2006-02-21 Andrew Stubbs <andrew.stubbs@st.com>
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #if !defined (TARGET_H)
27 #define TARGET_H
28
29 struct objfile;
30 struct ui_file;
31 struct mem_attrib;
32 struct target_ops;
33
34 /* This include file defines the interface between the main part
35 of the debugger, and the part which is target-specific, or
36 specific to the communications interface between us and the
37 target.
38
39 A TARGET is an interface between the debugger and a particular
40 kind of file or process. Targets can be STACKED in STRATA,
41 so that more than one target can potentially respond to a request.
42 In particular, memory accesses will walk down the stack of targets
43 until they find a target that is interested in handling that particular
44 address. STRATA are artificial boundaries on the stack, within
45 which particular kinds of targets live. Strata exist so that
46 people don't get confused by pushing e.g. a process target and then
47 a file target, and wondering why they can't see the current values
48 of variables any more (the file target is handling them and they
49 never get to the process target). So when you push a file target,
50 it goes into the file stratum, which is always below the process
51 stratum. */
52
53 #include "bfd.h"
54 #include "symtab.h"
55 #include "dcache.h"
56 #include "memattr.h"
57
58 enum strata
59 {
60 dummy_stratum, /* The lowest of the low */
61 file_stratum, /* Executable files, etc */
62 core_stratum, /* Core dump files */
63 download_stratum, /* Downloading of remote targets */
64 process_stratum, /* Executing processes */
65 thread_stratum /* Executing threads */
66 };
67
68 enum thread_control_capabilities
69 {
70 tc_none = 0, /* Default: can't control thread execution. */
71 tc_schedlock = 1, /* Can lock the thread scheduler. */
72 tc_switch = 2 /* Can switch the running thread on demand. */
73 };
74
75 /* Stuff for target_wait. */
76
77 /* Generally, what has the program done? */
78 enum target_waitkind
79 {
80 /* The program has exited. The exit status is in value.integer. */
81 TARGET_WAITKIND_EXITED,
82
83 /* The program has stopped with a signal. Which signal is in
84 value.sig. */
85 TARGET_WAITKIND_STOPPED,
86
87 /* The program has terminated with a signal. Which signal is in
88 value.sig. */
89 TARGET_WAITKIND_SIGNALLED,
90
91 /* The program is letting us know that it dynamically loaded something
92 (e.g. it called load(2) on AIX). */
93 TARGET_WAITKIND_LOADED,
94
95 /* The program has forked. A "related" process' ID is in
96 value.related_pid. I.e., if the child forks, value.related_pid
97 is the parent's ID. */
98
99 TARGET_WAITKIND_FORKED,
100
101 /* The program has vforked. A "related" process's ID is in
102 value.related_pid. */
103
104 TARGET_WAITKIND_VFORKED,
105
106 /* The program has exec'ed a new executable file. The new file's
107 pathname is pointed to by value.execd_pathname. */
108
109 TARGET_WAITKIND_EXECD,
110
111 /* The program has entered or returned from a system call. On
112 HP-UX, this is used in the hardware watchpoint implementation.
113 The syscall's unique integer ID number is in value.syscall_id */
114
115 TARGET_WAITKIND_SYSCALL_ENTRY,
116 TARGET_WAITKIND_SYSCALL_RETURN,
117
118 /* Nothing happened, but we stopped anyway. This perhaps should be handled
119 within target_wait, but I'm not sure target_wait should be resuming the
120 inferior. */
121 TARGET_WAITKIND_SPURIOUS,
122
123 /* An event has occured, but we should wait again.
124 Remote_async_wait() returns this when there is an event
125 on the inferior, but the rest of the world is not interested in
126 it. The inferior has not stopped, but has just sent some output
127 to the console, for instance. In this case, we want to go back
128 to the event loop and wait there for another event from the
129 inferior, rather than being stuck in the remote_async_wait()
130 function. This way the event loop is responsive to other events,
131 like for instance the user typing. */
132 TARGET_WAITKIND_IGNORE
133 };
134
135 struct target_waitstatus
136 {
137 enum target_waitkind kind;
138
139 /* Forked child pid, execd pathname, exit status or signal number. */
140 union
141 {
142 int integer;
143 enum target_signal sig;
144 int related_pid;
145 char *execd_pathname;
146 int syscall_id;
147 }
148 value;
149 };
150
151 /* Possible types of events that the inferior handler will have to
152 deal with. */
153 enum inferior_event_type
154 {
155 /* There is a request to quit the inferior, abandon it. */
156 INF_QUIT_REQ,
157 /* Process a normal inferior event which will result in target_wait
158 being called. */
159 INF_REG_EVENT,
160 /* Deal with an error on the inferior. */
161 INF_ERROR,
162 /* We are called because a timer went off. */
163 INF_TIMER,
164 /* We are called to do stuff after the inferior stops. */
165 INF_EXEC_COMPLETE,
166 /* We are called to do some stuff after the inferior stops, but we
167 are expected to reenter the proceed() and
168 handle_inferior_event() functions. This is used only in case of
169 'step n' like commands. */
170 INF_EXEC_CONTINUE
171 };
172
173 /* Return the string for a signal. */
174 extern char *target_signal_to_string (enum target_signal);
175
176 /* Return the name (SIGHUP, etc.) for a signal. */
177 extern char *target_signal_to_name (enum target_signal);
178
179 /* Given a name (SIGHUP, etc.), return its signal. */
180 enum target_signal target_signal_from_name (char *);
181 \f
182 /* Request the transfer of up to LEN 8-bit bytes of the target's
183 OBJECT. The OFFSET, for a seekable object, specifies the starting
184 point. The ANNEX can be used to provide additional data-specific
185 information to the target.
186
187 Return the number of bytes actually transfered, zero when no
188 further transfer is possible, and -1 when the transfer is not
189 supported.
190
191 NOTE: cagney/2003-10-17: The current interface does not support a
192 "retry" mechanism. Instead it assumes that at least one byte will
193 be transfered on each call.
194
195 NOTE: cagney/2003-10-17: The current interface can lead to
196 fragmented transfers. Lower target levels should not implement
197 hacks, such as enlarging the transfer, in an attempt to compensate
198 for this. Instead, the target stack should be extended so that it
199 implements supply/collect methods and a look-aside object cache.
200 With that available, the lowest target can safely and freely "push"
201 data up the stack.
202
203 NOTE: cagney/2003-10-17: Unlike the old query and the memory
204 transfer mechanisms, these methods are explicitly parameterized by
205 the target that it should be applied to.
206
207 NOTE: cagney/2003-10-17: Just like the old query and memory xfer
208 methods, these new methods perform partial transfers. The only
209 difference is that these new methods thought to include "partial"
210 in the name. The old code's failure to do this lead to much
211 confusion and duplication of effort as each target object attempted
212 to locally take responsibility for something it didn't have to
213 worry about.
214
215 NOTE: cagney/2003-10-17: With a TARGET_OBJECT_KOD object, for
216 backward compatibility with the "target_query" method that this
217 replaced, when OFFSET and LEN are both zero, return the "minimum"
218 buffer size. See "remote.c" for further information. */
219
220 enum target_object
221 {
222 /* Kernel Object Display transfer. See "kod.c" and "remote.c". */
223 TARGET_OBJECT_KOD,
224 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
225 TARGET_OBJECT_AVR,
226 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
227 TARGET_OBJECT_MEMORY,
228 /* Kernel Unwind Table. See "ia64-tdep.c". */
229 TARGET_OBJECT_UNWIND_TABLE,
230 /* Transfer auxilliary vector. */
231 TARGET_OBJECT_AUXV,
232 /* StackGhost cookie. See "sparc-tdep.c". */
233 TARGET_OBJECT_WCOOKIE
234
235 /* Possible future objects: TARGET_OBJECT_FILE, TARGET_OBJECT_PROC, ... */
236 };
237
238 extern LONGEST target_read_partial (struct target_ops *ops,
239 enum target_object object,
240 const char *annex, gdb_byte *buf,
241 ULONGEST offset, LONGEST len);
242
243 extern LONGEST target_write_partial (struct target_ops *ops,
244 enum target_object object,
245 const char *annex, const gdb_byte *buf,
246 ULONGEST offset, LONGEST len);
247
248 /* Wrappers to perform the full transfer. */
249 extern LONGEST target_read (struct target_ops *ops,
250 enum target_object object,
251 const char *annex, gdb_byte *buf,
252 ULONGEST offset, LONGEST len);
253
254 extern LONGEST target_write (struct target_ops *ops,
255 enum target_object object,
256 const char *annex, const gdb_byte *buf,
257 ULONGEST offset, LONGEST len);
258
259 /* Wrappers to target read/write that perform memory transfers. They
260 throw an error if the memory transfer fails.
261
262 NOTE: cagney/2003-10-23: The naming schema is lifted from
263 "frame.h". The parameter order is lifted from get_frame_memory,
264 which in turn lifted it from read_memory. */
265
266 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
267 gdb_byte *buf, LONGEST len);
268 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
269 CORE_ADDR addr, int len);
270 \f
271
272 /* If certain kinds of activity happen, target_wait should perform
273 callbacks. */
274 /* Right now we just call (*TARGET_ACTIVITY_FUNCTION) if I/O is possible
275 on TARGET_ACTIVITY_FD. */
276 extern int target_activity_fd;
277 /* Returns zero to leave the inferior alone, one to interrupt it. */
278 extern int (*target_activity_function) (void);
279 \f
280 struct thread_info; /* fwd decl for parameter list below: */
281
282 struct target_ops
283 {
284 struct target_ops *beneath; /* To the target under this one. */
285 char *to_shortname; /* Name this target type */
286 char *to_longname; /* Name for printing */
287 char *to_doc; /* Documentation. Does not include trailing
288 newline, and starts with a one-line descrip-
289 tion (probably similar to to_longname). */
290 /* Per-target scratch pad. */
291 void *to_data;
292 /* The open routine takes the rest of the parameters from the
293 command, and (if successful) pushes a new target onto the
294 stack. Targets should supply this routine, if only to provide
295 an error message. */
296 void (*to_open) (char *, int);
297 /* Old targets with a static target vector provide "to_close".
298 New re-entrant targets provide "to_xclose" and that is expected
299 to xfree everything (including the "struct target_ops"). */
300 void (*to_xclose) (struct target_ops *targ, int quitting);
301 void (*to_close) (int);
302 void (*to_attach) (char *, int);
303 void (*to_post_attach) (int);
304 void (*to_detach) (char *, int);
305 void (*to_disconnect) (char *, int);
306 void (*to_resume) (ptid_t, int, enum target_signal);
307 ptid_t (*to_wait) (ptid_t, struct target_waitstatus *);
308 void (*to_fetch_registers) (int);
309 void (*to_store_registers) (int);
310 void (*to_prepare_to_store) (void);
311
312 /* Transfer LEN bytes of memory between GDB address MYADDR and
313 target address MEMADDR. If WRITE, transfer them to the target, else
314 transfer them from the target. TARGET is the target from which we
315 get this function.
316
317 Return value, N, is one of the following:
318
319 0 means that we can't handle this. If errno has been set, it is the
320 error which prevented us from doing it (FIXME: What about bfd_error?).
321
322 positive (call it N) means that we have transferred N bytes
323 starting at MEMADDR. We might be able to handle more bytes
324 beyond this length, but no promises.
325
326 negative (call its absolute value N) means that we cannot
327 transfer right at MEMADDR, but we could transfer at least
328 something at MEMADDR + N.
329
330 NOTE: cagney/2004-10-01: This has been entirely superseeded by
331 to_xfer_partial and inferior inheritance. */
332
333 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
334 int len, int write,
335 struct mem_attrib *attrib,
336 struct target_ops *target);
337
338 void (*to_files_info) (struct target_ops *);
339 int (*to_insert_breakpoint) (CORE_ADDR, gdb_byte *);
340 int (*to_remove_breakpoint) (CORE_ADDR, gdb_byte *);
341 int (*to_can_use_hw_breakpoint) (int, int, int);
342 int (*to_insert_hw_breakpoint) (CORE_ADDR, gdb_byte *);
343 int (*to_remove_hw_breakpoint) (CORE_ADDR, gdb_byte *);
344 int (*to_remove_watchpoint) (CORE_ADDR, int, int);
345 int (*to_insert_watchpoint) (CORE_ADDR, int, int);
346 int (*to_stopped_by_watchpoint) (void);
347 int to_have_continuable_watchpoint;
348 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
349 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
350 void (*to_terminal_init) (void);
351 void (*to_terminal_inferior) (void);
352 void (*to_terminal_ours_for_output) (void);
353 void (*to_terminal_ours) (void);
354 void (*to_terminal_save_ours) (void);
355 void (*to_terminal_info) (char *, int);
356 void (*to_kill) (void);
357 void (*to_load) (char *, int);
358 int (*to_lookup_symbol) (char *, CORE_ADDR *);
359 void (*to_create_inferior) (char *, char *, char **, int);
360 void (*to_post_startup_inferior) (ptid_t);
361 void (*to_acknowledge_created_inferior) (int);
362 void (*to_insert_fork_catchpoint) (int);
363 int (*to_remove_fork_catchpoint) (int);
364 void (*to_insert_vfork_catchpoint) (int);
365 int (*to_remove_vfork_catchpoint) (int);
366 int (*to_follow_fork) (struct target_ops *, int);
367 void (*to_insert_exec_catchpoint) (int);
368 int (*to_remove_exec_catchpoint) (int);
369 int (*to_reported_exec_events_per_exec_call) (void);
370 int (*to_has_exited) (int, int, int *);
371 void (*to_mourn_inferior) (void);
372 int (*to_can_run) (void);
373 void (*to_notice_signals) (ptid_t ptid);
374 int (*to_thread_alive) (ptid_t ptid);
375 void (*to_find_new_threads) (void);
376 char *(*to_pid_to_str) (ptid_t);
377 char *(*to_extra_thread_info) (struct thread_info *);
378 void (*to_stop) (void);
379 void (*to_rcmd) (char *command, struct ui_file *output);
380 struct symtab_and_line *(*to_enable_exception_callback) (enum
381 exception_event_kind,
382 int);
383 struct exception_event_record *(*to_get_current_exception_event) (void);
384 char *(*to_pid_to_exec_file) (int pid);
385 enum strata to_stratum;
386 int to_has_all_memory;
387 int to_has_memory;
388 int to_has_stack;
389 int to_has_registers;
390 int to_has_execution;
391 int to_has_thread_control; /* control thread execution */
392 struct section_table
393 *to_sections;
394 struct section_table
395 *to_sections_end;
396 /* ASYNC target controls */
397 int (*to_can_async_p) (void);
398 int (*to_is_async_p) (void);
399 void (*to_async) (void (*cb) (enum inferior_event_type, void *context),
400 void *context);
401 int to_async_mask_value;
402 int (*to_find_memory_regions) (int (*) (CORE_ADDR,
403 unsigned long,
404 int, int, int,
405 void *),
406 void *);
407 char * (*to_make_corefile_notes) (bfd *, int *);
408
409 /* Return the thread-local address at OFFSET in the
410 thread-local storage for the thread PTID and the shared library
411 or executable file given by OBJFILE. If that block of
412 thread-local storage hasn't been allocated yet, this function
413 may return an error. */
414 CORE_ADDR (*to_get_thread_local_address) (ptid_t ptid,
415 CORE_ADDR load_module_addr,
416 CORE_ADDR offset);
417
418 /* Perform partial transfers on OBJECT. See target_read_partial
419 and target_write_partial for details of each variant. One, and
420 only one, of readbuf or writebuf must be non-NULL. */
421 LONGEST (*to_xfer_partial) (struct target_ops *ops,
422 enum target_object object, const char *annex,
423 gdb_byte *readbuf, const gdb_byte *writebuf,
424 ULONGEST offset, LONGEST len);
425
426 int to_magic;
427 /* Need sub-structure for target machine related rather than comm related?
428 */
429 };
430
431 /* Magic number for checking ops size. If a struct doesn't end with this
432 number, somebody changed the declaration but didn't change all the
433 places that initialize one. */
434
435 #define OPS_MAGIC 3840
436
437 /* The ops structure for our "current" target process. This should
438 never be NULL. If there is no target, it points to the dummy_target. */
439
440 extern struct target_ops current_target;
441
442 /* Define easy words for doing these operations on our current target. */
443
444 #define target_shortname (current_target.to_shortname)
445 #define target_longname (current_target.to_longname)
446
447 /* Does whatever cleanup is required for a target that we are no
448 longer going to be calling. QUITTING indicates that GDB is exiting
449 and should not get hung on an error (otherwise it is important to
450 perform clean termination, even if it takes a while). This routine
451 is automatically always called when popping the target off the
452 target stack (to_beneath is undefined). Closing file descriptors
453 and freeing all memory allocated memory are typical things it
454 should do. */
455
456 void target_close (struct target_ops *targ, int quitting);
457
458 /* Attaches to a process on the target side. Arguments are as passed
459 to the `attach' command by the user. This routine can be called
460 when the target is not on the target-stack, if the target_can_run
461 routine returns 1; in that case, it must push itself onto the stack.
462 Upon exit, the target should be ready for normal operations, and
463 should be ready to deliver the status of the process immediately
464 (without waiting) to an upcoming target_wait call. */
465
466 #define target_attach(args, from_tty) \
467 (*current_target.to_attach) (args, from_tty)
468
469 /* The target_attach operation places a process under debugger control,
470 and stops the process.
471
472 This operation provides a target-specific hook that allows the
473 necessary bookkeeping to be performed after an attach completes. */
474 #define target_post_attach(pid) \
475 (*current_target.to_post_attach) (pid)
476
477 /* Takes a program previously attached to and detaches it.
478 The program may resume execution (some targets do, some don't) and will
479 no longer stop on signals, etc. We better not have left any breakpoints
480 in the program or it'll die when it hits one. ARGS is arguments
481 typed by the user (e.g. a signal to send the process). FROM_TTY
482 says whether to be verbose or not. */
483
484 extern void target_detach (char *, int);
485
486 /* Disconnect from the current target without resuming it (leaving it
487 waiting for a debugger). */
488
489 extern void target_disconnect (char *, int);
490
491 /* Resume execution of the target process PTID. STEP says whether to
492 single-step or to run free; SIGGNAL is the signal to be given to
493 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
494 pass TARGET_SIGNAL_DEFAULT. */
495
496 #define target_resume(ptid, step, siggnal) \
497 do { \
498 dcache_invalidate(target_dcache); \
499 (*current_target.to_resume) (ptid, step, siggnal); \
500 } while (0)
501
502 /* Wait for process pid to do something. PTID = -1 to wait for any
503 pid to do something. Return pid of child, or -1 in case of error;
504 store status through argument pointer STATUS. Note that it is
505 _NOT_ OK to throw_exception() out of target_wait() without popping
506 the debugging target from the stack; GDB isn't prepared to get back
507 to the prompt with a debugging target but without the frame cache,
508 stop_pc, etc., set up. */
509
510 #define target_wait(ptid, status) \
511 (*current_target.to_wait) (ptid, status)
512
513 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
514
515 #define target_fetch_registers(regno) \
516 (*current_target.to_fetch_registers) (regno)
517
518 /* Store at least register REGNO, or all regs if REGNO == -1.
519 It can store as many registers as it wants to, so target_prepare_to_store
520 must have been previously called. Calls error() if there are problems. */
521
522 #define target_store_registers(regs) \
523 (*current_target.to_store_registers) (regs)
524
525 /* Get ready to modify the registers array. On machines which store
526 individual registers, this doesn't need to do anything. On machines
527 which store all the registers in one fell swoop, this makes sure
528 that REGISTERS contains all the registers from the program being
529 debugged. */
530
531 #define target_prepare_to_store() \
532 (*current_target.to_prepare_to_store) ()
533
534 extern DCACHE *target_dcache;
535
536 extern int do_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
537 int write, struct mem_attrib *attrib);
538
539 extern int target_read_string (CORE_ADDR, char **, int, int *);
540
541 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
542
543 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
544 int len);
545
546 extern int xfer_memory (CORE_ADDR, gdb_byte *, int, int,
547 struct mem_attrib *, struct target_ops *);
548
549 extern int child_xfer_memory (CORE_ADDR, gdb_byte *, int, int,
550 struct mem_attrib *, struct target_ops *);
551
552 /* Make a single attempt at transfering LEN bytes. On a successful
553 transfer, the number of bytes actually transfered is returned and
554 ERR is set to 0. When a transfer fails, -1 is returned (the number
555 of bytes actually transfered is not defined) and ERR is set to a
556 non-zero error indication. */
557
558 extern int target_read_memory_partial (CORE_ADDR addr, gdb_byte *buf,
559 int len, int *err);
560
561 extern int target_write_memory_partial (CORE_ADDR addr, gdb_byte *buf,
562 int len, int *err);
563
564 extern char *child_pid_to_exec_file (int);
565
566 extern char *child_core_file_to_sym_file (char *);
567
568 #if defined(CHILD_POST_ATTACH)
569 extern void child_post_attach (int);
570 #endif
571
572 extern void child_post_startup_inferior (ptid_t);
573
574 extern void child_acknowledge_created_inferior (int);
575
576 extern void child_insert_fork_catchpoint (int);
577
578 extern int child_remove_fork_catchpoint (int);
579
580 extern void child_insert_vfork_catchpoint (int);
581
582 extern int child_remove_vfork_catchpoint (int);
583
584 extern void child_acknowledge_created_inferior (int);
585
586 extern int child_follow_fork (struct target_ops *, int);
587
588 extern void child_insert_exec_catchpoint (int);
589
590 extern int child_remove_exec_catchpoint (int);
591
592 extern int child_reported_exec_events_per_exec_call (void);
593
594 extern int child_has_exited (int, int, int *);
595
596 extern int child_thread_alive (ptid_t);
597
598 /* From infrun.c. */
599
600 extern int inferior_has_forked (int pid, int *child_pid);
601
602 extern int inferior_has_vforked (int pid, int *child_pid);
603
604 extern int inferior_has_execd (int pid, char **execd_pathname);
605
606 /* From exec.c */
607
608 extern void print_section_info (struct target_ops *, bfd *);
609
610 /* Print a line about the current target. */
611
612 #define target_files_info() \
613 (*current_target.to_files_info) (&current_target)
614
615 /* Insert a breakpoint at address ADDR in the target machine. SAVE is
616 a pointer to memory allocated for saving the target contents. It
617 is guaranteed by the caller to be long enough to save the number of
618 breakpoint bytes indicated by BREAKPOINT_FROM_PC. Result is 0 for
619 success, or an errno value. */
620
621 #define target_insert_breakpoint(addr, save) \
622 (*current_target.to_insert_breakpoint) (addr, save)
623
624 /* Remove a breakpoint at address ADDR in the target machine.
625 SAVE is a pointer to the same save area
626 that was previously passed to target_insert_breakpoint.
627 Result is 0 for success, or an errno value. */
628
629 #define target_remove_breakpoint(addr, save) \
630 (*current_target.to_remove_breakpoint) (addr, save)
631
632 /* Initialize the terminal settings we record for the inferior,
633 before we actually run the inferior. */
634
635 #define target_terminal_init() \
636 (*current_target.to_terminal_init) ()
637
638 /* Put the inferior's terminal settings into effect.
639 This is preparation for starting or resuming the inferior. */
640
641 #define target_terminal_inferior() \
642 (*current_target.to_terminal_inferior) ()
643
644 /* Put some of our terminal settings into effect,
645 enough to get proper results from our output,
646 but do not change into or out of RAW mode
647 so that no input is discarded.
648
649 After doing this, either terminal_ours or terminal_inferior
650 should be called to get back to a normal state of affairs. */
651
652 #define target_terminal_ours_for_output() \
653 (*current_target.to_terminal_ours_for_output) ()
654
655 /* Put our terminal settings into effect.
656 First record the inferior's terminal settings
657 so they can be restored properly later. */
658
659 #define target_terminal_ours() \
660 (*current_target.to_terminal_ours) ()
661
662 /* Save our terminal settings.
663 This is called from TUI after entering or leaving the curses
664 mode. Since curses modifies our terminal this call is here
665 to take this change into account. */
666
667 #define target_terminal_save_ours() \
668 (*current_target.to_terminal_save_ours) ()
669
670 /* Print useful information about our terminal status, if such a thing
671 exists. */
672
673 #define target_terminal_info(arg, from_tty) \
674 (*current_target.to_terminal_info) (arg, from_tty)
675
676 /* Kill the inferior process. Make it go away. */
677
678 #define target_kill() \
679 (*current_target.to_kill) ()
680
681 /* Load an executable file into the target process. This is expected
682 to not only bring new code into the target process, but also to
683 update GDB's symbol tables to match.
684
685 ARG contains command-line arguments, to be broken down with
686 buildargv (). The first non-switch argument is the filename to
687 load, FILE; the second is a number (as parsed by strtoul (..., ...,
688 0)), which is an offset to apply to the load addresses of FILE's
689 sections. The target may define switches, or other non-switch
690 arguments, as it pleases. */
691
692 extern void target_load (char *arg, int from_tty);
693
694 /* Look up a symbol in the target's symbol table. NAME is the symbol
695 name. ADDRP is a CORE_ADDR * pointing to where the value of the
696 symbol should be returned. The result is 0 if successful, nonzero
697 if the symbol does not exist in the target environment. This
698 function should not call error() if communication with the target
699 is interrupted, since it is called from symbol reading, but should
700 return nonzero, possibly doing a complain(). */
701
702 #define target_lookup_symbol(name, addrp) \
703 (*current_target.to_lookup_symbol) (name, addrp)
704
705 /* Start an inferior process and set inferior_ptid to its pid.
706 EXEC_FILE is the file to run.
707 ALLARGS is a string containing the arguments to the program.
708 ENV is the environment vector to pass. Errors reported with error().
709 On VxWorks and various standalone systems, we ignore exec_file. */
710
711 #define target_create_inferior(exec_file, args, env, FROM_TTY) \
712 (*current_target.to_create_inferior) (exec_file, args, env, (FROM_TTY))
713
714
715 /* Some targets (such as ttrace-based HPUX) don't allow us to request
716 notification of inferior events such as fork and vork immediately
717 after the inferior is created. (This because of how gdb gets an
718 inferior created via invoking a shell to do it. In such a scenario,
719 if the shell init file has commands in it, the shell will fork and
720 exec for each of those commands, and we will see each such fork
721 event. Very bad.)
722
723 Such targets will supply an appropriate definition for this function. */
724
725 #define target_post_startup_inferior(ptid) \
726 (*current_target.to_post_startup_inferior) (ptid)
727
728 /* On some targets, the sequence of starting up an inferior requires
729 some synchronization between gdb and the new inferior process, PID. */
730
731 #define target_acknowledge_created_inferior(pid) \
732 (*current_target.to_acknowledge_created_inferior) (pid)
733
734 /* On some targets, we can catch an inferior fork or vfork event when
735 it occurs. These functions insert/remove an already-created
736 catchpoint for such events. */
737
738 #define target_insert_fork_catchpoint(pid) \
739 (*current_target.to_insert_fork_catchpoint) (pid)
740
741 #define target_remove_fork_catchpoint(pid) \
742 (*current_target.to_remove_fork_catchpoint) (pid)
743
744 #define target_insert_vfork_catchpoint(pid) \
745 (*current_target.to_insert_vfork_catchpoint) (pid)
746
747 #define target_remove_vfork_catchpoint(pid) \
748 (*current_target.to_remove_vfork_catchpoint) (pid)
749
750 /* If the inferior forks or vforks, this function will be called at
751 the next resume in order to perform any bookkeeping and fiddling
752 necessary to continue debugging either the parent or child, as
753 requested, and releasing the other. Information about the fork
754 or vfork event is available via get_last_target_status ().
755 This function returns 1 if the inferior should not be resumed
756 (i.e. there is another event pending). */
757
758 int target_follow_fork (int follow_child);
759
760 /* On some targets, we can catch an inferior exec event when it
761 occurs. These functions insert/remove an already-created
762 catchpoint for such events. */
763
764 #define target_insert_exec_catchpoint(pid) \
765 (*current_target.to_insert_exec_catchpoint) (pid)
766
767 #define target_remove_exec_catchpoint(pid) \
768 (*current_target.to_remove_exec_catchpoint) (pid)
769
770 /* Returns the number of exec events that are reported when a process
771 invokes a flavor of the exec() system call on this target, if exec
772 events are being reported. */
773
774 #define target_reported_exec_events_per_exec_call() \
775 (*current_target.to_reported_exec_events_per_exec_call) ()
776
777 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
778 exit code of PID, if any. */
779
780 #define target_has_exited(pid,wait_status,exit_status) \
781 (*current_target.to_has_exited) (pid,wait_status,exit_status)
782
783 /* The debugger has completed a blocking wait() call. There is now
784 some process event that must be processed. This function should
785 be defined by those targets that require the debugger to perform
786 cleanup or internal state changes in response to the process event. */
787
788 /* The inferior process has died. Do what is right. */
789
790 #define target_mourn_inferior() \
791 (*current_target.to_mourn_inferior) ()
792
793 /* Does target have enough data to do a run or attach command? */
794
795 #define target_can_run(t) \
796 ((t)->to_can_run) ()
797
798 /* post process changes to signal handling in the inferior. */
799
800 #define target_notice_signals(ptid) \
801 (*current_target.to_notice_signals) (ptid)
802
803 /* Check to see if a thread is still alive. */
804
805 #define target_thread_alive(ptid) \
806 (*current_target.to_thread_alive) (ptid)
807
808 /* Query for new threads and add them to the thread list. */
809
810 #define target_find_new_threads() \
811 (*current_target.to_find_new_threads) (); \
812
813 /* Make target stop in a continuable fashion. (For instance, under
814 Unix, this should act like SIGSTOP). This function is normally
815 used by GUIs to implement a stop button. */
816
817 #define target_stop current_target.to_stop
818
819 /* Send the specified COMMAND to the target's monitor
820 (shell,interpreter) for execution. The result of the query is
821 placed in OUTBUF. */
822
823 #define target_rcmd(command, outbuf) \
824 (*current_target.to_rcmd) (command, outbuf)
825
826
827 /* Get the symbol information for a breakpointable routine called when
828 an exception event occurs.
829 Intended mainly for C++, and for those
830 platforms/implementations where such a callback mechanism is available,
831 e.g. HP-UX with ANSI C++ (aCC). Some compilers (e.g. g++) support
832 different mechanisms for debugging exceptions. */
833
834 #define target_enable_exception_callback(kind, enable) \
835 (*current_target.to_enable_exception_callback) (kind, enable)
836
837 /* Get the current exception event kind -- throw or catch, etc. */
838
839 #define target_get_current_exception_event() \
840 (*current_target.to_get_current_exception_event) ()
841
842 /* Does the target include all of memory, or only part of it? This
843 determines whether we look up the target chain for other parts of
844 memory if this target can't satisfy a request. */
845
846 #define target_has_all_memory \
847 (current_target.to_has_all_memory)
848
849 /* Does the target include memory? (Dummy targets don't.) */
850
851 #define target_has_memory \
852 (current_target.to_has_memory)
853
854 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
855 we start a process.) */
856
857 #define target_has_stack \
858 (current_target.to_has_stack)
859
860 /* Does the target have registers? (Exec files don't.) */
861
862 #define target_has_registers \
863 (current_target.to_has_registers)
864
865 /* Does the target have execution? Can we make it jump (through
866 hoops), or pop its stack a few times? FIXME: If this is to work that
867 way, it needs to check whether an inferior actually exists.
868 remote-udi.c and probably other targets can be the current target
869 when the inferior doesn't actually exist at the moment. Right now
870 this just tells us whether this target is *capable* of execution. */
871
872 #define target_has_execution \
873 (current_target.to_has_execution)
874
875 /* Can the target support the debugger control of thread execution?
876 a) Can it lock the thread scheduler?
877 b) Can it switch the currently running thread? */
878
879 #define target_can_lock_scheduler \
880 (current_target.to_has_thread_control & tc_schedlock)
881
882 #define target_can_switch_threads \
883 (current_target.to_has_thread_control & tc_switch)
884
885 /* Can the target support asynchronous execution? */
886 #define target_can_async_p() (current_target.to_can_async_p ())
887
888 /* Is the target in asynchronous execution mode? */
889 #define target_is_async_p() (current_target.to_is_async_p())
890
891 /* Put the target in async mode with the specified callback function. */
892 #define target_async(CALLBACK,CONTEXT) \
893 (current_target.to_async((CALLBACK), (CONTEXT)))
894
895 /* This is to be used ONLY within call_function_by_hand(). It provides
896 a workaround, to have inferior function calls done in sychronous
897 mode, even though the target is asynchronous. After
898 target_async_mask(0) is called, calls to target_can_async_p() will
899 return FALSE , so that target_resume() will not try to start the
900 target asynchronously. After the inferior stops, we IMMEDIATELY
901 restore the previous nature of the target, by calling
902 target_async_mask(1). After that, target_can_async_p() will return
903 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
904
905 FIXME ezannoni 1999-12-13: we won't need this once we move
906 the turning async on and off to the single execution commands,
907 from where it is done currently, in remote_resume(). */
908
909 #define target_async_mask_value \
910 (current_target.to_async_mask_value)
911
912 extern int target_async_mask (int mask);
913
914 /* Converts a process id to a string. Usually, the string just contains
915 `process xyz', but on some systems it may contain
916 `process xyz thread abc'. */
917
918 #undef target_pid_to_str
919 #define target_pid_to_str(PID) current_target.to_pid_to_str (PID)
920
921 #ifndef target_tid_to_str
922 #define target_tid_to_str(PID) \
923 target_pid_to_str (PID)
924 extern char *normal_pid_to_str (ptid_t ptid);
925 #endif
926
927 /* Return a short string describing extra information about PID,
928 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
929 is okay. */
930
931 #define target_extra_thread_info(TP) \
932 (current_target.to_extra_thread_info (TP))
933
934 /*
935 * New Objfile Event Hook:
936 *
937 * Sometimes a GDB component wants to get notified whenever a new
938 * objfile is loaded. Mainly this is used by thread-debugging
939 * implementations that need to know when symbols for the target
940 * thread implemenation are available.
941 *
942 * The old way of doing this is to define a macro 'target_new_objfile'
943 * that points to the function that you want to be called on every
944 * objfile/shlib load.
945
946 The new way is to grab the function pointer,
947 'deprecated_target_new_objfile_hook', and point it to the function
948 that you want to be called on every objfile/shlib load.
949
950 If multiple clients are willing to be cooperative, they can each
951 save a pointer to the previous value of
952 deprecated_target_new_objfile_hook before modifying it, and arrange
953 for their function to call the previous function in the chain. In
954 that way, multiple clients can receive this notification (something
955 like with signal handlers). */
956
957 extern void (*deprecated_target_new_objfile_hook) (struct objfile *);
958
959 #ifndef target_pid_or_tid_to_str
960 #define target_pid_or_tid_to_str(ID) \
961 target_pid_to_str (ID)
962 #endif
963
964 /* Attempts to find the pathname of the executable file
965 that was run to create a specified process.
966
967 The process PID must be stopped when this operation is used.
968
969 If the executable file cannot be determined, NULL is returned.
970
971 Else, a pointer to a character string containing the pathname
972 is returned. This string should be copied into a buffer by
973 the client if the string will not be immediately used, or if
974 it must persist. */
975
976 #define target_pid_to_exec_file(pid) \
977 (current_target.to_pid_to_exec_file) (pid)
978
979 /*
980 * Iterator function for target memory regions.
981 * Calls a callback function once for each memory region 'mapped'
982 * in the child process. Defined as a simple macro rather than
983 * as a function macro so that it can be tested for nullity.
984 */
985
986 #define target_find_memory_regions(FUNC, DATA) \
987 (current_target.to_find_memory_regions) (FUNC, DATA)
988
989 /*
990 * Compose corefile .note section.
991 */
992
993 #define target_make_corefile_notes(BFD, SIZE_P) \
994 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
995
996 /* Thread-local values. */
997 #define target_get_thread_local_address \
998 (current_target.to_get_thread_local_address)
999 #define target_get_thread_local_address_p() \
1000 (target_get_thread_local_address != NULL)
1001
1002 /* Hook to call target dependent code just after inferior target process has
1003 started. */
1004
1005 #ifndef TARGET_CREATE_INFERIOR_HOOK
1006 #define TARGET_CREATE_INFERIOR_HOOK(PID)
1007 #endif
1008
1009 /* Hardware watchpoint interfaces. */
1010
1011 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1012 write). */
1013
1014 #ifndef STOPPED_BY_WATCHPOINT
1015 #define STOPPED_BY_WATCHPOINT(w) \
1016 (*current_target.to_stopped_by_watchpoint) ()
1017 #endif
1018
1019 /* Non-zero if we have continuable watchpoints */
1020
1021 #ifndef HAVE_CONTINUABLE_WATCHPOINT
1022 #define HAVE_CONTINUABLE_WATCHPOINT \
1023 (current_target.to_have_continuable_watchpoint)
1024 #endif
1025
1026 /* Provide defaults for hardware watchpoint functions. */
1027
1028 /* If the *_hw_beakpoint functions have not been defined
1029 elsewhere use the definitions in the target vector. */
1030
1031 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1032 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1033 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1034 (including this one?). OTHERTYPE is who knows what... */
1035
1036 #ifndef TARGET_CAN_USE_HARDWARE_WATCHPOINT
1037 #define TARGET_CAN_USE_HARDWARE_WATCHPOINT(TYPE,CNT,OTHERTYPE) \
1038 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1039 #endif
1040
1041 #ifndef TARGET_REGION_OK_FOR_HW_WATCHPOINT
1042 #define TARGET_REGION_OK_FOR_HW_WATCHPOINT(addr, len) \
1043 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1044 #endif
1045
1046
1047 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes. TYPE is 0
1048 for write, 1 for read, and 2 for read/write accesses. Returns 0 for
1049 success, non-zero for failure. */
1050
1051 #ifndef target_insert_watchpoint
1052 #define target_insert_watchpoint(addr, len, type) \
1053 (*current_target.to_insert_watchpoint) (addr, len, type)
1054
1055 #define target_remove_watchpoint(addr, len, type) \
1056 (*current_target.to_remove_watchpoint) (addr, len, type)
1057 #endif
1058
1059 #ifndef target_insert_hw_breakpoint
1060 #define target_insert_hw_breakpoint(addr, save) \
1061 (*current_target.to_insert_hw_breakpoint) (addr, save)
1062
1063 #define target_remove_hw_breakpoint(addr, save) \
1064 (*current_target.to_remove_hw_breakpoint) (addr, save)
1065 #endif
1066
1067 extern int target_stopped_data_address_p (struct target_ops *);
1068
1069 #ifndef target_stopped_data_address
1070 #define target_stopped_data_address(target, x) \
1071 (*target.to_stopped_data_address) (target, x)
1072 #else
1073 /* Horrible hack to get around existing macros :-(. */
1074 #define target_stopped_data_address_p(CURRENT_TARGET) (1)
1075 #endif
1076
1077 /* This will only be defined by a target that supports catching vfork events,
1078 such as HP-UX.
1079
1080 On some targets (such as HP-UX 10.20 and earlier), resuming a newly vforked
1081 child process after it has exec'd, causes the parent process to resume as
1082 well. To prevent the parent from running spontaneously, such targets should
1083 define this to a function that prevents that from happening. */
1084 #if !defined(ENSURE_VFORKING_PARENT_REMAINS_STOPPED)
1085 #define ENSURE_VFORKING_PARENT_REMAINS_STOPPED(PID) (0)
1086 #endif
1087
1088 /* This will only be defined by a target that supports catching vfork events,
1089 such as HP-UX.
1090
1091 On some targets (such as HP-UX 10.20 and earlier), a newly vforked child
1092 process must be resumed when it delivers its exec event, before the parent
1093 vfork event will be delivered to us. */
1094
1095 #if !defined(RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK)
1096 #define RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK() (0)
1097 #endif
1098
1099 /* Routines for maintenance of the target structures...
1100
1101 add_target: Add a target to the list of all possible targets.
1102
1103 push_target: Make this target the top of the stack of currently used
1104 targets, within its particular stratum of the stack. Result
1105 is 0 if now atop the stack, nonzero if not on top (maybe
1106 should warn user).
1107
1108 unpush_target: Remove this from the stack of currently used targets,
1109 no matter where it is on the list. Returns 0 if no
1110 change, 1 if removed from stack.
1111
1112 pop_target: Remove the top thing on the stack of current targets. */
1113
1114 extern void add_target (struct target_ops *);
1115
1116 extern int push_target (struct target_ops *);
1117
1118 extern int unpush_target (struct target_ops *);
1119
1120 extern void target_preopen (int);
1121
1122 extern void pop_target (void);
1123
1124 /* Struct section_table maps address ranges to file sections. It is
1125 mostly used with BFD files, but can be used without (e.g. for handling
1126 raw disks, or files not in formats handled by BFD). */
1127
1128 struct section_table
1129 {
1130 CORE_ADDR addr; /* Lowest address in section */
1131 CORE_ADDR endaddr; /* 1+highest address in section */
1132
1133 struct bfd_section *the_bfd_section;
1134
1135 bfd *bfd; /* BFD file pointer */
1136 };
1137
1138 /* Return the "section" containing the specified address. */
1139 struct section_table *target_section_by_addr (struct target_ops *target,
1140 CORE_ADDR addr);
1141
1142
1143 /* From mem-break.c */
1144
1145 extern int memory_remove_breakpoint (CORE_ADDR, gdb_byte *);
1146
1147 extern int memory_insert_breakpoint (CORE_ADDR, gdb_byte *);
1148
1149 extern int default_memory_remove_breakpoint (CORE_ADDR, gdb_byte *);
1150
1151 extern int default_memory_insert_breakpoint (CORE_ADDR, gdb_byte *);
1152
1153
1154 /* From target.c */
1155
1156 extern void initialize_targets (void);
1157
1158 extern void noprocess (void);
1159
1160 extern void find_default_attach (char *, int);
1161
1162 extern void find_default_create_inferior (char *, char *, char **, int);
1163
1164 extern struct target_ops *find_run_target (void);
1165
1166 extern struct target_ops *find_core_target (void);
1167
1168 extern struct target_ops *find_target_beneath (struct target_ops *);
1169
1170 extern int target_resize_to_sections (struct target_ops *target,
1171 int num_added);
1172
1173 extern void remove_target_sections (bfd *abfd);
1174
1175 \f
1176 /* Stuff that should be shared among the various remote targets. */
1177
1178 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1179 information (higher values, more information). */
1180 extern int remote_debug;
1181
1182 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1183 extern int baud_rate;
1184 /* Timeout limit for response from target. */
1185 extern int remote_timeout;
1186
1187 \f
1188 /* Functions for helping to write a native target. */
1189
1190 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1191 extern void store_waitstatus (struct target_waitstatus *, int);
1192
1193 /* Predicate to target_signal_to_host(). Return non-zero if the enum
1194 targ_signal SIGNO has an equivalent ``host'' representation. */
1195 /* FIXME: cagney/1999-11-22: The name below was chosen in preference
1196 to the shorter target_signal_p() because it is far less ambigious.
1197 In this context ``target_signal'' refers to GDB's internal
1198 representation of the target's set of signals while ``host signal''
1199 refers to the target operating system's signal. Confused? */
1200
1201 extern int target_signal_to_host_p (enum target_signal signo);
1202
1203 /* Convert between host signal numbers and enum target_signal's.
1204 target_signal_to_host() returns 0 and prints a warning() on GDB's
1205 console if SIGNO has no equivalent host representation. */
1206 /* FIXME: cagney/1999-11-22: Here ``host'' is used incorrectly, it is
1207 refering to the target operating system's signal numbering.
1208 Similarly, ``enum target_signal'' is named incorrectly, ``enum
1209 gdb_signal'' would probably be better as it is refering to GDB's
1210 internal representation of a target operating system's signal. */
1211
1212 extern enum target_signal target_signal_from_host (int);
1213 extern int target_signal_to_host (enum target_signal);
1214
1215 /* Convert from a number used in a GDB command to an enum target_signal. */
1216 extern enum target_signal target_signal_from_command (int);
1217
1218 /* Any target can call this to switch to remote protocol (in remote.c). */
1219 extern void push_remote_target (char *name, int from_tty);
1220 \f
1221 /* Imported from machine dependent code */
1222
1223 /* Blank target vector entries are initialized to target_ignore. */
1224 void target_ignore (void);
1225
1226 extern struct target_ops deprecated_child_ops;
1227
1228 #endif /* !defined (TARGET_H) */
This page took 0.077301 seconds and 4 git commands to generate.