d71dc97be2c0f13fe9cbd9717ad370f260cb0545
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int);
407 void (*to_post_attach) (struct target_ops *, int);
408 void (*to_detach) (struct target_ops *ops, const char *, int);
409 void (*to_disconnect) (struct target_ops *, char *, int);
410 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
411 TARGET_DEFAULT_NORETURN (noprocess ());
412 ptid_t (*to_wait) (struct target_ops *,
413 ptid_t, struct target_waitstatus *, int)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
416 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_prepare_to_store) (struct target_ops *, struct regcache *);
419
420 /* Transfer LEN bytes of memory between GDB address MYADDR and
421 target address MEMADDR. If WRITE, transfer them to the target, else
422 transfer them from the target. TARGET is the target from which we
423 get this function.
424
425 Return value, N, is one of the following:
426
427 0 means that we can't handle this. If errno has been set, it is the
428 error which prevented us from doing it (FIXME: What about bfd_error?).
429
430 positive (call it N) means that we have transferred N bytes
431 starting at MEMADDR. We might be able to handle more bytes
432 beyond this length, but no promises.
433
434 negative (call its absolute value N) means that we cannot
435 transfer right at MEMADDR, but we could transfer at least
436 something at MEMADDR + N.
437
438 NOTE: cagney/2004-10-01: This has been entirely superseeded by
439 to_xfer_partial and inferior inheritance. */
440
441 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
442 int len, int write,
443 struct mem_attrib *attrib,
444 struct target_ops *target);
445
446 void (*to_files_info) (struct target_ops *);
447 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
448 struct bp_target_info *)
449 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
450 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
451 struct bp_target_info *)
452 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
453 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int);
454 int (*to_ranged_break_num_registers) (struct target_ops *);
455 int (*to_insert_hw_breakpoint) (struct target_ops *,
456 struct gdbarch *, struct bp_target_info *);
457 int (*to_remove_hw_breakpoint) (struct target_ops *,
458 struct gdbarch *, struct bp_target_info *);
459
460 /* Documentation of what the two routines below are expected to do is
461 provided with the corresponding target_* macros. */
462 int (*to_remove_watchpoint) (struct target_ops *,
463 CORE_ADDR, int, int, struct expression *);
464 int (*to_insert_watchpoint) (struct target_ops *,
465 CORE_ADDR, int, int, struct expression *);
466
467 int (*to_insert_mask_watchpoint) (struct target_ops *,
468 CORE_ADDR, CORE_ADDR, int);
469 int (*to_remove_mask_watchpoint) (struct target_ops *,
470 CORE_ADDR, CORE_ADDR, int);
471 int (*to_stopped_by_watchpoint) (struct target_ops *)
472 TARGET_DEFAULT_RETURN (0);
473 int to_have_steppable_watchpoint;
474 int to_have_continuable_watchpoint;
475 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
476 TARGET_DEFAULT_RETURN (0);
477 int (*to_watchpoint_addr_within_range) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479
480 /* Documentation of this routine is provided with the corresponding
481 target_* macro. */
482 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
483 CORE_ADDR, int);
484
485 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
486 CORE_ADDR, int, int,
487 struct expression *);
488 int (*to_masked_watch_num_registers) (struct target_ops *,
489 CORE_ADDR, CORE_ADDR);
490 void (*to_terminal_init) (struct target_ops *);
491 void (*to_terminal_inferior) (struct target_ops *);
492 void (*to_terminal_ours_for_output) (struct target_ops *);
493 void (*to_terminal_ours) (struct target_ops *);
494 void (*to_terminal_save_ours) (struct target_ops *);
495 void (*to_terminal_info) (struct target_ops *, const char *, int);
496 void (*to_kill) (struct target_ops *);
497 void (*to_load) (struct target_ops *, char *, int);
498 void (*to_create_inferior) (struct target_ops *,
499 char *, char *, char **, int);
500 void (*to_post_startup_inferior) (struct target_ops *, ptid_t);
501 int (*to_insert_fork_catchpoint) (struct target_ops *, int);
502 int (*to_remove_fork_catchpoint) (struct target_ops *, int);
503 int (*to_insert_vfork_catchpoint) (struct target_ops *, int);
504 int (*to_remove_vfork_catchpoint) (struct target_ops *, int);
505 int (*to_follow_fork) (struct target_ops *, int, int);
506 int (*to_insert_exec_catchpoint) (struct target_ops *, int);
507 int (*to_remove_exec_catchpoint) (struct target_ops *, int);
508 int (*to_set_syscall_catchpoint) (struct target_ops *,
509 int, int, int, int, int *);
510 int (*to_has_exited) (struct target_ops *, int, int, int *);
511 void (*to_mourn_inferior) (struct target_ops *);
512 int (*to_can_run) (struct target_ops *);
513
514 /* Documentation of this routine is provided with the corresponding
515 target_* macro. */
516 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
517
518 /* Documentation of this routine is provided with the
519 corresponding target_* function. */
520 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
521
522 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
523 void (*to_find_new_threads) (struct target_ops *);
524 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
525 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
526 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
527 void (*to_stop) (struct target_ops *, ptid_t);
528 void (*to_rcmd) (struct target_ops *,
529 char *command, struct ui_file *output);
530 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
531 void (*to_log_command) (struct target_ops *, const char *);
532 struct target_section_table *(*to_get_section_table) (struct target_ops *);
533 enum strata to_stratum;
534 int (*to_has_all_memory) (struct target_ops *);
535 int (*to_has_memory) (struct target_ops *);
536 int (*to_has_stack) (struct target_ops *);
537 int (*to_has_registers) (struct target_ops *);
538 int (*to_has_execution) (struct target_ops *, ptid_t);
539 int to_has_thread_control; /* control thread execution */
540 int to_attach_no_wait;
541 /* ASYNC target controls */
542 int (*to_can_async_p) (struct target_ops *)
543 TARGET_DEFAULT_FUNC (find_default_can_async_p);
544 int (*to_is_async_p) (struct target_ops *)
545 TARGET_DEFAULT_FUNC (find_default_is_async_p);
546 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
547 TARGET_DEFAULT_NORETURN (tcomplain ());
548 int (*to_supports_non_stop) (struct target_ops *);
549 /* find_memory_regions support method for gcore */
550 int (*to_find_memory_regions) (struct target_ops *,
551 find_memory_region_ftype func, void *data);
552 /* make_corefile_notes support method for gcore */
553 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
554 /* get_bookmark support method for bookmarks */
555 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
556 /* goto_bookmark support method for bookmarks */
557 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
558 /* Return the thread-local address at OFFSET in the
559 thread-local storage for the thread PTID and the shared library
560 or executable file given by OBJFILE. If that block of
561 thread-local storage hasn't been allocated yet, this function
562 may return an error. */
563 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
564 ptid_t ptid,
565 CORE_ADDR load_module_addr,
566 CORE_ADDR offset);
567
568 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
569 OBJECT. The OFFSET, for a seekable object, specifies the
570 starting point. The ANNEX can be used to provide additional
571 data-specific information to the target.
572
573 Return the transferred status, error or OK (an
574 'enum target_xfer_status' value). Save the number of bytes
575 actually transferred in *XFERED_LEN if transfer is successful
576 (TARGET_XFER_OK) or the number unavailable bytes if the requested
577 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
578 smaller than LEN does not indicate the end of the object, only
579 the end of the transfer; higher level code should continue
580 transferring if desired. This is handled in target.c.
581
582 The interface does not support a "retry" mechanism. Instead it
583 assumes that at least one byte will be transfered on each
584 successful call.
585
586 NOTE: cagney/2003-10-17: The current interface can lead to
587 fragmented transfers. Lower target levels should not implement
588 hacks, such as enlarging the transfer, in an attempt to
589 compensate for this. Instead, the target stack should be
590 extended so that it implements supply/collect methods and a
591 look-aside object cache. With that available, the lowest
592 target can safely and freely "push" data up the stack.
593
594 See target_read and target_write for more information. One,
595 and only one, of readbuf or writebuf must be non-NULL. */
596
597 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
598 enum target_object object,
599 const char *annex,
600 gdb_byte *readbuf,
601 const gdb_byte *writebuf,
602 ULONGEST offset, ULONGEST len,
603 ULONGEST *xfered_len)
604 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
605
606 /* Returns the memory map for the target. A return value of NULL
607 means that no memory map is available. If a memory address
608 does not fall within any returned regions, it's assumed to be
609 RAM. The returned memory regions should not overlap.
610
611 The order of regions does not matter; target_memory_map will
612 sort regions by starting address. For that reason, this
613 function should not be called directly except via
614 target_memory_map.
615
616 This method should not cache data; if the memory map could
617 change unexpectedly, it should be invalidated, and higher
618 layers will re-fetch it. */
619 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
620
621 /* Erases the region of flash memory starting at ADDRESS, of
622 length LENGTH.
623
624 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
625 on flash block boundaries, as reported by 'to_memory_map'. */
626 void (*to_flash_erase) (struct target_ops *,
627 ULONGEST address, LONGEST length);
628
629 /* Finishes a flash memory write sequence. After this operation
630 all flash memory should be available for writing and the result
631 of reading from areas written by 'to_flash_write' should be
632 equal to what was written. */
633 void (*to_flash_done) (struct target_ops *);
634
635 /* Describe the architecture-specific features of this target.
636 Returns the description found, or NULL if no description
637 was available. */
638 const struct target_desc *(*to_read_description) (struct target_ops *ops);
639
640 /* Build the PTID of the thread on which a given task is running,
641 based on LWP and THREAD. These values are extracted from the
642 task Private_Data section of the Ada Task Control Block, and
643 their interpretation depends on the target. */
644 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
645 long lwp, long thread);
646
647 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
648 Return 0 if *READPTR is already at the end of the buffer.
649 Return -1 if there is insufficient buffer for a whole entry.
650 Return 1 if an entry was read into *TYPEP and *VALP. */
651 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
652 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
653
654 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
655 sequence of bytes in PATTERN with length PATTERN_LEN.
656
657 The result is 1 if found, 0 if not found, and -1 if there was an error
658 requiring halting of the search (e.g. memory read error).
659 If the pattern is found the address is recorded in FOUND_ADDRP. */
660 int (*to_search_memory) (struct target_ops *ops,
661 CORE_ADDR start_addr, ULONGEST search_space_len,
662 const gdb_byte *pattern, ULONGEST pattern_len,
663 CORE_ADDR *found_addrp);
664
665 /* Can target execute in reverse? */
666 int (*to_can_execute_reverse) (struct target_ops *);
667
668 /* The direction the target is currently executing. Must be
669 implemented on targets that support reverse execution and async
670 mode. The default simply returns forward execution. */
671 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
672
673 /* Does this target support debugging multiple processes
674 simultaneously? */
675 int (*to_supports_multi_process) (struct target_ops *);
676
677 /* Does this target support enabling and disabling tracepoints while a trace
678 experiment is running? */
679 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
680
681 /* Does this target support disabling address space randomization? */
682 int (*to_supports_disable_randomization) (struct target_ops *);
683
684 /* Does this target support the tracenz bytecode for string collection? */
685 int (*to_supports_string_tracing) (struct target_ops *);
686
687 /* Does this target support evaluation of breakpoint conditions on its
688 end? */
689 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
690
691 /* Does this target support evaluation of breakpoint commands on its
692 end? */
693 int (*to_can_run_breakpoint_commands) (struct target_ops *);
694
695 /* Determine current architecture of thread PTID.
696
697 The target is supposed to determine the architecture of the code where
698 the target is currently stopped at (on Cell, if a target is in spu_run,
699 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
700 This is architecture used to perform decr_pc_after_break adjustment,
701 and also determines the frame architecture of the innermost frame.
702 ptrace operations need to operate according to target_gdbarch ().
703
704 The default implementation always returns target_gdbarch (). */
705 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
706
707 /* Determine current address space of thread PTID.
708
709 The default implementation always returns the inferior's
710 address space. */
711 struct address_space *(*to_thread_address_space) (struct target_ops *,
712 ptid_t);
713
714 /* Target file operations. */
715
716 /* Open FILENAME on the target, using FLAGS and MODE. Return a
717 target file descriptor, or -1 if an error occurs (and set
718 *TARGET_ERRNO). */
719 int (*to_fileio_open) (struct target_ops *,
720 const char *filename, int flags, int mode,
721 int *target_errno);
722
723 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
724 Return the number of bytes written, or -1 if an error occurs
725 (and set *TARGET_ERRNO). */
726 int (*to_fileio_pwrite) (struct target_ops *,
727 int fd, const gdb_byte *write_buf, int len,
728 ULONGEST offset, int *target_errno);
729
730 /* Read up to LEN bytes FD on the target into READ_BUF.
731 Return the number of bytes read, or -1 if an error occurs
732 (and set *TARGET_ERRNO). */
733 int (*to_fileio_pread) (struct target_ops *,
734 int fd, gdb_byte *read_buf, int len,
735 ULONGEST offset, int *target_errno);
736
737 /* Close FD on the target. Return 0, or -1 if an error occurs
738 (and set *TARGET_ERRNO). */
739 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
740
741 /* Unlink FILENAME on the target. Return 0, or -1 if an error
742 occurs (and set *TARGET_ERRNO). */
743 int (*to_fileio_unlink) (struct target_ops *,
744 const char *filename, int *target_errno);
745
746 /* Read value of symbolic link FILENAME on the target. Return a
747 null-terminated string allocated via xmalloc, or NULL if an error
748 occurs (and set *TARGET_ERRNO). */
749 char *(*to_fileio_readlink) (struct target_ops *,
750 const char *filename, int *target_errno);
751
752
753 /* Implement the "info proc" command. */
754 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
755
756 /* Tracepoint-related operations. */
757
758 /* Prepare the target for a tracing run. */
759 void (*to_trace_init) (struct target_ops *);
760
761 /* Send full details of a tracepoint location to the target. */
762 void (*to_download_tracepoint) (struct target_ops *,
763 struct bp_location *location);
764
765 /* Is the target able to download tracepoint locations in current
766 state? */
767 int (*to_can_download_tracepoint) (struct target_ops *);
768
769 /* Send full details of a trace state variable to the target. */
770 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
771
772 /* Enable a tracepoint on the target. */
773 void (*to_enable_tracepoint) (struct bp_location *location);
774
775 /* Disable a tracepoint on the target. */
776 void (*to_disable_tracepoint) (struct bp_location *location);
777
778 /* Inform the target info of memory regions that are readonly
779 (such as text sections), and so it should return data from
780 those rather than look in the trace buffer. */
781 void (*to_trace_set_readonly_regions) (void);
782
783 /* Start a trace run. */
784 void (*to_trace_start) (void);
785
786 /* Get the current status of a tracing run. */
787 int (*to_get_trace_status) (struct trace_status *ts);
788
789 void (*to_get_tracepoint_status) (struct breakpoint *tp,
790 struct uploaded_tp *utp);
791
792 /* Stop a trace run. */
793 void (*to_trace_stop) (void);
794
795 /* Ask the target to find a trace frame of the given type TYPE,
796 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
797 number of the trace frame, and also the tracepoint number at
798 TPP. If no trace frame matches, return -1. May throw if the
799 operation fails. */
800 int (*to_trace_find) (enum trace_find_type type, int num,
801 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
802
803 /* Get the value of the trace state variable number TSV, returning
804 1 if the value is known and writing the value itself into the
805 location pointed to by VAL, else returning 0. */
806 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
807
808 int (*to_save_trace_data) (const char *filename);
809
810 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
811
812 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
813
814 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
815 ULONGEST offset, LONGEST len);
816
817 /* Get the minimum length of instruction on which a fast tracepoint
818 may be set on the target. If this operation is unsupported,
819 return -1. If for some reason the minimum length cannot be
820 determined, return 0. */
821 int (*to_get_min_fast_tracepoint_insn_len) (void);
822
823 /* Set the target's tracing behavior in response to unexpected
824 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
825 void (*to_set_disconnected_tracing) (int val);
826 void (*to_set_circular_trace_buffer) (int val);
827 /* Set the size of trace buffer in the target. */
828 void (*to_set_trace_buffer_size) (LONGEST val);
829
830 /* Add/change textual notes about the trace run, returning 1 if
831 successful, 0 otherwise. */
832 int (*to_set_trace_notes) (const char *user, const char *notes,
833 const char *stopnotes);
834
835 /* Return the processor core that thread PTID was last seen on.
836 This information is updated only when:
837 - update_thread_list is called
838 - thread stops
839 If the core cannot be determined -- either for the specified
840 thread, or right now, or in this debug session, or for this
841 target -- return -1. */
842 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
843
844 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
845 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
846 a match, 0 if there's a mismatch, and -1 if an error is
847 encountered while reading memory. */
848 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
849 CORE_ADDR memaddr, ULONGEST size);
850
851 /* Return the address of the start of the Thread Information Block
852 a Windows OS specific feature. */
853 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
854
855 /* Send the new settings of write permission variables. */
856 void (*to_set_permissions) (void);
857
858 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
859 with its details. Return 1 on success, 0 on failure. */
860 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
861 struct static_tracepoint_marker *marker);
862
863 /* Return a vector of all tracepoints markers string id ID, or all
864 markers if ID is NULL. */
865 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
866 (const char *id);
867
868 /* Return a traceframe info object describing the current
869 traceframe's contents. If the target doesn't support
870 traceframe info, return NULL. If the current traceframe is not
871 selected (the current traceframe number is -1), the target can
872 choose to return either NULL or an empty traceframe info. If
873 NULL is returned, for example in remote target, GDB will read
874 from the live inferior. If an empty traceframe info is
875 returned, for example in tfile target, which means the
876 traceframe info is available, but the requested memory is not
877 available in it. GDB will try to see if the requested memory
878 is available in the read-only sections. This method should not
879 cache data; higher layers take care of caching, invalidating,
880 and re-fetching when necessary. */
881 struct traceframe_info *(*to_traceframe_info) (void);
882
883 /* Ask the target to use or not to use agent according to USE. Return 1
884 successful, 0 otherwise. */
885 int (*to_use_agent) (int use);
886
887 /* Is the target able to use agent in current state? */
888 int (*to_can_use_agent) (void);
889
890 /* Check whether the target supports branch tracing. */
891 int (*to_supports_btrace) (struct target_ops *)
892 TARGET_DEFAULT_RETURN (0);
893
894 /* Enable branch tracing for PTID and allocate a branch trace target
895 information struct for reading and for disabling branch trace. */
896 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
897
898 /* Disable branch tracing and deallocate TINFO. */
899 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
900
901 /* Disable branch tracing and deallocate TINFO. This function is similar
902 to to_disable_btrace, except that it is called during teardown and is
903 only allowed to perform actions that are safe. A counter-example would
904 be attempting to talk to a remote target. */
905 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
906
907 /* Read branch trace data for the thread indicated by BTINFO into DATA.
908 DATA is cleared before new trace is added.
909 The branch trace will start with the most recent block and continue
910 towards older blocks. */
911 enum btrace_error (*to_read_btrace) (VEC (btrace_block_s) **data,
912 struct btrace_target_info *btinfo,
913 enum btrace_read_type type);
914
915 /* Stop trace recording. */
916 void (*to_stop_recording) (void);
917
918 /* Print information about the recording. */
919 void (*to_info_record) (void);
920
921 /* Save the recorded execution trace into a file. */
922 void (*to_save_record) (const char *filename);
923
924 /* Delete the recorded execution trace from the current position onwards. */
925 void (*to_delete_record) (void);
926
927 /* Query if the record target is currently replaying. */
928 int (*to_record_is_replaying) (void);
929
930 /* Go to the begin of the execution trace. */
931 void (*to_goto_record_begin) (void);
932
933 /* Go to the end of the execution trace. */
934 void (*to_goto_record_end) (void);
935
936 /* Go to a specific location in the recorded execution trace. */
937 void (*to_goto_record) (ULONGEST insn);
938
939 /* Disassemble SIZE instructions in the recorded execution trace from
940 the current position.
941 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
942 disassemble SIZE succeeding instructions. */
943 void (*to_insn_history) (int size, int flags);
944
945 /* Disassemble SIZE instructions in the recorded execution trace around
946 FROM.
947 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
948 disassemble SIZE instructions after FROM. */
949 void (*to_insn_history_from) (ULONGEST from, int size, int flags);
950
951 /* Disassemble a section of the recorded execution trace from instruction
952 BEGIN (inclusive) to instruction END (inclusive). */
953 void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
954
955 /* Print a function trace of the recorded execution trace.
956 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
957 succeeding functions. */
958 void (*to_call_history) (int size, int flags);
959
960 /* Print a function trace of the recorded execution trace starting
961 at function FROM.
962 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
963 SIZE functions after FROM. */
964 void (*to_call_history_from) (ULONGEST begin, int size, int flags);
965
966 /* Print a function trace of an execution trace section from function BEGIN
967 (inclusive) to function END (inclusive). */
968 void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
969
970 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
971 non-empty annex. */
972 int (*to_augmented_libraries_svr4_read) (void);
973
974 /* Those unwinders are tried before any other arch unwinders. Use NULL if
975 it is not used. */
976 const struct frame_unwind *to_get_unwinder;
977 const struct frame_unwind *to_get_tailcall_unwinder;
978
979 /* Return the number of bytes by which the PC needs to be decremented
980 after executing a breakpoint instruction.
981 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
982 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
983 struct gdbarch *gdbarch);
984
985 int to_magic;
986 /* Need sub-structure for target machine related rather than comm related?
987 */
988 };
989
990 /* Magic number for checking ops size. If a struct doesn't end with this
991 number, somebody changed the declaration but didn't change all the
992 places that initialize one. */
993
994 #define OPS_MAGIC 3840
995
996 /* The ops structure for our "current" target process. This should
997 never be NULL. If there is no target, it points to the dummy_target. */
998
999 extern struct target_ops current_target;
1000
1001 /* Define easy words for doing these operations on our current target. */
1002
1003 #define target_shortname (current_target.to_shortname)
1004 #define target_longname (current_target.to_longname)
1005
1006 /* Does whatever cleanup is required for a target that we are no
1007 longer going to be calling. This routine is automatically always
1008 called after popping the target off the target stack - the target's
1009 own methods are no longer available through the target vector.
1010 Closing file descriptors and freeing all memory allocated memory are
1011 typical things it should do. */
1012
1013 void target_close (struct target_ops *targ);
1014
1015 /* Attaches to a process on the target side. Arguments are as passed
1016 to the `attach' command by the user. This routine can be called
1017 when the target is not on the target-stack, if the target_can_run
1018 routine returns 1; in that case, it must push itself onto the stack.
1019 Upon exit, the target should be ready for normal operations, and
1020 should be ready to deliver the status of the process immediately
1021 (without waiting) to an upcoming target_wait call. */
1022
1023 void target_attach (char *, int);
1024
1025 /* Some targets don't generate traps when attaching to the inferior,
1026 or their target_attach implementation takes care of the waiting.
1027 These targets must set to_attach_no_wait. */
1028
1029 #define target_attach_no_wait \
1030 (current_target.to_attach_no_wait)
1031
1032 /* The target_attach operation places a process under debugger control,
1033 and stops the process.
1034
1035 This operation provides a target-specific hook that allows the
1036 necessary bookkeeping to be performed after an attach completes. */
1037 #define target_post_attach(pid) \
1038 (*current_target.to_post_attach) (&current_target, pid)
1039
1040 /* Takes a program previously attached to and detaches it.
1041 The program may resume execution (some targets do, some don't) and will
1042 no longer stop on signals, etc. We better not have left any breakpoints
1043 in the program or it'll die when it hits one. ARGS is arguments
1044 typed by the user (e.g. a signal to send the process). FROM_TTY
1045 says whether to be verbose or not. */
1046
1047 extern void target_detach (const char *, int);
1048
1049 /* Disconnect from the current target without resuming it (leaving it
1050 waiting for a debugger). */
1051
1052 extern void target_disconnect (char *, int);
1053
1054 /* Resume execution of the target process PTID (or a group of
1055 threads). STEP says whether to single-step or to run free; SIGGNAL
1056 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1057 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1058 PTID means `step/resume only this process id'. A wildcard PTID
1059 (all threads, or all threads of process) means `step/resume
1060 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1061 matches) resume with their 'thread->suspend.stop_signal' signal
1062 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1063 if in "no pass" state. */
1064
1065 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1066
1067 /* Wait for process pid to do something. PTID = -1 to wait for any
1068 pid to do something. Return pid of child, or -1 in case of error;
1069 store status through argument pointer STATUS. Note that it is
1070 _NOT_ OK to throw_exception() out of target_wait() without popping
1071 the debugging target from the stack; GDB isn't prepared to get back
1072 to the prompt with a debugging target but without the frame cache,
1073 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1074 options. */
1075
1076 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1077 int options);
1078
1079 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1080
1081 extern void target_fetch_registers (struct regcache *regcache, int regno);
1082
1083 /* Store at least register REGNO, or all regs if REGNO == -1.
1084 It can store as many registers as it wants to, so target_prepare_to_store
1085 must have been previously called. Calls error() if there are problems. */
1086
1087 extern void target_store_registers (struct regcache *regcache, int regs);
1088
1089 /* Get ready to modify the registers array. On machines which store
1090 individual registers, this doesn't need to do anything. On machines
1091 which store all the registers in one fell swoop, this makes sure
1092 that REGISTERS contains all the registers from the program being
1093 debugged. */
1094
1095 #define target_prepare_to_store(regcache) \
1096 (*current_target.to_prepare_to_store) (&current_target, regcache)
1097
1098 /* Determine current address space of thread PTID. */
1099
1100 struct address_space *target_thread_address_space (ptid_t);
1101
1102 /* Implement the "info proc" command. This returns one if the request
1103 was handled, and zero otherwise. It can also throw an exception if
1104 an error was encountered while attempting to handle the
1105 request. */
1106
1107 int target_info_proc (char *, enum info_proc_what);
1108
1109 /* Returns true if this target can debug multiple processes
1110 simultaneously. */
1111
1112 #define target_supports_multi_process() \
1113 (*current_target.to_supports_multi_process) (&current_target)
1114
1115 /* Returns true if this target can disable address space randomization. */
1116
1117 int target_supports_disable_randomization (void);
1118
1119 /* Returns true if this target can enable and disable tracepoints
1120 while a trace experiment is running. */
1121
1122 #define target_supports_enable_disable_tracepoint() \
1123 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1124
1125 #define target_supports_string_tracing() \
1126 (*current_target.to_supports_string_tracing) (&current_target)
1127
1128 /* Returns true if this target can handle breakpoint conditions
1129 on its end. */
1130
1131 #define target_supports_evaluation_of_breakpoint_conditions() \
1132 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1133
1134 /* Returns true if this target can handle breakpoint commands
1135 on its end. */
1136
1137 #define target_can_run_breakpoint_commands() \
1138 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1139
1140 extern int target_read_string (CORE_ADDR, char **, int, int *);
1141
1142 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1143 ssize_t len);
1144
1145 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1146 ssize_t len);
1147
1148 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1149
1150 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1151
1152 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1153 ssize_t len);
1154
1155 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1156 ssize_t len);
1157
1158 /* Fetches the target's memory map. If one is found it is sorted
1159 and returned, after some consistency checking. Otherwise, NULL
1160 is returned. */
1161 VEC(mem_region_s) *target_memory_map (void);
1162
1163 /* Erase the specified flash region. */
1164 void target_flash_erase (ULONGEST address, LONGEST length);
1165
1166 /* Finish a sequence of flash operations. */
1167 void target_flash_done (void);
1168
1169 /* Describes a request for a memory write operation. */
1170 struct memory_write_request
1171 {
1172 /* Begining address that must be written. */
1173 ULONGEST begin;
1174 /* Past-the-end address. */
1175 ULONGEST end;
1176 /* The data to write. */
1177 gdb_byte *data;
1178 /* A callback baton for progress reporting for this request. */
1179 void *baton;
1180 };
1181 typedef struct memory_write_request memory_write_request_s;
1182 DEF_VEC_O(memory_write_request_s);
1183
1184 /* Enumeration specifying different flash preservation behaviour. */
1185 enum flash_preserve_mode
1186 {
1187 flash_preserve,
1188 flash_discard
1189 };
1190
1191 /* Write several memory blocks at once. This version can be more
1192 efficient than making several calls to target_write_memory, in
1193 particular because it can optimize accesses to flash memory.
1194
1195 Moreover, this is currently the only memory access function in gdb
1196 that supports writing to flash memory, and it should be used for
1197 all cases where access to flash memory is desirable.
1198
1199 REQUESTS is the vector (see vec.h) of memory_write_request.
1200 PRESERVE_FLASH_P indicates what to do with blocks which must be
1201 erased, but not completely rewritten.
1202 PROGRESS_CB is a function that will be periodically called to provide
1203 feedback to user. It will be called with the baton corresponding
1204 to the request currently being written. It may also be called
1205 with a NULL baton, when preserved flash sectors are being rewritten.
1206
1207 The function returns 0 on success, and error otherwise. */
1208 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1209 enum flash_preserve_mode preserve_flash_p,
1210 void (*progress_cb) (ULONGEST, void *));
1211
1212 /* Print a line about the current target. */
1213
1214 #define target_files_info() \
1215 (*current_target.to_files_info) (&current_target)
1216
1217 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1218 the target machine. Returns 0 for success, and returns non-zero or
1219 throws an error (with a detailed failure reason error code and
1220 message) otherwise. */
1221
1222 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1223 struct bp_target_info *bp_tgt);
1224
1225 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1226 machine. Result is 0 for success, non-zero for error. */
1227
1228 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1229 struct bp_target_info *bp_tgt);
1230
1231 /* Initialize the terminal settings we record for the inferior,
1232 before we actually run the inferior. */
1233
1234 #define target_terminal_init() \
1235 (*current_target.to_terminal_init) (&current_target)
1236
1237 /* Put the inferior's terminal settings into effect.
1238 This is preparation for starting or resuming the inferior. */
1239
1240 extern void target_terminal_inferior (void);
1241
1242 /* Put some of our terminal settings into effect,
1243 enough to get proper results from our output,
1244 but do not change into or out of RAW mode
1245 so that no input is discarded.
1246
1247 After doing this, either terminal_ours or terminal_inferior
1248 should be called to get back to a normal state of affairs. */
1249
1250 #define target_terminal_ours_for_output() \
1251 (*current_target.to_terminal_ours_for_output) (&current_target)
1252
1253 /* Put our terminal settings into effect.
1254 First record the inferior's terminal settings
1255 so they can be restored properly later. */
1256
1257 #define target_terminal_ours() \
1258 (*current_target.to_terminal_ours) (&current_target)
1259
1260 /* Save our terminal settings.
1261 This is called from TUI after entering or leaving the curses
1262 mode. Since curses modifies our terminal this call is here
1263 to take this change into account. */
1264
1265 #define target_terminal_save_ours() \
1266 (*current_target.to_terminal_save_ours) (&current_target)
1267
1268 /* Print useful information about our terminal status, if such a thing
1269 exists. */
1270
1271 #define target_terminal_info(arg, from_tty) \
1272 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1273
1274 /* Kill the inferior process. Make it go away. */
1275
1276 extern void target_kill (void);
1277
1278 /* Load an executable file into the target process. This is expected
1279 to not only bring new code into the target process, but also to
1280 update GDB's symbol tables to match.
1281
1282 ARG contains command-line arguments, to be broken down with
1283 buildargv (). The first non-switch argument is the filename to
1284 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1285 0)), which is an offset to apply to the load addresses of FILE's
1286 sections. The target may define switches, or other non-switch
1287 arguments, as it pleases. */
1288
1289 extern void target_load (char *arg, int from_tty);
1290
1291 /* Start an inferior process and set inferior_ptid to its pid.
1292 EXEC_FILE is the file to run.
1293 ALLARGS is a string containing the arguments to the program.
1294 ENV is the environment vector to pass. Errors reported with error().
1295 On VxWorks and various standalone systems, we ignore exec_file. */
1296
1297 void target_create_inferior (char *exec_file, char *args,
1298 char **env, int from_tty);
1299
1300 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1301 notification of inferior events such as fork and vork immediately
1302 after the inferior is created. (This because of how gdb gets an
1303 inferior created via invoking a shell to do it. In such a scenario,
1304 if the shell init file has commands in it, the shell will fork and
1305 exec for each of those commands, and we will see each such fork
1306 event. Very bad.)
1307
1308 Such targets will supply an appropriate definition for this function. */
1309
1310 #define target_post_startup_inferior(ptid) \
1311 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1312
1313 /* On some targets, we can catch an inferior fork or vfork event when
1314 it occurs. These functions insert/remove an already-created
1315 catchpoint for such events. They return 0 for success, 1 if the
1316 catchpoint type is not supported and -1 for failure. */
1317
1318 #define target_insert_fork_catchpoint(pid) \
1319 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1320
1321 #define target_remove_fork_catchpoint(pid) \
1322 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1323
1324 #define target_insert_vfork_catchpoint(pid) \
1325 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1326
1327 #define target_remove_vfork_catchpoint(pid) \
1328 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1329
1330 /* If the inferior forks or vforks, this function will be called at
1331 the next resume in order to perform any bookkeeping and fiddling
1332 necessary to continue debugging either the parent or child, as
1333 requested, and releasing the other. Information about the fork
1334 or vfork event is available via get_last_target_status ().
1335 This function returns 1 if the inferior should not be resumed
1336 (i.e. there is another event pending). */
1337
1338 int target_follow_fork (int follow_child, int detach_fork);
1339
1340 /* On some targets, we can catch an inferior exec event when it
1341 occurs. These functions insert/remove an already-created
1342 catchpoint for such events. They return 0 for success, 1 if the
1343 catchpoint type is not supported and -1 for failure. */
1344
1345 #define target_insert_exec_catchpoint(pid) \
1346 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1347
1348 #define target_remove_exec_catchpoint(pid) \
1349 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1350
1351 /* Syscall catch.
1352
1353 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1354 If NEEDED is zero, it means the target can disable the mechanism to
1355 catch system calls because there are no more catchpoints of this type.
1356
1357 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1358 being requested. In this case, both TABLE_SIZE and TABLE should
1359 be ignored.
1360
1361 TABLE_SIZE is the number of elements in TABLE. It only matters if
1362 ANY_COUNT is zero.
1363
1364 TABLE is an array of ints, indexed by syscall number. An element in
1365 this array is nonzero if that syscall should be caught. This argument
1366 only matters if ANY_COUNT is zero.
1367
1368 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1369 for failure. */
1370
1371 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1372 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1373 pid, needed, any_count, \
1374 table_size, table)
1375
1376 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1377 exit code of PID, if any. */
1378
1379 #define target_has_exited(pid,wait_status,exit_status) \
1380 (*current_target.to_has_exited) (&current_target, \
1381 pid,wait_status,exit_status)
1382
1383 /* The debugger has completed a blocking wait() call. There is now
1384 some process event that must be processed. This function should
1385 be defined by those targets that require the debugger to perform
1386 cleanup or internal state changes in response to the process event. */
1387
1388 /* The inferior process has died. Do what is right. */
1389
1390 void target_mourn_inferior (void);
1391
1392 /* Does target have enough data to do a run or attach command? */
1393
1394 #define target_can_run(t) \
1395 ((t)->to_can_run) (t)
1396
1397 /* Set list of signals to be handled in the target.
1398
1399 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1400 (enum gdb_signal). For every signal whose entry in this array is
1401 non-zero, the target is allowed -but not required- to skip reporting
1402 arrival of the signal to the GDB core by returning from target_wait,
1403 and to pass the signal directly to the inferior instead.
1404
1405 However, if the target is hardware single-stepping a thread that is
1406 about to receive a signal, it needs to be reported in any case, even
1407 if mentioned in a previous target_pass_signals call. */
1408
1409 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1410
1411 /* Set list of signals the target may pass to the inferior. This
1412 directly maps to the "handle SIGNAL pass/nopass" setting.
1413
1414 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1415 number (enum gdb_signal). For every signal whose entry in this
1416 array is non-zero, the target is allowed to pass the signal to the
1417 inferior. Signals not present in the array shall be silently
1418 discarded. This does not influence whether to pass signals to the
1419 inferior as a result of a target_resume call. This is useful in
1420 scenarios where the target needs to decide whether to pass or not a
1421 signal to the inferior without GDB core involvement, such as for
1422 example, when detaching (as threads may have been suspended with
1423 pending signals not reported to GDB). */
1424
1425 extern void target_program_signals (int nsig, unsigned char *program_signals);
1426
1427 /* Check to see if a thread is still alive. */
1428
1429 extern int target_thread_alive (ptid_t ptid);
1430
1431 /* Query for new threads and add them to the thread list. */
1432
1433 extern void target_find_new_threads (void);
1434
1435 /* Make target stop in a continuable fashion. (For instance, under
1436 Unix, this should act like SIGSTOP). This function is normally
1437 used by GUIs to implement a stop button. */
1438
1439 extern void target_stop (ptid_t ptid);
1440
1441 /* Send the specified COMMAND to the target's monitor
1442 (shell,interpreter) for execution. The result of the query is
1443 placed in OUTBUF. */
1444
1445 #define target_rcmd(command, outbuf) \
1446 (*current_target.to_rcmd) (&current_target, command, outbuf)
1447
1448
1449 /* Does the target include all of memory, or only part of it? This
1450 determines whether we look up the target chain for other parts of
1451 memory if this target can't satisfy a request. */
1452
1453 extern int target_has_all_memory_1 (void);
1454 #define target_has_all_memory target_has_all_memory_1 ()
1455
1456 /* Does the target include memory? (Dummy targets don't.) */
1457
1458 extern int target_has_memory_1 (void);
1459 #define target_has_memory target_has_memory_1 ()
1460
1461 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1462 we start a process.) */
1463
1464 extern int target_has_stack_1 (void);
1465 #define target_has_stack target_has_stack_1 ()
1466
1467 /* Does the target have registers? (Exec files don't.) */
1468
1469 extern int target_has_registers_1 (void);
1470 #define target_has_registers target_has_registers_1 ()
1471
1472 /* Does the target have execution? Can we make it jump (through
1473 hoops), or pop its stack a few times? This means that the current
1474 target is currently executing; for some targets, that's the same as
1475 whether or not the target is capable of execution, but there are
1476 also targets which can be current while not executing. In that
1477 case this will become true after target_create_inferior or
1478 target_attach. */
1479
1480 extern int target_has_execution_1 (ptid_t);
1481
1482 /* Like target_has_execution_1, but always passes inferior_ptid. */
1483
1484 extern int target_has_execution_current (void);
1485
1486 #define target_has_execution target_has_execution_current ()
1487
1488 /* Default implementations for process_stratum targets. Return true
1489 if there's a selected inferior, false otherwise. */
1490
1491 extern int default_child_has_all_memory (struct target_ops *ops);
1492 extern int default_child_has_memory (struct target_ops *ops);
1493 extern int default_child_has_stack (struct target_ops *ops);
1494 extern int default_child_has_registers (struct target_ops *ops);
1495 extern int default_child_has_execution (struct target_ops *ops,
1496 ptid_t the_ptid);
1497
1498 /* Can the target support the debugger control of thread execution?
1499 Can it lock the thread scheduler? */
1500
1501 #define target_can_lock_scheduler \
1502 (current_target.to_has_thread_control & tc_schedlock)
1503
1504 /* Should the target enable async mode if it is supported? Temporary
1505 cludge until async mode is a strict superset of sync mode. */
1506 extern int target_async_permitted;
1507
1508 /* Can the target support asynchronous execution? */
1509 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1510
1511 /* Is the target in asynchronous execution mode? */
1512 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1513
1514 int target_supports_non_stop (void);
1515
1516 /* Put the target in async mode with the specified callback function. */
1517 #define target_async(CALLBACK,CONTEXT) \
1518 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1519
1520 #define target_execution_direction() \
1521 (current_target.to_execution_direction (&current_target))
1522
1523 /* Converts a process id to a string. Usually, the string just contains
1524 `process xyz', but on some systems it may contain
1525 `process xyz thread abc'. */
1526
1527 extern char *target_pid_to_str (ptid_t ptid);
1528
1529 extern char *normal_pid_to_str (ptid_t ptid);
1530
1531 /* Return a short string describing extra information about PID,
1532 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1533 is okay. */
1534
1535 #define target_extra_thread_info(TP) \
1536 (current_target.to_extra_thread_info (&current_target, TP))
1537
1538 /* Return the thread's name. A NULL result means that the target
1539 could not determine this thread's name. */
1540
1541 extern char *target_thread_name (struct thread_info *);
1542
1543 /* Attempts to find the pathname of the executable file
1544 that was run to create a specified process.
1545
1546 The process PID must be stopped when this operation is used.
1547
1548 If the executable file cannot be determined, NULL is returned.
1549
1550 Else, a pointer to a character string containing the pathname
1551 is returned. This string should be copied into a buffer by
1552 the client if the string will not be immediately used, or if
1553 it must persist. */
1554
1555 #define target_pid_to_exec_file(pid) \
1556 (current_target.to_pid_to_exec_file) (&current_target, pid)
1557
1558 /* See the to_thread_architecture description in struct target_ops. */
1559
1560 #define target_thread_architecture(ptid) \
1561 (current_target.to_thread_architecture (&current_target, ptid))
1562
1563 /*
1564 * Iterator function for target memory regions.
1565 * Calls a callback function once for each memory region 'mapped'
1566 * in the child process. Defined as a simple macro rather than
1567 * as a function macro so that it can be tested for nullity.
1568 */
1569
1570 #define target_find_memory_regions(FUNC, DATA) \
1571 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1572
1573 /*
1574 * Compose corefile .note section.
1575 */
1576
1577 #define target_make_corefile_notes(BFD, SIZE_P) \
1578 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1579
1580 /* Bookmark interfaces. */
1581 #define target_get_bookmark(ARGS, FROM_TTY) \
1582 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1583
1584 #define target_goto_bookmark(ARG, FROM_TTY) \
1585 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1586
1587 /* Hardware watchpoint interfaces. */
1588
1589 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1590 write). Only the INFERIOR_PTID task is being queried. */
1591
1592 #define target_stopped_by_watchpoint() \
1593 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1594
1595 /* Non-zero if we have steppable watchpoints */
1596
1597 #define target_have_steppable_watchpoint \
1598 (current_target.to_have_steppable_watchpoint)
1599
1600 /* Non-zero if we have continuable watchpoints */
1601
1602 #define target_have_continuable_watchpoint \
1603 (current_target.to_have_continuable_watchpoint)
1604
1605 /* Provide defaults for hardware watchpoint functions. */
1606
1607 /* If the *_hw_beakpoint functions have not been defined
1608 elsewhere use the definitions in the target vector. */
1609
1610 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1611 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1612 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1613 (including this one?). OTHERTYPE is who knows what... */
1614
1615 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1616 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1617 TYPE, CNT, OTHERTYPE);
1618
1619 /* Returns the number of debug registers needed to watch the given
1620 memory region, or zero if not supported. */
1621
1622 #define target_region_ok_for_hw_watchpoint(addr, len) \
1623 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1624 addr, len)
1625
1626
1627 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1628 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1629 COND is the expression for its condition, or NULL if there's none.
1630 Returns 0 for success, 1 if the watchpoint type is not supported,
1631 -1 for failure. */
1632
1633 #define target_insert_watchpoint(addr, len, type, cond) \
1634 (*current_target.to_insert_watchpoint) (&current_target, \
1635 addr, len, type, cond)
1636
1637 #define target_remove_watchpoint(addr, len, type, cond) \
1638 (*current_target.to_remove_watchpoint) (&current_target, \
1639 addr, len, type, cond)
1640
1641 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1642 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1643 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1644 masked watchpoints are not supported, -1 for failure. */
1645
1646 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1647
1648 /* Remove a masked watchpoint at ADDR with the mask MASK.
1649 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1650 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1651 for failure. */
1652
1653 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1654
1655 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1656 the target machine. Returns 0 for success, and returns non-zero or
1657 throws an error (with a detailed failure reason error code and
1658 message) otherwise. */
1659
1660 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1661 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1662 gdbarch, bp_tgt)
1663
1664 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1665 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1666 gdbarch, bp_tgt)
1667
1668 /* Return number of debug registers needed for a ranged breakpoint,
1669 or -1 if ranged breakpoints are not supported. */
1670
1671 extern int target_ranged_break_num_registers (void);
1672
1673 /* Return non-zero if target knows the data address which triggered this
1674 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1675 INFERIOR_PTID task is being queried. */
1676 #define target_stopped_data_address(target, addr_p) \
1677 (*target.to_stopped_data_address) (target, addr_p)
1678
1679 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1680 LENGTH bytes beginning at START. */
1681 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1682 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1683
1684 /* Return non-zero if the target is capable of using hardware to evaluate
1685 the condition expression. In this case, if the condition is false when
1686 the watched memory location changes, execution may continue without the
1687 debugger being notified.
1688
1689 Due to limitations in the hardware implementation, it may be capable of
1690 avoiding triggering the watchpoint in some cases where the condition
1691 expression is false, but may report some false positives as well.
1692 For this reason, GDB will still evaluate the condition expression when
1693 the watchpoint triggers. */
1694 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1695 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1696 addr, len, type, cond)
1697
1698 /* Return number of debug registers needed for a masked watchpoint,
1699 -1 if masked watchpoints are not supported or -2 if the given address
1700 and mask combination cannot be used. */
1701
1702 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1703
1704 /* Target can execute in reverse? */
1705 #define target_can_execute_reverse \
1706 (current_target.to_can_execute_reverse ? \
1707 current_target.to_can_execute_reverse (&current_target) : 0)
1708
1709 extern const struct target_desc *target_read_description (struct target_ops *);
1710
1711 #define target_get_ada_task_ptid(lwp, tid) \
1712 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1713
1714 /* Utility implementation of searching memory. */
1715 extern int simple_search_memory (struct target_ops* ops,
1716 CORE_ADDR start_addr,
1717 ULONGEST search_space_len,
1718 const gdb_byte *pattern,
1719 ULONGEST pattern_len,
1720 CORE_ADDR *found_addrp);
1721
1722 /* Main entry point for searching memory. */
1723 extern int target_search_memory (CORE_ADDR start_addr,
1724 ULONGEST search_space_len,
1725 const gdb_byte *pattern,
1726 ULONGEST pattern_len,
1727 CORE_ADDR *found_addrp);
1728
1729 /* Target file operations. */
1730
1731 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1732 target file descriptor, or -1 if an error occurs (and set
1733 *TARGET_ERRNO). */
1734 extern int target_fileio_open (const char *filename, int flags, int mode,
1735 int *target_errno);
1736
1737 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1738 Return the number of bytes written, or -1 if an error occurs
1739 (and set *TARGET_ERRNO). */
1740 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1741 ULONGEST offset, int *target_errno);
1742
1743 /* Read up to LEN bytes FD on the target into READ_BUF.
1744 Return the number of bytes read, or -1 if an error occurs
1745 (and set *TARGET_ERRNO). */
1746 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1747 ULONGEST offset, int *target_errno);
1748
1749 /* Close FD on the target. Return 0, or -1 if an error occurs
1750 (and set *TARGET_ERRNO). */
1751 extern int target_fileio_close (int fd, int *target_errno);
1752
1753 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1754 occurs (and set *TARGET_ERRNO). */
1755 extern int target_fileio_unlink (const char *filename, int *target_errno);
1756
1757 /* Read value of symbolic link FILENAME on the target. Return a
1758 null-terminated string allocated via xmalloc, or NULL if an error
1759 occurs (and set *TARGET_ERRNO). */
1760 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1761
1762 /* Read target file FILENAME. The return value will be -1 if the transfer
1763 fails or is not supported; 0 if the object is empty; or the length
1764 of the object otherwise. If a positive value is returned, a
1765 sufficiently large buffer will be allocated using xmalloc and
1766 returned in *BUF_P containing the contents of the object.
1767
1768 This method should be used for objects sufficiently small to store
1769 in a single xmalloc'd buffer, when no fixed bound on the object's
1770 size is known in advance. */
1771 extern LONGEST target_fileio_read_alloc (const char *filename,
1772 gdb_byte **buf_p);
1773
1774 /* Read target file FILENAME. The result is NUL-terminated and
1775 returned as a string, allocated using xmalloc. If an error occurs
1776 or the transfer is unsupported, NULL is returned. Empty objects
1777 are returned as allocated but empty strings. A warning is issued
1778 if the result contains any embedded NUL bytes. */
1779 extern char *target_fileio_read_stralloc (const char *filename);
1780
1781
1782 /* Tracepoint-related operations. */
1783
1784 #define target_trace_init() \
1785 (*current_target.to_trace_init) (&current_target)
1786
1787 #define target_download_tracepoint(t) \
1788 (*current_target.to_download_tracepoint) (&current_target, t)
1789
1790 #define target_can_download_tracepoint() \
1791 (*current_target.to_can_download_tracepoint) (&current_target)
1792
1793 #define target_download_trace_state_variable(tsv) \
1794 (*current_target.to_download_trace_state_variable) (tsv)
1795
1796 #define target_enable_tracepoint(loc) \
1797 (*current_target.to_enable_tracepoint) (loc)
1798
1799 #define target_disable_tracepoint(loc) \
1800 (*current_target.to_disable_tracepoint) (loc)
1801
1802 #define target_trace_start() \
1803 (*current_target.to_trace_start) ()
1804
1805 #define target_trace_set_readonly_regions() \
1806 (*current_target.to_trace_set_readonly_regions) ()
1807
1808 #define target_get_trace_status(ts) \
1809 (*current_target.to_get_trace_status) (ts)
1810
1811 #define target_get_tracepoint_status(tp,utp) \
1812 (*current_target.to_get_tracepoint_status) (tp, utp)
1813
1814 #define target_trace_stop() \
1815 (*current_target.to_trace_stop) ()
1816
1817 #define target_trace_find(type,num,addr1,addr2,tpp) \
1818 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1819
1820 #define target_get_trace_state_variable_value(tsv,val) \
1821 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1822
1823 #define target_save_trace_data(filename) \
1824 (*current_target.to_save_trace_data) (filename)
1825
1826 #define target_upload_tracepoints(utpp) \
1827 (*current_target.to_upload_tracepoints) (utpp)
1828
1829 #define target_upload_trace_state_variables(utsvp) \
1830 (*current_target.to_upload_trace_state_variables) (utsvp)
1831
1832 #define target_get_raw_trace_data(buf,offset,len) \
1833 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1834
1835 #define target_get_min_fast_tracepoint_insn_len() \
1836 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1837
1838 #define target_set_disconnected_tracing(val) \
1839 (*current_target.to_set_disconnected_tracing) (val)
1840
1841 #define target_set_circular_trace_buffer(val) \
1842 (*current_target.to_set_circular_trace_buffer) (val)
1843
1844 #define target_set_trace_buffer_size(val) \
1845 (*current_target.to_set_trace_buffer_size) (val)
1846
1847 #define target_set_trace_notes(user,notes,stopnotes) \
1848 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1849
1850 #define target_get_tib_address(ptid, addr) \
1851 (*current_target.to_get_tib_address) ((ptid), (addr))
1852
1853 #define target_set_permissions() \
1854 (*current_target.to_set_permissions) ()
1855
1856 #define target_static_tracepoint_marker_at(addr, marker) \
1857 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1858
1859 #define target_static_tracepoint_markers_by_strid(marker_id) \
1860 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1861
1862 #define target_traceframe_info() \
1863 (*current_target.to_traceframe_info) ()
1864
1865 #define target_use_agent(use) \
1866 (*current_target.to_use_agent) (use)
1867
1868 #define target_can_use_agent() \
1869 (*current_target.to_can_use_agent) ()
1870
1871 #define target_augmented_libraries_svr4_read() \
1872 (*current_target.to_augmented_libraries_svr4_read) ()
1873
1874 /* Command logging facility. */
1875
1876 #define target_log_command(p) \
1877 do \
1878 if (current_target.to_log_command) \
1879 (*current_target.to_log_command) (&current_target, \
1880 p); \
1881 while (0)
1882
1883
1884 extern int target_core_of_thread (ptid_t ptid);
1885
1886 /* See to_get_unwinder in struct target_ops. */
1887 extern const struct frame_unwind *target_get_unwinder (void);
1888
1889 /* See to_get_tailcall_unwinder in struct target_ops. */
1890 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1891
1892 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1893 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1894 if there's a mismatch, and -1 if an error is encountered while
1895 reading memory. Throws an error if the functionality is found not
1896 to be supported by the current target. */
1897 int target_verify_memory (const gdb_byte *data,
1898 CORE_ADDR memaddr, ULONGEST size);
1899
1900 /* Routines for maintenance of the target structures...
1901
1902 complete_target_initialization: Finalize a target_ops by filling in
1903 any fields needed by the target implementation.
1904
1905 add_target: Add a target to the list of all possible targets.
1906
1907 push_target: Make this target the top of the stack of currently used
1908 targets, within its particular stratum of the stack. Result
1909 is 0 if now atop the stack, nonzero if not on top (maybe
1910 should warn user).
1911
1912 unpush_target: Remove this from the stack of currently used targets,
1913 no matter where it is on the list. Returns 0 if no
1914 change, 1 if removed from stack. */
1915
1916 extern void add_target (struct target_ops *);
1917
1918 extern void add_target_with_completer (struct target_ops *t,
1919 completer_ftype *completer);
1920
1921 extern void complete_target_initialization (struct target_ops *t);
1922
1923 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1924 for maintaining backwards compatibility when renaming targets. */
1925
1926 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1927
1928 extern void push_target (struct target_ops *);
1929
1930 extern int unpush_target (struct target_ops *);
1931
1932 extern void target_pre_inferior (int);
1933
1934 extern void target_preopen (int);
1935
1936 /* Does whatever cleanup is required to get rid of all pushed targets. */
1937 extern void pop_all_targets (void);
1938
1939 /* Like pop_all_targets, but pops only targets whose stratum is
1940 strictly above ABOVE_STRATUM. */
1941 extern void pop_all_targets_above (enum strata above_stratum);
1942
1943 extern int target_is_pushed (struct target_ops *t);
1944
1945 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1946 CORE_ADDR offset);
1947
1948 /* Struct target_section maps address ranges to file sections. It is
1949 mostly used with BFD files, but can be used without (e.g. for handling
1950 raw disks, or files not in formats handled by BFD). */
1951
1952 struct target_section
1953 {
1954 CORE_ADDR addr; /* Lowest address in section */
1955 CORE_ADDR endaddr; /* 1+highest address in section */
1956
1957 struct bfd_section *the_bfd_section;
1958
1959 /* The "owner" of the section.
1960 It can be any unique value. It is set by add_target_sections
1961 and used by remove_target_sections.
1962 For example, for executables it is a pointer to exec_bfd and
1963 for shlibs it is the so_list pointer. */
1964 void *owner;
1965 };
1966
1967 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1968
1969 struct target_section_table
1970 {
1971 struct target_section *sections;
1972 struct target_section *sections_end;
1973 };
1974
1975 /* Return the "section" containing the specified address. */
1976 struct target_section *target_section_by_addr (struct target_ops *target,
1977 CORE_ADDR addr);
1978
1979 /* Return the target section table this target (or the targets
1980 beneath) currently manipulate. */
1981
1982 extern struct target_section_table *target_get_section_table
1983 (struct target_ops *target);
1984
1985 /* From mem-break.c */
1986
1987 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
1988 struct bp_target_info *);
1989
1990 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
1991 struct bp_target_info *);
1992
1993 extern int default_memory_remove_breakpoint (struct gdbarch *,
1994 struct bp_target_info *);
1995
1996 extern int default_memory_insert_breakpoint (struct gdbarch *,
1997 struct bp_target_info *);
1998
1999
2000 /* From target.c */
2001
2002 extern void initialize_targets (void);
2003
2004 extern void noprocess (void) ATTRIBUTE_NORETURN;
2005
2006 extern void target_require_runnable (void);
2007
2008 extern void find_default_attach (struct target_ops *, char *, int);
2009
2010 extern void find_default_create_inferior (struct target_ops *,
2011 char *, char *, char **, int);
2012
2013 extern struct target_ops *find_target_beneath (struct target_ops *);
2014
2015 /* Find the target at STRATUM. If no target is at that stratum,
2016 return NULL. */
2017
2018 struct target_ops *find_target_at (enum strata stratum);
2019
2020 /* Read OS data object of type TYPE from the target, and return it in
2021 XML format. The result is NUL-terminated and returned as a string,
2022 allocated using xmalloc. If an error occurs or the transfer is
2023 unsupported, NULL is returned. Empty objects are returned as
2024 allocated but empty strings. */
2025
2026 extern char *target_get_osdata (const char *type);
2027
2028 \f
2029 /* Stuff that should be shared among the various remote targets. */
2030
2031 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2032 information (higher values, more information). */
2033 extern int remote_debug;
2034
2035 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2036 extern int baud_rate;
2037 /* Timeout limit for response from target. */
2038 extern int remote_timeout;
2039
2040 \f
2041
2042 /* Set the show memory breakpoints mode to show, and installs a cleanup
2043 to restore it back to the current value. */
2044 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2045
2046 extern int may_write_registers;
2047 extern int may_write_memory;
2048 extern int may_insert_breakpoints;
2049 extern int may_insert_tracepoints;
2050 extern int may_insert_fast_tracepoints;
2051 extern int may_stop;
2052
2053 extern void update_target_permissions (void);
2054
2055 \f
2056 /* Imported from machine dependent code. */
2057
2058 /* Blank target vector entries are initialized to target_ignore. */
2059 void target_ignore (void);
2060
2061 /* See to_supports_btrace in struct target_ops. */
2062 #define target_supports_btrace() \
2063 (current_target.to_supports_btrace (&current_target))
2064
2065 /* See to_enable_btrace in struct target_ops. */
2066 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2067
2068 /* See to_disable_btrace in struct target_ops. */
2069 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2070
2071 /* See to_teardown_btrace in struct target_ops. */
2072 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2073
2074 /* See to_read_btrace in struct target_ops. */
2075 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2076 struct btrace_target_info *,
2077 enum btrace_read_type);
2078
2079 /* See to_stop_recording in struct target_ops. */
2080 extern void target_stop_recording (void);
2081
2082 /* See to_info_record in struct target_ops. */
2083 extern void target_info_record (void);
2084
2085 /* See to_save_record in struct target_ops. */
2086 extern void target_save_record (const char *filename);
2087
2088 /* Query if the target supports deleting the execution log. */
2089 extern int target_supports_delete_record (void);
2090
2091 /* See to_delete_record in struct target_ops. */
2092 extern void target_delete_record (void);
2093
2094 /* See to_record_is_replaying in struct target_ops. */
2095 extern int target_record_is_replaying (void);
2096
2097 /* See to_goto_record_begin in struct target_ops. */
2098 extern void target_goto_record_begin (void);
2099
2100 /* See to_goto_record_end in struct target_ops. */
2101 extern void target_goto_record_end (void);
2102
2103 /* See to_goto_record in struct target_ops. */
2104 extern void target_goto_record (ULONGEST insn);
2105
2106 /* See to_insn_history. */
2107 extern void target_insn_history (int size, int flags);
2108
2109 /* See to_insn_history_from. */
2110 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2111
2112 /* See to_insn_history_range. */
2113 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2114
2115 /* See to_call_history. */
2116 extern void target_call_history (int size, int flags);
2117
2118 /* See to_call_history_from. */
2119 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2120
2121 /* See to_call_history_range. */
2122 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2123
2124 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2125 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2126 struct gdbarch *gdbarch);
2127
2128 /* See to_decr_pc_after_break. */
2129 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2130
2131 #endif /* !defined (TARGET_H) */
This page took 0.081903 seconds and 4 git commands to generate.