da18f99974ac5ac446f64a6181905b158e9a5f45
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45
46 /* This include file defines the interface between the main part
47 of the debugger, and the part which is target-specific, or
48 specific to the communications interface between us and the
49 target.
50
51 A TARGET is an interface between the debugger and a particular
52 kind of file or process. Targets can be STACKED in STRATA,
53 so that more than one target can potentially respond to a request.
54 In particular, memory accesses will walk down the stack of targets
55 until they find a target that is interested in handling that particular
56 address. STRATA are artificial boundaries on the stack, within
57 which particular kinds of targets live. Strata exist so that
58 people don't get confused by pushing e.g. a process target and then
59 a file target, and wondering why they can't see the current values
60 of variables any more (the file target is handling them and they
61 never get to the process target). So when you push a file target,
62 it goes into the file stratum, which is always below the process
63 stratum. */
64
65 #include "target/target.h"
66 #include "target/resume.h"
67 #include "target/wait.h"
68 #include "target/waitstatus.h"
69 #include "bfd.h"
70 #include "symtab.h"
71 #include "memattr.h"
72 #include "vec.h"
73 #include "gdb_signals.h"
74 #include "btrace.h"
75 #include "command.h"
76
77 #include "break-common.h" /* For enum target_hw_bp_type. */
78
79 enum strata
80 {
81 dummy_stratum, /* The lowest of the low */
82 file_stratum, /* Executable files, etc */
83 process_stratum, /* Executing processes or core dump files */
84 thread_stratum, /* Executing threads */
85 record_stratum, /* Support record debugging */
86 arch_stratum /* Architecture overrides */
87 };
88
89 enum thread_control_capabilities
90 {
91 tc_none = 0, /* Default: can't control thread execution. */
92 tc_schedlock = 1, /* Can lock the thread scheduler. */
93 };
94
95 /* The structure below stores information about a system call.
96 It is basically used in the "catch syscall" command, and in
97 every function that gives information about a system call.
98
99 It's also good to mention that its fields represent everything
100 that we currently know about a syscall in GDB. */
101 struct syscall
102 {
103 /* The syscall number. */
104 int number;
105
106 /* The syscall name. */
107 const char *name;
108 };
109
110 /* Return a pretty printed form of target_waitstatus.
111 Space for the result is malloc'd, caller must free. */
112 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
113
114 /* Return a pretty printed form of TARGET_OPTIONS.
115 Space for the result is malloc'd, caller must free. */
116 extern char *target_options_to_string (int target_options);
117
118 /* Possible types of events that the inferior handler will have to
119 deal with. */
120 enum inferior_event_type
121 {
122 /* Process a normal inferior event which will result in target_wait
123 being called. */
124 INF_REG_EVENT,
125 /* We are called to do stuff after the inferior stops. */
126 INF_EXEC_COMPLETE,
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE,
203 /* Branch trace configuration, in XML format. */
204 TARGET_OBJECT_BTRACE_CONF,
205 /* The pathname of the executable file that was run to create
206 a specified process. ANNEX should be a string representation
207 of the process ID of the process in question, in hexadecimal
208 format. */
209 TARGET_OBJECT_EXEC_FILE,
210 /* Possible future objects: TARGET_OBJECT_FILE, ... */
211 };
212
213 /* Possible values returned by target_xfer_partial, etc. */
214
215 enum target_xfer_status
216 {
217 /* Some bytes are transferred. */
218 TARGET_XFER_OK = 1,
219
220 /* No further transfer is possible. */
221 TARGET_XFER_EOF = 0,
222
223 /* The piece of the object requested is unavailable. */
224 TARGET_XFER_UNAVAILABLE = 2,
225
226 /* Generic I/O error. Note that it's important that this is '-1',
227 as we still have target_xfer-related code returning hardcoded
228 '-1' on error. */
229 TARGET_XFER_E_IO = -1,
230
231 /* Keep list in sync with target_xfer_status_to_string. */
232 };
233
234 /* Return the string form of STATUS. */
235
236 extern const char *
237 target_xfer_status_to_string (enum target_xfer_status status);
238
239 /* Enumeration of the kinds of traceframe searches that a target may
240 be able to perform. */
241
242 enum trace_find_type
243 {
244 tfind_number,
245 tfind_pc,
246 tfind_tp,
247 tfind_range,
248 tfind_outside,
249 };
250
251 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
252 DEF_VEC_P(static_tracepoint_marker_p);
253
254 typedef enum target_xfer_status
255 target_xfer_partial_ftype (struct target_ops *ops,
256 enum target_object object,
257 const char *annex,
258 gdb_byte *readbuf,
259 const gdb_byte *writebuf,
260 ULONGEST offset,
261 ULONGEST len,
262 ULONGEST *xfered_len);
263
264 enum target_xfer_status
265 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
266 const gdb_byte *writebuf, ULONGEST memaddr,
267 LONGEST len, ULONGEST *xfered_len);
268
269 /* Request that OPS transfer up to LEN addressable units of the target's
270 OBJECT. When reading from a memory object, the size of an addressable unit
271 is architecture dependent and can be found using
272 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
273 byte long. BUF should point to a buffer large enough to hold the read data,
274 taking into account the addressable unit size. The OFFSET, for a seekable
275 object, specifies the starting point. The ANNEX can be used to provide
276 additional data-specific information to the target.
277
278 Return the number of addressable units actually transferred, or a negative
279 error code (an 'enum target_xfer_error' value) if the transfer is not
280 supported or otherwise fails. Return of a positive value less than
281 LEN indicates that no further transfer is possible. Unlike the raw
282 to_xfer_partial interface, callers of these functions do not need
283 to retry partial transfers. */
284
285 extern LONGEST target_read (struct target_ops *ops,
286 enum target_object object,
287 const char *annex, gdb_byte *buf,
288 ULONGEST offset, LONGEST len);
289
290 struct memory_read_result
291 {
292 /* First address that was read. */
293 ULONGEST begin;
294 /* Past-the-end address. */
295 ULONGEST end;
296 /* The data. */
297 gdb_byte *data;
298 };
299 typedef struct memory_read_result memory_read_result_s;
300 DEF_VEC_O(memory_read_result_s);
301
302 extern void free_memory_read_result_vector (void *);
303
304 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
305 const ULONGEST offset,
306 const LONGEST len);
307
308 /* Request that OPS transfer up to LEN addressable units from BUF to the
309 target's OBJECT. When writing to a memory object, the addressable unit
310 size is architecture dependent and can be found using
311 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
312 byte long. The OFFSET, for a seekable object, specifies the starting point.
313 The ANNEX can be used to provide additional data-specific information to
314 the target.
315
316 Return the number of addressable units actually transferred, or a negative
317 error code (an 'enum target_xfer_status' value) if the transfer is not
318 supported or otherwise fails. Return of a positive value less than
319 LEN indicates that no further transfer is possible. Unlike the raw
320 to_xfer_partial interface, callers of these functions do not need to
321 retry partial transfers. */
322
323 extern LONGEST target_write (struct target_ops *ops,
324 enum target_object object,
325 const char *annex, const gdb_byte *buf,
326 ULONGEST offset, LONGEST len);
327
328 /* Similar to target_write, except that it also calls PROGRESS with
329 the number of bytes written and the opaque BATON after every
330 successful partial write (and before the first write). This is
331 useful for progress reporting and user interaction while writing
332 data. To abort the transfer, the progress callback can throw an
333 exception. */
334
335 LONGEST target_write_with_progress (struct target_ops *ops,
336 enum target_object object,
337 const char *annex, const gdb_byte *buf,
338 ULONGEST offset, LONGEST len,
339 void (*progress) (ULONGEST, void *),
340 void *baton);
341
342 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
343 be read using OPS. The return value will be -1 if the transfer
344 fails or is not supported; 0 if the object is empty; or the length
345 of the object otherwise. If a positive value is returned, a
346 sufficiently large buffer will be allocated using xmalloc and
347 returned in *BUF_P containing the contents of the object.
348
349 This method should be used for objects sufficiently small to store
350 in a single xmalloc'd buffer, when no fixed bound on the object's
351 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
352 through this function. */
353
354 extern LONGEST target_read_alloc (struct target_ops *ops,
355 enum target_object object,
356 const char *annex, gdb_byte **buf_p);
357
358 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
359 returned as a string, allocated using xmalloc. If an error occurs
360 or the transfer is unsupported, NULL is returned. Empty objects
361 are returned as allocated but empty strings. A warning is issued
362 if the result contains any embedded NUL bytes. */
363
364 extern char *target_read_stralloc (struct target_ops *ops,
365 enum target_object object,
366 const char *annex);
367
368 /* See target_ops->to_xfer_partial. */
369 extern target_xfer_partial_ftype target_xfer_partial;
370
371 /* Wrappers to target read/write that perform memory transfers. They
372 throw an error if the memory transfer fails.
373
374 NOTE: cagney/2003-10-23: The naming schema is lifted from
375 "frame.h". The parameter order is lifted from get_frame_memory,
376 which in turn lifted it from read_memory. */
377
378 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
379 gdb_byte *buf, LONGEST len);
380 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
381 CORE_ADDR addr, int len,
382 enum bfd_endian byte_order);
383 \f
384 struct thread_info; /* fwd decl for parameter list below: */
385
386 /* The type of the callback to the to_async method. */
387
388 typedef void async_callback_ftype (enum inferior_event_type event_type,
389 void *context);
390
391 /* Normally target debug printing is purely type-based. However,
392 sometimes it is necessary to override the debug printing on a
393 per-argument basis. This macro can be used, attribute-style, to
394 name the target debug printing function for a particular method
395 argument. FUNC is the name of the function. The macro's
396 definition is empty because it is only used by the
397 make-target-delegates script. */
398
399 #define TARGET_DEBUG_PRINTER(FUNC)
400
401 /* These defines are used to mark target_ops methods. The script
402 make-target-delegates scans these and auto-generates the base
403 method implementations. There are four macros that can be used:
404
405 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
406 does nothing. This is only valid if the method return type is
407 'void'.
408
409 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
410 'tcomplain ()'. The base method simply makes this call, which is
411 assumed not to return.
412
413 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
414 base method returns this expression's value.
415
416 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
417 make-target-delegates does not generate a base method in this case,
418 but instead uses the argument function as the base method. */
419
420 #define TARGET_DEFAULT_IGNORE()
421 #define TARGET_DEFAULT_NORETURN(ARG)
422 #define TARGET_DEFAULT_RETURN(ARG)
423 #define TARGET_DEFAULT_FUNC(ARG)
424
425 struct target_ops
426 {
427 struct target_ops *beneath; /* To the target under this one. */
428 const char *to_shortname; /* Name this target type */
429 const char *to_longname; /* Name for printing */
430 const char *to_doc; /* Documentation. Does not include trailing
431 newline, and starts with a one-line descrip-
432 tion (probably similar to to_longname). */
433 /* Per-target scratch pad. */
434 void *to_data;
435 /* The open routine takes the rest of the parameters from the
436 command, and (if successful) pushes a new target onto the
437 stack. Targets should supply this routine, if only to provide
438 an error message. */
439 void (*to_open) (const char *, int);
440 /* Old targets with a static target vector provide "to_close".
441 New re-entrant targets provide "to_xclose" and that is expected
442 to xfree everything (including the "struct target_ops"). */
443 void (*to_xclose) (struct target_ops *targ);
444 void (*to_close) (struct target_ops *);
445 /* Attaches to a process on the target side. Arguments are as
446 passed to the `attach' command by the user. This routine can
447 be called when the target is not on the target-stack, if the
448 target_can_run routine returns 1; in that case, it must push
449 itself onto the stack. Upon exit, the target should be ready
450 for normal operations, and should be ready to deliver the
451 status of the process immediately (without waiting) to an
452 upcoming target_wait call. */
453 void (*to_attach) (struct target_ops *ops, const char *, int);
454 void (*to_post_attach) (struct target_ops *, int)
455 TARGET_DEFAULT_IGNORE ();
456 void (*to_detach) (struct target_ops *ops, const char *, int)
457 TARGET_DEFAULT_IGNORE ();
458 void (*to_disconnect) (struct target_ops *, const char *, int)
459 TARGET_DEFAULT_NORETURN (tcomplain ());
460 void (*to_resume) (struct target_ops *, ptid_t,
461 int TARGET_DEBUG_PRINTER (target_debug_print_step),
462 enum gdb_signal)
463 TARGET_DEFAULT_NORETURN (noprocess ());
464 ptid_t (*to_wait) (struct target_ops *,
465 ptid_t, struct target_waitstatus *,
466 int TARGET_DEBUG_PRINTER (target_debug_print_options))
467 TARGET_DEFAULT_FUNC (default_target_wait);
468 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
469 TARGET_DEFAULT_IGNORE ();
470 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
471 TARGET_DEFAULT_NORETURN (noprocess ());
472 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
473 TARGET_DEFAULT_NORETURN (noprocess ());
474
475 void (*to_files_info) (struct target_ops *)
476 TARGET_DEFAULT_IGNORE ();
477 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
478 struct bp_target_info *)
479 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
480 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
481 struct bp_target_info *)
482 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
483
484 /* Returns true if the target stopped because it executed a
485 software breakpoint. This is necessary for correct background
486 execution / non-stop mode operation, and for correct PC
487 adjustment on targets where the PC needs to be adjusted when a
488 software breakpoint triggers. In these modes, by the time GDB
489 processes a breakpoint event, the breakpoint may already be
490 done from the target, so GDB needs to be able to tell whether
491 it should ignore the event and whether it should adjust the PC.
492 See adjust_pc_after_break. */
493 int (*to_stopped_by_sw_breakpoint) (struct target_ops *)
494 TARGET_DEFAULT_RETURN (0);
495 /* Returns true if the above method is supported. */
496 int (*to_supports_stopped_by_sw_breakpoint) (struct target_ops *)
497 TARGET_DEFAULT_RETURN (0);
498
499 /* Returns true if the target stopped for a hardware breakpoint.
500 Likewise, if the target supports hardware breakpoints, this
501 method is necessary for correct background execution / non-stop
502 mode operation. Even though hardware breakpoints do not
503 require PC adjustment, GDB needs to be able to tell whether the
504 hardware breakpoint event is a delayed event for a breakpoint
505 that is already gone and should thus be ignored. */
506 int (*to_stopped_by_hw_breakpoint) (struct target_ops *)
507 TARGET_DEFAULT_RETURN (0);
508 /* Returns true if the above method is supported. */
509 int (*to_supports_stopped_by_hw_breakpoint) (struct target_ops *)
510 TARGET_DEFAULT_RETURN (0);
511
512 int (*to_can_use_hw_breakpoint) (struct target_ops *,
513 enum bptype, int, int)
514 TARGET_DEFAULT_RETURN (0);
515 int (*to_ranged_break_num_registers) (struct target_ops *)
516 TARGET_DEFAULT_RETURN (-1);
517 int (*to_insert_hw_breakpoint) (struct target_ops *,
518 struct gdbarch *, struct bp_target_info *)
519 TARGET_DEFAULT_RETURN (-1);
520 int (*to_remove_hw_breakpoint) (struct target_ops *,
521 struct gdbarch *, struct bp_target_info *)
522 TARGET_DEFAULT_RETURN (-1);
523
524 /* Documentation of what the two routines below are expected to do is
525 provided with the corresponding target_* macros. */
526 int (*to_remove_watchpoint) (struct target_ops *, CORE_ADDR, int,
527 enum target_hw_bp_type, struct expression *)
528 TARGET_DEFAULT_RETURN (-1);
529 int (*to_insert_watchpoint) (struct target_ops *, CORE_ADDR, int,
530 enum target_hw_bp_type, struct expression *)
531 TARGET_DEFAULT_RETURN (-1);
532
533 int (*to_insert_mask_watchpoint) (struct target_ops *,
534 CORE_ADDR, CORE_ADDR, int)
535 TARGET_DEFAULT_RETURN (1);
536 int (*to_remove_mask_watchpoint) (struct target_ops *,
537 CORE_ADDR, CORE_ADDR, int)
538 TARGET_DEFAULT_RETURN (1);
539 int (*to_stopped_by_watchpoint) (struct target_ops *)
540 TARGET_DEFAULT_RETURN (0);
541 int to_have_steppable_watchpoint;
542 int to_have_continuable_watchpoint;
543 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
544 TARGET_DEFAULT_RETURN (0);
545 int (*to_watchpoint_addr_within_range) (struct target_ops *,
546 CORE_ADDR, CORE_ADDR, int)
547 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
548
549 /* Documentation of this routine is provided with the corresponding
550 target_* macro. */
551 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
552 CORE_ADDR, int)
553 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
554
555 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
556 CORE_ADDR, int, int,
557 struct expression *)
558 TARGET_DEFAULT_RETURN (0);
559 int (*to_masked_watch_num_registers) (struct target_ops *,
560 CORE_ADDR, CORE_ADDR)
561 TARGET_DEFAULT_RETURN (-1);
562 void (*to_terminal_init) (struct target_ops *)
563 TARGET_DEFAULT_IGNORE ();
564 void (*to_terminal_inferior) (struct target_ops *)
565 TARGET_DEFAULT_IGNORE ();
566 void (*to_terminal_ours_for_output) (struct target_ops *)
567 TARGET_DEFAULT_IGNORE ();
568 void (*to_terminal_ours) (struct target_ops *)
569 TARGET_DEFAULT_IGNORE ();
570 void (*to_terminal_info) (struct target_ops *, const char *, int)
571 TARGET_DEFAULT_FUNC (default_terminal_info);
572 void (*to_kill) (struct target_ops *)
573 TARGET_DEFAULT_NORETURN (noprocess ());
574 void (*to_load) (struct target_ops *, const char *, int)
575 TARGET_DEFAULT_NORETURN (tcomplain ());
576 /* Start an inferior process and set inferior_ptid to its pid.
577 EXEC_FILE is the file to run.
578 ALLARGS is a string containing the arguments to the program.
579 ENV is the environment vector to pass. Errors reported with error().
580 On VxWorks and various standalone systems, we ignore exec_file. */
581 void (*to_create_inferior) (struct target_ops *,
582 char *, char *, char **, int);
583 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
584 TARGET_DEFAULT_IGNORE ();
585 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
586 TARGET_DEFAULT_RETURN (1);
587 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
588 TARGET_DEFAULT_RETURN (1);
589 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
590 TARGET_DEFAULT_RETURN (1);
591 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
592 TARGET_DEFAULT_RETURN (1);
593 int (*to_follow_fork) (struct target_ops *, int, int)
594 TARGET_DEFAULT_FUNC (default_follow_fork);
595 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
596 TARGET_DEFAULT_RETURN (1);
597 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
598 TARGET_DEFAULT_RETURN (1);
599 int (*to_set_syscall_catchpoint) (struct target_ops *,
600 int, int, int, int, int *)
601 TARGET_DEFAULT_RETURN (1);
602 int (*to_has_exited) (struct target_ops *, int, int, int *)
603 TARGET_DEFAULT_RETURN (0);
604 void (*to_mourn_inferior) (struct target_ops *)
605 TARGET_DEFAULT_FUNC (default_mourn_inferior);
606 /* Note that to_can_run is special and can be invoked on an
607 unpushed target. Targets defining this method must also define
608 to_can_async_p and to_supports_non_stop. */
609 int (*to_can_run) (struct target_ops *)
610 TARGET_DEFAULT_RETURN (0);
611
612 /* Documentation of this routine is provided with the corresponding
613 target_* macro. */
614 void (*to_pass_signals) (struct target_ops *, int,
615 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
616 TARGET_DEFAULT_IGNORE ();
617
618 /* Documentation of this routine is provided with the
619 corresponding target_* function. */
620 void (*to_program_signals) (struct target_ops *, int,
621 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
622 TARGET_DEFAULT_IGNORE ();
623
624 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
625 TARGET_DEFAULT_RETURN (0);
626 void (*to_update_thread_list) (struct target_ops *)
627 TARGET_DEFAULT_IGNORE ();
628 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
629 TARGET_DEFAULT_FUNC (default_pid_to_str);
630 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
631 TARGET_DEFAULT_RETURN (NULL);
632 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
633 TARGET_DEFAULT_RETURN (NULL);
634 void (*to_stop) (struct target_ops *, ptid_t)
635 TARGET_DEFAULT_IGNORE ();
636 void (*to_interrupt) (struct target_ops *, ptid_t)
637 TARGET_DEFAULT_IGNORE ();
638 void (*to_check_pending_interrupt) (struct target_ops *)
639 TARGET_DEFAULT_IGNORE ();
640 void (*to_rcmd) (struct target_ops *,
641 const char *command, struct ui_file *output)
642 TARGET_DEFAULT_FUNC (default_rcmd);
643 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
644 TARGET_DEFAULT_RETURN (NULL);
645 void (*to_log_command) (struct target_ops *, const char *)
646 TARGET_DEFAULT_IGNORE ();
647 struct target_section_table *(*to_get_section_table) (struct target_ops *)
648 TARGET_DEFAULT_RETURN (NULL);
649 enum strata to_stratum;
650 int (*to_has_all_memory) (struct target_ops *);
651 int (*to_has_memory) (struct target_ops *);
652 int (*to_has_stack) (struct target_ops *);
653 int (*to_has_registers) (struct target_ops *);
654 int (*to_has_execution) (struct target_ops *, ptid_t);
655 int to_has_thread_control; /* control thread execution */
656 int to_attach_no_wait;
657 /* This method must be implemented in some situations. See the
658 comment on 'to_can_run'. */
659 int (*to_can_async_p) (struct target_ops *)
660 TARGET_DEFAULT_RETURN (0);
661 int (*to_is_async_p) (struct target_ops *)
662 TARGET_DEFAULT_RETURN (0);
663 void (*to_async) (struct target_ops *, int)
664 TARGET_DEFAULT_NORETURN (tcomplain ());
665 /* This method must be implemented in some situations. See the
666 comment on 'to_can_run'. */
667 int (*to_supports_non_stop) (struct target_ops *)
668 TARGET_DEFAULT_RETURN (0);
669 /* Return true if the target operates in non-stop mode even with
670 "set non-stop off". */
671 int (*to_always_non_stop_p) (struct target_ops *)
672 TARGET_DEFAULT_RETURN (0);
673 /* find_memory_regions support method for gcore */
674 int (*to_find_memory_regions) (struct target_ops *,
675 find_memory_region_ftype func, void *data)
676 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
677 /* make_corefile_notes support method for gcore */
678 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
679 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
680 /* get_bookmark support method for bookmarks */
681 gdb_byte * (*to_get_bookmark) (struct target_ops *, const char *, int)
682 TARGET_DEFAULT_NORETURN (tcomplain ());
683 /* goto_bookmark support method for bookmarks */
684 void (*to_goto_bookmark) (struct target_ops *, const gdb_byte *, int)
685 TARGET_DEFAULT_NORETURN (tcomplain ());
686 /* Return the thread-local address at OFFSET in the
687 thread-local storage for the thread PTID and the shared library
688 or executable file given by OBJFILE. If that block of
689 thread-local storage hasn't been allocated yet, this function
690 may return an error. LOAD_MODULE_ADDR may be zero for statically
691 linked multithreaded inferiors. */
692 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
693 ptid_t ptid,
694 CORE_ADDR load_module_addr,
695 CORE_ADDR offset)
696 TARGET_DEFAULT_NORETURN (generic_tls_error ());
697
698 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
699 OBJECT. The OFFSET, for a seekable object, specifies the
700 starting point. The ANNEX can be used to provide additional
701 data-specific information to the target.
702
703 Return the transferred status, error or OK (an
704 'enum target_xfer_status' value). Save the number of bytes
705 actually transferred in *XFERED_LEN if transfer is successful
706 (TARGET_XFER_OK) or the number unavailable bytes if the requested
707 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
708 smaller than LEN does not indicate the end of the object, only
709 the end of the transfer; higher level code should continue
710 transferring if desired. This is handled in target.c.
711
712 The interface does not support a "retry" mechanism. Instead it
713 assumes that at least one byte will be transfered on each
714 successful call.
715
716 NOTE: cagney/2003-10-17: The current interface can lead to
717 fragmented transfers. Lower target levels should not implement
718 hacks, such as enlarging the transfer, in an attempt to
719 compensate for this. Instead, the target stack should be
720 extended so that it implements supply/collect methods and a
721 look-aside object cache. With that available, the lowest
722 target can safely and freely "push" data up the stack.
723
724 See target_read and target_write for more information. One,
725 and only one, of readbuf or writebuf must be non-NULL. */
726
727 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
728 enum target_object object,
729 const char *annex,
730 gdb_byte *readbuf,
731 const gdb_byte *writebuf,
732 ULONGEST offset, ULONGEST len,
733 ULONGEST *xfered_len)
734 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
735
736 /* Returns the memory map for the target. A return value of NULL
737 means that no memory map is available. If a memory address
738 does not fall within any returned regions, it's assumed to be
739 RAM. The returned memory regions should not overlap.
740
741 The order of regions does not matter; target_memory_map will
742 sort regions by starting address. For that reason, this
743 function should not be called directly except via
744 target_memory_map.
745
746 This method should not cache data; if the memory map could
747 change unexpectedly, it should be invalidated, and higher
748 layers will re-fetch it. */
749 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
750 TARGET_DEFAULT_RETURN (NULL);
751
752 /* Erases the region of flash memory starting at ADDRESS, of
753 length LENGTH.
754
755 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
756 on flash block boundaries, as reported by 'to_memory_map'. */
757 void (*to_flash_erase) (struct target_ops *,
758 ULONGEST address, LONGEST length)
759 TARGET_DEFAULT_NORETURN (tcomplain ());
760
761 /* Finishes a flash memory write sequence. After this operation
762 all flash memory should be available for writing and the result
763 of reading from areas written by 'to_flash_write' should be
764 equal to what was written. */
765 void (*to_flash_done) (struct target_ops *)
766 TARGET_DEFAULT_NORETURN (tcomplain ());
767
768 /* Describe the architecture-specific features of this target. If
769 OPS doesn't have a description, this should delegate to the
770 "beneath" target. Returns the description found, or NULL if no
771 description was available. */
772 const struct target_desc *(*to_read_description) (struct target_ops *ops)
773 TARGET_DEFAULT_RETURN (NULL);
774
775 /* Build the PTID of the thread on which a given task is running,
776 based on LWP and THREAD. These values are extracted from the
777 task Private_Data section of the Ada Task Control Block, and
778 their interpretation depends on the target. */
779 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
780 long lwp, long thread)
781 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
782
783 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
784 Return 0 if *READPTR is already at the end of the buffer.
785 Return -1 if there is insufficient buffer for a whole entry.
786 Return 1 if an entry was read into *TYPEP and *VALP. */
787 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
788 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
789 TARGET_DEFAULT_FUNC (default_auxv_parse);
790
791 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
792 sequence of bytes in PATTERN with length PATTERN_LEN.
793
794 The result is 1 if found, 0 if not found, and -1 if there was an error
795 requiring halting of the search (e.g. memory read error).
796 If the pattern is found the address is recorded in FOUND_ADDRP. */
797 int (*to_search_memory) (struct target_ops *ops,
798 CORE_ADDR start_addr, ULONGEST search_space_len,
799 const gdb_byte *pattern, ULONGEST pattern_len,
800 CORE_ADDR *found_addrp)
801 TARGET_DEFAULT_FUNC (default_search_memory);
802
803 /* Can target execute in reverse? */
804 int (*to_can_execute_reverse) (struct target_ops *)
805 TARGET_DEFAULT_RETURN (0);
806
807 /* The direction the target is currently executing. Must be
808 implemented on targets that support reverse execution and async
809 mode. The default simply returns forward execution. */
810 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
811 TARGET_DEFAULT_FUNC (default_execution_direction);
812
813 /* Does this target support debugging multiple processes
814 simultaneously? */
815 int (*to_supports_multi_process) (struct target_ops *)
816 TARGET_DEFAULT_RETURN (0);
817
818 /* Does this target support enabling and disabling tracepoints while a trace
819 experiment is running? */
820 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
821 TARGET_DEFAULT_RETURN (0);
822
823 /* Does this target support disabling address space randomization? */
824 int (*to_supports_disable_randomization) (struct target_ops *);
825
826 /* Does this target support the tracenz bytecode for string collection? */
827 int (*to_supports_string_tracing) (struct target_ops *)
828 TARGET_DEFAULT_RETURN (0);
829
830 /* Does this target support evaluation of breakpoint conditions on its
831 end? */
832 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
833 TARGET_DEFAULT_RETURN (0);
834
835 /* Does this target support evaluation of breakpoint commands on its
836 end? */
837 int (*to_can_run_breakpoint_commands) (struct target_ops *)
838 TARGET_DEFAULT_RETURN (0);
839
840 /* Determine current architecture of thread PTID.
841
842 The target is supposed to determine the architecture of the code where
843 the target is currently stopped at (on Cell, if a target is in spu_run,
844 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
845 This is architecture used to perform decr_pc_after_break adjustment,
846 and also determines the frame architecture of the innermost frame.
847 ptrace operations need to operate according to target_gdbarch ().
848
849 The default implementation always returns target_gdbarch (). */
850 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
851 TARGET_DEFAULT_FUNC (default_thread_architecture);
852
853 /* Determine current address space of thread PTID.
854
855 The default implementation always returns the inferior's
856 address space. */
857 struct address_space *(*to_thread_address_space) (struct target_ops *,
858 ptid_t)
859 TARGET_DEFAULT_FUNC (default_thread_address_space);
860
861 /* Target file operations. */
862
863 /* Return nonzero if the filesystem seen by the current inferior
864 is the local filesystem, zero otherwise. */
865 int (*to_filesystem_is_local) (struct target_ops *)
866 TARGET_DEFAULT_RETURN (1);
867
868 /* Open FILENAME on the target, in the filesystem as seen by INF,
869 using FLAGS and MODE. If INF is NULL, use the filesystem seen
870 by the debugger (GDB or, for remote targets, the remote stub).
871 If WARN_IF_SLOW is nonzero, print a warning message if the file
872 is being accessed over a link that may be slow. Return a
873 target file descriptor, or -1 if an error occurs (and set
874 *TARGET_ERRNO). */
875 int (*to_fileio_open) (struct target_ops *,
876 struct inferior *inf, const char *filename,
877 int flags, int mode, int warn_if_slow,
878 int *target_errno);
879
880 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
881 Return the number of bytes written, or -1 if an error occurs
882 (and set *TARGET_ERRNO). */
883 int (*to_fileio_pwrite) (struct target_ops *,
884 int fd, const gdb_byte *write_buf, int len,
885 ULONGEST offset, int *target_errno);
886
887 /* Read up to LEN bytes FD on the target into READ_BUF.
888 Return the number of bytes read, or -1 if an error occurs
889 (and set *TARGET_ERRNO). */
890 int (*to_fileio_pread) (struct target_ops *,
891 int fd, gdb_byte *read_buf, int len,
892 ULONGEST offset, int *target_errno);
893
894 /* Get information about the file opened as FD and put it in
895 SB. Return 0 on success, or -1 if an error occurs (and set
896 *TARGET_ERRNO). */
897 int (*to_fileio_fstat) (struct target_ops *,
898 int fd, struct stat *sb, int *target_errno);
899
900 /* Close FD on the target. Return 0, or -1 if an error occurs
901 (and set *TARGET_ERRNO). */
902 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
903
904 /* Unlink FILENAME on the target, in the filesystem as seen by
905 INF. If INF is NULL, use the filesystem seen by the debugger
906 (GDB or, for remote targets, the remote stub). Return 0, or
907 -1 if an error occurs (and set *TARGET_ERRNO). */
908 int (*to_fileio_unlink) (struct target_ops *,
909 struct inferior *inf,
910 const char *filename,
911 int *target_errno);
912
913 /* Read value of symbolic link FILENAME on the target, in the
914 filesystem as seen by INF. If INF is NULL, use the filesystem
915 seen by the debugger (GDB or, for remote targets, the remote
916 stub). Return a null-terminated string allocated via xmalloc,
917 or NULL if an error occurs (and set *TARGET_ERRNO). */
918 char *(*to_fileio_readlink) (struct target_ops *,
919 struct inferior *inf,
920 const char *filename,
921 int *target_errno);
922
923
924 /* Implement the "info proc" command. */
925 void (*to_info_proc) (struct target_ops *, const char *,
926 enum info_proc_what);
927
928 /* Tracepoint-related operations. */
929
930 /* Prepare the target for a tracing run. */
931 void (*to_trace_init) (struct target_ops *)
932 TARGET_DEFAULT_NORETURN (tcomplain ());
933
934 /* Send full details of a tracepoint location to the target. */
935 void (*to_download_tracepoint) (struct target_ops *,
936 struct bp_location *location)
937 TARGET_DEFAULT_NORETURN (tcomplain ());
938
939 /* Is the target able to download tracepoint locations in current
940 state? */
941 int (*to_can_download_tracepoint) (struct target_ops *)
942 TARGET_DEFAULT_RETURN (0);
943
944 /* Send full details of a trace state variable to the target. */
945 void (*to_download_trace_state_variable) (struct target_ops *,
946 struct trace_state_variable *tsv)
947 TARGET_DEFAULT_NORETURN (tcomplain ());
948
949 /* Enable a tracepoint on the target. */
950 void (*to_enable_tracepoint) (struct target_ops *,
951 struct bp_location *location)
952 TARGET_DEFAULT_NORETURN (tcomplain ());
953
954 /* Disable a tracepoint on the target. */
955 void (*to_disable_tracepoint) (struct target_ops *,
956 struct bp_location *location)
957 TARGET_DEFAULT_NORETURN (tcomplain ());
958
959 /* Inform the target info of memory regions that are readonly
960 (such as text sections), and so it should return data from
961 those rather than look in the trace buffer. */
962 void (*to_trace_set_readonly_regions) (struct target_ops *)
963 TARGET_DEFAULT_NORETURN (tcomplain ());
964
965 /* Start a trace run. */
966 void (*to_trace_start) (struct target_ops *)
967 TARGET_DEFAULT_NORETURN (tcomplain ());
968
969 /* Get the current status of a tracing run. */
970 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
971 TARGET_DEFAULT_RETURN (-1);
972
973 void (*to_get_tracepoint_status) (struct target_ops *,
974 struct breakpoint *tp,
975 struct uploaded_tp *utp)
976 TARGET_DEFAULT_NORETURN (tcomplain ());
977
978 /* Stop a trace run. */
979 void (*to_trace_stop) (struct target_ops *)
980 TARGET_DEFAULT_NORETURN (tcomplain ());
981
982 /* Ask the target to find a trace frame of the given type TYPE,
983 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
984 number of the trace frame, and also the tracepoint number at
985 TPP. If no trace frame matches, return -1. May throw if the
986 operation fails. */
987 int (*to_trace_find) (struct target_ops *,
988 enum trace_find_type type, int num,
989 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
990 TARGET_DEFAULT_RETURN (-1);
991
992 /* Get the value of the trace state variable number TSV, returning
993 1 if the value is known and writing the value itself into the
994 location pointed to by VAL, else returning 0. */
995 int (*to_get_trace_state_variable_value) (struct target_ops *,
996 int tsv, LONGEST *val)
997 TARGET_DEFAULT_RETURN (0);
998
999 int (*to_save_trace_data) (struct target_ops *, const char *filename)
1000 TARGET_DEFAULT_NORETURN (tcomplain ());
1001
1002 int (*to_upload_tracepoints) (struct target_ops *,
1003 struct uploaded_tp **utpp)
1004 TARGET_DEFAULT_RETURN (0);
1005
1006 int (*to_upload_trace_state_variables) (struct target_ops *,
1007 struct uploaded_tsv **utsvp)
1008 TARGET_DEFAULT_RETURN (0);
1009
1010 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
1011 ULONGEST offset, LONGEST len)
1012 TARGET_DEFAULT_NORETURN (tcomplain ());
1013
1014 /* Get the minimum length of instruction on which a fast tracepoint
1015 may be set on the target. If this operation is unsupported,
1016 return -1. If for some reason the minimum length cannot be
1017 determined, return 0. */
1018 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
1019 TARGET_DEFAULT_RETURN (-1);
1020
1021 /* Set the target's tracing behavior in response to unexpected
1022 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1023 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
1024 TARGET_DEFAULT_IGNORE ();
1025 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
1026 TARGET_DEFAULT_IGNORE ();
1027 /* Set the size of trace buffer in the target. */
1028 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
1029 TARGET_DEFAULT_IGNORE ();
1030
1031 /* Add/change textual notes about the trace run, returning 1 if
1032 successful, 0 otherwise. */
1033 int (*to_set_trace_notes) (struct target_ops *,
1034 const char *user, const char *notes,
1035 const char *stopnotes)
1036 TARGET_DEFAULT_RETURN (0);
1037
1038 /* Return the processor core that thread PTID was last seen on.
1039 This information is updated only when:
1040 - update_thread_list is called
1041 - thread stops
1042 If the core cannot be determined -- either for the specified
1043 thread, or right now, or in this debug session, or for this
1044 target -- return -1. */
1045 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
1046 TARGET_DEFAULT_RETURN (-1);
1047
1048 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1049 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1050 a match, 0 if there's a mismatch, and -1 if an error is
1051 encountered while reading memory. */
1052 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
1053 CORE_ADDR memaddr, ULONGEST size)
1054 TARGET_DEFAULT_FUNC (default_verify_memory);
1055
1056 /* Return the address of the start of the Thread Information Block
1057 a Windows OS specific feature. */
1058 int (*to_get_tib_address) (struct target_ops *,
1059 ptid_t ptid, CORE_ADDR *addr)
1060 TARGET_DEFAULT_NORETURN (tcomplain ());
1061
1062 /* Send the new settings of write permission variables. */
1063 void (*to_set_permissions) (struct target_ops *)
1064 TARGET_DEFAULT_IGNORE ();
1065
1066 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1067 with its details. Return 1 on success, 0 on failure. */
1068 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
1069 struct static_tracepoint_marker *marker)
1070 TARGET_DEFAULT_RETURN (0);
1071
1072 /* Return a vector of all tracepoints markers string id ID, or all
1073 markers if ID is NULL. */
1074 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
1075 TARGET_DEFAULT_NORETURN (tcomplain ());
1076
1077 /* Return a traceframe info object describing the current
1078 traceframe's contents. This method should not cache data;
1079 higher layers take care of caching, invalidating, and
1080 re-fetching when necessary. */
1081 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
1082 TARGET_DEFAULT_NORETURN (tcomplain ());
1083
1084 /* Ask the target to use or not to use agent according to USE. Return 1
1085 successful, 0 otherwise. */
1086 int (*to_use_agent) (struct target_ops *, int use)
1087 TARGET_DEFAULT_NORETURN (tcomplain ());
1088
1089 /* Is the target able to use agent in current state? */
1090 int (*to_can_use_agent) (struct target_ops *)
1091 TARGET_DEFAULT_RETURN (0);
1092
1093 /* Check whether the target supports branch tracing. */
1094 int (*to_supports_btrace) (struct target_ops *, enum btrace_format)
1095 TARGET_DEFAULT_RETURN (0);
1096
1097 /* Enable branch tracing for PTID using CONF configuration.
1098 Return a branch trace target information struct for reading and for
1099 disabling branch trace. */
1100 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
1101 ptid_t ptid,
1102 const struct btrace_config *conf)
1103 TARGET_DEFAULT_NORETURN (tcomplain ());
1104
1105 /* Disable branch tracing and deallocate TINFO. */
1106 void (*to_disable_btrace) (struct target_ops *,
1107 struct btrace_target_info *tinfo)
1108 TARGET_DEFAULT_NORETURN (tcomplain ());
1109
1110 /* Disable branch tracing and deallocate TINFO. This function is similar
1111 to to_disable_btrace, except that it is called during teardown and is
1112 only allowed to perform actions that are safe. A counter-example would
1113 be attempting to talk to a remote target. */
1114 void (*to_teardown_btrace) (struct target_ops *,
1115 struct btrace_target_info *tinfo)
1116 TARGET_DEFAULT_NORETURN (tcomplain ());
1117
1118 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1119 DATA is cleared before new trace is added. */
1120 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1121 struct btrace_data *data,
1122 struct btrace_target_info *btinfo,
1123 enum btrace_read_type type)
1124 TARGET_DEFAULT_NORETURN (tcomplain ());
1125
1126 /* Get the branch trace configuration. */
1127 const struct btrace_config *(*to_btrace_conf) (struct target_ops *self,
1128 const struct btrace_target_info *)
1129 TARGET_DEFAULT_RETURN (NULL);
1130
1131 /* Stop trace recording. */
1132 void (*to_stop_recording) (struct target_ops *)
1133 TARGET_DEFAULT_IGNORE ();
1134
1135 /* Print information about the recording. */
1136 void (*to_info_record) (struct target_ops *)
1137 TARGET_DEFAULT_IGNORE ();
1138
1139 /* Save the recorded execution trace into a file. */
1140 void (*to_save_record) (struct target_ops *, const char *filename)
1141 TARGET_DEFAULT_NORETURN (tcomplain ());
1142
1143 /* Delete the recorded execution trace from the current position
1144 onwards. */
1145 void (*to_delete_record) (struct target_ops *)
1146 TARGET_DEFAULT_NORETURN (tcomplain ());
1147
1148 /* Query if the record target is currently replaying. */
1149 int (*to_record_is_replaying) (struct target_ops *)
1150 TARGET_DEFAULT_RETURN (0);
1151
1152 /* Go to the begin of the execution trace. */
1153 void (*to_goto_record_begin) (struct target_ops *)
1154 TARGET_DEFAULT_NORETURN (tcomplain ());
1155
1156 /* Go to the end of the execution trace. */
1157 void (*to_goto_record_end) (struct target_ops *)
1158 TARGET_DEFAULT_NORETURN (tcomplain ());
1159
1160 /* Go to a specific location in the recorded execution trace. */
1161 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1162 TARGET_DEFAULT_NORETURN (tcomplain ());
1163
1164 /* Disassemble SIZE instructions in the recorded execution trace from
1165 the current position.
1166 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1167 disassemble SIZE succeeding instructions. */
1168 void (*to_insn_history) (struct target_ops *, int size, int flags)
1169 TARGET_DEFAULT_NORETURN (tcomplain ());
1170
1171 /* Disassemble SIZE instructions in the recorded execution trace around
1172 FROM.
1173 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1174 disassemble SIZE instructions after FROM. */
1175 void (*to_insn_history_from) (struct target_ops *,
1176 ULONGEST from, int size, int flags)
1177 TARGET_DEFAULT_NORETURN (tcomplain ());
1178
1179 /* Disassemble a section of the recorded execution trace from instruction
1180 BEGIN (inclusive) to instruction END (inclusive). */
1181 void (*to_insn_history_range) (struct target_ops *,
1182 ULONGEST begin, ULONGEST end, int flags)
1183 TARGET_DEFAULT_NORETURN (tcomplain ());
1184
1185 /* Print a function trace of the recorded execution trace.
1186 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1187 succeeding functions. */
1188 void (*to_call_history) (struct target_ops *, int size, int flags)
1189 TARGET_DEFAULT_NORETURN (tcomplain ());
1190
1191 /* Print a function trace of the recorded execution trace starting
1192 at function FROM.
1193 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1194 SIZE functions after FROM. */
1195 void (*to_call_history_from) (struct target_ops *,
1196 ULONGEST begin, int size, int flags)
1197 TARGET_DEFAULT_NORETURN (tcomplain ());
1198
1199 /* Print a function trace of an execution trace section from function BEGIN
1200 (inclusive) to function END (inclusive). */
1201 void (*to_call_history_range) (struct target_ops *,
1202 ULONGEST begin, ULONGEST end, int flags)
1203 TARGET_DEFAULT_NORETURN (tcomplain ());
1204
1205 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1206 non-empty annex. */
1207 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1208 TARGET_DEFAULT_RETURN (0);
1209
1210 /* Those unwinders are tried before any other arch unwinders. If
1211 SELF doesn't have unwinders, it should delegate to the
1212 "beneath" target. */
1213 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1214 TARGET_DEFAULT_RETURN (NULL);
1215
1216 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1217 TARGET_DEFAULT_RETURN (NULL);
1218
1219 /* Prepare to generate a core file. */
1220 void (*to_prepare_to_generate_core) (struct target_ops *)
1221 TARGET_DEFAULT_IGNORE ();
1222
1223 /* Cleanup after generating a core file. */
1224 void (*to_done_generating_core) (struct target_ops *)
1225 TARGET_DEFAULT_IGNORE ();
1226
1227 int to_magic;
1228 /* Need sub-structure for target machine related rather than comm related?
1229 */
1230 };
1231
1232 /* Magic number for checking ops size. If a struct doesn't end with this
1233 number, somebody changed the declaration but didn't change all the
1234 places that initialize one. */
1235
1236 #define OPS_MAGIC 3840
1237
1238 /* The ops structure for our "current" target process. This should
1239 never be NULL. If there is no target, it points to the dummy_target. */
1240
1241 extern struct target_ops current_target;
1242
1243 /* Define easy words for doing these operations on our current target. */
1244
1245 #define target_shortname (current_target.to_shortname)
1246 #define target_longname (current_target.to_longname)
1247
1248 /* Does whatever cleanup is required for a target that we are no
1249 longer going to be calling. This routine is automatically always
1250 called after popping the target off the target stack - the target's
1251 own methods are no longer available through the target vector.
1252 Closing file descriptors and freeing all memory allocated memory are
1253 typical things it should do. */
1254
1255 void target_close (struct target_ops *targ);
1256
1257 /* Find the correct target to use for "attach". If a target on the
1258 current stack supports attaching, then it is returned. Otherwise,
1259 the default run target is returned. */
1260
1261 extern struct target_ops *find_attach_target (void);
1262
1263 /* Find the correct target to use for "run". If a target on the
1264 current stack supports creating a new inferior, then it is
1265 returned. Otherwise, the default run target is returned. */
1266
1267 extern struct target_ops *find_run_target (void);
1268
1269 /* Some targets don't generate traps when attaching to the inferior,
1270 or their target_attach implementation takes care of the waiting.
1271 These targets must set to_attach_no_wait. */
1272
1273 #define target_attach_no_wait \
1274 (current_target.to_attach_no_wait)
1275
1276 /* The target_attach operation places a process under debugger control,
1277 and stops the process.
1278
1279 This operation provides a target-specific hook that allows the
1280 necessary bookkeeping to be performed after an attach completes. */
1281 #define target_post_attach(pid) \
1282 (*current_target.to_post_attach) (&current_target, pid)
1283
1284 /* Takes a program previously attached to and detaches it.
1285 The program may resume execution (some targets do, some don't) and will
1286 no longer stop on signals, etc. We better not have left any breakpoints
1287 in the program or it'll die when it hits one. ARGS is arguments
1288 typed by the user (e.g. a signal to send the process). FROM_TTY
1289 says whether to be verbose or not. */
1290
1291 extern void target_detach (const char *, int);
1292
1293 /* Disconnect from the current target without resuming it (leaving it
1294 waiting for a debugger). */
1295
1296 extern void target_disconnect (const char *, int);
1297
1298 /* Resume execution of the target process PTID (or a group of
1299 threads). STEP says whether to hardware single-step or to run free;
1300 SIGGNAL is the signal to be given to the target, or GDB_SIGNAL_0 for no
1301 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1302 PTID means `step/resume only this process id'. A wildcard PTID
1303 (all threads, or all threads of process) means `step/resume
1304 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1305 matches) resume with their 'thread->suspend.stop_signal' signal
1306 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1307 if in "no pass" state. */
1308
1309 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1310
1311 /* Wait for process pid to do something. PTID = -1 to wait for any
1312 pid to do something. Return pid of child, or -1 in case of error;
1313 store status through argument pointer STATUS. Note that it is
1314 _NOT_ OK to throw_exception() out of target_wait() without popping
1315 the debugging target from the stack; GDB isn't prepared to get back
1316 to the prompt with a debugging target but without the frame cache,
1317 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1318 options. */
1319
1320 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1321 int options);
1322
1323 /* The default target_ops::to_wait implementation. */
1324
1325 extern ptid_t default_target_wait (struct target_ops *ops,
1326 ptid_t ptid,
1327 struct target_waitstatus *status,
1328 int options);
1329
1330 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1331
1332 extern void target_fetch_registers (struct regcache *regcache, int regno);
1333
1334 /* Store at least register REGNO, or all regs if REGNO == -1.
1335 It can store as many registers as it wants to, so target_prepare_to_store
1336 must have been previously called. Calls error() if there are problems. */
1337
1338 extern void target_store_registers (struct regcache *regcache, int regs);
1339
1340 /* Get ready to modify the registers array. On machines which store
1341 individual registers, this doesn't need to do anything. On machines
1342 which store all the registers in one fell swoop, this makes sure
1343 that REGISTERS contains all the registers from the program being
1344 debugged. */
1345
1346 #define target_prepare_to_store(regcache) \
1347 (*current_target.to_prepare_to_store) (&current_target, regcache)
1348
1349 /* Determine current address space of thread PTID. */
1350
1351 struct address_space *target_thread_address_space (ptid_t);
1352
1353 /* Implement the "info proc" command. This returns one if the request
1354 was handled, and zero otherwise. It can also throw an exception if
1355 an error was encountered while attempting to handle the
1356 request. */
1357
1358 int target_info_proc (const char *, enum info_proc_what);
1359
1360 /* Returns true if this target can debug multiple processes
1361 simultaneously. */
1362
1363 #define target_supports_multi_process() \
1364 (*current_target.to_supports_multi_process) (&current_target)
1365
1366 /* Returns true if this target can disable address space randomization. */
1367
1368 int target_supports_disable_randomization (void);
1369
1370 /* Returns true if this target can enable and disable tracepoints
1371 while a trace experiment is running. */
1372
1373 #define target_supports_enable_disable_tracepoint() \
1374 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1375
1376 #define target_supports_string_tracing() \
1377 (*current_target.to_supports_string_tracing) (&current_target)
1378
1379 /* Returns true if this target can handle breakpoint conditions
1380 on its end. */
1381
1382 #define target_supports_evaluation_of_breakpoint_conditions() \
1383 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1384
1385 /* Returns true if this target can handle breakpoint commands
1386 on its end. */
1387
1388 #define target_can_run_breakpoint_commands() \
1389 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1390
1391 extern int target_read_string (CORE_ADDR, char **, int, int *);
1392
1393 /* For target_read_memory see target/target.h. */
1394
1395 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1396 ssize_t len);
1397
1398 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1399
1400 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1401
1402 /* For target_write_memory see target/target.h. */
1403
1404 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1405 ssize_t len);
1406
1407 /* Fetches the target's memory map. If one is found it is sorted
1408 and returned, after some consistency checking. Otherwise, NULL
1409 is returned. */
1410 VEC(mem_region_s) *target_memory_map (void);
1411
1412 /* Erase the specified flash region. */
1413 void target_flash_erase (ULONGEST address, LONGEST length);
1414
1415 /* Finish a sequence of flash operations. */
1416 void target_flash_done (void);
1417
1418 /* Describes a request for a memory write operation. */
1419 struct memory_write_request
1420 {
1421 /* Begining address that must be written. */
1422 ULONGEST begin;
1423 /* Past-the-end address. */
1424 ULONGEST end;
1425 /* The data to write. */
1426 gdb_byte *data;
1427 /* A callback baton for progress reporting for this request. */
1428 void *baton;
1429 };
1430 typedef struct memory_write_request memory_write_request_s;
1431 DEF_VEC_O(memory_write_request_s);
1432
1433 /* Enumeration specifying different flash preservation behaviour. */
1434 enum flash_preserve_mode
1435 {
1436 flash_preserve,
1437 flash_discard
1438 };
1439
1440 /* Write several memory blocks at once. This version can be more
1441 efficient than making several calls to target_write_memory, in
1442 particular because it can optimize accesses to flash memory.
1443
1444 Moreover, this is currently the only memory access function in gdb
1445 that supports writing to flash memory, and it should be used for
1446 all cases where access to flash memory is desirable.
1447
1448 REQUESTS is the vector (see vec.h) of memory_write_request.
1449 PRESERVE_FLASH_P indicates what to do with blocks which must be
1450 erased, but not completely rewritten.
1451 PROGRESS_CB is a function that will be periodically called to provide
1452 feedback to user. It will be called with the baton corresponding
1453 to the request currently being written. It may also be called
1454 with a NULL baton, when preserved flash sectors are being rewritten.
1455
1456 The function returns 0 on success, and error otherwise. */
1457 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1458 enum flash_preserve_mode preserve_flash_p,
1459 void (*progress_cb) (ULONGEST, void *));
1460
1461 /* Print a line about the current target. */
1462
1463 #define target_files_info() \
1464 (*current_target.to_files_info) (&current_target)
1465
1466 /* Insert a breakpoint at address BP_TGT->placed_address in
1467 the target machine. Returns 0 for success, and returns non-zero or
1468 throws an error (with a detailed failure reason error code and
1469 message) otherwise. */
1470
1471 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1472 struct bp_target_info *bp_tgt);
1473
1474 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1475 machine. Result is 0 for success, non-zero for error. */
1476
1477 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1478 struct bp_target_info *bp_tgt);
1479
1480 /* Returns true if the terminal settings of the inferior are in
1481 effect. */
1482
1483 extern int target_terminal_is_inferior (void);
1484
1485 /* Initialize the terminal settings we record for the inferior,
1486 before we actually run the inferior. */
1487
1488 extern void target_terminal_init (void);
1489
1490 /* Put the inferior's terminal settings into effect.
1491 This is preparation for starting or resuming the inferior. */
1492
1493 extern void target_terminal_inferior (void);
1494
1495 /* Put some of our terminal settings into effect, enough to get proper
1496 results from our output, but do not change into or out of RAW mode
1497 so that no input is discarded. This is a no-op if terminal_ours
1498 was most recently called. */
1499
1500 extern void target_terminal_ours_for_output (void);
1501
1502 /* Put our terminal settings into effect.
1503 First record the inferior's terminal settings
1504 so they can be restored properly later. */
1505
1506 extern void target_terminal_ours (void);
1507
1508 /* Return true if the target stack has a non-default
1509 "to_terminal_ours" method. */
1510
1511 extern int target_supports_terminal_ours (void);
1512
1513 /* Make a cleanup that restores the state of the terminal to the current
1514 state. */
1515 extern struct cleanup *make_cleanup_restore_target_terminal (void);
1516
1517 /* Print useful information about our terminal status, if such a thing
1518 exists. */
1519
1520 #define target_terminal_info(arg, from_tty) \
1521 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1522
1523 /* Kill the inferior process. Make it go away. */
1524
1525 extern void target_kill (void);
1526
1527 /* Load an executable file into the target process. This is expected
1528 to not only bring new code into the target process, but also to
1529 update GDB's symbol tables to match.
1530
1531 ARG contains command-line arguments, to be broken down with
1532 buildargv (). The first non-switch argument is the filename to
1533 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1534 0)), which is an offset to apply to the load addresses of FILE's
1535 sections. The target may define switches, or other non-switch
1536 arguments, as it pleases. */
1537
1538 extern void target_load (const char *arg, int from_tty);
1539
1540 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1541 notification of inferior events such as fork and vork immediately
1542 after the inferior is created. (This because of how gdb gets an
1543 inferior created via invoking a shell to do it. In such a scenario,
1544 if the shell init file has commands in it, the shell will fork and
1545 exec for each of those commands, and we will see each such fork
1546 event. Very bad.)
1547
1548 Such targets will supply an appropriate definition for this function. */
1549
1550 #define target_post_startup_inferior(ptid) \
1551 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1552
1553 /* On some targets, we can catch an inferior fork or vfork event when
1554 it occurs. These functions insert/remove an already-created
1555 catchpoint for such events. They return 0 for success, 1 if the
1556 catchpoint type is not supported and -1 for failure. */
1557
1558 #define target_insert_fork_catchpoint(pid) \
1559 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1560
1561 #define target_remove_fork_catchpoint(pid) \
1562 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1563
1564 #define target_insert_vfork_catchpoint(pid) \
1565 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1566
1567 #define target_remove_vfork_catchpoint(pid) \
1568 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1569
1570 /* If the inferior forks or vforks, this function will be called at
1571 the next resume in order to perform any bookkeeping and fiddling
1572 necessary to continue debugging either the parent or child, as
1573 requested, and releasing the other. Information about the fork
1574 or vfork event is available via get_last_target_status ().
1575 This function returns 1 if the inferior should not be resumed
1576 (i.e. there is another event pending). */
1577
1578 int target_follow_fork (int follow_child, int detach_fork);
1579
1580 /* On some targets, we can catch an inferior exec event when it
1581 occurs. These functions insert/remove an already-created
1582 catchpoint for such events. They return 0 for success, 1 if the
1583 catchpoint type is not supported and -1 for failure. */
1584
1585 #define target_insert_exec_catchpoint(pid) \
1586 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1587
1588 #define target_remove_exec_catchpoint(pid) \
1589 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1590
1591 /* Syscall catch.
1592
1593 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1594 If NEEDED is zero, it means the target can disable the mechanism to
1595 catch system calls because there are no more catchpoints of this type.
1596
1597 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1598 being requested. In this case, both TABLE_SIZE and TABLE should
1599 be ignored.
1600
1601 TABLE_SIZE is the number of elements in TABLE. It only matters if
1602 ANY_COUNT is zero.
1603
1604 TABLE is an array of ints, indexed by syscall number. An element in
1605 this array is nonzero if that syscall should be caught. This argument
1606 only matters if ANY_COUNT is zero.
1607
1608 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1609 for failure. */
1610
1611 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1612 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1613 pid, needed, any_count, \
1614 table_size, table)
1615
1616 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1617 exit code of PID, if any. */
1618
1619 #define target_has_exited(pid,wait_status,exit_status) \
1620 (*current_target.to_has_exited) (&current_target, \
1621 pid,wait_status,exit_status)
1622
1623 /* The debugger has completed a blocking wait() call. There is now
1624 some process event that must be processed. This function should
1625 be defined by those targets that require the debugger to perform
1626 cleanup or internal state changes in response to the process event. */
1627
1628 /* The inferior process has died. Do what is right. */
1629
1630 void target_mourn_inferior (void);
1631
1632 /* Does target have enough data to do a run or attach command? */
1633
1634 #define target_can_run(t) \
1635 ((t)->to_can_run) (t)
1636
1637 /* Set list of signals to be handled in the target.
1638
1639 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1640 (enum gdb_signal). For every signal whose entry in this array is
1641 non-zero, the target is allowed -but not required- to skip reporting
1642 arrival of the signal to the GDB core by returning from target_wait,
1643 and to pass the signal directly to the inferior instead.
1644
1645 However, if the target is hardware single-stepping a thread that is
1646 about to receive a signal, it needs to be reported in any case, even
1647 if mentioned in a previous target_pass_signals call. */
1648
1649 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1650
1651 /* Set list of signals the target may pass to the inferior. This
1652 directly maps to the "handle SIGNAL pass/nopass" setting.
1653
1654 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1655 number (enum gdb_signal). For every signal whose entry in this
1656 array is non-zero, the target is allowed to pass the signal to the
1657 inferior. Signals not present in the array shall be silently
1658 discarded. This does not influence whether to pass signals to the
1659 inferior as a result of a target_resume call. This is useful in
1660 scenarios where the target needs to decide whether to pass or not a
1661 signal to the inferior without GDB core involvement, such as for
1662 example, when detaching (as threads may have been suspended with
1663 pending signals not reported to GDB). */
1664
1665 extern void target_program_signals (int nsig, unsigned char *program_signals);
1666
1667 /* Check to see if a thread is still alive. */
1668
1669 extern int target_thread_alive (ptid_t ptid);
1670
1671 /* Sync the target's threads with GDB's thread list. */
1672
1673 extern void target_update_thread_list (void);
1674
1675 /* Make target stop in a continuable fashion. (For instance, under
1676 Unix, this should act like SIGSTOP). Note that this function is
1677 asynchronous: it does not wait for the target to become stopped
1678 before returning. If this is the behavior you want please use
1679 target_stop_and_wait. */
1680
1681 extern void target_stop (ptid_t ptid);
1682
1683 /* Interrupt the target just like the user typed a ^C on the
1684 inferior's controlling terminal. (For instance, under Unix, this
1685 should act like SIGINT). This function is asynchronous. */
1686
1687 extern void target_interrupt (ptid_t ptid);
1688
1689 /* Some targets install their own SIGINT handler while the target is
1690 running. This method is called from the QUIT macro to give such
1691 targets a chance to process a Ctrl-C. The target may e.g., choose
1692 to interrupt the (potentially) long running operation, or give up
1693 waiting and disconnect. */
1694
1695 extern void target_check_pending_interrupt (void);
1696
1697 /* Send the specified COMMAND to the target's monitor
1698 (shell,interpreter) for execution. The result of the query is
1699 placed in OUTBUF. */
1700
1701 #define target_rcmd(command, outbuf) \
1702 (*current_target.to_rcmd) (&current_target, command, outbuf)
1703
1704
1705 /* Does the target include all of memory, or only part of it? This
1706 determines whether we look up the target chain for other parts of
1707 memory if this target can't satisfy a request. */
1708
1709 extern int target_has_all_memory_1 (void);
1710 #define target_has_all_memory target_has_all_memory_1 ()
1711
1712 /* Does the target include memory? (Dummy targets don't.) */
1713
1714 extern int target_has_memory_1 (void);
1715 #define target_has_memory target_has_memory_1 ()
1716
1717 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1718 we start a process.) */
1719
1720 extern int target_has_stack_1 (void);
1721 #define target_has_stack target_has_stack_1 ()
1722
1723 /* Does the target have registers? (Exec files don't.) */
1724
1725 extern int target_has_registers_1 (void);
1726 #define target_has_registers target_has_registers_1 ()
1727
1728 /* Does the target have execution? Can we make it jump (through
1729 hoops), or pop its stack a few times? This means that the current
1730 target is currently executing; for some targets, that's the same as
1731 whether or not the target is capable of execution, but there are
1732 also targets which can be current while not executing. In that
1733 case this will become true after to_create_inferior or
1734 to_attach. */
1735
1736 extern int target_has_execution_1 (ptid_t);
1737
1738 /* Like target_has_execution_1, but always passes inferior_ptid. */
1739
1740 extern int target_has_execution_current (void);
1741
1742 #define target_has_execution target_has_execution_current ()
1743
1744 /* Default implementations for process_stratum targets. Return true
1745 if there's a selected inferior, false otherwise. */
1746
1747 extern int default_child_has_all_memory (struct target_ops *ops);
1748 extern int default_child_has_memory (struct target_ops *ops);
1749 extern int default_child_has_stack (struct target_ops *ops);
1750 extern int default_child_has_registers (struct target_ops *ops);
1751 extern int default_child_has_execution (struct target_ops *ops,
1752 ptid_t the_ptid);
1753
1754 /* Can the target support the debugger control of thread execution?
1755 Can it lock the thread scheduler? */
1756
1757 #define target_can_lock_scheduler \
1758 (current_target.to_has_thread_control & tc_schedlock)
1759
1760 /* Controls whether async mode is permitted. */
1761 extern int target_async_permitted;
1762
1763 /* Can the target support asynchronous execution? */
1764 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1765
1766 /* Is the target in asynchronous execution mode? */
1767 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1768
1769 /* Enables/disabled async target events. */
1770 extern void target_async (int enable);
1771
1772 /* Whether support for controlling the target backends always in
1773 non-stop mode is enabled. */
1774 extern enum auto_boolean target_non_stop_enabled;
1775
1776 /* Is the target in non-stop mode? Some targets control the inferior
1777 in non-stop mode even with "set non-stop off". Always true if "set
1778 non-stop" is on. */
1779 extern int target_is_non_stop_p (void);
1780
1781 #define target_execution_direction() \
1782 (current_target.to_execution_direction (&current_target))
1783
1784 /* Converts a process id to a string. Usually, the string just contains
1785 `process xyz', but on some systems it may contain
1786 `process xyz thread abc'. */
1787
1788 extern char *target_pid_to_str (ptid_t ptid);
1789
1790 extern char *normal_pid_to_str (ptid_t ptid);
1791
1792 /* Return a short string describing extra information about PID,
1793 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1794 is okay. */
1795
1796 #define target_extra_thread_info(TP) \
1797 (current_target.to_extra_thread_info (&current_target, TP))
1798
1799 /* Return the thread's name. A NULL result means that the target
1800 could not determine this thread's name. */
1801
1802 extern char *target_thread_name (struct thread_info *);
1803
1804 /* Attempts to find the pathname of the executable file
1805 that was run to create a specified process.
1806
1807 The process PID must be stopped when this operation is used.
1808
1809 If the executable file cannot be determined, NULL is returned.
1810
1811 Else, a pointer to a character string containing the pathname
1812 is returned. This string should be copied into a buffer by
1813 the client if the string will not be immediately used, or if
1814 it must persist. */
1815
1816 #define target_pid_to_exec_file(pid) \
1817 (current_target.to_pid_to_exec_file) (&current_target, pid)
1818
1819 /* See the to_thread_architecture description in struct target_ops. */
1820
1821 #define target_thread_architecture(ptid) \
1822 (current_target.to_thread_architecture (&current_target, ptid))
1823
1824 /*
1825 * Iterator function for target memory regions.
1826 * Calls a callback function once for each memory region 'mapped'
1827 * in the child process. Defined as a simple macro rather than
1828 * as a function macro so that it can be tested for nullity.
1829 */
1830
1831 #define target_find_memory_regions(FUNC, DATA) \
1832 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1833
1834 /*
1835 * Compose corefile .note section.
1836 */
1837
1838 #define target_make_corefile_notes(BFD, SIZE_P) \
1839 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1840
1841 /* Bookmark interfaces. */
1842 #define target_get_bookmark(ARGS, FROM_TTY) \
1843 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1844
1845 #define target_goto_bookmark(ARG, FROM_TTY) \
1846 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1847
1848 /* Hardware watchpoint interfaces. */
1849
1850 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1851 write). Only the INFERIOR_PTID task is being queried. */
1852
1853 #define target_stopped_by_watchpoint() \
1854 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1855
1856 /* Returns non-zero if the target stopped because it executed a
1857 software breakpoint instruction. */
1858
1859 #define target_stopped_by_sw_breakpoint() \
1860 ((*current_target.to_stopped_by_sw_breakpoint) (&current_target))
1861
1862 #define target_supports_stopped_by_sw_breakpoint() \
1863 ((*current_target.to_supports_stopped_by_sw_breakpoint) (&current_target))
1864
1865 #define target_stopped_by_hw_breakpoint() \
1866 ((*current_target.to_stopped_by_hw_breakpoint) (&current_target))
1867
1868 #define target_supports_stopped_by_hw_breakpoint() \
1869 ((*current_target.to_supports_stopped_by_hw_breakpoint) (&current_target))
1870
1871 /* Non-zero if we have steppable watchpoints */
1872
1873 #define target_have_steppable_watchpoint \
1874 (current_target.to_have_steppable_watchpoint)
1875
1876 /* Non-zero if we have continuable watchpoints */
1877
1878 #define target_have_continuable_watchpoint \
1879 (current_target.to_have_continuable_watchpoint)
1880
1881 /* Provide defaults for hardware watchpoint functions. */
1882
1883 /* If the *_hw_beakpoint functions have not been defined
1884 elsewhere use the definitions in the target vector. */
1885
1886 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1887 Returns negative if the target doesn't have enough hardware debug
1888 registers available. Return zero if hardware watchpoint of type
1889 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1890 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1891 CNT is the number of such watchpoints used so far, including this
1892 one. OTHERTYPE is who knows what... */
1893
1894 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1895 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1896 TYPE, CNT, OTHERTYPE)
1897
1898 /* Returns the number of debug registers needed to watch the given
1899 memory region, or zero if not supported. */
1900
1901 #define target_region_ok_for_hw_watchpoint(addr, len) \
1902 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1903 addr, len)
1904
1905
1906 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1907 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1908 COND is the expression for its condition, or NULL if there's none.
1909 Returns 0 for success, 1 if the watchpoint type is not supported,
1910 -1 for failure. */
1911
1912 #define target_insert_watchpoint(addr, len, type, cond) \
1913 (*current_target.to_insert_watchpoint) (&current_target, \
1914 addr, len, type, cond)
1915
1916 #define target_remove_watchpoint(addr, len, type, cond) \
1917 (*current_target.to_remove_watchpoint) (&current_target, \
1918 addr, len, type, cond)
1919
1920 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1921 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1922 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1923 masked watchpoints are not supported, -1 for failure. */
1924
1925 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1926
1927 /* Remove a masked watchpoint at ADDR with the mask MASK.
1928 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1929 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1930 for failure. */
1931
1932 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1933
1934 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1935 the target machine. Returns 0 for success, and returns non-zero or
1936 throws an error (with a detailed failure reason error code and
1937 message) otherwise. */
1938
1939 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1940 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1941 gdbarch, bp_tgt)
1942
1943 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1944 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1945 gdbarch, bp_tgt)
1946
1947 /* Return number of debug registers needed for a ranged breakpoint,
1948 or -1 if ranged breakpoints are not supported. */
1949
1950 extern int target_ranged_break_num_registers (void);
1951
1952 /* Return non-zero if target knows the data address which triggered this
1953 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1954 INFERIOR_PTID task is being queried. */
1955 #define target_stopped_data_address(target, addr_p) \
1956 (*(target)->to_stopped_data_address) (target, addr_p)
1957
1958 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1959 LENGTH bytes beginning at START. */
1960 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1961 (*(target)->to_watchpoint_addr_within_range) (target, addr, start, length)
1962
1963 /* Return non-zero if the target is capable of using hardware to evaluate
1964 the condition expression. In this case, if the condition is false when
1965 the watched memory location changes, execution may continue without the
1966 debugger being notified.
1967
1968 Due to limitations in the hardware implementation, it may be capable of
1969 avoiding triggering the watchpoint in some cases where the condition
1970 expression is false, but may report some false positives as well.
1971 For this reason, GDB will still evaluate the condition expression when
1972 the watchpoint triggers. */
1973 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1974 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1975 addr, len, type, cond)
1976
1977 /* Return number of debug registers needed for a masked watchpoint,
1978 -1 if masked watchpoints are not supported or -2 if the given address
1979 and mask combination cannot be used. */
1980
1981 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1982
1983 /* Target can execute in reverse? */
1984 #define target_can_execute_reverse \
1985 current_target.to_can_execute_reverse (&current_target)
1986
1987 extern const struct target_desc *target_read_description (struct target_ops *);
1988
1989 #define target_get_ada_task_ptid(lwp, tid) \
1990 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1991
1992 /* Utility implementation of searching memory. */
1993 extern int simple_search_memory (struct target_ops* ops,
1994 CORE_ADDR start_addr,
1995 ULONGEST search_space_len,
1996 const gdb_byte *pattern,
1997 ULONGEST pattern_len,
1998 CORE_ADDR *found_addrp);
1999
2000 /* Main entry point for searching memory. */
2001 extern int target_search_memory (CORE_ADDR start_addr,
2002 ULONGEST search_space_len,
2003 const gdb_byte *pattern,
2004 ULONGEST pattern_len,
2005 CORE_ADDR *found_addrp);
2006
2007 /* Target file operations. */
2008
2009 /* Return nonzero if the filesystem seen by the current inferior
2010 is the local filesystem, zero otherwise. */
2011 #define target_filesystem_is_local() \
2012 current_target.to_filesystem_is_local (&current_target)
2013
2014 /* Open FILENAME on the target, in the filesystem as seen by INF,
2015 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2016 by the debugger (GDB or, for remote targets, the remote stub).
2017 Return a target file descriptor, or -1 if an error occurs (and
2018 set *TARGET_ERRNO). */
2019 extern int target_fileio_open (struct inferior *inf,
2020 const char *filename, int flags,
2021 int mode, int *target_errno);
2022
2023 /* Like target_fileio_open, but print a warning message if the
2024 file is being accessed over a link that may be slow. */
2025 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2026 const char *filename,
2027 int flags,
2028 int mode,
2029 int *target_errno);
2030
2031 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2032 Return the number of bytes written, or -1 if an error occurs
2033 (and set *TARGET_ERRNO). */
2034 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2035 ULONGEST offset, int *target_errno);
2036
2037 /* Read up to LEN bytes FD on the target into READ_BUF.
2038 Return the number of bytes read, or -1 if an error occurs
2039 (and set *TARGET_ERRNO). */
2040 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2041 ULONGEST offset, int *target_errno);
2042
2043 /* Get information about the file opened as FD on the target
2044 and put it in SB. Return 0 on success, or -1 if an error
2045 occurs (and set *TARGET_ERRNO). */
2046 extern int target_fileio_fstat (int fd, struct stat *sb,
2047 int *target_errno);
2048
2049 /* Close FD on the target. Return 0, or -1 if an error occurs
2050 (and set *TARGET_ERRNO). */
2051 extern int target_fileio_close (int fd, int *target_errno);
2052
2053 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2054 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2055 for remote targets, the remote stub). Return 0, or -1 if an error
2056 occurs (and set *TARGET_ERRNO). */
2057 extern int target_fileio_unlink (struct inferior *inf,
2058 const char *filename,
2059 int *target_errno);
2060
2061 /* Read value of symbolic link FILENAME on the target, in the
2062 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2063 by the debugger (GDB or, for remote targets, the remote stub).
2064 Return a null-terminated string allocated via xmalloc, or NULL if
2065 an error occurs (and set *TARGET_ERRNO). */
2066 extern char *target_fileio_readlink (struct inferior *inf,
2067 const char *filename,
2068 int *target_errno);
2069
2070 /* Read target file FILENAME, in the filesystem as seen by INF. If
2071 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2072 remote targets, the remote stub). The return value will be -1 if
2073 the transfer fails or is not supported; 0 if the object is empty;
2074 or the length of the object otherwise. If a positive value is
2075 returned, a sufficiently large buffer will be allocated using
2076 xmalloc and returned in *BUF_P containing the contents of the
2077 object.
2078
2079 This method should be used for objects sufficiently small to store
2080 in a single xmalloc'd buffer, when no fixed bound on the object's
2081 size is known in advance. */
2082 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2083 const char *filename,
2084 gdb_byte **buf_p);
2085
2086 /* Read target file FILENAME, in the filesystem as seen by INF. If
2087 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2088 remote targets, the remote stub). The result is NUL-terminated and
2089 returned as a string, allocated using xmalloc. If an error occurs
2090 or the transfer is unsupported, NULL is returned. Empty objects
2091 are returned as allocated but empty strings. A warning is issued
2092 if the result contains any embedded NUL bytes. */
2093 extern char *target_fileio_read_stralloc (struct inferior *inf,
2094 const char *filename);
2095
2096
2097 /* Tracepoint-related operations. */
2098
2099 #define target_trace_init() \
2100 (*current_target.to_trace_init) (&current_target)
2101
2102 #define target_download_tracepoint(t) \
2103 (*current_target.to_download_tracepoint) (&current_target, t)
2104
2105 #define target_can_download_tracepoint() \
2106 (*current_target.to_can_download_tracepoint) (&current_target)
2107
2108 #define target_download_trace_state_variable(tsv) \
2109 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
2110
2111 #define target_enable_tracepoint(loc) \
2112 (*current_target.to_enable_tracepoint) (&current_target, loc)
2113
2114 #define target_disable_tracepoint(loc) \
2115 (*current_target.to_disable_tracepoint) (&current_target, loc)
2116
2117 #define target_trace_start() \
2118 (*current_target.to_trace_start) (&current_target)
2119
2120 #define target_trace_set_readonly_regions() \
2121 (*current_target.to_trace_set_readonly_regions) (&current_target)
2122
2123 #define target_get_trace_status(ts) \
2124 (*current_target.to_get_trace_status) (&current_target, ts)
2125
2126 #define target_get_tracepoint_status(tp,utp) \
2127 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
2128
2129 #define target_trace_stop() \
2130 (*current_target.to_trace_stop) (&current_target)
2131
2132 #define target_trace_find(type,num,addr1,addr2,tpp) \
2133 (*current_target.to_trace_find) (&current_target, \
2134 (type), (num), (addr1), (addr2), (tpp))
2135
2136 #define target_get_trace_state_variable_value(tsv,val) \
2137 (*current_target.to_get_trace_state_variable_value) (&current_target, \
2138 (tsv), (val))
2139
2140 #define target_save_trace_data(filename) \
2141 (*current_target.to_save_trace_data) (&current_target, filename)
2142
2143 #define target_upload_tracepoints(utpp) \
2144 (*current_target.to_upload_tracepoints) (&current_target, utpp)
2145
2146 #define target_upload_trace_state_variables(utsvp) \
2147 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
2148
2149 #define target_get_raw_trace_data(buf,offset,len) \
2150 (*current_target.to_get_raw_trace_data) (&current_target, \
2151 (buf), (offset), (len))
2152
2153 #define target_get_min_fast_tracepoint_insn_len() \
2154 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
2155
2156 #define target_set_disconnected_tracing(val) \
2157 (*current_target.to_set_disconnected_tracing) (&current_target, val)
2158
2159 #define target_set_circular_trace_buffer(val) \
2160 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
2161
2162 #define target_set_trace_buffer_size(val) \
2163 (*current_target.to_set_trace_buffer_size) (&current_target, val)
2164
2165 #define target_set_trace_notes(user,notes,stopnotes) \
2166 (*current_target.to_set_trace_notes) (&current_target, \
2167 (user), (notes), (stopnotes))
2168
2169 #define target_get_tib_address(ptid, addr) \
2170 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
2171
2172 #define target_set_permissions() \
2173 (*current_target.to_set_permissions) (&current_target)
2174
2175 #define target_static_tracepoint_marker_at(addr, marker) \
2176 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
2177 addr, marker)
2178
2179 #define target_static_tracepoint_markers_by_strid(marker_id) \
2180 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
2181 marker_id)
2182
2183 #define target_traceframe_info() \
2184 (*current_target.to_traceframe_info) (&current_target)
2185
2186 #define target_use_agent(use) \
2187 (*current_target.to_use_agent) (&current_target, use)
2188
2189 #define target_can_use_agent() \
2190 (*current_target.to_can_use_agent) (&current_target)
2191
2192 #define target_augmented_libraries_svr4_read() \
2193 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2194
2195 /* Command logging facility. */
2196
2197 #define target_log_command(p) \
2198 (*current_target.to_log_command) (&current_target, p)
2199
2200
2201 extern int target_core_of_thread (ptid_t ptid);
2202
2203 /* See to_get_unwinder in struct target_ops. */
2204 extern const struct frame_unwind *target_get_unwinder (void);
2205
2206 /* See to_get_tailcall_unwinder in struct target_ops. */
2207 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2208
2209 /* This implements basic memory verification, reading target memory
2210 and performing the comparison here (as opposed to accelerated
2211 verification making use of the qCRC packet, for example). */
2212
2213 extern int simple_verify_memory (struct target_ops* ops,
2214 const gdb_byte *data,
2215 CORE_ADDR memaddr, ULONGEST size);
2216
2217 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2218 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2219 if there's a mismatch, and -1 if an error is encountered while
2220 reading memory. Throws an error if the functionality is found not
2221 to be supported by the current target. */
2222 int target_verify_memory (const gdb_byte *data,
2223 CORE_ADDR memaddr, ULONGEST size);
2224
2225 /* Routines for maintenance of the target structures...
2226
2227 complete_target_initialization: Finalize a target_ops by filling in
2228 any fields needed by the target implementation. Unnecessary for
2229 targets which are registered via add_target, as this part gets
2230 taken care of then.
2231
2232 add_target: Add a target to the list of all possible targets.
2233 This only makes sense for targets that should be activated using
2234 the "target TARGET_NAME ..." command.
2235
2236 push_target: Make this target the top of the stack of currently used
2237 targets, within its particular stratum of the stack. Result
2238 is 0 if now atop the stack, nonzero if not on top (maybe
2239 should warn user).
2240
2241 unpush_target: Remove this from the stack of currently used targets,
2242 no matter where it is on the list. Returns 0 if no
2243 change, 1 if removed from stack. */
2244
2245 extern void add_target (struct target_ops *);
2246
2247 extern void add_target_with_completer (struct target_ops *t,
2248 completer_ftype *completer);
2249
2250 extern void complete_target_initialization (struct target_ops *t);
2251
2252 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2253 for maintaining backwards compatibility when renaming targets. */
2254
2255 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2256
2257 extern void push_target (struct target_ops *);
2258
2259 extern int unpush_target (struct target_ops *);
2260
2261 extern void target_pre_inferior (int);
2262
2263 extern void target_preopen (int);
2264
2265 /* Does whatever cleanup is required to get rid of all pushed targets. */
2266 extern void pop_all_targets (void);
2267
2268 /* Like pop_all_targets, but pops only targets whose stratum is
2269 strictly above ABOVE_STRATUM. */
2270 extern void pop_all_targets_above (enum strata above_stratum);
2271
2272 extern int target_is_pushed (struct target_ops *t);
2273
2274 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2275 CORE_ADDR offset);
2276
2277 /* Struct target_section maps address ranges to file sections. It is
2278 mostly used with BFD files, but can be used without (e.g. for handling
2279 raw disks, or files not in formats handled by BFD). */
2280
2281 struct target_section
2282 {
2283 CORE_ADDR addr; /* Lowest address in section */
2284 CORE_ADDR endaddr; /* 1+highest address in section */
2285
2286 struct bfd_section *the_bfd_section;
2287
2288 /* The "owner" of the section.
2289 It can be any unique value. It is set by add_target_sections
2290 and used by remove_target_sections.
2291 For example, for executables it is a pointer to exec_bfd and
2292 for shlibs it is the so_list pointer. */
2293 void *owner;
2294 };
2295
2296 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2297
2298 struct target_section_table
2299 {
2300 struct target_section *sections;
2301 struct target_section *sections_end;
2302 };
2303
2304 /* Return the "section" containing the specified address. */
2305 struct target_section *target_section_by_addr (struct target_ops *target,
2306 CORE_ADDR addr);
2307
2308 /* Return the target section table this target (or the targets
2309 beneath) currently manipulate. */
2310
2311 extern struct target_section_table *target_get_section_table
2312 (struct target_ops *target);
2313
2314 /* From mem-break.c */
2315
2316 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2317 struct bp_target_info *);
2318
2319 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2320 struct bp_target_info *);
2321
2322 /* Check whether the memory at the breakpoint's placed address still
2323 contains the expected breakpoint instruction. */
2324
2325 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2326 struct bp_target_info *bp_tgt);
2327
2328 extern int default_memory_remove_breakpoint (struct gdbarch *,
2329 struct bp_target_info *);
2330
2331 extern int default_memory_insert_breakpoint (struct gdbarch *,
2332 struct bp_target_info *);
2333
2334
2335 /* From target.c */
2336
2337 extern void initialize_targets (void);
2338
2339 extern void noprocess (void) ATTRIBUTE_NORETURN;
2340
2341 extern void target_require_runnable (void);
2342
2343 extern struct target_ops *find_target_beneath (struct target_ops *);
2344
2345 /* Find the target at STRATUM. If no target is at that stratum,
2346 return NULL. */
2347
2348 struct target_ops *find_target_at (enum strata stratum);
2349
2350 /* Read OS data object of type TYPE from the target, and return it in
2351 XML format. The result is NUL-terminated and returned as a string,
2352 allocated using xmalloc. If an error occurs or the transfer is
2353 unsupported, NULL is returned. Empty objects are returned as
2354 allocated but empty strings. */
2355
2356 extern char *target_get_osdata (const char *type);
2357
2358 \f
2359 /* Stuff that should be shared among the various remote targets. */
2360
2361 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2362 information (higher values, more information). */
2363 extern int remote_debug;
2364
2365 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2366 extern int baud_rate;
2367
2368 /* Parity for serial port */
2369 extern int serial_parity;
2370
2371 /* Timeout limit for response from target. */
2372 extern int remote_timeout;
2373
2374 \f
2375
2376 /* Set the show memory breakpoints mode to show, and installs a cleanup
2377 to restore it back to the current value. */
2378 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2379
2380 extern int may_write_registers;
2381 extern int may_write_memory;
2382 extern int may_insert_breakpoints;
2383 extern int may_insert_tracepoints;
2384 extern int may_insert_fast_tracepoints;
2385 extern int may_stop;
2386
2387 extern void update_target_permissions (void);
2388
2389 \f
2390 /* Imported from machine dependent code. */
2391
2392 /* See to_supports_btrace in struct target_ops. */
2393 extern int target_supports_btrace (enum btrace_format);
2394
2395 /* See to_enable_btrace in struct target_ops. */
2396 extern struct btrace_target_info *
2397 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2398
2399 /* See to_disable_btrace in struct target_ops. */
2400 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2401
2402 /* See to_teardown_btrace in struct target_ops. */
2403 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2404
2405 /* See to_read_btrace in struct target_ops. */
2406 extern enum btrace_error target_read_btrace (struct btrace_data *,
2407 struct btrace_target_info *,
2408 enum btrace_read_type);
2409
2410 /* See to_btrace_conf in struct target_ops. */
2411 extern const struct btrace_config *
2412 target_btrace_conf (const struct btrace_target_info *);
2413
2414 /* See to_stop_recording in struct target_ops. */
2415 extern void target_stop_recording (void);
2416
2417 /* See to_save_record in struct target_ops. */
2418 extern void target_save_record (const char *filename);
2419
2420 /* Query if the target supports deleting the execution log. */
2421 extern int target_supports_delete_record (void);
2422
2423 /* See to_delete_record in struct target_ops. */
2424 extern void target_delete_record (void);
2425
2426 /* See to_record_is_replaying in struct target_ops. */
2427 extern int target_record_is_replaying (void);
2428
2429 /* See to_goto_record_begin in struct target_ops. */
2430 extern void target_goto_record_begin (void);
2431
2432 /* See to_goto_record_end in struct target_ops. */
2433 extern void target_goto_record_end (void);
2434
2435 /* See to_goto_record in struct target_ops. */
2436 extern void target_goto_record (ULONGEST insn);
2437
2438 /* See to_insn_history. */
2439 extern void target_insn_history (int size, int flags);
2440
2441 /* See to_insn_history_from. */
2442 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2443
2444 /* See to_insn_history_range. */
2445 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2446
2447 /* See to_call_history. */
2448 extern void target_call_history (int size, int flags);
2449
2450 /* See to_call_history_from. */
2451 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2452
2453 /* See to_call_history_range. */
2454 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2455
2456 /* See to_prepare_to_generate_core. */
2457 extern void target_prepare_to_generate_core (void);
2458
2459 /* See to_done_generating_core. */
2460 extern void target_done_generating_core (void);
2461
2462 #endif /* !defined (TARGET_H) */
This page took 0.126274 seconds and 4 git commands to generate.