*to_stopped_by_watchpoint) (void);
423 int to_have_steppable_watchpoint;
424 int to_have_continuable_watchpoint;
425 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
426 int (*to_watchpoint_addr_within_range) (struct target_ops *,
427 CORE_ADDR, CORE_ADDR, int);
428
429 /* Documentation of this routine is provided with the corresponding
430 target_* macro. */
431 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
432
433 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
434 struct expression *);
435 int (*to_masked_watch_num_registers) (struct target_ops *,
436 CORE_ADDR, CORE_ADDR);
437 void (*to_terminal_init) (void);
438 void (*to_terminal_inferior) (void);
439 void (*to_terminal_ours_for_output) (void);
440 void (*to_terminal_ours) (void);
441 void (*to_terminal_save_ours) (void);
442 void (*to_terminal_info) (const char *, int);
443 void (*to_kill) (struct target_ops *);
444 void (*to_load) (char *, int);
445 void (*to_create_inferior) (struct target_ops *,
446 char *, char *, char **, int);
447 void (*to_post_startup_inferior) (ptid_t);
448 int (*to_insert_fork_catchpoint) (int);
449 int (*to_remove_fork_catchpoint) (int);
450 int (*to_insert_vfork_catchpoint) (int);
451 int (*to_remove_vfork_catchpoint) (int);
452 int (*to_follow_fork) (struct target_ops *, int, int);
453 int (*to_insert_exec_catchpoint) (int);
454 int (*to_remove_exec_catchpoint) (int);
455 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
456 int (*to_has_exited) (int, int, int *);
457 void (*to_mourn_inferior) (struct target_ops *);
458 int (*to_can_run) (void);
459
460 /* Documentation of this routine is provided with the corresponding
461 target_* macro. */
462 void (*to_pass_signals) (int, unsigned char *);
463
464 /* Documentation of this routine is provided with the
465 corresponding target_* function. */
466 void (*to_program_signals) (int, unsigned char *);
467
468 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
469 void (*to_find_new_threads) (struct target_ops *);
470 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
471 char *(*to_extra_thread_info) (struct thread_info *);
472 char *(*to_thread_name) (struct thread_info *);
473 void (*to_stop) (ptid_t);
474 void (*to_rcmd) (char *command, struct ui_file *output);
475 char *(*to_pid_to_exec_file) (int pid);
476 void (*to_log_command) (const char *);
477 struct target_section_table *(*to_get_section_table) (struct target_ops *);
478 enum strata to_stratum;
479 int (*to_has_all_memory) (struct target_ops *);
480 int (*to_has_memory) (struct target_ops *);
481 int (*to_has_stack) (struct target_ops *);
482 int (*to_has_registers) (struct target_ops *);
483 int (*to_has_execution) (struct target_ops *, ptid_t);
484 int to_has_thread_control; /* control thread execution */
485 int to_attach_no_wait;
486 /* ASYNC target controls */
487 int (*to_can_async_p) (void);
488 int (*to_is_async_p) (void);
489 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
490 int (*to_supports_non_stop) (void);
491 /* find_memory_regions support method for gcore */
492 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
493 /* make_corefile_notes support method for gcore */
494 char * (*to_make_corefile_notes) (bfd *, int *);
495 /* get_bookmark support method for bookmarks */
496 gdb_byte * (*to_get_bookmark) (char *, int);
497 /* goto_bookmark support method for bookmarks */
498 void (*to_goto_bookmark) (gdb_byte *, int);
499 /* Return the thread-local address at OFFSET in the
500 thread-local storage for the thread PTID and the shared library
501 or executable file given by OBJFILE. If that block of
502 thread-local storage hasn't been allocated yet, this function
503 may return an error. */
504 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
505 ptid_t ptid,
506 CORE_ADDR load_module_addr,
507 CORE_ADDR offset);
508
509 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
510 OBJECT. The OFFSET, for a seekable object, specifies the
511 starting point. The ANNEX can be used to provide additional
512 data-specific information to the target.
513
514 Return the number of bytes actually transfered, zero when no
515 further transfer is possible, and a negative error code (really
516 an 'enum target_xfer_error' value) when the transfer is not
517 supported. Return of a positive value smaller than LEN does
518 not indicate the end of the object, only the end of the
519 transfer; higher level code should continue transferring if
520 desired. This is handled in target.c.
521
522 The interface does not support a "retry" mechanism. Instead it
523 assumes that at least one byte will be transfered on each
524 successful call.
525
526 NOTE: cagney/2003-10-17: The current interface can lead to
527 fragmented transfers. Lower target levels should not implement
528 hacks, such as enlarging the transfer, in an attempt to
529 compensate for this. Instead, the target stack should be
530 extended so that it implements supply/collect methods and a
531 look-aside object cache. With that available, the lowest
532 target can safely and freely "push" data up the stack.
533
534 See target_read and target_write for more information. One,
535 and only one, of readbuf or writebuf must be non-NULL. */
536
537 LONGEST (*to_xfer_partial) (struct target_ops *ops,
538 enum target_object object, const char *annex,
539 gdb_byte *readbuf, const gdb_byte *writebuf,
540 ULONGEST offset, ULONGEST len);
541
542 /* Returns the memory map for the target. A return value of NULL
543 means that no memory map is available. If a memory address
544 does not fall within any returned regions, it's assumed to be
545 RAM. The returned memory regions should not overlap.
546
547 The order of regions does not matter; target_memory_map will
548 sort regions by starting address. For that reason, this
549 function should not be called directly except via
550 target_memory_map.
551
552 This method should not cache data; if the memory map could
553 change unexpectedly, it should be invalidated, and higher
554 layers will re-fetch it. */
555 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
556
557 /* Erases the region of flash memory starting at ADDRESS, of
558 length LENGTH.
559
560 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
561 on flash block boundaries, as reported by 'to_memory_map'. */
562 void (*to_flash_erase) (struct target_ops *,
563 ULONGEST address, LONGEST length);
564
565 /* Finishes a flash memory write sequence. After this operation
566 all flash memory should be available for writing and the result
567 of reading from areas written by 'to_flash_write' should be
568 equal to what was written. */
569 void (*to_flash_done) (struct target_ops *);
570
571 /* Describe the architecture-specific features of this target.
572 Returns the description found, or NULL if no description
573 was available. */
574 const struct target_desc *(*to_read_description) (struct target_ops *ops);
575
576 /* Build the PTID of the thread on which a given task is running,
577 based on LWP and THREAD. These values are extracted from the
578 task Private_Data section of the Ada Task Control Block, and
579 their interpretation depends on the target. */
580 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
581
582 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
583 Return 0 if *READPTR is already at the end of the buffer.
584 Return -1 if there is insufficient buffer for a whole entry.
585 Return 1 if an entry was read into *TYPEP and *VALP. */
586 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
587 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
588
589 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
590 sequence of bytes in PATTERN with length PATTERN_LEN.
591
592 The result is 1 if found, 0 if not found, and -1 if there was an error
593 requiring halting of the search (e.g. memory read error).
594 If the pattern is found the address is recorded in FOUND_ADDRP. */
595 int (*to_search_memory) (struct target_ops *ops,
596 CORE_ADDR start_addr, ULONGEST search_space_len,
597 const gdb_byte *pattern, ULONGEST pattern_len,
598 CORE_ADDR *found_addrp);
599
600 /* Can target execute in reverse? */
601 int (*to_can_execute_reverse) (void);
602
603 /* The direction the target is currently executing. Must be
604 implemented on targets that support reverse execution and async
605 mode. The default simply returns forward execution. */
606 enum exec_direction_kind (*to_execution_direction) (void);
607
608 /* Does this target support debugging multiple processes
609 simultaneously? */
610 int (*to_supports_multi_process) (void);
611
612 /* Does this target support enabling and disabling tracepoints while a trace
613 experiment is running? */
614 int (*to_supports_enable_disable_tracepoint) (void);
615
616 /* Does this target support disabling address space randomization? */
617 int (*to_supports_disable_randomization) (void);
618
619 /* Does this target support the tracenz bytecode for string collection? */
620 int (*to_supports_string_tracing) (void);
621
622 /* Does this target support evaluation of breakpoint conditions on its
623 end? */
624 int (*to_supports_evaluation_of_breakpoint_conditions) (void);
625
626 /* Does this target support evaluation of breakpoint commands on its
627 end? */
628 int (*to_can_run_breakpoint_commands) (void);
629
630 /* Determine current architecture of thread PTID.
631
632 The target is supposed to determine the architecture of the code where
633 the target is currently stopped at (on Cell, if a target is in spu_run,
634 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
635 This is architecture used to perform decr_pc_after_break adjustment,
636 and also determines the frame architecture of the innermost frame.
637 ptrace operations need to operate according to target_gdbarch ().
638
639 The default implementation always returns target_gdbarch (). */
640 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
641
642 /* Determine current address space of thread PTID.
643
644 The default implementation always returns the inferior's
645 address space. */
646 struct address_space *(*to_thread_address_space) (struct target_ops *,
647 ptid_t);
648
649 /* Target file operations. */
650
651 /* Open FILENAME on the target, using FLAGS and MODE. Return a
652 target file descriptor, or -1 if an error occurs (and set
653 *TARGET_ERRNO). */
654 int (*to_fileio_open) (const char *filename, int flags, int mode,
655 int *target_errno);
656
657 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
658 Return the number of bytes written, or -1 if an error occurs
659 (and set *TARGET_ERRNO). */
660 int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
661 ULONGEST offset, int *target_errno);
662
663 /* Read up to LEN bytes FD on the target into READ_BUF.
664 Return the number of bytes read, or -1 if an error occurs
665 (and set *TARGET_ERRNO). */
666 int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
667 ULONGEST offset, int *target_errno);
668
669 /* Close FD on the target. Return 0, or -1 if an error occurs
670 (and set *TARGET_ERRNO). */
671 int (*to_fileio_close) (int fd, int *target_errno);
672
673 /* Unlink FILENAME on the target. Return 0, or -1 if an error
674 occurs (and set *TARGET_ERRNO). */
675 int (*to_fileio_unlink) (const char *filename, int *target_errno);
676
677 /* Read value of symbolic link FILENAME on the target. Return a
678 null-terminated string allocated via xmalloc, or NULL if an error
679 occurs (and set *TARGET_ERRNO). */
680 char *(*to_fileio_readlink) (const char *filename, int *target_errno);
681
682
683 /* Implement the "info proc" command. */
684 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
685
686 /* Tracepoint-related operations. */
687
688 /* Prepare the target for a tracing run. */
689 void (*to_trace_init) (void);
690
691 /* Send full details of a tracepoint location to the target. */
692 void (*to_download_tracepoint) (struct bp_location *location);
693
694 /* Is the target able to download tracepoint locations in current
695 state? */
696 int (*to_can_download_tracepoint) (void);
697
698 /* Send full details of a trace state variable to the target. */
699 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
700
701 /* Enable a tracepoint on the target. */
702 void (*to_enable_tracepoint) (struct bp_location *location);
703
704 /* Disable a tracepoint on the target. */
705 void (*to_disable_tracepoint) (struct bp_location *location);
706
707 /* Inform the target info of memory regions that are readonly
708 (such as text sections), and so it should return data from
709 those rather than look in the trace buffer. */
710 void (*to_trace_set_readonly_regions) (void);
711
712 /* Start a trace run. */
713 void (*to_trace_start) (void);
714
715 /* Get the current status of a tracing run. */
716 int (*to_get_trace_status) (struct trace_status *ts);
717
718 void (*to_get_tracepoint_status) (struct breakpoint *tp,
719 struct uploaded_tp *utp);
720
721 /* Stop a trace run. */
722 void (*to_trace_stop) (void);
723
724 /* Ask the target to find a trace frame of the given type TYPE,
725 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
726 number of the trace frame, and also the tracepoint number at
727 TPP. If no trace frame matches, return -1. May throw if the
728 operation fails. */
729 int (*to_trace_find) (enum trace_find_type type, int num,
730 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
731
732 /* Get the value of the trace state variable number TSV, returning
733 1 if the value is known and writing the value itself into the
734 location pointed to by VAL, else returning 0. */
735 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
736
737 int (*to_save_trace_data) (const char *filename);
738
739 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
740
741 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
742
743 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
744 ULONGEST offset, LONGEST len);
745
746 /* Get the minimum length of instruction on which a fast tracepoint
747 may be set on the target. If this operation is unsupported,
748 return -1. If for some reason the minimum length cannot be
749 determined, return 0. */
750 int (*to_get_min_fast_tracepoint_insn_len) (void);
751
752 /* Set the target's tracing behavior in response to unexpected
753 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
754 void (*to_set_disconnected_tracing) (int val);
755 void (*to_set_circular_trace_buffer) (int val);
756 /* Set the size of trace buffer in the target. */
757 void (*to_set_trace_buffer_size) (LONGEST val);
758
759 /* Add/change textual notes about the trace run, returning 1 if
760 successful, 0 otherwise. */
761 int (*to_set_trace_notes) (const char *user, const char *notes,
762 const char *stopnotes);
763
764 /* Return the processor core that thread PTID was last seen on.
765 This information is updated only when:
766 - update_thread_list is called
767 - thread stops
768 If the core cannot be determined -- either for the specified
769 thread, or right now, or in this debug session, or for this
770 target -- return -1. */
771 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
772
773 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
774 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
775 a match, 0 if there's a mismatch, and -1 if an error is
776 encountered while reading memory. */
777 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
778 CORE_ADDR memaddr, ULONGEST size);
779
780 /* Return the address of the start of the Thread Information Block
781 a Windows OS specific feature. */
782 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
783
784 /* Send the new settings of write permission variables. */
785 void (*to_set_permissions) (void);
786
787 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
788 with its details. Return 1 on success, 0 on failure. */
789 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
790 struct static_tracepoint_marker *marker);
791
792 /* Return a vector of all tracepoints markers string id ID, or all
793 markers if ID is NULL. */
794 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
795 (const char *id);
796
797 /* Return a traceframe info object describing the current
798 traceframe's contents. If the target doesn't support
799 traceframe info, return NULL. If the current traceframe is not
800 selected (the current traceframe number is -1), the target can
801 choose to return either NULL or an empty traceframe info. If
802 NULL is returned, for example in remote target, GDB will read
803 from the live inferior. If an empty traceframe info is
804 returned, for example in tfile target, which means the
805 traceframe info is available, but the requested memory is not
806 available in it. GDB will try to see if the requested memory
807 is available in the read-only sections. This method should not
808 cache data; higher layers take care of caching, invalidating,
809 and re-fetching when necessary. */
810 struct traceframe_info *(*to_traceframe_info) (void);
811
812 /* Ask the target to use or not to use agent according to USE. Return 1
813 successful, 0 otherwise. */
814 int (*to_use_agent) (int use);
815
816 /* Is the target able to use agent in current state? */
817 int (*to_can_use_agent) (void);
818
819 /* Check whether the target supports branch tracing. */
820 int (*to_supports_btrace) (void);
821
822 /* Enable branch tracing for PTID and allocate a branch trace target
823 information struct for reading and for disabling branch trace. */
824 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
825
826 /* Disable branch tracing and deallocate TINFO. */
827 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
828
829 /* Disable branch tracing and deallocate TINFO. This function is similar
830 to to_disable_btrace, except that it is called during teardown and is
831 only allowed to perform actions that are safe. A counter-example would
832 be attempting to talk to a remote target. */
833 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
834
835 /* Read branch trace data. */
836 VEC (btrace_block_s) *(*to_read_btrace) (struct btrace_target_info *,
837 enum btrace_read_type);
838
839 /* Stop trace recording. */
840 void (*to_stop_recording) (void);
841
842 /* Print information about the recording. */
843 void (*to_info_record) (void);
844
845 /* Save the recorded execution trace into a file. */
846 void (*to_save_record) (const char *filename);
847
848 /* Delete the recorded execution trace from the current position onwards. */
849 void (*to_delete_record) (void);
850
851 /* Query if the record target is currently replaying. */
852 int (*to_record_is_replaying) (void);
853
854 /* Go to the begin of the execution trace. */
855 void (*to_goto_record_begin) (void);
856
857 /* Go to the end of the execution trace. */
858 void (*to_goto_record_end) (void);
859
860 /* Go to a specific location in the recorded execution trace. */
861 void (*to_goto_record) (ULONGEST insn);
862
863 /* Disassemble SIZE instructions in the recorded execution trace from
864 the current position.
865 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
866 disassemble SIZE succeeding instructions. */
867 void (*to_insn_history) (int size, int flags);
868
869 /* Disassemble SIZE instructions in the recorded execution trace around
870 FROM.
871 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
872 disassemble SIZE instructions after FROM. */
873 void (*to_insn_history_from) (ULONGEST from, int size, int flags);
874
875 /* Disassemble a section of the recorded execution trace from instruction
876 BEGIN (inclusive) to instruction END (exclusive). */
877 void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
878
879 /* Print a function trace of the recorded execution trace.
880 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
881 succeeding functions. */
882 void (*to_call_history) (int size, int flags);
883
884 /* Print a function trace of the recorded execution trace starting
885 at function FROM.
886 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
887 SIZE functions after FROM. */
888 void (*to_call_history_from) (ULONGEST begin, int size, int flags);
889
890 /* Print a function trace of an execution trace section from function BEGIN
891 (inclusive) to function END (exclusive). */
892 void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
893
894 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
895 non-empty annex. */
896 int (*to_augmented_libraries_svr4_read) (void);
897
898 int to_magic;
899 /* Need sub-structure for target machine related rather than comm related?
900 */
901 };
902
903 /* Magic number for checking ops size. If a struct doesn't end with this
904 number, somebody changed the declaration but didn't change all the
905 places that initialize one. */
906
907 #define OPS_MAGIC 3840
908
909 /* The ops structure for our "current" target process. This should
910 never be NULL. If there is no target, it points to the dummy_target. */
911
912 extern struct target_ops current_target;
913
914 /* Define easy words for doing these operations on our current target. */
915
916 #define target_shortname (current_target.to_shortname)
917 #define target_longname (current_target.to_longname)
918
919 /* Does whatever cleanup is required for a target that we are no
920 longer going to be calling. This routine is automatically always
921 called after popping the target off the target stack - the target's
922 own methods are no longer available through the target vector.
923 Closing file descriptors and freeing all memory allocated memory are
924 typical things it should do. */
925
926 void target_close (struct target_ops *targ);
927
928 /* Attaches to a process on the target side. Arguments are as passed
929 to the `attach' command by the user. This routine can be called
930 when the target is not on the target-stack, if the target_can_run
931 routine returns 1; in that case, it must push itself onto the stack.
932 Upon exit, the target should be ready for normal operations, and
933 should be ready to deliver the status of the process immediately
934 (without waiting) to an upcoming target_wait call. */
935
936 void target_attach (char *, int);
937
938 /* Some targets don't generate traps when attaching to the inferior,
939 or their target_attach implementation takes care of the waiting.
940 These targets must set to_attach_no_wait. */
941
942 #define target_attach_no_wait \
943 (current_target.to_attach_no_wait)
944
945 /* The target_attach operation places a process under debugger control,
946 and stops the process.
947
948 This operation provides a target-specific hook that allows the
949 necessary bookkeeping to be performed after an attach completes. */
950 #define target_post_attach(pid) \
951 (*current_target.to_post_attach) (pid)
952
953 /* Takes a program previously attached to and detaches it.
954 The program may resume execution (some targets do, some don't) and will
955 no longer stop on signals, etc. We better not have left any breakpoints
956 in the program or it'll die when it hits one. ARGS is arguments
957 typed by the user (e.g. a signal to send the process). FROM_TTY
958 says whether to be verbose or not. */
959
960 extern void target_detach (const char *, int);
961
962 /* Disconnect from the current target without resuming it (leaving it
963 waiting for a debugger). */
964
965 extern void target_disconnect (char *, int);
966
967 /* Resume execution of the target process PTID (or a group of
968 threads). STEP says whether to single-step or to run free; SIGGNAL
969 is the signal to be given to the target, or GDB_SIGNAL_0 for no
970 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
971 PTID means `step/resume only this process id'. A wildcard PTID
972 (all threads, or all threads of process) means `step/resume
973 INFERIOR_PTID, and let other threads (for which the wildcard PTID
974 matches) resume with their 'thread->suspend.stop_signal' signal
975 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
976 if in "no pass" state. */
977
978 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
979
980 /* Wait for process pid to do something. PTID = -1 to wait for any
981 pid to do something. Return pid of child, or -1 in case of error;
982 store status through argument pointer STATUS. Note that it is
983 _NOT_ OK to throw_exception() out of target_wait() without popping
984 the debugging target from the stack; GDB isn't prepared to get back
985 to the prompt with a debugging target but without the frame cache,
986 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
987 options. */
988
989 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
990 int options);
991
992 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
993
994 extern void target_fetch_registers (struct regcache *regcache, int regno);
995
996 /* Store at least register REGNO, or all regs if REGNO == -1.
997 It can store as many registers as it wants to, so target_prepare_to_store
998 must have been previously called. Calls error() if there are problems. */
999
1000 extern void target_store_registers (struct regcache *regcache, int regs);
1001
1002 /* Get ready to modify the registers array. On machines which store
1003 individual registers, this doesn't need to do anything. On machines
1004 which store all the registers in one fell swoop, this makes sure
1005 that REGISTERS contains all the registers from the program being
1006 debugged. */
1007
1008 #define target_prepare_to_store(regcache) \
1009 (*current_target.to_prepare_to_store) (regcache)
1010
1011 /* Determine current address space of thread PTID. */
1012
1013 struct address_space *target_thread_address_space (ptid_t);
1014
1015 /* Implement the "info proc" command. This returns one if the request
1016 was handled, and zero otherwise. It can also throw an exception if
1017 an error was encountered while attempting to handle the
1018 request. */
1019
1020 int target_info_proc (char *, enum info_proc_what);
1021
1022 /* Returns true if this target can debug multiple processes
1023 simultaneously. */
1024
1025 #define target_supports_multi_process() \
1026 (*current_target.to_supports_multi_process) ()
1027
1028 /* Returns true if this target can disable address space randomization. */
1029
1030 int target_supports_disable_randomization (void);
1031
1032 /* Returns true if this target can enable and disable tracepoints
1033 while a trace experiment is running. */
1034
1035 #define target_supports_enable_disable_tracepoint() \
1036 (*current_target.to_supports_enable_disable_tracepoint) ()
1037
1038 #define target_supports_string_tracing() \
1039 (*current_target.to_supports_string_tracing) ()
1040
1041 /* Returns true if this target can handle breakpoint conditions
1042 on its end. */
1043
1044 #define target_supports_evaluation_of_breakpoint_conditions() \
1045 (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
1046
1047 /* Returns true if this target can handle breakpoint commands
1048 on its end. */
1049
1050 #define target_can_run_breakpoint_commands() \
1051 (*current_target.to_can_run_breakpoint_commands) ()
1052
1053 extern int target_read_string (CORE_ADDR, char **, int, int *);
1054
1055 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1056 ssize_t len);
1057
1058 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1059 ssize_t len);
1060
1061 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1062
1063 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1064
1065 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1066 ssize_t len);
1067
1068 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1069 ssize_t len);
1070
1071 /* Fetches the target's memory map. If one is found it is sorted
1072 and returned, after some consistency checking. Otherwise, NULL
1073 is returned. */
1074 VEC(mem_region_s) *target_memory_map (void);
1075
1076 /* Erase the specified flash region. */
1077 void target_flash_erase (ULONGEST address, LONGEST length);
1078
1079 /* Finish a sequence of flash operations. */
1080 void target_flash_done (void);
1081
1082 /* Describes a request for a memory write operation. */
1083 struct memory_write_request
1084 {
1085 /* Begining address that must be written. */
1086 ULONGEST begin;
1087 /* Past-the-end address. */
1088 ULONGEST end;
1089 /* The data to write. */
1090 gdb_byte *data;
1091 /* A callback baton for progress reporting for this request. */
1092 void *baton;
1093 };
1094 typedef struct memory_write_request memory_write_request_s;
1095 DEF_VEC_O(memory_write_request_s);
1096
1097 /* Enumeration specifying different flash preservation behaviour. */
1098 enum flash_preserve_mode
1099 {
1100 flash_preserve,
1101 flash_discard
1102 };
1103
1104 /* Write several memory blocks at once. This version can be more
1105 efficient than making several calls to target_write_memory, in
1106 particular because it can optimize accesses to flash memory.
1107
1108 Moreover, this is currently the only memory access function in gdb
1109 that supports writing to flash memory, and it should be used for
1110 all cases where access to flash memory is desirable.
1111
1112 REQUESTS is the vector (see vec.h) of memory_write_request.
1113 PRESERVE_FLASH_P indicates what to do with blocks which must be
1114 erased, but not completely rewritten.
1115 PROGRESS_CB is a function that will be periodically called to provide
1116 feedback to user. It will be called with the baton corresponding
1117 to the request currently being written. It may also be called
1118 with a NULL baton, when preserved flash sectors are being rewritten.
1119
1120 The function returns 0 on success, and error otherwise. */
1121 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1122 enum flash_preserve_mode preserve_flash_p,
1123 void (*progress_cb) (ULONGEST, void *));
1124
1125 /* Print a line about the current target. */
1126
1127 #define target_files_info() \
1128 (*current_target.to_files_info) (&current_target)
1129
1130 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1131 the target machine. Returns 0 for success, and returns non-zero or
1132 throws an error (with a detailed failure reason error code and
1133 message) otherwise. */
1134
1135 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1136 struct bp_target_info *bp_tgt);
1137
1138 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1139 machine. Result is 0 for success, non-zero for error. */
1140
1141 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1142 struct bp_target_info *bp_tgt);
1143
1144 /* Initialize the terminal settings we record for the inferior,
1145 before we actually run the inferior. */
1146
1147 #define target_terminal_init() \
1148 (*current_target.to_terminal_init) ()
1149
1150 /* Put the inferior's terminal settings into effect.
1151 This is preparation for starting or resuming the inferior. */
1152
1153 extern void target_terminal_inferior (void);
1154
1155 /* Put some of our terminal settings into effect,
1156 enough to get proper results from our output,
1157 but do not change into or out of RAW mode
1158 so that no input is discarded.
1159
1160 After doing this, either terminal_ours or terminal_inferior
1161 should be called to get back to a normal state of affairs. */
1162
1163 #define target_terminal_ours_for_output() \
1164 (*current_target.to_terminal_ours_for_output) ()
1165
1166 /* Put our terminal settings into effect.
1167 First record the inferior's terminal settings
1168 so they can be restored properly later. */
1169
1170 #define target_terminal_ours() \
1171 (*current_target.to_terminal_ours) ()
1172
1173 /* Save our terminal settings.
1174 This is called from TUI after entering or leaving the curses
1175 mode. Since curses modifies our terminal this call is here
1176 to take this change into account. */
1177
1178 #define target_terminal_save_ours() \
1179 (*current_target.to_terminal_save_ours) ()
1180
1181 /* Print useful information about our terminal status, if such a thing
1182 exists. */
1183
1184 #define target_terminal_info(arg, from_tty) \
1185 (*current_target.to_terminal_info) (arg, from_tty)
1186
1187 /* Kill the inferior process. Make it go away. */
1188
1189 extern void target_kill (void);
1190
1191 /* Load an executable file into the target process. This is expected
1192 to not only bring new code into the target process, but also to
1193 update GDB's symbol tables to match.
1194
1195 ARG contains command-line arguments, to be broken down with
1196 buildargv (). The first non-switch argument is the filename to
1197 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1198 0)), which is an offset to apply to the load addresses of FILE's
1199 sections. The target may define switches, or other non-switch
1200 arguments, as it pleases. */
1201
1202 extern void target_load (char *arg, int from_tty);
1203
1204 /* Start an inferior process and set inferior_ptid to its pid.
1205 EXEC_FILE is the file to run.
1206 ALLARGS is a string containing the arguments to the program.
1207 ENV is the environment vector to pass. Errors reported with error().
1208 On VxWorks and various standalone systems, we ignore exec_file. */
1209
1210 void target_create_inferior (char *exec_file, char *args,
1211 char **env, int from_tty);
1212
1213 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1214 notification of inferior events such as fork and vork immediately
1215 after the inferior is created. (This because of how gdb gets an
1216 inferior created via invoking a shell to do it. In such a scenario,
1217 if the shell init file has commands in it, the shell will fork and
1218 exec for each of those commands, and we will see each such fork
1219 event. Very bad.)
1220
1221 Such targets will supply an appropriate definition for this function. */
1222
1223 #define target_post_startup_inferior(ptid) \
1224 (*current_target.to_post_startup_inferior) (ptid)
1225
1226 /* On some targets, we can catch an inferior fork or vfork event when
1227 it occurs. These functions insert/remove an already-created
1228 catchpoint for such events. They return 0 for success, 1 if the
1229 catchpoint type is not supported and -1 for failure. */
1230
1231 #define target_insert_fork_catchpoint(pid) \
1232 (*current_target.to_insert_fork_catchpoint) (pid)
1233
1234 #define target_remove_fork_catchpoint(pid) \
1235 (*current_target.to_remove_fork_catchpoint) (pid)
1236
1237 #define target_insert_vfork_catchpoint(pid) \
1238 (*current_target.to_insert_vfork_catchpoint) (pid)
1239
1240 #define target_remove_vfork_catchpoint(pid) \
1241 (*current_target.to_remove_vfork_catchpoint) (pid)
1242
1243 /* If the inferior forks or vforks, this function will be called at
1244 the next resume in order to perform any bookkeeping and fiddling
1245 necessary to continue debugging either the parent or child, as
1246 requested, and releasing the other. Information about the fork
1247 or vfork event is available via get_last_target_status ().
1248 This function returns 1 if the inferior should not be resumed
1249 (i.e. there is another event pending). */
1250
1251 int target_follow_fork (int follow_child, int detach_fork);
1252
1253 /* On some targets, we can catch an inferior exec event when it
1254 occurs. These functions insert/remove an already-created
1255 catchpoint for such events. They return 0 for success, 1 if the
1256 catchpoint type is not supported and -1 for failure. */
1257
1258 #define target_insert_exec_catchpoint(pid) \
1259 (*current_target.to_insert_exec_catchpoint) (pid)
1260
1261 #define target_remove_exec_catchpoint(pid) \
1262 (*current_target.to_remove_exec_catchpoint) (pid)
1263
1264 /* Syscall catch.
1265
1266 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1267 If NEEDED is zero, it means the target can disable the mechanism to
1268 catch system calls because there are no more catchpoints of this type.
1269
1270 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1271 being requested. In this case, both TABLE_SIZE and TABLE should
1272 be ignored.
1273
1274 TABLE_SIZE is the number of elements in TABLE. It only matters if
1275 ANY_COUNT is zero.
1276
1277 TABLE is an array of ints, indexed by syscall number. An element in
1278 this array is nonzero if that syscall should be caught. This argument
1279 only matters if ANY_COUNT is zero.
1280
1281 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1282 for failure. */
1283
1284 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1285 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1286 table_size, table)
1287
1288 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1289 exit code of PID, if any. */
1290
1291 #define target_has_exited(pid,wait_status,exit_status) \
1292 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1293
1294 /* The debugger has completed a blocking wait() call. There is now
1295 some process event that must be processed. This function should
1296 be defined by those targets that require the debugger to perform
1297 cleanup or internal state changes in response to the process event. */
1298
1299 /* The inferior process has died. Do what is right. */
1300
1301 void target_mourn_inferior (void);
1302
1303 /* Does target have enough data to do a run or attach command? */
1304
1305 #define target_can_run(t) \
1306 ((t)->to_can_run) ()
1307
1308 /* Set list of signals to be handled in the target.
1309
1310 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1311 (enum gdb_signal). For every signal whose entry in this array is
1312 non-zero, the target is allowed -but not required- to skip reporting
1313 arrival of the signal to the GDB core by returning from target_wait,
1314 and to pass the signal directly to the inferior instead.
1315
1316 However, if the target is hardware single-stepping a thread that is
1317 about to receive a signal, it needs to be reported in any case, even
1318 if mentioned in a previous target_pass_signals call. */
1319
1320 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1321
1322 /* Set list of signals the target may pass to the inferior. This
1323 directly maps to the "handle SIGNAL pass/nopass" setting.
1324
1325 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1326 number (enum gdb_signal). For every signal whose entry in this
1327 array is non-zero, the target is allowed to pass the signal to the
1328 inferior. Signals not present in the array shall be silently
1329 discarded. This does not influence whether to pass signals to the
1330 inferior as a result of a target_resume call. This is useful in
1331 scenarios where the target needs to decide whether to pass or not a
1332 signal to the inferior without GDB core involvement, such as for
1333 example, when detaching (as threads may have been suspended with
1334 pending signals not reported to GDB). */
1335
1336 extern void target_program_signals (int nsig, unsigned char *program_signals);
1337
1338 /* Check to see if a thread is still alive. */
1339
1340 extern int target_thread_alive (ptid_t ptid);
1341
1342 /* Query for new threads and add them to the thread list. */
1343
1344 extern void target_find_new_threads (void);
1345
1346 /* Make target stop in a continuable fashion. (For instance, under
1347 Unix, this should act like SIGSTOP). This function is normally
1348 used by GUIs to implement a stop button. */
1349
1350 extern void target_stop (ptid_t ptid);
1351
1352 /* Send the specified COMMAND to the target's monitor
1353 (shell,interpreter) for execution. The result of the query is
1354 placed in OUTBUF. */
1355
1356 #define target_rcmd(command, outbuf) \
1357 (*current_target.to_rcmd) (command, outbuf)
1358
1359
1360 /* Does the target include all of memory, or only part of it? This
1361 determines whether we look up the target chain for other parts of
1362 memory if this target can't satisfy a request. */
1363
1364 extern int target_has_all_memory_1 (void);
1365 #define target_has_all_memory target_has_all_memory_1 ()
1366
1367 /* Does the target include memory? (Dummy targets don't.) */
1368
1369 extern int target_has_memory_1 (void);
1370 #define target_has_memory target_has_memory_1 ()
1371
1372 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1373 we start a process.) */
1374
1375 extern int target_has_stack_1 (void);
1376 #define target_has_stack target_has_stack_1 ()
1377
1378 /* Does the target have registers? (Exec files don't.) */
1379
1380 extern int target_has_registers_1 (void);
1381 #define target_has_registers target_has_registers_1 ()
1382
1383 /* Does the target have execution? Can we make it jump (through
1384 hoops), or pop its stack a few times? This means that the current
1385 target is currently executing; for some targets, that's the same as
1386 whether or not the target is capable of execution, but there are
1387 also targets which can be current while not executing. In that
1388 case this will become true after target_create_inferior or
1389 target_attach. */
1390
1391 extern int target_has_execution_1 (ptid_t);
1392
1393 /* Like target_has_execution_1, but always passes inferior_ptid. */
1394
1395 extern int target_has_execution_current (void);
1396
1397 #define target_has_execution target_has_execution_current ()
1398
1399 /* Default implementations for process_stratum targets. Return true
1400 if there's a selected inferior, false otherwise. */
1401
1402 extern int default_child_has_all_memory (struct target_ops *ops);
1403 extern int default_child_has_memory (struct target_ops *ops);
1404 extern int default_child_has_stack (struct target_ops *ops);
1405 extern int default_child_has_registers (struct target_ops *ops);
1406 extern int default_child_has_execution (struct target_ops *ops,
1407 ptid_t the_ptid);
1408
1409 /* Can the target support the debugger control of thread execution?
1410 Can it lock the thread scheduler? */
1411
1412 #define target_can_lock_scheduler \
1413 (current_target.to_has_thread_control & tc_schedlock)
1414
1415 /* Should the target enable async mode if it is supported? Temporary
1416 cludge until async mode is a strict superset of sync mode. */
1417 extern int target_async_permitted;
1418
1419 /* Can the target support asynchronous execution? */
1420 #define target_can_async_p() (current_target.to_can_async_p ())
1421
1422 /* Is the target in asynchronous execution mode? */
1423 #define target_is_async_p() (current_target.to_is_async_p ())
1424
1425 int target_supports_non_stop (void);
1426
1427 /* Put the target in async mode with the specified callback function. */
1428 #define target_async(CALLBACK,CONTEXT) \
1429 (current_target.to_async ((CALLBACK), (CONTEXT)))
1430
1431 #define target_execution_direction() \
1432 (current_target.to_execution_direction ())
1433
1434 /* Converts a process id to a string. Usually, the string just contains
1435 `process xyz', but on some systems it may contain
1436 `process xyz thread abc'. */
1437
1438 extern char *target_pid_to_str (ptid_t ptid);
1439
1440 extern char *normal_pid_to_str (ptid_t ptid);
1441
1442 /* Return a short string describing extra information about PID,
1443 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1444 is okay. */
1445
1446 #define target_extra_thread_info(TP) \
1447 (current_target.to_extra_thread_info (TP))
1448
1449 /* Return the thread's name. A NULL result means that the target
1450 could not determine this thread's name. */
1451
1452 extern char *target_thread_name (struct thread_info *);
1453
1454 /* Attempts to find the pathname of the executable file
1455 that was run to create a specified process.
1456
1457 The process PID must be stopped when this operation is used.
1458
1459 If the executable file cannot be determined, NULL is returned.
1460
1461 Else, a pointer to a character string containing the pathname
1462 is returned. This string should be copied into a buffer by
1463 the client if the string will not be immediately used, or if
1464 it must persist. */
1465
1466 #define target_pid_to_exec_file(pid) \
1467 (current_target.to_pid_to_exec_file) (pid)
1468
1469 /* See the to_thread_architecture description in struct target_ops. */
1470
1471 #define target_thread_architecture(ptid) \
1472 (current_target.to_thread_architecture (&current_target, ptid))
1473
1474 /*
1475 * Iterator function for target memory regions.
1476 * Calls a callback function once for each memory region 'mapped'
1477 * in the child process. Defined as a simple macro rather than
1478 * as a function macro so that it can be tested for nullity.
1479 */
1480
1481 #define target_find_memory_regions(FUNC, DATA) \
1482 (current_target.to_find_memory_regions) (FUNC, DATA)
1483
1484 /*
1485 * Compose corefile .note section.
1486 */
1487
1488 #define target_make_corefile_notes(BFD, SIZE_P) \
1489 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1490
1491 /* Bookmark interfaces. */
1492 #define target_get_bookmark(ARGS, FROM_TTY) \
1493 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1494
1495 #define target_goto_bookmark(ARG, FROM_TTY) \
1496 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1497
1498 /* Hardware watchpoint interfaces. */
1499
1500 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1501 write). Only the INFERIOR_PTID task is being queried. */
1502
1503 #define target_stopped_by_watchpoint \
1504 (*current_target.to_stopped_by_watchpoint)
1505
1506 /* Non-zero if we have steppable watchpoints */
1507
1508 #define target_have_steppable_watchpoint \
1509 (current_target.to_have_steppable_watchpoint)
1510
1511 /* Non-zero if we have continuable watchpoints */
1512
1513 #define target_have_continuable_watchpoint \
1514 (current_target.to_have_continuable_watchpoint)
1515
1516 /* Provide defaults for hardware watchpoint functions. */
1517
1518 /* If the *_hw_beakpoint functions have not been defined
1519 elsewhere use the definitions in the target vector. */
1520
1521 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1522 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1523 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1524 (including this one?). OTHERTYPE is who knows what... */
1525
1526 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1527 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1528
1529 /* Returns the number of debug registers needed to watch the given
1530 memory region, or zero if not supported. */
1531
1532 #define target_region_ok_for_hw_watchpoint(addr, len) \
1533 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1534
1535
1536 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1537 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1538 COND is the expression for its condition, or NULL if there's none.
1539 Returns 0 for success, 1 if the watchpoint type is not supported,
1540 -1 for failure. */
1541
1542 #define target_insert_watchpoint(addr, len, type, cond) \
1543 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1544
1545 #define target_remove_watchpoint(addr, len, type, cond) \
1546 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1547
1548 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1549 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1550 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1551 masked watchpoints are not supported, -1 for failure. */
1552
1553 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1554
1555 /* Remove a masked watchpoint at ADDR with the mask MASK.
1556 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1557 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1558 for failure. */
1559
1560 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1561
1562 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1563 the target machine. Returns 0 for success, and returns non-zero or
1564 throws an error (with a detailed failure reason error code and
1565 message) otherwise. */
1566
1567 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1568 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1569
1570 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1571 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1572
1573 /* Return number of debug registers needed for a ranged breakpoint,
1574 or -1 if ranged breakpoints are not supported. */
1575
1576 extern int target_ranged_break_num_registers (void);
1577
1578 /* Return non-zero if target knows the data address which triggered this
1579 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1580 INFERIOR_PTID task is being queried. */
1581 #define target_stopped_data_address(target, addr_p) \
1582 (*target.to_stopped_data_address) (target, addr_p)
1583
1584 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1585 LENGTH bytes beginning at START. */
1586 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1587 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1588
1589 /* Return non-zero if the target is capable of using hardware to evaluate
1590 the condition expression. In this case, if the condition is false when
1591 the watched memory location changes, execution may continue without the
1592 debugger being notified.
1593
1594 Due to limitations in the hardware implementation, it may be capable of
1595 avoiding triggering the watchpoint in some cases where the condition
1596 expression is false, but may report some false positives as well.
1597 For this reason, GDB will still evaluate the condition expression when
1598 the watchpoint triggers. */
1599 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1600 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1601
1602 /* Return number of debug registers needed for a masked watchpoint,
1603 -1 if masked watchpoints are not supported or -2 if the given address
1604 and mask combination cannot be used. */
1605
1606 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1607
1608 /* Target can execute in reverse? */
1609 #define target_can_execute_reverse \
1610 (current_target.to_can_execute_reverse ? \
1611 current_target.to_can_execute_reverse () : 0)
1612
1613 extern const struct target_desc *target_read_description (struct target_ops *);
1614
1615 #define target_get_ada_task_ptid(lwp, tid) \
1616 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1617
1618 /* Utility implementation of searching memory. */
1619 extern int simple_search_memory (struct target_ops* ops,
1620 CORE_ADDR start_addr,
1621 ULONGEST search_space_len,
1622 const gdb_byte *pattern,
1623 ULONGEST pattern_len,
1624 CORE_ADDR *found_addrp);
1625
1626 /* Main entry point for searching memory. */
1627 extern int target_search_memory (CORE_ADDR start_addr,
1628 ULONGEST search_space_len,
1629 const gdb_byte *pattern,
1630 ULONGEST pattern_len,
1631 CORE_ADDR *found_addrp);
1632
1633 /* Target file operations. */
1634
1635 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1636 target file descriptor, or -1 if an error occurs (and set
1637 *TARGET_ERRNO). */
1638 extern int target_fileio_open (const char *filename, int flags, int mode,
1639 int *target_errno);
1640
1641 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1642 Return the number of bytes written, or -1 if an error occurs
1643 (and set *TARGET_ERRNO). */
1644 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1645 ULONGEST offset, int *target_errno);
1646
1647 /* Read up to LEN bytes FD on the target into READ_BUF.
1648 Return the number of bytes read, or -1 if an error occurs
1649 (and set *TARGET_ERRNO). */
1650 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1651 ULONGEST offset, int *target_errno);
1652
1653 /* Close FD on the target. Return 0, or -1 if an error occurs
1654 (and set *TARGET_ERRNO). */
1655 extern int target_fileio_close (int fd, int *target_errno);
1656
1657 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1658 occurs (and set *TARGET_ERRNO). */
1659 extern int target_fileio_unlink (const char *filename, int *target_errno);
1660
1661 /* Read value of symbolic link FILENAME on the target. Return a
1662 null-terminated string allocated via xmalloc, or NULL if an error
1663 occurs (and set *TARGET_ERRNO). */
1664 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1665
1666 /* Read target file FILENAME. The return value will be -1 if the transfer
1667 fails or is not supported; 0 if the object is empty; or the length
1668 of the object otherwise. If a positive value is returned, a
1669 sufficiently large buffer will be allocated using xmalloc and
1670 returned in *BUF_P containing the contents of the object.
1671
1672 This method should be used for objects sufficiently small to store
1673 in a single xmalloc'd buffer, when no fixed bound on the object's
1674 size is known in advance. */
1675 extern LONGEST target_fileio_read_alloc (const char *filename,
1676 gdb_byte **buf_p);
1677
1678 /* Read target file FILENAME. The result is NUL-terminated and
1679 returned as a string, allocated using xmalloc. If an error occurs
1680 or the transfer is unsupported, NULL is returned. Empty objects
1681 are returned as allocated but empty strings. A warning is issued
1682 if the result contains any embedded NUL bytes. */
1683 extern char *target_fileio_read_stralloc (const char *filename);
1684
1685
1686 /* Tracepoint-related operations. */
1687
1688 #define target_trace_init() \
1689 (*current_target.to_trace_init) ()
1690
1691 #define target_download_tracepoint(t) \
1692 (*current_target.to_download_tracepoint) (t)
1693
1694 #define target_can_download_tracepoint() \
1695 (*current_target.to_can_download_tracepoint) ()
1696
1697 #define target_download_trace_state_variable(tsv) \
1698 (*current_target.to_download_trace_state_variable) (tsv)
1699
1700 #define target_enable_tracepoint(loc) \
1701 (*current_target.to_enable_tracepoint) (loc)
1702
1703 #define target_disable_tracepoint(loc) \
1704 (*current_target.to_disable_tracepoint) (loc)
1705
1706 #define target_trace_start() \
1707 (*current_target.to_trace_start) ()
1708
1709 #define target_trace_set_readonly_regions() \
1710 (*current_target.to_trace_set_readonly_regions) ()
1711
1712 #define target_get_trace_status(ts) \
1713 (*current_target.to_get_trace_status) (ts)
1714
1715 #define target_get_tracepoint_status(tp,utp) \
1716 (*current_target.to_get_tracepoint_status) (tp, utp)
1717
1718 #define target_trace_stop() \
1719 (*current_target.to_trace_stop) ()
1720
1721 #define target_trace_find(type,num,addr1,addr2,tpp) \
1722 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1723
1724 #define target_get_trace_state_variable_value(tsv,val) \
1725 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1726
1727 #define target_save_trace_data(filename) \
1728 (*current_target.to_save_trace_data) (filename)
1729
1730 #define target_upload_tracepoints(utpp) \
1731 (*current_target.to_upload_tracepoints) (utpp)
1732
1733 #define target_upload_trace_state_variables(utsvp) \
1734 (*current_target.to_upload_trace_state_variables) (utsvp)
1735
1736 #define target_get_raw_trace_data(buf,offset,len) \
1737 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1738
1739 #define target_get_min_fast_tracepoint_insn_len() \
1740 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1741
1742 #define target_set_disconnected_tracing(val) \
1743 (*current_target.to_set_disconnected_tracing) (val)
1744
1745 #define target_set_circular_trace_buffer(val) \
1746 (*current_target.to_set_circular_trace_buffer) (val)
1747
1748 #define target_set_trace_buffer_size(val) \
1749 (*current_target.to_set_trace_buffer_size) (val)
1750
1751 #define target_set_trace_notes(user,notes,stopnotes) \
1752 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1753
1754 #define target_get_tib_address(ptid, addr) \
1755 (*current_target.to_get_tib_address) ((ptid), (addr))
1756
1757 #define target_set_permissions() \
1758 (*current_target.to_set_permissions) ()
1759
1760 #define target_static_tracepoint_marker_at(addr, marker) \
1761 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1762
1763 #define target_static_tracepoint_markers_by_strid(marker_id) \
1764 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1765
1766 #define target_traceframe_info() \
1767 (*current_target.to_traceframe_info) ()
1768
1769 #define target_use_agent(use) \
1770 (*current_target.to_use_agent) (use)
1771
1772 #define target_can_use_agent() \
1773 (*current_target.to_can_use_agent) ()
1774
1775 #define target_augmented_libraries_svr4_read() \
1776 (*current_target.to_augmented_libraries_svr4_read) ()
1777
1778 /* Command logging facility. */
1779
1780 #define target_log_command(p) \
1781 do \
1782 if (current_target.to_log_command) \
1783 (*current_target.to_log_command) (p); \
1784 while (0)
1785
1786
1787 extern int target_core_of_thread (ptid_t ptid);
1788
1789 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1790 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1791 if there's a mismatch, and -1 if an error is encountered while
1792 reading memory. Throws an error if the functionality is found not
1793 to be supported by the current target. */
1794 int target_verify_memory (const gdb_byte *data,
1795 CORE_ADDR memaddr, ULONGEST size);
1796
1797 /* Routines for maintenance of the target structures...
1798
1799 complete_target_initialization: Finalize a target_ops by filling in
1800 any fields needed by the target implementation.
1801
1802 add_target: Add a target to the list of all possible targets.
1803
1804 push_target: Make this target the top of the stack of currently used
1805 targets, within its particular stratum of the stack. Result
1806 is 0 if now atop the stack, nonzero if not on top (maybe
1807 should warn user).
1808
1809 unpush_target: Remove this from the stack of currently used targets,
1810 no matter where it is on the list. Returns 0 if no
1811 change, 1 if removed from stack. */
1812
1813 extern void add_target (struct target_ops *);
1814
1815 extern void add_target_with_completer (struct target_ops *t,
1816 completer_ftype *completer);
1817
1818 extern void complete_target_initialization (struct target_ops *t);
1819
1820 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1821 for maintaining backwards compatibility when renaming targets. */
1822
1823 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1824
1825 extern void push_target (struct target_ops *);
1826
1827 extern int unpush_target (struct target_ops *);
1828
1829 extern void target_pre_inferior (int);
1830
1831 extern void target_preopen (int);
1832
1833 /* Does whatever cleanup is required to get rid of all pushed targets. */
1834 extern void pop_all_targets (void);
1835
1836 /* Like pop_all_targets, but pops only targets whose stratum is
1837 strictly above ABOVE_STRATUM. */
1838 extern void pop_all_targets_above (enum strata above_stratum);
1839
1840 extern int target_is_pushed (struct target_ops *t);
1841
1842 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1843 CORE_ADDR offset);
1844
1845 /* Struct target_section maps address ranges to file sections. It is
1846 mostly used with BFD files, but can be used without (e.g. for handling
1847 raw disks, or files not in formats handled by BFD). */
1848
1849 struct target_section
1850 {
1851 CORE_ADDR addr; /* Lowest address in section */
1852 CORE_ADDR endaddr; /* 1+highest address in section */
1853
1854 struct bfd_section *the_bfd_section;
1855
1856 /* The "owner" of the section.
1857 It can be any unique value. It is set by add_target_sections
1858 and used by remove_target_sections.
1859 For example, for executables it is a pointer to exec_bfd and
1860 for shlibs it is the so_list pointer. */
1861 void *owner;
1862 };
1863
1864 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1865
1866 struct target_section_table
1867 {
1868 struct target_section *sections;
1869 struct target_section *sections_end;
1870 };
1871
1872 /* Return the "section" containing the specified address. */
1873 struct target_section *target_section_by_addr (struct target_ops *target,
1874 CORE_ADDR addr);
1875
1876 /* Return the target section table this target (or the targets
1877 beneath) currently manipulate. */
1878
1879 extern struct target_section_table *target_get_section_table
1880 (struct target_ops *target);
1881
1882 /* From mem-break.c */
1883
1884 extern int memory_remove_breakpoint (struct gdbarch *,
1885 struct bp_target_info *);
1886
1887 extern int memory_insert_breakpoint (struct gdbarch *,
1888 struct bp_target_info *);
1889
1890 extern int default_memory_remove_breakpoint (struct gdbarch *,
1891 struct bp_target_info *);
1892
1893 extern int default_memory_insert_breakpoint (struct gdbarch *,
1894 struct bp_target_info *);
1895
1896
1897 /* From target.c */
1898
1899 extern void initialize_targets (void);
1900
1901 extern void noprocess (void) ATTRIBUTE_NORETURN;
1902
1903 extern void target_require_runnable (void);
1904
1905 extern void find_default_attach (struct target_ops *, char *, int);
1906
1907 extern void find_default_create_inferior (struct target_ops *,
1908 char *, char *, char **, int);
1909
1910 extern struct target_ops *find_target_beneath (struct target_ops *);
1911
1912 /* Read OS data object of type TYPE from the target, and return it in
1913 XML format. The result is NUL-terminated and returned as a string,
1914 allocated using xmalloc. If an error occurs or the transfer is
1915 unsupported, NULL is returned. Empty objects are returned as
1916 allocated but empty strings. */
1917
1918 extern char *target_get_osdata (const char *type);
1919
1920 \f
1921 /* Stuff that should be shared among the various remote targets. */
1922
1923 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1924 information (higher values, more information). */
1925 extern int remote_debug;
1926
1927 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1928 extern int baud_rate;
1929 /* Timeout limit for response from target. */
1930 extern int remote_timeout;
1931
1932 \f
1933
1934 /* Set the show memory breakpoints mode to show, and installs a cleanup
1935 to restore it back to the current value. */
1936 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1937
1938 extern int may_write_registers;
1939 extern int may_write_memory;
1940 extern int may_insert_breakpoints;
1941 extern int may_insert_tracepoints;
1942 extern int may_insert_fast_tracepoints;
1943 extern int may_stop;
1944
1945 extern void update_target_permissions (void);
1946
1947 \f
1948 /* Imported from machine dependent code. */
1949
1950 /* Blank target vector entries are initialized to target_ignore. */
1951 void target_ignore (void);
1952
1953 /* See to_supports_btrace in struct target_ops. */
1954 extern int target_supports_btrace (void);
1955
1956 /* See to_enable_btrace in struct target_ops. */
1957 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
1958
1959 /* See to_disable_btrace in struct target_ops. */
1960 extern void target_disable_btrace (struct btrace_target_info *btinfo);
1961
1962 /* See to_teardown_btrace in struct target_ops. */
1963 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
1964
1965 /* See to_read_btrace in struct target_ops. */
1966 extern VEC (btrace_block_s) *target_read_btrace (struct btrace_target_info *,
1967 enum btrace_read_type);
1968
1969 /* See to_stop_recording in struct target_ops. */
1970 extern void target_stop_recording (void);
1971
1972 /* See to_info_record in struct target_ops. */
1973 extern void target_info_record (void);
1974
1975 /* See to_save_record in struct target_ops. */
1976 extern void target_save_record (const char *filename);
1977
1978 /* Query if the target supports deleting the execution log. */
1979 extern int target_supports_delete_record (void);
1980
1981 /* See to_delete_record in struct target_ops. */
1982 extern void target_delete_record (void);
1983
1984 /* See to_record_is_replaying in struct target_ops. */
1985 extern int target_record_is_replaying (void);
1986
1987 /* See to_goto_record_begin in struct target_ops. */
1988 extern void target_goto_record_begin (void);
1989
1990 /* See to_goto_record_end in struct target_ops. */
1991 extern void target_goto_record_end (void);
1992
1993 /* See to_goto_record in struct target_ops. */
1994 extern void target_goto_record (ULONGEST insn);
1995
1996 /* See to_insn_history. */
1997 extern void target_insn_history (int size, int flags);
1998
1999 /* See to_insn_history_from. */
2000 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2001
2002 /* See to_insn_history_range. */
2003 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2004
2005 /* See to_call_history. */
2006 extern void target_call_history (int size, int flags);
2007
2008 /* See to_call_history_from. */
2009 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2010
2011 /* See to_call_history_range. */
2012 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2013
2014 #endif /* !defined (TARGET_H) */
This page took 0.122645 seconds and 4 git commands to generate.